WO2021223230A1 - 物理下行控制信道传输方法、装置及存储介质 - Google Patents

物理下行控制信道传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2021223230A1
WO2021223230A1 PCT/CN2020/089234 CN2020089234W WO2021223230A1 WO 2021223230 A1 WO2021223230 A1 WO 2021223230A1 CN 2020089234 W CN2020089234 W CN 2020089234W WO 2021223230 A1 WO2021223230 A1 WO 2021223230A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeated transmissions
time unit
candidate
candidate time
search space
Prior art date
Application number
PCT/CN2020/089234
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080000956.5A priority Critical patent/CN113924756B/zh
Priority to US17/923,752 priority patent/US20230209559A1/en
Priority to CN202410397389.1A priority patent/CN118199822A/zh
Priority to PCT/CN2020/089234 priority patent/WO2021223230A1/zh
Priority to EP20934500.8A priority patent/EP4149069A4/en
Publication of WO2021223230A1 publication Critical patent/WO2021223230A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a physical downlink control channel transmission method, device and storage medium.
  • MTC Machine Type Communication
  • NB-IoT Narrow Band Internet of Things
  • PDCCH Physical Downlink Control Channel
  • the present disclosure provides a physical downlink control channel transmission method, device and storage medium.
  • the technical solution is as follows:
  • a physical downlink control channel transmission method including:
  • search space configuration parameters include the number of repeated transmissions
  • the physical downlink control channel PDCCH is transmitted to the terminal according to the number of repeated transmissions, and the target candidate time unit is any one of the at least one candidate time unit.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • the transmitting the physical downlink control channel PDCCH to the terminal according to the number of repeated transmissions on the target candidate time unit includes:
  • the PDCCH is repeatedly transmitted to the terminal on the N time subunits in the target candidate time unit.
  • the determining at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter includes:
  • the N time subunits respectively starting from the start time position of the at least one candidate time unit are determined as at least one candidate time unit corresponding to the number of repeated transmissions.
  • the search space configuration parameter includes an aggregation level corresponding to the number of repeated transmissions
  • the method further includes:
  • the repeatedly transmitting the PDCCH to the terminal on the N time subunits in the target candidate time unit includes:
  • the target candidate transmission position is any one of the at least one candidate transmission position.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two of the aggregation levels respectively correspond to the same number of repeated transmissions
  • the number of repeated transmissions corresponding to at least two aggregation levels is different.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the correspondence between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by the at least two candidate transmission positions corresponding to the same aggregation level is preset;
  • the number of repeated transmissions each supported by the at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two of the repeated transmission times
  • the number of candidate time units corresponding to at least two of the repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two types of repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • a physical downlink control channel transmission method including:
  • search space configuration parameter of the terminal issued by the base station, where the search space configuration parameter includes the number of repeated transmissions
  • On the at least one candidate time unit in turn, perform blind detection of the PDCCH according to the number of repeated transmissions.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • the step of sequentially performing blind detection of PDCCH on the at least one candidate time unit according to the number of repeated transmissions includes:
  • Blind detection of the PDCCH is performed on the N time subunits corresponding to each of the at least one candidate time unit in sequence.
  • the determining at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter includes:
  • the N time subunits respectively starting from the start time position of the at least one candidate time unit are determined as the at least one candidate time unit.
  • the search space configuration parameter includes an aggregation level corresponding to the number of repeated transmissions
  • the method further includes:
  • the step of sequentially performing blind detection of PDCCH on the at least one candidate time unit includes:
  • a blind detection of the PDCCH is performed on the respective candidate transmission positions of the N time sub-units in the at least one candidate time unit in sequence.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two of the aggregation levels respectively correspond to the same number of repeated transmissions
  • the number of repeated transmissions corresponding to at least two aggregation levels is different.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the correspondence between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by the at least two candidate transmission positions corresponding to the same aggregation level is preset;
  • the number of repeated transmissions each supported by the at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two of the repeated transmission times
  • the number of candidate time units corresponding to at least two of the repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two types of repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • a physical downlink control channel transmission device including:
  • a sending module configured to issue search space configuration parameters of the terminal, where the search space configuration parameters include the number of repeated transmissions;
  • a first determining module configured to determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter
  • the transmission module is configured to transmit a physical downlink control channel PDCCH to the terminal according to the number of repeated transmissions on a target candidate time unit, where the target candidate time unit is any one of the at least one candidate time unit.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • the transmission module is configured to repeatedly transmit the PDCCH to the terminal on N time subunits in the target candidate time unit.
  • the first determining module includes:
  • the first determining submodule is configured to determine the starting time position of the at least one candidate time unit according to the number of repeated transmissions
  • the second determining submodule is configured to determine N time subunits respectively starting from the start time position of the at least one candidate time unit as at least one candidate time unit corresponding to the number of repeated transmissions.
  • the search space configuration parameter includes an aggregation level corresponding to the number of repeated transmissions
  • the apparatus Before repeatedly transmitting the PDCCH to the terminal on the N time subunits in the target candidate time unit, the apparatus further includes:
  • the second determining module is configured to determine the aggregation level, and determine at least one candidate transmission location in the control resource set according to the determined aggregation level;
  • the transmission module is configured to transmit the PDCCH to the terminal once at the target candidate transmission position corresponding to each of the N time subunits in the target candidate time unit;
  • the target candidate transmission position is any one of the at least one candidate transmission position.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two of the aggregation levels respectively correspond to the same number of repeated transmissions
  • the number of repeated transmissions corresponding to at least two aggregation levels is different.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the correspondence between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by the at least two candidate transmission positions corresponding to the same aggregation level is preset;
  • the number of repeated transmissions each supported by the at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two of the repeated transmission times
  • the number of candidate time units corresponding to at least two of the repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two types of repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • a physical downlink control channel transmission device including:
  • An obtaining module configured to obtain search space configuration parameters of the terminal issued by the base station, where the search space configuration parameters include the number of repeated transmissions;
  • a first determining module configured to determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter
  • the detection module is configured to perform blind detection of the PDCCH according to the number of repeated transmissions on the at least one candidate time unit in sequence.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • the detection module is configured to sequentially perform blind detection of PDCCH on the N time subunits corresponding to each of the at least one candidate time unit.
  • the first determining module includes:
  • the first determining submodule is configured to determine the starting time position of the at least one candidate time unit according to the number of repeated transmissions
  • the second determining submodule is configured to determine N time subunits respectively starting from the start time position of the at least one candidate time unit as the at least one candidate time unit.
  • the search space configuration parameter includes an aggregation level corresponding to the number of repeated transmissions
  • the apparatus Before performing the blind detection of the PDCCH on the at least one candidate time unit in sequence, the apparatus further includes:
  • the second determining module is configured to determine the aggregation level, and determine at least one candidate transmission location in the control resource set according to the determined aggregation level;
  • the detection module is configured to sequentially perform a blind detection of the PDCCH on the respective candidate transmission positions of the N time sub-units in the at least one candidate time unit.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two of the aggregation levels respectively correspond to the same number of repeated transmissions
  • the number of repeated transmissions corresponding to at least two aggregation levels is different.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the correspondence between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by the at least two candidate transmission positions corresponding to the same aggregation level is preset;
  • the number of repeated transmissions each supported by the at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two of the repeated transmission times
  • the number of candidate time units corresponding to at least two of the repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two types of repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • a base station including:
  • a transceiver connected to the processor
  • a memory for storing processor executable instructions
  • the processor is configured to:
  • search space configuration parameters include the number of repeated transmissions
  • the physical downlink control channel PDCCH is transmitted to the terminal according to the number of repeated transmissions, and the target candidate time unit is any one of the at least one candidate time unit.
  • a terminal including:
  • a transceiver connected to the processor
  • a memory for storing processor executable instructions
  • the processor is configured to:
  • search space configuration parameter of the terminal issued by the base station, where the search space configuration parameter includes the number of repeated transmissions
  • On the at least one candidate time unit in turn, perform blind detection of the PDCCH according to the number of repeated transmissions.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, the at least one instruction, the at least A piece of program, the code set or the instruction set is loaded and executed by the processor to implement the physical downlink control channel transmission method described in the first aspect or any optional solution of the first aspect.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the at least A piece of program, the code set or the instruction set is loaded and executed by the processor to implement the physical downlink control channel transmission method described in the second aspect or any optional solution of the second aspect.
  • the base station issues a search space configuration parameter containing the number of repeated transmissions, and determines at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter, and the target in the at least one candidate time unit
  • the PDCCH is transmitted to the terminal according to the number of repeated transmissions in the time unit, and the terminal performs blind detection of the PDCCH according to the number of repeated transmissions on at least one candidate time unit according to the acquired search space configuration parameters issued by the base station, and receives the PDCCH, thus achieving Repeated transmission of PDCCH.
  • Fig. 1 shows a schematic diagram of a physical downlink control channel transmission system provided by an embodiment of the present disclosure
  • FIG. 2 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure
  • FIG. 3 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure
  • FIG. 4 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure
  • FIG. 5 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure
  • Fig. 6 shows a schematic diagram of candidate transmission positions shown in an exemplary embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of candidate time units shown in an exemplary embodiment of the present disclosure
  • FIG. 8 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure
  • FIG. 9 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure.
  • Fig. 10 is a block diagram showing an apparatus for transmitting a physical downlink control channel according to an exemplary embodiment
  • Fig. 11 is a block diagram showing an apparatus for transmitting a physical downlink control channel according to an exemplary embodiment
  • Fig. 12 shows a schematic structural diagram of an access network device (base station) provided by an exemplary embodiment of the present disclosure
  • Fig. 13 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure.
  • the present disclosure provides a physical downlink control channel transmission method.
  • the physical downlink control channel transmission method realizes a solution to the problem of repeated transmission of PDCCH.
  • the physical downlink control channel transmission method involved in the embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. introduce.
  • LTE 4G Long Term Evolution 4G
  • MTC Machine Type Communication
  • NB-IoT Narrow Band Internet Of Thing
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the logical channel describes the type of information, that is, defines what information is transmitted.
  • the transmission channel describes how the information is transmitted, that is, defines how the information is transmitted.
  • the physical channel is used by the physical layer for the transmission of specific signals.
  • the physical channels include PDCCH, PUSCH (Physical Uplink Shared Channel), PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), and PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • DCI Downlink Control Information
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • DCI Downlink Control Information
  • the search space is a concept introduced by the NR (New Radio, New Radio) standard to limit the maximum number of blind decoding attempts of the terminal, and as far as possible not to introduce restrictions to the scheduler.
  • NR New Radio, New Radio
  • a search space is a group of candidate control channels composed of CCEs (Control Channel Elements) with the same aggregation level. Because there are multiple aggregation levels, a terminal will have multiple search spaces.
  • a CORESET control resource set
  • a terminal can be configured with multiple CORESETs. The terminal will not try to decode the PDCCH outside of the activated part of the bandwidth.
  • the monitoring object of the search space can also be configured. At a listening occasion configured for the search space, the terminal will try to decode the candidate PDCCH in the search space to obtain the corresponding DCI.
  • the NR standard defines a total of 5 different aggregation levels: 1, 2, 4, 8, and 16 CCEs, which means that there are 5 search spaces.
  • the maximum number of candidate PDCCHs that can be supported in each search space (or each aggregation level) is configurable. Therefore, NR can flexibly allocate different blind decoding times at different aggregation levels.
  • FIG. 1 shows a schematic diagram of a physical downlink control channel transmission system provided by an embodiment of the present disclosure.
  • the physical downlink control channel transmission system may include a base station 110 and a terminal 120.
  • the terminal 120 may be a wireless communication device that supports multiple wireless access technologies for data transmission.
  • the terminal 120 may communicate with one or more core networks via a radio access network (RAN), where the terminal 120 may be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone)
  • RAN radio access network
  • the terminal 120 may be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone)
  • a computer with an Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station Setation, STA
  • subscriber unit Subscriber unit
  • Subscriber Station Subscriber Station
  • mobile station Mobile Station
  • Mobile mobile station
  • Remote station Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment (UE).
  • the terminal 120 may also be a device of an unmanned aerial vehicle.
  • the base station 110 may be a network side device in a wireless communication system.
  • the wireless communication system may be a 5G system, also known as a New Radio (NR) system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • it can also be an NR-lite system.
  • the base station 120 may be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (Central Unit, CU) and at least two distributed units (Distributed Unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 110.
  • a wireless connection can be established between the base station 110 and the terminal 120 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface can also be a next-generation mobile based on 5G.
  • 5G fifth-generation mobile communication network technology
  • the wireless air interface of the communication network technology standard is a wireless air interface based on the fifth-generation mobile communication network technology standard.
  • the terminal obtains the control resource set (Control Resource Set, CORESET) configured by the high-level signaling, and determines the search space set (Search) according to the high-level signaling. Space Set), and determine the control channel element (Control Channel Element, CCE) where the detected candidate control channel is located according to the configuration information of the search space set.
  • Control Resource Set Control Resource Set, CORESET
  • Search search space set
  • Space Set determines the control channel element (Control Channel Element, CCE) where the detected candidate control channel is located according to the configuration information of the search space set.
  • the present disclosure provides a physical downlink control channel transmission method. Please refer to the figure. 2. It shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure.
  • the physical downlink control channel transmission method may be applied to the physical downlink control channel transmission system shown in FIG. 1, and executed by the base station in FIG. 1. The method may include the following steps:
  • Step 210 Issue a search space configuration parameter of the terminal, where the search space configuration parameter includes the number of repeated transmissions.
  • Step 220 Determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter.
  • each number of repeated transmissions corresponds to at least one candidate time unit, and the corresponding relationship between the number of repeated transmissions and the candidate time unit is fixedly configured by the communication protocol, or is also based on the base station through high-level signaling.
  • the channel conditions are configured. For example, when the number of repeated transmissions is 4, one candidate time unit is configured, or two candidate time units are also configured.
  • Step 230 On the target candidate time unit, transmit the physical downlink control channel PDCCH to the terminal according to the number of repeated transmissions, where the target candidate time unit is any one of the at least one candidate time unit.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • the physical downlink control channel PDCCH is transmitted to the terminal according to the number of repeated transmissions, including:
  • the PDCCH is repeatedly transmitted to the terminal.
  • determining at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter includes:
  • the N time subunits respectively starting from the start time position of the at least one candidate time unit are determined as at least one candidate time unit corresponding to the number of repeated transmissions.
  • the search space configuration parameter includes the aggregation level corresponding to the number of repeated transmissions
  • the method further includes:
  • Repeated transmission of the PDCCH to the terminal on the N time subunits in the target candidate time unit includes:
  • each PDCCH is transmitted once to the terminal;
  • the target candidate transmission position is any one of at least one candidate transmission position.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two aggregation levels correspond to the same number of repeated transmissions
  • At least two aggregation levels respectively correspond to different retransmission times.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the corresponding relationship between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is preset
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter contains at least two repeated transmission times
  • the number of candidate time units corresponding to at least two repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • the base station issues a search space configuration parameter including the number of repeated transmissions during the transmission of the physical downlink control channel, and determines the corresponding number of repeated transmissions according to the search space configuration parameter.
  • At least one candidate time unit of the at least one candidate time unit transmits the PDCCH to the terminal according to the number of repeated transmissions on the target time unit in the at least one candidate time unit, thereby realizing repeated transmission of the PDCCH.
  • FIG. 3 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure.
  • the physical downlink control channel transmission method may be applied to the physical downlink control channel transmission system shown in FIG. 1, and executed by the terminal in FIG. 1.
  • the method may include the following steps:
  • Step 310 Obtain search space configuration parameters of the terminal issued by the base station, where the search space configuration parameters include the number of repeated transmissions.
  • Step 320 Determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter.
  • Step 330 Perform blind detection of the PDCCH according to the number of repeated transmissions on at least one candidate time unit in sequence.
  • the base station transmits the PDCCH to the terminal and the terminal receives the PDCCH transmitted by the base station
  • the base station uses any one of the candidate time units as the target candidate time unit, and performs PDCCH transmission based on the target candidate time unit, but the terminal can only Determining possible candidate time units based on search space configuration parameters cannot determine which of the candidate time unit terminals the base station performs PDCCH transmission on. Therefore, when the terminal receives PDCCH, it needs all possible candidate time units corresponding to the terminal The corresponding N time subunits perform blind detection until the PDCCH corresponding to the terminal is detected.
  • each candidate time unit includes N time sub-units, and N is determined by the number of repeated transmissions;
  • Blind detection of the PDCCH is performed on the N time subunits corresponding to each of at least one candidate time unit in sequence.
  • determining at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter includes:
  • the N time subunits respectively starting from the start time position of the at least one candidate time unit are determined as at least one candidate time unit.
  • the search space configuration parameter includes the aggregation level corresponding to the number of repeated transmissions
  • the method further includes:
  • Performing blind detection of PDCCH on at least one candidate time unit in sequence includes:
  • Blind detection of the PDCCH is performed on the respective candidate transmission positions of the N time sub-units in at least one candidate time unit in turn.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two aggregation levels correspond to the same number of repeated transmissions
  • At least two aggregation levels respectively correspond to different retransmission times.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the corresponding relationship between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is preset
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two repeated transmission times
  • the number of candidate time units corresponding to at least two repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • the terminal obtains the search space configuration parameters of the terminal including the number of repeated transmissions issued by the base station during the transmission of the physical downlink control channel, and determines the search space configuration parameters according to the search space configuration parameters. At least one candidate time unit corresponding to the number of repeated transmissions is sequentially performed on at least one candidate time unit according to the number of repeated transmissions to perform blind detection of the PDCCH, thereby realizing repeated transmission of the PDCCH.
  • FIG. 4 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure.
  • the physical downlink control channel transmission method can be applied to the physical downlink control channel transmission system shown in FIG. 1 , Executed by the base station in Figure 1, the method may include:
  • step 410 the search space configuration parameter of the terminal is issued, and the search space configuration parameter includes the number of repeated transmissions.
  • the search space configuration parameter includes at least one number of repeated transmissions.
  • the search space configuration parameter of the terminal may include two types of repeated transmission times, the number of repeated transmission times is 2, and the values of the repeated transmission times are R1 and R2, respectively, where R1 and R2 are positive integers.
  • the search space configuration parameter is the resource configuration information corresponding to the terminal configured by the base station based on the terminal, and the base station obtains the resource configuration information corresponding to the terminal based on the configured search space configuration parameter of the terminal , To select appropriate configuration resources for PDCCH transmission according to the current channel conditions, and deliver search space configuration parameters to the corresponding terminals.
  • the base station when the terminal establishes a connection, the base station sends the configured search space configuration parameters corresponding to the terminal to the terminal, or the search space configuration parameter update time is preset, and the base station is based on the preset The update time delivers search space configuration parameters to the terminal.
  • Step 420 Determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter, each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions.
  • a candidate time unit is composed of N time subunits.
  • a time subunit refers to a subframe, and a time subunit carries one PDCCH transmission.
  • a candidate time unit corresponding to the transmission of the PDCCH includes N subframes.
  • a candidate time unit completes a complete repetitive transmission of the PDCCH.
  • the base station determines the starting time position of at least one candidate time unit according to the number of repeated transmissions; and determines the N time subunits starting from the starting time position of the at least one candidate time unit as At least one candidate time unit corresponding to the number of repeated transmissions.
  • the time subunit with the smallest number is the starting time position of the candidate time unit.
  • the starting time position of the candidate time unit and the number of repeated transmissions of the candidate time unit are determined, and then a candidate can be determined Time unit.
  • the formula for determining the starting position of the candidate time unit is:
  • X represents the starting position of the candidate time unit
  • R represents the number of repeated transmissions of the PDCCH sent by the base station or the terminal detects the PDCCH
  • a and a are values configured by the base station.
  • the above formula is only described by taking the determination of the starting position point of the candidate time unit according to the number of repeated transmissions as an example.
  • the starting position of the candidate time unit may be determined in combination with the number of repeated transmissions and other information.
  • the starting position of the candidate time unit may be determined in combination with the number of repeated transmissions and the number of candidate time units.
  • the search space configuration parameter includes at least two repeated transmission times
  • the number of candidate time units corresponding to the at least two repeated transmission times is the same
  • the search space configuration parameters include two repeated transmission times, and the two repeated transmission times are 4 and 8, the number of candidate time units corresponding to each is A1 or A2, where A1 is not equal to A2.
  • the number of candidate time units corresponding to the at least two repeated transmission times is different.
  • the search space configuration parameters include two repeated transmission times, and the two repeated transmission times are 4 and 8, respectively, the number of candidate time units corresponding to the number of repeated transmissions of 4 is A1, and the number of repeated transmissions is The number of candidate time units corresponding to 8 is A2, where A1 is not equal to A2.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset, it is set in the communication protocol. After the number of repeated transmissions is determined, the number of candidate time units can be determined , Making the process of determining the number of candidate time units efficient and quick.
  • the base station when the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station, the base station configures the number of candidate time units corresponding to the number of repeated transmissions through search space configuration parameters, or the base station uses other The signaling configures the number of candidate time units corresponding to the number of repeated transmissions.
  • the base station configures the number of candidate time units according to the current occupancy of control resources, which has high flexibility.
  • Step 430 Repeat transmission of the PDCCH to the terminal on the N time subunits in the target candidate time unit, where the target candidate time unit is any one of the at least one candidate time unit.
  • the base station when it performs PDCCH transmission, it arbitrarily selects one of the at least one candidate time unit as the target candidate time unit for PDCCH transmission. In the process of selecting the target candidate time unit, the base station traverses or A candidate time unit is randomly selected. If the candidate time unit is not occupied, the candidate time unit is determined as the target candidate time unit. If the candidate time unit is occupied, the next candidate time unit is reselected and the next The occupancy of the candidate time unit is judged until the target candidate time unit is determined.
  • the base station transmits the PDCCH once on each time subunit of the target candidate time unit, that is to say, the value of the time subunit in the target candidate time unit
  • the number is the number of repeated transmissions of the PDCCH.
  • the base station issues a search space configuration parameter containing the number of repeated transmissions to the terminal during the transmission of the physical downlink control channel, and determines the number of repeated transmissions according to the search space configuration parameter.
  • the corresponding at least one candidate time unit transmits the PDCCH to the terminal according to the number of repeated transmissions on the target time unit in the at least one candidate time unit, thereby realizing repeated transmission of the PDCCH.
  • the search space configuration parameter also includes the aggregation level corresponding to the number of repeated transmissions.
  • FIG. 5 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure.
  • the physical downlink control channel transmission method is applied to the physical downlink control channel transmission system shown in FIG. 1, Executed by the base station in Fig. 1, the method includes the following steps.
  • Step 510 Issue a search space configuration parameter of the terminal, where the search space configuration parameter includes the number of repeated transmissions.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two aggregation levels correspond to the same number of repeated transmissions
  • At least two aggregation levels respectively correspond to different retransmission times.
  • One REG corresponds to a PRB (Physical Resource Block, physical resource) in the frequency domain.
  • PRB Physical Resource Block, physical resource
  • the size of the block (12 REs) corresponds to the size of an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol in the time domain. 6 REGs will form a CCE.
  • the aggregation level is used to indicate the number of CCEs (Control Channel Elements) that constitute the PDCCH.
  • a PDCCCH can be composed of 1, 2, 4, 8, 16 CCEs, that is, PDCCH
  • the corresponding aggregation levels can be level 1, level 2, level 4, level 8 and level 16. Wherein, the numbers of multiple CCEs included in one PDCCH are consecutive.
  • the search space configuration parameter of the terminal includes an aggregation level.
  • the information bits of a PDCCH when the information bits of a PDCCH are fixed, its aggregation level is mainly determined by channel conditions. When the terminal’s channel conditions are good, a smaller aggregation level is used to transmit the PDCCH. When the channel condition is poor, use a larger aggregation level to transmit the PDCCH.
  • PDCCHs of different aggregation levels correspond to the same number of repeated transmissions.
  • the aggregation level configured in the search space configuration parameter is ⁇ 1, 2, 4, 8 ⁇
  • the corresponding configuration aggregation level ⁇ 1, 2, 4, 8 ⁇ supports the number of repeated transmissions ⁇ R1, R2 ⁇ , which means that no matter What is the aggregation level of the PDCCH to be transmitted? R1 transmissions or R2 transmissions are performed, where R1 is not equal to R2;
  • the aggregation level configured in the search space configuration parameters is ⁇ 1, 2, 4, 8 ⁇
  • the corresponding configuration aggregation level ⁇ 1, 2 ⁇ supports the number of repeated transmissions R1
  • the aggregation level ⁇ 4, 8 ⁇ supports the number of repeated transmissions ⁇ R1 , R2 ⁇ .
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the corresponding relationship between the aggregation level and the number of repeated transmissions is configured by the base station.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset, it is set in the communication protocol. After the aggregation level is determined, the number of repeated transmissions can be determined, so that the number of repeated transmissions can be determined. The process of repeating the number of transmissions is efficient and quick.
  • the base station when the correspondence between the aggregation level and the number of repeated transmissions is configured by the base station, the base station configures the correspondence between the aggregation level and the number of repeated transmissions through search space configuration parameters, or the base station The corresponding relationship between the aggregation level and the number of repeated transmissions is configured through other signaling. After determining the aggregation level, the base station configures the number of repeated transmissions according to the current occupancy of control resources, which has high flexibility.
  • Step 520 Determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter, each candidate time unit includes N subunits, and N is determined by the number of repeated transmissions.
  • step 520 For the implementation process of step 520, reference may be made to the related description of step 420 in the embodiment of FIG. 4, which will not be repeated here.
  • Step 530 Determine the aggregation level, and determine at least one candidate transmission location in the control resource set according to the determined aggregation level.
  • the candidate transmission position corresponding to the aggregation level can be calculated by the mapping relationship between the aggregation level and the candidate transmission position.
  • the relationship is preset by the communication protocol, or configured by the base station.
  • FIG. 6, shows a schematic diagram of candidate transmission positions shown in an exemplary embodiment of the present disclosure. Taking an aggregation level of 4 as an example, it is assumed that there are two candidate transmission positions when the aggregation level is 4 calculated by the mapping relationship.
  • candidate transmission position 1 and candidate transmission position 2 as shown in Figure 4, the numbers of CCEs that make up the same candidate transmission position are consecutive, and the numbers of CCEs that make up candidate transmission position 1 are CCE#0 ⁇ CCE#3, which constitute candidates
  • the CCE numbers of transmission position 2 are CCE#4 ⁇ CCE#7.
  • the CCE numbers between different candidate transmission positions are not continuous.
  • the CCE numbers that make up candidate transmission position 1 are CCE#0 ⁇ CCE#3, which constitute candidates
  • the CCE numbers of transmission position 2 are CCE#8 ⁇ CCE#11.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions.
  • both candidate transmission position 1 and candidate transmission position 2 support ⁇ R1, R2 ⁇ transmissions, that is, when the number of repeated transmissions is R1 At this time, you can either choose to transmit the PDCCH on the candidate transmission number 1, or choose to transmit the PDCCH on the candidate transmission position 2.
  • the number of repeated transmissions is R2
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • candidate transmission position 1 only supports R1 transmission
  • candidate transmission position 2 supports ⁇ R1, R2 ⁇ transmissions, that is, when repeated
  • the number of repeated transmissions is R2
  • PDCCH is transmitted on the network.
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is preset
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the base station uses search space configuration parameters to determine the at least two candidate transmission positions corresponding to the same aggregation level.
  • the number of repeated transmissions supported by each is configured, or the base station configures the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level through other signaling.
  • Step 540 At the target candidate transmission position corresponding to each of the N time sub-units of the target candidate time unit, each PDCCH is transmitted once to the terminal.
  • the target candidate transmission position is any one of at least one candidate transmission position.
  • the target candidate time unit is any one of at least one candidate time unit. Taking the aggregation level of 4 and the number of repeated transmissions of 4 as an example, please refer to FIG. 7, which shows the candidate time shown in an exemplary embodiment of the present disclosure.
  • the schematic diagram of the unit, as shown in Figure 7, assumes that the number of candidate time units corresponding to the aggregation level 4 is 2, that is, the candidate time unit 1 and the candidate time unit 2 in Figure 7, and each candidate time unit contains The number of time sub-units equal to the number of repeated transmissions.
  • candidate time unit 1 in Figure 7 includes subframe 0 to subframe 3
  • candidate time unit 2 includes subframe 4 to subframe 7
  • each subframe of each candidate time unit corresponds to at least one candidate transmission.
  • the aggregation level is 4, the number of candidate transmission positions obtained according to the mapping relationship is 2, which corresponds to candidate transmission position 1 and candidate transmission position 2 in Figure 7, and each candidate transmission position corresponds to support The number of repeated transmissions is the same or different.
  • any one of the two candidate time units can be selected as the target candidate time unit, and any one of the two candidate transmission positions in the target candidate time unit can be selected as the target candidate transmission position for transmission; if each candidate transmission position corresponds to the support The number of repeated transmissions is not the same.
  • candidate transmission position 1 only supports repeated transmission times of 2
  • candidate transmission position 2 supports candidate transmission times of 4
  • Either one of the two candidate time units can be selected as the target candidate time unit, and the candidate transmission position 2 in the target candidate time unit can be selected as the target candidate transmission position for transmission.
  • the time subunits in the same candidate time unit group are continuous, but the time subunits between different candidate time unit groups are continuous or discontinuous.
  • the candidate time unit group 1 includes subframe 0 to subframe 3
  • the candidate time unit group 2 includes subframe 4 to subframe 7.
  • the time subunits are continuous; in a possible case, according to the calculation formula of the starting position of the candidate time unit, it is calculated that the candidate time unit group 1 includes subframe 0 to subframe 3, and the candidate time unit group 2 includes subframes. From frame 8 to subframe 11, the time subunits between the candidate time unit groups are discontinuous.
  • the base station issues a search space configuration parameter including the number of repeated transmissions to the terminal during the transmission of the physical downlink control channel, and determines the number of repeated transmissions according to the search space configuration parameter.
  • the corresponding at least one candidate time unit transmits the PDCCH to the terminal according to the number of repeated transmissions on the target time unit in the at least one candidate time unit, thereby realizing repeated transmission of the PDCCH.
  • FIG. 8 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure.
  • the physical downlink control channel transmission method can be applied to the physical downlink control channel transmission system shown in FIG. 1, and is executed by the terminal in FIG. 1.
  • the method includes the following steps:
  • Step 810 Obtain the search space configuration parameter of the terminal issued by the base station, and the search space configuration parameter includes the number of repeated transmissions.
  • the search space configuration information includes the PDCCH aggregation level, the number of repeated transmissions and the candidate time unit that the terminal may correspond to.
  • the candidate control indicated by the search space configuration information is based on the search space configuration information.
  • the channel is detected to receive the PDCCH, where the candidate control channel indicated by the search space configuration information is the search space for the terminal to receive the PDCCH.
  • Step 820 Determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter, each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions.
  • the terminal determines the starting time position of at least one candidate time unit according to the number of repeated transmissions;
  • the N time subunits respectively starting from the start time position of the at least one candidate time unit are determined as at least one candidate time unit.
  • the search space configuration parameter includes at least two repeated transmission times
  • the number of candidate time units corresponding to at least two repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • Step 830 Perform blind detection of the PDCCH on the N time subunits corresponding to each of the at least one candidate time unit in sequence.
  • the base station When the base station transmits the PDCCH to the terminal and the terminal receives the PDCCH transmitted by the base station, the base station determines the target candidate time unit for transmitting the PDCCH and the designated number of repeated transmissions from at least one candidate time unit and at least one number of repeated transmissions according to the channel conditions of the PDCCH, and The PDCCH is transmitted based on the determined unique target candidate time unit and the specified number of repeated transmissions.
  • the terminal cannot accurately determine the PDCCH target candidate time unit transmitted by the base station and the specified number of repeated transmissions.
  • the sent search space configuration information acquire all the possibilities for the base station to send the PDCCH, that is, the candidate time unit of the PDCCH sent by the base station and the number of possible repeated transmissions, so as to perform blind detection on all possible situations until the PDCCH corresponding to the terminal is received.
  • the terminal obtains the search space configuration parameters of the terminal including the number of repeated transmissions issued by the base station during the transmission of the physical downlink control channel, and determines the search space configuration parameters according to the search space configuration parameters. At least one candidate time unit corresponding to the number of repeated transmissions is sequentially performed on at least one candidate time unit according to the number of repeated transmissions to perform blind detection of the PDCCH, thereby realizing repeated transmission of the PDCCH.
  • the search space configuration parameter includes the aggregation level corresponding to the number of repeated transmissions.
  • FIG. 9 shows a method flowchart of a physical downlink control channel transmission method provided by an embodiment of the present disclosure. .
  • the physical downlink control channel transmission method can be applied to the physical downlink control channel transmission system shown in FIG. 1, and is executed by the terminal in FIG. 1. The method includes the following steps:
  • Step 910 Obtain the search space configuration parameters of the terminal issued by the base station, where the search space configuration parameters include the number of repeated transmissions.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two aggregation levels correspond to the same number of repeated transmissions
  • At least two aggregation levels respectively correspond to different retransmission times.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the corresponding relationship between the aggregation level and the number of repeated transmissions is configured by the base station.
  • Step 920 Determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter, each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions.
  • Step 930 Determine the aggregation level, and determine at least one candidate transmission location in the control resource set according to the determined aggregation level.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is preset
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • Step 940 Perform blind PDCCH detection on the respective candidate transmission positions of the N time subunits in the at least one candidate time unit in sequence;
  • the target candidate transmission position is any one of the at least one candidate transmission position.
  • the terminal calculates the candidate transmission position of the PDCCH based on the aggregation level, thereby further reducing the scope of blind detection by the terminal, that is, the terminal only needs to be in the possible candidate time unit Blind detection is performed on the candidate transmission positions corresponding to each of the N time subunits, until the PDCCH belonging to the terminal is obtained.
  • the terminal obtains the search space configuration parameters of the terminal including the number of repeated transmissions issued by the base station during the transmission of the physical downlink control channel, and determines the search space configuration parameters according to the search space configuration parameters. At least one candidate time unit corresponding to the number of repeated transmissions is sequentially performed on at least one candidate time unit according to the number of repeated transmissions to perform blind detection of the PDCCH, thereby realizing repeated transmission of the PDCCH.
  • FIG. 10 is a block diagram of a physical downlink control channel transmission device according to an exemplary embodiment.
  • the device for adjusting the number of repeated transmissions is applied in a base station to perform the one shown in any of the above-mentioned embodiments in FIG. 2, FIG. 4, or FIG. 5. All or part of the steps of the method.
  • the above-mentioned base station may be a base station in the physical downlink control channel transmission system as shown in FIG. 1.
  • the physical downlink control channel transmission device includes:
  • the sending module 1010 is used to issue search space configuration parameters of the terminal, and the search space configuration parameters include the number of repeated transmissions;
  • the first determining module 1020 is configured to determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter;
  • the transmission module 1030 is configured to transmit the physical downlink control channel PDCCH to the terminal according to the number of repeated transmissions on the target candidate time unit, and the target candidate time unit is any one of the at least one candidate time unit.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • the transmission module 1030 is configured to repeatedly transmit the PDCCH to the terminal on the N time subunits in the target candidate time unit.
  • the first determining module 1020 includes:
  • the first determining submodule is configured to determine the starting time position of at least one candidate time unit according to the number of repeated transmissions
  • the second determining submodule is configured to determine N time subunits respectively starting from the start time position of the at least one candidate time unit as at least one candidate time unit corresponding to the number of repeated transmissions.
  • the search space configuration parameter includes the aggregation level corresponding to the number of repeated transmissions
  • the apparatus Before repeatedly transmitting the PDCCH to the terminal on the N time subunits in the target candidate time unit, the apparatus further includes:
  • the second determining module is configured to determine the aggregation level, and determine at least one candidate transmission location in the control resource set according to the determined aggregation level;
  • the transmission module 1030 is configured to transmit a PDCCH to the terminal at respective target candidate transmission positions corresponding to each of the N time subunits in the target candidate time unit;
  • the target candidate transmission position is any one of at least one candidate transmission position.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two aggregation levels correspond to the same number of repeated transmissions
  • At least two aggregation levels respectively correspond to different retransmission times.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the corresponding relationship between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is preset
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two repeated transmission times
  • the number of candidate time units corresponding to at least two repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • the physical downlink control channel transmission device provided by the present disclosure is applied to a base station.
  • the terminal sends the search space configuration parameters including the number of repeated transmissions, and configures the parameters according to the search space.
  • At least one candidate time unit corresponding to the number of repeated transmissions is determined, and the PDCCH is transmitted to the terminal according to the number of repeated transmissions on the target time unit in the at least one candidate time unit, thereby realizing repeated transmission of the PDCCH.
  • Fig. 11 is a block diagram showing a physical downlink control channel transmission device according to an exemplary embodiment.
  • the physical downlink control channel transmission device is applied to a terminal to perform any of the above-mentioned embodiments in Fig. 3, Fig. 8, or Fig. 9 All or part of the steps of the method shown.
  • the foregoing terminal may be a terminal in the physical downlink control channel transmission system as shown in FIG. 1.
  • the device for adjusting the number of repeated transmissions includes:
  • the obtaining module 1110 is configured to obtain the search space configuration parameters of the terminal issued by the base station, and the search space configuration parameters include the number of repeated transmissions;
  • the first determining module 1120 is configured to determine at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter;
  • the detection module 1130 is configured to sequentially perform blind detection of the PDCCH according to the number of repeated transmissions on at least one candidate time unit.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • the detection module 1130 is configured to sequentially perform blind detection of the PDCCH on the N time subunits corresponding to each of at least one candidate time unit.
  • the first determining module 1120 includes:
  • the first determining submodule is configured to determine the starting time position of at least one candidate time unit according to the number of repeated transmissions
  • the second determining sub-module is configured to determine N time sub-units respectively starting from the start time position of the at least one candidate time unit as at least one candidate time unit.
  • the search space configuration parameter includes the aggregation level corresponding to the number of repeated transmissions
  • the device Before performing blind PDCCH detection on at least one candidate time unit in sequence, the device further includes:
  • the second determining module is configured to determine the aggregation level, and determine at least one candidate transmission location in the control resource set according to the determined aggregation level;
  • the detection module 1130 is configured to sequentially perform a blind detection of the PDCCH at the respective candidate transmission positions of the N time sub-units in at least one candidate time unit.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two aggregation levels correspond to the same number of repeated transmissions
  • At least two aggregation levels respectively correspond to different retransmission times.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the corresponding relationship between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is preset
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two repeated transmission times
  • the number of candidate time units corresponding to at least two repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • the physical downlink control channel transmission device provided by the present disclosure is applied to a terminal.
  • the search space configuration parameters of the terminal including the number of repeated transmissions issued by the base station are obtained, and the search space configuration parameters are included according to the search
  • the space configuration parameter determines at least one candidate time unit corresponding to the number of repeated transmissions, and performs blind detection of the PDCCH according to the number of repeated transmissions on the at least one candidate time unit in turn, thereby realizing repeated transmission of the PDCCH.
  • An exemplary embodiment of the present disclosure provides a base station, which can implement all or part of the steps of the method shown in any of the above-mentioned FIG. 2, FIG. 4, or FIG. 5 embodiments of the present disclosure.
  • the above-mentioned base station may be a base station in the physical downlink control channel transmission system as shown in FIG. 1.
  • the base station includes:
  • Transceiver connected to the processor
  • a memory for storing processor executable instructions
  • the processor is configured as:
  • the physical downlink control channel PDCCH is transmitted to the terminal according to the number of repeated transmissions, and the target candidate time unit is any one of at least one candidate time unit.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • the physical downlink control channel PDCCH is transmitted to the terminal according to the number of repeated transmissions, including:
  • the PDCCH is repeatedly transmitted to the terminal.
  • determining at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter includes:
  • the N time subunits respectively starting from the start time position of the at least one candidate time unit are determined as at least one candidate time unit corresponding to the number of repeated transmissions.
  • the search space configuration parameter includes the aggregation level corresponding to the number of repeated transmissions
  • the method further includes:
  • Repeated transmission of the PDCCH to the terminal on the N time subunits in the target candidate time unit includes:
  • the target candidate transmission position is any one of at least one candidate transmission position.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two aggregation levels correspond to the same number of repeated transmissions
  • At least two aggregation levels respectively correspond to different retransmission times.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the corresponding relationship between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is preset
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two repeated transmission times
  • the number of candidate time units corresponding to at least two repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • the base station provided by the present disclosure sends a search space configuration parameter containing the number of repeated transmissions to the terminal during the transmission of the physical downlink control channel, and determines at least one candidate time corresponding to the number of repeated transmissions according to the search space configuration parameter.
  • Unit transmitting the PDCCH to the terminal according to the number of repeated transmissions on the target time unit in at least one candidate time unit, thereby realizing repeated transmission of the PDCCH.
  • An exemplary embodiment of the present disclosure provides a terminal, which can implement all or part of the steps of the method shown in any of the foregoing embodiments of FIG. 3, FIG. 8, or FIG. 9 of the present disclosure.
  • the foregoing terminal may be a terminal in the physical downlink control channel transmission system as shown in FIG. 1.
  • the terminal includes:
  • the transceiver connected to the processor
  • a memory for storing processor executable instructions
  • the processor is configured as:
  • search space configuration parameters of the terminal issued by the base station include the number of repeated transmissions
  • blind detection of the PDCCH is performed according to the number of repeated transmissions.
  • each candidate time unit includes N time subunits, and N is determined by the number of repeated transmissions;
  • Blind detection of the PDCCH is performed on the N time subunits corresponding to each of at least one candidate time unit in sequence.
  • determining at least one candidate time unit corresponding to the number of repeated transmissions according to the search space configuration parameter includes:
  • the N time subunits respectively starting from the start time position of the at least one candidate time unit are determined as at least one candidate time unit.
  • the search space configuration parameter includes the aggregation level corresponding to the number of repeated transmissions
  • the method further includes:
  • Performing blind detection of PDCCH on at least one candidate time unit in sequence includes:
  • Blind detection of the PDCCH is performed on the respective candidate transmission positions of the N time sub-units in at least one candidate time unit in turn.
  • the search space configuration parameter includes at least two aggregation levels, and each aggregation level corresponds to at least one number of repeated transmissions;
  • At least two aggregation levels correspond to the same number of repeated transmissions
  • At least two aggregation levels respectively correspond to different retransmission times.
  • the correspondence between the aggregation level and the number of repeated transmissions is preset
  • the corresponding relationship between the aggregation level and the number of repeated transmissions is configured by the base station.
  • At least two candidate transmission positions corresponding to the same aggregation level each support the same number of repeated transmissions
  • At least two candidate transmission positions corresponding to the same aggregation level each support a different number of repeated transmissions.
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is preset
  • the number of repeated transmissions each supported by at least two candidate transmission positions corresponding to the same aggregation level is configured by the base station.
  • the search space configuration parameter includes at least two repeated transmission times
  • the number of candidate time units corresponding to at least two repeated transmission times is the same;
  • the number of candidate time units corresponding to the at least two repeated transmission times is different.
  • the number of candidate time units corresponding to the number of repeated transmissions is preset
  • the number of candidate time units corresponding to the number of repeated transmissions is configured by the base station.
  • the terminal acquires the search space configuration parameters of the terminal including the number of repeated transmissions issued by the base station during the transmission of the physical downlink control channel, and determines at least the number corresponding to the number of repeated transmissions according to the search space configuration parameters.
  • a candidate time unit is sequentially performed on at least one candidate time unit according to the number of repeated transmissions to perform blind detection of the PDCCH, thereby realizing repeated transmission of the PDCCH.
  • Fig. 12 shows a schematic structural diagram of an access network device (base station) provided by an exemplary embodiment of the present disclosure.
  • the access network device 1200 may include: a processor 1201, a receiver 1202, a transmitter 1203, and a memory 1204.
  • the receiver 1202, the transmitter 1203, and the memory 1204 are respectively connected to the processor 1201 through a bus.
  • the processor 1201 includes one or more processing cores, and the processor 1201 executes the method executed by the access network device in the transmission block scheduling method provided by the embodiment of the present disclosure by running software programs and modules.
  • the memory 1204 can be used to store software programs and modules. Specifically, the memory 1204 may store an operating system 12041 and an application program module 12042 required by at least one function.
  • the receiver 1202 is used to receive communication data sent by other devices, and the transmitter 1203 is used to send communication data to other devices.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the physical downlink control channel transmission method with the base station as the execution subject in the foregoing method embodiments.
  • FIG. 13 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure.
  • the terminal includes: a processor 1301, a receiver 1302, a transmitter 1303, a memory 1304, and a bus 1305.
  • the processor 1301 includes one or more processing cores, and the processor 1301 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1302 and the transmitter 1303 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 1304 is connected to the processor 1301 through the bus 1305.
  • the memory 1304 may be used to store at least one instruction, and the processor 1301 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 1304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-Only Memory (Electrically-Erasable Programmable Read-Only Memory, EEPROM), Erasable Programmable Read-Only Memory (EPROM), Static Random-Access Memory (SRAM), only Read-Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read-Only Memory (PROM).
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the physical downlink control channel transmission method with the terminal as the execution subject in the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种物理下行控制信道传输方法、装置及存储介质,涉及无线通信技术领域,该方法包括:基站通过在物理下行控制信道的传输过程中,下发终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,在至少一个候选时间单元中的目标时间单元上按照重复传输次数向终端传输PDCCH,终端根据获取到的基站下发的搜索空间配置参数,依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,接收PDCCH。通过上述方法,可以实现PDCCH的重复传输。

Description

物理下行控制信道传输方法、装置及存储介质 技术领域
本公开涉及无线通信技术领域,特别是涉及一种物理下行控制信道传输方法、装置及存储介质。
背景技术
机器类通信(Machine Type Communication,MTC)和窄带物联网(Narrow Band Internet of Thing,NB-IoT)作为蜂窝物联网的代表,被广泛应用于数据采集、智能交通等领域。覆盖是运营商在将蜂窝网络商业化时考虑的关键因素之一。
对于NR-lite(精简新空口系统)终端而言,由于能力的缩减,导致覆盖范围损失,因此需要对PDCCH(Physical Downlink Control Channel,物理下行控制信道)进行覆盖增强处理。
发明内容
本公开提供一种物理下行控制信道传输方法、装置及存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种物理下行控制信道传输方法,所述方法包括:
下发终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
在目标候选时间单元上,按照所述重复传输次数向所述终端传输物理下行控制信道PDCCH,所述目标候选时间单元是所述至少一个候选时间单元中的任意一个。
在一种可能的实现方式中,每个所述候选时间单元包括N个时间子单元,N由所述重复传输次数决定;
所述在目标候选时间单元上,按照所述重复传输次数向所述终端传输物理下行控制信道PDCCH,包括:
在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH。
在一种可能的实现方式中,所述根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元,包括:
根据所述重复传输次数确定所述至少一个候选时间单元的起始时间位置;
将分别从所述至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为所述重复传输次数对应的至少一个候选时间单元。
在一种可能的实现方式中,所述搜索空间配置参数中包含所述重复传输次数对应的聚合等级;
所述在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH之前,还包括:
确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
所述在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH,包括:
在所述目标候选时间单元中的N个时间子单元各自对应的目标候选传输位置上,分别向所述终端传输一次所述PDCCH;
其中,所述目标候选传输位置是所述至少一个候选传输位置中的任意一个。
在一种可能的实现方式中,所述搜索空间配置参数中包含至少两种聚合等级,每种所述聚合等级对应至少一种所述重复传输次数;
至少两种所述聚合等级分别对应的重复传输次数相同;
或者,
至少两种所述聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,所述聚合等级与所述重复传输次数之间的对应关系为预先设置的;
或者,
所述聚合等级与所述重复传输次数之间的对应关系由所述基站配置。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由所述基站配置。
在一种可能的实现方式中,当所述搜索空间配置参数中包含至少两种所述重复传输次数时,
至少两种所述重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种所述重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,所述重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
所述重复传输次数对应的候选时间单元的数量由所述基站配置。
根据本公开实施例的第二方面,提供了一种物理下行控制信道传输方法,所述方法包括:
获取基站下发的终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
依次在所述至少一个候选时间单元上,按照所述重复传输次数进行PDCCH的盲检测。
在一种可能的实现方式中,每个所述候选时间单元包括N个时间子单元,N由所述重复传输次数决定;
所述依次在所述至少一个候选时间单元上,按照所述重复传输次数进行PDCCH的盲检测,包括:
依次在所述至少一个候选时间单元各自对应的N个时间子单元上,进行 PDCCH的盲检测。
在一种可能的实现方式中,所述根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元,包括:
根据所述重复传输次数确定所述至少一个候选时间单元的起始时间位置;
将分别从所述至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为所述至少一个候选时间单元。
在一种可能的实现方式中,所述搜索空间配置参数中包含所述重复传输次数对应的聚合等级;
所述依次在所述至少一个候选时间单元上,进行PDCCH的盲检测之前,还包括:
确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
所述依次在所述至少一个候选时间单元上,进行PDCCH的盲检测,包括:
依次在所述至少一个候选时间单元中的N个时间子单元各自对应的候选传输位置上,分别进行一次PDCCH的盲检测。
在一种可能的实现方式中,所述搜索空间配置参数中包含至少两种聚合等级,每种所述聚合等级对应至少一种所述重复传输次数;
至少两种所述聚合等级分别对应的重复传输次数相同;
或者,
至少两种所述聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,所述聚合等级与所述重复传输次数之间的对应关系为预先设置的;
或者,
所述聚合等级与所述重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由所述基站配置。
在一种可能的实现方式中,当所述搜索空间配置参数中包含至少两种所述重复传输次数时,
至少两种所述重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种所述重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,所述重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
所述重复传输次数对应的候选时间单元的数量由所述基站配置。
根据本公开实施例的第三方面,提供了一种物理下行控制信道传输装置,所述装置包括:
发送模块,用于下发终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
第一确定模块,用于根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
传输模块,用于在目标候选时间单元上,按照所述重复传输次数向所述终端传输物理下行控制信道PDCCH,所述目标候选时间单元是所述至少一个候选时间单元中的任意一个。
在一种可能的实现方式中,每个所述候选时间单元包括N个时间子单元,N由所述重复传输次数决定;
所述传输模块,用于在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH。
在一种可能的实现方式中,所述第一确定模块,包括:
第一确定子模块,用于根据所述重复传输次数确定所述至少一个候选时间单元的起始时间位置;
第二确定子模块,用于将分别从所述至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为所述重复传输次数对应的至少一个候选时间单元。
在一种可能的实现方式中,所述搜索空间配置参数中包含所述重复传输次数对应的聚合等级;
所述在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH之前,所述装置还包括:
第二确定模块,用于确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
所述传输模块,用于在所述目标候选时间单元中的N个时间子单元各自对应的目标候选传输位置上,分别向所述终端传输一次所述PDCCH;
其中,所述目标候选传输位置是所述至少一个候选传输位置中的任意一个。
在一种可能的实现方式中,所述搜索空间配置参数中包含至少两种聚合等级,每种所述聚合等级对应至少一种所述重复传输次数;
至少两种所述聚合等级分别对应的重复传输次数相同;
或者,
至少两种所述聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,所述聚合等级与所述重复传输次数之间的对应关系为预先设置的;
或者,
所述聚合等级与所述重复传输次数之间的对应关系由所述基站配置。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由所述基站配置。
在一种可能的实现方式中,当所述搜索空间配置参数中包含至少两种所述重复传输次数时,
至少两种所述重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种所述重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,所述重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
所述重复传输次数对应的候选时间单元的数量由所述基站配置。
根据本公开实施例的第四方面,提供了一种物理下行控制信道传输装置,所述装置包括:
获取模块,用于获取基站下发的终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
第一确定模块,用于根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
检测模块,用于依次在所述至少一个候选时间单元上,按照所述重复传输次数进行PDCCH的盲检测。
在一种可能的实现方式中,每个所述候选时间单元包括N个时间子单元,N由所述重复传输次数决定;
所述检测模块,用于依次在所述至少一个候选时间单元各自对应的N个时间子单元上,进行PDCCH的盲检测。
在一种可能的实现方式中,所述第一确定模块,包括:
第一确定子模块,用于根据所述重复传输次数确定所述至少一个候选时间单元的起始时间位置;
第二确定子模块,用于将分别从所述至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为所述至少一个候选时间单元。
在一种可能的实现方式中,所述搜索空间配置参数中包含所述重复传输次数对应的聚合等级;
所述依次在所述至少一个候选时间单元上,进行PDCCH的盲检测之前,所述装置还包括:
第二确定模块,用于确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
所述检测模块,用于依次在所述至少一个候选时间单元中的N个时间子单元各自对应的候选传输位置上,分别进行一次PDCCH的盲检测。
在一种可能的实现方式中,所述搜索空间配置参数中包含至少两种聚合等级,每种所述聚合等级对应至少一种所述重复传输次数;
至少两种所述聚合等级分别对应的重复传输次数相同;
或者,
至少两种所述聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,所述聚合等级与所述重复传输次数之间的对应关系为预先设置的;
或者,
所述聚合等级与所述重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由所述基站配置。
在一种可能的实现方式中,当所述搜索空间配置参数中包含至少两种所述重复传输次数时,
至少两种所述重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种所述重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,所述重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
所述重复传输次数对应的候选时间单元的数量由所述基站配置。
根据本公开实施例的第五方面,提供了一种基站,所述基站包括:
处理器;
与所述处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
下发终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
在目标候选时间单元上,按照所述重复传输次数向所述终端传输物理下行控制信道PDCCH,所述目标候选时间单元是所述至少一个候选时间单元中的任意一个。
根据本公开实施例的第六方面,提供了一种终端,所述终端包括:
处理器;
与所述处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取基站下发的终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
依次在所述至少一个候选时间单元上,按照所述重复传输次数进行PDCCH的盲检测。
根据本公开实施例的第七方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以 实现上述第一方面或者第一方面的任一可选方案所述的物理下行控制信道传输方法。
根据本公开实施例的第八方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述第二方面或者第二方面的任一可选方案所述的物理下行控制信道传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
基站通过在物理下行控制信道的传输过程中,下发包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,在至少一个候选时间单元中的目标时间单元上按照重复传输次数向终端传输PDCCH,终端根据获取到的基站下发的搜索空间配置参数依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,接收PDCCH,从而实现了PDCCH的重复传输。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1示出了本公开实施例提供的一种物理下行控制信道传输系统的示意图;
图2示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图;
图3示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图;
图4示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图;
图5示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图;
图6示出了本公开一示例性实施例示出的候选传输位置的示意图;
图7示出了本公开一示例性实施例示出的候选时间单元的示意图;
图8示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图;
图9示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图;
图10是根据一示例性实施例示出的一种物理下行控制信道传输装置的方框图;
图11是根据一示例性实施例示出的一种物理下行控制信道传输装置的方框图;
图12示出了本公开一个示例性实施例提供的接入网设备(基站)的结构示意图;
图13示出了本公开一个示例性实施例提供的终端的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
应当理解的是,在本文中提及的“若干个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开提供一种物理下行控制信道传输方法,该物理下行控制信道传输方法实现对PDCCH进行重复传输问题的解决方案,接下来将结合附图对本公开实施例涉及的物理下行控制信道传输方法进行详细介绍。
首先,对本公开涉及的一些名词进行解释。
1)NR-Lite(精简新空口系统)
在LTE 4G(Long Term Evolution 4G)系统中,为了支持物联网业务提出了 MTC(Machine Type Communication,机器类通信),NB-IoT(Narrow Band Internet Of Thing,窄带物联网)两大技术。这两大技术主要针对的是低速率,高时延等场景。但不管NB-IoT和MTC怎么演进,它们都属于低功耗广域物联网络,其低功耗、低成本、广覆盖、大连接的基本能力是不变的,因此主要面向数据传输速率低、时延较高的“低端物联网应用场景”,比如智能泊车、智能抄表、智能路灯等。同时另外一方面,随着物联网业务的不断发展,比如视频监控,智能家居,可穿戴设备和工业传感监测等业务的普及。这些业务通常要求几十到几百兆的速率,同时对时延也有了相对较高的要求,因此LTE中的MTC和NB-IoT技术很难满足要求。基于这种情况,提出了在5G新空口中再设计一种新的物联网技术用以来覆盖这种中端物联网设备的要求。
2)PDCCH(Physical Downlink Control Channel,物理下行控制信道)
在空中接口的协议中,定义了物理信道、传输信道和逻辑信道。逻辑信道描述了信息的类型,即定义了传输的是什么信息。传输信道描述的是信息的传输方式,即定义了信息是如何传输的。物理信道则由物理层用于具体信号的传输。
其中,物理信道包括PDCCH、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)、PDSCH(Physical Downlink Shared Channel,物理下行共享信道)、PUCCH(Physical Uplink Control Channel,物理上行控制信道)。可以通过PDCCH传输DCI(Downlink Control Information,下行控制信息)。
3)搜索空间(Search space)
搜索空间是NR(New Radio,新空口)标准引入的概念,用以限制终端盲解码尝试的最大次数,以及尽可能不给调度器引入限制。
一个搜索空间是一组拥有相同聚合等级的由CCE(Control Channel Element,控制信道单元)构成的候选控制信道。因为有多个聚合等级,因此一个终端会有多个搜索空间。一个CORESET(控制资源集)也可以有多个搜索空间,同时一个终端可以配置多个CORESET。终端不会在激活部分带宽之外尝试解码PDCCH。此外搜索空间的监听对象也是可以配置的。在一个为搜索空间配置的监听时机,终端会试图在该搜索空间内解码候选的PDCCH,以获取相应的DCI。
NR标准总共定义了5种不同的聚合等级:1、2、4、8、16个CCE,也就是说有5中搜索空间。每个搜索空间(或者说每个聚合等级)中可以支持的最大候选PDCCH个数是可以配置的。因此NR可以在不同的聚合等级上灵活分配 不同的盲解码次数。
请参考图1,其示出了本公开实施例提供的一种物理下行控制信道传输系统的示意图,如图1所示,该物理下行控制信道传输系统可以包括:基站110以及终端120。
其中,终端120可以是支持多种无线接入技术进行数据传输的无线通信设备。终端120可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,其中,终端120可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(Subscriber unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户装置(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户终端(User Equipment,UE)。或者,终端120也可以是无人飞行器的设备。
基站110可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是5G系统,又称新空口(New Radio,NR)系统。或者,该无线通信系统也可以是5G系统的再下一代系统。或者,也可以是NR-lite系统。
其中,基站120可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站110的具体实现方式不加以限定。
基站110和终端120之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在下一代通信系统中(例如:5G,或新无线(New Radio,NR)),终端获取高 层信令配置的控制资源集合(Control Resource Set,CORESET),根据高层信令确定搜索空间集合(Search Space Set),并根据搜索空间集合的配置信息确定检测的候选控制信道所在的控制信道单元(Control Channel Element,CCE)。
对于NR-lite终端而言,由于能力的缩减,导致覆盖范围损失,因此需要对PDCCH进行覆盖增强处理,而覆盖增强的基本手段就是重复传输。当引入重复传输后,原来的适用于单次传输的搜索空间的结构以及配置方法将不再适用,因此,为实现PDCCH的重复传输,本公开提供一种物理下行控制信道传输方法,请参考图2,其示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图。该物理下行控制信道传输方法可以应用于图1所示的物理下行控制信道传输系统中,由图1中的基站执行,该方法可以包括以下步骤:
步骤210,下发终端的搜索空间配置参数,该搜索空间配置参数中包含重复传输次数。
步骤220,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元。
在一种可能的实现方式中,每个重复传输次数对应有至少一个候选时间单元,重复传输次数与候选时间单元之间的对应关系由通信协议固定配置,或者,也由基站通过高层信令基于信道条件进行配置,比如,对于重复传输次数为4时,配置有1个候选时间单元,或者,也配置有2个候选时间单元。
步骤230,在目标候选时间单元上,按照重复传输次数向终端传输物理下行控制信道PDCCH,该目标候选时间单元是至少一个候选时间单元中的任意一个。
在一种可能的实现方式中,每个候选时间单元包括N个时间子单元,N由重复传输次数决定;
在目标候选时间单元上,按照重复传输次数向终端传输物理下行控制信道PDCCH,包括:
在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH。
在一种可能的实现方式中,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,包括:
根据重复传输次数确定至少一个候选时间单元的起始时间位置;
将分别从至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为重复传输次数对应的至少一个候选时间单元。
在一种可能的实现方式中,搜索空间配置参数中包含重复传输次数对应的聚合等级;
在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH之前,还包括:
确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH,包括:
在目标候选时间单元中的N个时间子单元各自对应的目标候选传输位置上,分别向终端传输一次PDCCH;
其中,目标候选传输位置是至少一个候选传输位置中的任意一个。
在一种可能的实现方式中,搜索空间配置参数中包含至少两种聚合等级,每种聚合等级对应至少一种重复传输次数;
至少两种聚合等级分别对应的重复传输次数相同;
或者,
至少两种聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,聚合等级与重复传输次数之间的对应关系为预先设置的;
或者,
聚合等级与重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置。
在一种可能的实现方式中,当搜索空间配置参数中包含至少两种重复传输 次数时,
至少两种重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
重复传输次数对应的候选时间单元的数量由基站配置。
综上所述,本公开提供的物理下行控制信道传输方法,基站通过在物理下行控制信道的传输过程中,下发包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,在至少一个候选时间单元中的目标时间单元上按照重复传输次数向终端传输PDCCH,从而实现了PDCCH的重复传输。
请参考图3,其示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图。该物理下行控制信道传输方法可以应用于图1所示的物理下行控制信道传输系统中,由图1中的终端执行,该方法可以包括以下步骤:
步骤310,获取基站下发的终端的搜索空间配置参数,该搜索空间配置参数中包含重复传输次数。
步骤320,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元。
步骤330,依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测。
在基站向终端传输PDCCH,终端接收基站传输的PDCCH的过程中,基站是将各个候选时间单元中的任意一个作为目标候选时间单元,并基于该目标候选时间单元进行PDCCH传输的,但是终端只能根据搜索空间配置参数确定可能的候选时间单元,并不能确定基站是基于候选时间单元终端的哪一个进行PDCCH传输的,因此,在终端接收PDCCH时,需要对该终端对应的所有可能的候选时间单元各自对应的N个时间子单元进行盲检测,直至检测到该终端对应的PDCCH。
在一种可能的实现方式中,每个候选时间单元包括N个时间子单元,N由 重复传输次数决定;
依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,包括:
依次在至少一个候选时间单元各自对应的N个时间子单元上,进行PDCCH的盲检测。
在一种可能的实现方式中,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,包括:
根据重复传输次数确定至少一个候选时间单元的起始时间位置;
将分别从至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为至少一个候选时间单元。
在一种可能的实现方式中,搜索空间配置参数中包含重复传输次数对应的聚合等级;
依次在至少一个候选时间单元上,进行PDCCH的盲检测之前,还包括:
确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
依次在至少一个候选时间单元上,进行PDCCH的盲检测,包括:
依次在至少一个候选时间单元中的N个时间子单元各自对应的候选传输位置上,分别进行一次PDCCH的盲检测。
在一种可能的实现方式中,搜索空间配置参数中包含至少两种聚合等级,每种聚合等级对应至少一种重复传输次数;
至少两种聚合等级分别对应的重复传输次数相同;
或者,
至少两种聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,聚合等级与重复传输次数之间的对应关系为预先设置的;
或者,
聚合等级与重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不 同。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置。
在一种可能的实现方式中,当搜索空间配置参数中包含至少两种重复传输次数时,
至少两种重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
重复传输次数对应的候选时间单元的数量由基站配置。
综上所述,本公开提供的物理下行控制信道传输方法,终端通过在物理下行控制信道的传输过程中,获取基站下发的终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,从而实现了PDCCH的重复传输。
请参考图4,其示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图,该物理下行控制信道传输方法可以应用于图1所示的物理下行控制信道传输系统中,由图1中的基站执行,该方法可以包括:
步骤410,下发终端的搜索空间配置参数,搜索空间配置参数中包含重复传输次数。
在一种可能的实现方式中,搜索空间配置参数中包含至少一种重复传输次数。比如,终端的搜索空间配置参数中可以包含两种重复传输次数,重复传输次数的个数为2,重复传输次数的数值分别为R1,R2,其中,R1,R2为正整数。
在一种可能的实现方式中,该搜索空间配置参数是基站基于终端进行配置 的对应于该终端的资源配置信息,基站基于配置的终端的搜索空间配置参数,获取与该终端对应的资源配置信息,以根据当前信道条件选取适当的配置资源进行PDCCH传输,并将搜索空间配置参数下发给对应的终端。
在一种可能的实现方式中,基站在于终端建立连接时,将配置的对应于该终端的搜索空间配置参数下发给终端,或者,预设有搜索空间配置参数更新时间,基站基于预设的更新时间向终端下发搜索空间配置参数。
步骤420,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,每个候选时间单元包括N个时间子单元,N由重复传输次数决定。
在一种可能的实现方式中,一个候选时间单元是由N个时间子单元组成的,在一种可能的情况下,一个时间子单元是指一个子帧,一个时间子单元承载一次PDCCH传输,响应于PDCCH的重复传输次数的数值为N,对应传输该PDCCH的一个候选时间单元包含N个子帧。一个候选时间单元完成一次PDCCH的完整重复传输。
在一种可能的实现方式中,基站根据重复传输次数确定至少一个候选时间单元的起始时间位置;并将分别从至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为重复传输次数对应的至少一个候选时间单元。
在一个候选时间单元中,编号最小的时间子单元为该候选时间单元的起始时间位置,确定了该候选时间单元的起始时间位置以及该候选时间单元的重复传输次数,即可确定一个候选时间单元。
在一种可能的实现方式中,确定候选时间单元起始位置的公式是:
X mod(A*R)=a
其中,X表示候选时间单元的起始位置点,R表示基站发送PDCCH或者终端检测PDCCH的重复传输次数,A,a是基站配置的值。
其中,上述公式仅以根据重复传输次数确定候选时间单元的起始位置点为例进行说明。可选的,也可以结合重复传输次数以及其它信息来确定候选时间单元的起始位置点,比如,可以结合重复传输次数以及候选时间单元的个数,来确定候选时间单元的起始位置点。
在一种可能的实现方式中,当搜索空间配置参数中包含至少两种重复传输次数时,至少两种重复传输次数分别对应的候选时间单元的数量相同;
比如,当搜索空间配置参数中包含两种重复传输次数,且两种重复传输次数分别为4次和8次时,其分别对应的候选时间单元的个数都为A1,或者都为 A2,其中A1不等于A2。
或者,
至少两种重复传输次数分别对应的候选时间单元的数量不同。
比如,当搜索空间配置参数中包含两种重复传输次数,且两种重复传输次数分别为4次和8次时,重复传输次数为4对应的候选时间单元的个数为A1,重复传输次数为8对应的候选时间单元的个数为A2,其中A1不等于A2。
在一种可能的实现方式中,该重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
该重复传输次数对应的候选时间单元的数量由基站配置。
在一种可能的实现方式中,当重复传输次数对应的候选时间单元的数量为预先设置时,是在通信协议中进行设置的,在确定了重复传输次数后,即可确定候选时间单元的数量,使得确定候选时间单元数量的过程高效快捷。
在一种可能的实现方式中,当重复传输次数对应的候选时间单元的数量由基站配置时,基站通过搜索空间配置参数对重复传输次数对应的候选时间单元的数量进行配置,或者,基站通过其他信令对重复传输次数对应的候选时间单元的数量进行配置。基站根据当前控制资源的占用情况对候选时间单元的数量进行配置,具有较高的灵活性。
步骤430,在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH,该目标候选时间单元是至少一个候选时间单元中的任意一个。
在一种可能的实现方式中,基站在进行PDCCH传输时,从至少一个候选时间单元中任意选择一个作为目标候选时间单元进行PDCCH进行传输,在进行目标候选时间单元的选择过程中,基站遍历或者随机选择一个候选时间单元,若该候选时间单元未被占用,则将该候选时间单元确定为目标候选时间单元,若该候选时间单元被占用,则重新选择下一个候选时间单元,并对下一个候选时间单元的占用情况进行判断,直至确定目标候选时间单元为止。
在一种可能的实现方式中,在进行PDCCH传输时,为了实现重复传输,基站在目标候选时间单元的各个时间子单元上对PDCCH都传输一次,也就是说目标候选时间单元中时间子单元的个数即为PDCCH重复传输的次数。
综上所述,本公开提供的物理下行控制信道传输方法,基站通过在物理下行控制信道的传输过程中,下发终端包含重复传输次数的搜索空间配置参数, 根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,在至少一个候选时间单元中的目标时间单元上按照重复传输次数向终端传输PDCCH,从而实现了PDCCH的重复传输。
在一种可能的实现方式中,搜索空间配置参数中还包含重复传输次数对应的聚合等级。请参考图5,其示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图,该物理下行控制信道传输方法应用于图1所示的物理下行控制信道传输系统中,由图1中的基站执行,该方法包括以下步骤。
步骤510,下发终端的搜索空间配置参数,该搜索空间配置参数中包含重复传输次数。
在一种可能的实现方式中,该搜索空间配置参数中包含至少两种聚合等级,每种聚合等级对应至少一种重复传输次数;
至少两种聚合等级分别对应的重复传输次数相同;
或者,
至少两种聚合等级分别对应的重复传输次数不同。
NR中PDCCH的基本组成单元是REG(Resource Element Group,资源粒子组,由4个RE(资源单元)组成,即1REG=4RE),一个REG在频域上对应一个PRB(Physical Resource Block,物理资源块)的大小(12个RE),在时域上对应一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号的大小。6个REG会组成一个CCE。
聚合等级用以表示构成PDCCH的CCE(Control Channel Element,控制信道单元)的个数,在目前的NR系统中,一个PDCCCH可以由1,2,4,8,16个CCE构成,也就是说PDCCH对应的聚合等级可以是1级,2级,4级,8级16级。其中,一个PDCCH中包括的多个CCE的编号是连续的。
在一种可能的实现方式中,该终端的搜索空间配置参数中包含一种聚合等级。
在一种可能的实现方式中,当一个PDCCH的信息比特固定时,其聚合等级主要由信道条件决定,当终端的信道条件较好时,使用较小的聚合等级对该PDCCH进行传输,当终端的信道条件较差时,使用较大的聚合等级对该PDCCH进行传输。
在一种可能的实现方式中,对于不同聚合等级的PDCCH而言,对应有相同 的重复传输次数。比如,搜索空间配置参数中配置的聚合等级为{1,2,4,8},对应配置聚合等级{1,2,4,8}都支持重复传输次数{R1,R2},也就是说无论传输的PDCCH的聚合等级是多少,都进行R1次传输,或者进行R2次传输,其中R1不等于R2;
或者,对于不同聚合等级的PDCCH而言,不同聚合等级的PDCCH对应的重复传输次数之间存在差异。比如,搜索空间配置参数中配置的聚合等级为{1,2,4,8},对应配置聚合等级{1,2}支持重复传输次数R1,聚合等级{4,8}支持重复传输次数{R1,R2}。
在一种可能的实现方式中,聚合等级与重复传输次数之间的对应关系为预先设置的;
或者,
聚合等级与重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,当聚合等级与重复传输次数之间的对应关系为预先设置时,是通信协议中进行设置的,在确定了聚合等级后,即可确定重复传输次数,使得确定重复传输次数的过程高效快捷。
在一种可能的实现方式中,当聚合等级与重复传输次数之间的对应关系由基站配置时,基站通过搜索空间配置参数对聚合等级与重复传输次数之间的对应关系进行配置,或者,基站通过其他信令对聚合等级与重复传输次数之间的对应关系进行配置。在确定了聚合等级后,基站根据当前控制资源的占用情况对重复传输次数进行配置,具有较高的灵活性。
步骤520,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,每个候选时间单元包括N个子单元,N由重复传输次数决定。
步骤520的实现过程可以参考图4实施例中步骤420的相关描述,此处不再赘述。
步骤530,确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置。
在一种可能的实现方式中,对于同一聚合等级的PDCCH,有多个候选传输位置,其中,聚合等级对应的候选传输位置可以通过聚合等级与候选传输位置之间的映射关系进行计算,该映射关系是通信协议预先设置好的,或者,是基站配置的。请参考图6,其示出了本公开一示例性实施例示出的候选传输位置的示意图,以聚合等级为4为例,假设通过映射关系计算得出聚合等级为4时有 两个候选传输位置,即候选传输位置1和候选传输位置2,如图4所示,组成同一候选传输位置的CCE的编号是连续的,组成候选传输位置1的CCE编号为CCE#0~CCE#3,组成候选传输位置2的CCE编号为CCE#4~CCE#7。
需要说明的是,在一种可能的实现方式中,不同的候选传输位置之间的CCE编号是不连续的,比如,组成候选传输位置1的CCE编号为CCE#0~CCE#3,组成候选传输位置2的CCE编号为CCE#8~CCE#11。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同。
比如,对于上述图6所示的聚合等级为4时的两个候选传输位置,候选传输位置1与候选传输位置2都支持{R1,R2}次传输,也就是说,当重复传输次数为R1时,既可以选择在候选传输次数1上对PDCCH进行传输,也可以选择在候选传输位置2上对PDCCH进行传输;当重复传输次数为R2时,既可以选择在候选传输次数1上对PDCCH进行传输,也可以选择在候选传输位置2上对PDCCH进行传输。
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
比如,对于上述图6所示的聚合等级为4时的两个候选传输位置,候选传输位置1只支持进行R1传输,候选传输位置2支持{R1,R2}次传输,也就是说,当重复传输次数为R1时,既可以选择在候选传输次数1上对PDCCH进行传输,也可以选择在候选传输位置2上对PDCCH进行传输;当重复传输次数为R2时,只可以选择在候选传输位置2上对PDCCH进行传输。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置。
在一种可能的实现方式中,当同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置时,是在通信协议中进行设置的。
在一种可能的实现方式中,当同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置时,基站通过搜索空间配置参数对同一聚 合等级对应的至少两个候选传输位置各自支持的重复传输次数进行配置,或者,基站通过其他信令对同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数进行配置。
步骤540,在目标候选时间单元的N个时间子单元各自对应的目标候选传输位置上,分别向终端传输一次PDCCH。
其中,目标候选传输位置是至少一个候选传输位置中的任意一个。
该目标候选时间单元是至少一个候选时间单元中的任意一个,以聚合等级为4,重复传输次数为4为例,请参考图7,其示出了本公开一示例性实施例示出的候选时间单元的示意图,如图7所示,假设聚合等级为4时对应的候选时间单元的个数为2,即图7中的候选时间单元1与候选时间单元2,每个候选时间单元中均包含数量等于重复传输次数的时间子单元,这里以时间子单元为子帧为例,通过计算得出各个候选时间单元的起始位置,从该起始位置起的连续4个子帧组成一个候选时间单元,比如图7中候选时间单元1包括子帧0~子帧3,候选时间单元2包括子帧4~子帧7,在每一个候选时间单元的每个子帧中,各自对应有至少一个候选传输位置,以聚合等级为4时,根据映射关系所得的候选传输位置的个数为2为例,对应于图7中有候选传输位置1和候选传输位置2,且每个候选传输位置上对应支持的重复传输次数相同或者不同,若各个候选传输位置上对应支持的重复传输次数相同,假设都支持重复传输次数4,那么在对聚合等级为4的PDCCH进行重复传输次数为4的重复传输时,则可以选择两个候选时间单元中任意一个作为目标候选时间单元,选择目标候选时间单元中的两个候选传输位置中的任意一个作为目标候选传输位置进行传输;若各个候选传输位置上对应支持的重复传输次数不相同,假设候选传输位置1上只支持重复传输次数2,候选传输位置2上支持候选传输次数4,那么在对聚合等级为4的PDCCH进行重复传输次数为4的重复传输时,可以选择两个候选时间单元中任意一个作为目标候选时间单元,选择目标候选时间单元中的候选传输位置2作为目标候选传输位置进行传输。
需要说明的是,同一候选时间单元组内的时间子单元是连续的,但不同的候选时间单元组之间的时间子单元是连续的或者不连续的,比如,在一种可能的情况下,根据候选时间单元起始位置计算公式计算得出候选时间单元组1内包括子帧0~子帧3,候选时间单元组2内包括子帧4~子帧7,则候选时间单元组之间的时间子单元是连续的;在一种可能的情况下,根据候选时间单元起始 位置计算公式计算得出候选时间单元组1内包括子帧0~子帧3,候选时间单元组2内包括子帧8~子帧11,则候选时间单元组之间的时间子单元是不连续的。
综上所述,本公开提供的物理下行控制信道传输方法,基站通过在物理下行控制信道的传输过程中,下发终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,在至少一个候选时间单元中的目标时间单元上按照重复传输次数向终端传输PDCCH,从而实现了PDCCH的重复传输。
请参考图8,其示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图。该物理下行控制信道传输方法可以应用于图1所示的物理下行控制信道传输系统中,由图1中的终端执行,该方法包括以下步骤:
步骤810,获取基站下发的终端的搜索空间配置参数,搜索空间配置参数中包含重复传输次数。
在一种可能的实现方式中,对于同一个终端而言,由于同一个终端对应有多种PDCCH聚合等级,不同的PDCCH聚合等级对应有相应的多种重复传输次数以及不同的候选时间单元,因此,该搜索空间配置信息中包含有该终端可能对应的PDCCH聚合等级,重复传输次数以及候选时间单元,在终端接收基站传输的PDCCH时,基于搜索空间配置信息对该搜索空间配置信息指示的候选控制信道进行检测,从而接收PDCCH,其中,搜索空间配置信息确定指示的候选控制信道,就是终端接收PDCCH的搜索空间。
步骤820,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,每个候选时间单元包括N个时间子单元,N由重复传输次数决定。
在一种可能的时间方式中,终端根据重复传输次数确定至少一个候选时间单元的起始时间位置;
将分别从至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为至少一个候选时间单元。
在一种可能的实现方式中,当搜索空间配置参数中包含至少两种重复传输次数时,
至少两种重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
重复传输次数对应的候选时间单元的数量由基站配置。
步骤830,依次在至少一个候选时间单元各自对应的N个时间子单元上,进行PDCCH的盲检测。
在基站向终端传输PDCCH,终端接收基站传输的PDCCH的过程中,基站根据PDCCH的信道条件从至少一个候选时间单元以及至少一个重复传输次数中确定传输PDCCH目标候选时间单元以及指定重复传输次数,并基于确定好的唯一目标候选时间单元以及指定重复传输次数对PDCCH进行传输,但对于终端而言,终端无法准确确定基站传输的PDCCH目标候选时间单元以及指定重复传输次数,但终端根据基站通过高层信令发送的搜索空间配置信息获取基站发送PDCCH的所有可能,即基站发送的PDCCH的候选时间单元以及可能重复传输次数,从而对所有的可能情况进行盲检测,直到接收到对应于该终端PDCCH。
综上所述,本公开提供的物理下行控制信道传输方法,终端通过在物理下行控制信道的传输过程中,获取基站下发的终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,从而实现了PDCCH的重复传输。
在一种可能的实现方式中,搜索空间配置参数中包含重复传输次数对应的聚合等级,请参考图9,其示出了本公开实施例提供的一种物理下行控制信道传输方法的方法流程图。该物理下行控制信道传输方法可以应用于图1所示的物理下行控制信道传输系统中,由图1中的终端执行,该方法包括以下步骤:
步骤910,获取基站下发的终端的搜索空间配置参数,搜索空间配置参数中包含重复传输次数。
在一种可能的实现方式中,搜索空间配置参数中包含至少两种聚合等级,每种聚合等级对应至少一种重复传输次数;
至少两种聚合等级分别对应的重复传输次数相同;
或者,
至少两种聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,聚合等级与重复传输次数之间的对应关系为预先设置的;
或者,
聚合等级与重复传输次数之间的对应关系由基站配置。
步骤920,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,每个候选时间单元包括N个时间子单元,N由重复传输次数决定。
步骤930,确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置。
步骤940,依次在至少一个候选时间单元中的N个时间子单元各自对应的候选传输位置上,分别进行一次PDCCH的盲检测;
其中,目标候选传输位置是至少一个候选传输位置中的任意一个候选传输位置。
当搜索空间配置参数中包含有重复传输次数对应的聚合等级时,终端基于该聚合等级计算PDCCH的候选传输位置,从而进一步缩小终端进行盲检测的范围,即终端只需在可能的候选时间单元中的N个时间子单元各自对应的候选传输位置上进行盲检测,直到获取到属于该终端的PDCCH。
综上所述,本公开提供的物理下行控制信道传输方法,终端通过在物理下行控制信道的传输过程中,获取基站下发的终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,从而实现了PDCCH的重复传输。
图10是根据一示例性实施例示出的一种物理下行控制信道传输装置的方框图,该重复发送次数调整装置应用于基站中,以执行上述图2、图4或图5任一实施例所示的方法的全部或部分步骤。上述基站可以是如图1所示的物理下行控制信道传输系统中的基站。如图10所示,该物理下行控制信道传输装置包括:
发送模块1010,用于下发终端的搜索空间配置参数,搜索空间配置参数中包含重复传输次数;
第一确定模块1020,用于根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元;
传输模块1030,用于在目标候选时间单元上,按照重复传输次数向终端传输物理下行控制信道PDCCH,目标候选时间单元是至少一个候选时间单元中的任意一个。
在一种可能的实现方式中,每个候选时间单元包括N个时间子单元,N由重复传输次数决定;
传输模块1030,用于在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH。
在一种可能的实现方式中,该第一确定模块1020,包括:
第一确定子模块,用于根据重复传输次数确定至少一个候选时间单元的起始时间位置;
第二确定子模块,用于将分别从至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为重复传输次数对应的至少一个候选时间单元。
在一种可能的实现方式中,搜索空间配置参数中包含重复传输次数对应的聚合等级;
在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH之前,该装置还包括:
第二确定模块,用于确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
传输模块1030,用于在目标候选时间单元中的N个时间子单元各自对应的目标候选传输位置上,分别向终端传输一次PDCCH;
其中,目标候选传输位置是至少一个候选传输位置中的任意一个。
在一种可能的实现方式中,搜索空间配置参数中包含至少两种聚合等级, 每种聚合等级对应至少一种重复传输次数;
至少两种聚合等级分别对应的重复传输次数相同;
或者,
至少两种聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,聚合等级与重复传输次数之间的对应关系为预先设置的;
或者,
聚合等级与重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置。
在一种可能的实现方式中,当搜索空间配置参数中包含至少两种重复传输次数时,
至少两种重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
重复传输次数对应的候选时间单元的数量由基站配置。
综上所述,本公开提供的物理下行控制信道传输装置,应用于基站中,通过在物理下行控制信道的传输过程中,下发终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,在至少一个候选时间单元中的目标时间单元上按照重复传输次数向终端 传输PDCCH,从而实现了PDCCH的重复传输。
图11是根据一示例性实施例示出的一种物理下行控制信道传输装置的方框图,该物理下行控制信道传输装置应用于终端中,以执行上述图3、图8、或图9任一实施例所示的方法的全部或部分步骤。上述终端可以是如图1所示的物理下行控制信道传输系统中的终端。如图11所示,该重复发送次数调整装置包括:
获取模块1110,用于获取基站下发的终端的搜索空间配置参数,搜索空间配置参数中包含重复传输次数;
第一确定模块1120,用于根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元;
检测模块1130,用于依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测。
在一种可能的实现方式中,每个候选时间单元包括N个时间子单元,N由重复传输次数决定;
该检测模块1130,用于依次在至少一个候选时间单元各自对应的N个时间子单元上,进行PDCCH的盲检测。
在一种可能的实现方式中,该第一确定模块1120,包括:
第一确定子模块,用于根据重复传输次数确定至少一个候选时间单元的起始时间位置;
第二确定子模块,用于将分别从至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为至少一个候选时间单元。
在一种可能的实现方式中,搜索空间配置参数中包含重复传输次数对应的聚合等级;
依次在至少一个候选时间单元上,进行PDCCH的盲检测之前,该装置还包括:
第二确定模块,用于确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
该检测模块1130,用于依次在至少一个候选时间单元中的N个时间子单元各自对应的候选传输位置上,分别进行一次PDCCH的盲检测。
在一种可能的实现方式中,搜索空间配置参数中包含至少两种聚合等级,每种聚合等级对应至少一种重复传输次数;
至少两种聚合等级分别对应的重复传输次数相同;
或者,
至少两种聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,聚合等级与重复传输次数之间的对应关系为预先设置的;
或者,
聚合等级与重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置。
在一种可能的实现方式中,当搜索空间配置参数中包含至少两种重复传输次数时,
至少两种重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
重复传输次数对应的候选时间单元的数量由基站配置。
综上所述,本公开提供的物理下行控制信道传输装置,应用于终端中,通过在物理下行控制信道的传输过程中,获取基站下发的终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,从而实现了PDCCH的重复传输。
本公开一示例性实施例提供了一种基站,能够实现本公开上述图2、图4、或图5任一实施例所示的方法的全部或部分步骤。上述基站可以是如图1所示的物理下行控制信道传输系统中的基站。该基站包括:
处理器;
与处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,该处理器被配置为:
下发终端的搜索空间配置参数,搜索空间配置参数中包含重复传输次数;
根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元;
在目标候选时间单元上,按照重复传输次数向终端传输物理下行控制信道PDCCH,目标候选时间单元是至少一个候选时间单元中的任意一个。
在一种可能的实现方式中,每个候选时间单元包括N个时间子单元,N由重复传输次数决定;
在目标候选时间单元上,按照重复传输次数向终端传输物理下行控制信道PDCCH,包括:
在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH。
在一种可能的实现方式中,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,包括:
根据重复传输次数确定至少一个候选时间单元的起始时间位置;
将分别从至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为重复传输次数对应的至少一个候选时间单元。
在一种可能的实现方式中,搜索空间配置参数中包含重复传输次数对应的聚合等级;
在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH之前,还包括:
确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
在目标候选时间单元中的N个时间子单元上,向终端重复传输PDCCH,包括:
在目标候选时间单元中的N个时间子单元各自对应的目标候选传输位置 上,分别向终端传输一次PDCCH;
其中,目标候选传输位置是至少一个候选传输位置中的任意一个。
在一种可能的实现方式中,搜索空间配置参数中包含至少两种聚合等级,每种聚合等级对应至少一种重复传输次数;
至少两种聚合等级分别对应的重复传输次数相同;
或者,
至少两种聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,聚合等级与重复传输次数之间的对应关系为预先设置的;
或者,
聚合等级与重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置。
在一种可能的实现方式中,当搜索空间配置参数中包含至少两种重复传输次数时,
至少两种重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,重复传输次数对应的候选时间单元的数量为预先设置的;
或者,
重复传输次数对应的候选时间单元的数量由基站配置。
综上所述,本公开提供的基站,通过在物理下行控制信道的传输过程中, 下发终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,在至少一个候选时间单元中的目标时间单元上按照重复传输次数向终端传输PDCCH,从而实现了PDCCH的重复传输。
本公开一示例性实施例提供了一种终端,能够实现本公开上述图3、图8、或图9任一实施例所示的方法的全部或部分步骤。上述终端可以是如图1所示的物理下行控制信道传输系统中的终端。该终端包括:
处理器;
与该处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,该处理器被配置为:
获取基站下发的终端的搜索空间配置参数,搜索空间配置参数中包含重复传输次数;
根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元;
依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测。
在一种可能的实现方式中,每个候选时间单元包括N个时间子单元,N由重复传输次数决定;
依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,包括:
依次在至少一个候选时间单元各自对应的N个时间子单元上,进行PDCCH的盲检测。
在一种可能的实现方式中,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,包括:
根据重复传输次数确定至少一个候选时间单元的起始时间位置;
将分别从至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为至少一个候选时间单元。
在一种可能的实现方式中,搜索空间配置参数中包含重复传输次数对应的聚合等级;
依次在至少一个候选时间单元上,进行PDCCH的盲检测之前,还包括:
确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
依次在至少一个候选时间单元上,进行PDCCH的盲检测,包括:
依次在至少一个候选时间单元中的N个时间子单元各自对应的候选传输位置上,分别进行一次PDCCH的盲检测。
在一种可能的实现方式中,搜索空间配置参数中包含至少两种聚合等级,每种聚合等级对应至少一种重复传输次数;
至少两种聚合等级分别对应的重复传输次数相同;
或者,
至少两种聚合等级分别对应的重复传输次数不同。
在一种可能的实现方式中,聚合等级与重复传输次数之间的对应关系为预先设置的;
或者,
聚合等级与重复传输次数之间的对应关系由基站配置。
在一种可能的实现方式中,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
在一种可能的实现方式中,同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
或者,
同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由基站配置。
在一种可能的实现方式中,当搜索空间配置参数中包含至少两种重复传输次数时,
至少两种重复传输次数分别对应的候选时间单元的数量相同;
或者,
至少两种重复传输次数分别对应的候选时间单元的数量不同。
在一种可能的实现方式中,重复传输次数对应的候选时间单元的数量为预 先设置的;
或者,
重复传输次数对应的候选时间单元的数量由基站配置。
综上所述,本公开提供的终端,通过在物理下行控制信道的传输过程中,获取基站下发的终端包含重复传输次数的搜索空间配置参数,根据搜索空间配置参数确定重复传输次数对应的至少一个候选时间单元,依次在至少一个候选时间单元上,按照重复传输次数进行PDCCH的盲检测,从而实现了PDCCH的重复传输。
图12示出了本公开一个示例性实施例提供的接入网设备(基站)的结构示意图。
接入网设备1200可以包括:处理器1201、接收机1202、发射机1203和存储器1204。接收机1202、发射机1203和存储器1204分别通过总线与处理器1201连接。
其中,处理器1201包括一个或者一个以上处理核心,处理器1201通过运行软件程序以及模块以执行本公开实施例提供的传输块的调度方法中接入网设备所执行的方法。存储器1204可用于存储软件程序以及模块。具体的,存储器1204可存储操作系统12041、至少一个功能所需的应用程序模块12042。接收机1202用于接收其他设备发送的通信数据,发射机1203用于向其他设备发送通信数据。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例中以基站为执行主体的物理下行控制信道传输方法。
图13示出了本公开一个示例性实施例提供的终端的结构示意图,该终端包括:处理器1301、接收器1302、发射器1303、存储器1304和总线1305。
处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1302和发射器1303可以实现为一个通信组件,该通信组件可以是 一块通信芯片。
存储器1304通过总线1305与处理器1301相连。
存储器1304可用于存储至少一个指令,处理器1301用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random-Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例中以终端为执行主体的物理下行控制信道传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种物理下行控制信道传输方法,其特征在于,所述方法包括:
    下发终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
    根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
    在目标候选时间单元上,按照所述重复传输次数向所述终端传输物理下行控制信道PDCCH,所述目标候选时间单元是所述至少一个候选时间单元中的任意一个。
  2. 根据权利要求1所述的方法,其特征在于,每个所述候选时间单元包括N个时间子单元,N由所述重复传输次数决定;
    所述在目标候选时间单元上,按照所述重复传输次数向所述终端传输物理下行控制信道PDCCH,包括:
    在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元,包括:
    根据所述重复传输次数确定所述至少一个候选时间单元的起始时间位置;
    将分别从所述至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为所述重复传输次数对应的至少一个候选时间单元。
  4. 根据权利要求2所述的方法,其特征在于,所述搜索空间配置参数中包含所述重复传输次数对应的聚合等级;
    所述在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH之前,还包括:
    确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
    所述在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传 输所述PDCCH,包括:
    在所述目标候选时间单元中的N个时间子单元各自对应的目标候选传输位置上,分别向所述终端传输一次所述PDCCH;
    其中,所述目标候选传输位置是所述至少一个候选传输位置中的任意一个。
  5. 根据权利要求4所述的方法,其特征在于,所述搜索空间配置参数中包含至少两种聚合等级,每种所述聚合等级对应至少一种所述重复传输次数;
    至少两种所述聚合等级分别对应的重复传输次数相同;
    或者,
    至少两种所述聚合等级分别对应的重复传输次数不同。
  6. 根据权利要求4所述的方法,其特征在于,
    所述聚合等级与所述重复传输次数之间的对应关系为预先设置的;
    或者,
    所述聚合等级与所述重复传输次数之间的对应关系由所述基站配置。
  7. 根据权利要求4所述的方法,其特征在于,
    同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
    或者,
    同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
  8. 根据权利要求7所述的方法,其特征在于,
    所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数为预先设置的;
    或者,
    所述同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数由所述基站配置。
  9. 根据权利要求1所述的方法,其特征在于,当所述搜索空间配置参数中包含至少两种所述重复传输次数时,
    至少两种所述重复传输次数分别对应的候选时间单元的数量相同;
    或者,
    至少两种所述重复传输次数分别对应的候选时间单元的数量不同。
  10. 根据权利要求9所述的方法,其特征在于,
    所述重复传输次数对应的候选时间单元的数量为预先设置的;
    或者,
    所述重复传输次数对应的候选时间单元的数量由所述基站配置。
  11. 一种物理下行控制信道传输方法,其特征在于,所述方法包括:
    获取基站下发的终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
    根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
    依次在所述至少一个候选时间单元上,按照所述重复传输次数进行PDCCH的盲检测。
  12. 根据权利要求11所述的方法,其特征在于,每个所述候选时间单元包括N个时间子单元,N由为所述重复传输次数决定;
    所述依次在所述至少一个候选时间单元上,按照所述重复传输次数进行PDCCH的盲检测,包括:
    依次在所述至少一个候选时间单元各自对应的N个时间子单元上,进行PDCCH的盲检测。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元,包括:
    根据所述重复传输次数确定所述至少一个候选时间单元的起始时间位置;
    将分别从所述至少一个候选时间单元的起始时间位置开始的N个时间子单 元,确定为所述至少一个候选时间单元。
  14. 根据权利要求12所述的方法,其特征在于,所述搜索空间配置参数中包含所述重复传输次数对应的聚合等级;
    所述依次在所述至少一个候选时间单元上,进行PDCCH的盲检测之前,还包括:
    确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
    所述依次在所述至少一个候选时间单元上,进行PDCCH的盲检测,包括:
    依次在所述至少一个候选时间单元中的N个时间子单元各自对应的候选传输位置上,分别进行一次PDCCH的盲检测。
  15. 根据权利要求14所述的方法,其特征在于,所述搜索空间配置参数中包含至少两种聚合等级,每种所述聚合等级对应至少一种所述重复传输次数;
    至少两种所述聚合等级分别对应的重复传输次数相同;
    或者,
    至少两种所述聚合等级分别对应的重复传输次数不同。
  16. 根据权利要求14所述的方法,其特征在于,
    同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
    或者,
    同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
  17. 根据权利要求11所述的方法,其特征在于,当所述搜索空间配置参数中包含至少两种所述重复传输次数时,
    至少两种所述重复传输次数分别对应的候选时间单元的数量相同;
    或者,
    至少两种所述重复传输次数分别对应的候选时间单元的数量不同。
  18. 一种物理下行控制信道传输装置,其特征在于,所述装置包括:
    发送模块,用于下发终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
    第一确定模块,用于根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
    传输模块,用于在目标候选时间单元上,按照所述重复传输次数向所述终端传输物理下行控制信道PDCCH,所述目标候选时间单元是所述至少一个候选时间单元中的任意一个。
  19. 根据权利要求18所述的装置,其特征在于,每个所述候选时间单元包括N个时间子单元,N由所述重复传输次数决定;
    所述传输模块,用于在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH。
  20. 根据权利要求19所述的装置,其特征在于,所述第一确定模块,包括:
    第一确定子模块,用于根据所述重复传输次数确定所述至少一个候选时间单元的起始时间位置;
    第二确定子模块,用于将分别从所述至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为所述重复传输次数对应的至少一个候选时间单元。
  21. 根据权利要求19所述的装置,其特征在于,所述搜索空间配置参数中包含所述重复传输次数对应的聚合等级;
    所述在所述目标候选时间单元中的N个时间子单元上,向所述终端重复传输所述PDCCH之前,所述装置还包括:
    第二确定模块,用于确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
    所述传输模块,用于在所述目标候选时间单元中的N个时间子单元各自对应的目标候选传输位置上,分别向所述终端传输一次所述PDCCH;
    其中,所述目标候选传输位置是所述至少一个候选传输位置中的任意一个。
  22. 根据权利要求21所述的装置,其特征在于,所述搜索空间配置参数中包含至少两种聚合等级,每种所述聚合等级对应至少一种所述重复传输次数;
    至少两种所述聚合等级分别对应的重复传输次数相同;
    或者,
    至少两种所述聚合等级分别对应的重复传输次数不同。
  23. 根据权利要求21所述的装置,其特征在于,
    同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
    或者,
    同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不同。
  24. 根据权利要求18所述的装置,其特征在于,当所述搜索空间配置参数中包含至少两种所述重复传输次数时,
    至少两种所述重复传输次数分别对应的候选时间单元的数量相同;
    或者,
    至少两种所述重复传输次数分别对应的候选时间单元的数量不同。
  25. 一种物理下行控制信道传输装置,其特征在于,所述装置包括:
    获取模块,用于获取基站下发的终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
    第一确定模块,用于根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
    检测模块,用于依次在所述至少一个候选时间单元上,按照所述重复传输次数进行PDCCH的盲检测。
  26. 根据权利要求25所述的装置,其特征在于,每个所述候选时间单元包 括N个时间子单元,N由所述重复传输次数决定;
    所述检测模块,用于依次在所述至少一个候选时间单元各自对应的N个时间子单元上,进行PDCCH的盲检测。
  27. 根据权利要求26所述的装置,其特征在于,所述第一确定模块,包括:
    第一确定子模块,用于根据所述重复传输次数确定所述至少一个候选时间单元的起始时间位置;
    第二确定子模块,用于将分别从所述至少一个候选时间单元的起始时间位置开始的N个时间子单元,确定为所述至少一个候选时间单元。
  28. 根据权利要求26所述的装置,其特征在于,所述搜索空间配置参数中包含所述重复传输次数对应的聚合等级;
    所述依次在所述至少一个候选时间单元上,进行PDCCH的盲检测之前,所述装置还包括:
    第二确定模块,用于确定聚合等级,并根据所确定的聚合等级在控制资源集中确定至少一个候选传输位置;
    所述检测模块,用于依次在所述至少一个候选时间单元中的N个时间子单元各自对应的候选传输位置上,分别进行一次PDCCH的盲检测。
  29. 根据权利要求28所述的装置,其特征在于,所述搜索空间配置参数中包含至少两种聚合等级,每种所述聚合等级对应至少一种所述重复传输次数;
    至少两种所述聚合等级分别对应的重复传输次数相同;
    或者,
    至少两种所述聚合等级分别对应的重复传输次数不同。
  30. 根据权利要求28所述的装置,其特征在于,
    同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数相同;
    或者,
    同一聚合等级对应的至少两个候选传输位置各自支持的重复传输次数不 同。
  31. 根据权利要求25所述的装置,其特征在于,当所述搜索空间配置参数中包含至少两种所述重复传输次数时,
    至少两种所述重复传输次数分别对应的候选时间单元的数量相同;
    或者,
    至少两种所述重复传输次数分别对应的候选时间单元的数量不同。
  32. 一种基站,其特征在于,所述基站包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    下发终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
    根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
    在目标候选时间单元上,按照所述重复传输次数向所述终端传输物理下行控制信道PDCCH,所述目标候选时间单元是所述至少一个候选时间单元中的任意一个。
  33. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取基站下发的终端的搜索空间配置参数,所述搜索空间配置参数中包含重复传输次数;
    根据所述搜索空间配置参数确定所述重复传输次数对应的至少一个候选时间单元;
    依次在所述至少一个候选时间单元上,按照所述重复传输次数进行PDCCH的盲检测。
  34. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1至17任一所述的物理下行控制信道传输方法。
PCT/CN2020/089234 2020-05-08 2020-05-08 物理下行控制信道传输方法、装置及存储介质 WO2021223230A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080000956.5A CN113924756B (zh) 2020-05-08 2020-05-08 物理下行控制信道传输方法、装置及存储介质
US17/923,752 US20230209559A1 (en) 2020-05-08 2020-05-08 Method and device for transmitting physical downlink control channel
CN202410397389.1A CN118199822A (zh) 2020-05-08 2020-05-08 物理下行控制信道传输方法、装置及存储介质
PCT/CN2020/089234 WO2021223230A1 (zh) 2020-05-08 2020-05-08 物理下行控制信道传输方法、装置及存储介质
EP20934500.8A EP4149069A4 (en) 2020-05-08 2020-05-08 METHOD AND DEVICE FOR TRANSMISSION OF PHYSICAL DOWNLINK CONTROL CHANNEL AND STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089234 WO2021223230A1 (zh) 2020-05-08 2020-05-08 物理下行控制信道传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021223230A1 true WO2021223230A1 (zh) 2021-11-11

Family

ID=78467690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089234 WO2021223230A1 (zh) 2020-05-08 2020-05-08 物理下行控制信道传输方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20230209559A1 (zh)
EP (1) EP4149069A4 (zh)
CN (2) CN113924756B (zh)
WO (1) WO2021223230A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811263A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 控制信息的传输方法及装置
CN104811409A (zh) * 2014-01-26 2015-07-29 夏普株式会社 重复传输物理下行控制信道的方法、基站和用户设备
US20160192333A1 (en) * 2013-08-06 2016-06-30 Sharp Kabushiki Kaisha Methods for transmitting and receiving physical downlink channel, base station and user equipment
CN108934078A (zh) * 2017-05-25 2018-12-04 普天信息技术有限公司 一种下行数据传输方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8369280B2 (en) * 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
US9485763B2 (en) * 2013-01-14 2016-11-01 Lg Electronics Inc. Method and user equipment for receiving downlink signal and method and base station for transmitting downlink signal
WO2015050339A1 (ko) * 2013-10-04 2015-04-09 주식회사 케이티 하향링크 제어 채널을 송수신하는 방법 및 그 장치
KR101919636B1 (ko) * 2013-10-04 2018-11-20 주식회사 케이티 하향링크 제어 채널을 송수신하는 방법 및 그 장치
CN109391361B (zh) * 2017-08-11 2021-02-26 华为技术有限公司 检测下行控制信道的方法、终端设备和网络设备
CN109787710A (zh) * 2017-11-14 2019-05-21 深圳市中兴微电子技术有限公司 一种盲检测方法和装置、计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160192333A1 (en) * 2013-08-06 2016-06-30 Sharp Kabushiki Kaisha Methods for transmitting and receiving physical downlink channel, base station and user equipment
CN104811263A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 控制信息的传输方法及装置
CN104811409A (zh) * 2014-01-26 2015-07-29 夏普株式会社 重复传输物理下行控制信道的方法、基站和用户设备
CN108934078A (zh) * 2017-05-25 2018-12-04 普天信息技术有限公司 一种下行数据传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4149069A4 *

Also Published As

Publication number Publication date
CN113924756B (zh) 2024-04-30
EP4149069A4 (en) 2024-02-28
CN118199822A (zh) 2024-06-14
EP4149069A1 (en) 2023-03-15
US20230209559A1 (en) 2023-06-29
CN113924756A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
US11012194B2 (en) Method and device for sidelink data duplication
JP7032576B2 (ja) フィードバック情報送信方法および通信デバイス
US11337186B2 (en) Method and apparatus for control information searching and data information transmission in a communication system
US11245489B2 (en) Method and apparatus for blind-decoding physical downlink control channel (PDCCH) in wireless communication system
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
CN108353405B (zh) 用于无线通信系统中下行链路控制信道传送和检测的方法和装置
US11930506B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
US12075425B2 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
US20140211767A1 (en) Scheduling Communications
WO2020033941A1 (en) Prioritization of control and data transmsission for different services
CN115516805A (zh) 涉及子时隙物理上行链路控制信道(pucch)重复的系统和方法
KR20230019170A (ko) 정보 전송 방법, 장치, 통신 기기 및 저장 매체
EP3398283B1 (en) Method, and apparatus for selecting downlink control information format
CN108370562A (zh) 一种跨载波调度方法、反馈方法及装置
WO2020145863A1 (en) Method and terminal device for uplink data transmission of logical channel
EP3944538B1 (en) Triggered hybrid automatic repeat request acknowledgement reporting for downlink semi-persistent scheduling data transmission
CN112187401B (zh) 多时间单元传输方法及相关装置
US20230089446A1 (en) Beam state updating in wireless communication
WO2018086707A1 (en) Feedback based flexible transmission scheme for contention-based urllc transmission
WO2022206893A1 (zh) 一种通信方法及通信装置
WO2021223230A1 (zh) 物理下行控制信道传输方法、装置及存储介质
US11974265B2 (en) Use of priority mismatch indication for uplink transmission for wireless networks
WO2022056678A1 (zh) 传输方法、装置、终端、网络设备
WO2016138623A1 (zh) 无线局域网中的确认帧传输方法及通信装置
WO2024031474A1 (en) Physical layer scheduling for extended reality applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020934500

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE