WO2023077928A1 - 一种发送器均衡参数选择系统、方法、装置及设备 - Google Patents
一种发送器均衡参数选择系统、方法、装置及设备 Download PDFInfo
- Publication number
- WO2023077928A1 WO2023077928A1 PCT/CN2022/115572 CN2022115572W WO2023077928A1 WO 2023077928 A1 WO2023077928 A1 WO 2023077928A1 CN 2022115572 W CN2022115572 W CN 2022115572W WO 2023077928 A1 WO2023077928 A1 WO 2023077928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- communication link
- transmitter equalization
- interface
- signal attenuation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/04—Control of transmission; Equalising
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/04—Control of transmission; Equalising
- H04B3/06—Control of transmission; Equalising by the transmitted signal
Definitions
- the present application relates to the field of communication technologies, and in particular to a system, method, device and equipment for selecting equalization parameters of a transmitter.
- the high-speed serial link negotiation process When a high-speed serial link is established between devices, the high-speed serial link negotiation process will be carried out first.
- the negotiation process includes the evaluation of the transmitter equalization parameters of the device, that is, the transmitter equalization parameter evaluation process needs to be performed. Going through the transmitter equalization parameter evaluation process requires selecting transmitter equalization parameters that match the high-speed serial link.
- the transmitter equalization parameter evaluation process needs to evaluate a large number of transmitter equalization parameters one by one. Due to the time limit of the transmitter equalization parameter evaluation process, the transmitter equalization parameter evaluation process cannot equalize all transmitters within a limited time. The parameters are evaluated, and the finally determined transmitter equalization parameters may be inappropriate, that is, the efficiency and accuracy of the transmitter equalization parameter evaluation process are poor.
- the present application provides a transmitter equalization parameter selection system, method, device and equipment to solve the problems in the prior art.
- an embodiment of the present application provides a system for selecting an equalization parameter of a transmitter, and the system includes a first device and a second device.
- a communication link may be established between the first device and the second device through the interface of the first device and the interface of the second device.
- the first device may send a first signal to the second device through a communication link.
- the interface of the first device may not be based on The transmitter equalization parameters process the first signal.
- the first signal changes through the communication link and becomes a second signal when reaching the second device.
- the second device may determine a signal attenuation amount according to the first signal and the second signal, and the signal attenuation amount is used to represent an attenuation degree of the second signal relative to the first signal.
- the second device selects transmitter equalization parameters for the interface of the first device according to the amount of signal attenuation.
- the first device is instructed to start an evaluation process for the transmitter equalization parameter of the interface of the first device, where the evaluation process is used to evaluate the selected transmitter equalization parameter.
- the first device starts an evaluation process for transmitter equalization parameters of the interface of the first device under the instruction of the second device.
- the second device before starting the evaluation process of the equalization parameters of the transmitter on the interface of the first device, the second device interacts with the first device to measure the value of the first signal when it reaches the second device after passing through the communication link. The amount of signal attenuation produced.
- the second device can select transmitter equalization parameters for the interface of the first device in a targeted manner according to the amount of signal attenuation, and then start the evaluation process for the transmitter equalization parameters of the interface of the first device.
- the transmitter selected by the second device The equalization parameter is more suitable for the interface of the first device, so that the evaluation process of the transmitter equalization parameter for the interface of the first device can quickly determine the transmitter equalization parameter that passes the evaluation.
- the second device before receiving the second signal, may also send a signal attenuation test request to the first device, for requesting to start a signal attenuation test.
- the first device After receiving the signal attenuation test request, the first device may send the first signal through the communication link.
- the second device can notify the first device to start the signal attenuation test by sending a signal attenuation test request, so that the first device does not process the first signal through the transmitter equalization parameters of the interface of the first device, directly
- the first signal is sent so that the amount of signal attenuation can be accurately measured subsequently.
- the second device and the first device may further negotiate a sending condition that the first signal needs to meet.
- the sending condition includes part or all of the following: continuous sending time or signal frequency.
- This application does not limit the negotiation manner between the second device and the first device. For example, when the first device and the second device are negotiating, the second device can directly instruct the first device to meet the continuous sending time or signal frequency required to send the first signal, and the first device can send the signal according to the instruction of the second device. A first signal of time or signal frequency is sent. For another example, the first device may also directly inform the second device of the continuous sending time or signal frequency that the first signal satisfies.
- the voltage amplitude of the first signal may be predetermined by the first device and the second device, or notified by the first device to the second device.
- the setting of the voltage amplitude is more flexible and applicable to different scenarios.
- the second device when determining the signal attenuation amount according to the first signal and the second signal, may first measure the voltage amplitude of the second signal; then, according to the voltage amplitude of the first signal and The voltage amplitude of the second signal calculates the amount of signal attenuation.
- the second device can conveniently and quickly calculate the amount of signal attenuation by using the voltage amplitudes of the first signal and the second signal.
- the first signal is a clock signal.
- the clock signal includes alternate occurrences of 1 and 0.
- the clock signal is transmitted in the communication link, it is more likely to be affected by the communication link, and the attenuation of the signal is more obvious, so that the second device can accurately calculate the signal Attenuation.
- the embodiment of the present application provides a method for selecting an equalization parameter of a transmitter, and the method may be executed by a second device.
- a communication link is established between the second device and the first device through the interface of the first device and the interface of the second device.
- the second device may receive a second signal through the communication link, and the second signal is a signal that reaches the second device after the first signal is transmitted through the communication link.
- the second device may determine a signal attenuation amount according to the first signal and the second signal; and then select a transmitter equalization parameter for the interface of the first device according to the signal attenuation amount. After selecting the transmitter equalization parameters, the second device may instruct the first device to initiate an evaluation procedure for the selected transmitter equalization parameters.
- the second device may send a signal attenuation test request to the first device, and the signal attenuation test request uses To request to start the signal attenuation test.
- the second device may also instruct the first device to meet the continuous sending time or signal frequency required to send the first signal.
- the second device may also acquire, from the first device, the continuous sending time or signal frequency that the first signal satisfies.
- the second device may also acquire the voltage amplitude of the first signal from the first device.
- the second device when determining the signal attenuation amount according to the first signal and the second signal, may first measure the voltage amplitude of the second signal; The voltage amplitude of the second signal is used to calculate the signal attenuation.
- the first signal is a clock signal.
- the embodiment of the present application provides a method for selecting an equalization parameter of a transmitter, and the method may be executed by a first device.
- a communication link is established between the second device and the first device through the interface of the first device and the interface of the second device.
- a first device may transmit a first signal to a second device over a communication link, wherein the first signal is not processed based on a transmitter equalization parameter of an interface of the first device.
- the first device starts an evaluation process for the transmitter equalization parameter of the interface of the first device under the instruction of the second device, wherein the transmitter equalization parameter of the interface of the first device is notified by the second device to the first device.
- the first device may send the first signal to the second device through the communication link, where the signal attenuation test request is used to request to start Signal attenuation test.
- the first device may notify the second device of the continuous sending time or signal frequency that the first signal satisfies.
- the first device may also receive an instruction from the second device, determine the continuous sending time or signal frequency that the first signal satisfies; and then send the first signal that satisfies the continuous sending time or signal frequency .
- the first device may also notify the second device of the voltage amplitude of the first signal.
- the first signal is a clock signal.
- the embodiment of the present application also provides a parameter selection device, which has the function of realizing the behavior in the method example of the second aspect above, and the beneficial effects can be referred to the description of the second aspect, which will not be repeated here.
- the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
- the hardware or software includes one or more modules corresponding to the above functions.
- the structure of the device includes a receiving module, a processing module, and a sending module. These modules can perform the corresponding functions in the method example of the second aspect above. For details, refer to the detailed description in the method example. Do repeat.
- the embodiment of the present application also provides a parameter selection device.
- the receiving module, the processing module and the sending module have the function of realizing the behavior in the method example of the third aspect above.
- the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
- the hardware or software includes one or more modules corresponding to the above functions.
- the structure of the device includes a receiving module, a processing module, and a sending module. These modules can perform the corresponding functions in the method example of the third aspect above. For details, refer to the detailed description in the method example. Do repeat.
- the embodiment of the present application also provides a computing device, the computing device has the function of implementing the behavior in the method example of the second aspect above, and the beneficial effects can be referred to the description of the second aspect and will not be repeated here.
- the structure of the computing device includes a processor and a memory, and the processor is configured to support the computing device to perform corresponding functions in the method of the second aspect above.
- the memory coupled to the processor, holds program instructions and data necessary for the computing device.
- the structure of the computing device also includes a communication interface for communicating with other devices, such as receiving a second signal, sending an instruction to start the evaluation process of the selected transmitter equalization parameters, sending a signal attenuation test request, etc. .
- the embodiment of the present application also provides a computing device, the computing device has the function of realizing the behavior in the method example of the third aspect above, and the beneficial effects can be referred to the description of the third aspect, which will not be repeated here.
- the structure of the computing device includes a processor and a memory, and the processor is configured to support the computing device to execute the corresponding functions in the method of the third aspect above.
- the memory coupled to the processor, holds program instructions and data necessary for the computing device.
- the structure of the computing device also includes a communication interface for communicating with other devices, such as sending the first signal, receiving a signal attenuation test request, and the like.
- the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer can execute the above-mentioned second aspect and each possibility of the second aspect.
- the present application further provides a computer program product including instructions, which, when run on a computer, cause the computer to execute the method described in the above second aspect and each possible implementation manner of the second aspect. Or when it is run on a computer, the computer is made to execute the above third aspect and the method described in each possible implementation manner of the third aspect.
- the present application also provides a computer chip, the chip is connected to the memory, and the chip is used to read and execute the software program stored in the memory, and implement the above-mentioned second aspect and each possibility of the second aspect.
- the chip is used to read and execute the software program stored in the memory, and execute the method described in the above third aspect and each possible implementation manner of the third aspect.
- FIG. 1 is a schematic diagram of a connection relationship between devices in an evaluation process of equalization parameters of a transmitter
- FIG. 2 is a schematic diagram of multiple sets of transmitter equalization parameters that can be evaluated provided by the present application
- FIG. 3 is a schematic structural diagram of a system provided by the present application.
- FIG. 4 is a schematic diagram of a transmitter equalization parameter evaluation method provided by the present application.
- FIG. 5 is a schematic diagram of a first signal provided by the present application.
- FIG. 6A is a schematic diagram of a pre-transmission signal provided by the present application.
- FIG. 6B is a schematic diagram of a transmitted signal provided by the present application.
- FIG. 6C is a schematic diagram of the relationship between signal attenuation and signal frequency provided by the present application.
- FIG. 7 to 8 are schematic diagrams of a parameter selection device provided by the present application.
- a communication link between interfaces of devices is taken as an example to describe a communication process of devices.
- the communication process between modules is similar to the communication process between devices, and will not be repeated here.
- the structures of the interface 1 and the interface 2 are described below.
- an interface 1 is provided on a device 1 , and the interface 1 includes a transmitter 1 and a receiver 1 .
- the device 2 means that there is an interface 2, and the interface 2 includes a transmitter 2 and a receiver 2.
- the transmitter 1 and the transmitter 2 are used to send data, and the receiver 1 and receiver 2 are used to receive data.
- the transmitter 1 and the receiver 2 can be connected through a signal line.
- the data sent by the transmitter 1 can be transmitted to the receiver 2 through the signal line.
- the receiver 1 and the transmitter 2 can be connected by a signal line.
- the data sent by the transmitter 2 can be transmitted to the receiver 1 through the signal line.
- One communication link between interface 1 and interface 2 may include a signal line between transmitter 1 and receiver 2 , and a signal line between receiver 1 and transmitter 2 .
- the processor in device 1 can send the data to receiver 2 through the signal line through transmitter 1 in interface 1, and receiver 2 transmits the received data to device 2 processor.
- the equalization parameter of the transmitter is a parameter required by the transmitter 1 to process data.
- the transmitter 1 can process the data according to the pre-configured transmission equalization parameters, for example, it can reduce the low-frequency signal in the data and enhance the high-frequency signal in the data. Even if the processed data is attenuated or interfered during transmission, the reduced low-frequency data and enhanced high-frequency data can offset the attenuated (or interfered) part of the data, so that when the data reaches the receiver 2, the attenuated
- the difference between the data and the data that actually needs to be sent (the data that actually needs to be sent can be understood as data that has not been processed by the transmitter 1 ) is small, so that the processor of the device 2 can accurately identify the data.
- the selection of transmission equalization parameters plays an important role in data transmission.
- the communication link between device 1 and device 2 is a high-speed serial computer expansion bus (peripheral component interconnect express, PCIe)
- PCIe peripheral component interconnect express
- link negotiation the validity of the communication link can be guaranteed, that is, the availability of the communication link can be guaranteed, and the relevant parameters of the communication link can be determined, such as the width of the communication link and the number of logical channels in the communication link. number and transmitter equalization parameters.
- the transmitter equalization parameters may be determined through an evaluation process of the transmitter equalization parameters. As shown in Figure 2, there are multiple groups of transmitter equalization parameters that can participate in the evaluation.
- a set of transmitter equalization parameters is (C ⁇ 1 , C 0 , C +1 ), where
- 24.
- the device 1 and the device 2 can evaluate multiple sets of different transmitter equalization parameters, and select a set of transmitter equalization parameters with better effect.
- the evaluation process for one set of transmitter equalization parameters is as follows:
- Device 2 selects one group from the multiple groups of transmitter equalization parameters as transmitter equalization parameters to be evaluated, and sends the group of transmitter equalization parameters to device 1 , and device 1 configures interface 1 by using the group of transmitter equalization parameters. After the configuration is complete, device 1 can send a test code stream to device 2 through interface 1. The code stream sent out is the code stream processed by interface 1 using the set of transmitter equalization parameters.
- Device 2 receives the test code stream through interface 2.
- the device 2 can analyze the test code stream to determine whether the test code stream is clear. If the test code stream is clear and easy to identify, it means that the equalization parameters of this group of transmitters have a better effect, and the evaluation result is passed. If the test code stream is not easy to identify, it means that the effect of the equalization parameters of this group of transmitters is poor, and the evaluation result is failure.
- the transmitter equalization parameters to be evaluated are selected by device 2, which has a certain degree of randomness, and the transmitter equalization parameters that pass the evaluation among the large number of transmitter equalization parameters are usually Limited, if device 2 cannot accurately specify the transmitter equalization parameters, it will result in the need to evaluate more sets of transmitter equalization parameters, and if the evaluation results of the transmitter equalization parameters specified by device 2 fail, it will also cause device 1 to be unable to configure More appropriate transmitter equalization parameters.
- the evaluation process of transmitter equalization parameters suffers from poor efficiency and low accuracy.
- the embodiment of the present application provides a method for selecting a transmitter equalization parameter.
- the system to which the embodiment of the present application is applicable and the method for selecting a transmitter equalization parameter will be described below with reference to the accompanying drawings.
- FIG. 3 it is a schematic diagram of a system architecture applicable to the embodiment of the present application.
- the system includes a first device 110 and a second device 120.
- between the first device 110 and the second device 120 can also be Including relay equipment.
- the relay device may forward data to be transmitted by the first device 110 and the second device 120 .
- the first device 110 and the second device 120 are two devices that need to communicate. Interfaces may be provided on the first device 110 and the second device 120 , and a communication link may be established between the interface on the first device 110 and the interface on the second device 120 .
- a communication link may be established between the interface on the first device 110 and the interface on the second device 120 .
- the first device 110 and the second device 120 The length of the inter-communication link can be the maximum length defined by the standard. Certainly, the length of the communication link between the first device 110 and the second device 120 may be smaller than the maximum length defined by the standard. If the standard does not define the length of the communication link, in the embodiment of the present application, the length of the communication link between the first device 110 and the second device 120 may be the maximum communication link length allowed by the two communication devices.
- the interface of the first device 110 is referred to as a first interface
- the interface of the second device 120 is referred to as a second interface.
- the first device 110 and the second device 120 can negotiate to perform a signal attenuation test, and the signal attenuation test is used to measure the first device 110 without using any transmitter equalization parameters. , the amount of signal attenuation generated when the signal sent by the first device 110 reaches the second device 120 .
- the second device 120 may notify the first device 110 to start the signal attenuation test.
- the first device 110 may send a first signal of a set frequency to the second device 120 through the first interface.
- the first signal is a signal that has not been processed by equalization parameters of the transmitter.
- the first signal will change after passing through the communication link between the first device 110 and the second device 120 , where the first signal will become a second signal after passing through the communication link and reaching the second device 120 .
- the second device 120 may determine a signal attenuation amount according to the received second signal and the first signal, and determine a transmitter equalization parameter according to the signal attenuation amount.
- the second device 120 may instruct the first device 110 to perform an evaluation for the transmitter equalization parameter.
- the transmitter equalization parameter specified by the second device 120 is determined by the second device 120 using the signal attenuation, and has a certain basis for selection.
- the selected transmission The sender equalization parameters can better process the signal sent by the first device 110, that is, the matching degree between the specified sender equalization parameters and the first device 110 will be higher. In this manner, the efficiency of the subsequent transmitter equalization parameter evaluation process can be effectively improved, so that more suitable transmitter equalization parameters can be evaluated accurately and efficiently.
- the first device 110 includes a processor 112 , a memory 113 , and a first interface 114 .
- the processor 112 , the memory 113 , and the first interface 114 communicate through the bus 111 .
- the processor 112 can be a central processing unit (central processing unit, CPU), and the processor 112 can also be other general processors, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC) , field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, artificial intelligence chips, chip-on-chip, etc.
- a general purpose processor may be a microprocessor or any conventional processor or the like.
- the memory 113 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM), a dynamic random access memory (dynamic random access memory, DRAM), and the like. It may also be a non-volatile memory (non-volatile memory), such as a storage-class memory (storage-class memory, SCM), or a combination of a volatile memory and a non-volatile memory.
- volatile memory such as a random access memory (random access memory, RAM), a dynamic random access memory (dynamic random access memory, DRAM), and the like. It may also be a non-volatile memory (non-volatile memory), such as a storage-class memory (storage-class memory, SCM), or a combination of a volatile memory and a non-volatile memory.
- the memory 113 may also include an operating system and other software modules required for running processes.
- the operating system can be LINUX TM , UNIX TM , WINDOWS TM and so on.
- the first interface 114 can be used to communicate with the second device, and the communication link between the first interface 114 and the second interface 124 can be a wireless link or a wired link, and the wired link can be PCIe, It can also be other types of links, such as a serial advanced technology attachment (SATA) bus, an inter-integrated circuit (I2C) bus, and the like.
- SATA serial advanced technology attachment
- I2C inter-integrated circuit
- the steps performed by the first device 110 in the transmitter equalization parameter selection method provided by the embodiment of the present application are executed by the processor 112, that is, the processor 112 can execute the embodiment of the present application by calling the computer-executable instructions stored in the memory 113 Steps performed by the first device 110 in the provided transmitter equalization parameter selection method.
- the second device 120 includes a processor 122 , a memory 123 , and a second interface 124 .
- the processor 122 , the memory 123 , and the second interface 124 communicate through the bus 121 .
- the processor 122 , the memory 123 , and the second interface 124 are similar to the processor 112 , the memory 113 , and the first interface 114 .
- the steps performed by the second device in the transmitter equalization parameter selection method provided in the embodiment of the present application can be performed by the processor 122, that is, the processor 122 can execute the computer-executed instructions stored in the memory 123 to execute the steps provided in the embodiment of the present application.
- Step 401 the second device 120 instructs the first device 110 to start a signal attenuation test.
- a signal attenuation test process may be added.
- the first device 110 and the second device 120 determines that it is necessary to detect the signal attenuation from the opposite side signal to the local side, it may instruct the other side device to start the signal attenuation test.
- the second device 120 instructs the first device 110 to start the signal attenuation as an example for illustration.
- the second device 120 there are many scenarios in which it is determined that the signal attenuation needs to be activated.
- the second device 120 and the first device 110 need to perform transmitter equalization parameter evaluation on the first interface 114 .
- the second device 120 and the first device 110 need to perform link negotiation on the communication link between the first device 110 and the second device 120 .
- the second device 120 and the first device 110 need to determine whether the signal attenuation satisfies a preset value before formal communication.
- the above scenario is just an example, and this embodiment of the present application is only described by taking a scenario where the second device 120 and the first device 110 need to evaluate the transmitter equalization parameter on the first interface 114 as an example.
- the second device 120 may send a signal attenuation test request to the first device 110, for requesting the first device 110 to start a signal attenuation test.
- the first device 110 After the first device 110 receives the signal attenuation test request, if it is determined that the signal attenuation test can be started (for example, the first device 110 currently has no need to transmit data, and for example, the first device 110 currently has a low processor usage rate)
- the embodiment of the present application does not limit the manner in which the first device 110 determines that the signal attenuation test can be started), and may send a signal attenuation test response to the second device 120 to agree to start the signal attenuation test.
- the first device 110 may not reply any message.
- the second device 120 may assume that the first device 110 agrees to start the signal attenuation test.
- the signal attenuation test request sent by the second device 120 can be regarded as a signal attenuation test notification message, which is used to notify the first device 110 to start the signal attenuation test.
- the form of the signal attenuation test request and the signal attenuation test response may be an identification bit in a code stream interacted between the first device 110 and the second device 120 .
- the code stream refers to the data stream between the first device 110 and the second device 120 .
- the signal attenuation test flag is used to indicate whether to request to start the signal attenuation test.
- the signal attenuation test response identification bit is used to indicate whether to agree to start the signal attenuation test.
- these two flags can be null. That is, these two identification bits will not be occupied during normal service transmission or other non-signal attenuation test procedures.
- these two identification bits can be specific values. That is, the two identification bits need to start the signal attenuation test is occupied.
- the second device 120 can set the signal attenuation test identification bit in the first code stream to the first value, and send the first code stream to the The first device 110 .
- the second device 120 determined by the first value of the signal attenuation test identification bit may request to start the signal attenuation test. If the first device 110 determines that the signal attenuation test can be started, the first device 110 can set the signal attenuation test response flag in the second code stream to a second value, and send the second code stream through the first interface 114 to the second device 120 . After receiving the second code stream through the second interface 124, the second device 120 determines that the signal attenuation test can be started.
- the signal attenuation test request and the signal attenuation test response may also be in other forms, for example, the signal attenuation test request and the signal attenuation test response may be new messages defined between the first device 110 and the second device 120 .
- the second device 120 may also negotiate with the first device 110 on the continuous sending time or signal frequency of the signal in the signal attenuation strategy process.
- the embodiment of the present application does not limit the way in which the second device 120 and the first device 110 negotiate the continuous transmission time or signal frequency of the signal.
- the negotiation of the signal frequency is taken as an example, and the second device 120 and the first device 110 negotiate the duration of the signal
- the way of sending time and signal frequency will be described, here are two of them:
- the second device 120 may query the signal frequency supported by the first device 110 . After acquiring the signal frequencies supported by the first device 110 from the first device 110 , the second device 120 selects a signal frequency from the signal frequencies supported by the first device 110 . The second device 120 notifies the first device 110 of the selected signal frequency.
- the second device 120 may inquire whether the first device 110 supports the target signal frequency, such as 16 giga transmission per second (GT/s). If the first device 110 supports the target signal frequency, it may notify the second device 120 that the target signal frequency is supported. The second device 120 may instruct the first device 110 to perform a signal attenuation test using the target signal frequency. If the first device 110 does not support the target signal frequency, it may notify the second device 120 that the target signal frequency is not supported. The second device 120 may continue to inquire whether the first device 110 supports other target signal frequencies. Until the signal frequency supported by the first device 110 is negotiated.
- the target signal frequency such as 16 giga transmission per second (GT/s).
- the first device 110 may broadcast a supported signal frequency.
- the second device 120 may select a signal frequency from the signal frequencies supported by the first device 110, and the second device 120 may notify the first device 110 of the selected signal frequency, To be used in the subsequent signal attenuation test process.
- the continuous sending time of the signal or the signal frequency can also be defaulted. That is to say, the second device 120 and the first device 110 do not need to negotiate, and adopt the default continuous sending time or signal frequency to execute the signal attenuation strategy process.
- Steps 402-404 are the interaction process between the first device 110 and the second device 120 in the signal attenuation measurement process.
- Step 402 The first device 110 sends a first signal to the second device 120 through the first interface 114, the first signal is pre-agreed between the first device 110 and the second device 120, and the first signal is not equalized by the transmitter The signal that the parameter handles.
- the continuous sending time and signal frequency of the first signal may be determined after negotiation between the first device 110 and the second device 120 , or may be set by default between the first device 110 and the second device 120 .
- the first device 110 may send the first signal to the second device 120 through the first interface 114 without processing the equalization parameters of the transmitter, that is, neither the high-frequency part nor the low-frequency part in the first signal to process.
- the first signal may be a clock signal, that is, a signal including 1 and 0 appearing alternately.
- the clock signal consists of alternating 1s and 0s.
- the signal fluctuates significantly, and the signal attenuation effect is more obvious during the communication link transmission process, which helps the second device 120 to accurately test the signal attenuation amount.
- the first device 110 may also send the voltage amplitude of the first signal to the second device 120, where the voltage amplitude is used to describe the difference between the highest peak value and the lowest peak value of the first signal.
- FIG. 5 it is a schematic diagram of a waveform of a first signal provided in the embodiment of the present application, and the voltage amplitude described is the longitudinal difference from the peak to the trough in the waveform shown in FIG. 5 .
- Step 403 The second device 120 receives a second signal through the second interface 124, where the second signal is a signal that reaches the second device 120 after the first signal passes through the communication link.
- the first signal When the first signal is transmitted through the communication link, it will be attenuated to a certain extent, and the first signal will be changed, that is, when it reaches the second device 120, it will become the second signal.
- the second device 120 may directly perform step 404, or may first filter the second signal to reduce noise introduced in the communication link, and then perform step 404.
- Step 404 The second device 120 calculates a signal attenuation amount according to the first signal and the second signal.
- the second device 120 may measure the voltage amplitude of the second signal, that is, measure the difference between the highest peak value and the lowest peak value of the second signal.
- the second device 120 calculates the amount of signal attenuation according to the ratio of the voltage amplitude A of the first signal to the voltage amplitude B of the second signal.
- the signal attenuation T can be calculated as follows:
- the amount of signal attenuation is usually related to the signal frequency. The higher the signal frequency, the greater the signal attenuation. There is a certain functional relationship between the signal attenuation and the signal frequency, for example, there is a linear relationship or a logarithmic relationship between the signal attenuation and the signal frequency.
- the second device 120 may calculate the signal attenuation at other signal frequencies by using the signal attenuation at multiple different signal frequencies. For example, the second device 120 needs to determine the signal attenuation at a signal frequency of 16GT/s.
- the second device 120 can divide the signal frequency by 16GT/s by calculating The signal attenuation at multiple different signal frequencies outside, and determine the relationship between the signal attenuation and the signal frequency. Then, based on the relationship between the signal attenuation and the signal frequency, the signal attenuation at a signal frequency of 16GT/s is calculated.
- the signal attenuation is used to represent the attenuation of the second signal relative to the first signal, and if the first signal is used as a reference, the value of the signal attenuation is a negative value.
- the first device 110 can send signals of two different signal frequencies to the second device 120, which are signal 1 and signal 2 respectively, wherein the signal frequency of signal 1 is 8GT/s, and the signal frequency of signal 2 is 5GT/s.
- the signal 1 is attenuated and becomes signal 3
- the signal 2 becomes signal 4 . From the comparison of Fig. 6A and Fig. 6B, it can be seen that the voltage amplitudes of signal 1 and signal 2 have changed through the communication link, and tend to become smaller.
- the second device 120 can according to the voltage amplitude of the signal 1 (the voltage amplitude can be the default between the first device 110 and the second device 120, or can be The first device 110 notifies the second device 120) and the voltage amplitude of the signal 3 (the voltage amplitude may be directly measured by the second device 120 on the signal 3, or may be measured after filtering the signal 3) Calculate the signal attenuation T1 when the signal frequency is 8GT/s.
- the second device 120 can be based on the voltage amplitude of the signal 2 (the voltage amplitude can be the default between the first device 110 and the second device 120, or it can be notified by the first device 110 to the second device 120) and the signal 4 (the voltage amplitude may be measured directly by the second device 120 on signal 3 or after filtering signal 4 ) to calculate the signal attenuation T2 when the signal frequency is 5GT/s.
- the second device 120 can construct a linear relationship between the signal attenuation amount and the signal frequency through the signal attenuation amount T1 at 8GT/s and the signal attenuation amount T2 at a signal frequency of 5GT/s. As shown in FIG. 6C , the linear relationship between the signal attenuation and the signal frequency is constructed for the second device 120 .
- the second device 120 may determine the signal attenuation under 16GT/s.
- the relationship between the signal attenuation and the signal frequency may only be close to a linear relationship, rather than a strict linear relationship, and the second device 120 may still establish a linear relationship between the signal attenuation and the signal frequency.
- the relationship between signal frequencies, the signal attenuation determined by the second device 120 based on the linear relationship between the signal attenuation and the signal frequency is essentially an estimated value. If the relationship between the signal attenuation and the signal frequency is not close to a linear relationship, the second device 120 can also calculate the signal attenuation at multiple signal frequencies in a similar manner, and use the calculated signal at multiple signal frequencies
- the attenuation amount is used to construct the relationship between the signal attenuation amount and the signal frequency.
- the specific method is similar to the construction of the linear relationship between the signal attenuation amount and the signal frequency, and will not be repeated here.
- Step 405 the second device 120 selects a transmitter equalization parameter according to the signal attenuation
- Step 406 the second device 120 instructs the first device 110 to evaluate the selected transmitter equalization parameters.
- the second device 120 may select one or more groups of transmitters that have a greater signal processing intensity Equalization parameters, instructing the first device 110 to evaluate for the selected one or more sets of transmitter equalization parameters.
- the second device 120 instructs the first device 110 to evaluate any set of transmitter equalization parameters, reference may be made to the foregoing description, and details are not repeated here.
- the second device 120 can select P7 or P7 among the transmitter equalization parameters as shown in FIG. 2 One or more sets of nearby transmitter equalization parameters.
- the second device 120 may select one or more sets of transmitter equalization parameters with less signal processing intensity, and instruct the first device 110 to select or multiple sets of transmitter equalization parameters for evaluation. For example, when the signal attenuation is -3db, and the attenuation degree of the second signal is smaller than that of the first signal, the second device 120 can select one or more of the transmitter equalization parameters shown in FIG. Group transmitter equalization parameters.
- the embodiment of the present application also provides a parameter selection device, which is used to execute the method performed by the second device in the method embodiment as shown in Figure 4 above.
- the parameter selection device 700 includes a receiving module 701 , a processing module 702 and a sending module 703 .
- the receiving module 701 is configured to receive a second signal through the communication link established between the second device and the first device, and the second signal is a signal that reaches the second device after the first signal is transmitted through the communication link.
- the processing module 702 is configured to determine a signal attenuation amount according to the first signal and the second signal; and select a transmitter equalization parameter according to the signal attenuation amount.
- a sending module 703, configured to instruct the first device to start an evaluation process for the selected equalization parameter of the transmitter.
- the sending module 703 may also send a signal attenuation test request to the first device, where the signal attenuation test request is used to request to start a signal attenuation test.
- the sending module 703 may instruct the first device to meet the continuous sending time or signal frequency required to send the first signal.
- the receiving module 701 may also receive a notification from the first device, and determine the continuous sending time or signal frequency that the first signal satisfies.
- the receiving module 701 may also acquire the voltage amplitude of the first signal from the first device.
- the processing module 702 can measure the voltage amplitude of the second signal; and then calculate the signal according to the voltage amplitude of the first signal and the voltage amplitude of the second signal Attenuation.
- the first signal is a clock signal.
- the embodiment of the present application also provides a parameter selection device, which is used to execute the method performed by the first device in the method embodiment shown in Figure 4 above, related For features, refer to the above-mentioned method embodiments, which will not be repeated here.
- the parameter selection device 800 includes a sending module 801 and a processing module 802 .
- a sending module 801 configured to send a first signal to a second device through a communication link, wherein the first signal is not processed based on the transmitter equalization parameters of the interface of the first device, and the communication link is between the first device and the second device built between.
- the processing module 802 is configured to start an evaluation process of the transmitter equalization parameter of the interface of the first device under the instruction of the second device.
- the device further includes a receiving module 803 .
- the receiving module 803 may receive a received signal attenuation test request from the second device, where the signal attenuation test request is used for requesting to start a signal attenuation test.
- the sending module 801 may also notify the second device of the continuous sending time or signal frequency that the first signal satisfies.
- the receiving module 803 may receive an indication from the second device, and determine a continuous sending time or a signal frequency that the first signal satisfies.
- the sending module 801 may send the first signal that meets the continuous sending time or signal frequency.
- the sending module 801 may notify the second device of the voltage amplitude of the first signal.
- the first signal is a clock signal.
- each functional module in the embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
- the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
- the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
- the above-described embodiments may be implemented in whole or in part in the form of computer program products.
- the computer program product includes one or more computer instructions. When the computer program instructions are loaded or executed on the computer, the processes or functions according to the embodiments of the present invention will be generated in whole or in part.
- the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
- the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
- the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
- the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
- the semiconductor medium may be a solid state drive (SSD).
- the second device in the embodiment shown in FIG. 4 and the parameter selection device shown in FIG. 7 can take the form of the second device shown in FIG. 3 .
- a processor 122, a memory 123, and a communication interface are included.
- the processor 122, the memory 123, and the second interface 124 reference may be made to the aforementioned memory, and details are not repeated here.
- the first device in the embodiment shown in FIG. 4 and the parameter selection device shown in FIG. 8 can take the form of the first device shown in FIG. 3 .
- a processor 112 a memory 113, and a communication interface (such as the first interface 114) are included.
- a communication interface such as the first interface 114
- the processor 112 the memory 113, and the second interface 114, reference may be made to the aforementioned memory, and details are not repeated here.
- the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
- the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Quality & Reliability (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
一种发送器均衡参数选择系统、方法、装置及设备,在本申请中,第一设备与所述第二设备之间通过第一设备的接口以及第二设备的接口可以建立通信链路。在启动针对第一设备的接口的发送器均衡参数的评估流程之前,第二设备通过与第一设备的交互,测量出第一信号在经过通信链路后到达第二设备时所产生的信号衰减量。第二设备可以根据信号衰减量有针对性的为第一设备的接口选择发送器均衡参数,之后再启动针对第一设备的接口的发送器均衡参数的评估流程,第二设备所选择的发送器均衡参数更加适用于第一设备的接口,使得在针对第一设备的接口的发送器均衡参数的评估流程能够较快确定出评估通过的发送器均衡参数。
Description
相关申请的交叉引用
本申请要求在2021年11月08日提交中国专利局、申请号为202111314680.0、申请名称为“一种发送器均衡参数选择系统、方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种发送器均衡参数选择系统、方法、装置及设备。
设备之间在建立高速串行链路时,会先进行高速串行链路的协商过程,在协商过程包括对设备的发送器均衡参数的评估,也即需要执行发送器均衡参数评估流程。通过发送器均衡参数评估流程需要选择与高速串行链路匹配的发送器均衡参数。
发送器均衡参数评估流程是需要对数量较多的发送器均衡参数进行逐一评估的,由于发送器均衡参数评估流程存在时间限制,有限的时间内发送器均衡参数评估流程并不能对所有发送器均衡参数进行评估,最终所确定的发送器均衡参数很可能并不合适,也即发送器均衡参数评估流程的效率以及准确性较差。
发明内容
本申请提供一种发送器均衡参数选择系统、方法、装置及设备,用以解决现有技术中问题。
第一方面,本申请实施例提供了一种发送器均衡参数选择系统,该系统包括第一设备和第二设备。第一设备与所述第二设备之间通过第一设备的接口以及第二设备的接口可以建立通信链路。
第一设备可以通过通信链路向第二设备发送第一信号,第一设备在发送该第一信号时,该第一信号在经过该第一设备的接口时,第一设备的接口可以不基于发送器均衡参数对第一信号进行处理。
第一信号经过该通信链路发生变化,在到达第二设备时变为第二信号。第二设备在接收到该第二信号后,可以根据第一信号和第二信号来确定信号衰减量,信号衰减量用于表征第二信号相对于第一信号的衰减程度。第二设备在确定了信号衰减量后,根据信号衰减量为第一设备的接口选择发送器均衡参数。在选择了发送器均衡参数之后,指示第一设备启动针对第一设备的接口的发送器均衡参数的评估流程,该评估流程用于对选择的发送器均衡参数进行评估。
第一设备在第二设备的指示下启动针对第一设备的接口的发送器均衡参数的评估流程。
通过上述系统,在启动针对第一设备的接口的发送器均衡参数的评估流程之前,第二 设备通过与第一设备的交互,测量出第一信号在经过通信链路后到达第二设备时所产生的信号衰减量。第二设备可以根据信号衰减量有针对性的为第一设备的接口选择发送器均衡参数,之后再启动针对第一设备的接口的发送器均衡参数的评估流程,第二设备所选择的发送器均衡参数更加适用于第一设备的接口,使得在针对第一设备的接口的发送器均衡参数的评估流程能够较快确定出评估通过的发送器均衡参数。
在一种可能的实施方式中,第二设备在接收第二信号之前,还可以向第一设备发送信号衰减测试请求,用于请求启动信号衰减量测试。第一设备在接收到信号衰减测试请求之后,可以通过通信链路发送第一信号。
通过上述系统,第二设备能够通过发送信号衰减测试请求可以通知第一设备启动信号衰减量的测试,以便第一设备不经过第一设备的接口的发送器均衡参数对第一信号进行处理,直接发送第一信号,以便后续可以准确的测量出信号衰减量。
在一种可能的实施方式中,第二设备和第一设备还可以协商第一信号所需满足的发送条件。该发送条件包括下面的部分或全部:持续发送时间或信号频率。本申请并不限定第二设备和第一设备的协商方式。例如,第一设备和第二设备在协商时,第二设备可以直接指示第一设备发送第一信号所需满足的持续发送时间或信号频率,第一设备可以根据第二设备的指示发送满足持续发送时间或信号频率的第一信号。又例如,第一设备也可以直接告知第二设备第一信号所满足的持续发送时间或信号频率。
在一种可能的实施方式中,第一信号的电压幅值可以是第一设备和第二设备预先约定的,也可以是第一设备通知给第二设备的。
通过上述系统,电压幅值的设置较为灵活,适用于不同的场景。
在一种可能的实施方式中,第二设备在根据第一信号和第二信号确定信号衰减量时,可以先测量第二信号的电压幅值;之后,再根据第一信号的电压幅值以及第二信号的电压幅值计算信号衰减量。
通过上述系统,第二设备利用第一信号和第二信号的电压幅值能够方便、快捷的计算信号衰减量。
在一种可能的实施方式中,第一信号为时钟信号。
通过上述系统,时钟信号中包括交替出现1和0,时钟信号在通信链路中传输时,更容易受到通信链路的影响,信号的衰减程度更明显,便于第二设备能够准确的计算出信号衰减量。
第二方面,本申请实施例提供了一种发送器均衡参数选择方法,该方法可以由第二设备执行。有益效果可以参见第一方面的相关描述,此处不再赘述。第二设备和第一设备之间通过第一设备的接口以及第二设备的接口建立通信链路。
第二设备可以通过该通信链路接收第二信号,第二信号为第一信号经过通信链路传输后到达第二设备的信号。第二设备可以根据第一信号和第二信号确定信号衰减量;之后再根据信号衰减量为第一设备的接口选择发送器均衡参数。在选择了发送器均衡参数,第二设备可以指示第一设备启动对选择的发送器均衡参数的评估流程。
在一种可能的实施方式中,第二设备在通过与第一设备之间建立的通信链路接收第二信号之前,第二设备可以向第一设备发送信号衰减测试请求,信号衰减测试请求用于请求启动信号衰减量测试。
在一种可能的实施方式中,第二设备还可以指示第一设备发送第一信号所需满足的持 续发送时间或信号频率。
在一种可能的实施方式中,第二设备还可以从第一设备获取第一信号所满足的持续发送时间或信号频率。
在一种可能的实施方式中,第二设备还可以从第一设备获取第一信号的电压幅值。
在一种可能的实施方式中,第二设备根据第一信号和第二信号确定信号衰减量时,可以先测量第二信号的电压幅值;之后,再根据第一信号的电压幅值以及第二信号的电压幅值计算信号衰减量。
在一种可能的实施方式中,第一信号为时钟信号。
第三方面,本申请实施例提供了一种发送器均衡参数选择方法,方法可以由第一设备执行。第二设备和第一设备之间通过第一设备的接口以及第二设备的接口建立通信链路。
在该方法中,第一设备可以通过通信链路向第二设备发送第一信号,其中,第一信号未基于第一设备的接口的发送器均衡参数进行处理。
第一设备在第二设备的指示下启动针对第一设备的接口的发送器均衡参数的评估流程,其中,第一设备的接口的发送器均衡参数为第二设备通知该第一设备的。
在一种可能的实施方式中,第一设备可以在接收到来自第二设备的信号衰减测试请求后,通过通信链路向第二设备发送第一信号,其中,信号衰减测试请求用于请求启动信号衰减量测试。
在一种可能的实施方式中,第一设备可以通知第二设备第一信号所满足的持续发送时间或信号频率。
在一种可能的实施方式中,第一设备还可以接收第二设备的指示,确定第一信号所满足的持续发送时间或信号频率;之后,再发送满足持续发送时间或信号频率的第一信号。
在一种可能的实施方式中,第一设备还可以通知第二设备第一信号的电压幅值。
在一种可能的实施方式中,第一信号为时钟信号。
第四方面,本申请实施例还提供了一种参数选择装置,该参数选择装置具有实现上述第二方面的方法实例中行为的功能,有益效果可以参见第二方面的描述此处不再赘述。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括接收模块、处理模块以及发送模块,这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,本申请实施例还提供了一种参数选择装置,该接收模块、处理模块以及发送模块具有实现上述第三方面的方法实例中行为的功能,有益效果可以参见第三方面的描述此处不再赘述。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括接收模块、处理模块以及发送模块,这些模块可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,本申请实施例还提供了一种计算设备,该计算设备具有实现上述第二方面的方法实例中行为的功能,有益效果可以参见第二方面的描述此处不再赘述。所述计算设备的结构中包括处理器和存储器,所述处理器被配置为支持所述计算设备执行上述第二方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述计算设备必要的程序指令和数据。所述计算设备的结构中还包括通信接口,用于与其他设备进行通信,如可以接 收第二信号,发送启动对选择的所述发送器均衡参数的评估流程的指示、发送信号衰减测试请求等。
第七方面,本申请实施例还提供了一种计算设备,该计算设备具有实现上述第三方面的方法实例中行为的功能,有益效果可以参见第三方面的描述此处不再赘述。所述计算设备的结构中包括处理器和存储器,所述处理器被配置为支持所述计算设备执行上述第三方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述计算设备必要的程序指令和数据。所述计算设备的结构中还包括通信接口,用于与其他设备进行通信,如可以发送第一信号,接收信号衰减测试请求等。
第八方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面以及第二方面的各个可能的实施方式中所述的方法。或当其在计算机上运行时,使得计算机执行上述第三方面以及第三方面的各个可能的实施方式中所述的方法。
第九方面,本申请还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面以及第二方面的各个可能的实施方式中所述的方法。或当其在计算机上运行时,使得计算机执行上述第三方面以及第三方面的各个可能的实施方式中所述的方法。
第十方面,本申请还提供一种计算机芯片,所述芯片与存储器相连,所述芯片用于读取并执行所述存储器中存储的软件程序,执行上述第二方面以及第二方面的各个可能的实施方式中所述的方法。或所述芯片用于读取并执行所述存储器中存储的软件程序,执行上述第三方面以及第三方面的各个可能的实施方式中所述的方法。
图1为一种发送器均衡参数的评估流程中设备间的连接关系示意图;
图2为本申请提供的一种可进行评估的多组发送器均衡参数的示意图;
图3为本申请提供的一种系统的架构示意图;
图4为本申请提供的一种发送器均衡参数评估方法示意图;
图5为本申请提供的一种第一信号示意图;
图6A为本申请提供的一种传输前信号的示意图;
图6B为本申请提供的一种传输后信号的示意图;
图6C为本申请提供的一种信号衰减量与信号频率的关系示意图;
图7~图8为本申请提供的一种参数选择装置示意图。
对于两个需要通信的设备,可以通过设备的接口之间的通信链路实现数据的传输。类似的,对于设备内的两个需要通信的模块,同样可以通过模块的接口之间的通信链路实现数据的传输。在本申请实施例中以设备的接口之间的通信链路为例,对设备的通信过程进行说明。对于模块之间的通信过程与设备间的通信过程类似,此处不再赘述。进行下面对接口1与接口2的结构进行说明。
参见图1,设备1上设置有接口1,该接口1中包括发送器1和接收器1。设备2上是 指有接口2,接口2包括发送器2和接收器2。
其中,发送器1和发送器2用于发送数据,接收器1和接收器2用于接收数据。发送器1与接收器2之间可以通过信号线连接。发送器1发送的数据可以通过信号线传输到接收器2。接收器1与发送器2之间可以通过信号线连接。发送器2发送的数据可以通过信号线传输到接收器1。接口1和接口2之间的一个通信链路可以包括发送器1与接收器2之间的信号线、以及接收器1与发送器2之间的信号线。
当设备1需要向设备2发送数据时,设备1中的处理器可以通过接口1中的发送器1将数据通过信号线发送到接收器2,接收器2再将接收到的数据传输给设备2的处理器。
该数据在从发送器1到接收器2传输的过程中,会存在数据衰减或干扰,若发送器1不对该数据进行处理或所进行的处理强度较低,会导致接收器2所接收到的数据与实际发送的数据存在偏差,最终导致设备2的处理器无法正确的识别出所接收到的数据。
发送器均衡参数即为发送器1对数据进行处理所需要的参数。发送器1可以根据预先配置的发送均衡参数对数据进行处理,如可以降低数据中的低频信号,增强数据中的高频信号。经过处理后的数据即使在传输过程中发生衰减或干扰,降低的低频数据与增强的高频数据也可以与衰减(或干扰)的部分数据相抵,这样当数据到达接收器2时,衰减后的数据与实际需要发送的数据(实际需要发送的数据可以理解为发送器1未进行处理的数据)差别较小,这样,设备2的处理器能够准确的识别出该数据。
可见,发送均衡参数的选择对于数据传输起着重要作用。若设备1与设备2之间的通信链路以高速串行计算机扩展总线(peripheral component interconnect express,PCIe),在设备1和设备2之间建立通信链路时,设备1和设备2会进行链路协商,通过链路协商能够保证该通信链路的有效性,也即保证通信链路可用,还能够确定出通信链路的相关参数,如通信链路的宽度、通信链路中逻辑通道的编号以及发送器均衡参数。
通过发送器均衡参数的评估过程可以确定发送器均衡参数。如图2所示为能够参与评估的多组发送器均衡参数。一组发送器均衡参数为(C
-1,C
0,C
+1),其中,|C
-1|+|C
0|+|C
+1|=24。
在该评估流程中,设备1和设备2可以对多组不同的发送器均衡参数进行评估,从中选择出效果较好的一组发送器均衡参数。
针对其中一组发送器均衡参数的评估流程如下:
设备2从该多组发送器均衡参数中选择一组作为待评估的发送器均衡参数,将该组发送器均衡参数发送至设备1,设备1利用该组发送器均衡参数配置接口1。在配置完成后,设备1可以通过接口1向设备2发送测试码流,发送出的侧是码流是接口1利用该组发送器均衡参数处理后的码流。
设备2通过接口2接收该测试码流。设备2可以分析该测试码流,确定该测试码流是否清晰。若该测试码流清晰,较易识别,说明该组发送器均衡参数效果较佳,评估结果为通过。若该测试码流不易识别,说明该组发送器均衡参数效果较差,评估结果为失败。
从上述评估过程中,可以看出所需测评的发送器均衡参数是由设备2所选定的,具有一定的随机性,而数量众多的发送器均衡参数中评估通过的发送器均衡参数通常是有限的,如果设备2不能准确的指定发送器均衡参数,将会导致需要评价较多组发送器均衡参数,若设备2所指定发送器均衡参数的评估结果均失败,还会导致设备1无法配置较为合适的发送器均衡参数。发送器均衡参数的评估流程存在效率差、准确性低的问题。
为此本申请实施例提供了一种发送器均衡参数选择方法,下面结合附图对本申请实施例所适用于的系统以及发送器均衡参数选择方法进行说明。
如图3所述为本申请实施例所适用的一种系统架构示意图,该系统包括第一设备110和第二设备120,可选的,在第一设备110和第二设备120之间还可以包括中继设备。中继设备可以对第一设备110和第二设备120需要传输的数据进行转发。
第一设备110和第二设备120为需要进行通信的两个设备。第一设备110和第二设备120上可以设置有接口,第一设备110上的接口和第二设备120上的接口之间可以建立通信链路。对于不同类型的通信链路,通常会设置有对应的标准,该标准定义了通信链路需要满足的调节,如长度要求等,本申请实施例中,该第一设备110和第二设备120之间通信链路的长度可以为标准定义下的最大长度。当然,该第一设备110和第二设备120之间通信链路的长度可以小于标准定义下的最大长度。若标准未定义通信链路的长度,在本申请实施例中第一设备110和第二设备120之间通信链路的长度可以为两个需要通信设备所允许的最大通信链路长度。
为了方便说明,将第一设备110的接口称为第一接口,第二设备120的接口成为第二接口。
在本申请实施例中,第一设备110与第二设备120之间可以协商以进行信号衰减量测试,该信号衰减量测试用于测量第一设备110在不使用任何发送器均衡参数的情况下,第一设备110发送的信号到达第二设备120时所产生的信号衰减量。
第二设备120可以在确定需要进行信号衰减量测试时,可以通知该第一设备110启动信号衰减量测试。
在信号衰减测量流程中,第一设备110通过第一接口可以向第二设备120发送设定频率的第一信号。该第一信号是未经过发送器均衡参数处理后的信号。
第一信号经过第一设备110与第二设备120之间的通信链路,会发生变化,这里以第一信号经过通信链路之后到达第二设备120会变为第二信号。
第二设备120在接收到第二信号后,可以根据接收到的第二信号与第一信号确定信号衰减量,并根据该信号衰减量确定发送器均衡参数。第二设备120可以指示第一设备110针对该发送器均衡参数进行评估。
在本申请实施例中,在进行发送器均衡参数评估流程时,第二设备120所指定的发送器均衡参数为第二设备120利用信号衰减量确定的,具有一定的选择依据,所选择的发送器均衡参数能够较好的对第一设备110的发送的信号进行处理,也即所指定的发送器均衡参数与第一设备110的匹配程度将更高。采用这种方式,能够有效提升后续发送器均衡参数评估流程的效率,以便能够准确、高效的评估出较适宜的发送器均衡参数。
具体到第一设备110和第二设备120内部,第一设备110和第二设备120的内部结构可以参见图2所示,这里以第一设备110为例,对第一设备110以及第二设备120的内部结构进行说明,第一设备110包括处理器112、内存113、第一接口114。处理器112、内存113、第一接口114之间通过总线111通信。
处理器112可以为中央处理器(central processing unit,CPU),处理器112还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、人工智能芯片、 片上芯片等。通用处理器可以是微处理器或者是任何常规的处理器等。
内存113可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM)、动态随机存取存储器(dynamic random access memory,DRAM)等。也可以为非易失性存储器(non-volatile memory),例如存储级存储器(storage-class memory,SCM)等,或者易失性存储器与非易失性存储器的组合等。
内存113中还可以包括操作系统等其他运行进程所需的软件模块。操作系统可以为LINUX
TM,UNIX
TM,WINDOWS
TM等。
第一接口114可以用于与第二设备进行通信,第一接口114和第二接口124之间的通信链路可以为无线链路,也可以为有线链路,该有线链路可以为PCIe,也可以为其他类型的链路,如串行高级技术附件(serial advanced technology attachment,SATA)总线、内置集成电路(inter-integrated circuit,I2C)总线等。
本申请实施例提供的发送器均衡参数选择方法中第一设备110侧执行的步骤由于处理器112执行,也即,处理器112可以通过调用内存113中存储的计算机执行指令,执行本申请实施例提供的发送器均衡参数选择方法中第一设备110执行的步骤。
第二设备120包括处理器122、内存123、第二接口124。处理器122、内存123、第二接口124之间通过总线121通信。处理器122、内存123、第二接口124与处理器112、内存113、第一接口114类似,具体可以参见前述说明,此处不再赘述。本申请实施例提供的发送器均衡参数选择方法中第二设备执行的步骤可以由处理器122执行,也即,处理器122可以通过调用内存123中存储的计算机执行指令,执行本申请实施例提供的发送器均衡参数选择方法中第二设备120执行的步骤。
下面结合附图4对本申请实施例提供的发送器均衡参数选择方法进行简单说明,参加图3,该方法包括:
步骤401:第二设备120指示第一设备110启动信号衰减量测试。
在第一设备110和第二设备120之间交互流程中,可以增加一个信号衰减量测试流程。当第一设备110和第二设备120任一方确定需要检测对侧信号到本侧的信号衰减量的情况下,可以指示对侧设备启动信号衰减量测试。在本申请实施例中以第二设备120指示第一设备110启动信号衰减量为例进行说明。
对于第二设备120来说,确定需要启动信号衰减量的场景有很多种。例如第二设备120和第一设备110需要对第一接口114进行发送器均衡参数评估。又例如,第二设备120和第一设备110需要针对第一设备110和第二设备120之间的通信链路进行链路协商。又例如,第二设备120和第一设备110在正式通信之间,需要确定信号衰减量是否满足预设数值。上述场景仅是举例,本申请实施例仅是以第二设备120和第一设备110需要对第一接口114进行发送器均衡参数评估的场景为例进行说明。
第二设备120在执行步骤401时,可以向第一设备110发送信号衰减测试请求,用于请求第一设备110启动信号衰减量测试。
第一设备110在接收到信号衰减测试请求后,在确定能够启动信号衰减量测试的情况下(如第一设备110当前无传输数据的需求,又如第一设备110当前处理器占用率较低。本申请实施例并不限定第一设备110确定能够启动信号衰减量测试的方式),可以向第二设备120发送信号衰减测试应答,以同意启动该信号衰减量测试。
当然,第一设备110也可以不回复任何消息。第二设备120可以默认第一设备110同 意启动信号衰减量测试。在这种场景下,可以将第二设备120发送的信号衰减测试请求看作为信号衰减测试通知消息,其作用为通知第一设备110启动信号衰减量测试。
其中,信号衰减测试请求以及信号衰减测试应答的表现形式可以为第一设备110和第二设备120之间交互的码流中的标识位。其中,码流是指第一设备110与第二设备120之间数据流。信号衰减测试标识位用于指示是否请求启动信号衰减量测试。信号衰减测试应答标识位用于指示是否同意启动信号衰减量测试。
在不需要执行或启动信号衰减量测试时,这两个标识位可以为空值。也即这两个标识位在正常的业务传输过程中或其他非信号衰减量测试流程中是不会被占用的。当需要执行或启动信号衰减量测试时,这两个标识位可以为特定的值。也即这两个标识位需要启动信号衰减量测试是被占用的。
当第二设备120需要启动信号衰减量测试时,第二设备120可以将第一码流中的信号衰减测试标识位设置为第一值,并通过第二接口124将该第一码流发送至第一设备110。第一设备110在通过第一接口114接收到该第一码流时,可以通过信号衰减测试标识位上的第一值确定的第二设备120请求启动信号衰减量测试。若第一设备110确定能够启动信号衰减量测试,第一设备110可以将第二码流中的信号衰减测试应答标识位设置为第二值,并通过第一接口114将该第二码流发送至第二设备120。第二设备120在通过第二接口124接收到该第二码流,确定能够启动信号衰减量测试。
信号衰减测试请求以及信号衰减测试应答也可以为其他表现形式,例如,信号衰减测试请求以及信号衰减测试应答可以是第一设备110和第二设备120之间定义的新的消息。
第二设备120除了能够指示第一设备110启动信号衰减量测试流程,还可以与第一设备110协商在信号衰减策略流程中信号的持续发送时间或信号频率。
本申请实施例并不限定第二设备120与第一设备110协商信号的持续发送时间或信号频率的方式,这里以协商信号频率为例,对第二设备120与第一设备110协商信号的持续发送时间以及信号频率的方式进行说明,这里列举其中两种:
第一种、第二设备120可以询问第一设备110所支持的信号频率。第二设备120在从第一设备110获取第一设备110所支持的信号频率后,从第一设备110所支持的信号频率中选择信号频率。第二设备120将所选择的信号频率通知给第一设备110。
第二种、第二设备120可以询问第一设备110是否支持目标信号频率,如16千兆传输/秒(giga transmission per second,GT/s)。第一设备110若支持目标信号频率,可以通知第二设备120支持目标信号频率。第二设备120可以指示第一设备110采用目标信号频率执行信号衰减量测试。第一设备110若不支持目标信号频率,可以通知第二设备120不支持目标信号频率。第二设备120可以采用继续询问第一设备110是否支持其他目标信号频率。直至协商出第一设备110支持的信号频率。
第三种、第一设备110可以广播所支持的信号频率。第二设备120在获知了第一设备110所支持的信号频率之后,可以从第一设备110所支持的信号频率中选择信号频率,第二设备120可以通知第一设备110所选择的信号频率,以用于后续的信号衰减量测试流程。
需要说明的是,上述方式仅是举例,在实际应用中也可以采用上述部分方式结合的方式,或其他方式进行信号的持续发送时间以及信号频率的协商。
在一些场景中,信号的持续发送时间或信号频率也可以默认的。也即第二设备120与第一设备110可以不需要进行协商,采用默认的持续发送时间或信号频率执行信号衰减策 略流程。
步骤402~404即为信号衰减测量流程中第一设备110与第二设备120的交互过程。
步骤402:第一设备110通过第一接口114向第二设备120发送第一信号,该第一信号为该第一设备110与第二设备120预先约定的,第一信号为未经过发送器均衡参数处理的信号。该第一信号的持续发送时间以及信号频率可以是第一设备110与第二设备120协商后所确定的,也可以是第一设备110与第二设备120之间默认设置的。
信号衰减测量流程中,第一设备110可以通过第一接口114向第二设备120发送未经发送器均衡参数处理的第一信号,也即该第一信号中的高频部分以及低频部分均未进行处理。
在本申请实施例中第一信号可以为时钟信号,也即包括交替出现1和0的信号。时钟信号包括了交替出现1和0。对于时钟信号来说,信号波动明显,信号在通信链路传输过程中衰减效果也更加明显,有助于第二设备120能够准确测试出信号衰减量。
在执行步骤402之前,第一设备110也可以向第二设备120发送第一信号的电压幅值,该电压幅值用于描述第一信号的最高峰值与最低峰值之间的差值。如图5所示,为本申请实施例提供的一种第一信号的波形示意图,电压幅值所描述的即为图5所示的波形中波峰到波谷的纵向差值。
步骤403:第二设备120通过第二接口124接收第二信号,该第二信号为第一信号经过通信链路后到达第二设备120的信号。
第一信号在经过通信链路进行传输时,会发送一定的衰减,第一信号会发送变化,也即在到达第二设备120时,会变为第二信号。
第二设备120在接收到第二信号后,可以直接执行步骤404,也可以先对第二信号进行滤波,减少通信链路中所引入的噪声,然后在执行步骤404。
步骤404:第二设备120根据第一信号和第二信号计算信号衰减量。
第二设备120在接收到第二信号后,可以测量第二信号的电压幅值,也即测量第二信号的最高峰值与最低峰值之间的差值。
第二设备120通过第一信号的电压幅值A与第二信号的电压幅值B的比值计算信号衰减量。信号衰减量T可以采用如下方式计算:
T=20LogA/B
需要说明的是,信号衰减量通常与信号频率有关。信号频率越大,信号衰减量越大。信号衰减量与信号频率之间存在一定函数关系,如信号衰减量与信号频率之间存在线性关系,或者对数关系等。第二设备120可以通过多个不同信号频率下的信号衰减量计算其他信号频率下的信号衰减量。例如,第二设备120需要确定信号频率为16GT/s下的信号衰减量,若当前测试环境或者第一设备110不支持16GT/s的信号频率,第二设备120可以通过计算除16GT/s之外的多个不同的信号频率下的信号衰减量,确定信号衰减量与信号频率之间的关系。之后基于信号衰减量与信号频率之间的关系,计算信号频率为16GT/s下的信号衰减量。
需要说明的是,信号衰减量用于表征第二信号相对于第一信号的衰减量,若以第一信号为基准,信号衰减量的值为负值。
下面以信号衰减量与信号频率之间存在线性关系为例。
如图6A所示,第一设备110可以向第二设备120发送两种不同信号频率的信号,分 别为信号1和信号2,其中信号1的信号频率为8GT/s,信号2的信号频率为5GT/s。如图6B所示,经过第一设备110与第二设备120之间的通信链路,信号1发送衰减变为信号3,信号2变为信号4。通过图6A和图6B的比对,可以看出,信号1和信号2经过通信链路在电压幅值发生了变化,有变小的趋势。
第二设备120在接收到信号3和信号4之后,第二设备120可以根据信号1的电压幅值(该电压幅值可以是第一设备110和第二设备120之间默认的,也可以是第一设备110通知给第二设备120的)与信号3的电压幅值(该电压幅值可以是第二设备120直接对信号3测量的,也可以是在对信号3进行滤波后测量的)计算信号频率为8GT/s下的信号衰减量T1。第二设备120可以根据信号2的电压幅值(该电压幅值可以是第一设备110和第二设备120之间默认的,也可以是第一设备110通知给第二设备120的)与信号4的电压幅值(该电压幅值可以是第二设备120直接对信号3测量的,也可以是在对信号4进行滤波后测量的)计算信号频率为5GT/s下的信号衰减量T2。
第二设备120可以通过8GT/s下的信号衰减量T1、以及信号频率为5GT/s下的信号衰减量T2构建信号衰减量与信号频率之间的线性关系。如图6C所示,为第二设备120构建的信号衰减量与信号频率之间的线性关系。
第二设备120在建立了信号衰减量与信号频率之间的线性关系之后,可以确定16GT/s下的信号衰减量。
应需理解的是,在实际应用中,信号衰减量与信号频率之间的关系可能仅是接近于线性关系,而非严格的线性关系,第二设备120可以仍以线性关系建立信号衰减量与信号频率之间的关系,第二设备120基于信号衰减量与信号频率之间的线性关系所确定的信号衰减量实质上是一个估算值。若信号衰减量与信号频率之间的关系并不接近与线性关系,第二设备120也可以采用类似的方式计算多个信号频率下的信号衰减量,利用所计算的多个信号频率下的信号衰减量来构建信号衰减量与信号频率之间的关系,具体方式与构建信号衰减量与信号频率之间的线性关系类似,此处不再赘述。
步骤405:第二设备120根据该信号衰减量选择发送器均衡参数;
步骤406:第二设备120指示第一设备110针对所选择的发送器均衡参数进行评估。
当信号衰减量的绝对值较大,第二信号相对于第一信号的衰减程度较大,大于某一阈值时,第二设备120可以选择对信号处理强度较大的一组或多组发送器均衡参数,指示第一设备110针对所选择的一组或多组发送器均衡参数进行评估。对于第二设备120指示第一设备110对其中任一组发送器均衡参数进行评估的方式可以参见前述说明,此处不再赘述。例如,当信号衰减量为-20分贝(decibel,db),第二信号相对于第一信号的衰减程度较大,第二设备120可以选择如图2所示的发送器均衡参数中P7或P7附近的一组或多组发送器均衡参数。
当信号衰减量的绝对值较小,小于某一阈值时,第二设备120可以选择对信号处理强度较小的一组或多组发送器均衡参数,指示第一设备110针对所选择的一组或多组发送器均衡参数进行评估。例如,当信号衰减量为-3db,第二信号相对于第一信号的衰减程度较小,第二设备120可以选择如图2所示的发送器均衡参数中P4或P4附近的一组或多组发送器均衡参数。
基于与方法实施例同一发明构思,本申请实施例还提供了一种参数选择装置,该参数选择装置用于执行上述如图4所示的方法实施例中所述第二设备执行的方法,相关特征可 参见上述方法实施例,此处不再赘述。如图7所示,该参数选择装置700包括接收模块701、处理模块702以及发送模块703。
接收模块701,用于通过第二设备与第一设备之间建立的通信链路接收第二信号,第二信号为第一信号经过通信链路传输后到达第二设备的信号。
处理模块702,用于根据第一信号和第二信号确定信号衰减量;根据信号衰减量选择发送器均衡参数。
发送模块703,用于指示第一设备启动对选择的发送器均衡参数的评估流程。
在一种可能的实施方式中,发送模块703还可以向第一设备发送信号衰减测试请求,信号衰减测试请求用于请求启动信号衰减量测试。
在一种可能的实施方式中,发送模块703可以指示第一设备发送第一信号所需满足的持续发送时间或信号频率。
在一种可能的实施方式中,接收模块701还可以接收第一设备的通知,确定第一信号所满足的持续发送时间或信号频率。
在一种可能的实施方式中,接收模块701还可以从第一设备获取第一信号的电压幅值。
在一种可能的实施方式中,处理模块702在计算信号衰减量时,可以测量第二信号的电压幅值;之后,再根据第一信号的电压幅值以及第二信号的电压幅值计算信号衰减量。
在一种可能的实施方式中,第一信号为时钟信号。
基于与方法实施例同一发明构思,本申请实施例还提供了一种参数选择装置,该参数选择装置用于执行上述如图4所示的方法实施例中所述第一设备执行的方法,相关特征可参见上述方法实施例,此处不再赘述。如图8所示,该参数选择装置800包括发送模块801、处理模块802。
发送模块801,用于通过通信链路向第二设备发送第一信号,其中,第一信号未基于第一设备的接口的发送器均衡参数进行处理,通信链路为第一设备与第二设备之间建立的。
处理模块802,用于在第二设备的指示下启动对第一设备的接口的发送器均衡参数的评估流程。
在一种可能的实施方式中,装置还包括接收模块803。
接收模块803可以接收来自第二设备的接收到信号衰减测试请求,信号衰减测试请求用于请求启动信号衰减量测试。
在一种可能的实施方式中,发送模块801还可以通知第二设备第一信号所满足的持续发送时间或信号频率。
在一种可能的实施方式中,接收模块803可以接收第二设备的指示,确定第一信号所满足的持续发送时间或信号频率。
发送模块801可以发送满足持续发送时间或信号频率的第一信号。
在一种可能的实施方式中,发送模块801可以通知第二设备第一信号的电压幅值。
在一种可能的实施方式中,第一信号为时钟信号。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当 使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘(solid state drive,SSD)。
在一个简单的实施例中,本领域的技术人员可以想到如图4所示的实施例中第二设备以及图7所示的参数选择装置可采用图3所示第二设备的形式。其中,包括处理器122、内存123、通信接口(如第二接口124)。关于处理器122、内存123、第二接口124的说明可参见前述内存,此处不再赘述。本领域的技术人员可以想到如图4所示的实施例中第一设备以及图8所示的参数选择装置可采用图3所示第一设备的形式。其中,包括处理器112、内存113、通信接口(如第一接口114)。关于处理器112、内存113、第二接口114的说明可参见前述内存,此处不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (23)
- 一种发送器均衡参数选择系统,其特征在于,所述系统包括第一设备和第二设备,所述第一设备与所述第二设备之间建立有通信链路:所述第一设备,用于通过所述通信链路发送第一信号,其中,所述第一信号未基于所述第一设备的接口的发送器均衡参数进行处理;所述第二设备,用于接收第二信号,所述第二信号为所述第一信号经过所述通信链路传输后到达所述第二设备的信号;根据所述第一信号和所述第二信号确定信号衰减量;根据所述信号衰减量为所述第一设备的接口选择发送器均衡参数;指示所述第一设备启动对选择的所述发送器均衡参数的评估流程;所述第一设备,还用于在所述第二设备的指示下启动对选择的所述发送器均衡参数的评估流程。
- 如权利要求1所述的系统,其特征在于,所述第二设备在接收第二信号之前,还用于:向所述第一设备发送信号衰减测试请求,所述信号衰减测试请求用于请求启动信号衰减量测试。
- 如权利要求2所述的系统,其特征在于,所述第一设备通过所述通信链路发送第一信号,包括:在接收到所述信号衰减测试请求后,通过所述通信链路发送第一信号。
- 如权利要求1~3任一项所述的系统,其特征在于,所述第二设备,还用于:指示所述第一设备发送所述第一信号所需满足的持续发送时间或信号频率;所述第一设备,用于发送满足所述持续发送时间或所述信号频率的第一信号。
- 如权利要求1~4任一项所述的系统,其特征在于,所述第一设备,还用于:通知所述第二设备所述第一信号所满足的持续发送时间或信号频率。
- 如权利要求1~5任一项所述的系统,其特征在于,所述第一设备,还用于:通知所述第二设备所述第一信号的电压幅值。
- 如权利要求6所述的系统,其特征在于,所述第二设备在根据所述第一信号和所述第二信号确定信号衰减量时,具体用于:测量所述第二信号的电压幅值;根据所述第一信号的电压幅值以及所述第二信号的电压幅值计算所述信号衰减量。
- 如权利要求1~7任一项所述的系统,其特征在于,所述第一信号为时钟信号。
- 一种发送器均衡参数选择方法,其特征在于,所述方法包括:第二设备通过与第一设备之间建立的通信链路接收第二信号,所述第二信号为第一信号经过所述通信链路传输后到达所述第二设备的信号;所述第二设备根据所述第一信号和所述第二信号确定信号衰减量;根据所述信号衰减量为所述第一设备的接口选择发送器均衡参数;所述第二设备指示所述第一设备启动对选择的所述发送器均衡参数的评估流程。
- 如权利要求9所述的方法,其特征在于,所述第二设备在通过与第一设备之间建立的通信链路接收第二信号之前,还包括:所述第二设备向所述第一设备发送信号衰减测试请求,所述信号衰减测试请求用于请 求启动信号衰减量测试。
- 如权利要求9或10所述的方法,其特征在于,所述方法还包括:所述第二设备指示所述第一设备发送所述第一信号所需满足的持续发送时间或信号频率。
- 如权利要求9~11任一项所述的方法,其特征在于,所述方法还包括:所述第二设备从所述第一设备获取所述第一信号的电压幅值。
- 如权利要求12所述的方法,其特征在于,所述第二设备根据所述第一信号和所述第二信号确定信号衰减量,包括:所述第二设备测量所述第二信号的电压幅值;所述第二设备根据所述第一信号的电压幅值以及所述第二信号的电压幅值计算所述信号衰减量。
- 如权利要求9~13任一项所述的方法,其特征在于,所述第一信号为时钟信号。
- 一种发送器均衡参数选择方法,其特征在于,所述方法包括:第一设备通过通信链路向第二设备发送第一信号,其中,所述第一信号未基于所述第一设备的接口的发送器均衡参数进行处理,所述通信链路为所述第一设备与所述第二设备之间建立的;所述第一设备在所述第二设备的指示下启动对所述第一设备的接口的发送器均衡参数的评估流程。
- 如权利要求15所述的方法,其特征在于,所述第一设备通过所述通信链路向第二设备发送第一信号,包括:所述第一设备在接收到所述第二设备发送的信号衰减测试请求后,通过所述通信链路向所述第二设备发送第一信号,其中,所述信号衰减测试请求用于请求启动信号衰减量测试。
- 如权利要求15或16所述的方法,其特征在于,所述方法还包括:所述第一设备通知所述第二设备所述第一信号所满足的持续发送时间或信号频率。
- 如权利要求15~17任一项所述的方法,其特征在于,所述第一设备通过通信链路向第二设备发送第一信号,包括:所述第一设备接收所述第二设备的指示,确定所述第一信号所满足的持续发送时间或信号频率;所述第一设备发送满足所述持续发送时间或信号频率的所述第一信号。
- 如权利要求15~18任一项所述的方法,其特征在于,所述方法还包括:所述第一设备通知所述第二设备所述第一信号的电压幅值。
- 如权利要求15~19任一项所述的方法,其特征在于,所述第一信号为时钟信号。
- 一种计算设备,其特征在于,包括存储器和处理器;所述存储器存储有程序指令,所述处理器运行所述程序指令以执行权利要求9~14任一所述的方法。
- 一种计算设备,其特征在于,包括存储器和处理器;所述存储器存储有程序指令,所述处理器运行所述程序指令以执行权利要求15~19任一所述的方法。
- 一种计算机可读存储介质,其特征在于,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求9~19任一所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111314680.0 | 2021-11-08 | ||
CN202111314680.0A CN116094615A (zh) | 2021-11-08 | 2021-11-08 | 一种发送器均衡参数选择系统、方法、装置及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023077928A1 true WO2023077928A1 (zh) | 2023-05-11 |
Family
ID=86203125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/115572 WO2023077928A1 (zh) | 2021-11-08 | 2022-08-29 | 一种发送器均衡参数选择系统、方法、装置及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116094615A (zh) |
WO (1) | WO2023077928A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110032978A1 (en) * | 2009-08-05 | 2011-02-10 | Mstar Semiconductor, Inc. | Receiver and Method for Adjusting Adaptive Equalizer of Receiver |
US20140153745A1 (en) * | 2012-11-30 | 2014-06-05 | Red Lion 49 Limited | Equalizer |
JP2014179751A (ja) * | 2013-03-14 | 2014-09-25 | Nec Saitama Ltd | 通信システム及び無線基地局並びに無線通信装置 |
CN111801903A (zh) * | 2018-02-27 | 2020-10-20 | 日本电气株式会社 | 均衡器设备、通信系统和均衡方法 |
CN113612554A (zh) * | 2021-06-24 | 2021-11-05 | 苏州浪潮智能科技有限公司 | 一种均衡器参数的测试装置和测试方法 |
-
2021
- 2021-11-08 CN CN202111314680.0A patent/CN116094615A/zh active Pending
-
2022
- 2022-08-29 WO PCT/CN2022/115572 patent/WO2023077928A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110032978A1 (en) * | 2009-08-05 | 2011-02-10 | Mstar Semiconductor, Inc. | Receiver and Method for Adjusting Adaptive Equalizer of Receiver |
US20140153745A1 (en) * | 2012-11-30 | 2014-06-05 | Red Lion 49 Limited | Equalizer |
JP2014179751A (ja) * | 2013-03-14 | 2014-09-25 | Nec Saitama Ltd | 通信システム及び無線基地局並びに無線通信装置 |
CN111801903A (zh) * | 2018-02-27 | 2020-10-20 | 日本电气株式会社 | 均衡器设备、通信系统和均衡方法 |
CN113612554A (zh) * | 2021-06-24 | 2021-11-05 | 苏州浪潮智能科技有限公司 | 一种均衡器参数的测试装置和测试方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116094615A (zh) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9529749B2 (en) | Data bus inversion (DBI) encoding based on the speed of operation | |
EP3082285B1 (en) | Ethernet data rate selection based on cable parameters | |
WO2017181870A1 (zh) | 一种资源竞争方法及通信设备 | |
WO2022068875A1 (zh) | 波束信息指示、获取方法、装置、终端及网络侧设备 | |
WO2016167885A1 (en) | Reduction of channel access delay in wireless systems | |
EP3496285B1 (en) | Cm interference degree measurement method, device and system | |
US10523271B2 (en) | Cable modem echo cancellation training in full duplex coaxial networks | |
US20180062972A1 (en) | Methods, systems and computer readable media for quiescence-informed network testing | |
TWI841758B (zh) | 進行pdcch監視的方法以及用於發信號解碼成功的方法及系統 | |
WO2024027495A1 (zh) | 信息确定方法及装置、存储介质及电子装置 | |
WO2023077928A1 (zh) | 一种发送器均衡参数选择系统、方法、装置及设备 | |
WO2018126456A1 (zh) | 一种测量方法、基站及终端 | |
US10693798B2 (en) | System architecture for varying rate transmission | |
CN102624769B (zh) | 管线式网络装置及相关数据传送方法 | |
WO2023035859A1 (zh) | 一种发送器均衡参数评估方法及装置 | |
KR20200117011A (ko) | 전송 전력 제어 | |
TWI785184B (zh) | 鏈路重新配置處理方法及相關產品 | |
TW202105952A (zh) | 用於使用載波聚合能力的方法 | |
WO2018130233A1 (zh) | 一种波束赋形传输方法及网络设备 | |
JP2017103689A5 (zh) | ||
WO2023035850A1 (zh) | 一种高速串行链路测试方法及装置 | |
WO2024051415A1 (zh) | 频段资源的处理方法、通信方法、设备和存储介质 | |
US20240097947A1 (en) | Data interface equalization adjustment method and apparatus, device, and storage medium | |
WO2021136278A1 (zh) | 报文传输方法及电子设备 | |
WO2021254283A1 (zh) | 调度方法、装置及系统、存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22888960 Country of ref document: EP Kind code of ref document: A1 |