WO2021114969A1 - 一种发光结构、显示装置及照明装置 - Google Patents

一种发光结构、显示装置及照明装置 Download PDF

Info

Publication number
WO2021114969A1
WO2021114969A1 PCT/CN2020/126796 CN2020126796W WO2021114969A1 WO 2021114969 A1 WO2021114969 A1 WO 2021114969A1 CN 2020126796 W CN2020126796 W CN 2020126796W WO 2021114969 A1 WO2021114969 A1 WO 2021114969A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
transparent electrode
electrode
layer
Prior art date
Application number
PCT/CN2020/126796
Other languages
English (en)
French (fr)
Inventor
王允军
孙佳
王红琴
Original Assignee
苏州星烁纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州星烁纳米科技有限公司 filed Critical 苏州星烁纳米科技有限公司
Priority to US17/784,678 priority Critical patent/US20230013968A1/en
Publication of WO2021114969A1 publication Critical patent/WO2021114969A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • This application belongs to the field of light emitting technology, and specifically relates to a light emitting structure, a display device and a lighting device.
  • the electroluminescent structure includes an anode, a light-emitting layer and a cathode which are stacked and arranged.
  • the light-emitting layer is mainly used to emit red light, green light or blue light.
  • the electroluminescent structure synthesizes light of a desired color by adjusting the brightness of the three light colors.
  • Tandem stacked structure of p-n type semiconductor connections Although this technology can be realized, the structure is complicated, and the mixed light color will slightly change with the voltage, and it cannot emit pure monochromatic light.
  • Multi-light-emitting layer structure An ultra-thin spacer layer (zinc oxide, polymer, etc.) is used in the middle of each light-emitting layer. Most spacer layers cannot balance hole and electron mobility, have low luminous efficiency, and have a small range of light color change, and cannot emit pure monochromatic light.
  • RGB pixel structure High resolution has always been an important goal in the display field, and once became an important selling point for products such as mobile phones and TVs.
  • the existing light-emitting structure has the problems of difficulty in adjusting the light color and improved display resolution. It is urgent to find a light-emitting structure that can effectively adjust the light color and improve the resolution.
  • the present application provides a light emitting structure, which includes: at least two stacked light emitting layers, the at least two light emitting layers are used to emit at least two colors of light; and transparent electrodes, the transparent electrodes are arranged adjacent to each other. Between luminescent layers.
  • the transparent electrode is a common cathode or a common anode of adjacent light-emitting layers.
  • the light-emitting structure includes two transparent electrodes, and the two transparent electrodes are respectively the anode and/or the cathode of the adjacent light-emitting layer;
  • a spacer is included between the two transparent electrodes
  • the spacer includes a transparent adhesive layer and/or a gas area.
  • the light-emitting structure further includes at least two control circuits, and the control circuit is electrically connected to the light-emitting layer;
  • control circuit and the light-emitting layer are arranged in one-to-one correspondence.
  • the light transmittance of the transparent electrode is 50% to 99.9%
  • the thickness of the transparent electrode is 10 nm to 100 ⁇ m;
  • the light-emitting layer is an organic light-emitting layer and/or a quantum dot light-emitting layer.
  • the material of the transparent electrode includes at least one of one-dimensional and two-dimensional nanomaterials, two-dimensional nanomaterials, metal materials, and conductive metal oxide materials;
  • the material of the transparent electrode is selected from one or more of nano silver wires, nano copper wires, silver, graphene, indium tin oxide, element-doped zinc oxide, and carbon nanotubes.
  • the light emitting structure includes two light emitting layers, the two light emitting layers emit red light and green light respectively, or the two light emitting layers emit red light and blue light respectively, or the two light emitting layers emit green light and blue light respectively, or two layers
  • the light-emitting layer emits blue light and yellow light, respectively.
  • the light emitting structure includes a first electrode, a first hole transport layer, a first light emitting layer, a first electron transport layer, a transparent electrode, a second electron transport layer, a second light emitting layer, a second hole transport layer, and a first electron transport layer.
  • the light transmittance of at least one of the first electrode and the second electrode is 50% to 99.9%;
  • the materials of the first electrode and the second electrode are independently selected from at least one of one-dimensional or two-dimensional nanomaterials, metal materials, and conductive metal oxide materials.
  • the light emitting structure includes three light emitting layers, and the three light emitting layers respectively emit red light, green light and blue light.
  • the light emitting structure includes a first electrode, a first hole transport layer, a first light emitting layer, a first electron transport layer, a first transparent electrode, a second electron transport layer, a second light emitting layer, and a second hole transport layer , The second transparent electrode, the third hole transport layer, the third light-emitting layer, the third electron transport layer and the third electrode;
  • the light transmittance of at least one of the first electrode and the third electrode is 50% to 99.9%;
  • the materials of the first electrode and the third electrode are independently selected from at least one of one-dimensional nanomaterials, two-dimensional nanomaterials, metal materials, and conductive metal oxide materials.
  • each transparent electrode located between adjacent light-emitting layers includes a transparent electrode I and a transparent electrode II, and the transparent electrode I and the transparent electrode II each independently serve as the anode or the cathode of the adjacent light-emitting layer;
  • a spacer is provided between the transparent electrode I and the transparent electrode II;
  • the spacer includes a transparent adhesive layer and/or a gas area.
  • the application also provides a display device including the above-mentioned light-emitting structure.
  • the present application also provides a lighting device, including the above-mentioned light-emitting structure.
  • the embodiment of the present invention provides a light-emitting structure, which includes at least two stacked light-emitting layers and transparent electrodes.
  • the transparent electrodes By arranging the transparent electrodes between adjacent light-emitting layers, the light-emitting structure is effectively simplified and the light-emitting of the at least two layers is flexibly controlled.
  • the layer emits light of different colors, and the light of different colors is mixed to produce various light colors.
  • the light-emitting structure of the present application can effectively adjust the light color and improve the resolution, and can be used in display devices and lighting devices.
  • FIG. 1 is a schematic diagram of a light-emitting structure according to a first embodiment of this application;
  • FIG. 2 is a schematic diagram of a light-emitting structure according to a second embodiment of this application.
  • FIG. 3 is a schematic diagram of a light-emitting structure according to a third embodiment of this application.
  • FIG. 4 is a schematic diagram of a light emitting structure according to a fourth embodiment of this application.
  • FIG. 5 is a schematic diagram of a light-emitting structure according to a fifth embodiment of this application.
  • FIG. 6 is a schematic diagram of a light-emitting structure according to a sixth embodiment of this application.
  • FIG. 7 is a schematic diagram of a light-emitting structure according to a sixth embodiment of this application.
  • the present application provides a light-emitting structure.
  • FIG. 1 a schematic diagram of the light-emitting structure of the first embodiment is shown.
  • the light-emitting structure includes at least two stacked ones. Layers of light-emitting layers 31, 32, at least two light-emitting layers 31, 32 for emitting at least two colors of light; and a transparent electrode 20, the transparent electrode 20 is arranged between adjacent light-emitting layers 31, 32, the transparent electrode 21 is a common cathode or common anode of adjacent light-emitting layers 31 and 32.
  • the light-emitting structure can flexibly control at least two light-emitting layers to emit light of multiple colors, and mix the lights of multiple colors to obtain light of the desired color.
  • the light-emitting layers emitting light of different colors are arranged in the longitudinal direction, the resolution of the light-emitting structure is increased.
  • the above-mentioned light-emitting layer in this application realizes electroluminescence through the anode and cathode located on both sides of the light-emitting layer. It can be understood that, in addition to the transparent electrode located between the adjacent light-emitting layers, the two sides of the outermost light-emitting layer also need to be separated. Set up electrodes.
  • the transparent electrode between the outermost light-emitting layer and the adjacent light-emitting layer and close to the outermost light-emitting layer is an anode
  • the other side of the outermost light-emitting layer is provided with a cathode
  • the outermost light-emitting layer and the adjacent light-emitting layer The transparent electrode in between and close to the outermost light-emitting layer is a cathode, and the other side of the outermost light-emitting layer is provided with an anode.
  • the light-emitting layer of the present application includes at least two stacked layers, such as the second light-emitting structure shown in FIG. 2.
  • the light-emitting structure includes a first electrode 11, a light-emitting layer 31 to a light-emitting layer 3N, and a transparent electrode 21.
  • the transparent electrode 2N the second electrode 1N, the control circuit 81 to the control circuit 8N.
  • N is not less than 2
  • the N-layer light-emitting layer emits light of N colors.
  • the transparent electrode can make excellent mixing of N colors of light of the light-emitting layer, can also selectively emit less than N colors of mixed light as required, and can also emit a certain monochromatic light as required.
  • the transparent electrode 20 of the light-emitting structure is used as a common cathode or a common anode for adjacent light-emitting layers 31 and 32.
  • the present application greatly simplifies the light-emitting structure by using the adjacent light-emitting layers as a common cathode or a common anode. With the preparation process, the obtained light-emitting structure is lighter, thinner and more compact.
  • the transparent electrode includes two transparent electrodes (transparent electrode I and transparent electrode II) located between adjacent light-emitting layers, and each of the transparent electrodes located between the adjacent light-emitting layers includes a transparent electrode.
  • I and the transparent electrode II, the transparent electrode I and the transparent electrode II each independently serve as the anode or the cathode of the adjacent light-emitting layer.
  • the first light-emitting layer 31, the first transparent electrode 21, the second transparent electrode 22, the second light-emitting layer 32, the cathode 60, the first transparent electrode 21 and the second transparent electrode 22 may be electrically connected or non-electric connection.
  • the light-emitting structure of the present application can make the preparation of the transparent electrode more diversified, and the transparent electrode can be arranged in layers according to actual needs.
  • the two transparent electrodes of the light-emitting structure include a spacer.
  • the spacer may be a transparent adhesive layer or a gas area.
  • the spacer may also include a transparent adhesive layer and The structure of the gas area separates the two transparent electrodes so that the two transparent electrodes act independently on the corresponding light-emitting layer.
  • the transparent adhesive layer is composed of adhesive. The adhesive is used to bond two transparent electrodes. The space between the two transparent electrodes is completely filled or partially filled. When partially filled, the unfilled space is gas area.
  • the light-emitting structure of the present application flexibly controls the light output of at least two light-emitting layers, and further adjusts various light colors according to needs.
  • the light-emitting structure further includes at least two control circuits, which are electrically connected to the light-emitting layer.
  • the above-mentioned electrical connection means that the control circuit is realized by electrodes located on both sides of the light-emitting layer. Indirect electrical connection with the light-emitting layer.
  • Each control circuit adjusts the intensity of the current flowing through the light-emitting layer to adjust the brightness of the corresponding emitted light.
  • the control circuit can also control the corresponding light-emitting layer to not emit light as needed. When the control circuit controls the corresponding light-emitting layer to not emit light, the light of the light-emitting structure The color will be formed by the color emitted by the light-emitting layer.
  • the number of control circuits may be less than the number of light-emitting layers, or may be equal to the number of light-emitting layers.
  • the fourth light-emitting structure diagram shown in FIG. 4 when the control circuit 81 is connected to the two light-emitting layers 31, 32, the control circuit 81 will adjust the light output of the two light-emitting layers 31, 32 to change at the same time, and the two light-emitting layers 31, 32 The color of light emitted by 32 is relatively stable. Multiple control circuits are used to adjust multiple light-emitting layers to emit light of different brightness, and these lights of different colors and brightness are mixed through the transparent electrode to form light of the desired color.
  • control circuit and the light-emitting layer are arranged in a one-to-one correspondence, so that independent control of the light-emitting brightness of each light-emitting layer is realized, thereby flexibly adjusting the light color of the light-emitting structure.
  • the light transmittance of the transparent electrode is 50% to 99.9%, so that the light emitted by the adjacent light-emitting layers can be effectively combined to produce the desired light color. If the light transmittance of the transparent electrode is too low, it is not conducive to the mixing of light of different colors emitted by adjacent light-emitting layers.
  • the thickness of the transparent electrode is 10 nm-100 ⁇ m. If the transparent electrode is too thin, it will be easily broken down by current, which will damage the light-emitting layer, and may also cause leakage current and affect device performance. If the transparent electrode is too thick, the light transmittance will be affected, and if the transparent electrode is too thin, the impedance will be too large, which will affect the conductivity.
  • the light-emitting layer is an organic light-emitting layer or a quantum dot light-emitting layer, and the light-emitting layer may also be a laminated organic light-emitting layer and a quantum dot light-emitting layer.
  • the choice of the specific material of the light-emitting layer is not particularly limited. Any known organic light-emitting material or quantum dot material in the art can be used, as long as the organic light-emitting material or quantum dot material can convert electrical signals into optical signals and meet the requirements of light emission That's it.
  • the material of the transparent electrode includes at least one of one-dimensional nanomaterials, two-dimensional nanomaterials, metal materials, and conductive metal oxide materials.
  • one-dimensional nanomaterials refer to materials in which the size of one of the three dimensions is not between 0.1-100nm.
  • silver nanowires and silica nanowires have one dimension (length) greater than 100nm, and The size of the two dimensions is between 0.1-100 nm, so nanowires and carbon nanotubes are one-dimensional nanomaterials.
  • Two-dimensional nanomaterials refer to materials whose sizes in two of the three dimensions are not between 0.1-100nm, such as graphene, where two dimensions (such as length and width) are larger than 100nm, and the other dimension (thickness or height) The size of) is between 0.1-100nm, so graphene is a two-dimensional nanomaterial.
  • the metal materials in this application mainly refer to metal materials with conductivity other than nano materials
  • the metal oxide materials in this application mainly refer to metal oxide materials with conductivity other than nano materials.
  • the transparent electrode chooses the appropriate thickness according to the different materials used.
  • the thickness of the transparent electrode is between 100nm and 300nm; when the transparent electrode uses a metal material, the thickness of the transparent electrode The thickness is 10nm-20nm; when the transparent electrode uses conductive metal oxide material, the thickness of the transparent electrode is 10nm-100 ⁇ m.
  • This application can use transparent electrode materials of different thicknesses, as long as these transparent electrode materials can meet the requirements of the light transmittance of the transparent electrode.
  • the material of the transparent electrode is selected from one or more of nano silver wires, nano copper wires, silver, graphene, indium tin oxide, element-doped zinc oxide, and carbon nanotubes.
  • the transparent electrode formed of these materials has high light transmittance, high conductivity, and low surface impedance.
  • the light transmittance of the transparent electrode is 50% to 99.9%, the conductivity can reach 1000S/m, and the surface impedance of the transparent electrode is less than 50 ⁇ /sq.
  • the light-emitting structure includes two light-emitting layers, the two light-emitting layers can respectively emit blue and yellow light, or the two light-emitting layers can respectively emit blue and green light, or the two light-emitting layers can respectively emit red light , Blue light, or two light-emitting layers can emit green light and red light respectively, and the order of the two light-emitting layers is not limited in this application.
  • the light-emitting structure may sequentially include a first anode 11, a first hole transport layer 41, a first light-emitting layer 31, a first electron transport layer 51, a transparent electrode 20, and a second
  • the electron transport layer 52, the second light-emitting layer 32, the second hole transport layer 42, and the second anode 12 also include control circuits 81 and 82.
  • the light-emitting structure may also include other functional layers such as electron blocking layer, hole injection layer, electron injection layer, intermediate insulating layer, etc. This application is not limited, as long as it meets the electroluminescence requirements of the light-emitting structure That's it.
  • the light transmittance of at least one of the first anode 11 and the second anode 12 of the light emitting structure is 50% to 99.9%.
  • the light transmittance of the first anode 11 of the light emitting structure is 50% to 99.9%.
  • the light transmittance of the second anode 12 is less than 50%, and the light emission direction is the direction of the second anode 12 toward the first anode; in another embodiment, the first anode and the second anode of the light emitting structure
  • the light transmittance of the two anodes is 50% to 99.9%, and the light-emitting structure is a bidirectional light-emitting structure.
  • the light-emitting structure includes two light-emitting layers.
  • the light-emitting structure may also include a first cathode 61, a first electron transport layer 51, and a first light-emitting layer 31 in sequence.
  • the light-emitting structure may also include other functional layers such as electron blocking layer, hole injection layer, electron injection layer, and intermediate insulating layer. This application is not limited as long as it meets the electroluminescence requirements of the light-emitting structure. That's it.
  • the light transmittance of at least one of the first cathode 61 and the second cathode 62 of the light emitting structure is 50% to 99.9%, for example, the light transmittance of the first cathode 61 of the light emitting structure is 85%, The light transmittance of the second cathode 62 is 30%, and the light emission direction is the direction from the second cathode 62 to the first cathode 61; the light transmittance of the first cathode 61 and the second cathode 62 can also be 75%.
  • the light-emitting structure is a bidirectional light-emitting structure.
  • the first anode 11 and the second anode 12, or the materials of the first cathode 61 and the second cathode 62 are independently selected from one-dimensional and two-dimensional nanomaterials, two-dimensional nanomaterials, metallic materials, conductive materials At least one of metal oxide materials. More specifically, the materials of the first anode 11 and the second anode 12, or the first cathode 61 and the second cathode 62 are independently selected from nano silver wire, nano copper wire, silver, graphene, indium tin oxide, element doped One or more of mixed zinc oxide and carbon nanotubes.
  • the transparent electrode is located between the first light-emitting layer 31 and the second light-emitting layer 33, and serves as a common cathode or a common anode for the first light-emitting layer 31 and the second light-emitting layer 32, and is directed to the first light-emitting layer 31 and the second light-emitting layer on both sides.
  • 32 provides electrons or holes, thereby realizing effective injection of carriers, improving the luminous efficiency and brightness of the first light-emitting layer 31 and the second light-emitting layer 32, and is conducive to adjusting the mixing ratio of blue and yellow light, so as to obtain the required light. color.
  • the first light-emitting layer 31 emits blue light
  • the second light-emitting layer 32 emits yellow light
  • the first light-emitting layer 31 is blue light quantum dots
  • the second light-emitting layer 32 is yellow light quantum dots or red-green mixed quantum dots.
  • the first light-emitting layer 31 emits red light, and the second light-emitting layer 32 emits blue light; or, the first light-emitting layer 31 emits blue light, and the second light-emitting layer 32 emits green light; or, the first light-emitting layer 31 Blue light is emitted, and the second light-emitting layer 32 emits red light.
  • the two light-emitting layers are mixed, light of the desired color can be observed. If you need to observe monochromatic light, you only need to turn off the control circuit of the light-emitting layer that emits another color, such as the first light-emitting layer 31.
  • the control circuit 81 of the first light-emitting layer 31 can be turned off, and the control circuit of the second light-emitting layer 32 can be turned on.
  • the light-emitting structure includes three light-emitting layers, and the three light-emitting layers respectively emit red light, green light, and blue light.
  • the light-emitting structure may sequentially include the anode 10, the first hole transport layer 41, the first light-emitting layer 31, the first electron transport layer 51, the first transparent electrode 21, and the second electron.
  • the light-emitting structure may also include other functional layers such as an electron blocking layer, a hole injection layer, an electron injection layer, and an intermediate insulating layer.
  • This application is not limited, as long as it meets the electroluminescence requirements of the light-emitting structure That's it.
  • the above-mentioned three light-emitting layers emit red light, green light and blue light respectively, and the order of the three light-emitting layers is not limited. After the three kinds of light are mixed, the light of the desired color can be observed. If you want to observe monochromatic light, you only need to turn off the control circuit that emits the other two colors of light-emitting layer.
  • the first transparent electrode 21 is located between the first light-emitting layer 31 and the second light-emitting layer 32, and serves as a common cathode for the first light-emitting layer 31 and the second light-emitting layer 32.
  • the first transparent electrode 21 can be directed to the first light-emitting layer on both sides.
  • the second transparent electrode 22 is located between the second light-emitting layer 32 and the third light-emitting layer 33, as the second light-emitting layer 32 and the third light-emitting layer 33 Sharing the anode, the second transparent electrode 22 can respectively provide holes to the second light-emitting layer 32 and the third light-emitting layer 33 on both sides, so as to realize effective injection of holes.
  • the first transparent electrode 21 and the second transparent electrode 22 effectively improve the luminous efficiency and the light-emitting brightness of the first light-emitting layer 31, the second light-emitting layer 32, and the third light-emitting layer 33, and are beneficial to control the mixing ratio of red light, green light, and blue light. In order to obtain the desired light color.
  • the light transmittance of at least one of the anode 10 and the cathode 70 of the light emitting structure is 50% to 99.9%.
  • the light transmittance of the cathode 70 of the light emitting structure is 85%, and the light transmittance of the anode 10 is 85%. If it is 20%, the light emission direction is the direction where the anode 10 points to the cathode 70; it can also be a light-emitting structure that the light transmittance of the anode 10 and the cathode 70 are both 70%, and the light-emitting structure is a bidirectional light-emitting structure.
  • the materials of the anode 10 and the cathode 70 are independently selected from at least one of one-dimensional nanomaterials, two-dimensional nanomaterials, metal materials, and conductive metal oxide materials. More specifically, the materials of the anode 10 and the cathode 70 are independently selected from nano silver wires, nano copper wires, silver, graphene, indium tin oxide, carbon nanotubes, fluorine-doped tin oxide, indium zinc oxide, and aluminum-doped oxide.
  • the material of the hole injection layer of the present application is not particularly limited, and any hole injection material known in the art can be selected according to the actual situation, such as poly(3,4-ethylenedioxythiophene)-poly Styrene sulfonic acid, copper phthalocyanine, 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanoquinone-dimethane, 2,3,6,7,10,11-hexa Cyano-1,4,5,8,9,12-hexaazatriphenylene, polythienothiophene doped with poly(perfluoroethylene-perfluoroether sulfonic acid), MoO 3 , VO 2 , WO 3 One or more of, CrO 3 , CuO, MoS 2 , MoSe 2 , WS 2 , WSe 2 , CuS, etc., but not limited thereto.
  • the material of the hole transport layer 41 of the present application is not particularly limited, and any hole transport material known in the art can be selected according to the actual situation, such as poly(9,9-dioctylfluorene-CO -N-(4-butylphenyl)diphenylamine), polyvinylcarbazole, poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine), Poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine), 4,4',4"-tris(carbazol-9-yl)aniline, 4,4'-bis(9-carbazole)biphenyl, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4 One or more of'-diamine and N,N'-diphenyl-N
  • the electron transport layer 51 is not particularly limited, and any known electron transport material can be in the art, can be selected according to the actual situation, such as ZnO, TiO2, SnO2, Ta2O3, InSnO, Alq 3, Ca One or more of, Ba, CsF, LiF, CsCO, etc., but not limited thereto.
  • the present application also provides a display device, including the above-mentioned light-emitting structure, the light-emitting structure includes at least two stacked light-emitting layers, the at least two light-emitting layers are used to emit at least two colors of light; and a transparent electrode, the transparent electrode is arranged in the phase Between adjacent light-emitting layers.
  • Display devices include, but are not limited to, devices or components such as mobile phones, computers, car displays, AR displays, VR displays, smart watches, displays, and display panels.
  • the components can be, for example, QLED devices, OLED devices, PLED devices, Micro-LED devices, and Mini-LED devices and other electroluminescent devices.
  • the display device of the present application may be a top-emitting display device, a bottom-emitting display device, or a transparent display device.
  • the resolution of a display device emitting red, green and blue light superimposed is compared with a display device with RGB pixels arranged side by side.
  • the resolution of the display device of the present application is increased by 3 times, and the light color can be flexibly adjusted .
  • the present application also provides a lighting device, including the above-mentioned light-emitting structure, the light-emitting structure includes at least two stacked light-emitting layers, the at least two light-emitting layers are used to emit at least two colors of light; and a transparent electrode, the transparent electrode is arranged in the phase Between adjacent light-emitting layers.
  • the light-emitting structure is beneficial to improve the light-emitting stability of the lighting device, and effectively control various light colors.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明的实施例提供一种发光结构、显示装置及照明装置,发光结构包括叠置的至少两层发光层,所述至少两层发光层用于发射至少两种颜色的光;及透明电极,所述透明电极设置于相邻的发光层之间。本申请通过在相邻发光层之间设置透明电极,有效调节发光结构的光色,并提高发光结构的分辨率。

Description

一种发光结构、显示装置及照明装置 技术领域
本申请属于发光技术领域,具体涉及一种发光结构、显示装置及照明装置。
背景技术
电致发光结构包括层叠设置的阳极、发光层和阴极,发光层主要用于发射红光、绿光或蓝光,电致发光结构通过调节三种光色的亮度合成所需颜色的光。目前主要采用的发光结构及存在的相关问题如下:
(1)p-n型半导体连接的串联叠层结构。该技术虽然能够实现,但结构复杂,且混合光色会随着电压略有变化,无法发出纯正单色光。
(2)多发光层结构。各发光层中间采用超薄间隔层(氧化锌、聚合物等),大多数间隔层无法平衡空穴和电子迁移率,发光效率低,光色变化范围小,无法发出纯正单色光。
(3)RGB像素结构。高分辨率一直是显示领域的一个重要目标,一度成为手机、电视等产品的重要卖点,然而,将RGB三基色用像素分开,无论采用蒸镀技术还是喷墨打印技术,分辨率的提升都有限。
由上可知,现有发光结构存在光色难以调节、显示分辨率提升的问题,亟需寻找一种有效调节光色、提高分辨率的发光结构。
发明内容
针对上述技术问题,本申请提供一种发光结构,包括:叠置的至少两层发光层,至少两层发光层用于发射至少两种颜色的光;及透明电极,透明电极设置于相邻的发光层之间。
进一步地,透明电极为相邻的发光层的共用阴极或共用阳极。
进一步地,发光结构包括两个透明电极,两个透明电极分别为相邻发光层的阳极和/或阴极;
优选地,两个透明电极之间包括间隔部;
更为优选地,间隔部包括透明粘合剂层和/或气体区域。
进一步地,发光结构还包括至少两个控制电路,控制电路与发光层电性连接;
优选地,控制电路与发光层一一对应设置。
进一步地,透明电极的透光率为50%~99.9%;
优选地,透明电极的厚度为10nm~100μm;
优选地,发光层为有机发光层和/或量子点发光层。
进一步地,透明电极的材料包括一维二维纳米材料、二维纳米材料、金属材料和导电金属氧化物材料中的至少一种;
优选地,透明电极的材料选自纳米银线、纳米铜线、银、石墨烯、铟锡氧化物、元素掺杂的氧化锌和碳纳米管中的一种或多种。
进一步地,发光结构包括两层发光层,两层发光层分别发射红光和绿光,或两层发光层分别发射红光和蓝光,或两层发光层分别发射绿光和蓝光,或两层发光层分别发射蓝光和黄光。
进一步地,发光结构包括第一电极、第一空穴传输层、第一发光层、第一电子传输层、透明电极、第二电子传输层、第二发光层、第二空穴传输层和第二电极;
更为优选地,第一电极与第二电极至少其一的透光率为50%~99.9%;
更为优选地,第一电极、第二电极的材料分别独立选自一维或二维纳米材料、金属材料、导电金属氧化物材料中的至少一种。
进一步地,发光结构包括三层发光层,三层发光层分别发射红光、绿光和蓝光。
进一步地,发光结构包括第一电极、第一空穴传输层、第一发光层、第一电子传输层、第一透明电极、第二电子传输层、第二发光层、第二空穴传输层、第二透明电极、第三空穴传输层、第三发光层、第三电子传输层和第三电极;
更为优选地,第一电极与第三电极至少其一的透光率为50%~99.9%;
更为优选地,第一电极和第三电极的材料分别独立选自一维纳米材料、二维纳米材料、金属材料和导电金属氧化物材料中的至少一种。
进一步地,位于相邻发光层之间的各透明电极包括透明电极I和透明电极II,透明电极I和透明电极II各自独立地作为与之相邻的发光层的阳极或阴极;
优选地,透明电极I与透明电极II之间设置有间隔部;
更为优选地,间隔部包括透明粘合剂层和/或气体区域。
本申请还提供一种显示装置,包括上述的发光结构。
本申请还提供一种照明装置,包括上述的发光结构。
有益效果:本发明的实施例提供一种发光结构,包括叠置的至少两层发光层及透明电极,通过在相邻发光层之间设置透明电极,有效简化发光结构,灵活调控至少两层发光层发出不 同颜色的光,不同颜色的光混合出各种光色,本申请的发光结构既可以有效调节光色,又能提高分辨率,可用于显示装置和照明装置。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请第一种实施方式的发光结构的示意图;
图2为本申请第二种实施方式的发光结构的示意图;
图3为本申请第三种实施方式的发光结构的示意图;
图4为本申请第四种实施方式的发光结构的示意图;
图5为本申请第五种实施方式的发光结构的示意图;
图6为本申请第六种实施方式的发光结构的示意图;
图7为本申请第六种实施方式的发光结构的示意图。
在附图中相同的部件使用了相同的附图标记,附图仅示意性地显示了本申请的实施方案。
具体实施方式
下面将结合本申请实施方式,对本申请实施例中的技术方案进行详细地描述。应注意的是,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部实施方式。示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本申请公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
针对目前发光结构存在的光色难以调节、分辨率低的问题,本申请提供一种发光结构,如图1所示的第一种实施方式的发光结构的示意图,发光结构包括叠置的至少两层发光层31、32,至少两层发光层31、32用于发射至少两种颜色的光;及透明电极20,该透明电极20设置于相邻的发光层31、32之间,该透明电极21为相邻发光层31、32的共用阴极或共用阳极。本申请实施例通过在相邻发光层之间设置透明电极20,发光结构可灵活调控至少两层发光层发出多种颜色的光,并对多种颜色的光进行混合以获得所需颜色的光,同时由于发出不同颜色光的发光层在纵向上排布,增加了发光结构的分辨率。
本申请中的上述发光层通过位于其两侧的阳极和阴极实现电致发光,可以理解的是,除了位于相邻发光层之间的透明电极之外,最外侧的发光层两侧也需要分别设置电极。若该最 外侧发光层与相邻发光层之间、靠近最外侧发光层的透明电极为阳极,则该最外侧发光层的另一侧设置有阴极;若该最外侧发光层与相邻发光层之间、靠近最外侧发光层的透明电极为阴极,则该最外侧发光层的另一侧设置有阳极。
可以理解的是,本申请的发光层包括叠置的至少两层,例如如图2所示的第二种发光结构,发光结构包括第一电极11、发光层31至发光层3N、透明电极21至透明电极2N、第二电极1N、控制电路81至控制电路8N。其中N不小于2,N层发光层发出N种颜色的光。透明电极可以使发光层的N种颜色的光混合出色,也可以根据需要选择性的发出少于N种颜色的混合光色,还可以根据需要发出某种单色光。
在一个具体实施方式中,发光结构的透明电极20作为相邻发光层31、32的共用阴极或共用阳极,本申请通过把相邻发光层作为共用阴极或者作为共用阳极,极大简化发光结构的制备工艺,得到的发光结构更为轻薄紧凑。
在一个具体实施方式中,透明电极包括位于相邻发光层之间的两个透明电极(透明电极I和透明电极II),位于所述相邻发光层之间的各所述透明电极包括透明电极I和透明电极II,透明电极I和透明电极II各自独立地作为与之相邻的发光层的阳极或阴极,例如图3所示的第三种发光结构示意图,本发光结构依次包括阳极10、第一发光层31、第一透明电极21、第二透明电极22、第二发光层32、阴极60,第一透明电极21和第二透明电极22可以为电性连接,也可以为非电性连接。本申请的发光结构可以使透明电极的制备更多样化,可以根据实际需要对透明电极进行分层设置。
在一个更具体实施方式中,发光结构的两个透明电极之间包括间隔部,间隔部可以为透明粘合剂层,也可以为气体区域,当然间隔部也可以为包括透明粘合剂层与气体区域的结构,从而使两个透明电极分离,使两个透明电极分别独立的作用于对应的发光层。透明粘合剂层由粘合剂构成,粘合剂用于粘合两个透明电极,在两个透明电极之间的空间里完全填充或者部分填充,当部分填充时,未被填充空间为气体区域。
本申请对透明粘合剂层以及气体区域的材料不做限定,只要满足透光率大于50%的要求即可。本申请的发光结构灵活调控至少两层发光层的出光,进而根据需要调节出各种光色。
在一个具体实施方式中,发光结构还包括至少两个控制电路,控制电路与发光层电性连接,可以理解的是,上述电性连接是指控制电路通过位于该发光层两侧的电极实现的与发光层的间接电性连接。每个控制电路通过调节流过发光层的电流强度以调节对应发射光的亮度,控制电路也可以根据需要控制所对应发光层不发光,当控制电路控制对应发光层不发光时,发光结构的光色将由发光的发光层发出的颜色形成。本实施方式中,控制电路的数量可以少于发光层的数量,也可以等于发光层的数量。例如图4所示的第四种发光结构示意图,当控制电路81连接两层发光层31、32时,控制电路81将调节两层发光层31、32的出光同时变化,两层发光层31、32发出的光色相对稳定。通过多个控制电路调节多个发光层发出不同亮度的光,这些不同颜色、亮度的光穿过透明电极混合后形成所需颜色的光。
在一个具体实施方式中,控制电路与发光层一一对应设置,如此实现对各发光层发光亮度的独立控制,从而灵活调节发光结构的光色。
在一个具体实施方式中,透明电极的透光率为50%~99.9%,以利于相邻发光层发射的光能有效汇合,从而产生所需光色。透明电极透光率太低将不利于相邻发光层发出的不同颜色光的混合。
在一个具体实施方式中,透明电极的厚度为10nm~100μm,透明电极如果太薄将容易被电流击穿,使发光层受到破坏,还可能会造成漏电流,影响器件性能。透明电极如果太厚,透光率会受影响,太薄面阻抗太大,影响导电率。
在一个具体实施方式中,发光层为有机发光层或者量子点发光层,发光层也可以为层叠的有机发光层和量子点发光层。发光层的具体材料选择不受特别限制,本领域内任何已知的有机发光材料、量子点材料均可,只要该有机发光材料、量子点材料能将电信号转变为光信号,满足光线发射要求即可。
在一个具体实施方式中,透明电极的材料包括一维纳米材料、二维纳米材料、金属材料和导电金属氧化物材料中的至少一种。
可以理解的是,一维纳米材料指三个维度中有一个维度的尺寸不在0.1-100nm之间的材料,如银纳米线、二氧化硅纳米线其中的一个维度(长度)尺寸大于100nm,另外两个维度的尺寸在0.1-100nm之间,因此纳米线、碳纳米管是一维纳米材料。二维纳米材料指三个维度中有两个维度的尺寸不在0.1-100nm之间的材料,如石墨烯,其中的两个维度(如长度、宽)尺寸大于100nm,另外一个维度(厚度或者高度)的尺寸在0.1-100nm之间,因此石墨烯是二维纳米材料。本申请的金属材料主要指除纳米材料以外具备导电性的金属材料,本申请的金属氧化物材料主要指除纳米材料以外具备导电性的金属氧化物材料。
其中,透明电极根据使用材料的不同选择合适的厚度,例如透明电极使用一维纳米材料或二维纳米颗粒材料时,透明电极的厚度在100nm~300nm;当透明电极使用金属材料时,透明电极的厚度在10nm~20nm;当透明电极使用导电金属氧化物材料时,透明电极的厚度在10nm~100μm。本申请可以使用不同厚度的透明电极材料,只要这些透明电极材料能满足透明电极的透光率的要求即可。
在一个具体实施方式中,透明电极的材料选自纳米银线、纳米铜线、银、石墨烯、铟锡氧化物、元素掺杂的氧化锌和碳纳米管中的一种或多种。这些材料形成的透明电极透光率较高、导电率较高、面阻抗较小,例如透明电极的透光率为50%~99.9%,导电率可达到1000S/m,透明电极的面阻抗小于50Ω/sq。
在一个具体实施方式中,发光结构包括两层发光层,两层发光层可以分别发射蓝光、黄光,或者两层发光层可以分别发射蓝光、绿光,或者两层发光层可以分别发射红光、蓝光,或者两层发光层可以分别发射绿光、红光,本申请对两层发光层的顺序不做限定。具体可参见图5的第五种发光结构示意图,发光结构可以依次包括第一阳极11、第一空穴传输层41、 第一发光层31、第一电子传输层51、透明电极20、第二电子传输层52、第二发光层32、第二空穴传输层42和第二阳极12,还包括控制电路81、82。除上述这些功能层外,发光结构还可以包括电子阻挡层、空穴注入层、电子注入层、中间绝缘层等其他功能层,本申请对此不做限定,只要满足发光结构的电致发光要求即可。
在一个更优实施方式中,发光结构的第一阳极11和第二阳极12中至少一个的透光率为50%~99.9%,在一个实施例中,发光结构的第一阳极11的透光率为50%~99.9%、第二阳极12的透光率小于50%,则出光方向为第二阳极12朝向第一阳极的方向;在另一个实施例中,发光结构的第一阳极和第二阳极的透光率均为50%~99.9%,则发光结构为双向发光结构。
在一个具体实施方式中,发光结构包括两层发光层,可参见图6的第六种发光结构示意图,发光结构也可以依次包括第一阴极61、第一电子传输层51、第一发光层31、第一空穴传输层41、透明电极20、第二空穴传输层52、第二发光层32、第二电子传输层42和第二阴极62,还包括控制电路81、82。除上述这些功能层外,发光结构还可以包括电子阻挡层、空穴注入层、电子注入层和中间绝缘层等其他功能层,本申请对此不做限定,只要满足发光结构的电致发光要求即可。
在一个更优实施方式中,发光结构的第一阴极61和第二阴极62中至少一个的透光率为50%~99.9%,例如发光结构的第一阴极61的透光率为85%,第二阴极62的透光率为30%,则出光方向为第二阴极62朝向第一阴极61的方向;也可以为发光结构的第一阴极61和第二阴极62的透光率均为75%,则发光结构为双向发光结构。
在一个更优实施方式中,第一阳极11和第二阳极12,或,第一阴极61和第二阴极62的材料独立选自一维二维纳米材料、二维纳米材料、金属材料、导电金属氧化物材料中的至少一种。更具体的,第一阳极11和第二阳极12,或者,第一阴极61和第二阴极62的材料独立选自纳米银线、纳米铜线、银、石墨烯、铟锡氧化物、元素掺杂的氧化锌和碳纳米管中的一种或多种。
透明电极位于第一发光层31和第二发光层33之间,作为第一发光层31和第二发光层32的共用阴极或者共用阳极,向两侧的第一发光层31和第二发光层32提供电子或者空穴,从而实现载流子的有效注入,提高第一发光层31和第二发光层32的发光效率和出光亮度,利于调控蓝光和黄光的混合比例,从而获得所需光色。
在一个具体实施方式中,第一发光层31发射蓝光,第二发光层32发射黄光,第一发光层31为蓝光量子点,第二发光层32为黄光量子点或者红绿混合量子点。两层发光层发出的光线混合后,可以观察到白光,也可以观察到其他颜色的光,如需观察单色光,只需把发出另一颜色的发光层的控制电路关闭即可。
在一个具体实施方式中,第一发光层31发射红光,第二发光层32发射蓝光;或者,第一发光层31发射蓝光,第二发光层32发射绿光;或者,第一发光层31发射蓝光,第二发光层32发射红光。两层发光层发出的光线混合后,可以观察到所需颜色的光,如需观察单色光,只需把发出另一颜色的发光层的控制电路关闭即可,如第一发光层31发射红光、第二发光层 32发射蓝光时,为了观察蓝光,可以把第一发光层31的控制电路81关闭,第二发光层32的控制电路打开。
在一个具体实施方式中,发光结构包括三层发光层,三层发光层分别发射红光、绿光和蓝光。具体参见图7的第七种发光结构示意图,发光结构可以依次包括阳极10、第一空穴传输层41、第一发光层31、第一电子传输层51、第一透明电极21、第二电子传输层52、第二发光层32、第二空穴传输层42、第二透明电极22、第三空穴传输层43、第三发光层33、第三电子传输层53和阴极70,还包括控制电路81、82、83。除上述这些功能层以外,发光结构还可以包括电子阻挡层、空穴注入层、电子注入层和中间绝缘层等其他功能层,本申请对此不做限定,只要满足发光结构的电致发光要求即可。上述三层发光层分别发射红光、绿光和蓝光,三层发光层的顺序不做限定。三种光线混合后,可以观察到所需颜色的光。如需观察单色光,只需把发出另两种颜色的发光层的控制电路关闭即可。
第一透明电极21位于第一发光层31和第二发光层32之间,作为第一发光层31和第二发光层32的共用阴极,第一透明电极21可以向两侧的第一发光层31和第二发光层32分别提供电子,实现电子的有效注入;第二透明电极22位于第二发光层32和第三发光层33之间,作为第二发光层32和第三发光层33的共用阳极,第二透明电极22可以向两侧的第二发光层32和第三发光层33分别提供空穴,实现空穴的有效注入。第一透明电极21和第二透明电极22有效提高第一发光层31、第二发光层32、第三发光层33的发光效率和出光亮度,利于调控红光、绿光、蓝光的混合比例,从而获得所需光色。
在一个更优实施方式中,发光结构的阳极10和阴极70中至少一个的透光率为50%~99.9%,例如发光结构的阴极70的透光率为85%、阳极10的透光率为20%,则出光方向为阳极10指向阴极70的方向;也可以为发光结构的阳极10、阴极70的透光率均为70%,则发光结构为双向发光结构。
在一个更优实施方式中,阳极10和阴极70的材料分别独立选自一维纳米材料、二维纳米材料、金属材料和导电金属氧化物材料中的至少一种。更具体的,阳极10和阴极70的材料分别独立选自纳米银线、纳米铜线、银、石墨烯、铟锡氧化物、碳纳米管、氟掺氧化锡、铟锌氧化物、铝掺氧化锌、锑掺氧化锌、镓掺氧化锌、镉掺氧化锌、铜铟氧化物、氧化锡、氧化锆、铝、钙和钡等中的一种或多种,但是不限于此。
本申请的空穴注入层的材料不受特别的限制,本领域内任何已知的空穴注入材料均可,可根据实际情况进行选择,如聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸、酞菁铜、2,3,5,6-四氟-7,7',8,8'-四氰醌-二甲烷、2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、掺杂聚(全氟乙烯-全氟醚磺酸)的聚噻吩并噻吩、MoO 3、VO 2、WO 3、CrO 3、CuO、MoS 2、MoSe 2、WS 2、WSe 2、CuS等中的一种或多种,但是不限于此。
本申请的空穴传输层41的材料不受特别的限制,本领域内任何已知的空穴传输材料均可,可根据实际情况进行选择,如聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、 4,4',4"-三(咔唑-9-基)苯胺、4,4'-二(9-咔唑)联苯、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺和N,N'-二苯基-N,N'(1-萘基)-1,1'-联苯-4,4'-二胺等中的一种或多种,但是不限于此。
本申请的电子传输层51的材料不受特别的限制,本领域内任何已知的电子传输材料均可,可根据实际情况进行选择,如ZnO、TiO2、SnO2、Ta2O3、InSnO、Alq 3、Ca、Ba、CsF、LiF和CsCO等中的一种或多种,但是不限于此。
本申请还提供一种显示装置,包括上述发光结构,发光结构包括叠置的至少两层发光层,至少两层发光层用于发射至少两种颜色的光;及透明电极,透明电极设置于相邻的发光层之间。显示装置包括但不限于手机、电脑、车载显示器、AR显示器、VR显示器、智能手表、显示屏和显示面板等装置或部件,部件例如可以为QLED器件、OLED器件、PLED器件、Micro-LED器件和Mini-LED器件等电致发光器件。本申请的显示装置可以为顶发光显示装置,也可以为底发光显示装置,还可以为透明显示装置。采用本申请的发光结构,叠加发射红光、绿光和蓝光的显示装置的分辨率相较于RGB像素并排设置的显示装置,本申请的显示装置的分辨率提高3倍,光色可以灵活调节。
本申请还提供一种照明装置,包括上述发光结构,发光结构包括叠置的至少两层发光层,至少两层发光层用于发射至少两种颜色的光;及透明电极,透明电极设置于相邻的发光层之间。该发光结构有利于提高照明装置的出光稳定性,并有效调控出各种光色。
尽管发明人已经对本申请的技术方案做了较详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例作出修改和/或变通或者采用等同的替代方案是显然的,都不能脱离本申请精神的实质,本申请中出现的术语用于对本申请技术方案的阐述和理解,并不能构成对本申请的限制。

Claims (11)

  1. 一种发光结构,其特征在于,包括:
    叠置的至少两层发光层,所述至少两层发光层用于发射至少两种颜色的光;
    及透明电极,所述透明电极设置于相邻的所述发光层之间。
  2. 根据权利要求1所述的发光结构,其特征在于,所述透明电极为相邻的所述发光层的共用阴极或共用阳极。
  3. 根据权利要求2所述的发光结构,其特征在于,所述透明电极包括两个透明电极,所述两个透明电极分别为相邻发光层的阳极和/或阴极;
    优选地,所述两个透明电极之间包括间隔部;
    更为优选地,所述间隔部包括透明粘合剂层和/或气体区域。
  4. 根据权利要求2所述的发光结构,其特征在于,所述发光结构还包括至少两个控制电路,所述控制电路与所述发光层电性连接;
    优选地,所述控制电路与所述发光层一一对应设置。
  5. 根据权利要求1所述的发光结构,其特征在于,所述透明电极的透光率为50%~99.9%;
    优选地,所述透明电极的厚度为10nm~100μm;
    优选地,所述发光层为有机发光层和/或量子点发光层。
  6. 根据权利要求5所述的发光结构,其特征在于,所述透明电极的材料包括一维纳米材料、二维纳米材料、金属材料和导电金属氧化物材料中的至少一种;
    优选地,所述透明电极的材料选自纳米银线、纳米铜线、银、石墨烯、铟锡氧化物、元素掺杂的氧化锌和碳纳米管中的一种或多种。
  7. 根据权利要求5所述的发光结构,其特征在于,所述发光结构包括两层所述发光层,所述两层发光层分别发射红光和绿光,或所述两层发光层分别发射红光和蓝光,或所述两层发光层分别发射绿光和蓝光,或所述两层发光层分别发射蓝光和黄光;
    优选地,所述发光结构包括第一电极、第一空穴传输层、第一发光层、第一电子传输层、透明电极、第二电子传输层、第二发光层、第二空穴传输层和第二电极;
    更为优选地,所述第一电极与所述第二电极至少其一的透光率为50%~99.9%;
    更为优选地,所述第一电极与所述第二电极的材料独立选自一维纳米材料、二维纳米材料、金属材料和导电金属氧化物材料中的至少一种。
  8. 根据权利要求1至7中任一项所述的发光结构,其特征在于,所述发光结构包括三层发光层,所述三层发光层分别发射红光、绿光和蓝光;
    优选地,所述发光结构包括第一电极、第一空穴传输层、第一发光层、第一电子传输层、第一透明电极、第二电子传输层、第二发光层、第二空穴传输层、第二透明电极、第三空穴传输层、第三发光层、第三电子传输层和第三电极;
    更为优选地,所述第一电极与所述第三电极至少其一的透光率为50%~99.9%;
    更为优选地,所述第一电极和所述第三电极的材料独立选自一维纳米材料、二维纳米材料、金属材料和导电金属氧化物材料中的至少一种。
  9. 根据权利要求1所述的发光结构,其特征在于,位于所述相邻发光层之间的各所述透明电极包括透明电极I和透明电极II,透明电极I和透明电极II各自独立地作为与之相邻的发光层的阳极或阴极;
    优选地,所述透明电极I与所述透明电极II之间设置有间隔部;
    更为优选地,所述间隔部包括透明粘合剂层和/或气体区域。
  10. 一种显示装置,其特征在于,包括权利要求1-9任一所述的发光结构。
  11. 一种照明装置,其特征在于,包括权利要求1-9任一所述的发光结构。
PCT/CN2020/126796 2019-12-13 2020-11-05 一种发光结构、显示装置及照明装置 WO2021114969A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/784,678 US20230013968A1 (en) 2019-12-13 2020-11-05 Light-Emitting Structure, Display Apparatus and Illuminating Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911280487.2A CN110957347A (zh) 2019-12-13 2019-12-13 一种发光结构、显示装置及照明装置
CN201911280487.2 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021114969A1 true WO2021114969A1 (zh) 2021-06-17

Family

ID=69981408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126796 WO2021114969A1 (zh) 2019-12-13 2020-11-05 一种发光结构、显示装置及照明装置

Country Status (3)

Country Link
US (1) US20230013968A1 (zh)
CN (1) CN110957347A (zh)
WO (1) WO2021114969A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957347A (zh) * 2019-12-13 2020-04-03 苏州星烁纳米科技有限公司 一种发光结构、显示装置及照明装置
CN111554819B (zh) * 2020-04-27 2023-06-23 南方科技大学 发光器件及其发光颜色调节方法、显示装置
CN111564564B (zh) * 2020-05-08 2023-05-09 苏州星烁纳米科技有限公司 一种电致发光器件及其制备方法、显示装置及照明装置
CN111816780B (zh) * 2020-06-19 2023-09-01 苏州星烁纳米科技有限公司 一种电致发光器件及其制备方法、显示装置及照明装置
KR20220079170A (ko) * 2020-12-04 2022-06-13 엘지디스플레이 주식회사 발광 소자 및 표시 장치
CN113299697B (zh) * 2021-05-07 2022-12-06 武汉华星光电半导体显示技术有限公司 显示面板
CN115032807B (zh) * 2022-08-11 2022-11-29 成都理工大学工程技术学院 一种立体成像装置及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716264A (zh) * 2013-12-11 2015-06-17 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件及应用该发光器件的显示装置
CN105762171A (zh) * 2016-03-24 2016-07-13 河南师范大学 一种三基色oled发光器件及其制备和驱动方法
CN110957347A (zh) * 2019-12-13 2020-04-03 苏州星烁纳米科技有限公司 一种发光结构、显示装置及照明装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060006792A1 (en) * 2004-07-09 2006-01-12 Eastman Kodak Company Flat panel light emitting devices with two sided
US7750561B2 (en) * 2005-05-20 2010-07-06 Lg Display Co., Ltd. Stacked OLED structure
US20130240847A1 (en) * 2010-05-21 2013-09-19 Solarno, Inc. Monolithic parallel multijunction oled with independent tunable color emission
WO2018100476A1 (en) * 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP6151874B1 (ja) * 2017-02-10 2017-06-21 Lumiotec株式会社 有機エレクトロルミネッセント装置および照明装置
CN107170779A (zh) * 2017-05-12 2017-09-15 京东方科技集团股份有限公司 一种oled显示基板及显示装置
CN208225917U (zh) * 2018-05-28 2018-12-11 昆山国显光电有限公司 有机发光器件和显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716264A (zh) * 2013-12-11 2015-06-17 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件及应用该发光器件的显示装置
CN105762171A (zh) * 2016-03-24 2016-07-13 河南师范大学 一种三基色oled发光器件及其制备和驱动方法
CN110957347A (zh) * 2019-12-13 2020-04-03 苏州星烁纳米科技有限公司 一种发光结构、显示装置及照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FORREST S R, ET AL.: "THE STACKED OLED (SOLED): A NEW TYPE OF ORGANIC DEVICE FOR ACHIEVING HIGH-RESOLUTION FULL-COLOR DISPLAYS", SYNTHETIC METALS, vol. 91, no. 01-03, 21 May 1997 (1997-05-21), CH, pages 09 - 13, XP001028214, ISSN: 0379-6779, DOI: 10.1016/S0379-6779(97)03966-0 *

Also Published As

Publication number Publication date
CN110957347A (zh) 2020-04-03
US20230013968A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021114969A1 (zh) 一种发光结构、显示装置及照明装置
US10192932B2 (en) Quantum dot LED and OLED integration for high efficiency displays
CN106981504B (zh) 一种显示面板及显示装置
US7781957B2 (en) Electro-luminescent device with improved efficiency
US10431774B2 (en) Display unit, method for manufacturing the same and array substrate
US20080203899A1 (en) Electro-luminescent display with improved efficiency
KR20140079273A (ko) 백색 유기 발광 소자
WO2019095565A1 (zh) 串联量子点发光器件、面板即显示器
US10651339B2 (en) Light emitting element and display device including the same
CN110212105B (zh) 量子点发光器件及其制备方法、照明装置
CN111564564B (zh) 一种电致发光器件及其制备方法、显示装置及照明装置
WO2020062812A1 (zh) 显示面板和显示装置
KR20130008892A (ko) 양자 발광 소자 및 이의 제조 방법
CN104716264B (zh) 一种有机电致发光器件及应用该发光器件的显示装置
KR20170108342A (ko) 코어쉘 구조의 나노 입자를 포함하는 발광 소자
CN106856205B (zh) 有机发光显示器件及其制造方法、以及有机发光显示装置
CN109119438B (zh) 显示基板及其制造方法、显示装置
TW201242126A (en) Organic light emitting diode device
KR20160008946A (ko) 유기발광소자
CN209880662U (zh) 量子点发光器件及显示装置
KR101844327B1 (ko) 가시광 파장 가변형 적층 고분자 발광소자 및 그 제조방법
JPWO2020008839A1 (ja) 光電子素子、これを用いた平面ディスプレイ、及び光電子素子の製造方法
WO2020016998A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
WO2021128511A1 (zh) 发光电化学池及电致发光显示装置
CN113421981B (zh) Qled发光晶体管和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900491

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20900491

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20900491

Country of ref document: EP

Kind code of ref document: A1