WO2023078050A1 - 信息传输方法、设备和存储介质 - Google Patents
信息传输方法、设备和存储介质 Download PDFInfo
- Publication number
- WO2023078050A1 WO2023078050A1 PCT/CN2022/125001 CN2022125001W WO2023078050A1 WO 2023078050 A1 WO2023078050 A1 WO 2023078050A1 CN 2022125001 W CN2022125001 W CN 2022125001W WO 2023078050 A1 WO2023078050 A1 WO 2023078050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dci
- processing time
- time length
- csi
- scenario
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 172
- 230000005540 biological transmission Effects 0.000 title claims abstract description 41
- 238000012545 processing Methods 0.000 claims abstract description 562
- 238000004891 communication Methods 0.000 claims abstract description 179
- 101100020598 Homo sapiens LAPTM4A gene Proteins 0.000 claims description 159
- 102100034728 Lysosomal-associated transmembrane protein 4A Human genes 0.000 claims description 159
- 238000001514 detection method Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 15
- 238000004590 computer program Methods 0.000 claims description 7
- 230000003993 interaction Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 17
- 101150077548 DCI1 gene Proteins 0.000 description 8
- 230000002123 temporal effect Effects 0.000 description 6
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 5
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 5
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 238000013500 data storage Methods 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/231—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present application relates to the communication field, for example, to an information transmission method, device and storage medium.
- a single transmission receiving point (Single Transmission Receiving Point, STRP) scenario and a multiple transmission receiving point (Multi Transmission Receiving Point, MTRP) scenario can be used for data transmission.
- MTRP multiple transmission receiving point
- DCI Downlink Control Information
- PDCCH Physical Downlink Control Channel
- CSI Channel State Information
- An embodiment of the present application provides an information transmission method applied to a first communication node, including:
- An embodiment of the present application provides an information transmission method applied to a second communication node, including:
- the DCI related parameters are processed according to the DCI related processing parameters.
- An embodiment of the present application provides a communication device, including: a communication module, a memory, and one or more processors;
- the communication module is configured to perform communication interaction between the first communication node and the second communication node;
- the memory configured to store one or more programs
- the one or more processors are made to implement the method described in any of the foregoing embodiments.
- An embodiment of the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the method described in any one of the foregoing embodiments is implemented.
- FIG. 1 is a flowchart of an information transmission method provided in an embodiment of the present application
- Fig. 2 is a flow chart of another information transmission method provided by the embodiment of the present application.
- FIG. 3 is a schematic diagram of an MTRP scenario provided by an embodiment of the present application.
- FIG. 4 is a schematic configuration diagram of a CSI processing process provided by the related art
- FIG. 5 is a schematic diagram of another MTRP scenario provided by the embodiment of the present application.
- FIG. 6 is a schematic diagram of a DCI scheduling PUSCH provided by the related art.
- FIG. 7 is a schematic diagram of HARQ-ACK of a DCI scheduling PDSCH provided by the related art
- FIG. 8 is a structural block diagram of an information transmission device provided by an embodiment of the present application.
- FIG. 9 is a structural block diagram of another information transmission device provided by an embodiment of the present application.
- Fig. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- a control channel is defined, that is, PDCCH, which can be used to: send downlink scheduling information to the UE so that the UE can receive the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH); Uplink scheduling information for UE to send Physical Uplink Shared Channel (PUSCH), send CSI report request and send uplink power control command, etc.
- the information carried on the PDCCH is called DCI.
- the terminal cannot obtain the precise time-frequency position of DCI transmission in advance, but can only search for DCI within a rough resource range. This process is also called blind detection (Blind Detection). The agreement stipulates that the base station side sends a DCI, which is carried on the PDCCH.
- the UE After the UE detects the PDCCH, it completes the processing of the DCI within s Orthogonal Frequency Division Multiplexing (OFDM) symbols. .
- the time length s is a restriction condition that the base station configures for the UE to process the DCI through signaling.
- CSI request There is an information field on the DCI called a CSI request.
- the base station needs to obtain the CSI of the terminal, it needs to trigger the CSI request.
- processing CSI is a relatively high-complexity signal processing process, which requires a large amount of computing resources and a certain amount of computing time. Therefore, in order to realize the above basic flow of CSI feedback, the terminal and the base station must Reach a consensus on computing power and processing latency.
- DCI processing and CSI processing in the related art have some problems in supporting MTRP transmission.
- the DCI processing time and CSI processing time allocated by the base station to the UE are insufficient, resulting in the UE being unable to correctly demodulate the DCI and report accurate CSI.
- An embodiment of the present application provides an information transmission method.
- a base station configures DCI-related processing parameters and sends the information to a terminal, so that the terminal processes DCI and CSI according to the DCI-related processing parameters.
- FIG. 1 is a flowchart of an information transmission method provided in an embodiment of the present application. This embodiment may be executed by the first communications node. Wherein, the first communication node may be a base station. As shown in Fig. 1, this embodiment includes: S110-S120.
- the DCI-related processing parameters are used to characterize the processing time configured for the DCI-related parameters in the MTRP scenario.
- the DCI-related parameters include at least one of the following: DCI, CSI, data transmitted on the PUSCH, and data transmitted on the PDSCH.
- the DCI can be used to schedule CSI reporting, also can schedule PUSCH, can also schedule PDSCH and so on.
- scheduling PUSCH through DCI it refers to scheduling the data transmitted on the PUSCH; in the case of scheduling PDSCH through DCI, it refers to scheduling the Hybrid Automatic Repeat Request Acknowledgment Character (Hybrid Automatic Repeat Request Confirmation Character) of PDSCH. Repeat reQuest-Acknowledgment, HARQ-ACK).
- the first communication node customizes and configures the time length for processing DCI-related parameters in the MTRP scenario, and sends the configuration information of the time length for processing DCI-related parameters to the second The communication node, so that the second communication node processes the DCI within the pre-configured time length for processing DCI-related parameters in the MTRP scenario, and/or schedules data transmitted on different channels through the DCI, so as to ensure the second communication
- the node has sufficient processing time to process DCI related parameters, so that the second communication node can correctly demodulate DCI and report accurate CSI.
- the DCI-related processing parameters are used to process a DCI and report a CSI;
- the DCI-related processing parameters include: a first CSI processing time length; a second CSI processing time length; wherein, the first CSI The processing time length is used to characterize the total number of OFDM symbols between decoding DCI and reporting CSI from the second communication node; the second CSI processing time length is used to characterize the channel state information reference measured from the second communication node The total number of OFDM symbols between the signal CSI-RS and the reporting of CSI.
- the DCI-related processing parameters are used to process a DCI and report a CSI.
- a corresponding time length is configured for the CSI processing so that the second communication node has sufficient processing time for DCI demodulation, and related operations of CSI reporting.
- the first CSI processing time length refers to the number of OFDM symbols during the period from the second communication node decoding DCI to the second communication node reporting CSI under the MTRP scenario;
- the second CSI processing time length refers to In the MTRP scenario, the number of OFDM symbols in the period from the measurement of the CSI-RS/CSI-IM by the second communication node to the reporting of the CSI by the second communication node.
- the first CSI processing time length and the second CSI processing time length are characterized by the number of OFDM symbols.
- determining the DCI-related processing parameters in the MTRP scenario includes: determining the first CSI processing time length in the MTRP scenario according to the third CSI processing time length; determining the first CSI processing time length in the MTRP scenario according to the fourth CSI processing time length Two CSI processing time lengths; wherein, the third CSI processing time length is used to characterize the total number of OFDM symbols between the second communication node decoding DCI and reporting CSI in the STRP scenario; the fourth CSI processing time length is used to characterize STRP The total number of OFDM symbols between the measurement of the CSI-RS by the second communication node and the reporting of the CSI in the scenario.
- the first CSI processing time length is the same as the third CSI processing time length; the second CSI processing time length is the same as the fourth CSI processing time length.
- the first CSI processing time length in the MTRP scenario may directly use the third CSI processing time length, that is, the OFDM symbols in the period from the second communication node decoding the DCI to the second communication node reporting the CSI in the MTRP scenario
- the number is the same as the total number of OFDM symbols between the second communication node decoding DCI and reporting CSI in the STRP scenario; and the second CSI processing time length in the MTRP scenario can directly use the fourth CSI processing time
- the length, that is, the number of OFDM symbols during the period from the second communication node measuring CSI-RS/CSI-IM to the second communication node reporting CSI in the MTRP scenario is the same as the STRP scenario measuring CSI-RS from the second communication node
- the total number of OFDM symbols until the CSI is reported is the same. Of course, they can also be different.
- the first CSI processing time length is different from the third CSI processing time length; the second CSI processing time length is different from the fourth CSI processing time length.
- determining DCI-related processing parameters in an MTRP scenario includes:
- the second CSI processing time length in the MTRP scenario is determined according to the fourth CSI processing time length and the second OFDM symbol quantity.
- the sum of the first OFDM symbol number and the number of OFDM symbols included in the third CSI processing time length is used as the first CSI processing time length; the second OFDM symbol number and the fourth CSI processing time length are included in The sum of the number of OFDM symbols is used as the second CSI processing time length.
- the number of the first OFDM symbols may be the same as or different from the number of the second OFDM symbols, which is not limited.
- both the first OFDM symbol quantity and the second OFDM symbol quantity are related to one of the following parameters: the pairing quantity of channel measurement resource CMR in the MTRP scenario; the total number of CMR in the MTRP scenario; CSI reporting in the MTRP scenario Mode; CMR sharing relationship in MTRP scenario; total number of CSI in STRP scenario.
- the DCI-related processing parameters are used to process two DCIs, and the DCI is used to schedule bearer data on the PUSCH;
- the DCI-related processing parameters include: a first DCI processing time length and a second DCI processing time length; Wherein, the first DCI processing time length is used to represent the total number of OFDM symbols between receiving the DCI by the second communication node and demodulating the PUSCH bearer data on the DCI by the second communication node; the second DCI processing time length is used to represent The total number of OFDM symbols between when the second communication node receives the DCI and when the second communication node schedules the PUSCH.
- the DCI-related processing parameters are used to process two DCIs, and the second communication node schedules PUSCH. It can be understood that the corresponding time length is configured for the processing process of two DCIs and the process of scheduling PUSCH, so that The second communication node has enough processing time to perform DCI demodulation and PUSCH scheduling operation.
- the first DCI processing time length refers to the number of OFDM symbols during the period from the second communication node receiving the DCI to the second communication node demodulating the data carried by the PUSCH on the DCI in the MTRP scenario;
- the second The DCI processing time length refers to the number of OFDM symbols in the period from when the second communication node receives the DCI to when the second communication node schedules the PUSCH in the MTRP scenario. It can be understood that the first DCI processing time length and the second DCI processing time length are characterized by the number of OFDM symbols.
- determining DCI-related processing parameters in an MTRP scenario includes:
- the third DCI processing time length is used to represent the STRP scenario from receiving the DCI to demodulating the PUSCH bearer on the DCI in the STRP scenario
- the total number of OFDM symbols between data is used to represent the total number of OFDM symbols between receiving the DCI at the second communication node and scheduling the PUSCH in the STRP scenario.
- the first DCI processing time length is the same as the third DCI processing time length; the second DCI processing time length is the same as the fourth DCI processing time length.
- the first DCI processing time length is different from the third DCI processing time length; the second DCI processing time length is different from the fourth DCI processing time length.
- determining the downlink control information DCI related processing parameters in the MTRP scenario includes:
- the second DCI processing time length in the MTRP scenario is determined according to the fourth DCI processing time length and the fourth OFDM symbol quantity.
- the sum of the third OFDM symbol number and the OFDM symbol number included in the third DCI processing time length is used as the first DCI processing time length; the fourth OFDM symbol number and the fourth DCI processing time length include The sum of the number of OFDM symbols is used as the second DCI processing time length.
- the third number of OFDM symbols may be the same as or different from the fourth number of OFDM symbols, which is not limited.
- both the third number of OFDM symbols and the fourth number of OFDM symbols are related to one of the following parameters: the number of candidate Physical Downlink Control Channels (PDCCHs) in the search space; the number of times of blind detection.
- the number of candidate PDCCHs in the search space refers to the total number of PDCCHs in the search space.
- the number of blind detections refers to the total number of times the terminal searches for the DCI within a general resource range.
- the DCI-related processing parameters are used to process two DCIs, and the DCI is used to schedule the HARQ-ACK of the PDSCH;
- the DCI-related processing parameters include: the fifth DCI processing time length and the sixth DCI processing time length;
- the fifth DCI processing time length is used to represent the total number of OFDM symbols between receiving the DCI from the second communication node to demodulating the PDSCH bearer data on the DCI by the second communication node;
- the sixth DCI processing time length is used to represent The total number of OFDM symbols between when the second communication node receives the DCI and when the second communication node schedules the HARQ-ACK of the PDSCH.
- the DCI-related processing parameters are used to process two DCIs, and the second communication node schedules the HARQ-ACK on the PDSCH. It can be understood that the processing process of the two DCIs and the process configuration of the PDSCH scheduling correspond to The length of time is so that the second communication node has enough processing time to perform DCI demodulation and perform HARQ-ACK scheduling operation of PDSCH.
- the fifth DCI processing time length refers to the number of OFDM symbols during the period from when the second communication node receives the DCI to when the second communication node demodulates the data carried by the PDSCH on the DCI in the MTRP scenario;
- the second The DCI processing time length refers to the number of OFDM symbols in the period from when the second communication node receives the DCI to when the second communication node schedules the HARQ-ACK of the PDSCH in the MTRP scenario. It can be understood that the fifth DCI processing time length and the sixth DCI processing time length are characterized by the number of OFDM symbols.
- determining the downlink control information DCI related processing parameters in the MTRP scenario includes:
- the sixth DCI processing time length in the MTRP scenario is determined according to the eighth DCI processing time length; wherein, the seventh DCI processing time length is used to characterize the STRP scenario from receiving the DCI to demodulating the PDSCH bearer on the DCI in the STRP scenario The total number of OFDM symbols between data; the eighth DCI processing time length is used to represent the total number of OFDM symbols between receiving DCI at the second communication node and scheduling the HARQ-ACK of the PDSCH in the STRP scenario.
- the fifth DCI processing time length is the same as the seventh DCI processing time length; the sixth DCI processing time length is the same as the eighth DCI processing time length.
- the fifth DCI processing time length is different from the seventh DCI processing time length; the sixth DCI processing time length is different from the eighth DCI processing time length.
- determining the downlink control information DCI related processing parameters in the MTRP scenario includes:
- the sixth DCI processing time length in the MTRP scenario is determined according to the eighth DCI processing time length and the sixth OFDM symbol quantity.
- the sum of the fifth OFDM symbol number and the number of OFDM symbols included in the seventh DCI processing time length is used as the fifth DCI processing time length; the sixth OFDM symbol number and the eighth DCI processing time length are included in The sum of the number of OFDM symbols is used as the sixth DCI processing time length.
- the number of the fifth OFDM symbols may be the same as or different from the number of the sixth OFDM symbols, which is not limited.
- both the fifth number of OFDM symbols and the sixth number of OFDM symbols are related to one of the following parameters: the number of candidate PDCCHs in the search space; the number of times of blind detection.
- FIG. 2 is a flowchart of another information transmission method provided by the embodiment of the present application. This embodiment may be executed by the second communication node. Wherein, the second communication node may be a terminal. As shown in Fig. 2, this embodiment includes: S210-S220.
- S220 Process the DCI related parameters according to the DCI related processing parameters.
- the DCI-related processing parameters are used to process a DCI and report a CSI;
- the DCI-related processing parameters include: a first CSI processing time length; a second CSI processing time length; wherein, the first CSI The processing time length is used to characterize the total number of OFDM symbols between decoding DCI and reporting CSI from the second communication node; the second CSI processing time length is used to characterize the channel state information reference measured from the second communication node The total number of OFDM symbols between the signal CSI-RS and the reporting of CSI.
- the method for determining DCI-related processing parameters includes:
- the second CSI processing time length in the MTRP scenario is determined according to the fourth CSI processing time length; wherein, the third CSI processing time length is used to represent the total OFDM symbols between decoding DCI and reporting CSI at the second communication node in the STRP scenario The number; the fourth CSI processing time length is used to represent the total number of OFDM symbols between the second communication node measuring the CSI-RS and reporting the CSI in the STRP scenario.
- the first CSI processing time length is the same as the third CSI processing time length; the second CSI processing time length is the same as the fourth CSI processing time length.
- the first CSI processing time length is different from the third CSI processing time length; the second CSI processing time length is different from the fourth CSI processing time length.
- the method for determining DCI-related processing parameters includes:
- the second CSI processing time length in the MTRP scenario is determined according to the fourth CSI processing time length and the second OFDM symbol quantity.
- both the first OFDM symbol quantity and the second OFDM symbol quantity are related to one of the following parameters: the pairing quantity of channel measurement resource CMR in the MTRP scenario; the total number of CMR in the MTRP scenario; CSI reporting in the MTRP scenario Mode; CMR sharing relationship in MTRP scenario; total number of CSI in STRP scenario.
- the DCI-related processing parameters are used to process two DCIs, and the DCI is used to schedule bearer data on the PUSCH;
- the DCI-related processing parameters include: a first DCI processing time length and a second DCI processing time length; Wherein, the first DCI processing time length is used to represent the total number of OFDM symbols between receiving the DCI by the second communication node and demodulating the PUSCH bearer data on the DCI by the second communication node; the second DCI processing time length is used to represent The total number of OFDM symbols between when the second communication node receives the DCI and when the second communication node schedules the PUSCH.
- the method for determining DCI-related processing parameters includes:
- the third DCI processing time length is used to represent the STRP scenario from receiving the DCI to demodulating the PUSCH bearer on the DCI in the STRP scenario
- the total number of OFDM symbols between data is used to represent the total number of OFDM symbols between receiving the DCI at the second communication node and scheduling the PUSCH in the STRP scenario.
- the first DCI processing time length is the same as the third DCI processing time length; the second DCI processing time length is the same as the fourth DCI processing time length.
- the first DCI processing time length is different from the third DCI processing time length; the second DCI processing time length is different from the fourth DCI processing time length.
- the method for determining DCI-related processing parameters includes:
- the second DCI processing time length in the MTRP scenario is determined according to the fourth DCI processing time length and the fourth OFDM symbol quantity.
- both the third number of OFDM symbols and the fourth number of OFDM symbols are related to one of the following parameters: the number of candidate Physical Downlink Control Channels (PDCCHs) in the search space; the number of times of blind detection.
- PDCCHs Physical Downlink Control Channels
- the DCI-related processing parameters are used to process two DCIs, and the DCI is used to schedule the HARQ-ACK of the PDSCH;
- the DCI-related processing parameters include: the fifth DCI processing time length and the sixth DCI processing time length;
- the fifth DCI processing time length is used to represent the total number of OFDM symbols between receiving the DCI from the second communication node to demodulating the PDSCH bearer data on the DCI by the second communication node;
- the sixth DCI processing time length is used to represent The total number of OFDM symbols between when the second communication node receives the DCI and when the second communication node schedules the HARQ-ACK of the PDSCH.
- the method for determining DCI-related processing parameters includes:
- the sixth DCI processing time length in the MTRP scenario is determined according to the eighth DCI processing time length; wherein, the seventh DCI processing time length is used to characterize the STRP scenario from receiving the DCI to demodulating the PDSCH bearer on the DCI in the STRP scenario The total number of OFDM symbols between data; the eighth DCI processing time length is used to represent the total number of OFDM symbols between receiving DCI at the second communication node and scheduling the HARQ-ACK of the PDSCH in the STRP scenario.
- the fifth DCI processing time length is the same as the seventh DCI processing time length; the sixth DCI processing time length is the same as the eighth DCI processing time length.
- the fifth DCI processing time length is different from the seventh DCI processing time length; the sixth DCI processing time length is different from the eighth DCI processing time length.
- the method for determining DCI-related processing parameters includes:
- the sixth DCI processing time length in the MTRP scenario is determined according to the eighth DCI processing time length and the sixth OFDM symbol quantity.
- both the fifth number of OFDM symbols and the sixth number of OFDM symbols are related to one of the following parameters: the number of candidate PDCCHs in the search space; the number of times of blind detection.
- Fig. 3 is a schematic diagram of an MTRP scenario provided by an embodiment of the present application.
- the base station side configures K s channel measurement resources (CMRs) for channel measurement
- the base station side TRP1 configures a group, denoted as CMR group1, which includes K 1 CMRs.
- the base station side configures the parameter N through signaling, and N indicates the number of CMR pairs in the MTRP scenario, and the CMRs in each pair of CMR pairs come from different CMR groups.
- N indicates the number of CMR pairs in the MTRP scenario, and the CMRs in each pair of CMR pairs come from different CMR groups.
- a total of 8 CMRs are configured on the base station side
- CMR group1 includes 4 CMRs, which are sent from TRP1
- CMR group2 includes 4 CMRs, which are sent from TRP2.
- the base station side can configure the sharing relationship of the CMRs through signaling, indicating whether the paired CMRs can be used for CSI measurement of the STRP.
- the sharing relationship When the sharing relationship is enabled, it means that the paired CMR can be used for both MTRP CSI measurement and STRP CSI measurement; when the sharing relationship is not enabled, it means that the paired CMR can only be used for MTRP The CSI measurement of , cannot be used for the CSI measurement of STRP.
- the base station side configures the CSI reporting mode of the UE through signaling.
- Mode 2 indicates that the UE needs to report 1 CSI, which may be the CSI associated with MTRP or the CSI associated with STRP.
- Fig. 4 is a schematic configuration diagram of a CSI processing process provided by the related art.
- the CSI processing process includes the following process: UE decodes DCI on PDCCH, UE measures CSI-RS and CSI-IM, UE reports CSI.
- the base station configures restriction conditions Z and Z' for the time length of processing the CSI to the UE.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI in the STRP scenario (that is, the third CSI processing time length in the above embodiment), and Z' represents measuring CSI from the UE in the STRP scenario - the number of OFDM symbols during the period from the RS and the CSI-IM to the UE reporting the CSI (that is, the fourth CSI processing time length in the above embodiment).
- Implementation mode 1 Inherit protocol rules in related technologies.
- the terminal side inherits the protocol rules in related technologies for the processing time of the CSI, and the base station configures the restriction conditions Z and Z' for the length of time for the UE to process the CSI.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI
- Z' represents the number of OFDM symbols during the period from UE measuring CSI-RS and CSI-IM to UE reporting CSI.
- Z and Z' are used as constraints for the terminal to process CSI.
- Implementation method 2 Configure another set of rules.
- the processing time of the CSI at the terminal side inherits the protocol rules in related technologies.
- the base station configures restriction conditions Z and Z' for the time length of processing the CSI to the UE.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI
- Z' represents the number of OFDM symbols during the period from UE measuring CSI-RS and CSI-IM to UE reporting CSI.
- Z and Z' are used as constraints for the terminal to process CSI.
- the terminal side uses another rule for the processing time of the CSI.
- the base station configures restriction conditions Z m and Z' m for the time length of processing the CSI to the UE.
- Z m represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI (that is, the first CSI processing time length in the above embodiment)
- Z' m represents measuring CSI-RS and CSI-IM from UE The number of OFDM symbols during the period from when the UE reports the CSI (the second CSI processing time length in the above embodiment).
- Z m and Z' m are used as constraints for terminal processing CSI.
- the processing time of the CSI at the terminal side inherits the protocol rules in related technologies.
- the base station configures restriction conditions Z and Z' for the time length of the UE to process the CSI.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI
- Z' represents the number of OFDM symbols during the period from UE measuring CSI-RS and CSI-IM to UE reporting CSI.
- Z and Z' are used as constraints for the terminal to process CSI.
- the processing time of CSI on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the time length for the base station to process CSI for the UE configures the restriction conditions Z and Z', and the parameters x and x'.
- the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI is Z+x (the first CSI processing time length in the above embodiment), from UE measuring CSI-RS and CSI-IM to UE reporting CSI
- the number of symbols of temporal OFDM is Z'+x' (the second CSI processing time length in the above embodiment).
- Z and Z' and parameters x and x' serve as constraints for the terminal to process CSI.
- the processing time of the CSI at the terminal side inherits the protocol rules in related technologies.
- the base station configures restriction conditions Z and Z' for the time length of the UE to process the CSI.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI
- Z' represents the number of OFDM symbols during the period from UE measuring CSI-RS and CSI-IM to UE reporting CSI.
- Z and Z' are used as constraints for the terminal to process CSI.
- the processing time of CSI on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the time length for the base station to process CSI for the UE configures the restriction conditions Z and Z', and the parameters x and x'.
- c and c' are specific constants.
- the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI is Z+x (the first CSI processing time length in the above embodiment), from UE measuring CSI-RS and CSI-IM to UE reporting CSI
- the number of symbols of temporal OFDM is Z'+x' (the second CSI processing time length in the above embodiment).
- Z and Z' and parameters x and x' serve as constraints for the terminal to process CSI.
- the processing time of the CSI at the terminal side inherits the protocol rules in related technologies.
- the base station configures restriction conditions Z and Z' for the time length of UE processing CSI.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI
- Z' represents the number of OFDM symbols during the period from UE measuring CSI-RS and CSI-IM to UE reporting CSI.
- Z and Z' are used as constraints for the terminal to process CSI.
- the processing time of CSI on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the time length for the base station to process CSI for the UE configures the restriction conditions Z and Z', and the parameters x and x'.
- the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI is Z+x (the first CSI processing time length in the above embodiment), from UE measuring CSI-RS and CSI-IM to UE reporting CSI
- the number of symbols of temporal OFDM is Z'+x' (the second CSI processing time length in the above embodiment).
- Z and Z' and parameters x and x' serve as constraints for the terminal to process CSI.
- the processing time of the CSI at the terminal side inherits the protocol rules in related technologies.
- the base station configures restriction conditions Z and Z' for the time length of the UE to process the CSI.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI
- Z' represents the number of OFDM symbols during the period from UE measuring CSI-RS and CSI-IM to UE reporting CSI.
- Z and Z' are used as constraints for the terminal to process CSI.
- the processing time of CSI on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the time length for the base station to process CSI for the UE configures the restriction conditions Z and Z', and the parameters x and x'.
- the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI is Z+x (the first CSI processing time length in the above embodiment), from UE measuring CSI-RS and CSI-IM to UE reporting CSI
- the number of symbols of temporal OFDM is Z'+x' (the second CSI processing time length in the above embodiment).
- Z and Z' and parameters x and x' serve as constraints for the terminal to process CSI.
- the processing time of the CSI at the terminal side inherits the protocol rules in related technologies.
- the base station configures restriction conditions Z and Z' for the time length of the UE to process the CSI.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI
- Z' represents the number of OFDM symbols during the period from UE measuring CSI-RS and CSI-IM to UE reporting CSI.
- Z and Z' are used as constraints for the terminal to process CSI.
- the processing time of CSI on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the time length for the base station to process CSI for the UE configures the restriction conditions Z and Z', and the parameters x and x'.
- the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI is Z+x (the first CSI processing time length in the above embodiment), from UE measuring CSI-RS and CSI-IM to UE reporting CSI
- the number of symbols of temporal OFDM is Z'+x' (the second CSI processing time length in the above embodiment).
- Z and Z' and parameters x and x' serve as constraints for the terminal to process CSI.
- the processing time of the CSI at the terminal side inherits the protocol rules in related technologies.
- the base station configures restriction conditions Z and Z' for the time length of the UE to process the CSI.
- Z represents the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI
- Z' represents the number of OFDM symbols during the period from UE measuring CSI-RS and CSI-IM to UE reporting CSI.
- Z and Z' are used as constraints for the terminal to process CSI.
- the processing time of CSI on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the time length for the base station to process CSI for the UE configures the restriction conditions Z and Z', and the parameters x and x'.
- the number of OFDM symbols during the period from UE decoding DCI to UE reporting CSI is Z+x (the first CSI processing time length in the above embodiment), from UE measuring CSI-RS and CSI-IM to UE reporting CSI
- the number of symbols of temporal OFDM is Z'+x' (the second CSI processing time length in the above embodiment).
- Z and Z' and parameters x and x' serve as constraints for the terminal to process CSI.
- Fig. 5 is a schematic diagram of another MTRP scenario provided by the embodiment of the present application.
- TRP1 on the base station side sends a DCI1
- TRP2 on the base station side sends a DCI2.
- Both DCI1 and DCI2 are carried on the PDCCH.
- the information carried by DCI1 and DCI2 is exactly the same, but DCI1 and DCI2 are located on the PDCCH. different time-frequency positions.
- Fig. 6 is a schematic diagram of a DCI scheduling PUSCH provided by the related art.
- the process of DCI scheduling PUSCH includes that the UE receives the DCI, the UE demodulates the information on the DCI, and the UE schedules the PUSCH.
- the base station configures restriction conditions N and K for the time length of the UE to demodulate the DCI and the UE schedules the PUSCH.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI in the STRP scenario (that is, the third DCI processing time length in the above embodiment)
- K represents the number of OFDM symbols from the UE in the STRP scenario.
- the number of OFDM symbols during the period from receiving the DCI to when the UE schedules the PUSCH that is, the fourth DCI processing time length in the above embodiment).
- Implementation mode 1 Inherit protocol rules in related technologies.
- the terminal side inherits the protocol rules in related technologies for the processing time of the DCI scheduling PUSCH, and the base station configures the restriction conditions N and K for the UE processing time length of the PUSCH scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI in the MTRP scenario (that is, the length of the first DCI processing time in the above embodiment)
- K represents the number of OFDM symbols from the UE in the MTRP scenario.
- the number of OFDM symbols during the period from receiving the DCI to when the UE schedules the PUSCH (that is, the second DCI processing time length in the above embodiment).
- N and K are used as constraints for the terminal to process PUSCH scheduling.
- Implementation method 2 Configure another set of rules.
- the terminal side inherits the protocol rules in related technologies for the processing time of the DCI scheduling PUSCH, and the base station configures the restriction conditions N and K for the UE processing time length of the PUSCH scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the PUSCH.
- N and K are used as constraints for the terminal to process PUSCH scheduling.
- the terminal side uses another rule for the processing time of the DCI scheduling PUSCH.
- the base station configures restriction conditions Nm and Km for the length of time for the UE to process the PUSCH scheduling.
- Nm represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI (that is, the length of the first DCI processing time in the above embodiment)
- Km represents the period from when the UE receives the DCI to when the UE schedules The number of OFDM symbols during the PUSCH period (that is, the second DCI processing time length in the above embodiment).
- Nm and Km are used as constraints for the terminal to process PUSCH scheduling.
- the terminal side inherits the protocol rules in related technologies for the processing time of the DCI scheduling PUSCH, and the base station configures the restriction conditions N and K for the UE processing time length of the PUSCH scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the PUSCH.
- N and K are used as constraints for the terminal to process PUSCH scheduling.
- the processing time for DCI scheduling PUSCH on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the base station configures restriction conditions N and K for the length of time for the UE to process PUSCH scheduling, and parameters x and x'.
- N+x that is, the first DCI processing time length in the above embodiment
- K+x' that is, the second DCI processing time length in the above embodiment
- Implementation mode 4 adding x OFDM symbols, where x is related to the number N1 of candidates.
- the terminal side inherits the protocol rules in related technologies for the processing time of the DCI scheduling PUSCH, and the base station configures the restriction conditions N and K for the UE processing time length of the PUSCH scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the PUSCH.
- N and K are used as constraints for the terminal to process PUSCH scheduling.
- N1 refers to the number of candidate PDCCHs in the search space.
- the processing time for DCI scheduling PUSCH on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the base station configures restriction conditions N and K for the length of time for the UE to process PUSCH scheduling, and parameters x and x'.
- N+x that is, the first DCI processing time length in the above embodiment
- K+x' that is, the second DCI processing time length in the above embodiment
- Implementation mode 5 Add x OFDM symbols, where x is related to the number of times of blind detection BD number.
- the terminal side inherits the protocol rules in related technologies for the processing time of the DCI scheduling PUSCH, and the base station configures the restriction conditions N and K for the UE processing time length of the PUSCH scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the PUSCH.
- N and K are used as constraints for the terminal to process PUSCH scheduling.
- the processing time for DCI scheduling PUSCH on the terminal side is relaxed, and two additional parameters x and x' are configured on the protocol in the related art, that is, the base station configures restriction conditions N and K for the length of time for the UE to process PUSCH scheduling, and parameters x and x'.
- N+x that is, the first DCI processing time length in the above embodiment
- K+x' that is, the second DCI processing time length in the above embodiment
- a configuration process of DCI-related processing parameters is described.
- TRP1 on the base station side sends a DCI1
- TRP2 on the base station side sends a DCI2.
- DCI1 and DCI2 are carried on the PDCCH, and the information carried by DCI1 and DCI2 is exactly the same, but DCI1 and DCI2 are located at different time-frequency positions on the PDCCH.
- FIG. 7 is a schematic diagram of HARQ-ACK of a DCI-scheduled PDSCH provided in the related art.
- the process of DCI scheduling HARQ-ACK of PDSCH includes UE receiving DCI, UE demodulating information on DCI, and UE scheduling HARQ-ACK of PDSCH.
- the base station configures restriction conditions N and K for the time length of the HARQ-ACK for the UE to demodulate the DCI and the UE to schedule the PDSCH.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI (that is, the seventh DCI processing time length in the above embodiment)
- K represents the period from the UE receives the DCI to the UE scheduling The number of OFDM symbols during the HARQ-ACK period of the PDSCH (that is, the eighth DCI processing time length in the above embodiment).
- the time lengths N and K in the protocol in the related art may not be able to meet the processing of the HARQ-ACK of the DCI-scheduled PDSCH in the MTRP scenario.
- the following five implementation methods are proposed:
- Implementation mode 1 Inherit protocol rules in related technologies.
- the terminal side inherits the protocol rules in related technologies for the processing time of DCI-scheduled PDSCH HARQ-ACK, and the base station configures constraints N and K for the UE to process the time length of PDSCH HARQ-ACK scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the HARQ-ACK of the PDSCH.
- N and K are used as constraints for the terminal to process PUSCH scheduling.
- Implementation method 2 Configure another set of rules.
- the terminal side inherits the protocol rules in related technologies for the processing time of DCI-scheduled PDSCH HARQ-ACK, and the base station configures constraints N and K for the UE to process the time length of PDSCH HARQ-ACK scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the HARQ-ACK of the PDSCH.
- N and K are used as constraints for the terminal to process the HARQ-ACK scheduling of the PDSCH.
- the terminal side uses another rule for the processing time of the HARQ-ACK of the DCI-scheduled PDSCH.
- the base station configures the restriction conditions Nm and Km for the time length for the UE to process the HARQ-ACK scheduling of the PDSCH.
- Nm represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI in the MTRP scenario (that is, the fifth DCI processing time length in the above embodiment)
- Km represents the number of symbols from the UE in the MTRP scenario The number of OFDM symbols during the period from receiving the DCI to the HARQ-ACK of the UE scheduling the PDSCH (that is, the sixth DCI processing time length in the above embodiment).
- Nm and Km are used as constraints for the terminal to process the HARQ-ACK scheduling of the PDSCH.
- the terminal side inherits the protocol rules in related technologies for the processing time of DCI-scheduled PDSCH HARQ-ACK, and the base station configures constraints N and K for the UE to process the time length of PDSCH HARQ-ACK scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the HARQ-ACK of the PDSCH.
- N and K are used as constraints for the terminal to process the HARQ-ACK scheduling of the PDSCH.
- the terminal side relaxes the processing time of HARQ-ACK for DCI-scheduled PDSCH, and additionally configures two parameters x and x' on the protocol in the related technology, that is, the time for the base station to process the HARQ-ACK scheduling of PDSCH for the UE Length configuration constraints N and K, and parameters x and x'.
- the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI is N+x (that is, the fifth DCI processing time length in the above embodiment), from when the UE receives the DCI to when the UE schedules the PDSCH
- the number of OFDM symbols during the HARQ-ACK period is K+x' (that is, the sixth DCI processing time length in the above embodiment).
- N and K and parameters x and x' serve as constraints for the terminal to process CSI.
- Implementation mode 4 adding x OFDM symbols, where x is related to the number N1 of candidates.
- the terminal side inherits the protocol rules in related technologies for the processing time of DCI-scheduled PDSCH HARQ-ACK, and the base station configures constraints N and K for the UE to process the time length of PDSCH HARQ-ACK scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the HARQ-ACK of the PDSCH.
- N and K are used as constraints for the terminal to process the HARQ-ACK scheduling of the PDSCH.
- the terminal side relaxes the processing time of HARQ-ACK for DCI-scheduled PDSCH, and additionally configures two parameters x and x' on the protocol in the related technology, that is, the time for the base station to process the HARQ-ACK scheduling of PDSCH for the UE Length configuration constraints N and K, and parameters x and x'.
- c and c' are specific constants.
- the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI is N+x (that is, the fifth DCI processing time length in the above embodiment), from when the UE receives the DCI to when the UE schedules the PDSCH
- the number of OFDM symbols during the HARQ-ACK period is K+x' (that is, the sixth DCI processing time length in the above embodiment).
- N and K and parameters x and x' serve as constraints for the terminal to process CSI.
- Implementation mode 5 Add x OFDM symbols, where x is related to the number of times of blind detection BD number.
- the terminal side inherits the protocol rules in related technologies for the processing time of DCI-scheduled PDSCH HARQ-ACK, and the base station configures constraints N and K for the UE to process the time length of PDSCH HARQ-ACK scheduling.
- N represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI
- K represents the number of OFDM symbols during the period from when the UE receives the DCI to when the UE schedules the HARQ-ACK of the PDSCH.
- N and K are used as constraints for the terminal to process the HARQ-ACK scheduling of the PDSCH.
- the terminal side relaxes the processing time of HARQ-ACK for DCI-scheduled PDSCH, and additionally configures two parameters x and x' on the protocol in the related technology, that is, the time for the base station to process the HARQ-ACK scheduling of PDSCH for the UE Length configuration constraints N and K, and parameters x and x'.
- the number of OFDM symbols during the period from when the UE receives the DCI to when the UE demodulates the information on the DCI is N+x (that is, the fifth DCI processing time length in the above embodiment), from when the UE receives the DCI to when the UE schedules the PDSCH
- the number of OFDM symbols during the HARQ-ACK period is K+x' (that is, the sixth DCI processing time length in the above embodiment).
- N and K and parameters x and x' serve as constraints for the terminal to process CSI.
- FIG. 8 is a structural block diagram of an information transmission device provided in an embodiment of the present application. This embodiment is applied to the first communication node.
- the first communications node may be a base station.
- the information transmission device in this embodiment includes: a determining module 810 and a sending module 820 .
- the determination module 810 is configured to determine the related processing parameters of the downlink control information DCI in the multi-transmission reception point MTRP scenario;
- the sending module 820 is configured to send the DCI related processing parameters to the second communication node, so that the second communication node processes the DCI related parameters according to the DCI related processing parameters.
- the DCI-related processing parameters are used to process a DCI and report a CSI;
- the DCI-related processing parameters include: a first CSI processing time length; a second CSI processing time length; wherein, the first CSI The processing time length is used to characterize the total number of OFDM symbols between decoding DCI and reporting CSI from the second communication node; the second CSI processing time length is used to characterize the channel state information reference measured from the second communication node The total number of OFDM symbols between the signal CSI-RS and the reporting of CSI.
- the determining module 810 includes:
- the first determining unit is configured to determine the first CSI processing time length in the MTRP scenario according to the third CSI processing time length;
- the second determining unit is configured to determine the second CSI processing time length in the MTRP scenario according to the fourth CSI processing time length; wherein, the third CSI processing time length is used to represent the process from decoding DCI to reporting by the second communication node in the STRP scenario The total number of OFDM symbols between CSIs; the fourth CSI processing time length is used to represent the total number of OFDM symbols between the second communication node measuring the CSI-RS and reporting the CSI in the STRP scenario.
- the first CSI processing time length is the same as the third CSI processing time length; the second CSI processing time length is the same as the fourth CSI processing time length.
- the first CSI processing time length is different from the third CSI processing time length; the second CSI processing time length is different from the fourth CSI processing time length.
- the determining module 810 includes:
- the third determination unit is configured to determine the first CSI processing time length in the MTRP scenario according to the third CSI processing time length and the first OFDM symbol quantity;
- the fourth determining unit is configured to determine the second CSI processing time length in the MTRP scenario according to the fourth CSI processing time length and the second OFDM symbol quantity.
- both the first OFDM symbol quantity and the second OFDM symbol quantity are related to one of the following parameters: the pairing quantity of channel measurement resource CMR in the MTRP scenario; the total number of CMR in the MTRP scenario; CSI reporting in the MTRP scenario Mode; CMR sharing relationship in MTRP scenario; total number of CSI in STRP scenario.
- the DCI-related processing parameters are used to process two DCIs, and the DCI is used to schedule bearer data on the PUSCH;
- the DCI-related processing parameters include: a first DCI processing time length and a second DCI processing time length; Wherein, the first DCI processing time length is used to represent the total number of OFDM symbols between receiving the DCI by the second communication node and demodulating the PUSCH bearer data on the DCI by the second communication node; the second DCI processing time length is used to represent The total number of OFDM symbols between when the second communication node receives the DCI and when the second communication node schedules the PUSCH.
- the determining module 810 includes:
- the fifth determining unit is configured to determine the first DCI processing time length in the MTRP scenario according to the third DCI processing time length;
- the sixth determining unit is configured to determine the second DCI processing time length in the MTRP scenario according to the fourth DCI processing time length; wherein, the third DCI processing time length is used to represent the DCI received from the second communication node to the STRP scenario in the STRP scenario.
- the total number of OFDM symbols between the PUSCH carrying data on the DCI is demodulated; the fourth DCI processing time length is used to represent the total number of OFDM symbols between the second communication node receiving the DCI and scheduling the PUSCH in the STRP scenario.
- the first DCI processing time length is the same as the third DCI processing time length; the second DCI processing time length is the same as the fourth DCI processing time length.
- the first DCI processing time length is different from the third DCI processing time length; the second DCI processing time length is different from the fourth DCI processing time length.
- the determining module 810 includes:
- the seventh determining unit is configured to determine the first DCI processing time length in the MTRP scenario according to the third DCI processing time length and the third OFDM symbol number;
- the eighth determining unit is configured to determine the second DCI processing time length in the MTRP scenario according to the fourth DCI processing time length and the fourth OFDM symbol quantity.
- both the third number of OFDM symbols and the fourth number of OFDM symbols are related to one of the following parameters: the number of candidate Physical Downlink Control Channels (PDCCHs) in the search space; the number of times of blind detection.
- PDCCHs Physical Downlink Control Channels
- the DCI-related processing parameters are used to process two DCIs, and the DCI is used to schedule the HARQ-ACK of the PDSCH;
- the DCI-related processing parameters include: the fifth DCI processing time length and the sixth DCI processing time length;
- the fifth DCI processing time length is used to represent the total number of OFDM symbols between receiving the DCI from the second communication node to demodulating the PDSCH bearer data on the DCI by the second communication node;
- the sixth DCI processing time length is used to represent The total number of OFDM symbols between when the second communication node receives the DCI and when the second communication node schedules the HARQ-ACK of the PDSCH.
- the determining module 810 includes:
- the ninth determination unit is configured to determine the fifth DCI processing time length in the MTRP scenario according to the seventh DCI processing time length;
- the tenth determination unit is configured to determine the sixth DCI processing time length in the MTRP scenario according to the eighth DCI processing time length; wherein the seventh DCI processing time length is used to represent the DCI received from the second communication node to the STRP scenario in the STRP scenario. Demodulate the total number of OFDM symbols between the PDSCH carrying data on the DCI; the eighth DCI processing time length is used to represent the total OFDM between the second communication node receiving the DCI and the HARQ-ACK scheduling the PDSCH in the STRP scenario number of symbols.
- the fifth DCI processing time length is the same as the seventh DCI processing time length; the sixth DCI processing time length is the same as the eighth DCI processing time length.
- the fifth DCI processing time length is different from the seventh DCI processing time length; the sixth DCI processing time length is different from the eighth DCI processing time length.
- the determining module 810 includes:
- the eleventh determining unit is configured to determine the fifth DCI processing time length in the MTRP scenario according to the seventh DCI processing time length and the fifth OFDM symbol number;
- the twelfth determining unit is configured to determine the sixth DCI processing time length in the MTRP scenario according to the eighth DCI processing time length and the sixth OFDM symbol quantity.
- both the fifth number of OFDM symbols and the sixth number of OFDM symbols are related to one of the following parameters: the number of candidate PDCCHs in the search space; the number of times of blind detection.
- the information transmission device provided in this embodiment is configured to implement the information transmission method applied to the first communication node in the embodiment shown in FIG. 1 .
- the implementation principle and technical effect of the information transmission device provided in this embodiment are similar, and will not be repeated here.
- FIG. 9 is a structural block diagram of another information transmission device provided in an embodiment of the present application. This embodiment is applied to the second communication node.
- the second communication node may be a terminal.
- the information transmission device in this embodiment includes: a receiving module 910 and a processor 920 .
- the receiving module 910 is configured to receive DCI related processing parameters in the MTRP scenario sent by the first communication node.
- the processor is configured to process the DCI related parameters according to the DCI related processing parameters.
- the DCI-related processing parameters are used to process a DCI and report a CSI;
- the DCI-related processing parameters include: a first CSI processing time length; a second CSI processing time length; wherein, the first CSI The processing time length is used to characterize the total number of OFDM symbols between decoding DCI and reporting CSI from the second communication node; the second CSI processing time length is used to characterize the channel state information reference measured from the second communication node The total number of OFDM symbols between the signal CSI-RS and the reporting of CSI.
- the method for determining DCI-related processing parameters includes:
- the second CSI processing time length in the MTRP scenario is determined according to the fourth CSI processing time length; wherein, the third CSI processing time length is used to represent the total OFDM symbols between decoding DCI and reporting CSI at the second communication node in the STRP scenario The number; the fourth CSI processing time length is used to represent the total number of OFDM symbols between the second communication node measuring the CSI-RS and reporting the CSI in the STRP scenario.
- the first CSI processing time length is the same as the third CSI processing time length; the second CSI processing time length is the same as the fourth CSI processing time length.
- the first CSI processing time length is different from the third CSI processing time length; the second CSI processing time length is different from the fourth CSI processing time length.
- the method for determining DCI-related processing parameters includes:
- the second CSI processing time length in the MTRP scenario is determined according to the fourth CSI processing time length and the second OFDM symbol quantity.
- both the first OFDM symbol quantity and the second OFDM symbol quantity are related to one of the following parameters: the pairing quantity of channel measurement resource CMR in the MTRP scenario; the total number of CMR in the MTRP scenario; CSI reporting in the MTRP scenario Mode; CMR sharing relationship in MTRP scenario; total number of CSI in STRP scenario.
- the DCI-related processing parameters are used to process two DCIs, and the DCI is used to schedule bearer data on the PUSCH;
- the DCI-related processing parameters include: a first DCI processing time length and a second DCI processing time length; Wherein, the first DCI processing time length is used to represent the total number of OFDM symbols between receiving the DCI by the second communication node and demodulating the PUSCH bearer data on the DCI by the second communication node; the second DCI processing time length is used to represent The total number of OFDM symbols between when the second communication node receives the DCI and when the second communication node schedules the PUSCH.
- the method for determining DCI-related processing parameters includes:
- the third DCI processing time length is used to represent the STRP scenario from receiving the DCI to demodulating the PUSCH bearer on the DCI in the STRP scenario
- the total number of OFDM symbols between data is used to represent the total number of OFDM symbols between receiving the DCI at the second communication node and scheduling the PUSCH in the STRP scenario.
- the first DCI processing time length is the same as the third DCI processing time length; the second DCI processing time length is the same as the fourth DCI processing time length.
- the first DCI processing time length is different from the third DCI processing time length; the second DCI processing time length is different from the fourth DCI processing time length.
- the method for determining DCI-related processing parameters includes:
- the second DCI processing time length in the MTRP scenario is determined according to the fourth DCI processing time length and the fourth OFDM symbol quantity.
- both the third number of OFDM symbols and the fourth number of OFDM symbols are related to one of the following parameters: the number of candidate Physical Downlink Control Channels (PDCCHs) in the search space; the number of times of blind detection.
- PDCCHs Physical Downlink Control Channels
- the DCI-related processing parameters are used to process two DCIs, and the DCI is used to schedule the HARQ-ACK of the PDSCH;
- the DCI-related processing parameters include: the fifth DCI processing time length and the sixth DCI processing time length;
- the fifth DCI processing time length is used to represent the total number of OFDM symbols between receiving the DCI from the second communication node to demodulating the PDSCH bearer data on the DCI by the second communication node;
- the sixth DCI processing time length is used to represent The total number of OFDM symbols between when the second communication node receives the DCI and when the second communication node schedules the HARQ-ACK of the PDSCH.
- the method for determining DCI-related processing parameters includes:
- the sixth DCI processing time length in the MTRP scenario is determined according to the eighth DCI processing time length; wherein, the seventh DCI processing time length is used to characterize the STRP scenario from receiving the DCI to demodulating the PDSCH bearer on the DCI in the STRP scenario The total number of OFDM symbols between data; the eighth DCI processing time length is used to represent the total number of OFDM symbols between receiving DCI at the second communication node and scheduling the HARQ-ACK of the PDSCH in the STRP scenario.
- the fifth DCI processing time length is the same as the seventh DCI processing time length; the sixth DCI processing time length is the same as the eighth DCI processing time length.
- the fifth DCI processing time length is different from the seventh DCI processing time length; the sixth DCI processing time length is different from the eighth DCI processing time length.
- the method for determining DCI-related processing parameters includes:
- the sixth DCI processing time length in the MTRP scenario is determined according to the eighth DCI processing time length and the sixth OFDM symbol quantity.
- both the fifth number of OFDM symbols and the sixth number of OFDM symbols are related to one of the following parameters: the number of candidate PDCCHs in the search space; the number of times of blind detection.
- the information transmission device provided in this embodiment is configured to implement the information transmission method applied to the second communication node in the embodiment shown in FIG. 2 .
- the implementation principle and technical effect of the information transmission device provided in this embodiment are similar, and will not be repeated here.
- Fig. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device provided by the present application includes: a processor 1010 , a memory 1020 and a communication module 1030 .
- the number of processors 1010 in the device may be one or more, and one processor 1010 is taken as an example in FIG. 10 .
- the number of storage 1020 in the device may be one or more, and one storage 1020 is taken as an example in FIG. 10 .
- the processor 1010, the memory 1020, and the communication module 1030 of the device may be connected through a bus or in other ways. In FIG. 10, connection through a bus is taken as an example.
- the device may be a first communication node, for example, the first communication node may be a base station.
- the memory 1020 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to devices in any embodiment of the present application (for example, the determination module 810 in the information transmission device and sending module 820).
- the memory 1020 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to usage of the device, and the like.
- the memory 1020 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
- memory 1020 may include memory located remotely from processor 1010, and such remote memory may be connected to the device through a network.
- networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
- the communication module 1030 is configured to perform communication interaction between the first communication node and the second communication node.
- the device provided above may be configured to execute the information transmission method applied to the first communication node provided in any of the above embodiments, and have corresponding functions and effects.
- the device provided above may be configured to execute the information transmission method applied to the second communication node provided in any of the above embodiments, and have corresponding functions and effects.
- the embodiment of the present application also provides a storage medium containing computer-executable instructions.
- the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute an information transmission method applied to a first communication node.
- the method includes: determining multiple Transmitting DCI-related processing parameters of the downlink control information in the MTRP scenario of the receiving point; sending the DCI-related processing parameters to the second communication node, so that the second communication node processes the DCI-related parameters according to the DCI-related processing parameters.
- the embodiment of the present application also provides a storage medium containing computer-executable instructions.
- the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute an information transmission method applied to a second communication node.
- the method includes: receiving the first DCI-related processing parameters in the MTRP scenario sent by the communication node; DCI-related parameters are processed according to the DCI-related processing parameters.
- user equipment covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
- the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
- some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
- Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
- ISA Instruction Set Architecture
- Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
- Computer programs can be stored on memory.
- the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), Optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
- Computer readable media may include non-transitory storage media.
- Data processors can be of any type suitable for the local technical environment, such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architectures.
- DSP Digital Signal Processing
- ASIC Application Specific Integrated Circuit
- FGPA programmable logic devices
- processors based on multi-core processor architectures such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architectures.
- DSP Digital Signal Processing
- ASIC Application Specific Integrated Circuit
- FGPA programmable logic devices
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提出一种信息传输方法、设备和存储介质。应用于第一通信节点的信息传输方法包括:确定多传输接收点MTRP场景中的下行控制信息DCI相关处理参数;将所述DCI相关处理参数发送至第二通信节点,以使所述第二通信节点按照所述DCI相关处理参数对DCI、信道状态信息CSI、物理上行共享信道PUSCH上的承载数据和物理下行共享信道PDSCH上的承载数据中的至少之一进行处理。
Description
本申请涉及通信领域,例如涉及一种信息传输方法、设备和存储介质。
在无线通信系统中,可以采用单个传输接收点(Single Transmission Receiving Point,STRP)场景和多个传输接收点(Multi Transmission Receiving Point,MTRP)场景进行数据传输。但在MTRP场景中,如何配置终端(User Equipment,UE)处理物理下行控制信道(Physical Downlink Control Channel,PDCCH)上的下行控制信息(Downlink Control Information,DCI)的时间长度,以及如何配置UE处理信道状态信息(Channel State Information,CSI)的时间长度,是一个亟待解决的问题。
发明内容
本申请实施例提供一种信息传输方法,应用于第一通信节点,包括:
确定多传输接收点MTRP场景中的下行控制信息DCI相关处理参数;
将所述DCI相关处理参数发送至第二通信节点,以使所述第二通信节点按照所述DCI相关处理参数对DCI相关参数进行处理。
本申请实施例提供一种信息传输方法,应用于第二通信节点,包括:
接收第一通信节点发送的MTRP场景中的DCI相关处理参数;
按照所述DCI相关处理参数对DCI相关参数进行处理。
本申请实施例提供一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;
所述通信模块,配置为在第一通信节点和第二通信节点之间进行通信交互;
所述存储器,配置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
图1是本申请实施例提供的一种信息传输方法的流程图;
图2是本申请实施例提供的另一种信息传输方法的流程图;
图3是本申请实施例提供的一种MTRP场景的示意图;
图4是相关技术提供的一种CSI处理过程的配置示意图;
图5是本申请实施例提供的另一种MTRP场景的示意图;
图6是相关技术提供的一种DCI调度PUSCH的示意图;
图7是相关技术提供的一种DCI调度PDSCH的HARQ-ACK的示意图;
图8是本申请实施例提供的一种信息传输装置的结构框图;
图9是本申请实施例提供的另一种信息传输装置的结构框图;
图10是本申请实施例提供的一种通信设备的结构示意图。
下文中将结合附图对本申请的实施例进行说明。以下结合实施例附图对本申请进行描述,所举实例仅用于解释本申请,并非用于限定本申请的范围。
在相关技术中的通信协议中,定义了一种控制信道,即PDCCH,该PDCCH可以用于:向UE发送下行调度信息以便UE接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH);向UE发送上行调度信息以便UE发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH);发送CSI上报请求以及发送上行功控命令等。PDCCH上所携带的信息称为DCI。终端无法事先获得DCI传输的精确时频位置,而只能在一个大致的资源范围内对DCI进行搜索,这个过程也称为盲检测(Blind Detection)。协议中规定,基站侧发送一个DCI,该DCI承载在PDCCH上,UE检测到PDCCH之后,并在s个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的时间内完成对DCI的处理。这个时间长度s是基站通过信令配置给UE处理DCI的限制条件。
在DCI上有一个信息域称为CSI请求,在基站需要获取终端的CSI的情况下,需要触发CSI请求。对于终端而言,处理CSI是复杂度相对较高的信号处理过程,需要付出较大的计算资源和一定的计算时间,因此,在为了实现上述CSI反馈的基本流程,终端和基站需要就终端的计算能力、处理时延达成一致的理解。
然而,相关技术中的DCI处理和CSI处理在支持MTRP传输方面存在一些问题,基站配置给UE的DCI处理时间和CSI处理时间不足,导致UE无法正确解调DCI和上报准确的CSI。
本申请实施例提供一种信息传输方法,基站通过配置DCI相关处理参数,并发送至终端,以使终端按照DCI相关处理参数对DCI和CSI进行处理。
在一实施例中,图1是本申请实施例提供的一种信息传输方法的流程图。本实施例可以由第一通信节点执行。其中,第一通信节点可以为基站。如图1所示,本实施例包括:S110-S120。
S110、确定MTRP场景中的DCI相关处理参数。
S120、将DCI相关处理参数发送至第二通信节点,以使第二通信节点按照DCI相关处理参数对DCI相关参数进行处理。
在实施例中,DCI相关处理参数用于表征在MTRP场景下对DCI相关参数所配置的处理时间长度。其中,DCI相关参数至少包括下述之一:DCI、CSI、PUSCH上所传输的数据、PDSCH上所传输的数据。可以理解为,通过DCI可以调度CSI上报,也可以调度PUSCH,也可以调度PDSCH等。在实施例中,在通过DCI调度PUSCH的情况下,指的是调度PUSCH上所传输的数据;在通过DCI调度PDSCH的情况下,指的是调度PDSCH的混合自动重传请求确认字符(Hybrid Automatic Repeat reQuest-Acknowledgement,HARQ-ACK)。
在实施例中,第一通信节点按照MTRP场景的特点,自定义配置MTRP场景中用于处理DCI相关参数的时间长度,并将该用于处理DCI相关参数的时间长度的配置信息发送至第二通信节点,以使第二通信节点在MTRP场景中采用预先配置的用于处理DCI相关参数的时间长度内对DCI进行处理,和/或通过DCI调度不同信道上传输的数据,以保证第二通信节点具备充足处理时间进行DCI相关参数的处理,从而使得第二通信节点可以正确地解调DCI,以及上报准确的CSI。
在一实施例中,DCI相关处理参数用于对一个DCI进行处理,以及对一个CSI进行上报;DCI相关处理参数包括:第一CSI处理时间长度;第二CSI处理时间长度;其中,第一CSI处理时间长度用于表征从第二通信节点解码DCI至上报CSI之间的总正交频分复用OFDM符号个数;第二CSI处理时间长度用于表征从第二通信节点测量信道状态信息参考信号CSI-RS至上报CSI之间的总OFDM符号个数。在实施例中,DCI相关处理参数用于对一个DCI进行处理,以及对一个CSI进行上报,可以理解为,对CSI处理过程配置对应的时间长度,以使第二通信节点具备充足的处理时间进行DCI解调,以及CSI上报的相关操作。在实施例中,第一CSI处理时间长度指的是MTRP场景下从第二通信节点解码DCI到第二通信节点上报CSI这段时间内的OFDM符号个数;第二CSI处理时间长度指的是MTRP场景下从第二通信节点测量CSI-RS/CSI-IM到第二通信节点上报CSI这段时间内的OFDM符号个数。可以理解为,第一CSI处理时间长度和第二CSI处理时间长度采用OFDM符号个数进行表征。
在一实施例中,确定MTRP场景中的DCI相关处理参数,包括:根据第三CSI处理时间长度确定MTRP场景中的第一CSI处理时间长度;根据第四CSI处理时间长度确定MTRP场景中的第二CSI处理时间长度;其中,第三CSI处理时间长度用于表征STRP场景中的从第二通信节点解码DCI至上报CSI之间的总OFDM符号个数;第四CSI处理时间长度用于表征STRP场景中的从第二通信节点测量CSI-RS至上报CSI之间的总OFDM符号个数。
在一实施例中,第一CSI处理时间长度与第三CSI处理时间长度相同;第二CSI处理时间长度与第四CSI处理时间长度相同。在实施例中,MTRP场景下的第一CSI处理时间长度可以直接采用第三CSI处理时间长度,即MTRP场景下从第二通信节点解码DCI到第二通信节点上报CSI这段时间内的OFDM符号个数,与STRP场景中的从第二通信节点解码DCI至上报CSI之间的总OFDM符号个数是相同的;并且,MTRP场景下的第二CSI处理时间长度可以直接采用第四CSI处理时间长度,即MTRP场景下从第二通信节点测量CSI-RS/CSI-IM到第二通信节点上报CSI这段时间内的OFDM符号个数,与STRP场景中的从第二通信节点测量CSI-RS至上报CSI之间的总OFDM符号个数是相同的。当然,也可以是不相同的。
在一实施例中,第一CSI处理时间长度与第三CSI处理时间长度不相同;第二CSI处理时间长度与第四CSI处理时间长度不相同。
在一实施例中,确定MTRP场景中的DCI相关处理参数,包括:
根据第三CSI处理时间长度和第一OFDM符号数量确定MTRP场景中的第一CSI处理时间长度;
根据第四CSI处理时间长度和第二OFDM符号数量确定MTRP场景中的第二CSI处理时间长度。在实施例中,第一OFDM符号数量与第三CSI处理时间长度中包含的OFDM符号个数的总和,作为第一CSI处理时间长度;第二OFDM符号数量与第四CSI处理时间长度中包含的OFDM符号个数的总和,作为第二CSI处理时间长度。在实施例中,第一OFDM符号数量可以与第二OFDM符号数量相同,也可以不相同,对此并不进行限定。
在一实施例中,第一OFDM符号数量和第二OFDM符号数量均与下述参数之一有关:MTRP场景中信道测量资源CMR的配对数量;MTRP场景中CMR的总数量;MTRP场景中CSI上报模式;MTRP场景中CMR的共享关系;STRP场景下的CSI总数量。
在一实施例中,DCI相关处理参数用于对两个DCI进行处理,且DCI用于调度PUSCH上的承载数据;DCI相关处理参数包括:第一DCI处理时间长度和第二DCI处理时间长度;其中,第一DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PUSCH承载数据之间的总OFDM符号个数;第二DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PUSCH之间的总OFDM符号个数。在实施例中,DCI相关处理参数用于对两个DCI进行处理,以及第二通信节点调度PUSCH,可以理解为,对两个DCI的处理过程,以及调度PUSCH的过程配置对应的时间长度,以使第二通信节点具备充足的处理时间进行DCI解调,以及进行PUSCH的调度操作。在实施例中,第一DCI处理时间长度指的是MTRP场景下从第二通信节点接收到DCI到第二通信节点解调出DCI上PUSCH承载数据这段时间内的OFDM符号个数;第二DCI处理时间长度指的是MTRP场景下从第二通信节点接收到DCI到第二通信节点调度PUSCH这段时间内的OFDM符号个数。可以理解为,第一DCI处理时间长度和第二DCI处理时间长度采用OFDM符号个数进行表征。
在一实施例中,确定MTRP场景中的DCI相关处理参数,包括:
根据第三DCI处理时间长度确定MTRP场景中的第一DCI处理时间长度;
根据第四DCI处理时间长度确定MTRP场景中的第二DCI处理时间长度;其中,第三DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PUSCH承载数据之间的总OFDM符号个数;第四DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PUSCH之间的总OFDM符号个数。
在一实施例中,第一DCI处理时间长度与第三DCI处理时间长度相同;第二DCI处理时间长度与第四DCI处理时间长度相同。
在一实施例中,第一DCI处理时间长度与第三DCI处理时间长度不相同;第二DCI处理时间长度与第四DCI处理时间长度不相同。
在一实施例中,确定MTRP场景中的下行控制信息DCI相关处理参数,包括:
根据第三DCI处理时间长度和第三OFDM符号数量确定MTRP场景中的第一DCI处理时间长度;
根据第四DCI处理时间长度和第四OFDM符号数量确定MTRP场景中的第二DCI处理时间长度。在实施例中,第三OFDM符号数量与第三DCI处理时间长度中包含的OFDM符号个数的总和,作为第一DCI处理时间长度;第四OFDM符号数量与第四DCI处理时间长度中包含的OFDM符号个数的总和,作为第二DCI处理时间长度。在实施例中,第三OFDM符号数量可以与第四OFDM符号数量相同,也可以不相同,对此并不进行限定。
在一实施例中,第三OFDM符号数量和第四OFDM符号数量均与下述参数之一有关:搜索空间中候选物理下行控制信道PDCCH的数量;盲检次数。在实施例中,搜索空间中候选PDCCH的数量,指的是,搜索空间中PDCCH的总数量。盲检次数指的是终端在一个大致的资源范围内对DCI进行搜索的总次数。
在一实施例中,DCI相关处理参数用于对两个DCI进行处理,且DCI用于调度PDSCH的HARQ-ACK;DCI相关处理参数包括:第五DCI处理时间长度和第六DCI处理时间长度;其中,第五DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PDSCH承载数据之间的总OFDM符号个数;第六DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PDSCH的HARQ-ACK之间的总OFDM符号个数。在实施例中,DCI相关处理参数用于对两个DCI进行处理,以及第二通信节点调度PDSCH上的HARQ-ACK,可以理解为,对两个DCI的处理过程,以及调度PDSCH的过程配置对应的时间长度,以使第二通信节点具备充足的处理时间进行DCI解调,以及进行PDSCH的HARQ-ACK调度操作。在实施例中,第五DCI处理时间长度指的是MTRP场景下从第二通信节点接收到DCI到第二通信节点解调出DCI上PDSCH承载数据这段时间内的OFDM符号个数;第二DCI处理时间长度指的是MTRP场景下从第二通信节点接收到DCI到第二通信节点调度PDSCH的HARQ-ACK这段时间内的OFDM符号个数。可以理解为,第五DCI处理时间长度和第六DCI处理时间长度采用OFDM符号个数进行表征。
在一实施例中,确定MTRP场景中的下行控制信息DCI相关处理参数,包括:
根据第七DCI处理时间长度确定MTRP场景中的第五DCI处理时间长度;
根据第八DCI处理时间长度确定MTRP场景中的第六DCI处理时间长度;其中,第七DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PDSCH承载数据之间的总OFDM符号个数;第八DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
在一实施例中,第五DCI处理时间长度与第七DCI处理时间长度相同;第六DCI处理时间长度与第八DCI处理时间长度相同。
在一实施例中,第五DCI处理时间长度与第七DCI处理时间长度不相同;第六DCI处理时间长度与第八DCI处理时间长度不相同。
在一实施例中,确定MTRP场景中的下行控制信息DCI相关处理参数,包括:
根据第七DCI处理时间长度和第五OFDM符号数量确定MTRP场景中的第五DCI处理时间长度;
根据第八DCI处理时间长度和第六OFDM符号数量确定MTRP场景中的第六DCI处理时间长度。在实施例中,第五OFDM符号数量与第七DCI处理时间长度中包含的OFDM符号个数的总和,作为第五DCI处理时间长度;第六OFDM符号数量与第八DCI处理时间长度中包含的OFDM符号个数的总和,作为第六DCI处理时间长度。在实施例中,第五OFDM符号数量可以与第六OFDM符号数量相同,也可以不相同,对此并不进行限定。
在一实施例中,第五OFDM符号数量和第六OFDM符号数量均与下述参数之一有关:搜索空间中候选PDCCH的数量;盲检次数。
在一实施例中,图2是本申请实施例提供的另一种信息传输方法的流程图。本实施例可以由第二通信节点执行。其中,第二通信节点可以为终端。如图2所示,本实施例包括:S210-S220。
S210、接收第一通信节点发送的MTRP场景中的DCI相关处理参数。
S220、按照DCI相关处理参数对DCI相关参数进行处理。
在一实施例中,DCI相关处理参数用于对一个DCI进行处理,以及对一个CSI进行上报;DCI相关处理参数包括:第一CSI处理时间长度;第二CSI处理时间长度;其中,第一CSI处理时间长度用于表征从第二通信节点解码DCI至上报CSI之间的总正交频分复用OFDM符号个数;第二CSI处理时间长度用于表征从第二通信节点测量信道状态信息参考信号CSI-RS至上报CSI之间的总OFDM符号个数。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第三CSI处理时间长度确定MTRP场景中的第一CSI处理时间长度;
根据第四CSI处理时间长度确定MTRP场景中的第二CSI处理时间长度;其中,第三CSI处理时间长度用于表征STRP场景中的从第二通信节点解码DCI至上报CSI之间的总OFDM符号个数;第四CSI处理时间长度用于表征STRP场景中的从第二通信节点测量CSI-RS至上报CSI之间的总OFDM符号个数。
在一实施例中,第一CSI处理时间长度与第三CSI处理时间长度相同;第二CSI处理时间长度与第四CSI处理时间长度相同。
在一实施例中,第一CSI处理时间长度与第三CSI处理时间长度不相同;第二CSI处理时间长度与第四CSI处理时间长度不相同。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第三CSI处理时间长度和第一OFDM符号数量确定MTRP场景中的第一CSI处理时间长度;
根据第四CSI处理时间长度和第二OFDM符号数量确定MTRP场景中的第二CSI处理时间长度。
在一实施例中,第一OFDM符号数量和第二OFDM符号数量均与下述参数之一有关:MTRP场景中信道测量资源CMR的配对数量;MTRP场景中CMR的总数量;MTRP场景中CSI上报模式;MTRP场景中CMR的共享关系;STRP场景下的CSI总数量。
在一实施例中,DCI相关处理参数用于对两个DCI进行处理,且DCI用于调度PUSCH上的承载数据;DCI相关处理参数包括:第一DCI处理时间长度和第二DCI处理时间长度;其中,第一DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PUSCH承载数据之间的总OFDM符号个数;第二DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PUSCH之间的总OFDM符号个数。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第三DCI处理时间长度确定MTRP场景中的第一DCI处理时间长度;
根据第四DCI处理时间长度确定MTRP场景中的第二DCI处理时间长度;其中,第三DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PUSCH承载数据之间的总 OFDM符号个数;第四DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PUSCH之间的总OFDM符号个数。
在一实施例中,第一DCI处理时间长度与第三DCI处理时间长度相同;第二DCI处理时间长度与第四DCI处理时间长度相同。
在一实施例中,第一DCI处理时间长度与第三DCI处理时间长度不相同;第二DCI处理时间长度与第四DCI处理时间长度不相同。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第三DCI处理时间长度和第三OFDM符号数量确定MTRP场景中的第一DCI处理时间长度;
根据第四DCI处理时间长度和第四OFDM符号数量确定MTRP场景中的第二DCI处理时间长度。
在一实施例中,第三OFDM符号数量和第四OFDM符号数量均与下述参数之一有关:搜索空间中候选物理下行控制信道PDCCH的数量;盲检次数。
在一实施例中,DCI相关处理参数用于对两个DCI进行处理,且DCI用于调度PDSCH的HARQ-ACK;DCI相关处理参数包括:第五DCI处理时间长度和第六DCI处理时间长度;其中,第五DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PDSCH承载数据之间的总OFDM符号个数;第六DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第七DCI处理时间长度确定MTRP场景中的第五DCI处理时间长度;
根据第八DCI处理时间长度确定MTRP场景中的第六DCI处理时间长度;其中,第七DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PDSCH承载数据之间的总OFDM符号个数;第八DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
在一实施例中,第五DCI处理时间长度与第七DCI处理时间长度相同;第六DCI处理时间长度与第八DCI处理时间长度相同。
在一实施例中,第五DCI处理时间长度与第七DCI处理时间长度不相同;第六DCI处理时间长度与第八DCI处理时间长度不相同。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第七DCI处理时间长度和第五OFDM符号数量确定MTRP场景中的第五DCI处理时间长度;
根据第八DCI处理时间长度和第六OFDM符号数量确定MTRP场景中的第六DCI处理时间长度。
在一实施例中,第五OFDM符号数量和第六OFDM符号数量均与下述参数之一有关:搜索空间中候选PDCCH的数量;盲检次数。
在此需要说明的是,应用于第二通信节点的信息传输方法中对DCI相关处理参数、DCI相关参数,以及DCI相关处理参数中所包含的多个参数的解释见上述实施例中应用于第一通信节点的信息传输方法的描述,在此不再赘述。
在一实施例中,以对一个DCI进行处理,以及一个CSI进行上报,以及第一通信节点为基站(比如,包括:TRP1和TRP2),第二通信节点为终端为例,对DCI相关处理参数的配置过程进行说明。图3是本申请实施例提供的一种MTRP场景的示意图。在MTRP场景中,基站侧配置K
s个用于信道测量的信道测量资源(CMR),其中基站侧TRP1配置了一个group,记为CMR group1,包含K
1个CMR。基站侧TRP2配置了配置了另一个group,记为CMR group2,包含K
2个CMR,且满足K
1+K
2=K
s。基站侧通过信令配置参数N,N表示MTRP场景中CMR的配对数量,每对CMR pair中的CMR分别来自不同的CMR group。如图3所示,基站侧共配置了8个CMR,CMR group1中包含4个CMR,从TRP1上发送,CMR group2中包含4个CMR,从TRP2上发送。在N=1的情况下,CMR group1中有一个CMR与CMR group2中的一个CMR形成配对关系。
基站侧可以通过信令配置CMR的共享关系,表示配对的CMR是否可以用于STRP的CSI测量。在共享关系使能的情况下,表示配对的CMR既可以用于MTRP的CSI测量,也可以用于STRP的CSI测量;在共享关系不使能的情况下,表示配对的CMR仅可以用于MTRP的CSI测量,无法用于STRP的CSI测量。
基站侧通过信令配置UE对CSI的上报模式,mode 1表示UE需要上报1个与MTRP关联的CSI和X个与STRP关联的CSI,其中X=2,1,0。Mode 2表示UE需要上报1个CSI,这个CSI可能是与 MTRP关联的CSI,也可能是与STRP关联的CSI。
图4是相关技术提供的一种CSI处理过程的配置示意图。如图4所示,在相关技术中的通信协议中,CSI的处理过程如图4所示,CSI处理包括如下过程:UE在PDCCH上解码DCI,UE测量CSI-RS以及CSI-IM,UE上报CSI。基站向UE处理CSI的时间长度配置限制条件Z和Z'。其中,Z表示从STRP场景下从UE解码DCI到UE上报CSI这段时间OFDM的符号个数(即上述实施例中的第三CSI处理时间长度),Z'表示从STRP场景下从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数(即上述实施例中的第四CSI处理时间长度)。
由于在MTRP场景下,UE需要处理的CSI复杂度更高,相关技术中的协议中的时间长度Z和Z'可能无法满足MTRP场景下对CSI的处理。在本申请实施例中,提出如下八种实现方式:
实现方式1:继承相关技术中的协议规则。
在MTRP场景下,终端侧对CSI的处理时间继承相关技术中的协议规则,基站向UE处理CSI的时间长度配置限制条件Z和Z'。其中,Z表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数,Z'表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数。Z和Z'作为终端处理CSI的限制条件。
实现方式2:配置另外一套规则。
在STRP场景下,终端侧对CSI的处理时间继承相关技术中的协议规则。基站向UE处理CSI的时间长度配置限制条件Z和Z'。其中,Z表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数,Z'表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数。Z和Z'作为终端处理CSI的限制条件。
在MTRP场景下,终端侧对CSI的处理时间使用另一种规则。基站向UE处理CSI的时间长度配置限制条件Z
m和Z'
m。其中,Z
m表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数(即上述实施例中的第一CSI处理时间长度),Z'
m表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数(上述实施例中的第二CSI处理时间长度)。Z
m和Z'
m作为终端处理CSI的限制条件。
实现方式3:直接增加x个OFDM符号。
在STRP场景下,终端侧对CSI的处理时间继承相关技术中的协议规则。基站给UE处理CSI的时间长度配置限制条件Z和Z'。其中,Z表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数,Z'表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数。Z和Z'作为终端处理CSI的限制条件。
在MTRP场景下,放宽终端侧对CSI的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理CSI的时间长度配置限制条件Z和Z',以及参数x和x'。
从UE解码DCI到UE上报CSI这段时间OFDM的符号个数为Z+x(上述实施例中的第一CSI处理时间长度),从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数为Z'+x'(上述实施例中的第二CSI处理时间长度)。Z和Z'以及参数x和x'作为终端处理CSI的限制条件。
实现方式4:增加x个OFDM符号,并且,x与配对数N有关。
在STRP场景下,终端侧对CSI的处理时间继承相关技术中的协议规则。基站给UE处理CSI的时间长度配置限制条件Z和Z'。其中,Z表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数,Z'表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数。Z和Z'作为终端处理CSI的限制条件。
在MTRP场景下,放宽终端侧对CSI的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理CSI的时间长度配置限制条件Z和Z',以及参数x和x'。
参数x和x'的取值与配对数N的数值有关。例如N=1,则x=c,x’=c’;N=2,则x=2c,x’=2c’;N=3,则x=3c,x’=3c’。其中,c和c’为具体的常数。
从UE解码DCI到UE上报CSI这段时间OFDM的符号个数为Z+x(上述实施例中的第一CSI处理时间长度),从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数为Z'+x'(上述实施例中的第二CSI处理时间长度)。Z和Z'以及参数x和x'作为终端处理CSI的限制条件。
实现方式5:增加x个OFDM符号,x与CMR的总数Ks有关。
在STRP场景下,终端侧对CSI的处理时间继承相关技术中的协议规则。基站给UE处理CSI的时间 长度配置限制条件Z和Z'。其中Z表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数,Z'表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数。Z和Z'作为终端处理CSI的限制条件。
在MTRP场景下,放宽终端侧对CSI的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理CSI的时间长度配置限制条件Z和Z',以及参数x和x'。
参数x和x'的取值与CMR的总数K
s有关。例如,K
s=2,则x=2c,x’=2c’;K
s=4,则x=4c,x’=4c’;K
s=8,则x=8c,x’=8c’。其中,c和c’为具体的常数。
从UE解码DCI到UE上报CSI这段时间OFDM的符号个数为Z+x(上述实施例中的第一CSI处理时间长度),从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数为Z'+x'(上述实施例中的第二CSI处理时间长度)。Z和Z'以及参数x和x'作为终端处理CSI的限制条件。
实现方式6:增加x个OFDM符号,并且,x与上报模式mode有关。
在STRP场景下,终端侧对CSI的处理时间继承相关技术中的协议规则。基站给UE处理CSI的时间长度配置限制条件Z和Z'。其中Z表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数,Z'表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数。Z和Z'作为终端处理CSI的限制条件。
在MTRP场景下,放宽终端侧对CSI的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理CSI的时间长度配置限制条件Z和Z',以及参数x和x'。
参数x和x'的取值与CSI上报的模式mode1和mode2有关。例如CSI上报模式为mode1时,则x=c1,x’=c1’;CSI上报模式为mode2时,则x=c2,x’=c2’。其中,c1、c1’、c2、c2’为具体的常数。
从UE解码DCI到UE上报CSI这段时间OFDM的符号个数为Z+x(上述实施例中的第一CSI处理时间长度),从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数为Z'+x'(上述实施例中的第二CSI处理时间长度)。Z和Z'以及参数x和x'作为终端处理CSI的限制条件。
实现方式7:增加x个OFDM符号,x与CMR是否share有关。
在STRP场景下,终端侧对CSI的处理时间继承相关技术中的协议规则。基站给UE处理CSI的时间长度配置限制条件Z和Z'。其中Z表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数,Z'表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数。Z和Z'作为终端处理CSI的限制条件。
在MTRP场景下,放宽终端侧对CSI的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理CSI的时间长度配置限制条件Z和Z',以及参数x和x'。
参数x和x'的取值与CMR pair中的CMR是否共享(share)有关。例如CMR share使能时,则x=c1,x’=c1’;CMR share不使能时,则x=c2,x’=c2’。其中,c1、c1’、c2、c2’为具体的常数。
从UE解码DCI到UE上报CSI这段时间OFDM的符号个数为Z+x(上述实施例中的第一CSI处理时间长度),从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数为Z'+x'(上述实施例中的第二CSI处理时间长度)。Z和Z'以及参数x和x'作为终端处理CSI的限制条件。
实现方式8:增加x个OFDM符号,并且,x与STRP CSI的个数X有关。
在STRP场景下,终端侧对CSI的处理时间继承相关技术中的协议规则。基站给UE处理CSI的时间长度配置限制条件Z和Z'。其中,Z表示从UE解码DCI到UE上报CSI这段时间OFDM的符号个数,Z'表示从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数。Z和Z'作为终端处理CSI的限制条件。
在MTRP场景下,放宽终端侧对CSI的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理CSI的时间长度配置限制条件Z和Z',以及参数x和x'。
参数x和x'的取值与STRP CSI的个数X有关。例如X=0时,则x=c0,x’=c0’;X=1时,则x=c1,x’=c1’;X=2时,则x=c2,x’=c2’;基站未配置参数X时,则x=c3,x’=c3’。其中,c1、c1’、c2、c2’、c3、c3’为具体的常数。
从UE解码DCI到UE上报CSI这段时间OFDM的符号个数为Z+x(上述实施例中的第一CSI处理时间长度),从UE测量CSI-RS以及CSI-IM到UE上报CSI这段时间OFDM的符号个数为Z'+x'(上述实施例中的第二CSI处理时间长度)。Z和Z'以及参数x和x'作为终端处理CSI的限制条件。
在一实施例中,以对两个相同的DCI进行处理,第一通信节点为基站,第二通信节点为终端为例, 对DCI相关处理参数的配置过程进行说明。图5是本申请实施例提供的另一种MTRP场景的示意图。如图5所示,在MTRP场景下,基站侧TRP1发送一个DCI1,基站侧TRP2发送一个DCI2,DCI1和DCI2都承载在PDCCH上,其中DCI1和DCI2携带的信息完全相同,但是DCI1和DCI2位于PDCCH上不同的时频位置。
图6是相关技术提供的一种DCI调度PUSCH的示意图。如图6所示,在相关技术中的通信协议中,DCI调度PUSCH的过程包括UE接收DCI,UE解调出DCI上的信息,UE调度PUSCH。基站向UE解调DCI和UE调度PUSCH的时间长度配置限制条件N和K。其中N表示STRP场景下从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数(即上述实施例中的第三DCI处理时间长度),K表示STRP场景下从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数(即上述实施例中的第四DCI处理时间长度)。
由于在MTRP场景下,UE需要处理的DCI复杂度更高,相关技术中的协议中的时间长度N和K可能不能满足MTRP场景下对DCI调度PUSCH的处理。本申请实施例中,提出如下五种实现方式:
实现方式1:继承相关技术中的协议规则。
在MTRP场景下,终端侧对DCI调度PUSCH的处理时间继承相关技术中的协议规则,基站给UE处理PUSCH调度的时间长度配置限制条件N和K。其中N表示MTRP场景下从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数(即上述实施例中的第一DCI处理时间长度),K表示MTRP场景下从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数(即上述实施例中的第二DCI处理时间长度)。N和K作为终端处理PUSCH调度的限制条件。
实现方式2:配置另外一套规则。
在STRP场景下,终端侧对DCI调度PUSCH的处理时间继承相关技术中的协议规则,基站给UE处理PUSCH调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数。N和K作为终端处理PUSCH调度的限制条件。
在MTRP场景下,终端侧对DCI调度PUSCH的处理时间使用另一种规则。基站给UE处理PUSCH调度的时间长度配置限制条件Nm和Km。其中Nm表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数(即上述实施例中的第一DCI处理时间长度),Km表示从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数(即上述实施例中的第二DCI处理时间长度)。Nm和Km作为终端处理PUSCH调度的限制条件。
实现方式3:直接增加x个OFDM符号。
在STRP场景下,终端侧对DCI调度PUSCH的处理时间继承相关技术中的协议规则,基站给UE处理PUSCH调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数。N和K作为终端处理PUSCH调度的限制条件。
在MTRP场景下,放宽终端侧对DCI调度PUSCH的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理PUSCH调度的时间长度配置限制条件N和K,以及参数x和x'。
从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数为N+x(即上述实施例中的第一DCI处理时间长度),从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数为K+x'(即上述实施例中的第二DCI处理时间长度)。N和K以及参数x和x'作为终端处理CSI的限制条件。
实现方式4:增加x个OFDM符号,x与candidate个数N1有关。
在STRP场景下,终端侧对DCI调度PUSCH的处理时间继承相关技术中的协议规则,基站给UE处理PUSCH调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数。N和K作为终端处理PUSCH调度的限制条件。其中,N1指的是搜索空间中候选PDCCH的数量。
在MTRP场景下,放宽终端侧对DCI调度PUSCH的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理PUSCH调度的时间长度配置限制条件N和K,以及参数x和x'。
参数x和x'的取值与candidate的个数N1的数值有关。例如N1=1,则x=c,x’=c’;N1=2,则x=2c,x’=2c’;N1=3,则x=3c,x’=3c’。其中,c和c’为具体的常数。
从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数为N+x(即上述实施例中的第一DCI处理时间长度),从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数为 K+x'(即上述实施例中的第二DCI处理时间长度)。N和K以及参数x和x'作为终端处理CSI的限制条件。
实现方式5:增加x个OFDM符号,x与盲检次数BD number有关。
在STRP场景下,终端侧对DCI调度PUSCH的处理时间继承相关技术中的协议规则,基站给UE处理PUSCH调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数。N和K作为终端处理PUSCH调度的限制条件。
在MTRP场景下,放宽终端侧对DCI调度PUSCH的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理PUSCH调度的时间长度配置限制条件N和K,以及参数x和x'。
参数x和x'的取值与盲检次数BD number有关。例如BD number=1,则x=c,x’=c’;BD number=2,则x=2c,x’=2c’;BD number=3,则x=3c,x’=3c’。其中,c和c’为具体的常数。
从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数为N+x(即上述实施例中的第一DCI处理时间长度),从UE接收到DCI到UE调度PUSCH这段时间OFDM的符号个数为K+x'(即上述实施例中的第二DCI处理时间长度)。N和K以及参数x和x'作为终端处理CSI的限制条件。
在一实施例中,以对两个相同的DCI进行处理,第一通信节点为基站,第二通信节点为终端为例,对DCI相关处理参数的配置过程进行说明。在本实施例中,MTRP场景下,如下图5所示,基站侧TRP1发送一个DCI1,基站侧TRP2发送一个DCI2,DCI1和DCI2都承载在PDCCH上,其中DCI1和DCI2携带的信息完全相同,但是DCI1和DCI2位于PDCCH上不同的时频位置。
图7是相关技术提供的一种DCI调度PDSCH的HARQ-ACK的示意图。如图7所示,在相关技术中的通信协议中,DCI调度PDSCH的HARQ-ACK的过程,包括UE接收DCI,UE解调出DCI上的信息,UE调度PDSCH的HARQ-ACK。基站给UE解调DCI和UE调度PDSCH的HARQ-ACK的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数(即上述实施例中的第七DCI处理时间长度),K表示从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数(即上述实施例中的第八DCI处理时间长度)。
由于在MTRP场景下,UE需要处理的DCI复杂度更高,相关技术中的协议中的时间长度N和K可能不能满足MTRP场景下对DCI调度PDSCH的HARQ-ACK的处理。本申请实施例中,提出如下五种实现方式:
实现方式1:继承相关技术中的协议规则。
在MTRP场景下,终端侧对DCI调度PDSCH的HARQ-ACK的处理时间继承相关技术中的协议规则,基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数。N和K作为终端处理PUSCH调度的限制条件。
实现方式2:配置另外一套规则。
在STRP场景下,终端侧对DCI调度PDSCH的HARQ-ACK的处理时间继承相关技术中的协议规则,基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数。N和K作为终端处理PDSCH的HARQ-ACK调度的限制条件。
在MTRP场景下,终端侧对DCI调度PDSCH的HARQ-ACK的处理时间使用另一种规则。基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件Nm和Km。其中Nm表示MTRP场景下从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数(即上述实施例中的第五DCI处理时间长度),Km表示MTRP场景下从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数(即上述实施例中的第六DCI处理时间长度)。Nm和Km作为终端处理PDSCH的HARQ-ACK调度的限制条件。
实现方式3:直接增加x个OFDM符号。
在STRP场景下,终端侧对DCI调度PDSCH的HARQ-ACK的处理时间继承相关技术中的协议规则,基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数。N和K作为终端处理PDSCH的HARQ-ACK调度 的限制条件。
在MTRP场景下,放宽终端侧对DCI调度PDSCH的HARQ-ACK的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件N和K,以及参数x和x'。
从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数为N+x(即上述实施例中的第五DCI处理时间长度),从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数为K+x'(即上述实施例中的第六DCI处理时间长度)。N和K以及参数x和x'作为终端处理CSI的限制条件。
实现方式4:增加x个OFDM符号,x与candidate个数N1有关。
在STRP场景下,终端侧对DCI调度PDSCH的HARQ-ACK的处理时间继承相关技术中的协议规则,基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数。N和K作为终端处理PDSCH的HARQ-ACK调度的限制条件。
在MTRP场景下,放宽终端侧对DCI调度PDSCH的HARQ-ACK的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件N和K,以及参数x和x'。
参数x和x'的取值与candidate的个数N的数值有关。例如N1=1,则x=c,x’=c’;N1=2,则x=2c,x’=2c’;N1=3,则x=3c,x’=3c’。其中,c和c’为具体的常数。
从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数为N+x(即上述实施例中的第五DCI处理时间长度),从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数为K+x'(即上述实施例中的第六DCI处理时间长度)。N和K以及参数x和x'作为终端处理CSI的限制条件。
实现方式5:增加x个OFDM符号,x与盲检次数BD number有关。
在STRP场景下,终端侧对DCI调度PDSCH的HARQ-ACK的处理时间继承相关技术中的协议规则,基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件N和K。其中N表示从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数,K表示从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数。N和K作为终端处理PDSCH的HARQ-ACK调度的限制条件。
在MTRP场景下,放宽终端侧对DCI调度PDSCH的HARQ-ACK的处理时间,在相关技术中的协议上额外配置两个参数x和x',即基站给UE处理PDSCH的HARQ-ACK调度的时间长度配置限制条件N和K,以及参数x和x'。
参数x和x'的取值与盲检次数BD number有关。例如BD number=1,则x=c,x’=c’;BD number=2,则x=2c,x’=2c’;BD number=3,则x=3c,x’=3c’。其中,c和c’为具体的常数。
从UE接收到DCI到UE解调出DCI上信息的这段时间OFDM的符号个数为N+x(即上述实施例中的第五DCI处理时间长度),从UE接收到DCI到UE调度PDSCH的HARQ-ACK这段时间OFDM的符号个数为K+x'(即上述实施例中的第六DCI处理时间长度)。N和K以及参数x和x'作为终端处理CSI的限制条件。
在一实施例中,图8是本申请实施例提供的一种信息传输装置的结构框图。本实施例应用于第一通信节点。示例性地,第一通信节点可以为基站。如图8所示,本实施例中的信息传输装置包括:确定模块810和发送模块820。
确定模块810,配置为确定多传输接收点MTRP场景中的下行控制信息DCI相关处理参数;
发送模块820,配置为将DCI相关处理参数发送至第二通信节点,以使第二通信节点按照DCI相关处理参数对DCI相关参数进行处理。
在一实施例中,DCI相关处理参数用于对一个DCI进行处理,以及对一个CSI进行上报;DCI相关处理参数包括:第一CSI处理时间长度;第二CSI处理时间长度;其中,第一CSI处理时间长度用于表征从第二通信节点解码DCI至上报CSI之间的总正交频分复用OFDM符号个数;第二CSI处理时间长度用于表征从第二通信节点测量信道状态信息参考信号CSI-RS至上报CSI之间的总OFDM符号个数。
在一实施例中,确定模块810,包括:
第一确定单元,配置为根据第三CSI处理时间长度确定MTRP场景中的第一CSI处理时间长度;
第二确定单元,配置为根据第四CSI处理时间长度确定MTRP场景中的第二CSI处理时间长度;其中,第三CSI处理时间长度用于表征STRP场景中的从第二通信节点解码DCI至上报CSI之间的总OFDM符号个数;第四CSI处理时间长度用于表征STRP场景中的从第二通信节点测量CSI-RS至上报CSI之间的总OFDM符号个数。
在一实施例中,第一CSI处理时间长度与第三CSI处理时间长度相同;第二CSI处理时间长度与第四CSI处理时间长度相同。
在一实施例中,第一CSI处理时间长度与第三CSI处理时间长度不相同;第二CSI处理时间长度与第四CSI处理时间长度不相同。
在一实施例中,确定模块810,包括:
第三确定单元,配置为根据第三CSI处理时间长度和第一OFDM符号数量确定MTRP场景中的第一CSI处理时间长度;
第四确定单元,配置为根据第四CSI处理时间长度和第二OFDM符号数量确定MTRP场景中的第二CSI处理时间长度。
在一实施例中,第一OFDM符号数量和第二OFDM符号数量均与下述参数之一有关:MTRP场景中信道测量资源CMR的配对数量;MTRP场景中CMR的总数量;MTRP场景中CSI上报模式;MTRP场景中CMR的共享关系;STRP场景下的CSI总数量。
在一实施例中,DCI相关处理参数用于对两个DCI进行处理,且DCI用于调度PUSCH上的承载数据;DCI相关处理参数包括:第一DCI处理时间长度和第二DCI处理时间长度;其中,第一DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PUSCH承载数据之间的总OFDM符号个数;第二DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PUSCH之间的总OFDM符号个数。
在一实施例中,确定模块810,包括:
第五确定单元,配置为根据第三DCI处理时间长度确定MTRP场景中的第一DCI处理时间长度;
第六确定单元,配置为根据第四DCI处理时间长度确定MTRP场景中的第二DCI处理时间长度;其中,第三DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PUSCH承载数据之间的总OFDM符号个数;第四DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PUSCH之间的总OFDM符号个数。
在一实施例中,第一DCI处理时间长度与第三DCI处理时间长度相同;第二DCI处理时间长度与第四DCI处理时间长度相同。
在一实施例中,第一DCI处理时间长度与第三DCI处理时间长度不相同;第二DCI处理时间长度与第四DCI处理时间长度不相同。
在一实施例中,确定模块810,包括:
第七确定单元,配置为根据第三DCI处理时间长度和第三OFDM符号数量确定MTRP场景中的第一DCI处理时间长度;
第八确定单元,配置为根据第四DCI处理时间长度和第四OFDM符号数量确定MTRP场景中的第二DCI处理时间长度。
在一实施例中,第三OFDM符号数量和第四OFDM符号数量均与下述参数之一有关:搜索空间中候选物理下行控制信道PDCCH的数量;盲检次数。
在一实施例中,DCI相关处理参数用于对两个DCI进行处理,且DCI用于调度PDSCH的HARQ-ACK;DCI相关处理参数包括:第五DCI处理时间长度和第六DCI处理时间长度;其中,第五DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PDSCH承载数据之间的总OFDM符号个数;第六DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
在一实施例中,确定模块810,包括:
第九确定单元,配置为根据第七DCI处理时间长度确定MTRP场景中的第五DCI处理时间长度;
第十确定单元,配置为根据第八DCI处理时间长度确定MTRP场景中的第六DCI处理时间长度;其中,第七DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PDSCH承载数据之间的总OFDM符号个数;第八DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
在一实施例中,第五DCI处理时间长度与第七DCI处理时间长度相同;第六DCI处理时间长度与第八DCI处理时间长度相同。
在一实施例中,第五DCI处理时间长度与第七DCI处理时间长度不相同;第六DCI处理时间长度与第八DCI处理时间长度不相同。
在一实施例中,确定模块810,包括:
第十一确定单元,配置为根据第七DCI处理时间长度和第五OFDM符号数量确定MTRP场景中的第五DCI处理时间长度;
第十二确定单元,配置为根据第八DCI处理时间长度和第六OFDM符号数量确定MTRP场景中的第六DCI处理时间长度。
在一实施例中,第五OFDM符号数量和第六OFDM符号数量均与下述参数之一有关:搜索空间中候选PDCCH的数量;盲检次数。
本实施例提供的信息传输装置设置为实现图1所示实施例的应用于第一通信节点的信息传输方法,本实施例提供的信息传输装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图9是本申请实施例提供的另一种信息传输装置的结构框图。本实施例应用于第二通信节点。示例性地,第二通信节点可以为终端。如图9所示,本实施例中的信息传输装置包括:接收模块910和处理器920。
接收模块910,配置为接收第一通信节点发送的MTRP场景中的DCI相关处理参数。
处理器,配置为按照DCI相关处理参数对DCI相关参数进行处理。
在一实施例中,DCI相关处理参数用于对一个DCI进行处理,以及对一个CSI进行上报;DCI相关处理参数包括:第一CSI处理时间长度;第二CSI处理时间长度;其中,第一CSI处理时间长度用于表征从第二通信节点解码DCI至上报CSI之间的总正交频分复用OFDM符号个数;第二CSI处理时间长度用于表征从第二通信节点测量信道状态信息参考信号CSI-RS至上报CSI之间的总OFDM符号个数。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第三CSI处理时间长度确定MTRP场景中的第一CSI处理时间长度;
根据第四CSI处理时间长度确定MTRP场景中的第二CSI处理时间长度;其中,第三CSI处理时间长度用于表征STRP场景中的从第二通信节点解码DCI至上报CSI之间的总OFDM符号个数;第四CSI处理时间长度用于表征STRP场景中的从第二通信节点测量CSI-RS至上报CSI之间的总OFDM符号个数。
在一实施例中,第一CSI处理时间长度与第三CSI处理时间长度相同;第二CSI处理时间长度与第四CSI处理时间长度相同。
在一实施例中,第一CSI处理时间长度与第三CSI处理时间长度不相同;第二CSI处理时间长度与第四CSI处理时间长度不相同。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第三CSI处理时间长度和第一OFDM符号数量确定MTRP场景中的第一CSI处理时间长度;
根据第四CSI处理时间长度和第二OFDM符号数量确定MTRP场景中的第二CSI处理时间长度。
在一实施例中,第一OFDM符号数量和第二OFDM符号数量均与下述参数之一有关:MTRP场景中信道测量资源CMR的配对数量;MTRP场景中CMR的总数量;MTRP场景中CSI上报模式;MTRP场景中CMR的共享关系;STRP场景下的CSI总数量。
在一实施例中,DCI相关处理参数用于对两个DCI进行处理,且DCI用于调度PUSCH上的承载数据;DCI相关处理参数包括:第一DCI处理时间长度和第二DCI处理时间长度;其中,第一DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PUSCH承载数据之间的总OFDM符号个数;第二DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PUSCH之间的总OFDM符号个数。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第三DCI处理时间长度确定MTRP场景中的第一DCI处理时间长度;
根据第四DCI处理时间长度确定MTRP场景中的第二DCI处理时间长度;其中,第三DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PUSCH承载数据之间的总OFDM符号个数;第四DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PUSCH之间的总OFDM符号个数。
在一实施例中,第一DCI处理时间长度与第三DCI处理时间长度相同;第二DCI处理时间长度与第四DCI处理时间长度相同。
在一实施例中,第一DCI处理时间长度与第三DCI处理时间长度不相同;第二DCI处理时间长度与第四DCI处理时间长度不相同。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第三DCI处理时间长度和第三OFDM符号数量确定MTRP场景中的第一DCI处理时间长度;
根据第四DCI处理时间长度和第四OFDM符号数量确定MTRP场景中的第二DCI处理时间长度。
在一实施例中,第三OFDM符号数量和第四OFDM符号数量均与下述参数之一有关:搜索空间中候选物理下行控制信道PDCCH的数量;盲检次数。
在一实施例中,DCI相关处理参数用于对两个DCI进行处理,且DCI用于调度PDSCH的HARQ-ACK;DCI相关处理参数包括:第五DCI处理时间长度和第六DCI处理时间长度;其中,第五DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PDSCH承载数据之间的总OFDM符号个数;第六DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第七DCI处理时间长度确定MTRP场景中的第五DCI处理时间长度;
根据第八DCI处理时间长度确定MTRP场景中的第六DCI处理时间长度;其中,第七DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PDSCH承载数据之间的总OFDM符号个数;第八DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
在一实施例中,第五DCI处理时间长度与第七DCI处理时间长度相同;第六DCI处理时间长度与第八DCI处理时间长度相同。
在一实施例中,第五DCI处理时间长度与第七DCI处理时间长度不相同;第六DCI处理时间长度与第八DCI处理时间长度不相同。
在一实施例中,DCI相关处理参数的确定方式,包括:
根据第七DCI处理时间长度和第五OFDM符号数量确定MTRP场景中的第五DCI处理时间长度;
根据第八DCI处理时间长度和第六OFDM符号数量确定MTRP场景中的第六DCI处理时间长度。
在一实施例中,第五OFDM符号数量和第六OFDM符号数量均与下述参数之一有关:搜索空间中候选PDCCH的数量;盲检次数。
本实施例提供的信息传输装置设置为实现图2所示实施例的应用于第二通信节点的信息传输方法,本实施例提供的信息传输装置实现原理和技术效果类似,此处不再赘述。
图10是本申请实施例提供的一种通信设备的结构示意图。如图10所示,本申请提供的通信设备,包括:处理器1010、存储器1020和通信模块1030。该设备中处理器1010的数量可以是一个或者多个,图10中以一个处理器1010为例。该设备中存储器1020的数量可以是一个或者多个,图10中以一个存储器1020为例。该设备的处理器1010、存储器1020和通信模块1030可以通过总线或者其他方式连接,图10中以通过总线连接为例。在该实施例中,该设备为可以为第一通信节点,比如,第一通信节点可以为基站。
存储器1020作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,信息传输装置中的确定模块810和发送模块820)。存储器1020可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器1020可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1020可包括相对于处理器1010远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块1030,配置为在第一通信节点和第二通信节点之间进行通信交互。
在通信设备为第一通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的信息传输方法,具备相应的功能和效果。
在通信设备为第二通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第二通信节点的信息传输方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第一通信节点的信息传输方法,该方法包括:确定多传输接收点MTRP场景中的下行控制信息DCI相关处理参数;将DCI相关处理参数发送至第二通信节点,以使第二通信节点按照DCI相关处理参数对DCI相关参数进行处理。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第二通信节点的信息传输方法,该方法包括:接收第一通信节点发送的 MTRP场景中的DCI相关处理参数;按照DCI相关处理参数对DCI相关参数进行处理。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
Claims (22)
- 一种信息传输方法,应用于第一通信节点,包括:确定多传输接收点MTRP场景中的下行控制信息DCI相关处理参数;将所述DCI相关处理参数发送至第二通信节点,以使所述第二通信节点按照所述DCI相关处理参数对DCI相关参数进行处理。
- 根据权利要求1所述的方法,其中,所述DCI相关处理参数用于对一个DCI进行处理,以及对一个信道状态信息CSI进行上报;所述DCI相关处理参数包括:第一CSI处理时间长度;第二CSI处理时间长度;其中,所述第一CSI处理时间长度用于表征从第二通信节点解码DCI至上报CSI之间的总正交频分复用OFDM符号个数;所述第二CSI处理时间长度用于表征从第二通信节点测量信道状态信息参考信号CSI-RS至上报CSI之间的总OFDM符号个数。
- 根据权利要求2所述的方法,其中,所述确定MTRP场景中的DCI相关处理参数,包括:根据第三CSI处理时间长度确定MTRP场景中的第一CSI处理时间长度;根据第四CSI处理时间长度确定MTRP场景中的第二CSI处理时间长度;其中,所述第三CSI处理时间长度用于表征单个传输接收点STRP场景中的从第二通信节点解码DCI至上报CSI之间的总OFDM符号个数;所述第四CSI处理时间长度用于表征STRP场景中的从第二通信节点测量CSI-RS至上报CSI之间的总OFDM符号个数。
- 根据权利要求3所述的方法,其中,所述第一CSI处理时间长度与所述第三CSI处理时间长度相同;所述第二CSI处理时间长度与所述第四CSI处理时间长度相同。
- 根据权利要求3所述的方法,其中,所述第一CSI处理时间长度与所述第三CSI处理时间长度不相同;所述第二CSI处理时间长度与所述第四CSI处理时间长度不相同。
- 根据权利要求2所述的方法,其中,所述确定MTRP场景中的DCI相关处理参数,包括:根据第三CSI处理时间长度和第一OFDM符号数量确定MTRP场景中的第一CSI处理时间长度;根据第四CSI处理时间长度和第二OFDM符号数量确定MTRP场景中的第二CSI处理时间长度。
- 根据权利要求6所述的方法,其中,所述第一OFDM符号数量和所述第二OFDM符号数量分别与下述参数之一有关:MTRP场景中信道测量资源CMR的配对数量;MTRP场景中CMR的总数量;MTRP场景中CSI上报模式;MTRP场景中CMR的共享关系;以及STRP场景下的CSI总数量。
- 根据权利要求1所述的方法,其中,所述DCI相关处理参数用于对两个DCI进行处理,且所述DCI用于调度物理上行共享信道PUSCH上的承载数据;所述DCI相关处理参数包括:第一DCI处理时间长度和第二DCI处理时间长度;其中,所述第一DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PUSCH承载数据之间的总OFDM符号个数;所述第二DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PUSCH之间的总OFDM符号个数。
- 根据权利要求8所述的方法,其中,所述确定MTRP场景中的下行控制信息DCI相关处理参数,包括:根据第三DCI处理时间长度确定MTRP场景中的第一DCI处理时间长度;根据第四DCI处理时间长度确定MTRP场景中的第二DCI处理时间长度;其中,所述第三DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PUSCH承载数据之间的总OFDM符号个数;所述第四DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PUSCH之间的总OFDM符号个数。
- 根据权利要求9所述的方法,其中,所述第一DCI处理时间长度与所述第三DCI处理时间长度相同;所述第二DCI处理时间长度与所述第四DCI处理时间长度相同。
- 根据权利要求9所述的方法,其中,所述第一DCI处理时间长度与所述第三DCI处理时间长度不相同;所述第二DCI处理时间长度与所述第四DCI处理时间长度不相同。
- 根据权利要求8所述的方法,其中,所述确定MTRP场景中的下行控制信息DCI相关处理参数,包括:根据第三DCI处理时间长度和第三OFDM符号数量确定MTRP场景中的第一DCI处理时间长度;根据第四DCI处理时间长度和第四OFDM符号数量确定MTRP场景中的第二DCI处理时间长度。
- 根据权利要求12所述的方法,其中,所述第三OFDM符号数量和所述第四OFDM符号数量分别与下述参数之一有关:搜索空间中候选物理下行控制信道PDCCH的数量;盲检次数。
- 根据权利要求1所述的方法,其中,所述DCI相关处理参数用于对两个DCI进行处理,且所述 DCI用于调度物理下行共享信道PDSCH的混合自动重传请求确认字符HARQ-ACK;所述DCI相关处理参数包括:第五DCI处理时间长度和第六DCI处理时间长度;其中,所述第五DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点解调出DCI上PDSCH承载数据之间的总OFDM符号个数;所述第六DCI处理时间长度用于表征从第二通信节点接收到DCI至第二通信节点调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
- 根据权利要求14所述的方法,其中,所述确定MTRP场景中的下行控制信息DCI相关处理参数,包括:根据第七DCI处理时间长度确定MTRP场景中的第五DCI处理时间长度;根据第八DCI处理时间长度确定MTRP场景中的第六DCI处理时间长度;其中,所述第七DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至解调出DCI上PDSCH承载数据之间的总OFDM符号个数;所述第八DCI处理时间长度用于表征STRP场景中的从第二通信节点接收到DCI至调度PDSCH的HARQ-ACK之间的总OFDM符号个数。
- 根据权利要求15所述的方法,其中,所述第五DCI处理时间长度与所述第七DCI处理时间长度相同;所述第六DCI处理时间长度与所述第八DCI处理时间长度相同。
- 根据权利要求15所述的方法,其中,所述第五DCI处理时间长度与所述第七DCI处理时间长度不相同;所述第六DCI处理时间长度与所述第八DCI处理时间长度不相同。
- 根据权利要求14所述的方法,其中,所述确定MTRP场景中的下行控制信息DCI相关处理参数,包括:根据第七DCI处理时间长度和第五OFDM符号数量确定MTRP场景中的第五DCI处理时间长度;根据第八DCI处理时间长度和第六OFDM符号数量确定MTRP场景中的第六DCI处理时间长度。
- 根据权利要求18所述的方法,其中,所述第五OFDM符号数量和所述第六OFDM符号数量分别与下述参数之一有关:搜索空间中候选PDCCH的数量;盲检次数。
- 一种信息传输方法,,应用于第二通信节点,包括:接收第一通信节点发送的多传输接收点MTRP场景中的下行控制信息DCI相关处理参数;按照所述DCI相关处理参数对DCI相关参数进行处理。
- 一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;所述通信模块,配置为在第一通信节点和第二通信节点之间进行通信交互;所述存储器,配置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述权利要求1-19或20中任一项所述的方法。
- 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述权利要求1-19或20中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/575,537 US20240314799A1 (en) | 2021-11-04 | 2022-10-13 | Information transmission method, device, and storage medium |
EP22889075.2A EP4358622A1 (en) | 2021-11-04 | 2022-10-13 | Information transmission method, and device and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111300364.8A CN115834007A (zh) | 2021-11-04 | 2021-11-04 | 信息传输方法、设备和存储介质 |
CN202111300364.8 | 2021-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023078050A1 true WO2023078050A1 (zh) | 2023-05-11 |
Family
ID=85515459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/125001 WO2023078050A1 (zh) | 2021-11-04 | 2022-10-13 | 信息传输方法、设备和存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240314799A1 (zh) |
EP (1) | EP4358622A1 (zh) |
CN (1) | CN115834007A (zh) |
WO (1) | WO2023078050A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020069147A1 (en) * | 2018-09-28 | 2020-04-02 | Intel Corporation | Demodulation reference signal transmission from multiple base stations |
CN112771808A (zh) * | 2018-10-03 | 2021-05-07 | 高通股份有限公司 | 多发射接收点解调参考信号端口识别 |
CN113228548A (zh) * | 2018-12-21 | 2021-08-06 | 高通股份有限公司 | 携带用于具有非理想回程的多trp的harq-a的pucch |
US20210258964A1 (en) * | 2020-02-13 | 2021-08-19 | Qualcomm Incorporated | Qcl assumption for a-csi-rs configured with multi-trp |
CN113454931A (zh) * | 2019-02-15 | 2021-09-28 | 苹果公司 | 用于单个下行链路控制信息(dci)多传输接收点(trp)传输的解调参考信号(dmrs)指示 |
-
2021
- 2021-11-04 CN CN202111300364.8A patent/CN115834007A/zh active Pending
-
2022
- 2022-10-13 WO PCT/CN2022/125001 patent/WO2023078050A1/zh active Application Filing
- 2022-10-13 EP EP22889075.2A patent/EP4358622A1/en active Pending
- 2022-10-13 US US18/575,537 patent/US20240314799A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020069147A1 (en) * | 2018-09-28 | 2020-04-02 | Intel Corporation | Demodulation reference signal transmission from multiple base stations |
CN112771808A (zh) * | 2018-10-03 | 2021-05-07 | 高通股份有限公司 | 多发射接收点解调参考信号端口识别 |
CN113228548A (zh) * | 2018-12-21 | 2021-08-06 | 高通股份有限公司 | 携带用于具有非理想回程的多trp的harq-a的pucch |
CN113454931A (zh) * | 2019-02-15 | 2021-09-28 | 苹果公司 | 用于单个下行链路控制信息(dci)多传输接收点(trp)传输的解调参考信号(dmrs)指示 |
US20210258964A1 (en) * | 2020-02-13 | 2021-08-19 | Qualcomm Incorporated | Qcl assumption for a-csi-rs configured with multi-trp |
Also Published As
Publication number | Publication date |
---|---|
EP4358622A1 (en) | 2024-04-24 |
CN115834007A (zh) | 2023-03-21 |
US20240314799A1 (en) | 2024-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220132539A1 (en) | Method and apparatus for improving control channel structure in shortened transmission time intervals in a wireless communication system | |
US11903010B2 (en) | Sidelink quality measurement method and communications apparatus | |
US20180220433A1 (en) | Multi-user data transmission method and device | |
EP4195538A1 (en) | Channel state information feedback method and apparatus, device, and storage medium | |
WO2019037695A1 (zh) | 一种通信方法及装置 | |
WO2021032029A1 (zh) | 侧行链路信道状态信息传输的方法和通信装置 | |
EP4280634A1 (en) | Collaborative information sending method, resource determination method, communication node, and storage medium | |
WO2021062580A1 (zh) | 确定侧行链路传输资源的方法和装置 | |
US20220022241A1 (en) | Data receiving and sending method and terminal apparatus | |
WO2020199915A1 (zh) | 数据传输方法及装置和数据接收方法、装置、系统及存储介质 | |
US20190357182A1 (en) | Method and device for transmitting downlink control information | |
CN111901016B (zh) | 一种数据处理方法、装置、第一通信节点和第二通信节点及存储介质 | |
WO2021160094A1 (zh) | 传输方法及设备 | |
CN115362647A (zh) | Sr和harq-ack之间的优先化 | |
WO2016169479A1 (zh) | 一种数据传输方法及设备 | |
WO2023078050A1 (zh) | 信息传输方法、设备和存储介质 | |
WO2014075294A1 (zh) | Rs的传输方法、用户设备及网络设备 | |
KR20200139718A (ko) | 업링크 제어 정보 전송 방법 및 장치 | |
WO2022056678A1 (zh) | 传输方法、装置、终端、网络设备 | |
US20230156741A1 (en) | Method and apparatus for transmitting or receiving downlink control information in wireless communication system | |
US11108527B2 (en) | CQI codepoint reinterpretation | |
WO2021134523A1 (zh) | 一种参考信号的传输方法、装置及系统 | |
CN114390698A (zh) | 一种数据传输的方法、装置、介质以及程序产品 | |
WO2020194264A1 (en) | Methods and nodes for downlink intra-ue pre-emption | |
WO2021223230A1 (zh) | 物理下行控制信道传输方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22889075 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022889075 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022889075 Country of ref document: EP Effective date: 20240115 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |