WO2023077656A1 - 空调机组试验装置 - Google Patents

空调机组试验装置 Download PDF

Info

Publication number
WO2023077656A1
WO2023077656A1 PCT/CN2021/143545 CN2021143545W WO2023077656A1 WO 2023077656 A1 WO2023077656 A1 WO 2023077656A1 CN 2021143545 W CN2021143545 W CN 2021143545W WO 2023077656 A1 WO2023077656 A1 WO 2023077656A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustable
air
simulation system
air inlet
condensing
Prior art date
Application number
PCT/CN2021/143545
Other languages
English (en)
French (fr)
Inventor
李如璞
李如珑
杨澍
曲韩旭
陈玮
Original Assignee
西安中车永电捷通电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安中车永电捷通电气有限公司 filed Critical 西安中车永电捷通电气有限公司
Publication of WO2023077656A1 publication Critical patent/WO2023077656A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of testing devices for railway train air-conditioning units, in particular to an air-conditioning unit testing device.
  • Air-conditioning units are basically installed in railway passenger cars, including bullet trains, high-speed trains, subways, and intercity trains. There are also differences in the air-conditioning units equipped with different types of trains, and different vehicle models have different requirements for the cooling capacity, evaporation, and condensation air volume of the air-conditioning units.
  • the air-conditioning units installed on each railway passenger car need to be tested in the air-conditioning performance laboratory before the design and installation. Run the temperature and humidity environment and power supply environment to test whether the performance parameters of the air conditioning unit meet the design requirements.
  • the invention provides an air-conditioning unit test device, which can effectively solve the above-mentioned or other potential technical problems.
  • the invention provides an air-conditioning unit test device, which includes an evaporation chamber circulation simulation system, a condensation chamber circulation simulation system and a measurement control system.
  • the condensing chamber cycle simulation system includes a condensing chamber axial fan, an adjustable condensing box, an adjustable condenser and a compressor; the air outlet of the axial fan communicates with the air inlet of the adjustable condensing box through the first air inlet pipe, which can The air outlet of the adjustable condensing box is connected with the first air outlet pipe; the adjustable condenser is set in the adjustable condensing box;
  • the evaporating cavity circulation simulation system includes the evaporating cavity axial flow fan, adjustable evaporating box and adjustable evaporator; The air outlet of the axial flow fan in the evaporation chamber is connected with the air inlet of the adjustable evaporation box through the second air inlet pipe, and the air outlet of the adjustable evaporation box is connected with the second air outlet pipe; the adjustable evaporator is set
  • the high-pressure end of the compressor communicates with the adjustable condenser
  • the low-pressure end of the compressor communicates with the adjustable evaporator
  • the adjustable condenser communicates with the adjustable evaporator through a capillary refrigerant tube, so that the refrigerant in the adjustable condenser Circulation between the adjustable evaporator
  • the measurement control system includes a first measuring device and a second measuring device, the first measuring device is connected to the condensing chamber circulation simulation system for measuring parameters in the condensing chamber circulation simulation system; the second The measuring device is connected to the circulation simulation system of the evaporation chamber, and is used for measuring parameters in the circulation simulation system of the evaporation chamber.
  • the first measuring device includes a first Pitot tube air volume measuring device, a second Pitot tube air volume measuring device, and a first temperature and humidity measuring device; the first temperature and humidity measuring device is arranged in an adjustable condensation box and Placed at the upper and lower wind positions of the adjustable condenser; the first Pitot tube air volume test device is set in the first air inlet duct, and the second Pitot tube air volume test device is set in the first air outlet duct; the second measuring device includes The third pitot tube air volume measuring device, the fourth pitot tube air volume measuring device and the second temperature and humidity measuring device; the second temperature and humidity measuring device is arranged on the adjustable evaporation box and placed on the upper wind position and the lower wind position of the adjustable evaporator; The third pit tube air volume testing device is set in the second air inlet duct, and the fourth pit tube air volume testing device is set in the second air outlet duct.
  • the first Pitot tube air volume measuring device and the second Pitot tube air volume measuring device are respectively arranged in the first air inlet duct and the first air outlet duct, and then measure the first air inlet duct and the first air outlet duct.
  • the wind pressure in the road is calculated according to the wind pressure to obtain the air volume value.
  • the first temperature and humidity measuring device is installed in the adjustable condensing box, and placed at the upper and lower wind positions of the adjustable condenser, and then the temperature and humidity values before and after the adjustable condenser are measured, and the temperature and humidity difference is calculated for use Cooperate with the calculation of the cooling capacity of the test device.
  • the third Pitot tube air volume measuring device and the fourth Pitot tube air volume measuring device are respectively arranged in the second air inlet duct and the second air outlet duct, thereby measuring the wind pressure in the second air inlet duct and the second air outlet duct, The wind volume value is calculated according to the wind pressure.
  • a second temperature and humidity measuring device is installed in the adjustable evaporation box, and placed at the upper and lower wind positions of the adjustable evaporator, and then the temperature and humidity values before and after the adjustable evaporator are measured, and the temperature and humidity difference is calculated for use Cooperate with the calculation of the cooling capacity of the test device.
  • the condensing cavity circulation simulation system further includes a first rectifying grille, the first rectifying grille is arranged in the first air inlet pipe, and is used to make the wind flowing through the first air inlet pipe pass through the first air inlet pipe.
  • a rectifying grille for flow equalization; the evaporation chamber circulation simulation system also includes a second rectifying grille, the second rectifying grille is arranged in the second air inlet pipe, and is used to make the wind flowing through the second air inlet pipe pass through the second air inlet pipe.
  • the two rectification grids carry out current equalization. It should be noted that the first rectifying grille is set in the first air inlet duct.
  • the grille Based on the grid-like structure of the grille, it can evenly flow the wind entering the first air inlet duct, that is, through the grid.
  • the grid-shaped first rectifying grid divides the flow, thereby achieving the effect of flow equalization.
  • a second rectifying grille is set in the second air inlet duct. Based on the grid-like structure of the grille, it can evenly flow the wind entering the second air inlet duct, that is, through the grid-like second
  • the rectification grille divides the flow, and then achieves the effect of flow equalization.
  • the condensing cavity circulation simulation system further includes a first rectifying metal mesh, the first rectifying metal mesh is arranged in the first air inlet duct, and placed at the downwind position of the first rectifying grille, for making The wind flowing through the first rectifying metal net passes through the first rectifying metal net for equalization;
  • the circulation simulation system of the evaporation chamber also includes a second rectifying metal net, and the second rectifying metal net is arranged in the second air inlet duct and placed The downwind position of the second rectifying grille is used to make the wind flowing through the second rectifying metal mesh pass through the second rectifying metal mesh for flow equalization.
  • first rectifying metal mesh is arranged at the downwind position of the first rectifying grille, so as to facilitate the further equalization of the wind entering the first air inlet duct.
  • the second rectifying metal mesh is arranged at the downwind position of the second rectifying grille, so as to facilitate the further equalization of the wind entering the second air inlet duct.
  • the first Pitot tube air flow testing device is arranged in the first air inlet duct, and placed at the downwind position of the first rectifying metal mesh; the third Pitot tube air flow testing device is arranged in the second air inlet pipe In the road, and placed in the downwind position of the second rectifying metal mesh.
  • the first Pitot tube air volume test device is set in the first air inlet duct and placed at the downwind position of the first rectifying metal mesh
  • the third Pitot tube air volume test device is set in the second air intake duct , and placed at the downwind position of the second rectifying metal mesh
  • a first variable-diameter connecting pipe is provided at the connection between the first air inlet pipe and the outlet of the condensing chamber axial flow fan; the first air inlet pipe communicates with the first variable-diameter connecting pipe through a first soft tube ;
  • the connection between the second air inlet pipe and the air outlet of the axial flow fan in the evaporation chamber is provided with a second reduced-diameter connecting pipe; the second air inlet pipe communicates with the second reduced-diameter connecting pipe through a second flexible pipe.
  • the first reduced-diameter connecting pipe is provided for matching the air outlets of the axial flow fans of the condensing chamber with different diameters and the first air inlet pipe.
  • a second variable-diameter connecting pipe is provided to match and connect the outlets of the axial flow fans of the evaporation chamber with different diameters to the second air inlet pipe. Setting the second soft tube facilitates misalignment and buffering to a certain extent, and it has better adjustability than the hard tube.
  • the axial flow fan in the condensation chamber is provided with a first frequency converter for changing the frequency of the axial flow fan in the condensation chamber; the axial flow fan in the evaporation chamber is provided with a second frequency converter for changing the axial flow frequency of the evaporation chamber The frequency of the fan. It should be noted that when the first frequency converter is installed, the frequency of the axial flow fan in the condensation chamber can be directly changed through the first frequency converter during the process of adjusting the air supply volume, thereby realizing the adjustment of the air supply volume of the condensation chamber circulation simulation system.
  • the second frequency converter is set, and in the process of adjusting the air supply volume, the frequency of the axial flow fan in the evaporation chamber can be directly changed through the second frequency converter, thereby realizing the adjustment of the air supply volume of the circulation simulation system of the evaporation chamber.
  • both ends of the adjustable condensing box are provided with a third variable-diameter connecting pipe and a third flexible pipe; both ends of the adjustable condensing box pass through the third variable-diameter connecting pipe and the third
  • the three flexible pipes communicate with the first air inlet pipe and the first air outlet pipe; both ends of the adjustable evaporation box are provided with a fourth variable-diameter connecting pipe and a fourth soft pipe; both ends of the adjustable evaporation box
  • the fourth variable-diameter connecting pipe and the fourth flexible pipe communicate with the second air inlet pipe and the second air outlet pipe in turn; and/or, the condensing cavity circulation simulation system further includes a first air volume adjustment plate, a first air volume adjustment plate It is arranged at the air outlet of the first air outlet pipe; the evaporation chamber circulation simulation system also includes a second air volume adjustment plate, and the second air volume adjustment plate is arranged at the air outlet of the second air outlet pipe; and/or, the condensation chamber circulation simulation system also Including the first pulle
  • variable-diameter connecting pipe is used to connect the first air inlet pipe and the first air outlet pipe with different diameters to the adjustable condensing box, and the third flexible pipe is provided to facilitate the realization of soft connection, which is convenient for To a certain extent, misalignment and buffering can be realized, and compared with hard tubes, it has better adjustability.
  • the fourth variable-diameter connecting pipe is used to connect the second air inlet pipe and the second air outlet pipe with different diameters to the adjustable evaporation box. Misalignment and cushioning, compared with hard tubes, it has better adjustability.
  • the first air volume adjustment plate is set to block the air outlets in different degrees, thereby limiting the air volume, and then adjusting the air volume in the circulation simulation system of the condensation chamber, so as to achieve the effect of adjusting the air volume.
  • the combined use of the first air volume adjustment plate and the first frequency converter can better adjust the air volume in the condensing chamber circulation simulation system, and then reach the required air volume.
  • the second air volume adjustment plate is set to block the air outlets of different degrees, thereby limiting the air volume, and then adjusting the air volume in the circulation simulation system of the evaporation chamber, so as to achieve the effect of adjusting the air volume.
  • the combined use of the second air volume adjustment plate and the second frequency converter can better adjust the air volume in the circulation simulation system of the evaporation chamber, and then reach the required air volume.
  • the first pulley plate and the second pulley plate are provided for moving the condensing chamber cycle simulation system to a preset test room that can be adjusted to the temperature and humidity of the outdoor environment for testing.
  • the third pulley plate and the fourth pulley plate are used to push the axial flow fan in the evaporation chamber and the adjustable evaporation box to the preset test room which can be adjusted to the temperature and humidity of the indoor environment for testing.
  • the power supply system is set to supply power to the condensation chamber circulation simulation system, the evaporation chamber circulation simulation system and the measurement control system.
  • the adjustable condenser includes multiple groups of condensing assemblies arranged in a row, the condensing assemblies are arranged along the radial direction of the inner cavity of the adjustable condensing box, and each group of condensing assemblies is provided with an independent switch;
  • the adjustable evaporator The device includes multiple sets of evaporating components arranged in a row, and the evaporating components are arranged along the radial direction of the inner cavity of the adjustable evaporating box, and each set of evaporating components is provided with an independent switch.
  • the adjustable condenser is set to include multiple sets of condensing components arranged in a row, and the condensing components are set along the radial direction of the inner cavity of the adjustable condensing box, that is, along the cross-sectional direction of the wind, which is convenient for more Good air volume and heat exchange.
  • each group of condensing components is provided with an independent switch, and by adjusting the independent switch, the passage area of the refrigerant in the condenser is controlled, that is, the heat exchange area is adjusted.
  • the adjustable evaporator is set to include multiple sets of evaporating components arranged in a row, and the evaporating components are set along the radial direction of the inner cavity of the adjustable evaporating box, that is, along the cross-sectional direction of the wind, so as to better realize the air volume exchange. hot.
  • each group of evaporating components is provided with an independent switch, and by adjusting the independent switch, the refrigerant passing area in the evaporator is controlled, that is, the heat exchange area is adjusted.
  • the adjustable condenser further includes a first baffle for covering the condensing assembly, the first baffle is detachably connected with the condensing assembly, and is used for covering the closed condensing assembly;
  • the adjustable evaporator also It includes a second baffle for shielding the evaporating assembly, the second baffle is detachably connected with the evaporating assembly, and is used for shielding the closed evaporating assembly.
  • the first baffle is detachably connected to the condensing assembly to cover the closed condensing assembly, that is, the condensing assembly that does not pass through the refrigerant is covered by the first baffle, thereby reducing the ineffective passage area .
  • the second baffle is detachably connected to the evaporator assembly, and is used to cover the closed evaporator assembly, that is, the second baffle covers the evaporator assembly that does not pass through the refrigerant, thereby reducing the ineffective passage area.
  • the air conditioning unit test device includes an evaporation chamber circulation simulation system, a condensation chamber circulation simulation system, and a measurement control system.
  • the condensing chamber cycle simulation system includes a condensing chamber axial fan, an adjustable condensing box, an adjustable condenser and a compressor;
  • the evaporating chamber cycle simulation system includes an evaporating chamber axial fan, an adjustable evaporating box and an adjustable
  • the high-pressure end of the machine is connected with the adjustable condenser, the low-pressure end of the compressor is connected with the adjustable evaporator, and the adjustable condenser and the adjustable evaporator are connected through the capillary refrigerant tube, so that the refrigerant can evaporate between the adjustable condenser and the adjustable evaporator.
  • the measurement control system includes a first measuring device and a second measuring device, the first measuring device is connected to the circulation simulation system of the condensation chamber, and the second measurement device is connected to the circulation simulation system of the evaporation chamber.
  • the evaporation chamber circulation simulation system is used to simulate the indoor unit of the air conditioner
  • the condensation chamber circulation simulation system is used to simulate the outdoor unit of the air conditioner
  • the first measurement device is connected to the condensation chamber circulation simulation system
  • the second measurement device is connected to the In the evaporation chamber circulation simulation system, the evaporation chamber circulation simulation system is placed in the first test room which can simulate the indoor environment of the train, and the condensation chamber circulation simulation system is placed in the second test room which can simulate the outdoor environment of the train.
  • the parameters to be verified Adjust the axial flow fan in the condensation chamber, the adjustable condenser, the axial flow fan in the evaporation chamber, the adjustable evaporator and the compressor, measure the wind pressure value, temperature and humidity difference through the first measuring device and the second measuring device to calculate the air volume value and Refrigerating capacity value, and then achieve the purpose of checking design parameters, verify design ideas, provide test data, reduce the risk of modification or remanufacturing after prototype trial production, and reduce losses.
  • simulation test verification can be carried out at any time according to design needs, shortening the development cycle and obtaining test data in advance.
  • Fig. 1 is the structural representation of the condensation cavity circulation simulation system of the air conditioning unit test device provided by the embodiment of the present disclosure
  • Fig. 2 is a schematic structural diagram of an evaporation chamber cycle simulation system of an air-conditioning unit test device provided by an embodiment of the present disclosure.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the air conditioning unit test device provided in the embodiment of the present application includes a condensing chamber circulation simulation system and an evaporation chamber circulation simulation system to simulate the outdoor unit and the indoor unit of the air conditioner respectively, and the parameters of the indoor unit and the outdoor unit are measured and controlled by the measurement control system. Measurement, and then achieve the purpose of checking the design parameters.
  • the air conditioning unit test device includes an evaporation chamber circulation simulation system, a condensation chamber circulation simulation system, and a measurement control system.
  • the condensing chamber cycle simulation system includes a condensing chamber axial fan, an adjustable condensing box, an adjustable condenser and a compressor;
  • the evaporating chamber cycle simulation system includes an evaporating chamber axial fan, an adjustable evaporating box and an adjustable
  • the high-pressure end of the machine is connected with the adjustable condenser
  • the low-pressure end of the compressor is connected with the adjustable evaporator, and the adjustable condenser and the adjustable evaporator are connected through the capillary refrigerant tube, so that the refrigerant can evaporate between the adjustable condenser and the adjustable evaporator.
  • the measurement control system includes a first measuring device and a second measuring device, the first measuring device is connected to the circulation simulation system of the condensation chamber, and the second measurement device is connected to the circulation simulation system of the evaporation chamber.
  • the evaporation chamber circulation simulation system is used to simulate the indoor unit of the air conditioner
  • the condensation chamber circulation simulation system is used to simulate the outdoor unit of the air conditioner
  • the first measurement device is connected to the condensation chamber circulation simulation system
  • the second measurement device is connected to the In the evaporation chamber circulation simulation system, the evaporation chamber circulation simulation system is placed in the first test room which can simulate the indoor environment of the train, and the condensation chamber circulation simulation system is placed in the second test room which can simulate the outdoor environment of the train.
  • the parameters to be verified Adjust the axial flow fan in the condensation chamber, the adjustable condenser, the axial flow fan in the evaporation chamber, the adjustable evaporator and the compressor, measure the wind pressure value, temperature and humidity difference through the first measuring device and the second measuring device to calculate the air volume value and Refrigerating capacity value, and then achieve the purpose of checking design parameters, verify design ideas, provide test data, reduce the risk of modification or remanufacturing after prototype trial production, and reduce losses.
  • simulation test verification can be carried out at any time according to design needs, shortening the development cycle and obtaining test data in advance.
  • the air conditioning unit test device includes a condensing chamber circulation simulation system 11, an evaporation chamber circulation simulation system 13 and a measurement control system;
  • the condensation chamber circulation simulation system 11 includes a condensation chamber axial flow fan 111, adjustable condensing box 112, adjustable condenser 113 and compressor;
  • the air outlet of the axial flow fan communicates with the air inlet of the adjustable condensing box 112 through the first air inlet duct 114, and the adjustable condensing box 112
  • the air outlet is connected to the first air outlet pipe 115;
  • the adjustable condenser 113 is set in the adjustable condensation box 112;
  • the evaporation chamber circulation simulation system 13 includes the evaporation chamber axial flow fan 131, the adjustable evaporation box 132 and the adjustable evaporation chamber.
  • the air outlet of the evaporation cavity axial flow fan 131 communicates with the air inlet of the adjustable evaporation box 132 through the second air inlet duct 134, and the air outlet of the adjustable evaporation box 132 is connected with the second air outlet duct 135;
  • the adjustable evaporator 133 is arranged in the adjustable evaporation box 132;
  • the high-pressure end of the compressor communicates with the adjustable condenser 113, the low-pressure end of the compressor communicates with the adjustable evaporator 133, and the adjustable condenser 113 communicates with the adjustable evaporator 133 through a capillary refrigerant tube so that the refrigerant is condensed in the adjustable Circulation between the device 113 and the adjustable evaporator 133;
  • the measurement control system includes a first measuring device and a second measuring device, and the first measuring device is connected to the condensing chamber circulation simulation system 11 for measuring parameters; the second measuring device is connected to the evaporation chamber circulation simulation system 13 for measuring the parameters in the evaporation chamber circulation simulation system 13.
  • the present disclosure provides an air conditioner unit test device, which includes a condensation chamber circulation simulation system 11, and the condensation chamber circulation simulation system 11 includes a condensation chamber axial flow fan 111, an adjustable condensation box 112, an adjustable condenser 113, and a compressor;
  • the air outlet of fan is communicated with the air inlet of adjustable condensation box body 112 through the first air inlet duct 114, and the air outlet of adjustable condensation box body 112 is connected with the first air outlet duct 115;
  • Adjustable condenser 113 is arranged on adjustable Inside the condensation box 112.
  • the high-pressure end of the compressor communicates with the adjustable condenser 113
  • the low-pressure end of the compressor communicates with the adjustable evaporator 133
  • the adjustable condenser 113 communicates with the adjustable evaporator 133 through a capillary refrigerant tube so that the refrigerant is condensed in the adjustable Circulation between the evaporator 113 and the adjustable evaporator 133;
  • the condensing chamber circulation simulation system 11 is used to simulate the outdoor unit of the air conditioner, and the condensing chamber axial flow fan 111 sends the required air volume into the condensing chamber circulation simulation system 11 , the air volume passes through the adjustable condenser 113 in the adjustable condensing box 112 to complete the heat exchange, and finally is discharged through the first air outlet pipe 115.
  • the condensation chamber axial fan 111 is provided with a first frequency converter for changing the frequency of the condensation chamber axial fan 111 . It should be noted that when the first frequency converter is set, the frequency of the axial flow fan 111 in the condensation chamber can be directly changed through the first frequency converter in the process of adjusting the air supply volume, thereby realizing the adjustment of the air supply of the condensation chamber circulation simulation system 11 quantity.
  • the condensation chamber axial fan 111 is provided with a button switch, an electromagnetic contactor, and an overcurrent relay.
  • the overcurrent relay is electrically connected to the axial flow fan 111 in the condensing chamber to prevent damage to products and equipment caused by overcurrent faults.
  • the condensing cavity circulation simulation system 11 further includes a first air volume adjustment plate 116 , and the first air volume adjustment plate 116 is disposed at the air outlet of the first air outlet duct 115 .
  • the first air volume adjustment plate 116 is set to block different degrees of air outlets, thereby limiting the air volume, and then adjusting the air volume in the condensing cavity circulation simulation system 11 to achieve the effect of adjusting the air volume.
  • the combined use of the first air volume adjustment plate 116 and the first frequency converter can better adjust the air volume in the condensing cavity circulation simulation system 11 , and then reach the required air volume.
  • the adjustable condenser 113 includes multiple sets of condensing assemblies arranged in a row, the condensing assemblies are arranged along the radial direction of the inner chamber of the adjustable condensing box 112 , and each set of condensing assemblies is provided with an independent switch.
  • the adjustable condenser 113 is configured to include multiple sets of condensing components arranged in a row, and the condensing components are arranged along the radial direction of the inner cavity of the adjustable condensing box 112, that is, along the cross-sectional direction of the wind, This facilitates better air volume heat exchange.
  • each group of condensing components is provided with an independent switch, and by adjusting the independent switch, the passage area of the refrigerant in the condenser is controlled, that is, the heat exchange area is adjusted.
  • the adjustable condenser 113 further includes a first baffle for shielding the condensing assembly, the first baffle is detachably connected to the condensing assembly, and is used for shielding the closed condensing assembly.
  • the first baffle is detachably connected to the condensing assembly to cover the closed condensing assembly, that is, the condensing assembly that does not pass through the refrigerant is covered by the first baffle, thereby reducing the ineffective passage area .
  • the adjustable condenser 113 includes ten sets of condensing assemblies arranged in a row.
  • the preset number of condensing assemblies are adaptively closed as required, and the closed condensing assemblies are covered by the first baffle
  • the first baffle can be installed on the closed condensing assembly by using bolts, so as to realize covering and shielding.
  • the condensing chamber circulation simulation system 11 includes a compressor, the high-pressure end of the compressor communicates with the adjustable condenser 113, the low-pressure end of the compressor communicates with the adjustable evaporator 133, and the adjustable condenser 113 communicates with the adjustable evaporator 133 communicates through capillary refrigerant pipes, so that the refrigerant circulates between the adjustable condenser 113 and the adjustable evaporator 133 .
  • the compressor is set to drive the refrigerant to circulate between the adjustable condenser 113 and the adjustable evaporator 133, so that the refrigerant circulates between the adjustable condenser 113 and the adjustable evaporator 133, thereby realizing heat exchange.
  • the compressor is provided with a button switch, an electromagnetic contactor, and an overcurrent relay
  • the button switch is electrically connected to the electromagnetic contactor
  • the button switch controls the pull-in or disconnection of the electromagnetic contactor, thereby enabling the compressor to be turned on or off.
  • the overcurrent relay is electrically connected with the compressor to prevent damage to products and equipment caused by overcurrent faults.
  • the compressor is further provided with a frequency converter, through which the operating frequency of the compressor is set so that it can output different powers, thereby controlling the flow of the refrigerant in the pipeline.
  • the first air inlet pipe 114 provided in the present disclosure is used to deliver the air volume of the axial fan 111 in the condensation chamber to the adjustable condensation box 112 .
  • a first variable-diameter connecting pipe 1141 is provided at the connection between the first air inlet duct 114 and the outlet of the condensing cavity axial flow fan 111; 1142 connected.
  • the first reduced-diameter connecting pipe 1141 is provided for matching the air outlets of the axial flow fans 111 of the condensation chamber with different diameters to the first air inlet pipe 114 .
  • the first flexible tube 1142 is provided to achieve misalignment and cushioning to a certain extent, and it has better adjustability than the hard tube.
  • the condensing cavity circulation simulation system 11 further includes a first rectifying grille 1143, and the first rectifying grille 1143 is arranged in the first air inlet duct 114 for allowing the wind flowing through the first air inlet duct 114 to pass through
  • the first rectifying grid 1143 performs current equalization.
  • the first rectifying grille 1143 is set in the first air inlet duct 114, and based on the grid-like structure of the grille, it can evenly flow the wind entering the first air inlet duct 114, and also The flow is shunted through the grid-shaped first rectifying grille 1143 to achieve the effect of flow equalization.
  • the condensing cavity circulation simulation system 11 further includes a first rectifying metal mesh 1144, the first rectifying metal mesh 1144 is arranged in the first air inlet duct 114, and placed at the downwind position of the first rectifying grille 1143, for The wind flowing through the first rectifying metal mesh 1144 passes through the first rectifying metal mesh 1144 for flow equalization. It should be noted that, the first rectifying metal mesh 1144 is arranged at the downwind position of the first rectifying grille 1143 , so as to further equalize the wind entering the first air inlet duct 114 .
  • the adjustable condensation tank 112 may be configured as a cylindrical structure with both ends open.
  • the specific structural shape of the adjustable condensing box 112 is not limited here. In other specific embodiments, the adjustable condensing box 112 can also be set to other suitable shapes according to the needs of users, so that it can be The adjustable condensing box 112 can accommodate the adjustable condenser 113 , and the heat exchange can be completed in the adjustable condensing box 112 .
  • both ends of the adjustable condensing box 112 are provided with a third reducing connecting pipe 1121 and a third flexible pipe 1122; both ends of the adjustable condensing box 112 pass through the third reducing connecting pipe 1121 and
  • the third flexible tube 1122 communicates with the first air inlet duct 114 and the first air inlet duct 114 .
  • the third variable-diameter connecting pipe 1121 is used to connect the first air inlet pipe 114 and the first air outlet pipe 115 with different diameters to the adjustable condensation box 112, and the third flexible pipe 1122 is provided for convenience.
  • the realization of soft connection facilitates misalignment and buffering to a certain extent. Compared with hard pipes, it has better adjustability.
  • the condensation chamber circulation simulation system 11 further includes a first pulley plate 117 and a second pulley plate 118, the condensation chamber axial flow fan 111 is connected to the first pulley plate 117 through a first fan support 1171, and the first air inlet
  • the pipe 114 is connected to the first pulley plate 117 through the first air inlet pipe bracket 1173
  • the adjustable condensation box 112 is connected to the second pulley plate 118 through the first base 1181
  • the first air outlet pipe 115 passes through the first air outlet
  • the pipe bracket 1183 is connected to the second pulley plate 118 .
  • the first pulley plate 117 and the second pulley plate 118 are provided for moving the condensation chamber circulation simulation system 11 to a preset test room that can be adjusted to an outdoor environment for testing.
  • the present disclosure provides an air-conditioning unit test device, which includes an evaporation chamber circulation simulation system 13, and the evaporation chamber circulation simulation system 13 includes an evaporation chamber axial flow fan 131, an adjustable evaporation box 132, and an adjustable evaporator 133; the evaporation chamber axial flow fan
  • the air outlet of 131 communicates with the air inlet of the adjustable evaporation box 132 through the second air inlet duct 134, and the air outlet of the adjustable evaporation box 132 is connected with the second air outlet duct 135;
  • the adjustable evaporator 133 is arranged on the adjustable Inside the evaporation box 132.
  • the evaporation chamber circulation simulation system 13 is used to simulate the indoor unit of the air conditioner, and the evaporation chamber axial flow fan 131 sends the required air volume into the evaporation chamber circulation simulation system 13, and the air volume passes through the adjustable evaporation chamber 132.
  • the adjustable evaporator 133 completes the heat exchange, and finally discharges through the second air outlet duct 135.
  • the axial flow fan 131 in the evaporation chamber is provided with a second frequency converter for changing the frequency of the axial flow fan 131 in the evaporation chamber. It should be noted that when the second frequency converter is installed, the frequency of the axial flow fan 131 in the evaporation chamber can be directly changed through the second frequency converter during the process of adjusting the air supply volume, thereby realizing the adjustment of the air supply of the circulation simulation system 13 in the evaporation chamber. quantity.
  • the evaporation chamber axial flow fan 131 is provided with a button switch, an electromagnetic contactor, and an overcurrent relay.
  • the overcurrent relay is electrically connected to the axial flow fan 131 in the evaporation chamber, and is used to prevent product and equipment damage caused by an overcurrent fault.
  • the evaporation chamber circulation simulation system 13 further includes a second air volume adjustment plate 136 , and the second air volume adjustment plate 136 is disposed at the air outlet of the second air outlet duct 135 .
  • the second air volume adjustment plate 136 is set to block the air outlets to different degrees, thereby limiting the air volume, and then adjusting the air volume in the evaporation chamber circulation simulation system 13 to achieve the effect of adjusting the air volume.
  • the second air volume adjustment plate 136 can be used in combination with the second frequency converter to better adjust the air volume in the evaporation chamber circulation simulation system 13, and then reach the required air volume.
  • the adjustable evaporator 133 includes multiple sets of evaporating components arranged in a row, the evaporating components are arranged along the radial direction of the inner cavity of the adjustable evaporating box 132 , and each set of evaporating components is provided with an independent switch.
  • the adjustable evaporator 133 is configured to include multiple sets of evaporating components arranged in a row, and the evaporating components are arranged along the radial direction of the inner cavity of the adjustable evaporating box 132, that is, along the cross-sectional direction of the wind, This facilitates better air volume heat exchange.
  • each group of evaporating components is provided with an independent switch, and by adjusting the independent switch, the refrigerant passing area in the evaporator is controlled, that is, the heat exchange area is adjusted.
  • the adjustable evaporator 133 further includes a second baffle for shielding the evaporator assembly, the second baffle is detachably connected to the evaporator assembly, and is used for shielding the closed evaporator assembly.
  • the second baffle is detachably connected to the evaporator assembly to cover the closed evaporator assembly, that is, the evaporator assembly that does not pass through the refrigerant is covered by the second baffle, thereby reducing the ineffective passage area .
  • the adjustable evaporator 133 includes ten groups of evaporating components arranged in a row.
  • the preset number of evaporating components are adaptively closed according to needs, and the closed cold evaporating components are passed through the second baffle.
  • the second baffle can be installed on the closed evaporation assembly by using bolts, so as to realize covering and shielding.
  • the second air inlet pipe 134 provided in the present disclosure is used to deliver the air volume of the axial flow fan 131 in the evaporation chamber to the adjustable evaporation box 132 .
  • a second variable-diameter connecting pipe 1341 is provided at the connection between the second air inlet pipe 134 and the outlet of the evaporation chamber axial flow fan 131; 1342 connected.
  • the second reduced-diameter connecting pipe 1341 is provided to match and connect the air outlets of the axial flow fans 131 of the evaporation chamber with different diameters to the second air inlet duct 134 .
  • the second soft tube 1342 is provided to facilitate misalignment and buffering to a certain extent, and it has better adjustability than the hard tube.
  • the evaporating chamber circulation simulation system 13 further includes a second rectifying grille 1343 , and the second rectifying grille 1343 is arranged in the second air intake duct 134 for allowing the wind flowing through the second air intake duct 134 to pass through
  • the second rectifying grid 1343 performs current equalization.
  • the second rectifying grille 1343 is set in the second air inlet duct 134, and based on the grid-like structure of the grille, it can evenly flow the wind entering the second air inlet duct 134, and also The flow is shunted through the grid-shaped second rectifying grille 1343 to achieve the effect of flow equalization.
  • the evaporating chamber circulation simulation system 13 further includes a second rectifying metal mesh 1344, the second rectifying metal mesh 1344 is arranged in the second air inlet duct 134, and placed at the downwind position of the second rectifying grille 1343, for The wind flowing through the second rectifying metal mesh 1344 passes through the second rectifying metal mesh 1344 for flow equalization.
  • the second rectifying metal mesh 1344 is arranged at the downwind position of the second rectifying grille 1343 , so as to facilitate the further equalization of the wind entering the second air inlet duct 134 .
  • the adjustable evaporation box 132 may be configured as a cylindrical structure with both ends open.
  • the specific structural shape of the adjustable evaporating box 132 is not limited here.
  • the adjustable evaporating box 132 can also be set in other suitable shapes according to the needs of users, so that the adjustable evaporating box 132 can be
  • the adjustable evaporating box 132 can accommodate the adjustable evaporator 133 , and the heat exchange can be completed in the adjustable evaporating box 132 .
  • both ends of the adjustable evaporation box 132 are provided with a fourth variable diameter connecting pipe 1321 and a fourth flexible pipe 1322; both ends of the adjustable evaporation box 132 pass through the fourth variable diameter connecting pipe 1321 and the The fourth flexible tube 1322 communicates with the second air inlet duct 134 and the second air outlet duct 135 .
  • the fourth variable-diameter connecting pipe 1321 is used to connect the second air inlet pipe 134 and the second air outlet pipe 135 of different diameters with the adjustable evaporation box 132, and the fourth flexible pipe 1322 is provided for convenience.
  • the realization of soft connection facilitates misalignment and buffering to a certain extent. Compared with hard pipes, it has better adjustability.
  • the evaporation chamber circulation simulation system 13 also includes a third pulley plate 137, a fourth pulley plate 138, a second air inlet pipe support 1371 and a second air outlet pipe support 1373, and the evaporation chamber axial flow fan 131 is connected through the second fan support 1372 on the third pulley plate 137; the adjustable evaporation box 132 is connected to the fourth pulley plate 138 through the second base 1381; the second air inlet pipe bracket 1371 is used to support the second air inlet pipe pipe, and the second air outlet pipe bracket 1373 Used to support the second air outlet duct 135 . It should be noted that the third pulley plate 137 and the fourth pulley plate 138 are used to push the axial flow fan 131 in the evaporation chamber and the adjustable evaporation box 132 .
  • the measurement control system includes a first measuring device and a second measuring device.
  • the first measuring device is connected to the condensation chamber circulation simulation system 11 for measuring parameters in the condensation chamber circulation simulation system 11; the second measurement device is connected to In the evaporation chamber circulation simulation system 13, it is used to measure the parameters in the evaporation chamber circulation simulation system 13. It should be noted that during the test, the temperature and humidity difference and wind pressure were measured by the first measuring device and the second measuring device, and then the air volume and cooling capacity were calculated to achieve the purpose of checking the design parameters and verifying Accuracy of design ideas.
  • the first measuring device includes a first Pitot tube air volume measuring device 151, a second Pitot tube air volume measuring device 153, and a first temperature and humidity measuring device 153; the first temperature and humidity measuring device 153 is arranged in the adjustable condensation box 112 And placed at the upper wind position and the lower wind position of the adjustable condenser 113; the first pitot tube air volume testing device is set in the first air inlet duct 114, and the second pit tube air volume testing device is set in the first air outlet duct 115.
  • first Pitot tube air volume measuring device 151 and the second Pitot tube air volume measuring device 153 are respectively arranged in the first air inlet duct 114 and the first air outlet duct 115, and then measure the first air inlet duct 114 and the first air outlet duct.
  • the wind pressure in the first air outlet duct 115 is calculated according to the wind pressure to obtain the air volume value.
  • the first temperature and humidity measuring device 153 is installed in the adjustable condensation box 112, and placed at the upper wind position and the lower wind position of the adjustable condenser 113, and then the temperature and humidity values before and after the adjustable condenser 113 are measured, and the temperature and humidity are calculated. The difference is used to coordinate the calculation of the cooling capacity of the test device.
  • the second measuring device includes a third Pitot tube air volume measuring device 161 , a fourth Pitot tube air volume measuring device 162 and a second temperature and humidity measuring device 163 ;
  • the second temperature and humidity measuring device 163 is arranged in the adjustable evaporation box 132 And placed at the upper and lower wind positions of the adjustable evaporator 133;
  • the third pitot tube air volume testing device is set in the second air inlet duct 134, and the fourth pit tube air volume testing device is set in the second air outlet duct 135.
  • the third Pitot tube air volume measuring device 161 and the fourth Pitot tube air volume measuring device 162 are respectively arranged in the second air inlet duct 134 and the second air outlet duct 135, and then measure the second air inlet duct 134 and the second air outlet duct.
  • the wind pressure in the second air outlet duct 135 is calculated according to the wind pressure to obtain the air volume value.
  • a second temperature and humidity measuring device 163 is installed in the adjustable evaporation box 132, and placed at the upper and lower wind positions of the adjustable evaporator 133, and then measures the temperature and humidity values before and after the adjustable evaporator 133, and calculates the temperature and humidity The difference is used to coordinate the calculation of the cooling capacity of the test device.
  • the first Pitot tube air volume measuring device 151, the second Pitot tube air volume measuring device 153, the third Pitot tube air volume measuring device 161, and the fourth Pitot tube air volume measuring device 162 respectively include a dynamic pressure difference Transmitters, static pressure differential pressure transmitters and wind pressure measuring instruments, dynamic pressure differential pressure transmitters and static pressure differential pressure transmitters transmit the pressure value to the wind pressure measuring instrument, which transmits the pressure signal to the processing module, the processing module calculates the air volume value in the first air outlet duct 115 and the second air outlet duct 135, and adjusts the first frequency converter and the second frequency converter according to the air volume value, and then adjusts the first air inlet duct 114 and the The air volume value in the second air inlet duct 134 can be used to calculate the cooling capacity of the design and development test device, and record the measurement and calculation results.
  • a dynamic pressure difference Transmitters static pressure differential pressure transmitters and wind pressure measuring instruments
  • dynamic pressure differential pressure transmitters and static pressure differential pressure transmitters transmit the pressure value to the wind pressure measuring instrument
  • both the first temperature and humidity measurement device 153 and the second temperature and humidity measurement device 163 include a sampling fan, a sampling box, a dry bulb temperature measurement probe and a wet bulb temperature measurement probe.
  • the sampling fan pumps the uniform air volume in the adjustable condensing box 112 and the adjustable evaporating box 132 into the sampling box, and uses the dry bulb temperature measuring probe and the wet bulb temperature measuring probe to collect the temperature and humidity values respectively, and transmit to the processing module for real-time monitoring and recording.
  • adjust the hot and cold air cabinet and humidifier in the test room to meet the required conditions for the test; by adjusting the output power of the compressor, meet the required conditions for the test.
  • the current operating cooling capacity of the air conditioning unit test device is calculated to achieve the purpose of checking the design parameters.
  • the first Pitot tube air volume testing device is arranged in the first air inlet duct 114, and placed in the downwind position of the first rectifying metal mesh 1144; the third Pitot tube air volume testing device is arranged in the second air inlet duct 134 , and placed in the downwind position of the second rectifying metal mesh 1344. It should be noted that the first Pitot tube air flow test device is arranged in the first air inlet duct 114, and placed at the downwind position of the first rectifying metal mesh 1144, and the third Pitot tube air flow test device is arranged in the second air inlet.
  • the first Pitot tube air volume test device and the third Pitot tube air volume test device In the pipe 134, and placed at the downwind position of the second rectifying metal mesh 1344, it is convenient for the first Pitot tube air volume test device and the third Pitot tube air volume test device to collect the wind after flow equalization, thereby making the collected data more accurate.
  • the air conditioner unit test device further includes a power supply system, which is used to supply power to the condensation chamber circulation simulation system 11 , the evaporation chamber circulation simulation system 13 and the measurement control system. It should be noted that a power supply system is provided for supplying power to the condensation chamber circulation simulation system 11 , the evaporation chamber circulation simulation system 13 and the measurement control system.
  • the power supply system can be configured to include a main circuit power supply and a control circuit power supply.
  • the main circuit power supply includes a power supply for the compressor, a power supply for the axial flow fan 111 in the condensation chamber, and a power supply for the axial flow fan 131 in the evaporation chamber. power supply.
  • the above-mentioned power supply can adopt three-phase AC voltage 0V ⁇ 500V adjustable variable voltage power supply, which supplies power to the inverter after passing through the circuit breaker and contactor, and provides power to the compressor and fan after being rectified by the inverter. Adjust the output frequency of the inverter as required by the design, and control the compressor and fan to achieve the required output power.
  • the control loop power supply is used to supply power to the first measuring device and the second measuring device, and a DC 100V power supply, an AC 100V power supply or a DC 24V power supply may be used as an input power supply.

Abstract

一种涉及铁路列车空调机组测试装置技术领域,尤其涉及一种空调机组试验装置,包括蒸发腔循环模拟系统(13)、冷凝腔循环模拟系统(11)以及测量控制系统。在测试过程中,蒸发腔循环模拟系统(13)用于模拟空调室内机,冷凝腔循环模拟系统(11)用于模拟空调的室外机,通过测量控制系统对室内机以及室外机的参数进行测量,按照待验证的参数调整冷凝腔轴流风机(111)、可调式冷凝器(113)、蒸发腔轴流风机(131)、可调式蒸发器(133)以及压缩机,通过第一测量装置以及第二测量装置测量风压值、温湿度差值从而计算风量值及制冷量值,进而达到校核设计参数的目的,验证设计思路,提供试验数据,减少样机试制后改动或重制的风险,降低损失。

Description

空调机组试验装置
本申请要求于2021年11月04日提交中国专利局、申请号为202111300389.8、申请名称为“空调机组试验装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及铁路列车空调机组测试装置技术领域,尤其涉及一种空调机组试验装置。
背景技术
当前,铁路系统发展非常迅速,铁路客车内基本上已经普遍安装有空调机组,铁路客车包括有动车、高铁、地铁、城际等。列车的类型不同装配的空调机组也存在区别,车型不同对空调机组制冷量、蒸发、冷凝风量等要求均有所不同。然而每种铁路客车上安装的空调机组均需在设计安装之前,在空调性能试验室进行性能测试,试验时须将空调机组进、出风口与试验室风道对接,通过模拟空调机组在列车上运行温湿度环境、电源环境,测试空调机组各项性能参数是否符合设计要求。
相关技术中,在空调机组设计完成后仅能进行理论计算和仿真分析,根据所设置的限制条件作为分析模型,来确定相对条件下的空调机组内部换热效果及损失情况,仅能对空调机组内局部状态进行理想化分析。
由此,针对不同的空调机组需要设计与其配套的试验装置,且仅能对空调机组内局部状态进行理想化分析,因此耗时耗财耗力,造成资源浪费;同时所获得的测试结果存在较大误差,导致无法精确计算换热效果。
发明内容
本发明提供一种空调机组试验装置,可有效地解决上述或者其他潜在技术问题。
本发明提供的一种空调机组试验装置,包括蒸发腔循环模拟系统、冷凝腔循环模拟系统以及测量控制系统。冷凝腔循环模拟系统包括冷凝腔轴流风 机、可调式冷凝箱体、可调式冷凝器以及压缩机;轴流风机的出风口通过第一进风管道与可调式冷凝箱体的进风口连通,可调式冷凝箱体的出风口连接有第一出风管道;可调式冷凝器设置于可调式冷凝箱体内;蒸发腔循环模拟系统包括蒸发腔轴流风机、可调式蒸发箱体以及可调式蒸发器;蒸发腔轴流风机的出风口通过第二进风管道与可调式蒸发箱体的进风口连通,可调式蒸发箱体的出风口连接有第二出风管道;可调式蒸发器设置于可调式蒸发箱体内;压缩机的高压端与可调式冷凝器连通,压缩机的低压端与可调式蒸发器连通,可调式冷凝器与可调式蒸发器通过毛细冷媒管连通,以使冷媒在可调式冷凝器与可调式蒸发器之间循环;测量控制系统包括第一测量装置以及第二测量装置,第一测量装置连接于冷凝腔循环模拟系统内,用于测量冷凝腔循环模拟系统内的参数;第二测量装置连接于蒸发腔循环模拟系统内,用于测量蒸发腔循环模拟系统内的参数。
在可选的实施例中,第一测量装置包括第一毕托管风量测量装置、第二毕托管风量测量装置以及第一温湿度测量装置;第一温湿度测量装置设置于可调式冷凝箱体并置于可调式冷凝器的上风位以及下风位;第一毕托管风量测试装置设置于第一进风管道内,第二毕托管风量测试装置设置于第一出风管道内;第二测量装置包括第三毕托管风量测量装置、第四毕托管风量测量装置以及第二温湿度测量装置;第二温湿度测量装置设置于可调式蒸发箱体并置于可调式蒸发器的上风位以及下风位;第三毕托管风量测试装置设置于第二进风管道内,第四毕托管风量测试装置设置于第二出风管道内。需要说明的是,第一毕托管风量测量装置以及第二毕托管风量测量装置分别设置在第一进风管道内以及第一出风管道内,进而测量第一进风管道以及第一出风管道内的风压,根据风压计算得到风量值。同时在可调式冷凝箱体内设置第一温湿度测量装置,并置于可调式冷凝器的上风位以及下风位,进而测量可调式冷凝器前后的温湿度值,计算出温湿度差值,用于配合计算试验装置的制冷量。第三毕托管风量测量装置以及第四毕托管风量测量装置分别设置在第二进风管道内以及第二出风管道内,进而测量第二进风管道以及第二出风管道内的风压,根据风压计算得到风量值。同时在可调式蒸发箱体内设置第二温湿度测量装置,并置于可调式蒸发器的上风位以及下风位,进而测量可调式蒸发器前后的温湿度值,计算出温湿度差值,用于配合计算试验装置的制冷量。
在可选的实施例中,冷凝腔循环模拟系统还包括第一整流格栅,第一整流格栅设置于第一进风管道内,用于使流经第一进风管道内的风经过第一整流格栅进行均流;蒸发腔循环模拟系统还包括第二整流格栅,第二整流格栅设置于第二进风管道内,用于使流经第二进风管道内的风经过第二整流格栅进行均流。需要说明的是,在第一进风管道内设置第一整流格栅,基于格栅呈网格状结构的特征,其可以将进入第一进风管道内的风进行均流,也就经过网格状的第一整流格栅进行分流,进而达到均流的效果。在第二进风管道内设置第二整流格栅,基于格栅呈网格状结构的特征,其可以将进入第二进风管道内的风进行均流,也就经过网格状的第二整流格栅进行分流,进而达到均流的效果。
在可选的实施例中,冷凝腔循环模拟系统还包括第一整流金属网,第一整流金属网设置于第一进风管道内,且置于第一整流格栅的下风位,用于使流经第一整流金属网内的风经过第一整流金属网进行均流;蒸发腔循环模拟系统还包括第二整流金属网,第二整流金属网设置于第二进风管道内,且置于第二整流格栅的下风位,用于使流经第二整流金属网内的风经过第二整流金属网进行均流。需要说明的是,在第一整流格栅的下风位设置第一整流金属网,便于实现将进入第一进风管道内的风进一步进行均流。在第二整流格栅的下风位设置第二整流金属网,便于实现将进入第二进风管道内的风进一步进行均流。
在可选的实施例中,第一毕托管风量测试装置设置于第一进风管道内,并置于第一整流金属网的下风位;第三毕托管风量测试装置设置于第二进风管道内,并置于第二整流金属网的下风位。需要说明的是,将第一毕托管风量测试装置设置于第一进风管道内,并置于第一整流金属网的下风位,以及第三毕托管风量测试装置设置于第二进风管道内,并置于第二整流金属网的下风位,便于第一毕托管风量测试装置以及第三毕托管风量测试装置采集到经过均流后的风,进而使得采集的数据更加准确。
在可选的实施例中,第一进风管道与冷凝腔轴流风机出口连接处设置有第一变径连接管;第一进风管道与第一变径连接管通过第一软质管连通;第二进风管道与蒸发腔轴流风机的出风口的连接处设置有第二变径连接管;第二进风管道与第二变径连接管通过第二软质管连通。需要说明的是,设置第一变径连接管,用于使得不同口径的冷凝腔轴流风机出风口与第一进风管道 进行匹配连接。设置第一软质管,便于在一定程度上可以实现错位、缓冲,相对于硬质管而言,具备有更好的调节性。设置第二变径连接管,用于使得不同口径的蒸发腔轴流风机出风口与第二进风管道进行匹配连接。设置第二软质管,便于在一定程度上可以实现错位、缓冲,相对于硬质管而言,具备有更好的调节性。
在可选的实施例中,冷凝腔轴流风机设置有第一变频器,用于改变冷凝腔轴流风机的频率;蒸发腔轴流风机设置有第二变频器,用于改变蒸发腔轴流风机的频率。需要说明的是,设置第一变频器,在进行调整送风量的过程中,可直接通过第一变频器改变冷凝腔轴流风机的频率,进而实现调整冷凝腔循环模拟系统的送风量。设置第二变频器,在进行调整送风量的过程中,可直接通过第二变频器改变蒸发腔轴流风机的频率,进而实现调整蒸发腔循环模拟系统的送风量。
在可选的实施例中,可调式冷凝箱体的两端均设置有第三变径连接管以及第三软质管;可调式冷凝箱体的两端依次通过第三变径连接管以及第三软质管与第一进风管道以及第一出风管道连通;可调式蒸发箱体的两端均设置有第四变径连接管以及第四软质管;可调式蒸发箱体的两端依次通过第四变径连接管以及第四软质管与第二进风管道以及第二出风管道连通;和/或,冷凝腔循环模拟系统还包括第一风量调整板,第一风量调整板设置于第一出风管道的出风口;蒸发腔循环模拟系统还包括第二风量调整板,第二风量调整板设置于第二出风管道的出风口;和/或,冷凝腔循环模拟系统还包括第一滑轮板以及第二滑轮板,冷凝腔轴流风机通过第一风机支座连接于第一滑轮板上,第一进风管道通过第一进风管支架连接于第一滑轮板上,可调式冷凝箱体通过第一底座连接于第二滑轮板上,第一出风管道通过第一出风管支架连接于第二滑轮板上;蒸发腔循环模拟系统还包括第三滑轮板、第四滑轮板、第二进风管支架以及第二出风管支架,蒸发腔轴流风机通过第二风机支座连接于第三滑轮板;可调式蒸发箱体通过第二底座连接于第四滑轮板;第二进风管支架用于支撑第二进风管管道,第二出风管支架用于支撑第二出风管道;和/或,空调机组试验装置还包括电源系统,电源系统用于向冷凝腔循环模拟系统、蒸发腔循环模拟系统以及测量控制系统供电。需要说明的是,设置第三变径连接管用于将不同口径的第一进风管道、第一出风管道与可调式冷凝箱体进行连接,设置第三软质管便于实现软连接,便于在一定程度上可以实 现错位、缓冲,相对于硬质管而言,具备有更好的调节性。设置第四变径连接管用于将不同口径的第二进风管道、第二出风管道与可调式蒸发箱体进行连接,设置第四软质管便于实现软连接,便于在一定程度上可以实现错位、缓冲,相对于硬质管而言,具备有更好的调节性。设置第一风量调整板,使其通过遮挡不同程度的出风口,进而限制出风量,进而调整位于冷凝腔循环模拟系统内的风量,达到调整风量的作用。第一风量调整板与第一变频器结合使用可更好地调整冷凝腔循环模拟系统内的风量,进而到达所需的风量。设置第二风量调整板,使其通过遮挡不同程度的出风口,进而限制出风量,进而调整位于蒸发腔循环模拟系统内的风量,达到调整风量的作用。第二风量调整板与第二变频器结合使用可更好地调整蒸发腔循环模拟系统内的风量,进而到达所需的风量。还需要说明的是,设置第一滑轮板、第二滑轮板,用于将冷凝腔循环模拟系统移动至预设的可调整为室外环境温湿度值的试验室内进行试验。设置第三滑轮板、第四滑轮板用于推动蒸发腔轴流风机以及可调式蒸发箱体至预设的可调整为室内环境温湿度值的试验室内进行试验。设置电源系统用于向冷凝腔循环模拟系统、蒸发腔循环模拟系统以及测量控制系统供电。
在可选的实施例中,可调式冷凝器包括多组排列设置的冷凝组件,冷凝组件沿着可调式冷凝箱体内腔的径向方向设置,每组冷凝组件设置有独立的开关;可调式蒸发器包括多组排列设置的蒸发组件,蒸发组件沿着可调式蒸发箱体内腔的径向方向设置,每组蒸发组件设置有独立的开关。需要说明的是,将可调式冷凝器设置为包括多组排列设置的冷凝组件,冷凝组件沿着可调式冷凝箱体内腔的径向方向设置,也即沿着风的截面方向设置,如此便于更好地实现风量换热。同时每组冷凝组件设置有独立的开关,通过调整独立的开关,进而控制冷凝器内制冷剂通过面积,也即调整换热面积。将可调式蒸发器设置为包括多组排列设置的蒸发组件,蒸发组件沿着可调式蒸发箱体内腔的径向方向设置,也即沿着风的截面方向设置,如此便于更好地实现风量换热。同时每组蒸发组件设置有独立的开关,通过调整独立的开关,进而控制蒸发器内制冷剂通过面积,也即调整换热面积。
在可选的实施例中,可调式冷凝器还包括用于遮挡冷凝组件的第一挡板,第一挡板与冷凝组件可拆卸地连接,用于遮挡关闭的冷凝组件;可调式蒸发器还包括用于遮挡蒸发组件的第二挡板,第二挡板与蒸发组件可拆卸地连接, 用于遮挡关闭的蒸发组件。需要说明的是,通过第一挡板可拆卸地连接于冷凝组件,用于遮挡关闭的冷凝组件,也即通过第一挡板将未通过制冷剂的冷凝组件进行覆盖,进而减小无效通过面积。通过第二挡板可拆卸地连接于蒸发组件,用于遮挡关闭的蒸发组件,也即通过第二挡板将未通过制冷剂的蒸发组件进行覆盖,进而减小无效通过面积。
本公开实施例提供的空调机组试验装置,包括蒸发腔循环模拟系统、冷凝腔循环模拟系统以及测量控制系统。冷凝腔循环模拟系统包括冷凝腔轴流风机、可调式冷凝箱体、可调式冷凝器以及压缩机;蒸发腔循环模拟系统包括蒸发腔轴流风机、可调式蒸发箱体以及可调式蒸发器;压缩机的高压端与可调式冷凝器连通,压缩机的低压端与可调式蒸发器连通,可调式冷凝器与可调式蒸发器通过毛细冷媒管连通,以使冷媒在可调式冷凝器与可调式蒸发器之间循环;测量控制系统包括第一测量装置以及第二测量装置,第一测量装置连接于冷凝腔循环模拟系统内,第二测量装置连接于蒸发腔循环模拟系统内。在测试过程中,蒸发腔循环模拟系统用于模拟空调室内机,冷凝腔循环模拟系统用于模拟空调的室外机,且第一测量装置连接于冷凝腔循环模拟系统内,第二测量装置连接于蒸发腔循环模拟系统内,将蒸发腔循环模拟系统置于可模拟列车室内环境的第一试验室内,将冷凝腔循环模拟系统置于可模拟列车室外环境的第二试验室内,按照待验证的参数调整冷凝腔轴流风机、可调式冷凝器、蒸发腔轴流风机、可调式蒸发器以及压缩机,通过第一测量装置以及第二测量装置测量风压值、温湿度差值从而计算风量值及制冷量值,进而达到校核设计参数的目的,验证设计思路,提供试验数据,减少样机试制后改动或重制的风险,降低损失。同时可根据设计需要随时进行模拟测试验证,缩短开发周期,提早获取试验数据。
本发明的附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
通过参照附图的以下详细描述,本发明实施例的上述和其他目的、特征和优点将变得更容易理解。在附图中,将以示例以及非限制性的方式对本发明的多个实施例进行说明,其中:
图1为本公开实施例提供的空调机组试验装置的冷凝腔循环模拟系统的 结构示意图;
图2为本公开实施例提供的空调机组试验装置的蒸发腔循环模拟系统的结构示意图。
附图标记:
11-冷凝腔循环模拟系统;
111-冷凝腔轴流风机;112-可调式冷凝箱体;
1121-第三变径连接管;1122-第三软质管;
113-可调式冷凝器;114-第一进风管道;
1141-第一变径连接管;1142-第一软质管;
1143-第一整流格栅;1144-第一整流金属网;
115-第一出风管道;116-第一风量调整板;
117-第一滑轮板;1171-第一风机支座;
1173-第一进风管支架;118-第二滑轮板;
1181-第一底座;1183-第一出风管支架;
13-蒸发腔循环模拟系统;
131-蒸发腔轴流风机;132-可调式蒸发箱体;
1321-第四变径连接管;1322-第四软质管;
133-可调式蒸发器;134-第二进风管道;
1341-第二变径连接管;1342-第二软质管;
1343-第二整流格栅;1344-第二整流金属网;
135-第二出风管道;136-第二风量调整板;
137-第三滑轮板;1371-第二进风管支架;
1372-第二风机支座;1373-第二出风管支架;
138-第四滑轮板;1381-第二底座;
151-第一毕托管风量测量装置;152-第二毕托管风量测量装置;
153-第一温湿度测量装置;
161-第三毕托管风量测量装置;162-第四毕托管风量测量装置;
163-第二温湿度测量装置。
具体实施方式
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始 至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明的描述中,需要理解的是,术语“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
相关技术中,在空调机组设计完成后仅能进行理论计算和仿真分析,根据所设置的限制条件作为分析模型,来确定相对条件下的空调机组内部换热效果及损失情况,仅能对空调机组内局部状态进行理想化分析。由此,针对 不同的空调机组需要设计与其配套的试验装置,且仅能对空调机组内局部状态进行理想化分析,因此耗时耗财耗力,造成资源浪费;同时所获得的测试结果存在较大误差,导致无法精确计算换热效果。
有鉴于此,本申请实施例提供的空调机组试验装置,包括冷凝腔循环模拟系统以及蒸发腔循环模拟系统分别模拟空调的室外机以及室内机,通过测量控制系统对室内机以及室外机的参数进行测量,进而达到校核设计参数的目的。
具体而言,本公开实施例提供的空调机组试验装置,包括蒸发腔循环模拟系统、冷凝腔循环模拟系统以及测量控制系统。冷凝腔循环模拟系统包括冷凝腔轴流风机、可调式冷凝箱体、可调式冷凝器以及压缩机;蒸发腔循环模拟系统包括蒸发腔轴流风机、可调式蒸发箱体以及可调式蒸发器;压缩机的高压端与可调式冷凝器连通,压缩机的低压端与可调式蒸发器连通,可调式冷凝器与可调式蒸发器通过毛细冷媒管连通,以使冷媒在可调式冷凝器与可调式蒸发器之间循环;测量控制系统包括第一测量装置以及第二测量装置,第一测量装置连接于冷凝腔循环模拟系统内,第二测量装置连接于蒸发腔循环模拟系统内。在测试过程中,蒸发腔循环模拟系统用于模拟空调室内机,冷凝腔循环模拟系统用于模拟空调的室外机,且第一测量装置连接于冷凝腔循环模拟系统内,第二测量装置连接于蒸发腔循环模拟系统内,将蒸发腔循环模拟系统置于可模拟列车室内环境的第一试验室内,将冷凝腔循环模拟系统置于可模拟列车室外环境的第二试验室内,按照待验证的参数调整冷凝腔轴流风机、可调式冷凝器、蒸发腔轴流风机、可调式蒸发器以及压缩机,通过第一测量装置以及第二测量装置测量风压值、温湿度差值从而计算风量值及制冷量值,进而达到校核设计参数的目的,验证设计思路,提供试验数据,减少样机试制后改动或重制的风险,降低损失。同时可根据设计需要随时进行模拟测试验证,缩短开发周期,提早获取试验数据。
请参照图1和图2,本申请实施例提供的空调机组试验装置,包括冷凝腔循环模拟系统11、蒸发腔循环模拟系统13以及测量控制系统;冷凝腔循环模拟系统11包括冷凝腔轴流风机111、可调式冷凝箱体112、可调式冷凝器113以及压缩机;轴流风机的出风口通过第一进风管道114与可调式冷凝箱体112的进风口连通,可调式冷凝箱体112的出风口连接有第一出风管道115;可调式冷凝器113设置于可调式冷凝箱体112内;蒸发腔循环模拟系统13包括蒸 发腔轴流风机131、可调式蒸发箱体132以及可调式蒸发器133;蒸发腔轴流风机131的出风口通过第二进风管道134与可调式蒸发箱体132的进风口连通,可调式蒸发箱体132的出风口连接有第二出风管道135;可调式蒸发器133设置于可调式蒸发箱体132内;
压缩机的高压端与可调式冷凝器113连通,压缩机的低压端与可调式蒸发器133连通,可调式冷凝器113与可调式蒸发器133通过毛细冷媒管连通,以使冷媒在可调式冷凝器113与可调式蒸发器133之间循环;测量控制系统包括第一测量装置以及第二测量装置,第一测量装置连接于冷凝腔循环模拟系统11内,用于测量冷凝腔循环模拟系统11内的参数;第二测量装置连接于蒸发腔循环模拟系统13内,用于测量蒸发腔循环模拟系统13内的参数。
本公开提供一种空调机组试验装置,包括冷凝腔循环模拟系统11,冷凝腔循环模拟系统11包括冷凝腔轴流风机111、可调式冷凝箱体112、可调式冷凝器113以及压缩机;轴流风机的出风口通过第一进风管道114与可调式冷凝箱体112的进风口连通,可调式冷凝箱体112的出风口连接有第一出风管道115;可调式冷凝器113设置于可调式冷凝箱体112内。压缩机的高压端与可调式冷凝器113连通,压缩机的低压端与可调式蒸发器133连通,可调式冷凝器113与可调式蒸发器133通过毛细冷媒管连通,以使冷媒在可调式冷凝器113与可调式蒸发器133之间循环;需要说明的是,冷凝腔循环模拟系统11用于模拟空调室外机,冷凝腔轴流风机111将所需的风量送入冷凝腔循环模拟系统11内,风量在可调式冷凝箱体112内经过可调式冷凝器113完成换热,最终经过第一出风管道115排出,通过调整冷凝腔轴流风机111以及可调式冷凝器113与试验参数相一致,通过第一测量装置对试验参数进行验证。
示例性地,冷凝腔轴流风机111设置有第一变频器,用于改变冷凝腔轴流风机111的频率。需要说明的是,设置第一变频器,在进行调整送风量的过程中,可直接通过第一变频器改变冷凝腔轴流风机111的频率,进而实现调整冷凝腔循环模拟系统11的送风量。
示例性地,冷凝腔轴流风机111设置有按钮开关、电磁接触器以及过流继电器,按钮开关与电磁接触器电连接,按钮开关控制电磁接触器的吸合或断开,进而实现冷凝腔轴流风机111的打开或关闭,过流继电器与冷凝腔轴流风机111电连接,用于防止过流故障造成产品及设备损坏。
示例性地,冷凝腔循环模拟系统11还包括第一风量调整板116,第一风量调整板116设置于第一出风管道115的出风口。需要说明的是,设置第一风量调整板116,使其通过遮挡不同程度的出风口,进而限制出风量,进而调整位于冷凝腔循环模拟系统11内的风量,达到调整风量的作用。第一风量调整板116与第一变频器结合使用可更好地调整冷凝腔循环模拟系统11内的风量,进而到达所需的风量。
示例性地,可调式冷凝器113包括多组排列设置的冷凝组件,冷凝组件沿着可调式冷凝箱体112内腔的径向方向设置,每组冷凝组件设置有独立的开关。需要说明的是,将可调式冷凝器113设置为包括多组排列设置的冷凝组件,冷凝组件沿着可调式冷凝箱体112内腔的径向方向设置,也即沿着风的截面方向设置,如此便于更好地实现风量换热。同时每组冷凝组件设置有独立的开关,通过调整独立的开关,进而控制冷凝器内制冷剂通过面积,也即调整换热面积。
示例性地,可调式冷凝器113还包括用于遮挡冷凝组件的第一挡板,第一挡板与冷凝组件可拆卸地连接,用于遮挡关闭的冷凝组件。需要说明的是,通过第一挡板可拆卸地连接于冷凝组件,用于遮挡关闭的冷凝组件,也即通过第一挡板将未通过制冷剂的冷凝组件进行覆盖,进而减小无效通过面积。
示例性地,可调式冷凝器113包括十组排列设置的冷凝组件,在测试过程中,根据需要适应性地关闭预设组数的冷凝组件,并将关闭的冷凝组件通过第一挡板进行覆盖遮挡,示例性地,第一挡板可采用螺栓安装于关闭的冷凝组件上,进而实现覆盖遮挡。
本公开提供的冷凝腔循环模拟系统11包括压缩机,压缩机的高压端与可调式冷凝器113连通,压缩机的低压端与可调式蒸发器133连通,可调式冷凝器113与可调式蒸发器133通过毛细冷媒管连通,以使冷媒在可调式冷凝器113与可调式蒸发器133之间循环。需要说明的是,设置压缩机用于驱动冷媒在可调式冷凝器113与可调式蒸发器133之间循环,以使冷媒在可调式冷凝器113与可调式蒸发器133之间循环流动,进而实现换热。
示例性地,压缩机设置有按钮开关、电磁接触器以及过流继电器,按钮开关与电磁接触器电连接,按钮开关控制电磁接触器的吸合或断开,进而实现压缩机的打开或关闭,过流继电器与压缩机电连接,用于防止过流故障造成产品及设备损坏。
示例性地,压缩机还设置有变频器,通过变频器设定压缩机的运行频率,使其输出不同的功率,进而控制管路内冷媒的流量。
本公开提供的第一进风管道114用于将冷凝腔轴流风机111的风量输送至可调式冷凝箱体112。示例性地,第一进风管道114与冷凝腔轴流风机111出口连接处设置有第一变径连接管1141;第一进风管道114与第一变径连接管1141通过第一软质管1142连通。需要说明的是,设置第一变径连接管1141,用于使得不同口径的冷凝腔轴流风机111出风口与第一进风管道114进行匹配连接。设置第一软质管1142,便于在一定程度上可以实现错位、缓冲,相对于硬质管而言,具备有更好的调节性。
示例性地,冷凝腔循环模拟系统11还包括第一整流格栅1143,第一整流格栅1143设置于第一进风管道114内,用于使流经第一进风管道114内的风经过第一整流格栅1143进行均流。需要说明的是,在第一进风管道114内设置第一整流格栅1143,基于格栅呈网格状结构的特征,其可以将进入第一进风管道114内的风进行均流,也就经过网格状的第一整流格栅1143进行分流,进而达到均流的效果。
示例性地,冷凝腔循环模拟系统11还包括第一整流金属网1144,第一整流金属网1144设置于第一进风管道114内,且置于第一整流格栅1143的下风位,用于使流经第一整流金属网1144内的风经过第一整流金属网1144进行均流。需要说明的是,在第一整流格栅1143的下风位设置第一整流金属网1144,便于实现将进入第一进风管道114内的风进一步进行均流。
示例性地,可调式冷凝箱体112可设置为两端开口的圆筒状结构。示例性地,这里并不对可调式冷凝箱体112的具体结构形状进行限定,在其他具体实施例中,也可以根据用户的需求,将可调式冷凝箱体112设置为其他适宜的形状,使得可调式冷凝箱体112可容纳可调式冷凝器113,并可实现在可调式冷凝箱体112内完成换热即可。
示例性地,可调式冷凝箱体112的两端均设置有第三变径连接管1121以及第三软质管1122;可调式冷凝箱体112的两端依次通过第三变径连接管1121以及第三软质管1122与第一进风管道114以及第一进风管道114连通。需要说明的是,设置第三变径连接管1121用于将不同口径的第一进风管道114、第一出风管道115与可调式冷凝箱体112进行连接,设置第三软质管1122便于实现软连接,便于在一定程度上可以实现错位、缓冲,相对于硬质管而言, 具备有更好的调节性。
示例性地,冷凝腔循环模拟系统11还包括第一滑轮板117以及第二滑轮板118,冷凝腔轴流风机111通过第一风机支座1171连接于第一滑轮板117上,第一进风管道114通过第一进风管支架1173连接于第一滑轮板117上,可调式冷凝箱体112通过第一底座1181连接于第二滑轮板118上,第一出风管道115通过第一出风管支架1183连接于第二滑轮板118上。需要说明的是,设置第一滑轮板117、第二滑轮板118,用于将冷凝腔循环模拟系统11移动至预设的可调整为室外环境的试验室内进行试验。
本公开提供一种空调机组试验装置,包括蒸发腔循环模拟系统13,蒸发腔循环模拟系统13包括蒸发腔轴流风机131、可调式蒸发箱体132以及可调式蒸发器133;蒸发腔轴流风机131的出风口通过第二进风管道134与可调式蒸发箱体132的进风口连通,可调式蒸发箱体132的出风口连接有第二出风管道135;可调式蒸发器133设置于可调式蒸发箱体132内。需要说明的是,蒸发腔循环模拟系统13用于模拟空调室内机,蒸发腔轴流风机131将所需的风量送入蒸发腔循环模拟系统13内,风量在可调式蒸发箱体132内经过可调式蒸发器133完成换热,最终经过第二出风管道135排出,通过调整蒸发腔轴流风机131以及可调式蒸发器133与试验参数相一致,通过第二测量装置对试验参数进行验证。
示例性地,蒸发腔轴流风机131设置有第二变频器,用于改变蒸发腔轴流风机131的频率。需要说明的是,设置第二变频器,在进行调整送风量的过程中,可直接通过第二变频器改变蒸发腔轴流风机131的频率,进而实现调整蒸发腔循环模拟系统13的送风量。
示例性地,蒸发腔轴流风机131设置有按钮开关、电磁接触器以及过流继电器,按钮开关与电磁接触器电连接,按钮开关控制电磁接触器的吸合或断开,进而实现蒸发腔轴流风机131的打开或关闭,过流继电器与蒸发腔轴流风机131电连接,用于防止过流故障造成产品及设备损坏。
示例性地,蒸发腔循环模拟系统13还包括第二风量调整板136,第二风量调整板136设置于第二出风管道135的出风口。需要说明的是,设置第二风量调整板136,使其通过遮挡不同程度的出风口,进而限制出风量,进而调整位于蒸发腔循环模拟系统13内的风量,达到调整风量的作用。第二风量调整板136与第二变频器结合使用可更好地调整蒸发腔循环模拟系统13内的风 量,进而到达所需的风量。
示例性地,可调式蒸发器133包括多组排列设置的蒸发组件,蒸发组件沿着可调式蒸发箱体132内腔的径向方向设置,每组蒸发组件设置有独立的开关。需要说明的是,将可调式蒸发器133设置为包括多组排列设置的蒸发组件,蒸发组件沿着可调式蒸发箱体132内腔的径向方向设置,也即沿着风的截面方向设置,如此便于更好地实现风量换热。同时每组蒸发组件设置有独立的开关,通过调整独立的开关,进而控制蒸发器内制冷剂通过面积,也即调整换热面积。
示例性地,可调式蒸发器133还包括用于遮挡蒸发组件的第二挡板,第二挡板与蒸发组件可拆卸地连接,用于遮挡关闭的蒸发组件。需要说明的是,通过第二挡板可拆卸地连接于蒸发组件,用于遮挡关闭的蒸发组件,也即通过第二挡板将未通过制冷剂的蒸发组件进行覆盖,进而减小无效通过面积。
示例性地,可调式蒸发器133包括十组排列设置的蒸发组件,在测试过程中,根据需要适应性地关闭预设组数的蒸发组件,并将关闭的冷蒸发组件通过第二挡板进行覆盖遮挡,示例性地,第二挡板可采用螺栓安装于关闭的蒸发组件上,进而实现覆盖遮挡。
本公开提供的第二进风管道134用于将蒸发腔轴流风机131的风量输送至可调式蒸发箱体132。示例性地,第二进风管道134与蒸发腔轴流风机131出口连接处设置有第二变径连接管1341;第二进风管道134与第二变径连接管1341通过第二软质管1342连通。需要说明的是,设置第二变径连接管1341,用于使得不同口径的蒸发腔轴流风机131出风口与第二进风管道134进行匹配连接。设置第二软质管1342,便于在一定程度上可以实现错位、缓冲,相对于硬质管而言,具备有更好的调节性。
示例性地,蒸发腔循环模拟系统13还包括第二整流格栅1343,第二整流格栅1343设置于第二进风管道134内,用于使流经第二进风管道134内的风经过第二整流格栅1343进行均流。需要说明的是,在第二进风管道134内设置第二整流格栅1343,基于格栅呈网格状结构的特征,其可以将进入第二进风管道134内的风进行均流,也就经过网格状的第二整流格栅1343进行分流,进而达到均流的效果。
示例性地,蒸发腔循环模拟系统13还包括第二整流金属网1344,第二整流金属网1344设置于第二进风管道134内,且置于第二整流格栅1343的下 风位,用于使流经第二整流金属网1344内的风经过第二整流金属网1344进行均流。需要说明的是,在第二整流格栅1343的下风位设置第二整流金属网1344,便于实现将进入第二进风管道134内的风进一步进行均流。
示例性地,可调式蒸发箱体132可设置为两端开口的圆筒状结构。示例性地,这里并不对可调式蒸发箱体132的具体结构形状进行限定,在其他具体实施例中,也可以根据用户的需求,将可调式蒸发箱体132设置为其他适宜的形状,使得可调式蒸发箱体132可容纳可调式蒸发器133,并可实现在可调式蒸发箱体132内完成换热即可。
示例性地,可调式蒸发箱体132的两端均设置有第四变径连接管1321以及第四软质管1322;可调式蒸发箱体132的两端依次通过第四变径连接管1321以及第四软质管1322与第二进风管道134以及第二出风管道135连通。需要说明的是,设置第四变径连接管1321用于将不同口径的第二进风管道134、第二出风管道135与可调式蒸发箱体132进行连接,设置第四软质管1322便于实现软连接,便于在一定程度上可以实现错位、缓冲,相对于硬质管而言,具备有更好的调节性。
蒸发腔循环模拟系统13还包括第三滑轮板137、第四滑轮板138、第二进风管支架1371以及第二出风管支架1373,蒸发腔轴流风机131通过第二风机支座1372连接于第三滑轮板137;可调式蒸发箱体132通过第二底座1381连接于第四滑轮板138;第二进风管支架1371用于支撑第二进风管管道,第二出风管支架1373用于支撑第二出风管道135。需要说明的是,设置第三滑轮板137、第四滑轮板138用于推动蒸发腔轴流风机131以及可调式蒸发箱体132。
本公开提供的测量控制系统包括第一测量装置以及第二测量装置,第一测量装置连接于冷凝腔循环模拟系统11内,用于测量冷凝腔循环模拟系统11内的参数;第二测量装置连接于蒸发腔循环模拟系统13内,用于测量蒸发腔循环模拟系统13内的参数。需要说明的是,在试验过程中,通过第一测量装置以及第二测量装置测量温湿度差值及风压值,进而计算出风量值及制冷量值,进而达到校核设计参数的目的,验证设计思路的准确性。
示例性地,第一测量装置包括第一毕托管风量测量装置151、第二毕托管风量测量装置153以及第一温湿度测量装置153;第一温湿度测量装置153设置于可调式冷凝箱体112并置于可调式冷凝器113的上风位以及下风位;第 一毕托管风量测试装置设置于第一进风管道114内,第二毕托管风量测试装置设置于第一出风管道115内。需要说明的是,第一毕托管风量测量装置151以及第二毕托管风量测量装置153分别设置在第一进风管道114内以及第一出风管道115内,进而测量第一进风管道114以及第一出风管道115内的风压,根据风压计算得到风量值。同时在可调式冷凝箱体112内设置第一温湿度测量装置153,并置于可调式冷凝器113的上风位以及下风位,进而测量可调式冷凝器113前后的温湿度值,计算出温湿度差值,用于配合计算试验装置的制冷量。
示例性地,第二测量装置包括第三毕托管风量测量装置161、第四毕托管风量测量装置162以及第二温湿度测量装置163;第二温湿度测量装置163设置于可调式蒸发箱体132并置于可调式蒸发器133的上风位以及下风位;第三毕托管风量测试装置设置于第二进风管道134内,第四毕托管风量测试装置设置于第二出风管道135内。需要说明的是,第三毕托管风量测量装置161以及第四毕托管风量测量装置162分别设置在第二进风管道134内以及第二出风管道135内,进而测量第二进风管道134以及第二出风管道135内的风压,根据风压计算得到风量值。同时在可调式蒸发箱体132内设置第二温湿度测量装置163,并置于可调式蒸发器133的上风位以及下风位,进而测量可调式蒸发器133前后的温湿度值,计算出温湿度差值,用于配合计算试验装置的制冷量。
具体地,在本实施例中,第一毕托管风量测量装置151、第二毕托管风量测量装置153、第三毕托管风量测量装置161以及第四毕托管风量测量装置162分别包括动压压差变送器、静压压差变送器以及风压测量仪表,动压压差变送器以及静压压差变送器将压力值传输至风压测量仪表,由其将压力信号传递给处理模块,由处理模块计算出第一出风管道115以及第二出风管道135内的风量值,并根据此风量值调整第一变频器以及第二变频器,进而调整第一进风管道114以及第二进风管道134内的风量值,同时该风量值可用于设计开发试验装置的制冷量计算,并将测量及运算结果进行记录。
具体地,在本实施例中,第一温湿度测量装置153以及第二温湿度测量装置163均包括取样风机、取样盒、干球温度测量探头及湿球温度测量探头。在测试过程中,取样风机将可调式冷凝箱体112以及可调式蒸发箱体132内的匀速风量抽至取样盒内,用干球温度测量探头及湿球温度测量探头分别采 集温湿度值,传输至处理模块中进行实时监控记录。并根据所需温湿度不同,调节试验室内冷热风柜及加湿器,满足试验所需条件;通过调节压缩机的输出功率,满足试验所需条件。根据第一测量装置以及第二测量装置采集的各项温湿度值、动压、静压值等数据计算空调机组试验装置当前运行制冷量,达到校核设计参数的目的。
示例性地,第一毕托管风量测试装置设置于第一进风管道114内,并置于第一整流金属网1144的下风位;第三毕托管风量测试装置设置于第二进风管道134内,并置于第二整流金属网1344的下风位。需要说明的是,将第一毕托管风量测试装置设置于第一进风管道114内,并置于第一整流金属网1144的下风位,以及第三毕托管风量测试装置设置于第二进风管道134内,并置于第二整流金属网1344的下风位,便于第一毕托管风量测试装置以及第三毕托管风量测试装置采集到经过均流后的风,进而使得采集的数据更加准确。
在可选地示例性实施例中,空调机组试验装置还包括电源系统,电源系统用于向冷凝腔循环模拟系统11、蒸发腔循环模拟系统13以及测量控制系统供电。需要说明的是,设置电源系统用于向冷凝腔循环模拟系统11、蒸发腔循环模拟系统13以及测量控制系统供电。
具体地,在本实施例中,电源系统可以设置为包括主回路电源以及控制回路电源,主回路电源包括压缩机供电电源,冷凝腔轴流风机111的供电电源以及蒸发腔轴流风机131的供电电源。上述供电电源均可采用三相交流电压0V~500V可调变压电源,通过断路器、接触器后给逆变器供电,经逆变器整流逆变器后给压缩机及风机提供电源,根据设计所需调整逆变器输出频率,控制压缩机及风机达到所需要的输出功率。示例性地,控制回路电源用于向第一测量装置以及第二测量装置供电,可采用直流100V的电源、交流100V的电源或者直流24V的电源作为输入电源。
最后应说明的是:以上实施方式仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施方式对本发明已经进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施方式技术方案的范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不 必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (10)

  1. 一种空调机组试验装置,其特征在于,包括冷凝腔循环模拟系统、蒸发腔循环模拟系统以及测量控制系统;
    所述冷凝腔循环模拟系统包括冷凝腔轴流风机、可调式冷凝箱体、可调式冷凝器以及压缩机;所述冷凝腔轴流风机的出风口通过第一进风管道与所述可调式冷凝箱体的进风口连通,所述可调式冷凝箱体的出风口连接有第一出风管道;所述可调式冷凝器设置于所述可调式冷凝箱体内;
    所述蒸发腔循环模拟系统包括蒸发腔轴流风机、可调式蒸发箱体以及可调式蒸发器;所述蒸发腔轴流风机的出风口通过第二进风管道与所述可调式蒸发箱体的进风口连通,所述可调式蒸发箱体的出风口连接有第二出风管道;所述可调式蒸发器设置于所述可调式蒸发箱体内;
    所述压缩机的高压端与所述可调式冷凝器连通,所述压缩机的低压端与所述可调式蒸发器连通,所述可调式冷凝器与所述可调式蒸发器通过毛细冷媒管连通,以使冷媒在所述可调式冷凝器与所述可调式蒸发器之间循环;
    所述测量控制系统包括第一测量装置以及第二测量装置,所述第一测量装置连接于所述冷凝腔循环模拟系统内,用于测量所述冷凝腔循环模拟系统内的参数;所述第二测量装置连接于所述蒸发腔循环模拟系统内,用于测量所述蒸发腔循环模拟系统内的参数。
  2. 根据权利要求1所述的空调机组试验装置,其特征在于,所述第一测量装置包括第一毕托管风量测量装置、第二毕托管风量测量装置以及第一温湿度测量装置;所述第一温湿度测量装置设置于所述可调式冷凝箱体并置于所述可调式冷凝器的上风位以及下风位;所述第一毕托管风量测试装置设置于所述第一进风管道内,所述第二毕托管风量测试装置设置于所述第一出风管道内;
    所述第二测量装置包括第三毕托管风量测量装置、第四毕托管风量测量装置以及第二温湿度测量装置;所述第二温湿度测量装置设置于所述可调式蒸发箱体并置于所述可调式蒸发器的上风位以及下风位;所述第三毕托管风量测试装置设置于所述第二进风管道内,所述第四毕托管风量测试装置设置于所述第二出风管道内。
  3. 根据权利要求2所述的空调机组试验装置,其特征在于,所述冷凝腔循环模拟系统还包括第一整流格栅,所述第一整流格栅设置于所述第一进风 管道内,用于使流经所述第一进风管道内的风经过所述第一整流格栅进行均流;所述蒸发腔循环模拟系统还包括第二整流格栅,所述第二整流格栅设置于所述第二进风管道内,用于使流经所述第二进风管道内的风经过所述第二整流格栅进行均流。
  4. 根据权利要求3所述的空调机组试验装置,其特征在于,所述冷凝腔循环模拟系统还包括第一整流金属网,所述第一整流金属网设置于所述第一进风管道内,且置于所述第一整流格栅的下风位,用于使流经所述第一整流金属网内的风经过所述第一整流金属网进行均流;
    所述蒸发腔循环模拟系统还包括第二整流金属网,所述第二整流金属网设置于所述第二进风管道内,且置于所述第二整流格栅的下风位,用于使流经所述第二整流金属网内的风经过所述第二整流金属网进行均流。
  5. 根据权利要求4所述的空调机组试验装置,其特征在于,所述第一毕托管风量测试装置设置于所述第一进风管道内,并置于所述第一整流金属网的下风位;所述第三毕托管风量测试装置设置于所述第二进风管道内,并置于所述第二整流金属网的下风位。
  6. 根据权利要求1至5中任一项所述的空调机组试验装置,其特征在于,所述第一进风管道与所述冷凝腔轴流风机出口连接处设置有第一变径连接管;所述第一进风管道与所述第一变径连接管通过第一软质管连通;
    所述第二进风管道与所述蒸发腔轴流风机的出风口的连接处设置有第二变径连接管;所述第二进风管道与所述第二变径连接管通过第二软质管连通。
  7. 根据权利要求1至5中任一项所述的空调机组试验装置,其特征在于,所述冷凝腔轴流风机设置有第一变频器,用于改变所述冷凝腔轴流风机的频率;
    所述蒸发腔轴流风机设置有第二变频器,用于改变所述蒸发腔轴流风机的频率。
  8. 根据权利要求1至5中任一项所述的空调机组试验装置,其特征在于,所述可调式冷凝箱体的两端均设置有第三变径连接管以及第三软质管;所述可调式冷凝箱体的两端依次通过所述第三变径连接管以及所述第三软质管与所述第一进风管道以及所述第一出风管道连通;
    所述可调式蒸发箱体的两端均设置有第四变径连接管以及第四软质管;所述可调式蒸发箱体的两端依次通过所述第四变径连接管以及所述第四软质 管与所述第二进风管道以及所述第二出风管道连通;和/或,
    所述冷凝腔循环模拟系统还包括第一风量调整板,所述第一风量调整板设置于所述第一出风管道的出风口;所述蒸发腔循环模拟系统还包括第二风量调整板,所述第二风量调整板设置于所述第二出风管道的出风口;和/或,
    所述冷凝腔循环模拟系统还包括第一滑轮板以及第二滑轮板,所述冷凝腔轴流风机通过第一风机支座连接于所述第一滑轮板上,所述第一进风管道通过第一进风管支架连接于所述第一滑轮板上,所述可调式冷凝箱体通过第一底座连接于所述第二滑轮板上,所述第一出风管道通过第一出风管支架连接于所述第二滑轮板上;
    所述蒸发腔循环模拟系统还包括第三滑轮板、第四滑轮板、第二进风管支架以及第二出风管支架,所述蒸发腔轴流风机通过第二风机支座连接于所述第三滑轮板;所述可调式蒸发箱体通过第二底座连接于所述第四滑轮板;所述第二进风管支架用于支撑所述第二进风管管道,所述第二出风管支架用于支撑所述第二出风管道;和/或,
    所述空调机组试验装置还包括电源系统,所述电源系统用于向所述冷凝腔循环模拟系统、所述蒸发腔循环模拟系统以及所述测量控制系统供电。
  9. 根据权利要求1至5中任一项所述的空调机组试验装置,其特征在于,所述可调式冷凝器包括多组排列设置的冷凝组件,所述冷凝组件沿着所述可调式冷凝箱体内腔的径向方向设置,每组所述冷凝组件设置有独立的开关;
    所述可调式蒸发器包括多组排列设置的蒸发组件,所述蒸发组件沿着所述可调式蒸发箱体内腔的径向方向设置,每组所述蒸发组件设置有独立的开关。
  10. 根据权利要求9所述的空调机组试验装置,其特征在于,所述可调式冷凝器还包括用于遮挡所述冷凝组件的第一挡板,所述第一挡板与所述冷凝组件可拆卸地连接,用于遮挡关闭的所述冷凝组件;所述可调式蒸发器还包括用于遮挡所述蒸发组件的第二挡板,所述第二挡板与所述蒸发组件可拆卸地连接,用于遮挡关闭的所述蒸发组件。
PCT/CN2021/143545 2021-11-04 2021-12-31 空调机组试验装置 WO2023077656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111300389.8 2021-11-04
CN202111300389.8A CN116067684A (zh) 2021-11-04 2021-11-04 空调机组试验装置

Publications (1)

Publication Number Publication Date
WO2023077656A1 true WO2023077656A1 (zh) 2023-05-11

Family

ID=86179184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143545 WO2023077656A1 (zh) 2021-11-04 2021-12-31 空调机组试验装置

Country Status (2)

Country Link
CN (1) CN116067684A (zh)
WO (1) WO2023077656A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169966A (ja) * 2002-11-19 2004-06-17 Matsushita Electric Ind Co Ltd 空気調和機の試験装置
CN103063459A (zh) * 2012-12-30 2013-04-24 南方英特空调有限公司 整车空调系统模拟试验装置
CN203083830U (zh) * 2012-12-30 2013-07-24 南方英特空调有限公司 整车空调系统模拟试验装置
CN106871391A (zh) * 2017-04-26 2017-06-20 上海科凌能源科技有限公司 基于有限测点的空调系统性能在线检测方法
CN206740408U (zh) * 2017-03-31 2017-12-12 上海佐竹冷热控制技术有限公司 汽车空调系统能力测试装置
CN210487293U (zh) * 2019-11-13 2020-05-08 苏州英维克温控技术有限公司 一种焓差实验室
CN111965470A (zh) * 2020-09-14 2020-11-20 珠海格力电器股份有限公司 可移动式多功能实验室及空调实验室

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169966A (ja) * 2002-11-19 2004-06-17 Matsushita Electric Ind Co Ltd 空気調和機の試験装置
CN103063459A (zh) * 2012-12-30 2013-04-24 南方英特空调有限公司 整车空调系统模拟试验装置
CN203083830U (zh) * 2012-12-30 2013-07-24 南方英特空调有限公司 整车空调系统模拟试验装置
CN206740408U (zh) * 2017-03-31 2017-12-12 上海佐竹冷热控制技术有限公司 汽车空调系统能力测试装置
CN106871391A (zh) * 2017-04-26 2017-06-20 上海科凌能源科技有限公司 基于有限测点的空调系统性能在线检测方法
CN210487293U (zh) * 2019-11-13 2020-05-08 苏州英维克温控技术有限公司 一种焓差实验室
CN111965470A (zh) * 2020-09-14 2020-11-20 珠海格力电器股份有限公司 可移动式多功能实验室及空调实验室

Also Published As

Publication number Publication date
CN116067684A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN106091264B (zh) 空调器出风的控制方法和空调器
CN105115738B (zh) 顶置式空调系统的性能测试系统及测试方法
CN203758765U (zh) 制冷与空调系统性能测试装置
CN107559954B (zh) 壁挂式空调室内机及其导风板安装位置的选择方法
CN103063457A (zh) 整车空调系统模拟试验方法
CN106885326A (zh) 一种动力式热管背板空调系统及其控制方法
CN105938058A (zh) 一种复合测量车载空调及电池热管理性能的焓差试验装置
JP3855917B2 (ja) 空気調和機の試験装置
CN103063459A (zh) 整车空调系统模拟试验装置
CN208275419U (zh) 一种新型恒温恒湿箱
CN104062144B (zh) 全自动汽车空调箱线性试验台
CN103217310B (zh) 一种食品冷柜性能测试装置
CN203083830U (zh) 整车空调系统模拟试验装置
WO2023077656A1 (zh) 空调机组试验装置
CN212159087U (zh) 混动汽车热泵空调测试系统
CN204988748U (zh) 顶置式空调系统的性能测试系统
CN108543551A (zh) 一种新型恒温恒湿箱
CN203572666U (zh) 一种冷链冷藏设备试验系统
CN111562128A (zh) 汽车热泵空调测试系统及其测试方法
CN109946098A (zh) 一种闭式带中间冷媒的结霜工况下表面冷却器性能试验台
CN107436017B (zh) 移动式空调制冷量测试装置和测试方法
CN209432400U (zh) 简易型汽车空调出风温度均匀性、风量测试设备
CN109060340A (zh) 一种高精度空调性能测试的热平衡室
CN111043698B (zh) 模块化新风预处理设备
CN108361887A (zh) 一种医疗设备用微通道热管tec半导体空调及其性能测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963162

Country of ref document: EP

Kind code of ref document: A1