WO2023078042A1 - 终端驻留的负荷均衡方法、装置、电子设备和存储介质 - Google Patents

终端驻留的负荷均衡方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023078042A1
WO2023078042A1 PCT/CN2022/124699 CN2022124699W WO2023078042A1 WO 2023078042 A1 WO2023078042 A1 WO 2023078042A1 CN 2022124699 W CN2022124699 W CN 2022124699W WO 2023078042 A1 WO2023078042 A1 WO 2023078042A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
cell
priority
frequency
terminal
Prior art date
Application number
PCT/CN2022/124699
Other languages
English (en)
French (fr)
Inventor
王新台
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023078042A1 publication Critical patent/WO2023078042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, and in particular, to a load balancing method, device, electronic equipment and storage medium for resident terminals.
  • Load balancing is between different frequency points or different systems, such as between frequencies in the Long Term Evolution (“LTE”) system, and in the New Radio access technology (New Radio, "NR”) system. Between frequency points of different systems, or between frequency points of different systems.
  • LTE Long Term Evolution
  • NR New Radio access technology
  • the purpose of the embodiments of the present application is to provide a terminal-resident load balancing method, device, electronic device, and storage medium, so as to achieve load balancing, reduce network processing load, and avoid degrading user experience.
  • the embodiment of the present application provides a load balancing method for terminal camping, including: periodically detecting the cell load of the serving cell; when the cell load exceeds the preset balancing trigger threshold, according to The frequency point load of each different frequency point is obtained by reselecting the different frequency points whose frequency point load is less than the load of the cell, and the priority of each of the reselected different frequency points; The priority of reselecting different frequency points is sent to the terminal returning from the connected state to the idle state for the terminal to select a camping frequency point according to the priority.
  • the embodiment of the present application also provides a load balancing device where the terminal resides, including: a load detection module, which is used to periodically detect the cell load of the serving cell; a frequency point acquisition module, which is used in the When the load of the cell exceeds the preset equalization trigger threshold, according to the frequency load of each frequency point, the frequency point load of the frequency point load is less than the reselection frequency point of the cell load, and the priority of each reselection frequency point
  • the sending module is used to send each of the reselected different-frequency frequency points and the priority of each of the re-selected different-frequency frequency points to the terminal returning from the connected state to the idle state, for the terminal to select according to the priority dwell frequency.
  • the embodiment of the present application also provides an electronic device, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by at least one processor. Executed by a processor, so that at least one processor can execute the above terminal-resident load balancing method.
  • Embodiments of the present application also provide a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the above-mentioned load balancing method for resident terminals is implemented.
  • the cell load of the serving cell is periodically detected, and when it is detected that the cell load exceeds the preset balancing trigger threshold, it indicates that the cell load is too large, and load balancing is required to ensure the normal use of the network. Furthermore, according to the frequency point load of each different frequency point, the load of the cell whose load is smaller than that of the serving cell is obtained, and used as a reselected different frequency point for the terminal to camp on. The terminal returning from the connected state to the idle state can reselect the frequency point to camp on, so each reselected different frequency point and its priority are sent to these terminals for the terminal to select the frequency point to camp on.
  • the terminal reselects the resident frequency point in the idle state, that is, to ensure that the load balance of each frequency point is ensured when the terminal is in the idle state, and the load balance can be realized from the root cause.
  • the terminal reselects the resident frequency point in the idle state, that is, to ensure that the load balance of each frequency point is ensured when the terminal is in the idle state, and the load balance can be realized from the root cause.
  • FIG. 1 is a flow chart of a load balancing method for resident terminals according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an application scenario of a load balancing method based on terminal residency in an embodiment of the present application
  • FIG. 3 is a flow chart of a load balancing method for resident terminals according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a load balancing device where a terminal resides according to an embodiment of the present application
  • Fig. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • An embodiment of the present application relates to a load balancing method for resident terminals.
  • the cell load of the serving cell is periodically detected; in the case that the cell load exceeds the preset equalization trigger threshold, according to the frequency load of different frequency points, the frequency point load is less than the cell load. Reselect the different frequency points, and the priority of each reselected different frequency points; send each of the reselected different frequency points and the priorities of each reselected different frequency points to the idle state from the connected state
  • the terminal is used for the terminal to select a camping frequency point according to the priority.
  • the specific flow of the terminal-resident load balancing method in this embodiment may be shown in FIG. 1 .
  • the most commonly used load balancing method in traditional technologies is load balancing in connection state.
  • the cell load is determined by evaluating the radio resource control (Radio Resource Control, referred to as "RRC") connection user load of the cell, and the physical resource block (Physical Resource Block, referred to as "PRB”) utilization rate load.
  • RRC Radio Resource Control
  • PRB Physical Resource Block
  • the terminal that has switched the camping cell will perform cell reselection after returning to the idle state, and the criteria for selecting the camping cell will not change, so the terminal will select the high The original resident cell of the load.
  • the terminal When the terminal enters the connected state, it will initiate services in the cell where it resides, causing the cell to generate load again. If the cell load exceeds the threshold, it can only rely on handover or redirection to reduce the load again. That is to say, this method is difficult to ensure load balance when the terminal is connected, and there are also problems such as heavy network processing pressure caused by frequent switching, and reduced user experience.
  • Another load balancing method in the related art modifies the signal offset between cells and between frequencies, so that the terminal can use the offset to perform signal compensation when switching between cells, that is, it is easier to transfer signals to a certain cell or a certain frequency.
  • This load balancing method essentially changes the handover zone of the cell. In practical applications, the handover failure rate is high and the load balancing effect is limited.
  • the idle state load of the cell is positively corresponding to the connected state load of the cell.
  • the more terminals in the idle state of the cell the more the number of terminals in the connected state of the cell, that is, the higher the load of the connected state of the cell. None of the above load balancing methods solves the root cause of the load in the connection state between frequency points, that is, the problem that the terminal resides unbalanced on each frequency point when it is in the idle state.
  • Step 101 periodically detect the cell load of the serving cell.
  • the cell load of the serving cell is periodically detected.
  • the load evaluation factors used to detect the load of the cell may include one or any combination of the following: call load, RRC connection user number ratio load, physical resource block PRB utilization rate load; wherein the call load is based on the cell
  • the ratio of the number of calls in the cycle to the cell capacity is determined; the ratio of the number of RRC connected users to the cell capacity is determined according to the ratio of the number of online users in the cell to the cell capacity in the cycle; the PRB utilization load is determined according to the cell capacity
  • the ratio of the used PRB resources in the period to the available PRB resources in the cell is determined.
  • the number of calls used in obtaining the call load includes but not limited to the number of RRC connection requests, the number of RRC connection restorations, and the number of RRC connection re-establishments.
  • the more users camped in the cell the higher the possible call load.
  • the call load can reach a maximum of 100%.
  • the number of online users of the cell involved in calculating the ratio of the number of RRC connection users to the load may be the average number of online users or the maximum number of online users of the cell.
  • the more resident users in a cell the more online users in the cell on a statistical average.
  • the PRB resources involved in calculating the PRB utilization load can be divided into uplink PRB resources and downlink PRB resources.
  • the corresponding PRB utilization load can also be subdivided into uplink PRB utilization and downlink PRB utilization.
  • the cell capacity involved in obtaining the call load and the ratio of the number of RRC connected users to the load can be obtained in the following manner: the target cell to obtain the cell capacity is Frequency Division Duplexing (FDD) ) cell, based on the ratio of the cell capacity and cell bandwidth of the preset frequency division duplex FDD cell, obtain the cell capacity of the target cell according to the cell bandwidth of the target cell;
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the planning of the capacity of the frequency point generally comes down to the planning of the cell capacity.
  • Obtaining the cell capacity of the target cell is to plan the appropriate cell capacity for the target cell.
  • the principle of cell capacity planning is that when the load balance is achieved, the user experience between the different frequency cells covered by the same coverage is equivalent.
  • Cells with different bandwidths and standards can perform capacity planning based on the bandwidth and cell capacity of the FDD standard and the bandwidth capacity of the cell is determined.
  • the cell capacity planning of a TDD cell needs to be converted based on the time slot ratio. You can also choose the same uplink user experience or downlink user experience as the planning basis, and perform different conversions accordingly.
  • the cell capacity of the FDD cell with the bandwidth W 1 can be calculated by the expression To represent.
  • the uplink user experience is selected as the planning basis for cell capacity
  • the cell Available expressions for capacity acquisition express when the uplink user experience is selected as the planning basis for cell capacity, the cell Available expressions for capacity acquisition express.
  • the downlink user experience is selected as the planning basis for the cell capacity, the cell capacity can be obtained using the expression express.
  • the special time slots of TDD cells generally have uplink and downlink symbols, so when calculating the cell capacity of TDD cells, special time slots can also be combined with uplink or downlink time slots to calculate capacity.
  • the expression for calculating the cell capacity of the corresponding TDD cell can be: or In order to be more accurate, the number of uplink and downlink symbols in the radio frame can also be calculated in more detail.
  • the number of uplink and downlink time slots and the number of special time slots involved in the above calculation of the cell capacity of a TDD cell can be calculated using the number of uplink and downlink and special symbols .
  • the cell capacity acquisition method involved in this example can achieve the same user experience among frequency points. In actual implementation, cell capacity planning can also be configured based on hardware capabilities, but this will make user experience between cells unbalanced.
  • the integrated load can also be set to detect the load of the cell.
  • the combined load can be represented by the following formula:
  • the uplink PRB utilization load and the downlink PRB utilization load can also be considered at the same time. If other load evaluation factors such as call load are also considered, the number of weighting factors can be adaptively increased in the above expression.
  • Step 102 in the case that the load of the cell exceeds the preset equalization trigger threshold, according to the frequency load of each frequency point, obtain the reselection different frequency points whose frequency load is less than the cell load, and the priority of each reselection frequency point .
  • the balancing trigger threshold can be set in advance. When the cell load exceeds the threshold, it means that the cell load is too large, and load balancing is required to reduce its load and avoid the overload of the cell network.
  • the equalization trigger threshold can be set differently according to the selected load evaluation factors. Among the different frequency points, a frequency point whose frequency load is smaller than that of the serving cell is selected as the reselected different frequency point. Since the frequency points of these frequencies load the cell load of the serving cell, the load of the cell under the frequency point must also be smaller than that of the serving cell, so it can be used for reselection of terminals in the serving cell, which can reduce the load of the serving cell and achieve load balancing.
  • the frequency load of the reselected inter-frequency frequency point can be obtained by the following method: when the cell load exceeds the preset frequency point load acquisition threshold , to obtain loads of different frequency adjacent cells; wherein, the frequency point load acquisition threshold is smaller than the equalization trigger threshold; according to the different frequency adjacent cell loads under the same different frequency point, the frequency point load of different frequency points is obtained.
  • the inter-frequency neighboring cells involved in this example are the inter-frequency neighboring cells of the serving cell, and generally are inter-frequency neighboring cells configured with a neighboring cell relationship with the serving cell.
  • the calculation of the frequency load F L can use the expression Among them, C Li is the load of the i-th cell under the frequency point, and n is the number of cells under the frequency point.
  • the priority of reselecting different frequency points can be obtained in any of the following ways: according to the frequency load, the priority is obtained, wherein the smaller the frequency load, the higher the priority; according to the same different frequency Among the different frequency adjacent cell loads under the point, the number of cell loads whose load is smaller than the serving cell is obtained, and the priority is obtained, wherein, the more the number, the higher the priority; according to each The proportion of the number of light-loaded neighboring cells at different frequency points is used to obtain the priority, wherein the larger the proportion of the light-loaded neighboring cells is, the higher the priority is, and the proportion of the light-loaded neighboring cells is based on the Among the different frequency adjacent cell loads under the same different frequency point, the load is less than the number of cell loads of the serving cell, and the total number of different frequency adjacent cells under the same different frequency point is determined; according to the different frequency The proportion of the number of high-load neighbors of a point is used to obtain the priority, wherein the smaller the proportion of the number of high-load neighbors is,
  • the more light-loaded neighboring cells under the frequency point the higher the proportion of light-loaded neighboring cells, and the smaller the proportion of high-loaded neighboring cells means that the frequency load of this frequency point is smaller. Therefore, a higher priority should be set for it, so that the terminal can preferentially choose these frequency points to camp on.
  • step 101 if the cell load of the serving cell does not reach the preset balancing trigger threshold, the periodic detection of the cell load of the serving cell is continued.
  • Step 103 sending each reselected different-frequency frequency point and the priority of each re-selected different-frequency frequency point to the terminal returning from the connected state to the idle state, so that the terminal can select a camping frequency point according to the priority.
  • the terminal in the idle state will reselect the resident cell, so in this step, each reselected different frequency point and its priority are sent to the terminal returning from the connected state to the idle state for reselection according to the above information
  • Camping in a cell means reselecting the frequency point to camp on. It can ensure that the terminal can stay balanced on each frequency point in the idle state, and solve the root cause of the connection state load between frequency points from the root cause. Terminals in the network do not need to switch or force redirection to achieve load balancing.
  • the number of inter-frequency handovers in the network is reduced, the signaling processing load in the network and the overhead of air interface measurement and handover are reduced, and user experience is improved.
  • each of the reselected inter-frequency frequency points and the priority of each of the reselected inter-frequency frequency points may be carried in the dedicated reselection priority of the radio resource control RRC release message and sent to the slave The connected state returns to the terminal in the idle state.
  • the priority before the priority of each of the reselected different frequency points and each of the reselected different frequency points is sent to the terminal returning from the connected state to the idle state, the priority can also be set effective time.
  • the sending of each of the reselected different-frequency frequency points and the priority of each of the re-selected different-frequency frequency points to the terminal returning from the connected state to the idle state can be Including: sending each of the reselected different frequency points, the priority of each of the reselected different frequency points, and the effective time of the priority to the terminal returning from the connected state to the idle state, for the terminal to The priority selects the dwell frequency point within the effective time.
  • the terminal Since the terminal will reselect the frequency point where it resides in the idle state, the load of the frequency point may change, and the priority is no longer applicable. Setting the effective time of the priority can avoid the poor load balancing effect and the waste of network processing resources caused by the no longer applicable priority.
  • the priority field can be filled in the RRC release message for the reselected inter-frequency point with priority.
  • the corresponding field in the 5G network is the cellReselectionPriorities field
  • the corresponding field in the 4G network is the idleModeMobilityControlInfo field.
  • the cellReselectionPriorities field also includes freqPriorityListEUTRA, freqPriorityListNR, and t320. If the frequency point or cell in the 5G network is load balanced with the frequency point or cell in the 4G network, you need to fill in the freqPriorityListEUTRA field. If load balancing is only performed within the 5G network, only freqPriorityListNR needs to be filled in. If load balancing is performed between 4G/5G hybrid networks, both fields must be filled in. Set the configurable T320 timer through the t320 field to set the effective time of the priority.
  • freqPriorityListNR is a list of FreqPriorityNR.
  • Each FreqPriorityNR can contain 3 fields: carrierFreq for storing the 5G absolute frequency point number, the priority cellReselectionPriority of the frequency point, and the sub-priority cellReselectionSubPriority of the frequency point.
  • the value of cellReselectionPriority can be set from 0 to 7, and the value of cellReselectionSubPriority can be 0.2, 0.4, 0.6, 0.8, etc., wherein a larger value indicates a higher priority.
  • the priority of the final reselection of different frequency points is cellReselectionPriority+cellReselectionSubPriority.
  • each of the reselected different-frequency frequency points and the priority of each of the re-selected different-frequency frequency points before sending each of the reselected different-frequency frequency points and the priority of each of the re-selected different-frequency frequency points to the terminal returning from the connected state to the idle state, it may also be detected that in the current period Whether the number of transmission times of each of the reselected different-frequency points and the priority of each of the re-selected different-frequency points reaches the preset number of balanced terminals. If the number of balanced terminals has not been reached, the step of sending each of the reselected different-frequency frequency points and the priority of each of the re-selected different-frequency frequency points to the terminal returning from the connected state to the idle state is performed.
  • the preset number of balanced terminals is the number of cells that need to reselect the camping frequency point.
  • the number of balanced terminals is set to be all, it is necessary to send reselected inter-frequency points and their priorities to all cells returning to the idle state. Therefore, before the number of times of sending does not reach the preset number of balanced terminals, the sending needs to be continued.
  • the terminal-resident load balancing method involved in this embodiment can be applied to 4G networking, 5G networking, or 4G and 5G multi-layer networks.
  • a schematic diagram of an application scenario of the terminal-resident load balancing method in this embodiment is shown in Figure 2 shown.
  • Figure 2 shows the 4G/5G hybrid networking system.
  • eNB is the base station in the 4G network
  • gNB is the base station in the 5G network
  • EPC is the 4G core network
  • 5GC is the 5G core network. If the inter-frequency adjacent cell is on another base station, it is necessary to obtain the inter-frequency frequency point or the load of the inter-frequency adjacent cell through message interaction between the base stations.
  • a system including a configuration and decision-making control unit, a serving cell load evaluation unit, a frequency point load evaluation unit, a different-frequency adjacent cell load collection unit, and a load balancing execution unit can be set to perform the tasks involved in this embodiment.
  • the load balancing method for terminal residency can be set to perform the tasks involved in this embodiment.
  • the configuration and decision-making control unit can be used to configure the load evaluation factors of the serving cell load, the cell capacity, the detection period, the number of balanced terminals, and configure the load balancing to be performed in a 4G network, a 5G network or a 4/5G hybrid network, etc.;
  • the serving cell load evaluation unit can be used to detect the cell load of the serving cell;
  • the frequency point load evaluation unit is used to detect the frequency point load of the frequency point where the different frequency adjacent cell of the serving cell is located;
  • the different frequency adjacent cell load collection unit is used to obtain the serving cell
  • the load balancing execution unit is used to send each reselected different frequency frequency point and the priority of each reselected different frequency frequency point to the terminal returning from the connected state to the idle state.
  • the cell load of the serving cell is periodically detected.
  • the cell load exceeds the preset balancing trigger threshold, it indicates that the cell load is too large, and load balancing is required to ensure the normal use of the network.
  • the frequency point load of each different frequency point the load of the cell whose load is smaller than that of the serving cell is obtained, and used as a reselected different frequency point for the terminal to camp on.
  • the terminal returning from the connected state to the idle state can reselect the frequency point to camp on, so each reselected different frequency point and its priority are sent to these terminals for the terminal to select the frequency point to camp on.
  • the terminal reselects the resident frequency point in the idle state, that is, to ensure that the load balance of each frequency point is ensured when the terminal is in the idle state, and the load balance can be realized from the root cause.
  • the terminal reselects the resident frequency point in the idle state, that is, to ensure that the load balance of each frequency point is ensured when the terminal is in the idle state, and the load balance can be realized from the root cause.
  • An embodiment of the present application relates to a terminal-resident load balancing method.
  • the implementation details of the terminal-resident load balancing method in this embodiment will be described in detail below.
  • the following content is only an implementation detail provided for easy understanding, not an implementation A must for this program.
  • the specific process is shown in Figure 3, and may include the following steps:
  • Step 301 periodically detect the cell load of the serving cell.
  • Step 302 detecting whether the cell load of the serving cell exceeds a preset frequency point load acquisition threshold.
  • step 303 if the detection result shows that the cell load does not exceed the preset frequency point load acquisition threshold, it means that the load of the serving cell is not high, and no special treatment is required, so continue to perform cell load detection on the serving cell, and perform the steps 301. If the threshold is exceeded, step 303 is performed.
  • Step 303 obtaining the loads of adjacent cells of different frequencies, and obtaining the loads of frequency points of different frequency points according to the loads of adjacent cells of different frequencies under the same frequency point of different frequencies.
  • Step 304 detecting whether the cell load of the serving cell exceeds a preset balancing trigger threshold.
  • step 305 if the detection result shows that the cell load does not exceed the preset balance trigger threshold, it means that the cell load of the serving cell is not enough for load balancing, so continue to perform cell load detection on the serving cell, and execute step 301 . If the threshold is exceeded, step 305 is performed.
  • Step 305 according to the frequency point load of each different frequency point, obtain the reselected different frequency points whose frequency point load is smaller than the cell load, and the priority of each reselected different frequency point.
  • Step 306 sending each reselected different frequency point and the priority of each reselected different frequency point to the terminal returning from the connected state to the idle state, so that the terminal can select a camping frequency point according to the priority.
  • Step 307 detecting whether the number of sending times reaches the preset number of balanced terminals.
  • the preset number of balanced terminals is the number of cells that need to reselect the camping frequency point.
  • the number of transmission times does not reach the preset number of balanced terminals, it means that the reselection of the camping frequency point has not been completed, and the transmission needs to be continued, and step 306 is executed.
  • steps 301, 303, and 306 in this embodiment are the same as those in the previous embodiment, and the relevant technical details mentioned in the previous embodiment are still valid in this embodiment. In order to reduce repetition, here No longer. The remaining steps are also mentioned in the previous implementation, and the relevant technical details mentioned in the previous implementation are still valid in this implementation.
  • the load balance of each frequency point is guaranteed when the terminal is in an idle state, and the load balance can be realized from the source.
  • the terminal during the load balancing process, there is no need for the terminal to perform a large number of switching between frequency points, which can avoid increasing the processing pressure of the network and reducing the user experience.
  • An embodiment of the present application relates to a terminal-resident load balancing device, as shown in FIG. 4 , including:
  • a load detection module 401 configured to periodically detect the cell load of the serving cell
  • a frequency point acquisition module 402 configured to obtain a reselected different frequency point whose frequency point load is less than the cell load according to the frequency point load of each frequency point when the load of the cell exceeds the preset equalization trigger threshold, and The priority of each of the reselected different frequency points;
  • the sending module 403 is configured to send each of the reselected different-frequency frequency points and the priority of each of the re-selected different-frequency frequency points to the terminal returning from the connected state to the idle state, for the terminal to select according to the priority dwell frequency.
  • the sending module 403 may also be configured to carry each reselected inter-frequency frequency point and the priority of each reselected inter-frequency frequency point in the dedicated reselection priority of the radio resource control RRC release message, Sent to terminals returning from connected state to idle state.
  • the load balancing device where the terminal resides may also include: a detection module (not shown in the figure), configured to detect the load of the cell with load evaluation factors; wherein, the load evaluation factors may include one of the following or Any combination: call load, RRC connection user ratio load, physical resource block PRB utilization rate load; wherein, the call load is determined according to the ratio of the number of calls of the cell in the cycle to the cell capacity; the RRC connection user The percentage load is determined according to the ratio of the number of online users of the cell within the period to the cell capacity; the PRB utilization load is determined according to the ratio of the used PRB resources of the cell within the period to the available PRB resources in the cell.
  • a detection module not shown in the figure
  • the load evaluation factors may include one of the following or Any combination: call load, RRC connection user ratio load, physical resource block PRB utilization rate load; wherein, the call load is determined according to the ratio of the number of calls of the cell in the cycle to the cell capacity; the RRC connection user The percentage load is determined according to the
  • the load balancing device where the terminal resides may also include: a cell capacity acquisition module (not shown in the figure), configured to acquire the cell capacity in the following manner: the target cell to be acquired cell capacity is frequency division duplex In the case of an FDD cell, the cell capacity of the target cell is obtained according to the cell bandwidth of the target cell based on the ratio of the cell capacity and the cell bandwidth of the preset frequency division duplex FDD cell; When the target cell is a time-division duplex TDD cell, based on the ratio of the cell capacity to the cell bandwidth of the preset frequency-division duplex FDD cell, according to the cell bandwidth of the target cell and the uplink and downlink time slots of the radio frame The configuration is to acquire the uplink and downlink cell capacity of the target cell.
  • a cell capacity acquisition module (not shown in the figure), configured to acquire the cell capacity in the following manner: the target cell to be acquired cell capacity is frequency division duplex In the case of an FDD cell, the cell capacity of the target cell is obtained according to the cell bandwidth of the
  • the load balancing device where the terminal resides may further include: a neighboring cell load acquisition module (not shown in the figure), configured to, after the periodic detection of the cell load of the serving cell, determine when the cell load exceeds In the case of a preset frequency point load acquisition threshold, obtain different frequency adjacent cell loads; wherein, the frequency point load acquisition threshold is smaller than the balanced trigger threshold; according to the different frequency adjacent cell loads under the same different frequency point, Obtain the frequency point load of different frequency points.
  • a neighboring cell load acquisition module (not shown in the figure), configured to, after the periodic detection of the cell load of the serving cell, determine when the cell load exceeds In the case of a preset frequency point load acquisition threshold, obtain different frequency adjacent cell loads; wherein, the frequency point load acquisition threshold is smaller than the balanced trigger threshold; according to the different frequency adjacent cell loads under the same different frequency point, Obtain the frequency point load of different frequency points.
  • the load balancing device where the terminal resides may also include: a priority acquisition module (not shown in the figure), configured to acquire the priority of reselecting different frequency points in any of the following ways: according to the frequency point Load, to obtain the priority, wherein, the smaller the load of the frequency point, the higher the priority; according to the load of different frequency adjacent cells under the same different frequency point, the load is less than the cell load of the serving cell number, to obtain the priority, wherein, the more the number, the higher the priority; according to the ratio of the number of light-loaded neighboring cells of the different frequency points, the priority is obtained, wherein the The greater the proportion of the number of light-loaded neighboring cells, the higher the priority, and the proportion of the number of light-loaded neighboring cells is based on the load of the different-frequency neighboring cells under the same different-frequency point.
  • a priority acquisition module (not shown in the figure), configured to acquire the priority of reselecting different frequency points in any of the following ways: according to the frequency point Loa
  • the load is smaller than that of the serving cell
  • the number of cell loads and the total number of different frequency adjacent cells under the same different frequency point are determined; according to the proportion of the number of high load adjacent cells at different frequency points, the priority is obtained, wherein the high
  • the number of loads and the total number of inter-frequency adjacent cells under the same inter-frequency point are determined.
  • the load balancing device where the terminal resides may also include: an effective time setting module (not shown in the figure), which is used to set each of the reselected different frequency points and each of the reselected different frequency points
  • the priority of the point is sent to the terminal that returns to the idle state from the connected state, and the effective time of the priority is set; in this example, the sending module 403 can also be used to reselect each of the different frequency points, The priority of each reselected inter-frequency point and the effective time of the priority are sent to the terminal returning from the connected state to the idle state, so that the terminal can choose to park according to the priority within the effective time. Stay tuned.
  • the detection module can also be used to detect the In the current cycle, whether the number of transmission times of each of the reselected different frequency points and the priority of each of the reselected different frequency points reaches the preset number of balanced terminals; if the number of balanced terminals is not reached
  • the sending module then executes the sending of each of the reselected different-frequency frequency points and the priority of each of the re-selected different-frequency frequency points to the terminal returning from the connected state to the idle state.
  • the load balancing device where the terminal resides provided in this embodiment periodically detects the cell load of the serving cell. When it is detected that the cell load exceeds the preset balancing trigger threshold, it indicates that the cell load is too large, and load balancing is required to ensure network stability. Normal use. Furthermore, according to the frequency point load of each different frequency point, the load of the cell whose load is smaller than that of the serving cell is obtained, and used as a reselected different frequency point for the terminal to camp on. The terminal returning from the connected state to the idle state can reselect the frequency point to camp on, so each reselected different frequency point and its priority are sent to these terminals for the terminal to select the frequency point to camp on.
  • the terminal reselects the resident frequency point in the idle state, that is, to ensure that the load balance of each frequency point is ensured when the terminal is in the idle state, and the load balance can be realized from the root cause.
  • the terminal reselects the resident frequency point in the idle state, that is, to ensure that the load balance of each frequency point is ensured when the terminal is in the idle state, and the load balance can be realized from the root cause.
  • modules involved in the above embodiments of the present application are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, and can also Combination of physical units.
  • units that are not closely related to solving the technical problems proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • An embodiment of the present application also provides an electronic device, as shown in FIG. 5 , including at least one processor 501; and a memory 502 connected in communication with at least one processor 501; wherein, the memory 502 stores information that can be processed by at least one processor.
  • the instructions executed by the processor 501 are executed by at least one processor 501, so that the at least one processor 501 can execute the above terminal-resident load balancing method.
  • the memory 502 and the processor 501 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 501 and various circuits of the memory 502 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 501 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 501 .
  • Processor 501 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management and other control functions. And the memory 502 may be used to store data used by the processor 501 when performing operations.
  • the above-mentioned products can execute the load balancing method for terminal residency provided by the embodiment of this application, and have the corresponding functional modules and beneficial effects of the execution method.
  • the technical details not described in detail in this embodiment please refer to the method provided by the embodiment of this application. Methods.
  • Embodiments of the present application also provide a computer-readable storage medium storing a computer program.
  • the computer program is executed by the processor, the above terminal-resident load balancing method is realized.
  • a device which can be A single chip microcomputer, a chip, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种终端驻留的负荷均衡方法、装置、电子设备和存储介质。该终端驻留的负荷均衡方法,包括:周期性检测服务小区的小区负荷;在小区负荷超过预设的均衡触发门限的情况下,根据各异频频点的频点负荷获取频点负荷小于小区负荷的重选异频频点,以及各重选异频频点的优先级;将各重选异频频点和各重选异频频点的优先级,发送给从连接态回到空闲态的终端,供终端根据优先级选择驻留频点。

Description

终端驻留的负荷均衡方法、装置、电子设备和存储介质
相关申请
本申请要求于2021年11月8日申请的、申请号为202111316200.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其是涉及一种终端驻留的负荷均衡方法、装置、电子设备和存储介质。
背景技术
由于用户设备(User Equipment,简称“UE”)业务需求的不同,通信网络中的频点和小区可能存在需求与实际资源不匹配,如有的小区负荷过重,而有的小区过于“清闲”的情况。因此,在4G和5G网络系统中,为充分利用网络资源,提高用户体验,运营商一般都会部署负荷均衡功能。负荷均衡是在异频频点或者异系统之间,比如长期演进(Long Term Evolution,简称“LTE”)系统中的频点之间、新无线接入技术(New Radio,简称“NR”)系统中的频点之间,或者异系统的频点之间进行的。相关技术中存在将高负荷的小区中的处于连接态的UE,切换或重定向至低负荷的小区的负荷均衡方法。
然而,上述方法负荷均衡效果差,难以真正实现负荷均衡,还存在网络处理压力大以及会导致用户体验的降低等问题。
发明内容
本申请实施方式的目的在于提供一种终端驻留的负荷均衡方法、装置、电子设备和存储介质,用以实现负荷均衡,且减轻网络处理负担,避免降低用户体验。
为实现上述目的,本申请的实施方式提供了一种终端驻留的负荷均衡方法,包括:周期性检测服务小区的小区负荷;在所述小区负荷超过预设的均衡触发门限的情况下,根据各异频频点的频点负荷获取频点负荷小于所述小区负荷的重选异频频点,以及各所述重选异频频点的优先级;将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,供所述终端根据所述优先级选择驻留频点。
为实现上述目的,本申请的实施方式还提供了一种终端驻留的负荷均衡装置,包括:负荷检测模块,用于周期性检测服务小区的小区负荷;频点获取模块,用于在所述小区负荷超过预设的均衡触发门限的情况下,根据各异频频点的频点负荷获取频点负荷小于所述小区负荷的重选异频频点,以及各所述重选异频频点的优先级;发送模块,用于将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,供所述终端根据所述优先级选择驻留频点。
本申请的实施方式还提供了一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至 少一个处理器执行,以使至少一个处理器能够执行上述的终端驻留的负荷均衡方法。
本申请的实施方式还提供了一种存储有计算机程序的计算机可读存储介质,计算机程序被处理器执行时实现上述的终端驻留的负荷均衡方法。
在本申请的实施方式中,对服务小区的小区负荷进行周期性检测,在检测到小区负荷超过预设均衡触发门限时,说明小区负荷过大,需进行负荷均衡以保证网络的正常使用。进而根据各异频频点的频点负荷获取负荷小于服务小区的小区负荷,作为供终端驻留的重选异频频点。从连接态回到空闲态的终端能够重新选择驻留的频点,因此将各重选异频频点及其优先级发送给这些终端,供终端选择驻留频点。终端在空闲态重选驻留频点,即保证终端处于空闲态时各频点的负荷均衡,能够从根源实现负荷均衡。且进行负荷均衡过程中,无需终端在频点间进行大量切换,能够避免增加网络的处理压力以及用户体验的降低。
附图说明
一个或多个实施方式通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施方式的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请一实施方式中的终端驻留的负荷均衡方法流程图;
图2是根据本申请一实施方式中的终端驻留的负荷均衡方法的应用场景示意图;
图3是根据本申请另一实施方式中的终端驻留的负荷均衡方法流程图;
图4是根据本申请一实施方式中的终端驻留的负荷均衡装置的结构示意图;
图5是根据本申请一实施方式中的电子设备的结构示意图。
具体实施方式
为使本申请的实施方式的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施方式的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施方式在不矛盾的前提下可以相互结合相互引用。
本申请的一实施方式涉及一种终端驻留的负荷均衡方法。在本实施方式中,周期性检测服务小区的小区负荷;在所述小区负荷超过预设的均衡触发门限的情况下,根据各异频频点的频点负荷获取频点负荷小于所述小区负荷的重选异频频点,以及各所述重选异频频点的优先级;将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,供所述终端根据所述优先级选择驻留频点。本实施方式的终端驻留的负荷均衡方法的具体流程可以如图1所示。
传统技术中最常用的负荷均衡方法为连接态的负荷均衡。在这种负荷均衡技术中,通过评估小区的无线资源控制(Radio Resource Control,简称“RRC”)连接用户数负荷、物理资源块(Physical Resource Block,简称“PRB”)利用率负荷确定小区负荷。当该小区负荷达到门限后,评估有覆盖关系的异频邻区的负荷,再选择一定数目的终端,对其切换或者重定向到低负荷的异频小区,以达到降低服务小区的负荷的目的。这种负荷均衡方法还存在相 关配置的多种变化,但技术思路始终是将高负荷的小区中的处于连接态的终端,切换或重定向至低负荷的小区。
在这种负荷均衡方法中,进行了驻留小区切换的终端回到空闲态后会进行小区重选,选择驻留小区的标准不会发生变化,因此该终端在重选时又会选到高负荷的原驻留小区。当终端进入连接态时会在驻留的小区发起业务,从而再次使得该小区产生负荷,小区负荷超过门限,只能再次依靠切换或者重定向来降低负荷。即这种方法难以保证终端连接态时的负荷均衡,同时还存在频繁切换带来的网络处理压力大,用户体验降低等问题。
另一种相关技术中的负荷均衡方法通过修改小区间以及频率间的信号偏移量,使得终端在进行小区切换时,能够利用该偏移量进行信号补偿,即更容易向某个小区或某个频点的小区切换。该种负荷均衡方法本质上是改变了小区的切换带,在实际应用中,切换失败率高且并且负荷均衡效果有限。
小区的空闲态负荷与小区的连接态负荷是正向对应的。小区空闲态驻留终端越多,小区连接态的终端数目就越多,也就是小区的连接态负荷就越高。上述的负荷均衡的方法都没有从根源上解决频点间连接态负荷产生的根本原因,即终端在空闲态时在各频点上驻留不均衡的问题。
下面对本实施方式的终端驻留的负荷均衡方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。具体流程如图1所示,可包括如下步骤:
步骤101,周期性检测服务小区的小区负荷。
在本步骤中对服务小区的小区负荷进行周期性的检测。其中,用于检测所述小区负荷的负荷评估因素可以包括以下之一或其任意组合:呼叫负荷、RRC连接用户数占比负荷、物理资源块PRB利用率负荷;其中,所述呼叫负荷根据小区在所述周期内的呼叫次数与小区容量的比值确定;所述RRC连接用户数占比负荷根据小区在所述周期内的在线用户数与小区容量的比值确定;所述PRB利用率负荷根据小区在所述周期内的已使用PRB资源与小区中可用PRB资源的比值确定。
其中,求取呼叫负荷时用到的呼叫次数包含但不限于RRC连接请求次数、RRC连接恢复次数、RRC连接重建立次数。小区中驻留的用户数越多,可能产生的呼叫负荷越高。呼叫负荷的最大值可达100%。求取RRC连接用户数占比负荷时涉及的小区的在线用户数可以选用平均在线用户数,也可以使用小区的最大在线用户数。小区的驻留用户数越多,从统计平均上,小区的在线用户数也越多。求取PRB利用率负荷时涉及的PRB资源可分为上行PRB资源和下行PRB资源。对应的PRB利用率负荷也可以细分为上行PRB利用率和下行PRB利用率。
在一个例子中,求取呼叫负荷、RRC连接用户数占比负荷时涉及的小区容量可以通过以下方式获取:在待获取小区容量的目标小区为频分双工(Frequency Division Duplexing,简称“FDD”)小区的情况下,以预设的频分双工FDD小区的小区容量和小区带宽的比值为基准,根据所述目标小区的小区带宽获取所述目标小区的小区容量;在待获取小区容量的目标小区为时分双工(Time Division Duplexing,简称“TDD”)小区的情况下,以预设的频分双工FDD小区的小区容量和小区带宽的比值为基准,根据所述目标小区的小区带宽,以及无线帧的上下行时隙配置,获取所述目标小区的上下行小区容量。
由于小区属于某个频点,因此一般对频点容量的规划实际上会归结为对小区容量的规划。 获取目标小区的小区容量即为目标小区规划合适的小区容量,小区容量规划的原则是在达到负荷均衡时,同覆盖的各异频小区之间用户的体验相当。各不同带宽和制式的小区可以均依据FDD制式且带宽容量确定的小区的带宽和小区容量为基础,进行容量规划。对TDD小区的小区容量规划需要依据时隙配比进行折算,还可以选择以上行用户体验相当或者下行用户体验相当为规划依据,并进行相应的不同折算。
若作为折算基准的FDD小区的带宽为W f、小区容量预先设定为V f,则带宽为W 1的FDD小区的小区容量的计算可以用表达式
Figure PCTCN2022124699-appb-000001
来表示。
对于带宽为W t,无线帧上行、特殊时隙、下行时隙个数分别为N u、N s、N d的TDD小区,在选择以上行用户体验相当为小区容量的规划依据时,其小区容量的获取可用表达式
Figure PCTCN2022124699-appb-000002
表示。在选择以下行用户体验相当为小区容量的规划依据时,其小区容量的获取可用表达式
Figure PCTCN2022124699-appb-000003
表示。
TDD小区的特殊时隙一般会有上下行符号,因此在计算TDD小区的小区容量时也可以把特殊时隙结合到上行或下行时隙中来计算容量。对应的TDD小区的小区容量计算的表达式可以为:
Figure PCTCN2022124699-appb-000004
Figure PCTCN2022124699-appb-000005
为了更加精确,也可以更加细化地计算无线帧中上下行的符号数,上述计算TDD小区的小区容量时涉及的上下行时隙数、特殊时隙数可以使用上下行以及特殊符号数来计算。本例涉及的小区容量的获取方法能够实现各频点之间用户的体验相当。在实际实施时,小区容量的规划也可以依据硬件能力进行配置,但这样会使得小区之间用户的体验不均衡。
在组合使用呼叫负荷、RRC连接用户数占比负荷、物理资源块PRB利用率负荷一起检测小区负荷时,还可以设置综合负荷用于检测小区负荷。可以用以下公式来表示综合负荷:
综合负荷=a1*呼叫负荷+a2*RRC连接数占比负荷+a3*PRB利用率负荷
其中,a1、a2、a3为负荷权重因子,取值范围可以是0到100%,并且a1+a2+a3=100%。在实际实施时,也可以同时考虑上行PRB利用率负荷和下行PRB利用率负荷,若还考虑呼叫负荷等其他负荷评估因素还可以在上述表达式中适应性增加权重因子个数。
步骤102,在小区负荷超过预设的均衡触发门限的情况下,根据各异频频点的频点负荷获取频点负荷小于小区负荷的重选异频频点,以及各重选异频频点的优先级。
在进行负荷均衡前可以预先设置均衡触发门限,当小区负荷超过该门限时则说明小区负荷过大,需要进行负荷均衡以减轻其负荷,避免该小区网络负担过重。均衡触发门限可以根据选择的负荷评估因素的不同进行不同的设置。在异频频点中选择频点负荷小于服务小区的小区负荷的频点作为重选异频频点。由于这些频点的频点负荷小区服务小区的小区负荷,因此频点下小区的负荷也一定小于服务小区,因而可以供服务小区下的终端重选,能够减轻服务小区的负荷,实现负荷均衡。
在一个例子中,在所述周期性检测服务小区的小区负荷后,重选异频频点的频点负荷可以通过以下方法获取:在所述小区负荷超过预设的频点负荷获取门限的情况下,获取各异频邻区负荷;其中,所述频点负荷获取门限小于所述均衡触发门限;根据同一异频频点下的各 异频邻区负荷,获取异频频点的频点负荷。
本例中涉及的异频邻区为服务小区的异频邻区,一般为与服务小区配置了邻区关系的异频邻区。频点负荷F L的计算可以用表达式
Figure PCTCN2022124699-appb-000006
其中C Li为频点下第i个小区的负荷,n为频点下小区的个数。
重选异频频点的优先级可以通过以下任一方式获取:根据所述频点负荷,获取所述优先级,其中,所述频点负荷越小,所述优先级越高;根据同一异频频点下的各异频邻区负荷中,负荷小于所述服务小区的小区负荷的个数,获取所述优先级,其中,所述个数越多,所述优先级越高;根据所述各异频频点的轻负荷邻区数占比,获取所述优先级,其中,所述轻负荷邻区数占比越大,所述优先级越高,所述轻负荷邻区数占比根据所述同一异频频点下的各异频邻区负荷中,负荷小于所述服务小区的小区负荷的个数,以及所述同一异频频点下的异频邻区总数确定;根据所述各异频频点的高负荷邻区数占比,获取所述优先级,其中,所述高负荷邻区数占比越小,所述优先级越高,所述高负荷邻区数占比根据所述同一异频频点下的各异频邻区负荷中,负荷大于所述服务小区的小区负荷的个数,以及所述同一异频频点下的异频邻区总数确定。
对于重选异频频点,其频点下的轻负荷邻区数越多,轻负荷邻区数占比越高,高负荷邻区数占比越小说明该频点的频点负荷越小,因此应为其设置较高的优先级,以使得终端能够优先选择这些频点驻留。
值得一提的是,在步骤101后,若服务小区的小区负荷未达到预设的均衡触发门限,则继续进行对服务小区的小区负荷的周期性检测。
步骤103,将各重选异频频点和各重选异频频点的优先级,发送给从连接态回到空闲态的终端,供终端根据优先级选择驻留频点。
处于空闲态的终端会进行驻留小区重选,因此在本步骤中,将各重选异频频点及其优先级,发送给从连接态回到空闲态的终端,供其根据上述信息重选驻留小区,即重选驻留的频点。能够保证终端在空闲态下在各频点上能够驻留均衡,从根源上解决了频点间连接态负荷产生的根本原因。网络中的终端不需要进行切换或强制重定向达到负荷均衡。减少了网络中的异频切换次数,减少了网络中的信令处理负荷以及空口测量和切换的开销,提升了用户体验。
在一示例性实施方式中,可以将各所述重选异频频点和各所述重选异频频点的优先级,携带在无线资源控制RRC释放消息的专用重选优先级中,发送给从连接态回到空闲态的终端。
在一个例子中,在所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端之前,还可以设置所述优先级的生效时间。在预先设置了优先级的生效时间的情况下,所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,可以包括:将各所述重选异频频点、各所述重选异频频点的优先级和所述优先级的生效时间,发送给从连接态回到空闲态的终端,供所述终端根据处于所述生效时间内的所述优先级选择驻留频点。由于终端会在空闲态进行驻留频点的重选,可能导致频点的负荷发生变化,优先级不再适用。设置优先级的生效时间,能够避免由于优先级不再适用导致的负荷均衡效果差以及网络处理资源的浪费。
在实际实施时,对于获取了优先级的重选异频频点,可以在RRC释放消息中填写其优先级字段,在5G网络中相应字段是cellReselectionPriorities字段,4G网络中的相应字段是idleModeMobilityControlInfo字段。在5G网络中,cellReselectionPriorities字段中还包含freqPriorityListEUTRA、freqPriorityListNR、t320。若对于5G网络中的频点或小区,负荷均衡与4G中的频点或小区进行,则需填写freqPriorityListEUTRA字段。若负荷均衡仅在5G网络内进行,则只需填写freqPriorityListNR。如果负荷均衡在4G/5G混合组网之间进行,则这两个字段都要填写。通过t320字段设置数值可配置的T320定时器用以设置优先级的生效时间。
在一个在5G网络内进行负荷均衡的例子中,freqPriorityListNR是一个FreqPriorityNR的列表。每个FreqPriorityNR可以包含3个字段:用于存放5G绝对频点号的carrierFreq、频点的优先级cellReselectionPriority以及频点的子优先级cellReselectionSubPriority。cellReselectionPriority的取值可以设置为0到7,cellReselectionSubPriority的取值可以是0.2、0.4、0.6、0.8等,其中数值越大的表示优先级越高。最终重选异频频点的优先级为cellReselectionPriority+cellReselectionSubPriority。
当重选异频频点的个数超过重选优先级字段填写能力,依照负荷由低到高依次填写。排在最后的当重选异频频点优先级最低。当重选异频频点填写不下时,优先级较低的频点的信息可以进行舍弃。
在另一个例子中,在所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端之前,还可以检测在当前周期内所述各所述重选异频频点和各所述重选异频频点的优先级的发送次数,是否达到预设的均衡终端数目。在未达到所述均衡终端数目的情况下,再执行所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端。
在本例中,预先设置的均衡终端数目,即需要进行驻留频点重选的小区数目。在将均衡终端数目设置为全部的情况下,需要向所有回到空闲态的小区发送重选异频频点及其优先级。因此,在发送次数未达到预设的均衡终端数目之前,需要继续执行该发送。
本实施方式涉及的终端驻留的负荷均衡方法可以应用于4G组网、5G组网或4G、5G多层网络中,本实施方式中终端驻留的负荷均衡方法的一个应用场景示意图如图2所示。图2中为4G/5G混合组网系统,图中eNB为4G网络中的基站,gNB为5G网络中的基站;EPC为4G核心网,5GC为5G核心网。如果异频邻区在另一个基站上,则需要通过基站间的消息交互获得异频频点或异频邻区的负荷。
在实际实施时,可以设置一个包含配置和决策控制单元、服务小区负荷评估单元、频点负荷评估单元、异频邻区负荷收集单元以及负荷均衡执行单元的系统用以执行本实施方式中涉及的终端驻留的负荷均衡方法。其中,配置和决策控制单元可以用于配置服务小区负荷的负荷评估因素、小区容量、检测周期、均衡终端数目以及配置负荷均衡在4G网络、5G网络或是4/5G混合组网内进行等;服务小区负荷评估单元可以用于检测服务小区的小区负荷;频点负荷评估单元用于检测服务小区的异频邻区所在频点的频点负荷;异频邻区负荷收集单元用于获取服务小区的各异频邻区负荷;负荷均衡执行单元用于将各重选异频频点和各重选异频频点的优先级,发送给从连接态回到空闲态的终端。
本实施方式中,对服务小区的小区负荷进行周期性检测,在检测到小区负荷超过预设均 衡触发门限时,说明小区负荷过大,需进行负荷均衡以保证网络的正常使用。进而根据各异频频点的频点负荷获取负荷小于服务小区的小区负荷,作为供终端驻留的重选异频频点。从连接态回到空闲态的终端能够重新选择驻留的频点,因此将各重选异频频点及其优先级发送给这些终端,供终端选择驻留频点。终端在空闲态重选驻留频点,即保证终端处于空闲态时各频点的负荷均衡,能够从根源实现负荷均衡。且进行负荷均衡过程中,无需终端在频点间进行大量切换,能够避免增加网络的处理压力以及用户体验的降低。
本申请的一实施方式涉及一种终端驻留的负荷均衡方法,下面对本实施方式的终端驻留的负荷均衡方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。具体流程如图3所示,可包括如下步骤:
步骤301,周期性检测服务小区的小区负荷。
步骤302,检测服务小区的小区负荷是否超过预设的频点负荷获取门限。
在本步骤中,在检测结果表明小区负荷未超过预设的频点负荷获取门限的情况下,说明服务小区的负荷不高,无需进行特别处理,因此继续对服务小区进行小区负荷检测,执行步骤301。超过该门限的情况下,执行步骤303。
步骤303,获取各异频邻区负荷,根据同一异频频点下的各异频邻区负荷,获取异频频点的频点负荷。
步骤304,检测服务小区的小区负荷是否超过预设的均衡触发门限。
在本步骤中,在检测结果表明小区负荷未超过预设的均衡触发门限的情况下,说明服务小区的小区负荷不足以进行负荷均衡,因此继续对服务小区进行小区负荷检测,执行步骤301。超过该门限的情况下,执行步骤305。
步骤305,根据各异频频点的频点负荷获取频点负荷小于小区负荷的重选异频频点,以及各重选异频频点的优先级。
步骤306,将各重选异频频点和各重选异频频点的优先级,发送给从连接态回到空闲态的终端,供终端根据优先级选择驻留频点。
步骤307,检测发送次数是否达到预设的均衡终端数目。
在本步骤中,预先设置的均衡终端数目,即需要进行驻留频点重选的小区数目。在发送次数未达到预设的均衡终端数目时,说明驻留频点重选尚未完成,需要继续执行发送,执行步骤306。
不难看出,本实施方式中的步骤301、303和306与上一实施方式中的步骤相同,在上一实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。其余各步骤在上一实施方式中也均有提及,上一实施方式中提到的相关技术细节在本实施方式中依然有效。
本实施方式中,保证终端处于空闲态时各频点的负荷均衡,能够从根源实现负荷均衡。且进行负荷均衡过程中,无需终端在频点间进行大量切换,能够避免增加网络的处理压力以及用户体验的降低。
本申请的一实施方式涉及一种终端驻留的负荷均衡装置,如图4所示,包括:
负荷检测模块401,用于周期性检测服务小区的小区负荷;
频点获取模块402,用于在所述小区负荷超过预设的均衡触发门限的情况下,根据各异频频点的频点负荷获取频点负荷小于所述小区负荷的重选异频频点,以及各所述重选异频频 点的优先级;
发送模块403,用于将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,供所述终端根据所述优先级选择驻留频点。
在一个例子中,发送模块403还可以用于将各所述重选异频频点和各所述重选异频频点的优先级,携带在无线资源控制RRC释放消息的专用重选优先级中,发送给从连接态回到空闲态的终端。
在一个例子中,终端驻留的负荷均衡装置还可以包括:检测模块(图中未示出),用于用负荷评估因素检测所述小区负荷;其中,负荷评估因素可以包括以下之一或其任意组合:呼叫负荷、RRC连接用户数占比负荷、物理资源块PRB利用率负荷;其中,所述呼叫负荷根据小区在所述周期内的呼叫次数与小区容量的比值确定;所述RRC连接用户数占比负荷根据小区在所述周期内的在线用户数与小区容量的比值确定;所述PRB利用率负荷根据小区在所述周期内的已使用PRB资源与小区中可用PRB资源的比值确定。
在一个例子中,终端驻留的负荷均衡装置还可以包括:小区容量获取模块(图中未示出),用于通过以下方式获取小区容量:在待获取小区容量的目标小区为频分双工FDD小区的情况下,以预设的频分双工FDD小区的小区容量和小区带宽的比值为基准,根据所述目标小区的小区带宽获取所述目标小区的小区容量;在待获取小区容量的目标小区为时分双工TDD小区的情况下,以预设的频分双工FDD小区的小区容量和小区带宽的比值为基准,根据所述目标小区的小区带宽,以及无线帧的上下行时隙配置,获取所述目标小区的上下行小区容量。
在一个例子中,终端驻留的负荷均衡装置还可以包括:邻区负荷获取模块(图中未示出),用于在所述周期性检测服务小区的小区负荷后,在所述小区负荷超过预设的频点负荷获取门限的情况下,获取各异频邻区负荷;其中,所述频点负荷获取门限小于所述均衡触发门限;根据同一异频频点下的各异频邻区负荷,获取异频频点的频点负荷。
在一个例子中,终端驻留的负荷均衡装置还可以包括:优先级获取模块(图中未示出),用于通过以下任一方式获取重选异频频点的优先级:根据所述频点负荷,获取所述优先级,其中,所述频点负荷越小,所述优先级越高;根据同一异频频点下的各异频邻区负荷中,负荷小于所述服务小区的小区负荷的个数,获取所述优先级,其中,所述个数越多,所述优先级越高;根据所述各异频频点的轻负荷邻区数占比,获取所述优先级,其中,所述轻负荷邻区数占比越大,所述优先级越高,所述轻负荷邻区数占比根据所述同一异频频点下的各异频邻区负荷中,负荷小于所述服务小区的小区负荷的个数,以及所述同一异频频点下的异频邻区总数确定;根据所述各异频频点的高负荷邻区数占比,获取所述优先级,其中,所述高负荷邻区数占比越小,所述优先级越高,所述高负荷邻区数占比根据所述同一异频频点下的各异频邻区负荷中,负荷大于所述服务小区的小区负荷的个数,以及所述同一异频频点下的异频邻区总数确定。
在一个例子中,终端驻留的负荷均衡装置还可以包括:生效时间设置模块(图中未示出),用于在所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端之前,设置所述优先级的生效时间;在本例中,发送模块403,还可以用于将各所述重选异频频点、各所述重选异频频点的优先级和所述优先级的生效时间,发送给从连接态回到空闲态的终端,供所述终端根据处于所述生效时间内的所述优先级选择驻留频点。
在一个例子中,检测模块还可以用于在所述将各所述重选异频频点和各所述重选异频频 点的优先级,发送给从连接态回到空闲态的终端之前,检测在当前周期内所述各所述重选异频频点和各所述重选异频频点的优先级的发送次数,是否达到预设的均衡终端数目;在未达到所述均衡终端数目的情况下,发送模块再执行所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端。
本实施方式提供的终端驻留的负荷均衡装置对服务小区的小区负荷进行周期性检测,在检测到小区负荷超过预设均衡触发门限时,说明小区负荷过大,需进行负荷均衡以保证网络的正常使用。进而根据各异频频点的频点负荷获取负荷小于服务小区的小区负荷,作为供终端驻留的重选异频频点。从连接态回到空闲态的终端能够重新选择驻留的频点,因此将各重选异频频点及其优先级发送给这些终端,供终端选择驻留频点。终端在空闲态重选驻留频点,即保证终端处于空闲态时各频点的负荷均衡,能够从根源实现负荷均衡。且进行负荷均衡过程中,无需终端在频点间进行大量切换,能够避免增加网络的处理压力以及用户体验的降低。
值得一提的是,本申请上述实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请的实施例还提供一种电子设备,如图5所示,包括至少一个处理器501;以及,与至少一个处理器501通信连接的存储器502;其中,存储器502存储有可被至少一个处理器501执行的指令,指令被至少一个处理器501执行,以使至少一个处理器501能够执行上述终端驻留的负荷均衡方法。
其中,存储器502和处理器501采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器501和存储器502的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器501处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器501。
处理器501负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器502可以被用于存储处理器501在执行操作时所使用的数据。
上述产品可执行本申请实施例所提供的终端驻留的负荷均衡方法,具备执行方法相应的功能模块和有益效果,未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请的实施例还提供一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述终端驻留的负荷均衡方法。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
上述实施例是提供给本领域普通技术人员来实现和使用本申请的,本领域普通技术人员可以在不脱离本申请的发明思想的情况下,对上述实施例做出种种修改或变化,因而本申请的保护范围并不被上述实施例所限,而应该符合权利要求书所提到的创新性特征的最大范围。

Claims (11)

  1. 一种终端驻留的负荷均衡方法,包括:
    周期性检测服务小区的小区负荷;
    在所述小区负荷超过预设的均衡触发门限的情况下,根据各异频频点的频点负荷获取频点负荷小于所述小区负荷的重选异频频点,以及各所述重选异频频点的优先级;
    将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,供所述终端根据所述优先级选择驻留频点。
  2. 根据权利要求1所述的终端驻留的负荷均衡方法,其中,所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,包括:
    将各所述重选异频频点和各所述重选异频频点的优先级,携带在无线资源控制RRC释放消息的专用重选优先级中,发送给从连接态回到空闲态的终端。
  3. 根据权利要求1所述的终端驻留的负荷均衡方法,其中,用于检测所述小区负荷的负荷评估因素包括以下之一或其任意组合:
    呼叫负荷、RRC连接用户数占比负荷、物理资源块PRB利用率负荷;
    其中,所述呼叫负荷根据小区在所述周期内的呼叫次数与小区容量的比值确定;所述RRC连接用户数占比负荷根据小区在所述周期内的在线用户数与小区容量的比值确定;所述PRB利用率负荷根据小区在所述周期内的已使用PRB资源与小区中可用PRB资源的比值确定。
  4. 根据权利要求3所述的终端驻留的负荷均衡方法,其中,所述小区容量通过以下方式获取:
    在待获取小区容量的目标小区为频分双工FDD小区的情况下,以预设的频分双工FDD小区的小区容量和小区带宽的比值为基准,根据所述目标小区的小区带宽获取所述目标小区的小区容量;
    在待获取小区容量的目标小区为时分双工TDD小区的情况下,以预设的频分双工FDD小区的小区容量和小区带宽的比值为基准,根据所述目标小区的小区带宽,以及无线帧的上下行时隙配置,获取所述目标小区的上下行小区容量。
  5. 根据权利要求1所述的终端驻留的负荷均衡方法,其中,在所述周期性检测服务小区的小区负荷后,还包括:
    在所述小区负荷超过预设的频点负荷获取门限的情况下,获取各异频邻区负荷;其中,所述频点负荷获取门限小于所述均衡触发门限;
    根据同一异频频点下的各异频邻区负荷,获取异频频点的频点负荷。
  6. 根据权利要求5所述的终端驻留的负荷均衡方法,其中,所述重选异频频点的优先级通过以下任一方式获取:
    根据所述频点负荷,获取所述优先级,其中,所述频点负荷越小,所述优先级越高;
    根据同一异频频点下的各异频邻区负荷中,负荷小于所述服务小区的小区负荷的个数,获取所述优先级,其中,所述个数越多,所述优先级越高;
    根据所述各异频频点的轻负荷邻区数占比,获取所述优先级,其中,所述轻负荷邻区数占比越大,所述优先级越高,所述轻负荷邻区数占比根据所述同一异频频点下的各异频邻区负荷中,负荷小于所述服务小区的小区负荷的个数,以及所述同一异频频点下的异频邻区总数确定;
    根据所述各异频频点的高负荷邻区数占比,获取所述优先级,其中,所述高负荷邻区数占比越小,所述优先级越高,所述高负荷邻区数占比根据所述同一异频频点下的各异频邻区负荷中,负荷大于所述服务小区的小区负荷的个数,以及所述同一异频频点下的异频邻区总数确定。
  7. 根据权利要求1至6中任一项所述的终端驻留的负荷均衡方法,其中,所述方法还包括:
    在所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端之前,设置所述优先级的生效时间;
    所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,包括:
    将各所述重选异频频点、各所述重选异频频点的优先级和所述优先级的生效时间,发送给从连接态回到空闲态的终端,供所述终端根据处于所述生效时间内的所述优先级选择驻留频点。
  8. 根据权利要求1至6中任一项所述的终端驻留的负荷均衡方法,其中,所述方法还包括:
    在所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端之前,检测在当前周期内所述各所述重选异频频点和各所述重选异频频点的优先级的发送次数,是否达到预设的均衡终端数目;
    在未达到所述均衡终端数目的情况下,再执行所述将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端。
  9. 一种终端驻留的负荷均衡装置,包括:
    负荷检测模块,用于周期性检测服务小区的小区负荷;
    频点获取模块,用于在所述小区负荷超过预设的均衡触发门限的情况下,根据各异频频点的频点负荷获取频点负荷小于所述小区负荷的重选异频频点,以及各所述重选异频频点的优先级;
    发送模块,用于将各所述重选异频频点和各所述重选异频频点的优先级,发送给从连接态回到空闲态的终端,供所述终端根据所述优先级选择驻留频点。
  10. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至8中任一项所述的终端驻留的负荷均衡方法。
  11. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的终端驻留的负荷均衡方法。
PCT/CN2022/124699 2021-11-08 2022-10-11 终端驻留的负荷均衡方法、装置、电子设备和存储介质 WO2023078042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111316200.4A CN116112982A (zh) 2021-11-08 2021-11-08 终端驻留的负荷均衡方法、装置、电子设备和存储介质
CN202111316200.4 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023078042A1 true WO2023078042A1 (zh) 2023-05-11

Family

ID=86240630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124699 WO2023078042A1 (zh) 2021-11-08 2022-10-11 终端驻留的负荷均衡方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN116112982A (zh)
WO (1) WO2023078042A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105554818A (zh) * 2015-12-21 2016-05-04 中国联合网络通信集团有限公司 一种负荷均衡方法和装置
CN110149668A (zh) * 2019-05-23 2019-08-20 中国联合网络通信集团有限公司 小区重选方法、装置及终端
CN111988820A (zh) * 2019-05-22 2020-11-24 大唐移动通信设备有限公司 小区重选控制方法及装置
CN113347668A (zh) * 2020-02-18 2021-09-03 大唐移动通信设备有限公司 一种负载均衡方法、装置、电子设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105554818A (zh) * 2015-12-21 2016-05-04 中国联合网络通信集团有限公司 一种负荷均衡方法和装置
CN111988820A (zh) * 2019-05-22 2020-11-24 大唐移动通信设备有限公司 小区重选控制方法及装置
CN110149668A (zh) * 2019-05-23 2019-08-20 中国联合网络通信集团有限公司 小区重选方法、装置及终端
CN113347668A (zh) * 2020-02-18 2021-09-03 大唐移动通信设备有限公司 一种负载均衡方法、装置、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Cell-specific prioritization for idle mode load balancing", 3GPP TSG-RAN WG2 #89BIS, R2-151444, 19 April 2015 (2015-04-19), XP050936371 *

Also Published As

Publication number Publication date
CN116112982A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
US11304114B2 (en) Content-aware inter-RAT RAB steering
US11917481B2 (en) Load balancing method and apparatus
US9843963B2 (en) Load balance method and relevant apparatuses
US10021633B2 (en) Method, apparatus, and system for accessing to a mobile communication network
US20220330133A1 (en) Cell Reselection Method, Terminal Device, and Network Device
CN110831134A (zh) 一种基站的节能方法及基站
EP3641478A1 (en) System message notification and sending method and apparatus
US11751236B2 (en) BWP allocation method and apparatus
CN104080133B (zh) 一种移动性优化方法、用户设备和接入网设备
EP3920652A1 (en) Dual/multi-connectivity-based secondary node addition/replacement method and device
US10034243B2 (en) Method and device for interworking between access technology networks
US10034213B2 (en) Method and network entity for load contribution distribution in a wireless communication system
CN107710816A (zh) 一种负载均衡方法及装置
EP2944119A1 (en) A method and a network node for improved resource utilization in a load balanced radio communication system
CN106304207A (zh) 多载波场景下的小区重选方法、降低小区接入负载的方法及设备
WO2023078042A1 (zh) 终端驻留的负荷均衡方法、装置、电子设备和存储介质
EP3346742A1 (en) Random access method and apparatus
CN110300439B (zh) 一种小区选择和重选的方法及装置
CN114885381B (zh) 网络负载均衡方法、装置、存储介质及电子设备
WO2023227094A1 (zh) 小区重选方法及装置、存储介质、终端设备
CN110381536B (zh) 一种基于lwip架构的负载均衡方法及系统
CN111343670B (zh) 一种基于上行速率保障的tdd与fdd分层方法和装置
CN115150851A (zh) 用于小区选择的方法、设备、存储介质和计算机程序产品
CN105744610A (zh) 一种进行发射功率调整的方法、系统和装置
CN116419337A (zh) 一种小区选择和重选方法及装置、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889068

Country of ref document: EP

Kind code of ref document: A1