WO2023077987A1 - 发光器件及其控制方法、发光基板 - Google Patents

发光器件及其控制方法、发光基板 Download PDF

Info

Publication number
WO2023077987A1
WO2023077987A1 PCT/CN2022/120274 CN2022120274W WO2023077987A1 WO 2023077987 A1 WO2023077987 A1 WO 2023077987A1 CN 2022120274 W CN2022120274 W CN 2022120274W WO 2023077987 A1 WO2023077987 A1 WO 2023077987A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
electrode
light emitting
emitting
Prior art date
Application number
PCT/CN2022/120274
Other languages
English (en)
French (fr)
Inventor
王鹏
李晓虎
张娟
焦志强
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023077987A1 publication Critical patent/WO2023077987A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present application relates to the field of display technology, in particular to a light emitting device, a control method thereof, and a light emitting substrate.
  • Organic light emitting transistor (Organic Light Emitting Transistor, OLET) is a technology that integrates thin film transistor (Thin Film Transistor, TFT) and organic light emitting diode (Organic Light Emitting Diode, OLED). The current further controls the light emission of the OLED.
  • TFT Thin Film Transistor
  • OLED Organic Light Emitting Diode
  • a light emitting device including:
  • the first electrode layer, the first medium layer, the first light-emitting layer, the second light-emitting layer, the second medium layer and the second electrode layer are sequentially stacked;
  • a source electrode and a drain electrode are arranged in the same layer and both are located between the first light emitting layer and the second light emitting layer;
  • the insulating layer is provided on the same layer as the source electrode and the drain electrode, and is located between the source electrode and the drain electrode.
  • the light emitting device further includes a first carrier transport layer and a second carrier transport layer;
  • the first carrier transport layer is located on the side of the first light-emitting layer away from the first electrode layer; the second carrier transport layer is located between the second light-emitting layer and the first electrode layer. between the light emitting layers and located on the side of the insulating layer away from the first light emitting layer.
  • both the first carrier transport layer and the second carrier transport layer are electron transport layers.
  • both the first carrier transport layer and the second carrier transport layer are hole transport layers.
  • one of the first carrier transport layer and the second carrier transport layer is an electron transport layer, and the other is a hole transport layer.
  • the first electrode layer and the second electrode layer are configured to receive electrical signals of the same polarity, and the first light emitting layer and the second light emitting layer are configured to glow at the same time.
  • the first electrode layer is electrically connected to the second electrode layer
  • the first electrode layer and the second electrode layer are configured to receive the same electrical signal.
  • the first electrode layer and the second electrode layer are configured to receive electrical signals with opposite polarities, and the first light emitting layer and the second light emitting layer are configured to glow at the same time.
  • the first electrode layer is electrically connected to the second electrode layer
  • the first electrode layer and the second electrode layer are configured to receive the same electrical signal and emit light alternately.
  • the source electrode, the drain electrode and the surface of the insulating layer away from the first electrode layer are all located in the same plane.
  • the material of the insulating layer is a light-transmitting insulating material.
  • the light-transmitting insulating material includes any one or a combination of lithium fluoride, zinc oxide and 4,4'-bis(9-carbazole)biphenyl.
  • embodiments of the present application provide a light-emitting substrate, including a plurality of light-emitting devices as described above.
  • the light-emitting substrate is a backlight substrate
  • the light emitting color of the first light emitting layer of the light emitting device and the light emitting color of the second light emitting layer of the light emitting device are both blue;
  • one of the first light-emitting layer and the second light-emitting layer has an emission color of yellow, and the other has an emission color of blue.
  • the light-emitting substrate is a display substrate
  • the light-emitting substrate includes a plurality of light-emitting device groups arranged in an array, and the light-emitting device group includes a plurality of light-emitting devices with different light-emitting colors;
  • the first light-emitting layer and the second light-emitting layer in the same light-emitting device have the same emission color.
  • the embodiments of the present application provide a method for controlling a light emitting device, the control method comprising:
  • the third voltage signal is configured to control the first light emitting layer of the light emitting device to emit light
  • the fourth voltage signal is configured to control the second light emitting layer of the light emitting device to emit light; wherein, the first light emitting layer and the second light emitting layer
  • the light emitting layers are configured to be able to emit light simultaneously or to be able to emit light alternately.
  • Fig. 1-Fig. 3a are structural schematic diagrams of seven different light-emitting devices provided by the embodiment of the present application.
  • Fig. 3b is a control timing diagram of the light emitting device shown in Fig. 3a;
  • FIG. 4a is a schematic diagram of the mask structure of the source electrode and the drain electrode provided in the embodiment of the present application.
  • Fig. 4b is a schematic diagram of the mask structure of the insulating layer provided by the embodiment of the present application.
  • Fig. 5 is a flowchart of a method for controlling a light emitting device provided by an embodiment of the present application.
  • OLED Organic Light-Emitting Diode
  • TFT Thin Film Transistor
  • An embodiment of the present application provides a light emitting device, as shown in FIG. 1 , including:
  • the first electrode layer 2, the first dielectric layer 3, the first light-emitting layer 4, the second light-emitting layer 10, the second dielectric layer 11 and the second electrode layer 12 are sequentially stacked;
  • the source electrode 6 and the drain electrode 7, the source electrode 6 and the drain electrode 7 are arranged in the same layer, and both are located between the first light emitting layer 4 and the second light emitting layer 10;
  • the insulating layer 8 is provided in the same layer as the source electrode 6 and the drain electrode 7 and is located between the source electrode 6 and the drain electrode 7 .
  • both the first electrode layer 2 and the second electrode layer 12 are gate layers.
  • the materials of the first electrode layer 2 and the second electrode layer 12 may both be light-transmitting materials, such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the material of the first electrode layer 2 is a light-transmitting conductive material, such as indium tin oxide (ITO).
  • the material of the second electrode layer 12 is metal, such as any one or combination of gold, silver, aluminum or magnesium.
  • the first dielectric layer 3 and the second dielectric layer 11 serve as gate insulating layers.
  • the materials of the first dielectric layer 3 and the second dielectric layer 11 can be zinc oxide (Al 2 O 3 ), silicon nitride (SiNx), silicon oxide (SiO 2 ), polymethyl methacrylate (PMMA ), one or more combinations of polyvinyl alcohol (PVA).
  • the first dielectric layer 3 and the second dielectric layer 11 may be a single-layer structure including one insulating material; or may be a stacked structure including at least two insulating materials.
  • the material and structure of the first dielectric layer 3 and the second dielectric layer 11 may be the same.
  • the material of the source electrode 6 and the drain electrode 7 may be one or a combination of gold, silver, copper, aluminum or magnesium.
  • the material of the source electrode 6 and the drain electrode 7 when the material of the source electrode 6 and the drain electrode 7 is a combination of various metals, it may be a laminated structure of copper/aluminum, or a single-layer structure of copper-aluminum alloy.
  • the material of the source electrode 6 and the drain electrode 7 is set to be gold, considering the factors of work function, conductivity and light transmittance.
  • the source electrode 6 and the drain electrode 7 have the same thickness along the direction perpendicular to the light-emitting layer (the first light-emitting layer 4 or the second light-emitting layer 10), and the thickness range is For example: or
  • the light emitting directions of the first light emitting layer 4 and the second light emitting layer 10 in the light emitting device are the same; or, the light emitting directions of the first light emitting layer 4 and the second light emitting layer 10 in the light emitting device are opposite.
  • the materials of each film layer on the light-emitting path are light-transmitting materials.
  • the materials of the first electrode layer 2 and the second electrode layer 12 are both light-transmitting materials.
  • the light emitting device when the first light emitting layer 4 and the second light emitting layer 10 emit light in the same direction in the light emitting device, the light emitting device can be used as a backlight source or directly as a display.
  • the first light-emitting layer 4 and the second light-emitting layer 10 may have the same light-emitting color, and both light-emitting colors are blue, so as to form a blue backlight source.
  • the luminescent colors of the first luminescent layer 4 and the second luminescent layer 10 can be different, for example, the luminous color of one of them is blue, and the luminous color of the other is yellow, so as to form a white backlight after light mixing.
  • each light-emitting device is used as a sub-pixel of the display substrate, and the first light-emitting layer 4 and the second light-emitting layer 10 in the same light-emitting device have the same light emission color, so as to improve the light intensity. Effect.
  • the materials of the first light-emitting layer 4 and the second light-emitting layer 10 can be both Alq 3 (tris(8-hydroxyquinoline)aluminum), Ir(ppy) 3 (tris(2-phenyl pyridine)iridium) or Firpic (bis(4,6-difluorophenylpyridine-N,C2)pyridinecarboyl iridium).
  • the insulating layer 8 is provided on the same layer as the source electrode 6 and the drain electrode 7, and is located between the source electrode 6 and the drain electrode 7, so as to serve as an insulating layer between the source electrode 6 and the drain electrode 7 , to avoid contact between the source electrode 6 and the drain electrode 7, and the arrangement of the insulating layer 8 can also simplify the structure of the light-emitting device while ensuring that the two light-emitting layers of the light-emitting device emit light independently.
  • the material of the insulating layer 8 may be a light-transmitting insulating material.
  • the light-transmitting insulating material may include one of lithium fluoride (LiF, with a certain thickness equivalent to the insulating layer), zinc oxide (ZnO) or 4,4'-bis(9-carbazole)biphenyl.
  • the thickness of the insulating layer 8 along the direction perpendicular to the light-emitting layer is the same as the thickness of the source electrode 6 and the drain electrode 7 along the direction perpendicular to the light-emitting layer, and the thickness Range is For example: or
  • the source electrode 6 , the drain electrode 7 and the insulating layer 8 can all be prepared by a vacuum evaporation process.
  • the light-emitting device Compared with the OLED light-emitting device in the related art, the light-emitting device provided in the embodiment of the present application combines TFT and OLED into one device, uses the gate voltage to control the light-emitting current, and then controls the light-emitting intensity.
  • the two parts of light-emitting and control Integrated into a device not only improves the integration of the device, simplifies the device structure, but also improves the energy utilization efficiency; in addition, because the carrier mobility of the light-emitting transistor is higher than that of the organic light-emitting diode, it can reduce the exciton quenching probability, and through the three electrodes of the source electrode 6, the drain electrode 7 and the gate layer (the first electrode layer 2 or the second electrode layer 12), the injection of holes and electrons can be better controlled, thereby improving the luminous efficiency and light intensity.
  • the insulating layer 8 by disposing the insulating layer 8 on the same layer as the source electrode 6 and the drain electrode 7, and disposing the insulating layer 8 between the source electrode 6 and the drain electrode 7, and then The symmetrical light-emitting layer, dielectric layer and electrode layer as shown in Figure 1 are arranged on the side to obtain a light-emitting transistor structure with a double-electrode layer and a double-light-emitting layer.
  • the electrode layer 12 By controlling the two electrode layers (the first electrode layer 2 and the second electrode layer respectively The electrode layer 12) can make the two light-emitting layers (the first light-emitting layer 4 and the second light-emitting layer 10) emit light independently, without switching the voltage of the source and drain electrodes; by adjusting the material of the light-emitting layer, it is possible to realize the mixed light emission of various colors
  • the effect or the effect of increasing light intensity by a single luminous color can solve the problems of low brightness of organic light-emitting transistor devices and difficulty in realizing a stacked structure.
  • the light-emitting device further includes a first carrier transport layer 5 and a second carrier transport layer 9; wherein, the first carrier transport layer 5 is located on the first The light-emitting layer 4 is away from the side of the first electrode layer 2; the second carrier transport layer 9 is located between the second light-emitting layer 10 and the first light-emitting layer 4, and is located on the side of the insulating layer 8 away from the first light-emitting layer 4 .
  • the types of carriers transported by the first carrier transport layer 5 and the second carrier transport layer 9 are the same.
  • both the first carrier transport layer 5 and the second carrier transport layer 9 can be used to transport electrons.
  • the second carrier transport layer 9 is an electron transport layer E.
  • the material of the electron transport layer E can be NPB (N, N'-diphenyl-N, N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine ), Bphen (4,7-diphenyl-1,10-phenanthroline) or TPBi (1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene) at least one.
  • NPB N, N'-diphenyl-N, N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine
  • Bphen 4,7-diphenyl-1,10-phenanthroline
  • TPBi 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene
  • the voltage (Vg) applied to the two electrode layers can be adjusted according to the requirement of luminous brightness, and the voltages of the two electrode layers can be the same or different.
  • both the first carrier transport layer 5 and the second carrier transport layer 9 can be used to transport holes. and the second carrier transport layer 9 are both hole transport layers H.
  • the material of the hole transport layer H can be CBP (4,4'-bis(9-carbazole)biphenyl) or TAPC (4,4'-cyclohexyl bis[N,N-bis(4- At least one of methylphenyl) aniline]).
  • the embodiment of the present application provides a light-emitting device (light-emitting transistor) with a symmetrical structure as shown in FIG. 2b or FIG.
  • the intensity of the emitted light of the light emitting device can be greatly improved through the superposition of the two light emitting layers.
  • the two conductive channels The carrier mobility rate may be different.
  • the luminous intensity of the first light-emitting layer 4 can be controlled by adjusting the voltage of the first electrode layer 2, and the second electrode layer can be controlled by adjusting the voltage of the second electrode layer 12.
  • the types of carriers transported by the first carrier transport layer 5 and the second carrier transport layer 9 are different.
  • one of the first carrier transport layer 5 and the second carrier transport layer 9 is an electron transport layer E, and the other is a hole transport layer Layer H.
  • the first carrier transport layer 5 is a hole transport layer H
  • the second carrier transport layer 9 is an electron transport layer E.
  • Vdata Apply a voltage Vdata
  • Vg positive voltage
  • Vth threshold voltage
  • the light emitting device in the case where one of the first carrier transport layer 5 and the second carrier transport layer 9 is an electron transport layer E, and the other is a hole transport layer H, the light emitting device
  • the conduction channel with bipolarity (the conduction channel formed by electron accumulation and the conduction channel formed by hole accumulation) can achieve more balanced carrier transmission when the light-emitting device is turned on, thereby improving the operation of the light-emitting device. efficiency.
  • the first carrier transport layer 5 is a hole transport layer H
  • the second carrier transport layer 9 is an electron transport layer E.
  • Figure 3b is a timing diagram of voltage changes of Vg and Vd, and the gate voltage Vg It changes synchronously with the source-drain voltage Vd.
  • the gate voltage Vg and the source-drain voltage Vd work synchronously in the positive voltage period, and when the gate-source voltage is greater than the threshold voltage of the transistor (Vgs>Vth), the first light-emitting layer 4 and the first gate dielectric layer 3 Electrons accumulate at the interface between them and form a conductive channel, and the first light-emitting layer 4 emits light (marked as 4L in FIG. 4b ).
  • the gate-source voltage at this time is the voltage between the first electrode layer 2 and the source electrode 6
  • the threshold voltage of the transistor is the threshold voltage of the transistor formed by the first electrode layer 2 , the source electrode 6 and the drain electrode 7 .
  • the gate voltage Vg and the source-drain voltage Vd synchronously work in the negative voltage period, and when the gate-source voltage is greater than the threshold voltage of the transistor (Vgs>Vth), the second light-emitting layer 10 and the second gate dielectric layer 11 Holes accumulate at the interface between them and form a conductive channel, and the second light-emitting layer 10 emits light (marked as 10L in FIG. 4b ).
  • the gate-source voltage at this time is the voltage between the second electrode layer and the source electrode
  • the threshold voltage of the transistor is the threshold voltage of the transistor formed by the second electrode layer 12 , the source electrode 6 and the drain electrode 7 .
  • the time-division and alternate light emission of the first light-emitting layer 4 and the second light-emitting layer 10 can be realized.
  • the light emitting color of the first light emitting layer 4 is blue
  • the light emitting color of the second light emitting layer 10 is yellow.
  • the alternating frequency of alternate light emission has exceeded the detection range of human eyes. What human eyes perceive is the white light formed after the mixture of the blue light emitted by the first light-emitting layer 4 and the yellow light emitted by the second light-emitting layer 10, so that the light-emitting light can be
  • the device is used as a backlight.
  • the wavelength bands of the light emitted by the two light-emitting layers can be adjusted respectively according to the actual demand for the light-emitting band of the backlight source, so as to obtain an ideal backlight source.
  • the first electrode layer 2 and the The second electrode layer 12 is configured to receive electrical signals of the same polarity, and the first light emitting layer 4 and the second light emitting layer 10 are configured to emit light simultaneously.
  • the first electrode layer 2 and the second electrode layer 12 can be electrically connected; so that the first electrode layer 2 and the second electrode layer 12 receive the same electrical signal.
  • the first electrode layer 2 and the second electrode layer 12 are configured to both receive a negative voltage
  • the interface between the first dielectric layer 3 and the first luminescent layer 4, and the interface between the second dielectric layer 11 and the second luminescent layer 10 are all positive charge (hole) accumulation.
  • Vgs the dielectric layer and The charge density near the interface of the light-emitting layer increases continuously, and when Vgs (gate-source voltage) is greater than the threshold voltage of the transistor, a double conduction channel is finally formed.
  • the excitons formed in the first light-emitting layer 4 and the second light-emitting layer 10 radiate and emit light near their corresponding conductive channels.
  • the first electrode layer 2 and the second electrode layer 12 are configured to both receive a positive voltage
  • the interface between the second dielectric layer 11 and the second light-emitting layer 10 are negative charge (electron) accumulation, with the rise of Vgs, the dielectric layer and
  • the charge density near the interface of the light-emitting layer increases continuously, and when Vgs (gate-source voltage) is greater than the threshold voltage of the transistor, a double conduction channel is finally formed.
  • the excitons formed in the first light-emitting layer 4 and the second light-emitting layer 10 radiate and emit light near their corresponding conductive channels.
  • the first carrier transport layer 5 and the second carrier transport layer 9 when one of the first carrier transport layer 5 and the second carrier transport layer 9 is the electron transport layer E, and the other is the hole transport layer H, the first The electrode layer 2 and the second electrode layer 12 are configured to receive electrical signals of opposite polarities, and the first light emitting layer 4 and the second light emitting layer 10 are configured to emit light simultaneously.
  • the first carrier transport layer 5 is a hole transport layer H
  • the second carrier transport layer 9 is an electron transport layer E
  • a positive voltage Vg is applied to the first electrode layer 2
  • Vgs negative charges (electrons) accumulate near the interface of the first dielectric layer 3 and the first luminescent layer 4
  • positive charges (holes) accumulate near the interface, and as Vgs increases, the charge density near the interface between the dielectric layer and the light-emitting layer increases continuously.
  • Vgs gate-source voltage
  • Vth threshold voltage
  • one of the first carrier transport layer 5 and the second carrier transport layer 9 is an electron transport layer E, and the other is a hole transport layer H, as shown in FIG.
  • the first electrode layer 2 and the second electrode layer 12 are electrically connected; the first electrode layer 2 and the second electrode layer 12 are configured to receive the same electrical signal and emit light alternately.
  • the same electrical signal received by the first electrode layer 2 and the second electrode layer 12 is a periodically changing voltage signal as shown in FIG. 3 b .
  • the gate voltage Vg and the source-drain voltage Vd work synchronously in the positive voltage period, and when the gate-source voltage is greater than the threshold voltage of the transistor (Vgs>Vth), the first light-emitting layer 4 and the first gate Electrons accumulate at the interface between the dielectric layers 3 and form a conductive channel, and the first light-emitting layer 4 emits light (marked as 4L in FIG. 4b ).
  • the gate-source voltage at this time is the voltage between the first electrode layer 2 and the source electrode 6, and the threshold voltage of the transistor is the threshold voltage of the transistor formed by the first electrode layer 2, the source electrode 6 and the drain electrode 7.
  • the gate voltage Vg and the source-drain voltage Vd synchronously work in the negative voltage period, and when the gate-source voltage is greater than the threshold voltage of the transistor (Vgs>Vth), the second light-emitting layer 10 and the second gate dielectric layer 11 Holes accumulate at the interface between them and form a conductive channel, and the second light-emitting layer 10 emits light (marked as 10L in FIG. 4b ).
  • the gate-source voltage at this time is the voltage between the second electrode layer and the source electrode
  • the threshold voltage of the transistor is the threshold voltage of the transistor formed by the second electrode layer 12 , the source electrode 6 and the drain electrode 7 .
  • the time-division and alternate light emission of the first light-emitting layer 4 and the second light-emitting layer 10 can be realized.
  • the surfaces of the source electrode 6 , the drain electrode 7 and the insulating layer 8 away from the first electrode layer 2 are all located in the same plane.
  • the source electrode 6 and the drain electrode 7 are prepared by using a mask as shown in FIG. 4a , using a mask as shown in FIG. 4b to prepare the insulating layer 8, so that the surfaces of the source electrode 6, the drain electrode 7 and the insulating layer 8 away from the first electrode layer 2 are all located in the same plane.
  • the first opening region 101 as shown in Figure 4a corresponds to the source electrode 6,
  • the second opening region 102 as shown in Figure 4a corresponds to the drain electrode 7, and the third opening region 103 as shown in Figure 4b corresponds to on the insulating layer 8.
  • the material of the insulating layer 8 is a light-transmitting insulating material.
  • the light-transmitting insulating material includes any one or a combination of lithium fluoride, zinc oxide and 4,4'-bis(9-carbazole)biphenyl.
  • Embodiments of the present application provide a light-emitting substrate, including a plurality of light-emitting devices as above.
  • the light-emitting substrate is a backlight substrate
  • the light emitting color of the first light emitting layer 4 of the light emitting device and the light emitting color of the second light emitting layer 10 of the light emitting device are both blue; at this time, the first light emitting layer 4 and the second light emitting layer 10 are set
  • the direction of the light output is the same, and the material of each film layer on the light output path is set as a light-transmitting material.
  • a display substrate After disposing the quantum dot color conversion layer on the backlight substrate whose emission color is blue, a display substrate can be formed.
  • the luminescent color of one of the first luminescent layer 4 and the second luminescent layer 10 is yellow, and the luminescent color of the other is blue; at this time, the first luminescent layer 4 and the second luminescent layer are set 10 have the same light emitting direction, and the material of each film layer on the light emitting path is set to be a light-transmitting material. After color mixing, the color of the light source of the backlight substrate is white.
  • a display substrate After disposing a color filter layer on the backlight substrate whose emission color is white, a display substrate can be formed.
  • the light-emitting substrate is a display substrate; the light-emitting substrate includes a plurality of light-emitting device groups arranged in an array, and the light-emitting device group includes a plurality of light-emitting devices with different light-emitting colors; wherein, the first light-emitting device in the same light-emitting device
  • the first light-emitting layer 4 and the second light-emitting layer 10 have the same light-emitting color, and the light-emitting directions of the two light-emitting layers 4 are the same.
  • the light emitting directions of the first light emitting layer 4 and the second light emitting layer 10 may be the same, or the light emitting directions may be different.
  • the light-emitting directions of the first light-emitting layer 4 and the second light-emitting layer 10 are the same as an example for description.
  • the insulating layer 8 is provided on the same layer as the source electrode 6 and the drain electrode 7, and the insulating layer 8 is provided between the source electrode 6 and the drain electrode 7, and then the source and drain electrodes Symmetric light-emitting layers, dielectric layers and electrode layers as shown in Figure 1 are arranged on both sides to obtain a light-emitting transistor structure with double electrode layers and double light-emitting layers.
  • Two electrode layers 12 By controlling the two electrode layers (the first electrode layer 2 and the second electrode layer respectively Two electrode layers 12) can make the two light-emitting layers (the first light-emitting layer 4 and the second light-emitting layer 10) emit light independently, and by setting different light-emitting layer materials, it is possible to achieve the effect of mixing light in multiple colors or increase the light intensity Effect.
  • An embodiment of the present application provides a control method of a light emitting device, as shown in FIG. 5 , the control method includes:
  • the drain electrode 7 of the light emitting device may be electrically connected to the data signal line to provide the second voltage signal Vd (Vdata) to the drain electrode 7 .
  • the third electrical signal Vg1 on the first electrode layer 2 under the control of the third electrical signal, when the transistor formed by the first electrode layer 2, the source electrode 6 and the drain electrode 7 When the gate-source voltage is greater than the threshold voltage of the transistor, conduction is conducted between the source electrode 6 and the drain electrode 7 of the transistor, and the first light-emitting layer 4 is between the first electrode layer 2 and the source-drain (6/7). Under the control of the first electrode layer 2 , the first light emitting layer 4 emits light, and by adjusting the voltage of the first electrode layer 2 , the light intensity of the first light emitting layer 4 can be adjusted.
  • S904 providing a fourth voltage signal to the second electrode layer 12 of the light emitting device; the fourth voltage signal is configured to control the second light emitting layer 10 of the light emitting device to emit light; wherein, the first light emitting layer and the second light emitting layer are configured to be able to Simultaneously illuminated or capable of alternately emitting light.
  • the fourth electrical signal Vg2 on the second electrode layer 12 under the control of the fourth electrical signal, when the transistor formed by the second electrode layer 12, the source electrode 6 and the drain electrode 7
  • the gate-source voltage is greater than the threshold voltage of the transistor
  • conduction is conducted between the source electrode 6 and the drain electrode 7 of the transistor
  • the second light-emitting layer 10 is between the second electrode layer 12 and the source-drain (6/7).
  • the second light emitting layer 10 emits light, and by adjusting the voltage of the second electrode layer 12 , the light intensity of the second light emitting layer 10 can be adjusted.
  • the third voltage signal Vg1 and the fourth voltage signal Vg2 may have the same polarity, and may be the same electrical signal with the same polarity and the same magnitude.
  • the polarities of the third voltage signal Vg1 and the fourth voltage signal Vg2 may be opposite.
  • the drain electrode 7 of the light emitting device may be electrically connected to the data signal line to provide the drain electrode 7 with a second voltage signal Vd (Vdata).
  • Vd voltage signal
  • the timing diagram of the second voltage signal Vd is shown in FIG. 3b.
  • the gate voltage Vg and the source-drain voltage Vd synchronously work in a positive voltage period, and when the gate-source voltage is greater than the threshold voltage of the transistor (Vgs>Vth), the first light-emitting layer 4 and Electrons accumulate at the interface between the first gate dielectric layers 3 to form a conductive channel, and the first light emitting layer 4 emits light (marked as 4L in FIG. 4b ).
  • the gate-source voltage at this time is the voltage between the first electrode layer 2 and the source electrode 6
  • the threshold voltage of the transistor is the threshold voltage of the transistor formed by the first electrode layer 2 , the source electrode 6 and the drain electrode 7 .
  • the gate voltage Vg and the source-drain voltage Vd synchronously work in the negative voltage period, and when the gate-source voltage is greater than the threshold voltage of the transistor (Vgs>Vth), the second light-emitting layer 10 and the second gate dielectric layer 11 Holes accumulate at the interface between them and form a conductive channel, and the second light-emitting layer 10 emits light (marked as 10L in FIG. 4b ).
  • the gate-source voltage at this time is the voltage between the second electrode layer and the source electrode
  • the threshold voltage of the transistor is the threshold voltage of the transistor formed by the second electrode layer 12 , the source electrode 6 and the drain electrode 7 .
  • the time-division and alternate light emission of the first light-emitting layer 4 and the second light-emitting layer 10 can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种发光器件及其控制方法、发光基板,涉及显示技术领域,该发光器件包括:依次层叠设置的第一电极层、第一介质层、第一发光层、第二发光层、第二介质层和第二电极层;源电极和漏电极,所述源电极和所述漏电极同层设置、且均位于所述第一发光层和所述第二发光层之间;绝缘层,与所述源电极和所述漏电极同层设置、且位于所述源电极和所述漏电极之间。通过分别控制两个电极层,可以使得两个发光层分别独立发光,通过设置不同的发光层材料,能够实现多种颜色混合发光的效果或者增加光强度的效果。

Description

发光器件及其控制方法、发光基板
相关申请的交叉引用
本申请要求在2021年11月3日提交中国专利局、申请号为202111281115.9、名称为″发光器件及其控制方法、发光基板″的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种发光器件及其控制方法、发光基板。
背景技术
有机发光晶体管(Organic Light Emitting Transistor,OLET)是一种将薄膜晶体管(Thin Film Transistor,TFT)和有机发光二极管(Organic Light Emitting Diode,OLED)集成在一起的技术,通过利用TFT的栅极电压调控电流,进一步控制OLED的发光。
发明内容
本申请的实施例采用如下技术方案:
第一方面,本申请的实施例提供了一种发光器件,包括:
依次层叠设置的第一电极层、第一介质层、第一发光层、第二发光层、第二介质层和第二电极层;
源电极和漏电极,所述源电极和所述漏电极同层设置、且均位于所述第一发光层和所述第二发光层之间;
绝缘层,与所述源电极和所述漏电极同层设置、且位于所述源电极和所述漏电极之间。
在本申请的一些实施例中,所述发光器件还包括第一载流子传输层和第二载流子传输层;
其中,所述第一载流子传输层位于所述第一发光层远离所述第一电极层的一侧;所述第二载流子传输层位于所述第二发光层和所述第一发光层之间、且位于所述绝缘层远离所述第一发光层的一侧。
在本申请的一些实施例中,所述第一载流子传输层和所述第二载流子传输层均为电子传输层。
在本申请的一些实施例中,所述第一载流子传输层和所述第二载流子传输层均为空穴传输层。
在本申请的一些实施例中,所述第一载流子传输层和所述第二载流子传输层中的其中一个为电子传输层,另一个为空穴传输层。
在本申请的一些实施例中,所述第一电极层和所述第二电极层被配置为接收极性相同的电信号,且所述第一发光层和所述第二发光层被配置为同时发光。
在本申请的一些实施例中,所述第一电极层和所述第二电极层电连接;
所述第一电极层和所述第二电极层被配置为接收同一电信号。
在本申请的一些实施例中,所述第一电极层和所述第二电极层被配置为接收极性相反的电信号,且所述第一发光层和所述第二发光层被配置为同时发光。
在本申请的一些实施例中,所述第一电极层和所述第二电极层电连接;
所述第一电极层和所述第二电极层被配置为接收同一电信号且交替发光。
在本申请的一些实施例中,其中,所述源电极、所述漏电极和所述绝缘层远离所述第一电极层的表面均位于同一平面内。
在本申请的一些实施例中,其中,所述绝缘层的材料为透光绝缘材料。
在本申请的一些实施例中,所述透光绝缘材料包括氟化锂、氧化锌和4,4’-二(9-咔唑)联苯中的任意一种或多种的组合。
第二方面,本申请的实施例提供了一种发光基板,包括多个如上所述的发光器件。
在本申请的一些实施例中,所述发光基板为背光基板;
其中,所述发光器件的第一发光层的发光颜色和所述发光器件的第二发光层的发光颜色均为蓝色;
或者,所述第一发光层和所述第二发光层的其中一个的发光颜色为黄色,另一个的发光颜色为蓝色。
在本申请的一些实施例中,所述发光基板为显示基板;
所述发光基板包括阵列排布的多个发光器件组,所述发光器件组包括多个发光颜色不同的所述发光器件;
其中,同一个所述发光器件中的第一发光层和第二发光层的发光颜色相同。
第三方面,本申请的实施例提供了一种发光器件的控制方法,该控制方法包括:
向所述发光器件的源电极提供第一电压信号;
向所述发光器件的漏电极提供第二电压信号;
向所述发光器件的第一电极层提供第三电压信号;所述第三电压信号被配置为控制所述发光器件的第一发光层发光;
向所述发光器件的第二电极层提供第四电压信号;所述第四电压信号被配置为控制所述发光器件的第二发光层发光;其中,所述第一发光层和所述第二发光层被配置为能够同时发光或能够交替发光。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1-图3a为本申请实施例提供的七种不同的发光器件的结构示意图;
图3b为图3a所示的发光器件的控制时序图;
图4a为本申请实施例提供的源电极和漏电极的掩膜版结构示意图;
图4b为本申请的实施例提供的绝缘层的掩膜版结构示意图;
图5为本申请的实施例提供的一种发光器件的控制方法流程图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
随着显示技术的快速发展,有机发光二极管(Organic Light-Emitting Diode,OLED)显示技术由于其具有低驱动电压、自发光、广视角、高分辨率和快速响应等优点吸引了众多的关注和研究。其中,在OLED显示产品中,薄膜晶体管(Thin Film Transistor,TFT)是控制OLED像素单元的开关,起到控制OLED像素单元开关和调控通过OLED像素单元的电流大小的作用,是OLED显示产品像素驱动电路的重要组成部分。
相关技术中,为了降低OLED显示产品中像素驱动电路的复杂度,较少薄膜晶体管的数量,提高像素密度,将薄膜晶体管和有机发光二极管集成在一起,得到了一种有机发光晶体管。然而,目前的有机发光晶体管器件的发光亮度和发光效率难以提升。
本申请的实施例提供了一种发光器件,参考图1所示,包括:
依次层叠设置的第一电极层2、第一介质层3、第一发光层4、第二发光层10、第二介质层11和第二电极层12;
源电极6和漏电极7,源电极6和漏电极7同层设置、且均位于第一发光层4和第二发光层10之间;
绝缘层8,与源电极6和漏电极7同层设置、且位于源电极6和漏电极7之间。
在示例性的实施例中,第一电极层2和第二电极层12均为栅极层。
在第一电极层2和第二电极层12提供的栅极电压和源漏极电压的共同作用下,在发光层和介质层的界面处(第一发光层4和第一介质层3的界面处,以及第二发光层10和第二介质层11的界面处)形成导电沟道,在源电极6和漏电极7的作用下形成沟道电流,使得源电极6和漏电极7之间导通;另外,在第一电极层2的控制下,空穴和电子分别从源电极6和漏电极7注入到第一发光层4中,在第二电极层12的控制下,空穴和电子分别从源电极6和漏电极7注入到第二发光层10中,空穴和电子在发光层(第一发光层4和第二发光层10)中相遇形成激子,随后,部分激子发生复合,在导电沟道附近辐射发光。
在示例性的实施例中,第一电极层2和第二电极层12的材料可以均为透光材料,例如:氧化铟锡(ITO)。
在示例性的实施例中,第一电极层2的材料为透光导电材料,例如:氧化铟锡(ITO)。第二电极层12的材料为金属,例如:金、银、铝或镁中的任意一种或多种的组合。
在示例性的实施例中,第一介质层3和第二介质层11作为栅绝缘层。
示例性的,第一介质层3和第二介质层11的材料可以为氧化锌(Al 2O 3)、氮化硅(SiNx)、氧化硅(SiO 2)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)中的一种或多种的组合。
示例性的,第一介质层3和第二介质层11可以为包括一种绝缘材料的单膜层结构;或者,可以为包括至少两种绝缘材料的叠层结构。
示例性的,第一介质层3和第二介质层11的材料、结构可以相同。
在示例性的实施例中,源电极6和漏电极7的材料可以为金、银、铜、铝或镁中一种或多种的组合。
示例性的:当源电极6和漏电极7的材料为多种金属的组合时,其可以为例如铜/铝的叠层结构,或者,也可以为铜铝合金的单膜层结构。
在示例性的实施例中,综合考虑功函数、导电性和透光性的因素,源电极6和漏电极7的材料设置为金。
示例性的,源电极6和漏电极7沿垂直于发光层(第一发光层4或第二发光层10)的方向的厚度相同,且厚度范围均为
Figure PCTCN2022120274-appb-000001
例如:
Figure PCTCN2022120274-appb-000002
Figure PCTCN2022120274-appb-000003
在示例性的实施例中,第一发光层4和第二发光层10在发光器件中的出光方向相同;或者,第一发光层4和第二发光层10在发光器件中的出光方向相反。
示例性的,在第一发光层4和第二发光层10在发光器件中的出光方向相同的情况下,在出光路径上的各膜层的材料均为透光材料。
示例性的,在第一发光层4和第二发光层10在发光器件中的出光方向相反的情况下,第一电极层2和第二电极层12的材料均为透光材料。
在一些实施例中,第一发光层4和第二发光层10在发光器件中的出光方向相同的情况下,发光器件可以用作背光源或者直接用作显示。
具体的,当发光器件用作背光源时,第一种情况:第一发光层4和第二发光层10的发光颜色可以相同,且发光颜色均为蓝色,以形成蓝色的背光源。第二种情况:第一发光层4和第二发光层10的发光颜色可以不同,例如其中一个的发光颜色为蓝色,另外一个的发光颜色为黄色,以混光之后形成白色的背光源。
当发光器件直接用作显示时,每一个发光器件作为显示基板的一个子像素,且同一个发光器件中的第一发光层4和第二发光层10的发光颜色相同,以达到提高光强度的效果。
在示例性的实施例中,第一发光层4和第二发光层10的材料可以均为Alq 3(三(8-羟基喹啉)铝)、Ir(ppy) 3(三(2-苯基吡啶)铱)或Firpic(双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱中的任意一种。
在示例性的实施例中,绝缘层8与源电极6和漏电极7同层设置、且位于源电极6和漏电极7之间,用以作为源电极6和漏电极7之间的绝缘层,避免源电极6和漏电极7接触,该绝缘层8的设置方式在保证发光器件的两个发光层分别独立发光的情况下,还能够简化发光器件的结构。
示例性的,绝缘层8的材料可以为透光绝缘材料。例如,透光绝缘材料可以包括氟化锂(LiF,一定厚度相当于绝缘层)、氧化锌(ZnO)或4,4’-二(9-咔唑)联苯中的一种。
示例性的,绝缘层8沿垂直于发光层(第一发光层4或第二发光层10)的方向的厚度与源电极6和漏电极7沿垂直于发光层方向的厚度均相同,且厚度范围为
Figure PCTCN2022120274-appb-000004
例如:
Figure PCTCN2022120274-appb-000005
Figure PCTCN2022120274-appb-000006
在示例性的实施例中,源电极6、漏电极7和绝缘层8均可以采用真空蒸镀的工艺制备。
相较于相关技术中的OLED发光器件,本申请的实施例中提供的发光器件将TFT和OLED结合到一个器件中,利用栅极电压控制发光电流,进而控制发光强度,将发光和控制两部分集成到一个器件中,不仅提高了器件的集成度,简化了器件结构,更提高了能量的利用效率;另外,由于发光晶体管的载流子迁移率较有机发光二极管高,可以降低激子猝灭的概率,且通过源电极6、漏电极7和栅极层(第一电极层2或第二电极层12)三个电极,能够更好的控制空穴和电子的注入,从而提高发光效率和发光强度。
另外,本申请的实施例中,通过将绝缘层8与源电极6和漏电极7同层设置,并将绝缘层8设置于源电极6和漏电极7之间,再在源漏电极的两侧设置如图1所示的对称的发光层、介质层和电极层,得到一种双电极层和双发光层的发光晶体管结构,通过分别控制两个电极层(第一电极层2和第二电极层12),可以使得两个发光层(第一发光层4和第二发光层10)分别独立发光,无需转换源漏电极的电压;通过调整发光层材料,能够实现多种颜色混合发光的效果或者单种发光颜色增加光强的效果,能够解决有机发光晶体管器件亮度低、难以实现叠层结构的问题。
在本申请的一些实施例中,参考图2a所示,发光器件还包括第一载流子传输层5和第二载流子传输层9;其中,第一载流子传输层5位于第一发光层4远离第一电极层2的一侧;第二载流子传输层9位于第二发光层10和第一发光层4之间、且位于绝缘层8远离第一发光层4的一侧。
在本申请的一些实施例中,参考图2b或图2c所示,第一载流子传输层5和第二载流子传输层9传输的载流子类型相同。
在示例性的实施例中,参考图2c所示,第一载流子传输层5和第二载流子传输层9可以均用于传输电子,此时,第一载流子传输层5和第二载流子传输层9均为电子传输层E。
示例性的,电子传输层E的材料可以为NPB(N,N′-二苯基-N,N′-(1-萘基)-1,1′-联苯-4,4′-二胺)、Bphen(4,7-二苯基-1,10-菲罗啉)或TPBi(1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯)中的至少一种。
参考图2c所示,由于第一载流子传输层5和第二载流子传输层9均为电子传输层E,当源电极6接地,在漏电极7上施加一电压Vdata,在第一电极层2和第二电极层12上均施加相同的负电压-Vg时,在第一介质层3和第一发光层4的界面附近正电荷(空穴)积累,在第二介质层11和第二发光层10的界面附近正电荷(空穴)积累,随着Vgs的升高,介质层和发光层的界面附近的电荷密度不断增大,当Vgs(栅源电压)大于晶体管的阈值电压时,最终形成两个对称的导电通道。在导电沟道形成之后,源电极6和漏电极7注入发光层(第一发光层4或第二发光层10)的电子和空穴在发光层中相遇形成激子,随后,部分激子发生复合,在导电沟道附近辐射发光。需要说明的是,在实际应用中,可以根据发光亮度需求对两个电极层施加的电压(Vg)进行调节,且两个电极层的电压大小可以相同,也可以不同。
在示例性的实施例中,参考图2b所示,第一载流子传输层5和第二载流子传输层9可以均用于传输空穴,此时,第一载流子传输层5和第二载流子传输层9均为空穴传输层H。
示例性的,空穴传输层H的材料可以为CBP(4,4′-二(9-咔唑)联苯)或TAPC(4,4′-环己基二[N,N-二(4-甲基苯基)苯胺])中的至少一种。
参考图2b所示,由于第一载流子传输层5和第二载流子传输层9均为空穴传输层H,当源电极6接地,在漏电极7上施加一电压Vdata,在第一电极层2和第二电极层12上均施加相同的正电压Vg时,在第一介质层3和第一发光层4的界面附近负电荷(电子)积累,在第二介质层11和第二发光层10的界面附近负电荷(电子)积累,随着Vgs的升高,介质层和发光层的界面附近的电荷密度不断增大,当Vgs(栅源电压)大于晶体管的阈值电压时,最终形成两个对称的导电通道。在导电沟道形成之后,源电极6和漏电极7注入发光层(第一发光层4或第二发光层10)的电子和空穴在发光层中相遇形成激子,随后,部分激子发生复合,在导电沟道附近辐射发光。
本申请的实施例提供的如图2b或图2c所示的具有对称结构的发光器件(发光晶体管),在第一发光层4和第二发光层10的发光材料相同(或发光颜色相同)且出光方向一致的情况下,通过两个发光层的叠加作用,能够很大程度上提高发光器件的出射光强度。
需要说明的是,由于第一电极层2和第一介质层3之间存在的接触 电阻,与第二电极层12和第二介质层11之间存在的接触电阻可能不同,两个导电沟道的载流子迁移速率可能不同,在实际应用中,可以通过调节第一电极层2的电压大小来控制第一发光层4的发光强度,通过调节第二电极层12的电压大小来控制第二发光层10的发光强度。
在本申请的一些实施例中,参考图2d或图2e所示,第一载流子传输层5和第二载流子传输层9传输的载流子类型不同。
在示例性的实施例中,参考图2d或图2e所示,第一载流子传输层5和第二载流子传输层9中的其中一个为电子传输层E,另一个为空穴传输层H。
示例性的,参考图2e所示,第一载流子传输层5为空穴传输层H,第二载流子传输层9为电子传输层E,当源电极6接地,在漏电极7上施加一电压Vdata,在第一电极层2上施加正电压Vg,在第二电极层12上施加一个负电压-Vg时,在第一介质层3和第一发光层4的界面附近负电荷(电子)积累,在第二介质层11和第二发光层10的界面附近正电荷(空穴)积累,随着Vgs的升高,介质层和发光层的界面附近的电荷密度不断增大,当Vgs(栅源电压)大于晶体管的阈值电压(Vth)时,最终形成两个导电通道。在导电沟道形成之后,源电极6和漏电极7注入发光层(第一发光层4或第二发光层10)的电子和空穴在发光层中相遇形成激子,随后,部分激子发生复合,在各自的导电沟道附近辐射发光。
在示例性的实施例中,在第一载流子传输层5和第二载流子传输层9中的其中一个为电子传输层E,另一个为空穴传输层H的情况下,发光器件具有双极性的导电沟道(电子积累形成的导电沟道和空穴积累形成的导电沟道),在发光器件开启时,能够更加平衡的实现载流子的传输,从而提高发光器件的工作效率。
示例性的,结合图3a和图3b所示,第一载流子传输层5为空穴传输层H,第二载流子传输层9为电子传输层E,当源电极6接地,在漏电极7上施加电压Vdata,在第一电极层2和第二电极层12电上施加同一个具有周期性变化的电压时,其中,图3b为Vg和Vd的电压变化时序图,栅极电压Vg和源漏电压Vd同步变化。
在t1阶段,栅极电压Vg和源漏电压Vd同步工作在正电压时段,且在当栅源电压大于晶体管的阈值电压(Vgs>Vth)时,第一发光层4 和第一栅介质层3之间的界面处电子积累并形成导电沟道,第一发光层4发光(在图4b中标记为4L)。此时的栅源电压为第一电极层2和源电极6之间的电压,晶体管的阈值电压为第一电极层2与源电极6和漏电极7构成的晶体管的阈值电压。
在t2阶段,栅极电压Vg和源漏电压Vd同步工作在负电压时段,且在当栅源电压大于晶体管的阈值电压(Vgs>Vth)时,第二发光层10和第二栅介质层11之间的界面处空穴积累并形成导电沟道,第二发光层10发光(在图4b中标记为10L)。此时的栅源电压为第二电极层和源电极之间的电压,晶体管的阈值电压为第二电极层12与源电极6和漏电极7构成的晶体管的阈值电压。
这样,通过第一电极层2和第二电极层12的双栅极的控制下,能够实现第一发光层4和第二发光层10的分时交替发光。
在示例性的实施例中,第一发光层4的发光颜色为蓝色,第二发光层10的发光颜色为黄色,由于在实际应用中,第一发光层4和第二发光层10的分时交替发光的交替频率已经超出人眼的察觉范围,人眼感知到的是第一发光层4发出的蓝光和第二发光层10发出的黄光混合之后形成的白色光,从而能够将该发光器件用作背光。需要说明的时,通过双发光层交替发光、再混合为白光的方式,可以根据实际对背光源发光波段的需求,分别调整两个发光层发出的光线的波段,以获得较为理想的背光源。
在本申请的一些实施例中,第一载流子传输层5和第二载流子传输层9均为电子传输层E或者均为空穴传输层H的情况下,第一电极层2和第二电极层12被配置为接收极性相同的电信号,且第一发光层4和第二发光层10被配置为同时发光。
示例性的,可以将第一电极层2和第二电极层12电连接;使得第一电极层2和第二电极层12接收同一电信号。
示例性的,第一载流子传输层5和第二载流子传输层9均为电子传输层E的情况下,第一电极层2和第二电极层12被配置为均接收负电压,第一介质层3与第一发光层4的界面处、以及第二介质层11与第二发光层10的界面处均为正电荷(空穴)积累,随着Vgs的升高,介质层和发光层的界面附近的电荷密度不断增大,当Vgs(栅源电压)大于晶体管的阈值电压时,最终形成双导电通道。在第一发光层4和第二 发光层10中形成的激子在各自对应的导电沟道附近辐射发光。
示例性的,第一载流子传输层5和第二载流子传输层9均为空穴传输层H的情况下,第一电极层2和第二电极层12被配置为均接收正电压,第一介质层3与第一发光层4的界面处、以及第二介质层11与第二发光层10的界面处均为负电荷(电子)积累,随着Vgs的升高,介质层和发光层的界面附近的电荷密度不断增大,当Vgs(栅源电压)大于晶体管的阈值电压时,最终形成双导电通道。在第一发光层4和第二发光层10中形成的激子在各自对应的导电沟道附近辐射发光。
在本申请的一些实施例中,第一载流子传输层5和第二载流子传输层9中的其中一个为电子传输层E,另一个为空穴传输层H的情况下,第一电极层2和第二电极层12被配置为接收极性相反的电信号,且第一发光层4和第二发光层10被配置为同时发光。
示例性的,参考图2e所示,第一载流子传输层5为空穴传输层H,第二载流子传输层9为电子传输层E,在第一电极层2上施加正电压Vg,在第二电极层12上施加一个负电压-Vg时,在第一介质层3和第一发光层4的界面附近负电荷(电子)积累,在第二介质层11和第二发光层10的界面附近正电荷(空穴)积累,随着Vgs的升高,介质层和发光层的界面附近的电荷密度不断增大,当Vgs(栅源电压)大于晶体管的阈值电压(Vth)时,最终形成两个导电通道。在导电沟道形成之后,源电极6和漏电极7注入发光层(第一发光层4或第二发光层10)的电子和空穴在发光层中相遇形成激子,随后,部分激子发生复合,在各自的导电沟道附近同时辐射发光。
在本申请的一些实施例中,第一载流子传输层5和第二载流子传输层9中的其中一个为电子传输层E,另一个为空穴传输层H的情况下,如图3a所示,将第一电极层2和第二电极层12电连接;第一电极层2和第二电极层12被配置为接收同一电信号且交替发光。
示例性的,第一电极层2和第二电极层12接收同一电信号为如图3b所示的周期性变化的电压信号。
具体的,在t1阶段,栅极电压Vg和源漏电压Vd同步工作在正电压时段,且在当栅源电压大于晶体管的阈值电压(Vgs>Vth)时,第一发光层4和第一栅介质层3之间的界面处电子积累并形成导电沟道,第一发光层4发光(在图4b中标记为4L)。此时的栅源电压为第一电极 层2和源电极6之间的电压,晶体管的阈值电压为第一电极层2与源电极6和漏电极7构成的晶体管的阈值电压。
在t2阶段,栅极电压Vg和源漏电压Vd同步工作在负电压时段,且在当栅源电压大于晶体管的阈值电压(Vgs>Vth)时,第二发光层10和第二栅介质层11之间的界面处空穴积累并形成导电沟道,第二发光层10发光(在图4b中标记为10L)。此时的栅源电压为第二电极层和源电极之间的电压,晶体管的阈值电压为第二电极层12与源电极6和漏电极7构成的晶体管的阈值电压。
这样,通过在第一电极层2和第二电极层12的双栅极的控制下,能够实现第一发光层4和第二发光层10的分时交替发光。
在本申请的一些实施例中,其中,源电极6、漏电极7和绝缘层8远离第一电极层2的表面均位于同一平面内。
示例性的,在实际应用中,为了保证第二载流子传输层9的膜层具有较好的平整性和连续性,采用如图4a所示的掩膜版制备源电极6和漏电极7,采用如图4b所示的掩膜版制备绝缘层8,使得源电极6、漏电极7和绝缘层8远离第一电极层2的表面均位于同一平面内。其中,如图4a中所示的第一开口区101对应于源电极6,如图4a中所示的第二开口区102对应于漏电极7,如图4b所示的第三开口区103对应于绝缘层8。
在本申请的一些实施例中,其中,绝缘层8的材料为透光绝缘材料。
在本申请的一些实施例中,透光绝缘材料包括氟化锂、氧化锌和4,4’-二(9-咔唑)联苯中的任意一种或多种的组合。
本申请的实施例提供了一种发光基板,包括多个如上的发光器件。
在本申请的一些实施例中,发光基板为背光基板;
在示例性的实施例中,发光器件的第一发光层4的发光颜色和发光器件的第二发光层10的发光颜色均为蓝色;此时,设置第一发光层4和二发光层10的出光方向相同,并设置出光路径上各个膜层的材料为透光材料,通过双重发光层的叠加作用,可以很大程度上提高背光基板的光源亮度。
在发光颜色为蓝色的背光基板上设置量子点色转换层之后,可以构成显示基板。
在示例性的实施例中,第一发光层4和第二发光层10的其中一个 的发光颜色为黄色,另一个的发光颜色为蓝色;此时,设置第一发光层4和二发光层10的出光方向相同,并设置出光路径上各个膜层的材料为透光材料,经过混色之后,该背光基板的光源的颜色为白色。
在发光颜色为白色的背光基板上设置彩色滤光层之后,可以构成显示基板。
在本申请的一些实施例中,发光基板为显示基板;发光基板包括阵列排布的多个发光器件组,发光器件组包括多个发光颜色不同的发光器件;其中,同一个发光器件中的第一发光层4和第二发光层10的发光颜色相同,且两个发光层4的出光方向相同。
需要说明的是,第一发光层4和第二发光层10的出光方向可以相同,或者,出光方向也可以不同。在本申请的实施例中,均以第一发光层4和第二发光层10的出光方向相同为例进行说明。
本申请的实施例提供的发光基板,通过将绝缘层8与源电极6和漏电极7同层设置,并将绝缘层8设置于源电极6和漏电极7之间,再在源漏电极的两侧设置如图1所示的对称的发光层、介质层和电极层,得到一种双电极层和双发光层的发光晶体管结构,通过分别控制两个电极层(第一电极层2和第二电极层12),可以使得两个发光层(第一发光层4和第二发光层10)分别独立发光,通过设置不同的发光层材料,能够实现多种颜色混合发光的效果或者增加光强度的效果。
本申请的实施例提供了一种发光器件的控制方法,参考图5所示,该控制方法包括:
S901、向发光器件的源电极6提供第一电压信号;
示例性的,发光器件的源电极6接地,使得第一电压信号Vs=0V。
S902、向发光器件的漏电极7提供第二电压信号;
示例性的,发光器件的漏电极7可以和数据信号线电连接,以向漏电极7提供第二电压信号Vd(Vdata)。
S903、向发光器件的第一电极层2提供第三电压信号;第三电压信号被配置为控制发光器件的第一发光层4发光;
在示例性的实施例中,通过在第一电极层2上施加第三电信号Vg1,在第三电信号的控制下,当第一电极层2、源电极6和漏电极7构成的晶体管的栅源电压大于该晶体管的阈值电压时,该晶体管的源电极6和漏电极7之间导通,第一发光层4在第一电极层2和源漏极(6/7)之 间,在第一电极层2的控制下,第一发光层4发光,且通过调整第一电极层2的电压大小,可以调节第一发光层4的发光强度。
S904、向发光器件的第二电极层12提供第四电压信号;第四电压信号被配置为控制发光器件的第二发光层10发光;其中,第一发光层和第二发光层被配置为能够同时发光或能够交替发光。
在示例性的实施例中,通过在第二电极层12上施加第四电信号Vg2,在第四电信号的控制下,当第二电极层12、源电极6和漏电极7构成的晶体管的栅源电压大于该晶体管的阈值电压时,该晶体管的源电极6和漏电极7之间导通,第二发光层10在第二电极层12和源漏极(6/7)之间,在第二电极层12的控制下,第二发光层10发光,且通过调整第二电极层12的电压大小,可以调节第二发光层10的发光强度。
在示例性的实施例中,第三电压信号Vg1和第四电压信号Vg2的极性可以相同,且可以为极性相同、大小相同的同一电信号。
在示例性的实施例中,第三电压信号Vg1和第四电压信号Vg2的极性可以相反。
具体的,以图3a所示的发光器件的结构为例,结合图3b所示的时序图,具体说明该发光器件的控制方法。
S1、向发光器件的源电极6提供第一电压信号,发光器件的源电极6接地,使得第一电压信号Vs=0V。
S2、向发光器件的漏电极7提供第二电压信号;
示例性的,发光器件的漏电极7可以和数据信号线电连接,以向漏电极7提供第二电压信号Vd(Vdata),第二电压信号Vd的时序图如图3b所示。
S3、向发光器件的第一电极层2和第二电极层12同时提供第三电压信号Vg,其中,第三电压信号Vg和第二电压信号Vd具有相同的变化周期。
参考图4b所示,在t1阶段,栅极电压Vg和源漏电压Vd同步工作在正电压时段,且在当栅源电压大于晶体管的阈值电压(Vgs>Vth)时,第一发光层4和第一栅介质层3之间的界面处电子积累并形成导电沟道,第一发光层4发光(在图4b中标记为4L)。此时的栅源电压为第一电极层2和源电极6之间的电压,晶体管的阈值电压为第一电极层2与源电极6和漏电极7构成的晶体管的阈值电压。
在t2阶段,栅极电压Vg和源漏电压Vd同步工作在负电压时段,且在当栅源电压大于晶体管的阈值电压(Vgs>Vth)时,第二发光层10和第二栅介质层11之间的界面处空穴积累并形成导电沟道,第二发光层10发光(在图4b中标记为10L)。此时的栅源电压为第二电极层和源电极之间的电压,晶体管的阈值电压为第二电极层12与源电极6和漏电极7构成的晶体管的阈值电压。
这样,通过在第一电极层2和第二电极层12的双栅极的控制下,能够实现第一发光层4和第二发光层10的分时交替发光。
对于发光器件的具体结构不同时,其控制方法也存在区别,具体可以参考前文中对不同结构发光器件的工作原理解释,这里不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种发光器件,其中,包括:
    依次层叠设置的第一电极层、第一介质层、第一发光层、第二发光层、第二介质层和第二电极层;
    源电极和漏电极,所述源电极和所述漏电极同层设置、且均位于所述第一发光层和所述第二发光层之间;
    绝缘层,与所述源电极和所述漏电极同层设置、且位于所述源电极和所述漏电极之间。
  2. 根据权利要求1所述的发光器件,其中,所述发光器件还包括第一载流子传输层和第二载流子传输层;
    其中,所述第一载流子传输层位于所述第一发光层远离所述第一电极层的一侧;所述第二载流子传输层位于所述第二发光层和所述第一发光层之间、且位于所述绝缘层远离所述第一发光层的一侧。
  3. 根据权利要求2所述的发光器件,其中,所述第一载流子传输层和所述第二载流子传输层均为电子传输层。
  4. 根据权利要求2所述的发光器件,其中,所述第一载流子传输层和所述第二载流子传输层均为空穴传输层。
  5. 根据权利要求2所述的发光器件,其中,所述第一载流子传输层和所述第二载流子传输层中的其中一个为电子传输层,另一个为空穴传输层。
  6. 根据权利要求3或4所述的发光器件,其中,所述第一电极层和所述第二电极层被配置为接收极性相同的电信号,且所述第一发光层和所述第二发光层被配置为同时发光。
  7. 根据权利要求6所述的发光器件,其中,所述第一电极层和所述第二电极层电连接;
    所述第一电极层和所述第二电极层被配置为接收同一电信号。
  8. 根据权利要求5所述的发光器件,其中,所述第一电极层和所述第二电极层被配置为接收极性相反的电信号,且所述第一发光层和所述第二发光层被配置为同时发光。
  9. 根据权利要求5所述的发光器件,其中,所述第一电极层和所述第二电极层电连接;
    所述第一电极层和所述第二电极层被配置为接收同一电信号且交替发光。
  10. 根据权利要求1-5、7-9任一项所述的发光器件,其中,所述源电极、所述漏电极和所述绝缘层远离所述第一电极层的表面均位于同一平面内。
  11. 根据权利要求1所述的发光器件,其中,所述绝缘层的材料为透光绝缘材料。
  12. 根据权利要求11所述的发光器件,其中,所述透光绝缘材料包括氟化锂、氧化锌和4,4’-二(9-咔唑)联苯中的任意一种或多种的组合。
  13. 一种发光基板,其中,包括多个如权利要求1-12中任一项所述的发光器件。
  14. 根据权利要求13所述的发光基板,其中,所述发光基板为背光基板;
    其中,所述发光器件的第一发光层的发光颜色和所述发光器件的第二发光层的发光颜色均为蓝色;
    或者,所述第一发光层和所述第二发光层的其中一个的发光颜色为黄色,另一个的发光颜色为蓝色。
  15. 根据权利要求13所述的发光基板,其中,所述发光基板为显示基板;
    所述发光基板包括阵列排布的多个发光器件组,所述发光器件组包括多个发光颜色不同的所述发光器件;
    其中,同一个所述发光器件中的第一发光层和第二发光层的发光颜色相同。
  16. 一种发光器件的控制方法,应用于控制如权利要求1-12中任一项所述的发光器件发光,所述控制方法包括:
    向所述发光器件的源电极提供第一电压信号;
    向所述发光器件的漏电极提供第二电压信号;
    向所述发光器件的第一电极层提供第三电压信号;所述第三电压信号被配置为控制所述发光器件的第一发光层发光;
    向所述发光器件的第二电极层提供第四电压信号;所述第四电压信号被配置为控制所述发光器件的第二发光层发光;其中,所述第一发光 层和所述第二发光层被配置为能够同时发光或能够交替发光。
PCT/CN2022/120274 2021-11-03 2022-09-21 发光器件及其控制方法、发光基板 WO2023077987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111281115.9A CN116096118A (zh) 2021-11-03 2021-11-03 发光器件及其控制方法、发光基板
CN202111281115.9 2021-11-03

Publications (1)

Publication Number Publication Date
WO2023077987A1 true WO2023077987A1 (zh) 2023-05-11

Family

ID=86199640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120274 WO2023077987A1 (zh) 2021-11-03 2022-09-21 发光器件及其控制方法、发光基板

Country Status (2)

Country Link
CN (1) CN116096118A (zh)
WO (1) WO2023077987A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288678A (zh) * 2018-03-29 2018-07-17 佛山科学技术学院 一种双蓝光层杂化白光有机电致发光器件
US20180331130A1 (en) * 2017-05-09 2018-11-15 Au Optronics Corporation Thin film transistor and photoelectric device thereof
US20190229017A1 (en) * 2017-10-09 2019-07-25 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Tft substrate and manufacturing method thereof and manufacturing method of oled panel
CN111785744A (zh) * 2020-08-27 2020-10-16 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180331130A1 (en) * 2017-05-09 2018-11-15 Au Optronics Corporation Thin film transistor and photoelectric device thereof
US20190229017A1 (en) * 2017-10-09 2019-07-25 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Tft substrate and manufacturing method thereof and manufacturing method of oled panel
CN108288678A (zh) * 2018-03-29 2018-07-17 佛山科学技术学院 一种双蓝光层杂化白光有机电致发光器件
CN111785744A (zh) * 2020-08-27 2020-10-16 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN116096118A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
KR102277563B1 (ko) 백색 유기 발광 소자
KR101801244B1 (ko) 유기전계발광소자
US8173460B2 (en) Control circuit for stacked OLED device
TWI596812B (zh) 有機發光二極體、包含其之有機發光顯示裝置、以及控制有機發光二極體雙面發光之方法
WO2021114969A1 (zh) 一种发光结构、显示装置及照明装置
US10269873B2 (en) Electroluminescent display device
WO2018161552A1 (zh) 发光二极管、阵列基板、发光器件及显示装置
KR20120119097A (ko) 유기 전계 발광 장치
CN110890473B (zh) 具有可调变发光颜色的有机发光器件和显示设备
KR20180047820A (ko) 양자점 발광다이오드 및 이를 포함하는 양자점 발광표시장치
US20180323336A1 (en) Graphene display
KR20140111839A (ko) 유기 발광 표시 장치
WO2020232911A1 (zh) 电致发光显示装置
KR101182268B1 (ko) 유기 발광 장치
US9105592B2 (en) Organic electronic light emitting device and method of fabricating the same
KR102065366B1 (ko) 유기 발광 소자
US10043856B2 (en) Organic light emitting display device and organic light emitting stacked structure
EP3226319B1 (en) Organic light emitting display device
CN103325815B (zh) 有机发光器件和制造有机发光器件的方法
WO2023077987A1 (zh) 发光器件及其控制方法、发光基板
KR20160098605A (ko) 유기 발광 표시 장치 및 이의 제조 방법
CN108448001A (zh) 一种发光器件、电致发光显示面板及显示装置
TW201537802A (zh) 有機發光二極體及使用其之顯示面板
CN100372124C (zh) 双面发光有机电激发光装置及电子装置
CN103594484A (zh) 有机发光装置及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270975

Country of ref document: US