WO2023077712A1 - 一种大口径球面主镜离轴无焦光学系统 - Google Patents

一种大口径球面主镜离轴无焦光学系统 Download PDF

Info

Publication number
WO2023077712A1
WO2023077712A1 PCT/CN2022/081568 CN2022081568W WO2023077712A1 WO 2023077712 A1 WO2023077712 A1 WO 2023077712A1 CN 2022081568 W CN2022081568 W CN 2022081568W WO 2023077712 A1 WO2023077712 A1 WO 2023077712A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
mirror
primary mirror
axis
optical system
Prior art date
Application number
PCT/CN2022/081568
Other languages
English (en)
French (fr)
Inventor
陈新华
陆跃平
赵知诚
潘俏
沈为民
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/908,113 priority Critical patent/US11906718B2/en
Publication of WO2023077712A1 publication Critical patent/WO2023077712A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0812Catadioptric systems using two curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0816Catadioptric systems using two curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the invention relates to the technical field of optical imaging, in particular to an off-axis afocal optical system of a large-aperture spherical primary mirror.
  • Afocal optical systems are widely used in laser systems, space optics and other fields. According to the structure type, the afocal optical system can be divided into three categories: reflection type, refraction type and catadioptric type. For large-aperture afocal systems, reflective structures are usually used, and the reflectors in the system are usually aspherical.
  • US Patent US20100202073 proposes a coaxial off-field three-mirror afocal system using an ellipsoidal primary mirror and a double-curvature secondary mirror, but there are system obstructions.
  • US Patent No. 4,804,258 proposes a four-mirror afocal optical system, and the four mirrors are quadric surfaces.
  • US Patent US5173801 proposes a wide-field-of-view three-mirror afocal system, and the three mirrors are quadric surfaces.
  • US Patent US9482853 proposes a four-mirror afocal system, and the three mirrors are all high-order aspheric surfaces.
  • US patent US20200292811 proposes a five-mirror afocal system, and the reflector adopts an aspheric surface.
  • Chinese patent CN101510006 proposes an off-axis three-mirror afocal system, and the reflector adopts an aspherical surface.
  • Design of catadioptric continuous variable magnification beam expander system proposes an afocal system in which the primary mirror is a parabolic mirror and the secondary mirror is a spherical mirror, and a meniscus lens is used to correct the aberration of the system.
  • the off-axis afocal system often needs to use multiple off-axis aspheric mirrors to meet the imaging quality requirements.
  • the development cost of these aspheric mirrors is high, the installation and adjustment are difficult, and their application is limited.
  • the technical problem to be solved by the present invention is to provide an off-axis afocal optical system with a large-aperture spherical primary mirror with simple structure, low cost and high imaging quality.
  • the present invention provides a large-aperture spherical primary mirror off-axis afocal optical system, which includes:
  • a primary mirror and a secondary mirror the primary mirror is a spherical reflector, the secondary mirror is a high-order aspheric reflector, and the primary mirror and the secondary mirror constitute an off-axis two-mirror system to compress the beam aperture;
  • An aberration compensation lens group is a coaxial reflection system used off-axis, and the aberration compensation lens group has optical power to generate compensation aberration;
  • the incident light beam enters the aberration compensation mirror group after being reflected by the primary mirror and the secondary mirror in sequence.
  • the focal length of the off-axis dual-mirror system composed of the primary mirror and the secondary mirror is f1
  • the focal length of the aberration compensation lens group is f2, which satisfy the following relationship:
  • the radius of curvature of the primary mirror is R1
  • the radius of curvature of the secondary mirror is R2
  • the distance between the primary mirror and the secondary mirror is d1, satisfying the following relationship:
  • the radius of curvature of the primary mirror is R1
  • the distance d2 between the secondary mirror and the aberration compensation mirror group satisfies the following relationship:
  • the sagittal height z of the secondary mirror satisfies the following expression:
  • A, B and C are 4th, 6th and 8th aspheric coefficients respectively
  • c is the curvature at the center of the optical surface
  • r is the vertical distance between a point on the aspheric curve and the optical axis
  • the conical coefficient of the secondary mirror 2 and the aspheric coefficients satisfy the following relationship:
  • the aberration compensation lens group includes a first lens, a second lens and a third lens arranged in sequence, the distance from the front surface of the first lens to the rear surface of the third lens is T, so
  • the focal length of the above-mentioned aberration compensation lens group is f2, and satisfies the following relationship:
  • the aberration compensation lens group includes a first lens, a second lens and a third lens arranged in sequence, the focal length of the first lens is f21, and the curvature of the front surface of the first lens is The radius is R3, the central curvature radius of the rear surface of the first lens is R4, the axial thickness of the first lens is d3, and the distance from the front surface of the first lens to the rear surface of the third lens is T, And satisfy the following relationship:
  • the aberration compensation lens group includes a first lens, a second lens and a third lens arranged in sequence, the focal length of the second lens is f22, and the front surface of the second lens surface
  • the radius of curvature is R5
  • the radius of curvature of the rear surface of the second lens surface is R6
  • the axial thickness of the second lens is d5
  • the distance from the front surface of the first lens to the rear surface of the third lens is T , and satisfy the following relation:
  • the aberration compensation lens group includes a first lens, a second lens and a third lens arranged in sequence, the focal length of the third lens is f23, and the curvature of the front surface of the third lens is The radius is R7, the radius of curvature of the rear surface of the third lens is R8, the axial thickness of the third lens is d7, the distance from the front surface of the first lens to the rear surface of the third lens is T, and Satisfy the following relation:
  • the field of view of the off-axis afocal optical system of the large-diameter spherical primary mirror is FOV
  • the beam compression ratio of the off-axis afocal optical system of the large-diameter spherical primary mirror is Mag, satisfying the following relationship Mode:
  • the off-axis afocal optical system of the large-aperture spherical primary mirror of the present invention adopts a spherical reflector through the primary mirror, which greatly reduces the development cost of the system, and adopts an off-axis aberration compensating mirror group to correct the residual aberration of the system. Effectively improve the imaging quality of the system.
  • the utility model has the advantages of simple structure, low cost, high imaging quality and simple assembly and adjustment.
  • Fig. 1 is a schematic structural view of an off-axis afocal optical system of a large-aperture spherical primary mirror according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an aberration compensation mirror group in Embodiment 1 of the present invention.
  • Fig. 3 is a ray aberration diagram of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of an off-axis afocal optical system of a large-aperture spherical primary mirror according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic structural diagram of an aberration compensation lens group in Embodiment 2 of the present invention.
  • FIG. 6 is a light aberration diagram of Embodiment 2 of the present invention.
  • the off-axis afocal optical system of a large-aperture spherical primary mirror in the embodiment of the present invention includes:
  • the primary mirror 1 is a spherical reflector
  • the secondary mirror 2 is a high-order aspheric reflector
  • the primary mirror 1 and secondary mirror 2 constitute an off-axis two-mirror system to compress the beam aperture ;
  • the aberration compensation mirror group 3 is a coaxial reflection system used off-axis, the aberration compensation mirror group 3 has optical power to generate compensation aberration;
  • the incident light beam is reflected by the primary mirror 1 and the secondary mirror 2 in sequence and then enters the aberration compensation mirror group 3 .
  • the off-axis afocal optical system of the large-aperture spherical primary mirror of the present invention adopts a spherical reflector through the primary mirror, which greatly reduces the development cost of the system, and adopts an off-axis aberration compensating mirror group to correct the residual aberration of the system. Effectively improve the imaging quality of the system.
  • the utility model has the advantages of simple structure, low cost, high imaging quality and simple assembly and adjustment.
  • the focal length of the off-axis dual mirror system formed by the primary mirror and the secondary mirror is f1
  • the focal length of the aberration compensation lens group is f2, which satisfy the following relationship:
  • the radius of curvature of the primary mirror is R1
  • the radius of curvature of the secondary mirror is R2
  • the distance between the primary mirror and the secondary mirror is d1, satisfying the following relationship:
  • the radius of curvature of the primary mirror is R1
  • the distance d2 between the secondary mirror and the aberration compensation mirror group satisfies the following relationship:
  • the sagittal height z of the secondary mirror satisfies the following expression:
  • A, B and C are 4th, 6th and 8th aspheric coefficients respectively
  • c is the curvature at the center of the optical surface
  • r is the vertical distance between a point on the aspheric curve and the optical axis
  • the conical coefficient of the secondary mirror 2 and the aspheric coefficients satisfy the following relationship:
  • the aberration compensating lens group includes a first lens, a second lens and a third lens arranged in sequence, the distance from the front surface of the first lens to the rear surface of the third lens is T, and the aberration
  • the focal length of the compensation lens group is f2 and satisfies the following relationship:
  • the aberration compensation lens group includes a first lens, a second lens and a third lens arranged in sequence, the focal length of the first lens is f21, and the radius of curvature of the front surface of the first lens is R3 , the central radius of curvature of the rear surface of the first lens is R4, the axial thickness of the first lens is d3, the distance from the front surface of the first lens to the rear surface of the third lens is T, and satisfy the following Relational formula:
  • the aberration compensation lens group includes a first lens, a second lens and a third lens arranged in sequence, the focal length of the second lens is f22, and the radius of curvature of the front surface of the second lens surface is R5, the radius of curvature of the rear surface of the second lens surface is R6, the axial thickness of the second lens is d5, the distance from the front surface of the first lens to the rear surface of the third lens is T, and satisfy The following relation:
  • the aberration compensation lens group includes a first lens, a second lens and a third lens arranged in sequence, the focal length of the third lens is f23, and the radius of curvature of the front surface of the third lens is R7 , the radius of curvature of the rear surface of the third lens is R8, the axial thickness of the third lens is d7, the distance from the front surface of the first lens to the rear surface of the third lens is T, and the following relationship is satisfied Mode:
  • the field angle of the off-axis afocal optical system of the large-diameter spherical primary mirror is FOV
  • the beam compression ratio of the off-axis afocal optical system of the large-diameter spherical primary mirror is Mag, which satisfies the following relationship:
  • the working wavelength is 1060 nm.
  • the light incident aperture D of the off-axis afocal optical system of the large-aperture spherical primary mirror is 500mm, which specifies the range of the input aperture of the system.
  • the off-axis afocal optical system of the large-aperture spherical primary mirror has the characteristics of large aperture.
  • the field of view angle FOV of the off-axis afocal optical system of the large-aperture spherical primary mirror is 0.08°, which satisfies the following relationship: 0.02° ⁇ FOV ⁇ 0.1°, which specifies the field of view range of the off-axis afocal optical system of the large-aperture spherical primary mirror , suitable for applications such as laser focusing.
  • the compression magnification Mag of the off-axis afocal optical system of the large-aperture spherical primary mirror is 4.9, which satisfies the following relationship: 4.0 ⁇ Mag ⁇ 6.0, which belongs to the medium magnification system.
  • Table 1 shows the specific design parameters of the off-axis afocal optical system of the large-aperture spherical primary mirror in Example 1 of the present invention.
  • the off-axis two-mirror system composed of the primary mirror 1 and the secondary mirror 2 has no obstruction.
  • the off-axis distance of the primary mirror 1 along the Y-axis direction is 420.29
  • the off-axis distance of the secondary mirror 2 along the Y-axis direction is -15.88.
  • the secondary mirror 2 also has a tilt around the X axis, and the tilt amount is -0.47°.
  • the off-axis two-mirror system composed of the primary mirror 1 and the secondary mirror 2 has weak optical power, its focal length f1 is 10491, and the focal length f2 of the aberration compensation lens group 3 is 215.631, and the following relationship is satisfied: 0.00006 ⁇ 1/ f1 ⁇ 0.000097 and 0.02 ⁇ f2/f1 ⁇ 0.022.
  • the primary mirror 1 and the secondary mirror 2 constitute a long focal length system, which is used to compress the beam aperture, and the aberration compensation mirror group 3 has a certain optical power, which generates aberration compensation and improves imaging quality.
  • the radius of curvature R1 of the primary mirror 1 in the off-axis dual-mirror system is -3000, which satisfies the following relationship: -0.000338 ⁇ 1/R1 ⁇ -0.000331.
  • the radius of curvature R2 of the secondary mirror 2 is -732.19, and the distance d1 between the primary mirror 1 and the secondary mirror 2 is 1186.25, satisfying the following relations: 0.24 ⁇ R2/R1 ⁇ 0.26 and 0.385 ⁇ d1/R1 ⁇ 0.396.
  • the distance d2 between the secondary mirror 2 and the aberration compensation lens group 3 is 1141.06, which satisfies the following relationship: 0.376 ⁇ d2/R1 ⁇ 0.417. Within the range specified by the relational formula, it is helpful to correct the system aberration and control the system length, and is beneficial to reduce the sensitivity.
  • the quadratic coefficient K of the secondary mirror 2 is 11.96
  • the quadratic coefficient A is 1.76E-9
  • the sixth degree coefficient B is 1.80E-14
  • the eighth degree coefficient C is 6.04E-19
  • the aspheric coefficient introduced by the secondary mirror helps to greatly reduce the aberration of the system.
  • FIG. 2 it is a schematic structural diagram of the aberration compensating mirror 3 in Embodiment 1 of the present invention.
  • the aberration compensating mirror group 3 includes a first lens 31 , a second lens 32 and a third lens 33 .
  • the distance T between the front surface of the first lens 31 and the rear surface of the third lens 33 is 300, which satisfies the following relationship: 0.7 ⁇ f2/T ⁇ 1.2.
  • the manufacturing difficulty and sensitivity of the three lenses in the aberration compensation lens group 3 are relatively low, which reduces the difficulty of assembly and adjustment.
  • the aberration compensating lens group 3 is used off-axis, relative to the coordinate system of the secondary mirror 2, there is eccentricity along the Y-axis direction and inclination around the X-axis, the eccentricity is -15.88, and the inclination is - 6.09°.
  • the distance between the first lens 31 and the second lens 32 is 82.66 and 113.61.
  • the focal length f21 of the first lens 31 is -397.377
  • the surface 311 of the first lens 31 facing the secondary mirror 2 is a convex surface
  • its curvature radius R3 is 2949.94
  • the surface 311 of the first lens 31 facing the secondary mirror 2 is convex.
  • the surface 312 of the second lens 32 is a concave surface
  • its central curvature radius R4 is 187.86.
  • the axial thickness d3 of the first lens 31 is 30.
  • the distance T between the front surface of the first lens 31 and the rear surface of the third lens 33 is 300 and satisfies the following relations: -1.85 ⁇ f21/f2 ⁇ -1.75, 1.13 ⁇ (R3+R4)/(R3-R4) ⁇ 1.45 and 0.09 ⁇ d3/T ⁇ 0.11.
  • the focal length f22 of the second lens 32 is -259.58, the surface 311 of the second lens 32 facing the first lens 31 is concave, and its curvature radius R5 is -356.22.
  • the second lens 32 The surface 322 facing the third lens 31 is a concave surface with a radius of curvature R6 of 212.88, and the axial thickness d5 of the second lens 32 is 21.96, satisfying the following relationship: -3.2 ⁇ f22/f2 ⁇ -1.15, -1 ⁇ (R5+R6)/(R5-R6) ⁇ 0.3 and 0.072 ⁇ d5/T ⁇ 0.074.
  • the focal length of the third lens 33 is f23 is 342.39
  • the surface 331 of the third lens 33 facing the second lens 32 is a convex surface
  • its curvature radius R7 is 1874.29
  • the surface 332 facing the light-emitting direction is a convex surface
  • its radius of curvature R8 is -189.43.
  • the axial thickness d7 of the third lens 33 is 51.7608, which satisfies the following relationship: 1.57 ⁇ f23/f2 ⁇ 1.63, 0.41 ⁇ (R7+R8 )/(R7-R8) ⁇ 0.90 and 0.13 ⁇ d7/T ⁇ 0.18.
  • the third lens 33 has positive refractive power, and the shape of the third lens 33 can be reasonably controlled to introduce negative spherical aberration and partial coma to further correct system aberration. By selecting the thickness of the lens reasonably, it is beneficial to reduce the weight of the system while ensuring the processability.
  • Embodiment 1 the imaging quality of the afocal system given in this embodiment is evaluated by using a ray aberration diagram. Since the system is an afocal system, an ideal converging lens with a focal length of 500mm is added to the outgoing beam during evaluation. An ideal converging lens does not introduce any additional aberrations.
  • FIG. 3 is a light aberration diagram of Example 1.
  • Fig. 4 is a diagram showing the optical path structure of the off-axis afocal optical system of the large-aperture spherical primary mirror in the second embodiment of the present invention, and the symbol meanings are the same as those in the first embodiment.
  • Table 2 is the concrete design parameter of embodiment two of the present invention.
  • FIG. 5 is an optical path structure diagram of the aberration compensation lens group in the second embodiment, the first lens 31 and the second lens 32 are negative lenses, and the third lens 33 is a positive lens.
  • the surface 312 of the first lens 31 facing the second lens 32 is a paraboloid, which is beneficial to further improve the imaging quality of the system.
  • FIG. 6 is a light aberration diagram of the second embodiment. Since the system is an afocal system, an ideal converging lens with a focal length of 500mm is added to the outgoing beam during evaluation. An ideal converging lens does not introduce any additional aberrations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种大口径球面主镜离轴无焦光学系统,包括:主镜(1)、次镜(2)和像差补偿镜组(3),主镜(1)为球面反射镜,次镜(2)为高次非球面反射镜,主镜(1)和次镜(2)构成离轴两反系统以压缩光束口径;像差补偿镜组(3)为离轴使用的同轴折射系统,像差补偿镜组(3)具有光焦度以产生补偿像差;入射光束依次经过主镜(1)和次镜(2)反射后进入像差补偿镜组(3)。通过主镜(1)采用球面反射镜,大大降低了系统的研制成本,并采用离轴使用的像差补偿镜组(3),用于系统残余像差的校正,有效提高了系统的成像质量,具有结构简单、成本低、成像质量高、装调简单的优点。

Description

一种大口径球面主镜离轴无焦光学系统 技术领域
本发明涉及光学成像技术领域,特别涉及一种大口径球面主镜离轴无焦光学系统。
背景技术
无焦光学系统在激光系统、空间光学等领域具有广泛的应用。根据结构型式,无焦光学系统可以分为反射式、折射式、折反式三大类。对于大口径无焦系统,通常采用反射式结构,系统中的反射镜通常为非球面。美国专利US20100202073提出了一款采用椭球面主镜和双曲率次镜的同轴偏视场三反无焦系统,但存在系统遮拦。美国专利US4804258提出一款四反无焦光学系统,四块反射镜均为二次曲面。美国专利US5173801提出一款宽视场的三反无焦系统,三块反射镜均为二次曲面。美国专利US9482853提出一款四反无焦系统,三块反射镜均为高次非球面。美国专利US20200292811提出一款五反无焦系统,反射镜采用非球面。中国专利CN101510006提出一款离轴三反无焦系统,反射镜采用非球面。“折反射式连续变倍扩束系统的设计”文中提出了主镜为抛物面镜、次镜为球面镜的无焦系统,采用弯月透镜对系统像差进行校正。
综上所述,离轴无焦系统往往需要采用多块离轴非球面反射镜来满足成像质量的要求。在大口径无焦系统中,这些非球面反射镜的研制成本高,装调难度大,其应用受到了限制。
发明内容
本发明要解决的技术问题是提供一种结构简单、成本低、成像质量高的大口径球面主镜离轴无焦光学系统。
为了解决上述问题,本发明提供了大口径球面主镜离轴无焦光学系统,其包括:
主镜和次镜,所述主镜为球面反射镜,所述次镜为高次非球面反射镜,所 述主镜和次镜构成离轴两反系统以压缩光束口径;
像差补偿镜组,所述像差补偿镜组为离轴使用的同轴反射系统,所述像差补偿镜组具有光焦度以产生补偿像差;
入射光束依次经过所述主镜和次镜反射后进入所述像差补偿镜组。
作为本发明的进一步改进,所述主镜和次镜构成离轴两反系统的焦距为f1,所述像差补偿镜组的焦距为f2,满足以下关系式:
0.00006≤1/f1≤0.000097
0.02≤f2/f1≤0.022。
作为本发明的进一步改进,所述主镜的曲率半径为R1,所述次镜的曲率半径为R2,所述主镜和次镜之间的间隔为d1,满足以下关系式:
-0.000338≤1/R1≤-0.000331
0.24≤R2/R1≤0.26
0.385≤d1/R1≤0.396
作为本发明的进一步改进,所述主镜的曲率半径为R1,所述次镜与像差补偿镜组之间的间隔d2满足以下关系式:
0.376≤d2/R1≤0.417。
作为本发明的进一步改进,所述次镜的矢高z满足以下表达式:
z=(cr 2)/{1+[1-(k+1)(c 2r 2)] 1/2}+Ar 4+Br 6+Cr 8
其中,A、B和C分别为四次、六次和八次非球面系数,c是光学面中心处的曲率,r是非球面曲线上的点与光轴的垂直距离,次镜2的圆锥系数和非球面系数满足以下关系式:
9.5≤K≤11.96
1.22E-9≤A≤1.78E-9
1.10E-14≤B≤1.85E-14
2.20E-19≤C≤6.05E-19。
作为本发明的进一步改进,所述像差补偿镜组包括依次设置的第一透镜、 第二透镜和第三透镜,所述第一透镜的前表面到第三透镜后表面的距离为T,所述像差补偿镜组的焦距为f2,且满足下列关系式:
0.7≤f2/T≤1.2。
作为本发明的进一步改进,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜的焦距为f21,所述第一透镜的前表面的曲率半径为R3,所述第一透镜的后表面的中心曲率半径为R4,所述第一透镜的轴上厚度为d3,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
-1.85≤f21/f2≤-1.75
1.13≤(R3+R4)/(R3-R4)≤1.45
0.09≤d3/T≤0.11。
作为本发明的进一步改进,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第二透镜的焦距为f22,所述第二透镜面的前表面的曲率半径为R5,所述第二透镜面的后表面的曲率半径为R6,所述第二透镜的轴上厚度为d5,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
-3.2≤f22/f2≤-1.15
-1≤(R5+R6)/(R5-R6)≤0.3
0.072≤d5/T≤0.074。
作为本发明的进一步改进,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第三透镜的焦距为f23,所述第三透镜的前表面的曲率半径为R7,所述第三透镜的后表面的曲率半径为R8,所述第三透镜的轴上厚度为d7,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
1.57≤f23/f2≤1.63
0.41≤(R7+R8)/(R7-R8)≤0.90
0.13≤d7/T≤0.18。
作为本发明的进一步改进,所述大口径球面主镜离轴无焦光学系统的视场角为FOV,所述大口径球面主镜离轴无焦光学系统的光束压缩倍率为Mag,满足下列关系式:
0.02°≤FOV≤0.1°
4.0≤Mag≤6.0。
本发明的有益效果:
本发明大口径球面主镜离轴无焦光学系统通过主镜采用球面反射镜,大大降低了系统的研制成本,并采用离轴使用的像差补偿镜组,用于系统残余像差的校正,有效提高了系统的成像质量。具有结构简单、成本低、成像质量高、装调简单的优点。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明实施例一大口径球面主镜离轴无焦光学系统的结构示意图;
图2是本发明实施例一中像差补偿镜组的结构示意图;
图3是本发明实施例一的光线像差图;
图4是本发明实施例二大口径球面主镜离轴无焦光学系统的结构示意图;
图5是本发明实施例二中像差补偿镜组的结构示意图;
图6是本发明实施例二的光线像差图。
标记说明:1、主镜;2、次镜;3、像差补偿镜组;31、第一透镜;32、第二透镜;33、第三透镜。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1所示,本发明实施例中一的大口径球面主镜离轴无焦光学系统,包括:
主镜1和次镜2,所述主镜1为球面反射镜,所述次镜2为高次非球面反射镜,所述主镜1和次镜2构成离轴两反系统以压缩光束口径;
像差补偿镜组3,所述像差补偿镜组3为离轴使用的同轴反射系统,所述像差补偿镜组3具有光焦度以产生补偿像差;
入射光束依次经过所述主镜1和次镜2反射后进入所述像差补偿镜组3。
本发明大口径球面主镜离轴无焦光学系统通过主镜采用球面反射镜,大大降低了系统的研制成本,并采用离轴使用的像差补偿镜组,用于系统残余像差的校正,有效提高了系统的成像质量。具有结构简单、成本低、成像质量高、装调简单的优点。
可选地,所述主镜和次镜构成离轴两反系统的焦距为f1,所述像差补偿镜组的焦距为f2,满足以下关系式:
0.00006≤1/f1≤0.000097
0.02≤f2/f1≤0.022。
可选地,所述主镜的曲率半径为R1,所述次镜的曲率半径为R2,所述主镜和次镜之间的间隔为d1,满足以下关系式:
-0.000338≤1/R1≤-0.000331
0.24≤R2/R1≤0.26
0.385≤d1/R1≤0.396
可选地,所述主镜的曲率半径为R1,所述次镜与像差补偿镜组之间的间隔d2满足以下关系式:
0.376≤d2/R1≤0.417。
可选地,所述次镜的矢高z满足以下表达式:
z=(cr 2)/{1+[1-(k+1)(c 2r 2)] 1/2}+Ar 4+Br 6+Cr 8
其中,A、B和C分别为四次、六次和八次非球面系数,c是光学面中心处的曲率,r是非球面曲线上的点与光轴的垂直距离,次镜2的圆锥系数和非球面 系数满足以下关系式:
9.5≤K≤11.96
1.22E-9≤A≤1.78E-9
1.10E-14≤B≤1.85E-14
2.20E-19≤C≤6.05E-19。
可选地,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜的前表面到第三透镜后表面的距离为T,所述像差补偿镜组的焦距为f2,且满足下列关系式:
0.7≤f2/T≤1.2。
可选地,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜的焦距为f21,所述第一透镜的前表面的曲率半径为R3,所述第一透镜的后表面的中心曲率半径为R4,所述第一透镜的轴上厚度为d3,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
-1.85≤f21/f2≤-1.75
1.13≤(R3+R4)/(R3-R4)≤1.45
0.09≤d3/T≤0.11。
可选地,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第二透镜的焦距为f22,所述第二透镜面的前表面的曲率半径为R5,所述第二透镜面的后表面的曲率半径为R6,所述第二透镜的轴上厚度为d5,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
-3.2≤f22/f2≤-1.15
-1≤(R5+R6)/(R5-R6)≤0.3
0.072≤d5/T≤0.074。
可选地,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第三透镜的焦距为f23,所述第三透镜的前表面的曲率半径为R7,所述第三透镜的后表面的曲率半径为R8,所述第三透镜的轴上厚度为d7,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
1.57≤f23/f2≤1.63
0.41≤(R7+R8)/(R7-R8)≤0.90
0.13≤d7/T≤0.18。
可选地,所述大口径球面主镜离轴无焦光学系统的视场角为FOV,所述大口径球面主镜离轴无焦光学系统的光束压缩倍率为Mag,满足下列关系式:
0.02°≤FOV≤0.1°
4.0≤Mag≤6.0。
在实施例一中,工作波长为1060nm。大口径球面主镜离轴无焦光学系统的入光口径D取500mm,规定了系统输入口径的范围,该大口径球面主镜离轴无焦光学系统具有大口径特征。大口径球面主镜离轴无焦光学系统的视场角FOV取0.08°,满足下列关系式:0.02°≤FOV≤0.1°,规定了大口径球面主镜离轴无焦光学系统的视场范围,适用于激光聚焦等应用场合。大口径球面主镜离轴无焦光学系统的压缩倍率Mag取4.9,满足下列关系式:4.0≤Mag≤6.0,属于中等倍率系统。
表1为本发明实施例1的大口径球面主镜离轴无焦光学系统的具体设计参数。
Figure PCTCN2022081568-appb-000001
表1
在实施例一中,所述主镜1和次镜2构成的离轴两反系统,系统不存在遮拦。可选的,主镜1沿Y轴方向的离轴量为420.29,次镜2沿Y轴方向的离轴量为-15.88。次镜2还存在绕X轴的倾斜,倾斜量为-0.47°。所述主镜1和次镜2构成的离轴两反系统具有弱光焦度,其焦距f1为10491,像差补偿镜组3的焦距f2为215.631,且满足下列关系式:0.00006≤1/f1≤0.000097和0.02≤f2/f1≤0.022。在关系式规定的范围内,主镜1和次镜2构成长焦距系统,用于光束口径的压缩,像差补偿镜组3具有一定的光焦度,产生补偿像差,提高成像质量。
在实施例一中,所述离轴两反系统中主镜1的曲率半径R1取-3000,满足以下关系式:-0.000338≤1/R1≤-0.000331。次镜2的曲率半径R2取-732.19,主镜1和次镜2的间隔d1取1186.25,满足下列关系式:0.24≤R2/R1≤0.26和0.385≤d1/R1≤0.396。在关系式规定的范围内,有助于系统像差的校正,提高成像质量。
在实施例一中,所述次镜2与像差补偿镜组3之间的间隔d2取1141.06,满足以下关系式:0.376≤d2/R1≤0.417。在关系式规定的范围内,有助于系统像差的校正和系统长度的控制,且有利于降低敏感度。
在实施例一中,次镜2的二次曲面系数K为11.96,4次曲面系数A为1.76E-9,6次曲面系数B为1.80E-14,8次曲面系数C为6.04E-19,满足以下关系式:9.5≤K≤11.96、1.22E-9≤A≤1.78E-9、1.10E-14≤B≤1.85E-14、2.20E-19≤C≤6.05E-19。在关系式规定的范围内,次镜引入非球面系数,有助于大幅降低系统的像差。
如图2所示,为本发明实施例一中像差补差偿镜3的结构示意图,所述像差补偿镜组3包含第一透镜31、第二透镜32和第三透镜33。所述第一透镜31的前表面到第三透镜33后表面的距离为T为300,满足下列关系式:0.7≤f2/T≤1.2。在关系式规定的范围内,像差补偿镜组3中三片透镜的制造难度较低,敏感度较低,降低了装调难度。
在实施例一中,所述像差补偿镜组3为离轴使用,相对次镜2的坐标系存在沿Y轴方向的偏心和绕X轴的倾斜,偏心量为-15.88,倾斜量为-6.09°。所述第一透镜31和第二透镜32之间的间隔为82.66和113.61。
在实施例一中,所述第一透镜31的焦距f21为-397.377,所述第一透镜31面向次镜2的面311为凸面,其曲率半径R3为2949.94,所述第一透镜31面向第二透镜32的面312为凹面,其中心曲率半径R4为187.86,所述第一透镜31的轴上厚度d3为30,所述第一透镜31的前表面到第三透镜33后表面的距离T为300,满足下列关系式:-1.85≤f21/f2≤-1.75、1.13≤(R3+R4)/(R3-R4)≤1.45和0.09≤d3/T≤0.11。通过将第一透镜31的负光焦度控制在合理范围,有利于校正光学系统的像差。合理地控制第一透镜31的形状,使得第一透镜31能够引入一定的正球差。通过合理地选取透镜的厚度,有利于在保证可加工性的同时,减轻系统的重量。
在实施例一中,所述第二透镜32的焦距f22为-259.58,所述第二透镜32面向第一透镜31的面311为凹面,其曲率半径R5为-356.22,所述第二透镜32面向第三透镜31的面322为凹面,其曲率半径R6为212.88,所述第二透镜32的轴上厚度d5为21.96,满足下列关系式:-3.2≤f22/f2≤-1.15、-1≤(R5+R6)/(R5-R6)≤0.3和0.072≤d5/T≤0.074。通过将第二透镜32的负光焦度控制在合理范围,有利于进一步校正光学系统的像差。合理地控制第二透镜32的形状,使得第一透镜32能够引入较大的负球差和部分彗差,提高系统的像差。通过合理地选取透镜的厚度,有利于在保证可加工性的同时,减轻系统的重量。
在实施例一中,所述第三透镜33的焦距为f23为342.39,所述第三透镜33面向第二透镜32的面331为凸面,其曲率半径R7为1874.29,所述第三透镜面33向出光方向的面332为凸面,其曲率半径R8为-189.43,所述第三透镜33的轴上厚度d7为51.7608,满足下列关系式:1.57≤f23/f2≤1.63、0.41≤(R7+R8)/(R7-R8)≤0.90和0.13≤d7/T≤0.18。第三透镜33为正光焦度,合理地控制第三透镜33的形状,能够引入负球差和部分彗差,进一步校正系统像差。通过合理地选取透镜的厚度,有利于在保证可加工性的同时,减轻系统的重量。
在实施例一中,利用光线像差图来评价本实施例给出的无焦系统的成像质量。由于系统为无焦系统,评价时在出射光束中加入焦距为500mm的理想会聚透镜。理想会聚透镜不会引入任何额外的像差。图3为实施例1的光线像差图。
在实施例一中,通过在透射补偿镜组3中引入一片二次曲面,可以进一步地提高系统的像质。图4所示为本发明实施例二大口径球面主镜离轴无焦光学系统的光路结构图,符号含义与实施例一相同。表2为本发明实施例二的具体 设计参数。
Figure PCTCN2022081568-appb-000002
表2
图5为实施例二中像差补偿镜组的光路结构图,第一透镜31和第二透镜32为负透镜,第三透镜33为正透镜。
在本实施例中,所述第一透镜31中面向第二透镜32的面312为抛物面,有利于进一步地提高了系统的成像质量。
图6为实施例二的光线像差图。由于系统为无焦系统,评价时在出射光束中加入焦距为500mm的理想会聚透镜。理想会聚透镜不会引入任何额外的像差。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种大口径球面主镜离轴无焦光学系统,其特征在于,包括:
    主镜和次镜,所述主镜为球面反射镜,所述次镜为高次非球面反射镜,所述主镜和次镜构成离轴两反系统以压缩光束口径;
    像差补偿镜组,所述像差补偿镜组为离轴使用的同轴反射系统,所述像差补偿镜组具有光焦度以产生补偿像差;
    入射光束依次经过所述主镜和次镜反射后进入所述像差补偿镜组。
  2. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于,所述主镜和次镜构成离轴两反系统的焦距为f1,所述像差补偿镜组的焦距为f2,满足以下关系式:
    0.00006≤1/f1≤0.000097
    0.02≤f2/f1≤0.022。
  3. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于,所述主镜的曲率半径为R1,所述次镜的曲率半径为R2,所述主镜和次镜之间的间隔为d1,满足以下关系式:
    -0.000338≤1/R1≤-0.000331
    0.24≤R2/R1≤0.26
    0.385≤d1/R1≤0.396
  4. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于,所述主镜的曲率半径为R1,所述次镜与像差补偿镜组之间的间隔d2满足以下关系式:
    0.376≤d2/R1≤0.417。
  5. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于,所述次镜的矢高z满足以下表达式:
    z=(cr 2)/{1+[1-(k+1)(c 2r 2)] 1/2}+Ar 4+Br 6+Cr 8
    其中,A、B和C分别为四次、六次和八次非球面系数,c是光学面中心处的曲率,r是非球面曲线上的点与光轴的垂直距离,次镜2的圆锥系数和非球面 系数满足以下关系式:
    9.5≤K≤11.96
    1.22E-9≤A≤1.78E-9
    1.10E-14≤B≤1.85E-14
    2.20E-19≤C≤6.05E-19。
  6. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜的前表面到第三透镜后表面的距离为T,所述像差补偿镜组的焦距为f2,且满足下列关系式:
    0.7≤f2/T≤1.2。
  7. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜的焦距为f21,所述第一透镜的前表面的曲率半径为R3,所述第一透镜的后表面的中心曲率半径为R4,所述第一透镜的轴上厚度为d3,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
    -1.85≤f21/f2≤-1.75
    1.13≤(R3+R4)/(R3-R4)≤1.45
    0.09≤d3/T≤0.11。
  8. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于,所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第二透镜的焦距为f22,所述第二透镜面的前表面的曲率半径为R5,所述第二透镜面的后表面的曲率半径为R6,所述第二透镜的轴上厚度为d5,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
    -3.2≤f22/f2≤-1.15
    -1≤(R5+R6)/(R5-R6)≤0.3
    0.072≤d5/T≤0.074。
  9. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于, 所述像差补偿镜组包括依次设置的第一透镜、第二透镜和第三透镜,所述第三透镜的焦距为f23,所述第三透镜的前表面的曲率半径为R7,所述第三透镜的后表面的曲率半径为R8,所述第三透镜的轴上厚度为d7,所述第一透镜的前表面到第三透镜后表面的距离为T,且满足下列关系式:
    1.57≤f23/f2≤1.63
    0.41≤(R7+R8)/(R7-R8)≤0.90
    0.13≤d7/T≤0.18。
  10. 如权利要求1所述的大口径球面主镜离轴无焦光学系统,其特征在于,所述大口径球面主镜离轴无焦光学系统的视场角为FOV,所述大口径球面主镜离轴无焦光学系统的光束压缩倍率为Mag,满足下列关系式:
    0.02°≤FOV≤0.1°
    4.0≤Mag≤6.0。
PCT/CN2022/081568 2021-11-04 2022-03-18 一种大口径球面主镜离轴无焦光学系统 WO2023077712A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/908,113 US11906718B2 (en) 2021-11-04 2022-03-18 Wide-aperture spherical primary mirror off-axis afocal optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111301414.4 2021-11-04
CN202111301414.4A CN114047618B (zh) 2021-11-04 2021-11-04 一种大口径球面主镜离轴无焦光学系统

Publications (1)

Publication Number Publication Date
WO2023077712A1 true WO2023077712A1 (zh) 2023-05-11

Family

ID=80207147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081568 WO2023077712A1 (zh) 2021-11-04 2022-03-18 一种大口径球面主镜离轴无焦光学系统

Country Status (3)

Country Link
US (1) US11906718B2 (zh)
CN (1) CN114047618B (zh)
WO (1) WO2023077712A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047618B (zh) 2021-11-04 2022-07-19 苏州大学 一种大口径球面主镜离轴无焦光学系统
CN116661117B (zh) * 2023-07-27 2023-10-10 之江实验室 折反式光学成像系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153772A (en) * 1991-04-09 1992-10-06 Toledyne Industries, Inc. Binary optic-corrected multistage imaging system
CN106383401A (zh) * 2016-11-09 2017-02-08 苏州大学 一种超宽视场离轴三反射镜光学成像系统
CN110515189A (zh) * 2019-09-27 2019-11-29 Oppo广东移动通信有限公司 离轴折反式摄像头和电子装置
CN114047618A (zh) * 2021-11-04 2022-02-15 苏州大学 一种大口径球面主镜离轴无焦光学系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825553A (en) * 1993-11-29 1998-10-20 Hughes Aircraft Company Now Known As Ragtheon Company Eyepiece design
US9482853B2 (en) * 2013-02-27 2016-11-01 Raytheon Company Afocal telescope configured as three or four mirror anastigmat for back-scanned imagery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153772A (en) * 1991-04-09 1992-10-06 Toledyne Industries, Inc. Binary optic-corrected multistage imaging system
CN106383401A (zh) * 2016-11-09 2017-02-08 苏州大学 一种超宽视场离轴三反射镜光学成像系统
CN110515189A (zh) * 2019-09-27 2019-11-29 Oppo广东移动通信有限公司 离轴折反式摄像头和电子装置
CN114047618A (zh) * 2021-11-04 2022-02-15 苏州大学 一种大口径球面主镜离轴无焦光学系统

Also Published As

Publication number Publication date
CN114047618B (zh) 2022-07-19
CN114047618A (zh) 2022-02-15
US20230280571A1 (en) 2023-09-07
US11906718B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2023077712A1 (zh) 一种大口径球面主镜离轴无焦光学系统
WO2023143239A1 (zh) 光学镜头
CN115657275B (zh) 一种超短焦投影镜头及投影系统
CN111258042A (zh) 一种折反射双波段无焦光学系统
CN111367075A (zh) 以镜间隔为自由参量的平像场三反消像散望远镜设计方法
CN110727092A (zh) 一种基于自由曲面的离轴反射式两镜扩束系统
CN112034605A (zh) 一种折反式Golay3稀疏孔径光学系统
CN113311575B (zh) 基于改正板的离轴三反光学系统
US11635611B2 (en) Freeform surface optical telescope imaging system
US11650402B2 (en) Freeform surface off-axial three-mirror imaging system
CN111025615B (zh) 一种光学系统
US4206973A (en) Retrofocus type wide-angle objective
JPH11271610A (ja) 中望遠レンズ
CN113777779B (zh) 双焦距变形光学系统结构解算及自由曲面面型转换的方法
CN116520544A (zh) 一种基于自由曲面的大视场离轴四反光学系统
CN108873305A (zh) 一种大视场两反式Golay3稀疏孔径望远镜的设计方法
CN113031238A (zh) 多镜一体的大视场长焦距离轴四反光学系统
CN113866962A (zh) 一种低畸变广角镜头
CN217112865U (zh) 一种基于自由曲面的大视场离轴四反光学系统
WO2024007370A1 (zh) 一种折反射式不动型反摄远变焦系统设计方法
CN213302653U (zh) 一种折反式Golay3稀疏孔径光学系统
CN113640981B (zh) 一种大口径大视场双凹面反射镜望远镜光学系统
CN213302654U (zh) 一种中波周视光学系统
CN114815186B (zh) 光学镜头
CN218956903U (zh) 一种折返式鱼眼镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888751

Country of ref document: EP

Kind code of ref document: A1