WO2023077589A1 - 矿井定位机器人及定位方法 - Google Patents

矿井定位机器人及定位方法 Download PDF

Info

Publication number
WO2023077589A1
WO2023077589A1 PCT/CN2021/134675 CN2021134675W WO2023077589A1 WO 2023077589 A1 WO2023077589 A1 WO 2023077589A1 CN 2021134675 W CN2021134675 W CN 2021134675W WO 2023077589 A1 WO2023077589 A1 WO 2023077589A1
Authority
WO
WIPO (PCT)
Prior art keywords
total station
automatic total
robot
prism
mine
Prior art date
Application number
PCT/CN2021/134675
Other languages
English (en)
French (fr)
Inventor
张婷
田原
陈宁
索艳春
李涛
常映辉
董孟阳
贾曲
冀鹏飞
郭皇煌
李小燕
袁晓明
Original Assignee
中国煤炭科工集团太原研究院有限公司
山西天地煤机装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111301811.1A external-priority patent/CN114199225A/zh
Priority claimed from CN202111301813.0A external-priority patent/CN114111759A/zh
Application filed by 中国煤炭科工集团太原研究院有限公司, 山西天地煤机装备有限公司 filed Critical 中国煤炭科工集团太原研究院有限公司
Publication of WO2023077589A1 publication Critical patent/WO2023077589A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation

Definitions

  • the present application relates to the technical field of mine positioning, in particular to a mine positioning robot and a positioning method.
  • coal mines At present, the intelligent construction of coal mines is the long-term development trend and goal of coal mines.
  • the realization of automatic operation, remote control and intelligent mining of coal mine production is inseparable from the integration and support of various technical means.
  • Mine positioning technology as a basic common technology, is crucial to the intelligent construction of coal mines. With accurate location information as the basis, it is possible to locate and control underground equipment, vehicles, and personnel, realize the integration of underground location information, and realize the digitization of geographic information.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the first purpose of this application is to propose a mine positioning robot, which can realize flexible and precise positioning on the basis of meeting the special working environment requirements underground.
  • the second purpose of the present application is to propose a positioning method.
  • a mine positioning robot including: a robot body and an automatic total station arranged on the robot body, and the robot body can move freely in the roadway with the measured target Moving, the measured target is provided with a plurality of target prisms; the automatic total station is used to: measure the target prism and the A first distance between the automatic total stations; determining the position of the measured target according to the position of the automatic total stations and a plurality of the first distances.
  • the mine positioning robot proposed in the embodiment of the present application includes: a robot body and an automatic total station arranged on the robot body.
  • the robot body can move freely in the roadway with the measured target, and a plurality of target prisms are arranged on the measured target.
  • the automatic total station measures the first distance between the target prism and the automatic total station, and determines the measured object according to the position of the automatic total station and multiple first distances The location of the target.
  • the robot body is free to move along the track at the top of the roadway.
  • the robot body is arranged on a first vehicle body, and the first vehicle body can drive the robot body to move freely in the roadway.
  • the mine wall behind the mine positioning robot is provided with a plurality of rear-view circular prisms with known positions, and the rear-view circular prisms can move with the movement of the robot body;
  • the automatic The total station is specifically used for: measuring the second distance between the rear-view circular prism and the automatic total station when the automatic total station is aiming at the rear-view circular prism;
  • the position of the rearview circular prism and the plurality of second distances determine the position of the automatic total station.
  • the mine positioning robot further includes: a second car body, a third car body, a first 360-degree prism arranged on the second car body, and a first 360-degree prism arranged on the third car body
  • the second 360-degree prism on the top, the second car body and the third car body can move freely in the roadway;
  • the automatic total station is specifically used for: In the case of the first 360-degree prism and the second 360-degree prism, measure the third distance between the first 360-degree prism and the total station, and measure the third distance between the second 360-degree prism and the total station.
  • the fourth distance between the station instruments, and the angle between the line between the first 360-degree prism and the automatic total station and the line between the second 360-degree prism and the automatic total station Determine the position of the automatic total station according to the position of the first 360-degree prism, the position of the second 360-degree prism, the second distance, the third distance and the included angle.
  • the mine positioning robot further includes: a leveling mechanism arranged on the robot body and below the automatic total station; the leveling mechanism is used for: When the attitude change exceeds the self-compensation range, the attitude of the automatic total station is adjusted so that the automatic total station is leveled to a relatively flat state.
  • the mine positioning robot further includes: an inertial navigation unit arranged on the robot body; the inertial navigation unit is used to: detect the attitude of the automatic total station, and When the attitude change of the automatic total station exceeds the self-compensation range, the action of the safety mechanism is triggered.
  • the mine positioning robot further includes: a power mechanism arranged on the robot body; the power mechanism is used to provide power for the movement of the mine positioning robot.
  • the mine positioning robot further includes: an emergency braking device arranged on the robot body; the emergency braking device is used for: controlling the emergency braking of the robot body.
  • some embodiments of the present application propose a positioning method, including: acquiring the position of the automatic total station in the mine positioning robot, wherein the mine positioning robot includes a robot body and a robot body arranged on the robot body The automatic total station, the robot body can move freely in the roadway with the measured target, and a plurality of target prisms are arranged on the measured target; when the target prism is kept in communication with the automatic total station In the case of viewing, measure a first distance between the target prism and the automatic total station; determine the position of the measured target according to the position of the automatic total station and a plurality of the first distances.
  • the positioning method proposed in the embodiment of the present application obtains the position of the automatic total station in the mine positioning robot, wherein the mine positioning robot includes a robot body and an automatic total station arranged on the robot body, and the robot body can follow the measured target in the roadway There are multiple target prisms set on the target to be measured. Under the condition that the target prism and the automatic total station keep in sight, the first distance between the target prism and the automatic total station is measured. According to the automatic total station The position and the plurality of first distances determine the position of the measured target.
  • the application can realize flexible and accurate positioning on the basis of satisfying the special working environment requirements of the underground.
  • Fig. 1 is a schematic structural diagram of a mine positioning robot according to an exemplary embodiment of the present application
  • Fig. 2 is a schematic diagram of a positioning scene of a mine positioning robot according to an exemplary embodiment of the present application
  • Fig. 3 is a positioning schematic diagram of a mine positioning robot according to an exemplary embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a second car body in a mine positioning robot according to an exemplary embodiment of the present application
  • Fig. 5 is a schematic structural diagram of a third car body in a mine positioning robot according to an exemplary embodiment of the present application.
  • Fig. 6 is a schematic diagram of a positioning scene of a mine positioning robot according to another exemplary embodiment of the present application.
  • Fig. 7 is a positioning principle diagram of a mine positioning robot according to another exemplary embodiment of the present application.
  • Fig. 8 is a schematic flowchart of a positioning method according to an exemplary embodiment of the present application.
  • Fig. 1 is a schematic structural view of a mine positioning robot according to an exemplary embodiment of the present application.
  • the mine positioning robot 10 of the embodiment of the present application may include: a robot body 101 and a The automatic total station instrument 102 .
  • the robot body 101 can move freely in the tunnel along with the measured object, that is, freely move and change stations with the movement of the measured object, so as to realize positioning in the whole mine.
  • the measured target can be mining equipment, auxiliary transport vehicles or other key detection equipment.
  • the robot body 101 can move freely along the rail at the top of the roadway, so as to avoid the limitation of the width of the roadway, not affect the normal operation of mining equipment and other mine operating equipment, and avoid interference and occlusion of other equipment during positioning.
  • the robot body 101 can also be arranged on the first car body, and the first car body drives the robot body 101 to move freely in the roadway, so that the robot body 101 carries the automatic total station 102 to realize positioning in different ranges in a step-by-step manner. , and then realize the precise positioning of the measured target in the whole mine.
  • the first car body in order to reduce the impact on the normal operation of mining equipment, auxiliary transport vehicles and other mine operating equipment, can be controlled by equipment such as an industrial computer to stay on the branch road when the automatic total station 102 is not measuring, Enter the main lane when you need to measure.
  • the measured target is provided with a plurality of target prisms
  • the automatic total station 102 can determine the position of the measured target by aiming at the target prism: the automatic total station 102 can measure the position of the target prism under the condition of keeping a clear view with the target prism.
  • the first distance from the automatic total station 102 according to the position of the automatic total station 102 and multiple first distances to determine the position of the measured target, so as to complete the positioning operation in the mine, the automatic total station 102 is not affected by the coal mine Dust, visibility, coal wall absorption and other harsh environmental influences can meet high-precision positioning with strong reliability and adaptability.
  • the automatic total station 102 when the measured target exceeds the visual range of the automatic total station 102 or the line of sight of the automatic total station 102 is blocked, the automatic total station 102 needs to move to a new position (change station) to complete the subsequent positioning, which can be
  • the robot body 101 moves along the top track of the roadway, or the robot body is arranged on the first car body, and the first car body drives the robot body 101 to move in the roadway.
  • it is necessary to determine the position of the automatic total station 102 so that the automatic total station 102 can measure the first distance from the target prism according to The position of the self and multiple first distances determine the position of the measured target.
  • the position of the automatic total station 102 can be determined in the following two ways:
  • a plurality of rear-view circular prisms with known positions are arranged on the mine wall behind the mine positioning robot 10 , wherein the rear-view circular prisms can move with the movement of the robot body 101 .
  • the second distance between the backsight circular prism and the automatic total station 102 is measured, and according to the positions of the multiple backsight circular prisms and the multiple backsight circles The multiple second distances corresponding to the prisms determine the position of the automatic total station 102 .
  • FIG. 2 is a schematic diagram of a positioning scene of a mine positioning robot according to an exemplary embodiment of the present application.
  • Three backsight circular prisms 30 with known positions are arranged on the mine wall behind the mine robot.
  • the position of the automatic total station 102 can be determined according to the position of the rearview circular prism 30 according to the positioning principle diagram shown in FIG.
  • the automatic total station (position T(X T , Y T )) automatically searches and sights the position
  • the second distance L TA between the rearsight circular prism at position A and the automatic total station is measured;
  • the automatic total station is aimed at the rearsight circular prism at position B, Measure the second distance L TB between the backsight circular prism at position B and the automatic total station;
  • the automatic total station sights the backsight circular prism at position C, measure the backsight circle at position C
  • the plane coordinate system XOY can be established through the above three different second distances L TA , L TB , L TC , so that the following equation can be obtained:
  • the coordinate T of the automatic total station (position T) can be determined based on any two equations above (X T , Y T ), that is, three coordinate values T1 (X T1 , Y T1 ), T2 (X T2 , Y T2 ) and T3 (X T3 , Y T3 ) are obtained.
  • T1, T2 and T3 the coordinate mean value can be calculated to reduce measurement errors and obtain more accurate position coordinates of the automatic total station.
  • the automatic total station 102 for determining the position is in the situation of keeping a clear view with a plurality of target prisms 401 on the measured target 40, and measures the first distance between the target prism 401 and the automatic total station 102 , determine the position of the measured target 40 according to the position of the automatic total station 102 and a plurality of first distances, thus, the first positioning of the measured target 40 by the automatic total station 102, and the movement of the measured target 40 as the measured target 40 moves
  • the above-mentioned second distance calculation can be performed based on the coordinates of the backsight circular prism 30 whose positions are known at this time, and the position of the automatic total station 102 after the position movement is determined according to the plurality of second distances.
  • the position of the backsight circular prism can be determined in the following manner: measure the precise positioning coordinates of the wellhead on the mine, and use the coordinates to correspond the known coordinate positions on the mine to the underground, so as to determine multiple backsight circles
  • the initial position of the prism is used to determine the initial position of the automatic total station 102; in the case of needing to move and change stations, the backsight circular prism moves before the automatic total station 102, and the automatic total station 102 is in the case of not moving Sight the backsight circular prisms, determine the distance between each backsight circular prism and the automatic total station 102, and determine the position of the moved backsight circular prism according to the distance and the position of the automatic total station 102. Therefore, in response to the automatic total station 102 moving and changing stations, the position of the moved automatic total station 102 can be determined according to the positions of multiple known rearview circular prisms, and a station change of the automatic total station can be completed.
  • the mine positioning robot 10 may also include: a second car body, a third car body, a first 360-degree prism arranged on the second car body, and a first 360-degree prism arranged on the third car body Two 360 degree prisms.
  • a column can be set on the bottom plate of the second car body 103, and the first 360 degree prism 104 is installed on the top of the column; as shown in Figure 5, on the third car body 105 A column is set on the bottom plate of the column, and the second 360-degree prism 106 is installed on the top of the column, so that the automatic total station 102 can aim at the first 360-degree prism 104 and the second 360-degree prism 106, and the automatic total station 102 can be determined by resection.
  • the location of the station meter 102 is the location of the station meter 102 .
  • automatic total station 102 sights first 360 degree prism 104 and second 360 degree prism 106, measure the third distance between first 360 degree prism 104 and automatic total station 102 and second 360 degree prism 106 and the fourth distance between the automatic total station 102, and the clip between the connection line between the first 360 degree prism 104 and the automatic total station 102 and the connection between the second 360 degree prism 106 and the automatic total station 102 Angle ⁇ .
  • the position of the first 360-degree prism 104 determines the position of the automatic total station 102, so that the automatic total station 102 can be determined at this time
  • the position of the measured target within the visible range of the automatic total station 102 can be measured based on the positioning reference.
  • the second car body 103 and the third car body 105 can move freely in the roadway so that after the automatic total station 102 changes stations, it can still be determined by the first 360-degree prism 104 and the second 360-degree prism 106. The position of the automatic total station 102 .
  • the precise positioning coordinates of the wellhead are measured on the mine, and the known coordinate positions on the mine are corresponding to the underground through the coordinates, so as to establish two known points C and D as the second
  • the position of the automatic total station 102 is determined according to the position of the first 360-degree prism 104 , the position of the second 360-degree prism 106 , and the measured third distance, fourth distance and included angle ⁇ .
  • Fig. 6 is a schematic diagram of a positioning scene of a mine positioning robot according to another exemplary embodiment of the present application.
  • the robot body 101 is arranged on the first car body 107, and the first car body 107 carries the robot
  • the automatic total station 102 on the main body 101 moves in the roadway
  • the second vehicle body 103 and the third vehicle body 105 are arranged behind the first vehicle body 107 .
  • the embodiment of the present application can use the first 360-degree prism 104 arranged on the second car body 103 and the second 360-degree prism 106 arranged on the third car body 105 according to another positioning principle diagram shown in FIG. 7
  • the position of the automated total station 102 is determined.
  • the second vehicle body 103 i.e. the first 360-degree prism 104 is placed at a known point C (X C , Y C ), and the third vehicle body 105 (i.e. the second 360-degree prism 106) is placed at The point D (X D , Y D ) is known, and the automatic total station 102 (the robot body 101 or the first car body 107 ) is set at the unknown point Q (X Q , Y Q ).
  • the automatic total station 102 automatically searches and collimates the first 360-degree prism 104 and the second 360-degree prism 106 to measure and obtain the first distance L CQ between the automatic total station 102 station Q and the known point C, and Set the second distance L DQ between the point Q and the known point D, and the angle ⁇ Q between the two straight lines QC and QD. According to the coordinates of the known point C and the known point D, the distance between the two points LCD, the angle ⁇ C between CQ and CD and the angle ⁇ D between DQ and DC can be obtained.
  • the plane coordinate system XOY can be established, then:
  • the coordinates Q(X Q , Y Q ) of the setting point Q of the automatic total station 102 can be obtained through Expression 1 and Expression 2.
  • the automatic total station 102 for determining the position completes the positioning of the measured target 40 under the condition of maintaining a common view with a plurality of target prisms 401 on the measured target 40, thus, in the automatic total station
  • the instrument 102 locates the measured target 40 for the first time or moves and changes stations as the measured target 40 moves, the above-mentioned third distance, The calculation of the fourth distance and included angle is used to determine the position of the automatic total station 102 after moving.
  • the second vehicle body In response to the automatic total station 102 moving again and changing stations, the second vehicle body is moved to the position C' to fix, and the third vehicle body is moved to the position D' to be fixed, and the automatic total station 102 sights the second vehicle body
  • the first 360-degree prism on the vehicle body and the second 360-degree prism on the third vehicle body determine the position coordinates of the first 360-degree prism and the second 360-degree prism
  • the automatic total station 102 records the first 360-degree prism and the second 360-degree prism
  • the current position coordinates of the degree prism that is, the coordinates of position C ' and position D '
  • position C ' and position D ' with position C ' and position D ' as the new rear intersection point
  • the positioning principle of the automatic total station is to perform resection through the first 360-degree prism at position C' and the second 360-degree prism at position D' to determine the new coordinate position of the automatic total station 102 after moving and changing stations, so as to complete
  • the mine positioning robot 10 may also include: Anping organization 108;
  • the safety mechanism 108 is arranged on the robot body 101 and is located under the automatic total station 102.
  • the posture of the mine positioning robot 10 may change. , thus causing the posture of the automatic total station 102 to change.
  • the safety mechanism 108 adjusts the posture of the automatic total station 102 so that the automatic total station 102 is leveled to a relatively flat state.
  • a folded plate 109 is provided on the robot body 101 and below the leveling mechanism 108 , and the leveling mechanism 108 is installed on the raised folded plate 109 to ensure the maximum visibility of the automatic total station 102 .
  • a base may also be provided on the first vehicle body and below the automatic total station, and a folded plate may be provided under the base to ensure the maximum range of visibility of the automatic total station.
  • the mine positioning robot 101 of the embodiment of the present application may further include: an inertial navigation unit 1010;
  • the inertial navigation unit 1010 is arranged on the robot body 101, and can be used to detect the attitude of the automatic total station 102, such as: heading angle, pitch angle and roll angle, etc., and when the attitude change of the automatic total station 102 exceeds the self-compensation In the case of a range, the action of the safety mechanism 109 is triggered to adjust the posture of the automatic total station 102 .
  • the inertial navigation unit 1010 compares the angle corresponding to the attitude of the automatic total station 102 before the movement with the angle corresponding to the attitude of the automatic total station 102 after the movement, and responds to the difference between the two attitude angles If the self-compensation range of the automatic total station 102 is exceeded, the leveling mechanism 109 is triggered to level the automatic total station 102 .
  • the mine positioning robot 101 of the embodiment of the present application may further include: a power mechanism 1011;
  • the power mechanism 1011 is arranged on the robot body 101 to provide power for the movement of the mine robot 10 .
  • the mine positioning robot 101 of the embodiment of the present application may further include: an explosion-proof camera 1012;
  • the explosion-proof camera 1012 is arranged on the robot body 101, and can be used to collect the environmental information around the mine positioning robot 101, and output the environmental video image around the mine positioning robot 101, for example, upload to the remote interactive terminal so as to mine the positioning robot 101. security monitoring.
  • the mine positioning robot 10 of the embodiment of the present application may further include: an emergency braking device;
  • the emergency braking device is arranged on the robot body 101 for controlling the emergency braking of the robot body 101 .
  • the mine positioning robot 101 of the embodiment of the present application may also include: a laser radar;
  • the laser radar is set on the robot body 101, which can be used to detect the obstacle information in front of the robot body 101, and output early warning information and/or trigger the action of the emergency braking device when there is an obstacle approaching within the preset distance.
  • the preset distance can be set as required, which is not limited in this application.
  • the mine positioning robot proposed in the embodiment of the present application includes: a robot body and an automatic total station arranged on the robot body.
  • the robot body can move freely in the roadway with the measured target, and a plurality of target prisms are arranged on the measured target.
  • the automatic total station is used to: measure the first distance between the target prism and the automatic total station under the condition that the target prism and the automatic total station are in line of sight, according to the position of the automatic total station and multiple first distances Determine the position of the measured object.
  • the application can realize flexible and accurate positioning on the basis of satisfying the special working environment requirements of the underground.
  • the embodiment of the present application also proposes a positioning method, which can be applied to the above-mentioned mine positioning robot, so as to realize flexible and precise positioning of the measured target.
  • Fig. 8 is a schematic flowchart of a positioning method according to an exemplary embodiment of the present application.
  • the positioning method proposed in the embodiment of the present application may specifically include the following steps:
  • the mine positioning robot includes a robot body and an automatic total station arranged on the robot body, the robot body can move freely in the roadway with the measured target, and the measured target A plurality of target prisms are arranged on it.
  • S803. Determine the position of the measured target according to the position of the automatic total station and multiple first distances.
  • the positioning method proposed in the embodiment of the present application obtains the position of the automatic total station in the mine positioning robot, wherein the mine positioning robot includes a robot body and an automatic total station arranged on the robot body, and the robot body can follow the measured target in the roadway There are multiple target prisms set on the target to be measured. Under the condition that the target prism and the automatic total station keep in sight, the first distance between the target prism and the automatic total station is measured. According to the automatic total station The position and the plurality of first distances determine the position of the measured target.
  • the application can realize flexible and accurate positioning on the basis of satisfying the special working environment requirements of the underground.
  • first and second are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Abstract

本申请提出了一种矿井定位机器人及定位方法,其中,矿井定位机器人包括:机器人本体和设置在机器人本体上的自动全站仪,机器人本体可随被测目标在巷道内自由移动,被测目标上设置有多个目标棱镜,自动全站仪用于:在目标棱镜与自动全站仪保持通视的情况下,测量目标棱镜与自动全站仪之间的第一距离,根据自动全站仪的位置和多个第一距离确定被测目标的位置。

Description

矿井定位机器人及定位方法
相关申请的交叉引用
本申请要求于2021年11月4日提交的中国专利申请号“202111301811.1”和“202111301813.0”的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及矿井定位技术领域,尤其涉及一种矿井定位机器人及定位方法。
背景技术
目前,煤矿智能化建设是煤矿长期发展的趋势和目标,实现煤矿生产的自动操作、远程控制、智能开采离不开多种技术手段的融合和支撑。矿井定位技术,作为一项基础共性技术,对煤矿智能化建设至关重要。有精确的位置信息作为基础,才能对井下装备、车辆和人员等进行定位和控制,实现井下位置信息的整合,实现地理信息的数字化。
随着煤矿智能化建设的不断发展对矿井定位的灵活性和准确性的要求也越来越高。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种矿井定位机器人,在满足井下特殊的工作环境要求的基础上,实现灵活、精准定位。
本申请的第二个目的在于提出一种定位方法。
为达上述目的,本申请的一些实施例提出了一种矿井定位机器人,包括:机器人本体和设置在所述机器人本体上的自动全站仪,所述机器人本体可随被测目标在巷道内自由移动,所述被测目标上设置有多个目标棱镜;所述自动全站仪用于:在所述目标棱镜与所述自动全站仪保持通视的情况下,测量所述目标棱镜与所述自动全站仪之间的第一距离;根据所述自动全站仪的位置和多个所述第一距离确定所述被测目标的位置。
本申请实施例提出的矿井定位机器人,包括:机器人本体和设置在机器人本体上的自动全站仪,机器人本体可随被测目标在巷道内自由移动,被测目标上设置有多个目标棱镜,在目标棱镜与自动全站仪保持通视的情况下,自动全站仪测量目标棱镜与自动全站仪之间的第一距离,根据自动全站仪的位置和多个第一距离确定被测目标的位置。本申请能够在 满足井下特殊的工作环境要求的基础上,实现灵活、精准定位。
根据本申请的一个实施例,所述机器人本体沿巷道顶部轨道自由移动。
根据本申请的一个实施例,所述机器人本体设置在第一车体上,所述第一车体可带动所述机器人本体在巷道内自由移动。
根据本申请的一个实施例,所述矿井定位机器人后方的矿壁上设置有多个位置已知的后视圆棱镜,所述后视圆棱镜可随所述机器人本体移动而移动;所述自动全站仪具体用于:在所述自动全站仪照准所述后视圆棱镜的情况下,测量所述后视圆棱镜与所述自动全站仪之间的第二距离;根据多个所述后视圆棱镜的位置和多个所述第二距离,确定所述自动全站仪的位置。
根据本申请的一个实施例,所述矿井定位机器人还包括:第二车体、第三车体、设置在所述第二车体上的第一360度棱镜和设置在所述第三车体上的第二360度棱镜,所述第二车体和所述第三车体可在所述巷道内自由移动;所述自动全站仪具体用于:在所述自动全站仪照准所述第一360度棱镜和所述第二360度棱镜的情况下,测量所述第一360度棱镜与所述全站仪之间的第三距离、所述第二360度棱镜与所述全站仪之间的第四距离,以及所述第一360度棱镜与所述自动全站仪之间连线与所述第二360度棱镜与所述自动全站仪之间连线的夹角;根据所述第一360度棱镜的位置、所述第二360度棱镜的位置、所述第二距离、所述第三距离和所述夹角,确定所述自动全站仪的位置。
根据本申请的一个实施例,所述矿井定位机器人还包括:设置在所述机器人本体上且位于所述自动全站仪下方的安平机构;所述安平机构用于:在所述自动全站仪的姿态变化超过自身补偿范围的情况下,对所述自动全站仪的姿态进行调整,以使所述自动全站仪调平至相对平面状态。
根据本申请的一个实施例,所述矿井定位机器人还包括:设置在所述机器人本体上的惯性导航单元;所述惯性导航单元用于:检测所述自动全站仪的姿态,并在所述自动全站仪的姿态变化超过自身补偿范围的情况下,触发所述安平机构动作。
根据本申请的一个实施例,所述矿井定位机器人还包括:设置在所述机器人本体上的动力机构;所述动力机构用于:为所述矿井定位机器人的移动提供动力。
根据本申请的一个实施例,所述矿井定位机器人还包括:设置在所述机器人本体上的紧急制动装置;所述紧急制动装置用于:控制所述机器人本体紧急制动。
为达上述目的,本申请的一些实施例提出了一种定位方法,包括:获取矿井定位机器人中自动全站仪的位置,其中,所述矿井定位机器人包括机器人本体和设置在所述机器人本体上的所述自动全站仪,所述机器人本体可随被测目标在巷道内自由移动,所述被测目标上设置有多个目标棱镜;在所述目标棱镜与所述自动全站仪保持通视的情况下,测量所 述目标棱镜与所述自动全站仪之间的第一距离;根据所述自动全站仪的位置和多个所述第一距离确定所述被测目标的位置。
本申请实施例提出的定位方法,获取矿井定位机器人中自动全站仪的位置,其中,矿井定位机器人包括机器人本体和设置在机器人本体上的自动全站仪,机器人本体可随被测目标在巷道内自由移动,被测目标上设置有多个目标棱镜,在目标棱镜与自动全站仪保持通视的情况下,测量目标棱镜与自动全站仪之间的第一距离,根据自动全站仪的位置和多个第一距离确定被测目标的位置。本申请能够在满足井下特殊的工作环境要求的基础上,实现灵活、精准定位。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开申请
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据本申请一示例性实施例示出的一种矿井定位机器人的结构示意图;
图2是根据本申请一示例性实施例示出的一种矿井定位机器人的定位场景示意图;
图3是根据本申请一示例性实施例示出的一种矿井定位机器人的定位原理图;
图4是根据本申请一示例性实施例示出的一种矿井定位机器人中第二车体的结构示意图;
图5是根据本申请一示例性实施例示出的一种矿井定位机器人中第三车体的结构示意图;
图6是根据本申请另一示例性实施例示出的一种矿井定位机器人的定位场景示意图;
图7是根据本申请另一示例性实施例示出的一种矿井定位机器人的定位原理图;
图8是根据本申请一示例性实施例示出的一种定位方法的流程示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请。需要说明的是,本申请的所有实施例均可以单独被执行,也可以与其他实施例相结合共同被执行,本申请对此不做限制。
下面结合附图来描述本申请实施例的矿井定位机器人及定位方法。
图1是根据本申请一示例性实施例示出的一种矿井定位机器人的结构示意图,如图1 所示,本申请实施例的矿井定位机器人10可包括:机器人本体101和设置在机器人本体101上的自动全站仪器102。
本申请实施例中,机器人本体101可以随被测目标在巷道内自由移动,即随被测目标的移动而自由移动换站,实现在全矿井范围内的定位。其中,被测目标可以为采掘装备、辅助运输车辆或其他重点检测设备等。
在一些实施例中,机器人本体101可以沿巷道顶部轨道自由移动,以此避免巷道宽度的限制,不影响采掘设备等矿井内作业设备的正常工作,同时避免定位时其他设备的干扰和遮挡。
此外,机器人本体101还可以设置在第一车体上,由第一车体带动机器人本体101在巷道内自由移动,从而使得机器人本体101携带自动全站仪102步进式地实现不同范围的定位,进而在全矿井范围内实现对被测目标的精确定位。在一些实施例中为了减少对采掘装备、辅运车辆等矿井内作业设备正常工作的影响,可以通过工控机等设备控制第一车体在自动全站仪102不测量时在支巷上停留,需要测量时再进入主巷。
其中,被测目标上设置有多个目标棱镜,自动全站仪102可以通过照准目标棱镜确定被测目标的位置:自动全站仪102在与目标棱镜保持通视的情况下,测量目标棱镜与自动全站仪102之间的第一距离,根据自动全站仪102的位置和多个第一距离确定被测目标的位置,从而在矿井下完成定位作业,自动全站仪102不受煤矿粉尘、能见度、煤壁吸收等恶劣环境影响,可满足高精度定位,可靠性、适应性强。
在一些实施例中,当被测目标超出自动全站仪102可视范围或者自动全站仪102视线被遮挡时,需要自动全站仪102移动到新的位置(换站)完成后续定位,可以通过机器人本体101沿巷道顶部轨道移动,或者将机器人本体设置在第一车体上,由第一车体带动机器人本体101在巷道内移动。进一步的,在首次进行被测目标定位或者移动换站的情况下,需要确定自动全站仪102的位置,以使得自动全站仪102通过测量与目标棱镜之间的第一距离,便可以根据自身的位置和多个第一距离确定被测目标的位置,本申请实施例可通过以下两种方式确定自动全站仪102的位置:
作为一种可行的实施方式,本申请实施例在矿井定位机器人10后方的矿壁上设置多个位置已知的后视圆棱镜,其中后视圆棱镜可随机器人本体101移动而移动。
在自动全站仪102照准后视圆棱镜的情况下,测量后视圆棱镜与自动全站仪102之间的第二距离,并根据多个后视圆棱镜的位置和多个后视圆棱镜对应的多个第二距离,确定自动全站仪102的位置。
举例说明,图2是根据本申请一示例性实施例示出的一种矿井定位机器人的定位场景示意图,如图2所示,机器人本体101携带自动全站仪102在巷道内沿轨道20移动,在矿 井机器人后方的矿壁上设置3个位置已知的后视圆棱镜30。本申请实施例可以根据图3所示的定位原理图,根据后视圆棱镜30的位置确定自动全站仪102的位置,如图3所示,3个后视圆棱镜30分别放置在位置A(X A,Y A)、位置B(X B,Y B)和位置C(X C,Y C),自动全站仪(位置T(X T,Y T))通过自动搜索和照准位置A处的后视圆棱镜时,测量出位置A处的后视圆棱镜与自动全站仪之间的第二距离L TA;在自动全站仪照准位置B处的后视圆棱镜时,测量出位置B处的后视圆棱镜与自动全站仪之间的第二距离L TB;在自动全站仪照准位置C处的后视圆棱镜时,测量出位置C处的后视圆棱镜与自动全站仪之间的第二距离L TC。通过上述三个不同的第二距离L TA、L TB、L TC可以建立平面坐标系XOY,从而可以获取以下方程式:
Figure PCTCN2021134675-appb-000001
Figure PCTCN2021134675-appb-000002
Figure PCTCN2021134675-appb-000003
由于A(X A,Y A)、B(X B,Y B)和C(X C,Y C)已知,因此基于上述任意两个方程式可以确定自动全站仪(位置T)的坐标T(X T,Y T),即:获得三个坐标值T1(X T1,Y T1)、T2(X T2,Y T2)和T3(X T3,Y T3)。可以对三个坐标值T1、T2和T3,求取坐标均值,以减少测量误差,得到更准确的自动全站仪的位置坐标。
如图2所示,确定位置的自动全站仪102在与被测目标40上的多个目标棱镜401保持通视的情况下,测量目标棱镜401与自动全站仪102之间的第一距离,根据自动全站仪102的位置和多个第一距离确定被测目标40的位置,由此,在自动全站仪102首次对被测目标40定位,以及随被测目标40移动而移动换站的情况下,都可以基于此时多个位置已知的后视圆棱镜30的坐标进行上述第二距离计算,根据多个第二距离确定位置移动后的自动全站仪102的位置。
在一些实施例中,后视圆棱镜的位置可通过以下方式确定:在矿井上测量井口精确的定位坐标,通过该坐标将矿井上已知的坐标位置对应至井下,从而确定多个后视圆棱镜的初始位置,以此确定自动全站仪102的初始位置;在需要移动换站的情况下,后视圆棱镜先于自动全站仪102移动,自动全站仪102在未移动的情况下照准后视圆棱镜,确定每个后视圆棱镜与自动全站仪102之间的距离,根据该距离和自动全站仪102的位置确定移动后的后视圆棱镜的位置。因此响应于自动全站仪102移动换站,可以根据多个位置已知的后视圆棱镜的位置确定移动后的自动全站仪102的位置,完成自动全站仪的一次换站。
作为另一种可行的实施方式,矿井定位机器人10还可以包括:第二车体、第三车体、设置在第二车体上的第一360度棱镜和设置在第三车体上的第二360度棱镜。
在一些实施例中,如图4所示,可以在第二车体103的底板上设置立柱,将第一360 度棱镜104安装在立柱的顶端;如图5所示,在第三车体105的底板上设置立柱,将第二360度棱镜106安装在立柱的顶端,以便于自动全站仪102照准第一360度棱镜104和第二360度棱镜106,通过后方交会的方式确定自动全站仪102的位置。
在自动全站仪102照准第一360度棱镜104和第二360度棱镜106的情况下,测量第一360度棱镜104与自动全站仪102之间的第三距离和第二360度棱镜106与自动全站仪102之间的第四距离,以及第一360度棱镜104与自动全站仪102之间连线与第二360度棱镜106与自动全站仪102之间连线的夹角α。根据第一360度棱镜104的位置、第二360度棱镜106的位置、第三距离、第四距离和夹角α,确定自动全站仪102的位置,从而可以确定自动全站仪102此时的定位基准,进而可以基于此定位基准,测量在自动全站仪102可视范围内被测目标的位置。
其中,第二车体103和第三车体105可在巷道内自由移动以便于在自动全站仪102换站后仍然能够通过第一360度棱镜104和第二360度棱镜106确定换站后的自动全站仪102的位置。
举例说明,响应于矿井定位机器人的定位任务,在矿井上测量井口精确的定位坐标,通过该坐标将矿井上已知的坐标位置对应至井下,从而建立两个已知点C、D作为第二车体103(即第一360度棱镜104)和第三车体105(即第二360度棱镜106)的起始位置。根据第一360度棱镜104的位置、第二360度棱镜106的位置以及上述测量到的第三距离、第四距离和夹角α确定自动全站仪102的位置。
图6是根据本申请另一示例性实施例示出的一种矿井定位机器人的定位场景示意图,如图6所示,机器人本体101被设置在第一车体107上,第一车体107携带机器人本体101上的自动全站仪102在巷道内移动,在第一车体107的后方设置第二车体103和第三车体105。本申请实施例可以根据图7所示的另一种定位原理图,利用设置在第二车体103上的第一360度棱镜104和设置在第三车体105上的第二360度棱镜106确定自动全站仪102的位置。
如图7所示,第二车体103(即第一360度棱镜104)放置在已知点C(X C,Y C),第三车体105(即第二360度棱镜106)放置在已知点D(X D,Y D),自动全站仪102(机器人本体101或者第一车体107)设置在未知点Q(X Q,Y Q)。自动全站仪102通过自动搜索和照准第一360度棱镜104和第二360度棱镜106,测量得到自动全站仪102设站点Q与已知点C之间的第一距离L CQ,以及设站点Q与已知点D之间的第二距离L DQ,以及QC与QD两直线之间的夹角α Q。根据已知点C和已知点D的坐标可得到两点间的距离L CD、CQ和CD的夹角α C和DQ和DC的夹角α D
基于上述位置信息,可建立平面坐标系XOY,则有:
向量一:
Figure PCTCN2021134675-appb-000004
向量二:
Figure PCTCN2021134675-appb-000005
向量三:
Figure PCTCN2021134675-appb-000006
向量四:
Figure PCTCN2021134675-appb-000007
基于向量一和向量二可得:
表达式一:
Figure PCTCN2021134675-appb-000008
基于向量三和向量四可得:
表达式二:
Figure PCTCN2021134675-appb-000009
通过表达式一和表达式二可以得到自动全站仪102的设站点Q的坐标Q(X Q,Y Q)。如图6所示,确定位置的自动全站仪102在与被测目标40上的多个目标棱镜401保持通视的情况下,完成对被测目标40的定位,由此,在自动全站仪102首次对被测目标40定位或者随被测目标40移动而移动换站的情况下,都可以基于第一360度棱镜104的位置和第二360度棱镜106的位置进行上述第三距离、第四距离和夹角的计算,以此确定移动后的自动全站仪102的位置。
响应于自动全站仪102再次移动换站,将第二车体移动至位置C′处固定,将第三车体移动至位置D′处固定,自动全站仪102通过照准第二车体上的第一360度棱镜和第三车体上的第二360度棱镜确定第一360度棱镜和第二360度棱镜的位置坐标,自动全站仪102记录第一360度棱镜和第二360度棱镜当前的位置坐标(即位置C′和位置D′的坐标),将位置C′和位置D′作为新的后方交会点,自动全站仪102移动换站后,基于图7所示的自动全站仪定位原理,通过位置C′处的第一360度棱镜和位置D′处第二360度棱镜进行后方交会,确定自动全站仪102移动换站后新的坐标位置,以此完成自动全站仪102的一次换站。
进一步的,在上述实施例的基础上,如图1所示,本申请实施例为保证自动全站仪能够在一个高标准的相对平面上实现精准测量,以增强定位的精度,矿井定位机器人10还可以包括:安平机构108;
其中,安平机构108设置在机器人本体101上且位于自动全站仪102下方,响应于矿井定位机器人10随被测目标移动或矿井机器人10周围出现震动,矿井定位机器人10的机身姿态可能发生变化,从而造成自动全站仪102的姿态发生变化,在自动全站仪102的姿态变化超过自身补偿范围的情况下,安平机构108对自动全站仪102的姿态进行调整,以使自动全站仪102调平至相对平面状态。由此,保证自动全站仪102在整个定位过程的高 精度测量,提供被测目标精确的位置信息。
进一步的,在机器人本体101上且安平机构108的下方设置折板109,将安平机构108安装在垫高的折板109上,以保证自动全站仪102最大范围内的通视能力。
在一些实施例中,还可以在第一车体上且位于自动全站仪下方设置底座,在底座下方设置折板,以保证自动全站仪最大范围的通视能力。
进一步的,在上述实施例的基础上,如图1所示,本申请实施例的矿井定位机器人101还可以包括:惯性导航单元1010;
其中,惯性导航单元1010设置在机器人本体101上,可用于检测自动全站仪102的姿态,例如:航向角、俯仰角和横滚角等,并在自动全站仪102的姿态变化超出自身补偿范围的情况下,触发安平机构109动作,对自动全站仪102的姿态进行调整。
例如,响应于矿井定位机器人10的移动,惯性导航单元1010将移动前自动全站仪102姿态对应的角度与移动后自动全站仪102姿态对应的角度进行比较,响应于两次姿态角度差值超过自动全站仪102自身补偿范围,触发安平机构109对自动全站仪102进行调平。
进一步的,在上述实施例的基础上,如图1所示,本申请实施例的矿井定位机器人101还可以包括:动力机构1011;
其中,动力机构1011设置在机器人本体101上,为矿井机器人10的移动提供动力。
进一步的,在上述实施例的基础上,如图1所示,本申请实施例的矿井定位机器人101还可以包括:防爆摄像仪1012;
其中,防爆摄像仪1012设置在机器人本体101上,可用于采集矿井定位机器人101周围的环境信息,并输出矿井定位机器人101周围的环境视频图像,例如上传至远程交互端以便对矿井定位机器人101进行安全监测。
进一步的,在上述实施例的基础上,本申请实施例的矿井定位机器人10还可以包括:紧急制动装置;
其中,紧急制动装置设置在机器人本体101上,用于控制机器人本体101紧急制动。
进一步的,在上述实施例的基础上,本申请实施例的矿井定位机器人101还可以包括:激光雷达;
其中,激光雷达设置在机器人本体101上,可用于检测机器人本体101前方障碍物信息,在预设距离内有障碍物靠近的情况下,输出预警信息和/或触发紧急制动装置动作。此处需要说明的是,预设距离可根据需要设定,本申请不做限定。
本申请实施例提出的矿井定位机器人,包括:机器人本体和设置在机器人本体上的自动全站仪,机器人本体可随被测目标在巷道内自由移动,被测目标上设置有多个目标棱镜,自动全站仪用于:在目标棱镜与自动全站仪保持通视的情况下,测量目标棱镜与自动全站 仪之间的第一距离,根据自动全站仪的位置和多个第一距离确定被测目标的位置。本申请能够在满足井下特殊的工作环境要求的基础上,实现灵活、精准定位。
为了实现上述实施例,本申请实施例还提出一种定位方法,该定位方法可应用于上述矿井定位机器人中,以实现对被测目标的灵活、精准定位。
图8是根据本申请一示例性实施例示出的一种定位方法的流程示意图。
如图8所示,本申请实施例提出的定位方法具体可包括以下步骤:
S801,获取矿井定位机器人中自动全站仪的位置,其中,矿井定位机器人包括机器人本体和设置在机器人本体上的自动全站仪,机器人本体可随被测目标在巷道内自由移动,被测目标上设置有多个目标棱镜。
S802,在目标棱镜与自动全站仪保持通视的情况下,测量目标棱镜与自动全站仪之间的第一距离。
S803,根据自动全站仪的位置和多个第一距离确定被测目标的位置。
需要说明的是,前述对矿井定位机器人实施例的解释说明也适用于该实施例的定位方法,此处不再赘述。
本申请实施例提出的定位方法,获取矿井定位机器人中自动全站仪的位置,其中,矿井定位机器人包括机器人本体和设置在机器人本体上的自动全站仪,机器人本体可随被测目标在巷道内自由移动,被测目标上设置有多个目标棱镜,在目标棱镜与自动全站仪保持通视的情况下,测量目标棱镜与自动全站仪之间的第一距离,根据自动全站仪的位置和多个第一距离确定被测目标的位置。本申请能够在满足井下特殊的工作环境要求的基础上,实现灵活、精准定位。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或 仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种矿井定位机器人,包括:机器人本体和设置在所述机器人本体上的自动全站仪,所述机器人本体可随被测目标在巷道内自由移动,所述被测目标上设置有多个目标棱镜;
    所述自动全站仪用于:
    在所述目标棱镜与所述自动全站仪保持通视的情况下,测量所述目标棱镜与所述自动全站仪之间的第一距离;
    根据所述自动全站仪的位置和多个所述第一距离确定所述被测目标的位置。
  2. 根据权利要求1所述的矿井定位机器人,其中,所述机器人本体沿巷道顶部轨道自由移动。
  3. 根据权利要求1所述的矿井定位机器人,其中,所述机器人本体设置在第一车体上,所述第一车体可带动所述机器人本体在巷道内自由移动。
  4. 根据权利要求1所述的矿井定位机器人,其中,所述矿井定位机器人后方的矿壁上设置有多个位置已知的后视圆棱镜,所述后视圆棱镜可随所述机器人本体移动而移动;所述自动全站仪具体用于:
    在所述自动全站仪照准所述后视圆棱镜的情况下,测量所述后视圆棱镜与所述自动全站仪之间的第二距离;
    根据多个所述后视圆棱镜的位置和多个所述第二距离,确定所述自动全站仪的位置。
  5. 根据权利要求1所述的矿井定位机器人,其中,还包括:第二车体、第三车体、设置在所述第二车体上的第一360度棱镜和设置在所述第三车体上的第二360度棱镜,所述第二车体和所述第三车体可在所述巷道内自由移动;所述自动全站仪具体用于:
    在所述自动全站仪照准所述第一360度棱镜和所述第二360度棱镜的情况下,测量所述第一360度棱镜与所述全站仪之间的第三距离、所述第二360度棱镜与所述全站仪之间的第四距离,以及所述第一360度棱镜与所述自动全站仪之间连线与所述第二360度棱镜与所述自动全站仪之间连线的夹角;
    根据所述第一360度棱镜的位置、所述第二360度棱镜的位置、所述第三距离、所述第四距离和所述夹角,确定所述自动全站仪的位置。
  6. 根据权利要求1所述的矿井定位机器人,其中,还包括:设置在所述机器人本体上且位于所述自动全站仪下方的安平机构;
    所述安平机构用于:在所述自动全站仪的姿态变化超过自身补偿范围的情况下,对所述自动全站仪的姿态进行调整,以使所述自动全站仪调平至相对平面状态。
  7. 根据权利要求6所述的矿井定位机器人,其中,还包括:设置在所述机器人本体上的惯性导航单元;
    所述惯性导航单元用于:检测所述自动全站仪的姿态,并在所述自动全站仪的姿态变化超过自身补偿范围的情况下,触发所述安平机构动作。
  8. 根据权利要求1所述的矿井定位机器人,其中,还包括:设置在所述机器人本体上的动力机构;
    所述动力机构用于:为所述矿井定位机器人的移动提供动力。
  9. 根据权利要求1所述的矿井定位机器人,其中,还包括:设置在所述机器人本体上的紧急制动装置;
    所述紧急制动装置用于:控制所述机器人本体紧急制动。
  10. 一种定位方法,包括:
    获取矿井定位机器人中自动全站仪的位置,其中,所述矿井定位机器人包括机器人本体和设置在所述机器人本体上的所述自动全站仪,所述机器人本体可随被测目标在巷道内自由移动,所述被测目标上设置有多个目标棱镜;
    在所述目标棱镜与所述自动全站仪保持通视的情况下,测量所述目标棱镜与所述自动全站仪之间的第一距离;
    根据所述自动全站仪的位置和多个所述第一距离确定所述被测目标的位置。
PCT/CN2021/134675 2021-11-04 2021-12-01 矿井定位机器人及定位方法 WO2023077589A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111301811.1A CN114199225A (zh) 2021-11-04 2021-11-04 矿井定位机器人及定位方法
CN202111301813.0 2021-11-04
CN202111301811.1 2021-11-04
CN202111301813.0A CN114111759A (zh) 2021-11-04 2021-11-04 矿井定位机器人及定位方法

Publications (1)

Publication Number Publication Date
WO2023077589A1 true WO2023077589A1 (zh) 2023-05-11

Family

ID=86240592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134675 WO2023077589A1 (zh) 2021-11-04 2021-12-01 矿井定位机器人及定位方法

Country Status (1)

Country Link
WO (1) WO2023077589A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140267772A1 (en) * 2013-03-15 2014-09-18 Novatel Inc. Robotic total station with image-based target re-acquisition
CN111093150A (zh) * 2019-12-27 2020-05-01 中国煤炭科工集团太原研究院有限公司 一种井工定位及通信系统
CN111121735A (zh) * 2020-01-03 2020-05-08 中国船舶重工集团公司第七0七研究所 一种隧道、地铁和矿井开挖掘进自主定位定向系统及方法
CN112012759A (zh) * 2020-08-07 2020-12-01 中国煤炭科工集团太原研究院有限公司 一种用于煤矿巷道的掘进装备导航定位系统
CN112066955A (zh) * 2020-08-24 2020-12-11 西安科技大学 井下动态掘进机机身位姿参数测量方法及系统
CN112414394A (zh) * 2020-11-05 2021-02-26 中国铁建重工集团股份有限公司 一种地下巷道掘进装备实时定位系统及方法
CN113252063A (zh) * 2021-05-25 2021-08-13 中国煤炭科工集团太原研究院有限公司 一种基于全站仪的采掘装备进深测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140267772A1 (en) * 2013-03-15 2014-09-18 Novatel Inc. Robotic total station with image-based target re-acquisition
CN111093150A (zh) * 2019-12-27 2020-05-01 中国煤炭科工集团太原研究院有限公司 一种井工定位及通信系统
CN111121735A (zh) * 2020-01-03 2020-05-08 中国船舶重工集团公司第七0七研究所 一种隧道、地铁和矿井开挖掘进自主定位定向系统及方法
CN112012759A (zh) * 2020-08-07 2020-12-01 中国煤炭科工集团太原研究院有限公司 一种用于煤矿巷道的掘进装备导航定位系统
CN112066955A (zh) * 2020-08-24 2020-12-11 西安科技大学 井下动态掘进机机身位姿参数测量方法及系统
CN112414394A (zh) * 2020-11-05 2021-02-26 中国铁建重工集团股份有限公司 一种地下巷道掘进装备实时定位系统及方法
CN113252063A (zh) * 2021-05-25 2021-08-13 中国煤炭科工集团太原研究院有限公司 一种基于全站仪的采掘装备进深测量方法

Similar Documents

Publication Publication Date Title
US9377301B2 (en) Mobile field controller for measurement and remote control
EP3410063B1 (en) Geodetic surveying with correction for instrument tilt
CN101306691B (zh) 一种轨道曲线参数测量装置及方法
CN102470865B (zh) 用于受支持地停泊车辆的设备和方法
CN104380137A (zh) 通过图像辅助的角度确定功能来间接测距的方法和手持测距设备
CN112378390A (zh) 一种综采工作面测量机器人装置和自动测量系统
US10126745B2 (en) System and method for automated aerial system operation
US11814950B2 (en) Drill planning tool for topography characterization, system and associated methods
US20220111841A1 (en) Vehicle controller and method for controlling vehicle
WO2023077589A1 (zh) 矿井定位机器人及定位方法
JPS62293115A (ja) 移動物体の位置姿勢自動測量装置
EP4208763A1 (en) Method of operating a mobile device
CN109341675A (zh) 一种掘进机三维空间定位箱、系统以及定位方法
CN105758411A (zh) 一种基于车载摄像头提升车载gps定位精度的系统和方法
JP3940619B2 (ja) トンネル掘削機の位置計測装置
CN114485614B (zh) 基于双全站仪的采掘设备的导航定位系统及方法
US7272891B2 (en) Automatic plumbing device
JP3854519B2 (ja) 高低差計測システム
US10830906B2 (en) Method of adaptive weighting adjustment positioning
JP3295157B2 (ja) シールド測量方法
CN111654811B (zh) 全息成像装置及方法
JP4268404B2 (ja) 移動体の自己位置計測方法
RU2805584C2 (ru) Инструмент для съемки плана бурения для топографической съемки, система и связанные с ним способы
JPH0611344A (ja) 移動体の位置・姿勢測量方法
JPH04279813A (ja) シールド測量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963096

Country of ref document: EP

Kind code of ref document: A1