WO2023078117A1 - Dpsk信号的解调方法、装置、设备及存储介质 - Google Patents

Dpsk信号的解调方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023078117A1
WO2023078117A1 PCT/CN2022/127169 CN2022127169W WO2023078117A1 WO 2023078117 A1 WO2023078117 A1 WO 2023078117A1 CN 2022127169 W CN2022127169 W CN 2022127169W WO 2023078117 A1 WO2023078117 A1 WO 2023078117A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpsk signal
signal
demodulation
dpsk
rotation angle
Prior art date
Application number
PCT/CN2022/127169
Other languages
English (en)
French (fr)
Inventor
左罡
Original Assignee
易兆微电子(杭州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 易兆微电子(杭州)股份有限公司 filed Critical 易兆微电子(杭州)股份有限公司
Priority to KR1020247013688A priority Critical patent/KR20240072219A/ko
Publication of WO2023078117A1 publication Critical patent/WO2023078117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2275Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/2057Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases with a separate carrier for each phase state
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0065Frequency error detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0067Phase error detectors

Definitions

  • Embodiments of the present application relate to the field of mobile communications, for example, to a demodulation method, device, device, and storage medium for differential phase shift keying (Differential Phase Shift Keying, DPSK) signals.
  • DPSK differential Phase Shift Keying
  • modulation and demodulation are indispensable and important links in wireless communication systems, and the performance of modulation and demodulation is related to the performance of the entire communication system.
  • Digital modulation and demodulation technology has been widely used in modern wireless communication systems because of its good anti-noise performance and excellent bit error rate performance.
  • the DPSK technology in the digital modulation and demodulation technology has been widely used in wireless communication systems because of its advantages such as high transmission efficiency and strong anti-interference ability.
  • the method for demodulating the DPSK baseband signal is generally divided into the following two types: the first is to differentially demodulate the DPSK baseband signal based on the angle, that is, first compare the phases of adjacent symbols, and then The demodulation result is obtained after low-pass filtering and sampling judgment; the second is to perform coherent demodulation based on the in-phase component-orthogonal component (In-phase Quadrate, IQ) signal, that is, multiple parallel IQ signals are passed through the digital front-end (Digital Front End, DFE) is down-sampled from 48Msps to 4Msps, filtered by a low-pass filter, and then synchronized to obtain the position of the best sampling point and initial frequency offset, mapped to the angle of rotation according to the constellation map, and finally converted to Bit stream for serial transmission.
  • IQ in-phase Quadrate
  • DFE Digital Front End
  • the first demodulation method only the phases of adjacent symbols are used for demodulation, resulting in low sensitivity of the receiver; in the second demodulation method, the complexity is high and the implementation cost is high.
  • Embodiments of the present application provide a DPSK signal demodulation method, device, device, and storage medium, which can improve the sensitivity of a receiver and reduce the complexity and implementation cost of a DPSK signal demodulation process.
  • the embodiment of the present application provides a demodulation method of a DPSK signal, including:
  • the DPSK signal including multiple IQ signals corresponding to multiple times
  • the embodiment of the present application also provides a demodulation device of a DPSK signal, the device comprising:
  • the signal receiving module is configured to receive the DPSK signal to be processed, and the DPSK signal includes a plurality of IQ signals corresponding to a plurality of moments;
  • a function building module configured to construct a cost function matching the DPSK signal according to a preset constellation rotation angle and a preset frequency offset corresponding to the DPSK signal;
  • the demodulation module is configured to solve the cost function according to a plurality of signal expressions corresponding to the plurality of IQ signals, and obtain a demodulation result corresponding to the DPSK signal.
  • the embodiment of the present application also provides a computer device, the device includes:
  • processors one or more processors
  • a storage device configured to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement a method for demodulating a DPSK signal provided in any embodiment of the present application.
  • An embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, a method for demodulating a DPSK signal provided in any embodiment of the present application is implemented.
  • Fig. 1 is the flowchart of the demodulation method of a kind of DPSK signal in the embodiment one of the present application;
  • Fig. 2 is a flowchart of a demodulation method of a DPSK signal in Embodiment 2 of the present application;
  • Fig. 3a is a flowchart of a demodulation method of a DPSK signal in Embodiment 3 of the present application;
  • FIG. 3b is a structural diagram of a frequency offset tracking loop in Embodiment 3 of the present application.
  • FIG. 4 is a structural diagram of a demodulation device for a DPSK signal in Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a computer device in Embodiment 5 of the present application.
  • the demodulation method in the related art has low sensitivity, high complexity, and high implementation cost.
  • the demodulation method in the related art still lacks a frequency offset tracking strategy, resulting in low stability and robustness of the communication system.
  • Fig. 1 is the flow chart of the demodulation method of a kind of DPSK signal that the application embodiment 1 provides, and this embodiment can be applicable to the situation that the receiver demodulates the received DPSK signal, and this method can be by the demodulation of DPSK signal
  • the demodulation device can be implemented by software and/or hardware, and generally can be integrated in a terminal or server with data processing functions.
  • the demodulation method includes the following steps:
  • Step 110 Receive a DPSK signal to be processed, where the DPSK signal includes multiple IQ signals corresponding to multiple time instants.
  • the terminal or the server may serve as a receiver to receive a signal (that is, a DPSK signal) obtained by modulating the original signal at the transmitting end using DPSK technology.
  • a signal that is, a DPSK signal
  • the DPSK signal includes multiple IQ signals corresponding to multiple times.
  • Step 120 Construct a cost function matching the DPSK signal according to the preset constellation rotation angle and preset frequency offset corresponding to the DPSK signal.
  • the constellation diagram rotation angles ( ⁇ and ⁇ ) corresponding to the DPSK signal and the phase deviation ⁇ between adjacent IQ signals can be estimated, the phase
  • the offset ⁇ can be equivalent to the frequency offset between adjacent IQ signals.
  • the IQ signal at the kth moment can be expressed as S k , where:
  • ⁇ k indicates the actual phase offset between the IQ signals in the DPSK signal due to frequency offset
  • S k-1 indicates the IQ signal at the k-1th moment.
  • the cost function Function( ⁇ , ⁇ , ⁇ ) matching the DPSK signal can be constructed by the following formula:
  • Step 130 Solve the cost function according to multiple signal expressions corresponding to the multiple IQ signals to obtain a demodulation result corresponding to the DPSK signal.
  • this step optionally, according to a plurality of signal expressions corresponding to the plurality of IQ signals, calculate the corresponding function ( ⁇ , ⁇ , ⁇ ) when the value is the largest value, and value, and take the above two rotation angle values as demodulation results corresponding to the DPSK signal.
  • the cost function is solved to obtain a demodulation result corresponding to the DPSK signal, including:
  • Step 131 Construct a demodulation function corresponding to the DPSK signal according to multiple signal expressions corresponding to the multiple IQ signals and the cost function.
  • a plurality of signal expressions corresponding to a plurality of IQ signals can be substituted into the above-mentioned cost function to obtain a demodulation function corresponding to the DPSK signal:
  • Step 132 According to the modulation mode corresponding to the DPSK signal, solve the demodulation function corresponding to the DPSK signal, and obtain the target rotation angle value and the target information bit corresponding to the DPSK signal.
  • the modulation method corresponding to the DPSK signal is ⁇ /4 shift differential quadrature phase shift keying ( ⁇ /4shift Differential Quadrature Phase Shift Keying, ⁇ /4-DQPSK)
  • ⁇ /4shift Differential Quadrature Phase Shift Keying ⁇ /4-DQPSK
  • Step 133 Use the target rotation angle value and target information bit corresponding to the DPSK signal as a demodulation result corresponding to the DPSK signal.
  • the accuracy of the demodulation result can be guaranteed, and the receiving performance and sensitivity of the receiver can be improved;
  • the DPSK signal corresponding to the DPSK signal can be obtained.
  • the demodulation result can reduce the complexity and implementation cost of the demodulation process.
  • a cost function matching the DPSK signal is constructed.
  • a plurality of signal expressions corresponding to the IQ signal, solving the cost function, obtaining the technical means of demodulation results corresponding to the DPSK signal, can improve the sensitivity of the receiver, reduce the complexity of the DPSK signal demodulation process and Implementation costs.
  • FIG. 2 is a flowchart of a demodulation method of a DPSK signal provided in the second embodiment.
  • the technical solution of this embodiment can be combined with one or more methods in the solutions of the above-mentioned embodiments , as shown in Figure 2, the method provided in this embodiment may also include:
  • Step 210 Receive a DPSK signal to be processed, where the DPSK signal includes multiple IQ signals corresponding to multiple time instants.
  • Step 220 Construct a cost function matching the DPSK signal according to the preset constellation rotation angle and preset frequency offset corresponding to the DPSK signal.
  • Step 230 Construct a demodulation function corresponding to the DPSK signal according to multiple signal expressions corresponding to the multiple IQ signals and the cost function.
  • Step 240 Obtain a transmission information mapping table matching the DPSK signal according to the modulation method corresponding to the DPSK signal; the transmission information mapping table includes multiple candidate rotation angle values corresponding to the DPSK signal, and Alternative bits of information to match each alternate rotation angle value.
  • each modulation mode corresponds to a specific transmission information mapping table
  • the transmission information mapping table includes multiple candidate rotation angle values corresponding to the DPSK signal for the modulation mode.
  • the transmission information mapping table matching the DPSK signal can be shown in Table 1, where ⁇ n is the DPSK signal
  • each candidate rotation angle value corresponds to 2 bits of information.
  • the transmission information mapping table matching the DPSK signal can be as shown in Table 2 , where ⁇ n is the phase difference corresponding to the DPSK signal (that is, the candidate rotation angle value), and each candidate rotation angle value corresponds to 3 bits of information.
  • Step 250 Determine the target rotation angle value corresponding to the DPSK signal when the demodulation function value corresponding to the DPSK signal is the largest according to the multiple candidate rotation angle values in the transmission information mapping table.
  • the combinations of all candidate rotation angle values may be traversed in the transmission information mapping table, and a group of target rotation angle values may be selected from the combination of all candidate rotation angle values so as to maximize the demodulation function value.
  • the time for determining the target rotation angle value can be saved, and the demodulation efficiency of the DPSK signal can be improved.
  • Step 260 according to the target rotation angle value corresponding to the DPSK signal, acquire the target information bit corresponding to the DPSK signal in the transmission information mapping table.
  • the target information bit corresponding to the DPSK signal may be obtained according to the mapping relationship between the target rotation angle value and the target information bit in the transmission information mapping table.
  • Step 270 Use the target rotation angle value and target information bit corresponding to the DPSK signal as a demodulation result corresponding to the DPSK signal.
  • a cost function matching the DPSK signal is constructed.
  • a plurality of signal expressions corresponding to the IQ signal and the cost function constructing a demodulation function corresponding to the DPSK signal, and obtaining a transmission information mapping table matching the DPSK signal according to a modulation mode corresponding to the DPSK signal , according to the transmission information mapping table, when it is determined that the demodulation function value corresponding to the DPSK signal is the largest, the target rotation angle value corresponding to the DPSK signal, according to the target rotation angle value corresponding to the DPSK signal, in the transmission Obtain the target information bit corresponding to the DPSK signal in the information mapping table, and use the target rotation angle value and the target information bit corresponding to the DPSK signal as a technical means of the demodulation result corresponding to the DPSK signal, which can improve the
  • Figure 3a is a flow chart of a demodulation method for a DPSK signal provided in Embodiment 3.
  • the technical solution of this embodiment can be combined with one or more methods in the solutions of the above embodiments , as shown in Figure 3a, the method provided by this embodiment may also include:
  • Step 310 Receive a DPSK signal to be processed, where the DPSK signal includes multiple IQ signals corresponding to multiple time instants.
  • Step 320 Construct a cost function matching the DPSK signal according to the preset constellation rotation angle and preset frequency offset corresponding to the DPSK signal.
  • Step 330 Construct a demodulation function corresponding to the DPSK signal according to multiple signal expressions corresponding to the multiple IQ signals and the cost function.
  • Step 340 According to the demodulation function corresponding to the DPSK signal, obtain the residual frequency offset corresponding to the DPSK signal.
  • the demodulation function corresponding to the DPSK signal is the following expression:
  • the residual frequency offset corresponding to the DPSK signal can be obtained through the above demodulation function as follows:
  • ⁇ _left is the residual frequency offset corresponding to the DPSK signal
  • Angle means calculating an angle for the complex signal
  • Step 350 Update the residual frequency offset through a preset frequency offset tracking loop to obtain an updated demodulation function corresponding to the DPSK signal.
  • the residual frequency offset may be updated through a preset frequency offset tracking loop, so that the residual frequency offset is stabilized within a preset interval.
  • the structural diagram of the frequency offset tracking loop can be shown in Figure 3b, and the Z-domain transfer function corresponding to the frequency offset tracking loop is H(Z), and the H (Z) is determined by the following formula:
  • W 0 is a preset constant value greater than zero, and the constant value is associated with the bandwidth of the frequency offset tracking loop.
  • the value of the initial frequency FreqOffset obtained after passing through the frequency offset tracking loop in Figure 3b will increase, and then after passing through the feedback path, it can make ⁇ _left becomes smaller; on the contrary, if ⁇ _left ⁇ 0, the value of the initial frequency FreqOffset obtained after passing through the frequency offset tracking loop in Figure 3b will decrease, and then the value of ⁇ _left can be increased after passing through the feedback path. Therefore, through the frequency offset tracking loop, on the one hand, the residual frequency offset ⁇ _left can be stabilized near 0, and on the other hand, the value of the starting frequency FreqOffset can track the real frequency offset change.
  • the updated residual frequency offset can be converted into a phase offset value, and the converted phase offset value can be used as ⁇ in the demodulation function to obtain an updated solution call function.
  • Step 360 According to the modulation mode corresponding to the DPSK signal, solve the updated demodulation function corresponding to the DPSK signal, and obtain the target rotation angle value and the target information bit corresponding to the DPSK signal.
  • Step 370 Use the target rotation angle value and target information bit corresponding to the DPSK signal as a demodulation result corresponding to the DPSK signal.
  • a cost function matching the DPSK signal is constructed, and according to multiple A plurality of signal expressions corresponding to the IQ signal and the cost function construct a demodulation function corresponding to the DPSK signal, and obtain a residual frequency offset corresponding to the DPSK signal according to the demodulation function corresponding to the DPSK signal, by
  • the preset frequency offset tracking loop updates the residual frequency offset to obtain an updated demodulation function corresponding to the DPSK signal, and according to the modulation mode corresponding to the DPSK signal, the corresponding to the DPSK signal
  • the updated demodulation function is solved to obtain the target rotation angle value and the target information bit corresponding to the DPSK signal, and the target rotation angle value and the target information bit corresponding to the DPSK signal are used as the target rotation angle value corresponding to the DPSK signal.
  • the demodulation method of the DPSK signal can be applied in the enhanced data rate (Enhanced Data Rate, EDR) mode under the Bluetooth 5.1 standard.
  • the demodulation method of the DPSK signal can be realized by a Bluetooth chip, and the received power calculated by the Bluetooth chip can be as shown in Table 3:
  • the receiving power of the Bluetooth chip is low, that is, the Bluetooth chip has a high sensitivity when demodulating DPSK signals.
  • FIG. 4 is a structural diagram of a device for demodulating a DPSK signal provided in Embodiment 4 of the present application.
  • the device includes: a signal receiving module 410 , a function building module 420 and a demodulation module 430 .
  • the signal receiving module 410 is configured to receive the DPSK signal to be processed, and the DPSK signal includes a plurality of IQ signals corresponding to a plurality of moments; the function building module 420 is configured to rotate according to a preset constellation diagram corresponding to the DPSK signal Angle and preset frequency offset, build the cost function that matches with described DPSK signal; Demodulation module 430, be set to solve described cost function according to multiple signal expressions corresponding to described multiple IQ signals, obtain A demodulation result corresponding to the DPSK signal.
  • a cost function matching the DPSK signal is constructed.
  • a plurality of signal expressions corresponding to the IQ signal, solving the cost function, obtaining the technical means of demodulation results corresponding to the DPSK signal, can improve the sensitivity of the receiver, reduce the complexity of the DPSK signal demodulation process and Implementation costs.
  • the function construction module 420 may include: a cost function construction unit, configured to be based on a plurality of signal expressions respectively corresponding to a plurality of continuous IQ signals in the DPSK signal, and a preset value corresponding to the DPSK signal The rotation angle of the constellation diagram and the preset frequency offset are set to construct a cost function matching the DPSK signal.
  • the demodulation module 430 may include the following units:
  • the demodulation function construction unit is configured to construct a demodulation function corresponding to the DPSK signal according to a plurality of signal expressions corresponding to a plurality of IQ signals and the cost function.
  • the function solving unit is configured to solve the demodulation function corresponding to the DPSK signal according to the modulation method corresponding to the DPSK signal, and obtain a target rotation angle value and a target information bit corresponding to the DPSK signal.
  • the result determination unit is configured to use the target rotation angle value and target information bit corresponding to the DPSK signal as a demodulation result corresponding to the DPSK signal.
  • the frequency offset acquisition unit is configured to acquire the residual frequency offset corresponding to the DPSK signal according to the demodulation function corresponding to the DPSK signal.
  • a frequency offset update unit is configured to update the residual frequency offset through a preset frequency offset tracking loop to obtain an updated demodulation function corresponding to the DPSK signal; Z corresponding to the frequency offset tracking loop
  • the domain transfer function is H(Z), which is determined by the following formula:
  • W 0 is a preset constant value greater than zero, and the constant value is associated with the bandwidth of the frequency offset tracking loop.
  • the update function solving unit is configured to solve the updated demodulation function corresponding to the DPSK signal according to the modulation method corresponding to the DPSK signal, and obtain the target rotation angle value and the target information bit corresponding to the DPSK signal .
  • the mapping table obtaining unit is configured to obtain a transmission information mapping table matching the DPSK signal according to the modulation method corresponding to the DPSK signal; the transmission information mapping table includes a plurality of alternative rotations corresponding to the DPSK signal Angle values, and alternate bits of information to match each alternate rotation angle value.
  • the target angle value determining unit is configured to determine the target rotation angle value corresponding to the DPSK signal when the demodulation function value corresponding to the DPSK signal is the largest according to the multiple candidate rotation angle values in the transmission information mapping table.
  • the target information is an acquisition unit, which is configured to acquire the target information bit corresponding to the DPSK signal in the transmission information mapping table according to the target rotation angle value corresponding to the DPSK signal.
  • the DPSK signal demodulation device provided in the embodiment of the present application can execute the DPSK signal demodulation method provided in any embodiment of the present application, and has corresponding functional modules and effects for executing the method.
  • FIG. 5 is a schematic structural diagram of a computer device provided in Embodiment 5 of the present application.
  • the computer device includes a processor 510, a memory 520, an input device 530, and an output device 540;
  • the quantity can be one or more, and a processor 510 is taken as an example in FIG. Take the bus connection as an example.
  • the memory 520 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to a demodulation method of a DPSK signal in any embodiment of the present application (for example, A signal receiving module 410, a function building module 420, and a demodulation module 430) in a demodulation device of a DPSK signal.
  • the processor 510 executes various functional applications and data processing of the computer device by running the software programs, instructions and modules stored in the memory 520, that is, implements the above-mentioned demodulation method of a DPSK signal.
  • the following method is implemented: receiving the DPSK signal to be processed, the DPSK signal includes multiple IQ signals corresponding to multiple times; rotating according to the preset constellation diagram corresponding to the DPSK signal angle and preset frequency offset, constructing a cost function matching the DPSK signal; solving the cost function according to a plurality of signal expressions corresponding to the plurality of IQ signals, and obtaining the corresponding DPSK signal Demodulation result.
  • the memory 520 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • memory 520 may include memory located remotely from processor 510, which remote memory may be connected to the computer device via a network.
  • Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and a combination of the Internet, an intranet, a local area network, and a mobile communication network.
  • the input device 530 may be configured to receive input numbers or character information, and generate key signal input related to user settings and function control of the computer equipment, and may include a keyboard and a mouse.
  • the output device 540 may include a display device such as a display screen.
  • Embodiment 6 of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the method described in any embodiment of the present application is implemented.
  • a computer-readable storage medium provided in an embodiment of the present application may perform related operations in a method for demodulating a DPSK signal provided in any embodiment of the present application.
  • the following method is implemented: receiving the DPSK signal to be processed, the DPSK signal includes multiple IQ signals corresponding to multiple times; rotating according to the preset constellation diagram corresponding to the DPSK signal angle and preset frequency offset, constructing a cost function matching the DPSK signal; solving the cost function according to a plurality of signal expressions corresponding to the plurality of IQ signals, and obtaining the corresponding DPSK signal Demodulation result.
  • the present application can be implemented by software and necessary general hardware, and of course can also be implemented by hardware.
  • the technical solution of the present application can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as computer floppy disks, read-only memory (Read-Only Memory, ROM), Random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc., including several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute multiple The method described in the examples.
  • the multiple units and modules included are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized
  • the names of multiple functional units are only for the convenience of distinguishing each other, and are not used to limit the protection scope of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种DPSK信号的解调方法、装置、设备及存储介质,所述方法包括:接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号;根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数;根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果。

Description

DPSK信号的解调方法、装置、设备及存储介质
本申请要求在2021年11月05日提交中国专利局、申请号为202111303214.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及移动通信领域,例如涉及一种差分相移键控(Differential Phase Shift Keying,DPSK)信号的解调方法、装置、设备及存储介质。
背景技术
目前,在无线通信系统中调制与解调是必不可少的重要环节,调制与解调的性能关系到整个通信系统性能的好坏。数字调制解调技术以其良好的抗噪声性能及优秀的误比特率性能,在现代无线通信系统中得到了广泛的应用。其中,数字调制解调技术中的DPSK技术因具有传输效率高、抗干扰能力强等优势,已普遍应用于无线通信系统中。
相关技术中采用蓝牙通信时,对DPSK基带信号进行解调的方法通常分为以下两种:第一种是基于角度对DPSK基带信号进行差分解调,即首先比较相邻码元的相位,然后经过低通滤波和抽样判决后得到解调结果;第二种是基于同相分量-正交分量(In-phase Quadrate,IQ)信号进行相干解调,即先将多个并行的IQ信号经数字前端(Digital Front End,DFE)由48Msps下采样至4Msps,并通过低通滤波器进行滤波,然后经同步得到最佳采样点的位置和初始频偏,根据星座图映射为旋转的角度,最后转换为串行传输的比特流。
但是,第一种解调方法中仅依据相邻码元的相位进行解调,导致接收机的灵敏度较低;第二种解调方法复杂度较高,实现成本较大。
发明内容
本申请实施例提供一种DPSK信号的解调方法、装置、设备及存储介质,可以提高接收机的灵敏度,降低DPSK信号解调过程的复杂度以及实现成本。
本申请实施例提供了一种DPSK信号的解调方法,包括:
接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号;
根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数;
根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解, 得到与所述DPSK信号对应的解调结果。
本申请实施例还提供了一种DPSK信号的解调装置,该装置包括:
信号接收模块,设置为接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号;
函数构建模块,设置为根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数;
解调模块,设置为根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果。
本申请实施例还提供了一种计算机设备,该设备包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,所述一个或多个处理器实现本申请任意实施例提供的一种DPSK信号的解调方法。
本申请实施例还提供了一种计算机可读存储介质,该存储介质上存储有计算机程序,该程序被处理器执行时实现本申请任意实施例提供的一种DPSK信号的解调方法。
附图说明
图1是本申请实施例一中的一种DPSK信号的解调方法的流程图;
图2是本申请实施例二中的一种DPSK信号的解调方法的流程图;
图3a是本申请实施例三中的一种DPSK信号的解调方法的流程图;
图3b是本申请实施例三中的一种频偏跟踪环路的结构图;
图4是本申请实施例四中的一种DPSK信号的解调装置的结构图;
图5是本申请实施例五中的一种计算机设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
相关技术中的解调方法灵敏度较低、复杂度较高,实现成本较大。另外,,相关技术中的解调方法中还缺乏频偏跟踪策略,导致通信系统的稳定性和鲁棒 性较低。
实施例一
图1为本申请实施例一提供的一种DPSK信号的解调方法的流程图,本实施例可适用于接收机对接收到的DPSK信号进行解调的情况,该方法可以由DPSK信号的解调装置来执行,该装置可以由软件和/或硬件来实现,一般可以集成在具有数据处理功能的终端或者服务器中,所述解调方法包括如下步骤:
步骤110、接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号。
在本实施例中,所述终端或者服务器可以作为接收机,接收发射端采用DPSK技术对原始信号调制后得到的信号(也即DPSK信号)。其中,所述DPSK信号中包括多个时刻对应的多个IQ信号。
步骤120、根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数。
在本实施例中,接收到待处理的DPSK信号后,可以对所述DPSK信号对应的星座图旋转角度(α和β)以及相邻IQ信号之间的相偏δ进行预估,所述相偏δ可以等效为相邻IQ信号之间的频偏。
在此步骤中,可选的,可以根据所述DPSK信号中多个连续IQ信号分别对应的多个信号表达式、所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数。示例性的,假设第k时刻的IQ信号可表示为S k,其中:
Figure PCTCN2022127169-appb-000001
其中,
Figure PCTCN2022127169-appb-000002
表示所述DPSK信号对应的实际星座图旋转角度,θ k表示所述DPSK信号中由于频偏引起的IQ信号之间的实际相偏,S k-1表示第k-1时刻的IQ信号。
在本实施例中,通过上述步骤获取到多个连续IQ信号分别对应的多个信号表达式后,可以通过下述公式构建与所述DPSK信号匹配的代价函数Function(α,β,δ):
Figure PCTCN2022127169-appb-000003
步骤130、根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果。
在此步骤中,可选的,可以根据与所述多个IQ信号对应的多个信号表达式, 计算Function(α,β,δ)值取最大时对应的
Figure PCTCN2022127169-appb-000004
值,以及
Figure PCTCN2022127169-appb-000005
值,并将上述两个旋转角度值作为与所述DPSK信号对应的解调结果。
在本申请实施例的一个实施方式中,根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果,包括:
步骤131、根据与所述多个IQ信号对应的多个信号表达式以及所述代价函数,构建与所述DPSK信号对应的解调函数。
在此步骤中,可以将多个IQ信号对应的多个信号表达式,代入至上述代价函数中,得到与所述DPSK信号对应的解调函数:
Figure PCTCN2022127169-appb-000006
在本实施例中,上述解调函数经过线性变换后,可以得到如下表达式:
Figure PCTCN2022127169-appb-000007
步骤132、根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位。
在此步骤中,当上述解调函数Function(α,β,δ)取最大值时,可以确定
Figure PCTCN2022127169-appb-000008
然后根据与所述DPSK信号对应的调制方式,确定Function(α,β,δ)取最大值时α和β分别对应的值(也即目标旋转角度值),最后根据与所述DPSK信号对应的调制方式,确定与所述目标旋转角度值匹配的目标信息位。
在一个具体的实施例中,假设与所述DPSK信号对应的调制方式为π/4移位差分正交相移键控(π/4shift Differential Quadrature Phase Shift Keying,π/4-DQPSK),则可以在π/4-DQPSK对应的16个角度组合中,确定一组目标旋转角度值使得Function(α,β,δ)值最大。
步骤133、将所述DPSK信号对应的目标旋转角度值以及目标信息位,作为与所述DPSK信号对应的解调结果。
在本实施例中,通过构建与所述DPSK信号匹配的代价函数,并根据所述代价函数计算与所述DPSK信号对应的解调结果,相比于相关技术中仅依据相邻码元的相位进行解调的方式而言,可以保证解调结果的准确性,提高接收机 的接收性能以及灵敏度;其次,本实施例通过对所述代价函数进行求解,即可得到与所述DPSK信号对应的解调结果,由此可以降低解调过程的复杂度以及实现成本。
本申请实施例的技术方案通过接收待处理的DPSK信号,根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数,根据与多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果的技术手段,可以提高接收机的灵敏度,降低DPSK信号解调过程的复杂度以及实现成本。
实施例二
本实施例是对上述实施例的细化,与上述实施例相同或相应的术语解释,本实施例不再赘述。图2为本实施例二提供的一种DPSK信号的解调方法的流程图,在本实施例中,本实施例的技术方案可以与上述实施例的方案中的一种或者多种方法进行组合,如图2所示,本实施例提供的方法还可以包括:
步骤210、接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号。
步骤220、根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数。
步骤230、根据与所述多个IQ信号对应的多个信号表达式以及所述代价函数,构建与所述DPSK信号对应的解调函数。
步骤240、根据与所述DPSK信号对应的调制方式,获取与所述DPSK信号匹配的传输信息映射表;所述传输信息映射表中包括所述DPSK信号对应的多个备选旋转角度值,以及与每个备选旋转角度值匹配的备选信息位。
在本实施例中,每种调制方式都对应特定的传输信息映射表,所述传输信息映射表中包括针对所述调制方式,所述DPSK信号对应的多个备选旋转角度值。
在一个具体的实施例中,假设所述DPSK信号对应的调制方式为π/4-DQPSK,与所述DPSK信号匹配的传输信息映射表可以如表1所示,其中Δθ n为所述DPSK信号对应的相位差(也即备选旋转角度值),每个备选旋转角度值对应2bit信息位。
在另一个具体的实施例中,假设所述DPSK信号对应的调制方式为八差分相位调制(8-Differential Phase Shift Keying,8DPSK),与所述DPSK信号匹配的传输信息映射表可以如表2所示,其中Δθ n为所述DPSK信号对应的相位差(也即备选旋转角度值),每个备选旋转角度值对应3bit信息位。
表1
2bit信息位 Δθ n
00 π/4
01 3π/4
11 -3π/4
10 -π/4
表2
3bit信息位 Δθ n
000 0
001 π/4
011 2π/4
010 3π/4
110 π
111 -3π/4
101 -2π/4
100 -π/4
步骤250、根据所述传输信息映射表中的多个备选旋转角度值,确定所述DPSK信号对应的解调函数值最大时,所述DPSK信号对应的目标旋转角度值。
在此步骤中,可以在所述传输信息映射表中遍历全部备选旋转角度值的组合,并在全部备选旋转角度值的组合中选择一组目标旋转角度值,使得解调函数值最大。
由此,通过遍历所述传输信息映射表中的角度值组合,可以节省目标旋转角度值的确定时间,进而可以提高对DPSK信号的解调效率。
步骤260、根据所述DPSK信号对应的目标旋转角度值,在所述传输信息映射表中获取与所述DPSK信号对应的目标信息位。
在此步骤中,可以根据所述传输信息映射表中目标旋转角度值与目标信息位之间的映射关系,获取与所述DPSK信号对应的目标信息位。
步骤270、将所述DPSK信号对应的目标旋转角度值以及目标信息位,作为与所述DPSK信号对应的解调结果。
本申请实施例的技术方案通过接收待处理的DPSK信号,根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数,根据与多个IQ信号对应的多个信号表达式以及所述代价函数,构建与所述DPSK信号对应的解调函数,根据与所述DPSK信号对应的调制方式,获取与所述DPSK信号匹配的传输信息映射表,根据所述传输信息映射表,确定所述DPSK信号对应的解调函数值最大时,所述DPSK信号对应的目标旋转角度值,根据所述DPSK信号对应的目标旋转角度值,在所述传输信息映射表中获取与所述DPSK信号对应的目标信息位,将所述DPSK信号对应的目标旋转角度值以及目标信息位,作为与所述DPSK信号对应的解调结果的技术手段,可以提高接收机的灵敏度,降低DPSK信号解调过程的复杂度以及实现成本。
实施例三
本实施例是对上述实施例的细化,与上述实施例相同或相应的术语解释,本实施例不再赘述。图3a为本实施例三提供的一种DPSK信号的解调方法的流程图,在本实施例中,本实施例的技术方案可以与上述实施例的方案中的一种或者多种方法进行组合,如图3a所示,本实施例提供的方法还可以包括:
步骤310、接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号。
步骤320、根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数。
步骤330、根据与所述多个IQ信号对应的多个信号表达式以及所述代价函数,构建与所述DPSK信号对应的解调函数。
步骤340、根据所述DPSK信号对应的解调函数,获取所述DPSK信号对应的残余频偏。
在本实施例中,所述DPSK信号对应的解调函数为如下表达式:
Figure PCTCN2022127169-appb-000009
通过上述解调函数可以获取所述DPSK信号对应的残余频偏如下:
Figure PCTCN2022127169-appb-000010
其中,σ_left为所述DPSK信号对应的残余频偏,Angle表示对复数信号求角度。
步骤350、通过预设的频偏跟踪环路对所述残余频偏进行更新,得到与所述DPSK信号对应的更新后的解调函数。
在本实施例中,可以通过预设的频偏跟踪环路对所述残余频偏进行更新,以使所述残余频偏稳定在预设区间内。这样设置的好处在于,可以提高接收机的接收性能,提高通信系统的稳定性和鲁棒性。
在本申请实施例的一个实施方式中,所述频偏跟踪环路的结构图可以如图3b所示,与该频偏跟踪环路对应的Z域传输函数为H(Z),所述H(Z)通过下述公式进行确定:
Figure PCTCN2022127169-appb-000011
其中,W 0为预设的大于零的常数值,所述常数值与所述频偏跟踪环路的带宽相关联。W 0越大,所述频偏跟踪环路的带宽越大,频偏跟踪速率也越快。
在本实施例中,假设所述DPSK信号对应的残余频偏σ_left>0,通过图3b中的频偏跟踪环路后得到的起始频率FreqOffset的值会增大,然后经过反馈通路后可以使得σ_left变小;反之,如果σ_left<0,通过图3b中的频偏跟踪环路后得到的起始频率FreqOffset的值会减小,然后经过反馈通路后可以使得σ_left变大。因此,通过所述频偏跟踪环路一方面可以使得残余频偏σ_left稳定在0附近,另一方面可以实现起始频率FreqOffset的值可以对真正的频偏变化进行跟踪。
本实施例中,在得到更新后的残余频偏后,可将更新后的残余频偏转换为相偏值,将转换后得到的相偏值作为解调函数中的δ,得到更新后的解调函数。
步骤360、根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的更新后的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位。
步骤370、将所述DPSK信号对应的目标旋转角度值以及目标信息位,作为与所述DPSK信号对应的解调结果。
本申请实施例的技术方案通过接收待处理的DPSK信号,根据与所述DPSK 信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数,根据与多个IQ信号对应的多个信号表达式以及所述代价函数,构建与所述DPSK信号对应的解调函数,根据所述DPSK信号对应的解调函数,获取所述DPSK信号对应的残余频偏,通过预设的频偏跟踪环路对所述残余频偏进行更新,得到与所述DPSK信号对应的更新后的解调函数,根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的更新后的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位,将所述DPSK信号对应的目标旋转角度值以及目标信息位,作为与所述DPSK信号对应的解调结果的技术手段,可以提高接收机的灵敏度,降低DPSK信号解调过程的复杂度以及实现成本,提高通信系统的稳定性和鲁棒性。
在上述实施例的基础上,所述DPSK信号的解调方法可以应用在蓝牙5.1标准下的增强速率(Enhanced Data Rate,EDR)模式中。示例性的,可以通过蓝牙芯片实现所述DPSK信号的解调方法,所述蓝牙芯片计算的接收功率可以如表3所示:
表3
模式 功率(dBm)
EDR2 -94.8
EDR3 -88.2
通过表3可以确定所述蓝牙芯片的接收功率较低,也即所述蓝牙芯片在对DPSK信号解调时的灵敏度较高。
实施例四
图4为本申请实施例四提供的一种DPSK信号的解调装置的结构图,该装置包括:信号接收模块410、函数构建模块420和解调模块430。
信号接收模块410,设置为接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号;函数构建模块420,设置为根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数;解调模块430,设置为根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果。
本申请实施例的技术方案通过接收待处理的DPSK信号,根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的 代价函数,根据与多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果的技术手段,可以提高接收机的灵敏度,降低DPSK信号解调过程的复杂度以及实现成本。
在上述实施例的基础上,函数构建模块420,可以包括:代价函数构建单元,设置为根据所述DPSK信号中多个连续IQ信号分别对应的多个信号表达式、所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数。
解调模块430,可以包括以下单元:
解调函数构建单元,设置为根据与多个IQ信号对应的多个信号表达式以及所述代价函数,构建与所述DPSK信号对应的解调函数。
函数求解单元,设置为根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位。
结果确定单元,设置为将所述DPSK信号对应的目标旋转角度值以及目标信息位,作为与所述DPSK信号对应的解调结果。
频偏获取单元,设置为根据所述DPSK信号对应的解调函数,获取所述DPSK信号对应的残余频偏。
频偏更新单元,设置为通过预设的频偏跟踪环路对所述残余频偏进行更新,得到与所述DPSK信号对应的更新后的解调函数;所述频偏跟踪环路对应的Z域传输函数为H(Z),所述H(Z)通过下述公式进行确定:
Figure PCTCN2022127169-appb-000012
其中,W 0为预设的大于零的常数值,所述常数值与所述频偏跟踪环路的带宽相关联。
更新函数求解单元,设置为根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的更新后的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位。
映射表获取单元,设置为根据与所述DPSK信号对应的调制方式,获取与所述DPSK信号匹配的传输信息映射表;所述传输信息映射表中包括所述DPSK信号对应的多个备选旋转角度值,以及与每个备选旋转角度值匹配的备选信息位。
目标角度值确定单元,设置为根据所述传输信息映射表中的多个备选旋转角度值,确定所述DPSK信号对应的解调函数值最大时,所述DPSK信号对应的目标旋转角度值。
目标信息为获取单元,设置为根据所述DPSK信号对应的目标旋转角度值,在所述传输信息映射表中获取与所述DPSK信号对应的目标信息位。
本申请实施例所提供的DPSK信号的解调装置可执行本申请任意实施例所提供的DPSK信号的解调方法,具备执行方法相应的功能模块和效果。
实施例五
图5为本申请实施例五提供的一种计算机设备的结构示意图,如图5所示,该计算机设备包括处理器510、存储器520、输入装置530和输出装置540;计算机设备中处理器510的数量可以是一个或多个,图5中以一个处理器510为例;计算机设备中的处理器510、存储器520、输入装置530和输出装置540可以通过总线或其他方式连接,图5中以通过总线连接为例。存储器520作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例中的一种DPSK信号的解调方法对应的程序指令/模块(例如,一种DPSK信号的解调装置中的信号接收模块410、函数构建模块420和解调模块430)。处理器510通过运行存储在存储器520中的软件程序、指令以及模块,从而执行计算机设备的多种功能应用以及数据处理,即实现上述的一种DPSK信号的解调方法。也即,该程序被处理器执行时实现如下方法:接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号;根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数;根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果。
存储器520可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统以及至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器520可包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至计算机设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及互联网、企业内部网、局域网、移动通信网的组合。输入装置530可设置为接收输入的数字或字符信息,以及产生与计算机设备的用户设置以及功能控制有关的键信号输入,可以包括键盘和鼠标等。输出装置540可包括显示屏等显示设备。
实施例六
本申请实施例六还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请任意实施例所述方法。当然,本申请实施例所提供的一种计算机可读存储介质可以执行本申请任意实施例所提供的一种DPSK信号的解调方法中的相关操作。也即,该程序被处理器执行时实现如下方法:接收待处理的DPSK信号,所述DPSK信号中包括多个时刻对应的多个IQ信号;根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数;根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
值得注意的是,上述一种DPSK信号的解调装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (10)

  1. 一种DPSK信号的解调方法,包括:
    接收待处理的差分相移键控DPSK信号,所述DPSK信号中包括多个时刻对应的多个同相正交IQ信号;
    根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数;
    根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果。
  2. 根据权利要求1所述的方法,其中,根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果,包括:
    根据与所述多个IQ信号对应的多个信号表达式以及所述代价函数,构建与所述DPSK信号对应的解调函数;
    根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位;
    将所述DPSK信号对应的目标旋转角度值以及目标信息位,作为与所述DPSK信号对应的解调结果。
  3. 根据权利要求2所述的方法,其中,根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位,包括:
    根据所述DPSK信号对应的解调函数,获取所述DPSK信号对应的残余频偏;
    通过预设的频偏跟踪环路对所述残余频偏进行更新,得到与所述DPSK信号对应的更新后的解调函数;
    根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的更新后的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位。
  4. 根据权利要求2所述的方法,其中,根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位,包括:
    根据与所述DPSK信号对应的调制方式,获取与所述DPSK信号匹配的传输信息映射表;所述传输信息映射表中包括所述DPSK信号对应的多个备选旋转角度值,以及与每个备选旋转角度值匹配的备选信息位;
    根据所述传输信息映射表中的多个备选旋转角度值,确定所述DPSK信号对应的解调函数值最大时,所述DPSK信号对应的目标旋转角度值;
    根据所述DPSK信号对应的目标旋转角度值,在所述传输信息映射表中获取与所述DPSK信号对应的目标信息位。
  5. 根据权利要求3所述的方法,其中,所述频偏跟踪环路对应的Z域传输函数为H(Z),所述H(Z)通过下述公式进行确定:
    Figure PCTCN2022127169-appb-100001
    其中,W 0为预设的大于零的常数值,所述常数值与所述频偏跟踪环路的带宽相关联。
  6. 根据权利要求1所述的方法,其中,根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数,包括:
    根据所述DPSK信号中多个连续IQ信号分别对应的多个信号表达式、所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹 配的代价函数。
  7. 一种DPSK信号的解调装置,包括:
    信号接收模块,设置为接收待处理的差分相移键控DPSK信号,所述DPSK信号中包括多个时刻对应的多个同相正交IQ信号;
    函数构建模块,设置为根据与所述DPSK信号对应的预设星座图旋转角度以及预设频偏,构建与所述DPSK信号匹配的代价函数;
    解调模块,设置为根据与所述多个IQ信号对应的多个信号表达式,对所述代价函数进行求解,得到与所述DPSK信号对应的解调结果。
  8. 根据权利要求7所述的装置,其中,所述解调模块包括:
    解调函数构建单元,设置为根据与所述多个IQ信号对应的多个信号表达式以及所述代价函数,构建与所述DPSK信号对应的解调函数;
    函数求解单元,设置为根据与所述DPSK信号对应的调制方式,对所述DPSK信号对应的解调函数进行求解,得到与所述DPSK信号对应的目标旋转角度值以及目标信息位;
    结果确定单元,设置为将所述DPSK信号对应的目标旋转角度值以及目标信息位,作为与所述DPSK信号对应的解调结果。
  9. 一种计算机设备,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现如权利要求1-6中任一所述的DPSK信号的解调方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-6中任一所述的DPSK信号的解调方法。
PCT/CN2022/127169 2021-11-05 2022-10-25 Dpsk信号的解调方法、装置、设备及存储介质 WO2023078117A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247013688A KR20240072219A (ko) 2021-11-05 2022-10-25 Dpsk 신호의 복조방법, 장치, 설비 및 저장매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111303214.2A CN113765838B (zh) 2021-11-05 2021-11-05 一种dpsk信号的解调方法、装置、设备及存储介质
CN202111303214.2 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023078117A1 true WO2023078117A1 (zh) 2023-05-11

Family

ID=78784588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127169 WO2023078117A1 (zh) 2021-11-05 2022-10-25 Dpsk信号的解调方法、装置、设备及存储介质

Country Status (3)

Country Link
KR (1) KR20240072219A (zh)
CN (1) CN113765838B (zh)
WO (1) WO2023078117A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765838B (zh) * 2021-11-05 2022-03-25 易兆微电子(杭州)股份有限公司 一种dpsk信号的解调方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902420A (zh) * 2010-03-08 2010-12-01 中国电子科技集团公司第十研究所 符号内连续相位差分相移键控调制与解调方法
CN106878215A (zh) * 2017-01-18 2017-06-20 深圳市极致汇仪科技有限公司 一种蓝牙信号的dpsk快速调制方法
US20170180055A1 (en) * 2015-12-21 2017-06-22 Zte Corporation Techniques for receiving dft spreading modulation signals
CN112003806A (zh) * 2020-10-28 2020-11-27 易兆微电子(杭州)股份有限公司 一种基带信号的同步解调方法和信号接收机
CN113765838A (zh) * 2021-11-05 2021-12-07 易兆微电子(杭州)股份有限公司 一种dpsk信号的解调方法、装置、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL98730A (en) * 1991-07-04 1994-02-27 Technion Res & Dev Foundation Method and device for removing modulation especially KSPD of signals in the method
EP1694017B1 (en) * 2005-02-18 2013-11-27 Nokia Solutions and Networks GmbH & Co. KG Method and apparatus for demodulating an optical differential phase-shift keying signal
US8121494B2 (en) 2008-08-19 2012-02-21 Alcatel Lucent System and method for receiving high spectral efficiency optical DPSK signals
CN110191074B (zh) * 2018-02-23 2021-07-02 中兴通讯股份有限公司 一种数据解调的方法及装置
CN109587094A (zh) * 2019-01-03 2019-04-05 钟祥博谦信息科技有限公司 一种基于gd算法的非线性失真信号解调方法及系统
CN111884685B (zh) * 2020-06-19 2021-08-24 清华大学 数字通信信号同步解调方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902420A (zh) * 2010-03-08 2010-12-01 中国电子科技集团公司第十研究所 符号内连续相位差分相移键控调制与解调方法
US20170180055A1 (en) * 2015-12-21 2017-06-22 Zte Corporation Techniques for receiving dft spreading modulation signals
CN106878215A (zh) * 2017-01-18 2017-06-20 深圳市极致汇仪科技有限公司 一种蓝牙信号的dpsk快速调制方法
CN112003806A (zh) * 2020-10-28 2020-11-27 易兆微电子(杭州)股份有限公司 一种基带信号的同步解调方法和信号接收机
CN113765838A (zh) * 2021-11-05 2021-12-07 易兆微电子(杭州)股份有限公司 一种dpsk信号的解调方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEN ZHI-JIN, WANG JIA-FENG: "Non-coherent Differential Demodulation of PSK", COMMUNICATIONS TECHNOLOGY, JI-DIAN-BU 30 SUO, CN, vol. 42, no. 9, 10 September 2009 (2009-09-10), CN , pages 12 - 15, XP009545324, ISSN: 1002-0802 *

Also Published As

Publication number Publication date
KR20240072219A (ko) 2024-05-23
CN113765838B (zh) 2022-03-25
CN113765838A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
US6560294B1 (en) Phase estimation in carrier recovery of phase-modulated signals such as QAM signals
WO2023078117A1 (zh) Dpsk信号的解调方法、装置、设备及存储介质
CN108989256B (zh) 一种fsk/gfsk解调方法及装置
CN111935046B (zh) 一种低复杂度的频移键控信号符号率估计方法
CN113726716B (zh) 一种基于判决反馈的载波相位误差鉴别方法
CN109862545A (zh) 蓝牙信号的频偏补偿方法、装置、计算机设备及存储介质
CN111901269B (zh) 可变调制指数的高斯频移键控调制方法、装置及系统
US20170324595A1 (en) Circuits and methods for frequency offset estimation in fsk communications
CN109067695B (zh) 基于级联卡尔曼滤波器减少噪声干扰的方法及系统
CN107483078A (zh) 一种船舶vdes系统asm体制接收频偏估计实现方法
CN106603217A (zh) 一种无线综测仪蓝牙信号的采样频偏抑制方法
CN111628950A (zh) 基于差分星座轨迹图的oqpsk信号盲频偏估计方法
CN109889461B (zh) 一种低复杂度并行的载波恢复系统及其方法
TW201842755A (zh) 轉置式調變
CN106230473B (zh) 一种dsss_qpsk载波相位正交误差接收补偿系统及方法
CN105306397A (zh) 一种dqpsk中频差分解调方法
CN108092714B (zh) 支持颜色调整及csk星座图检测的ofdm系统
CN111935052B (zh) 一种qpsk信号的自适应载波和符号联合同步方法
US6727772B2 (en) Method and system for synchronizing a quadrature amplitude modulation demodulator
CN115632923A (zh) 一种基于oqpsk的无人机与卫星超宽带通信方法及相关设备
CN112671684B (zh) 一种短时突发bpsk信号的自适应解调方法
CN115118564A (zh) 一种载波频率偏差估计方法及装置
JP2000232494A (ja) 信号キャリア回復処理方法
CN110311878B (zh) 16qam载波解调环路锁定状态同步检测方法
Nolan et al. Modulation scheme recognition techniques for software radio on a general purpose processor platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247013688

Country of ref document: KR

Kind code of ref document: A