WO2023077472A1 - 一种信息更新方法、装置、用户设备、基站及存储介质 - Google Patents

一种信息更新方法、装置、用户设备、基站及存储介质 Download PDF

Info

Publication number
WO2023077472A1
WO2023077472A1 PCT/CN2021/129133 CN2021129133W WO2023077472A1 WO 2023077472 A1 WO2023077472 A1 WO 2023077472A1 CN 2021129133 W CN2021129133 W CN 2021129133W WO 2023077472 A1 WO2023077472 A1 WO 2023077472A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
offset value
time
specific offset
cell
Prior art date
Application number
PCT/CN2021/129133
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/129133 priority Critical patent/WO2023077472A1/zh
Priority to CN202180003399.7A priority patent/CN116406525A/zh
Publication of WO2023077472A1 publication Critical patent/WO2023077472A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information updating method, device, user equipment, base station, and storage medium.
  • UE-specific offsets In satellite communication systems, cell-specific offsets and UE (User Equipment, terminal equipment) specific offsets (UE-specific offsets) are usually introduced to compensate transmission delays.
  • UE User Equipment, terminal equipment
  • the cell-specific offset value is updated as the satellite moves, so the base station usually indicates the updated cell-specific offset value to the UE by sending updated system information to the UE.
  • the distance between each UE in the same cell and the base station is different, so that each UE receives the updated system information sent by the base station at different times. That is, the time at which each UE obtains the updated cell-specific offset value is different. At this time, the base station will enter into an ambiguity period. In the ambiguity period, when the base station communicates with different UEs, the cell-specific offset values used by different UEs are different (that is, the base station does not know the value of the cell-specific offset used by the UE). which cell-specific offset value), will affect the reliability of communication.
  • the information update method, device, user equipment, base station, and storage medium proposed in the present disclosure are used to solve the technical problem that the information update method in the related art tends to affect communication performance.
  • An information update method proposed in an embodiment of the present disclosure is applied to a UE supporting satellite communication, including:
  • the base station for indicating a time offset value and/or a time window, where the time offset value is used to indicate the delayed effective time of the updated cell-specific offset, and the time window is used to indicate The invalid time of the updated cell-specific offset;
  • the information update method proposed by another embodiment of the present disclosure is applied to a base station supporting satellite communication, including:
  • the time offset value is used to indicate the delayed effective time of the updated cell-specific offset
  • the time window is used to indicate that the updated cell-specific offset is invalid time
  • the signal information updating device proposed by the embodiment includes:
  • the receiving module is used to receive the updated cell-specific offset value cell-specific offset sent by the base station;
  • the receiving module is further configured to receive configuration information sent by the base station for indicating a time offset value and/or a time window, where the time offset value is used to indicate the delayed effective time of the updated cell-specific offset , the time window is used to indicate the invalid time of the updated cell-specific offset;
  • An update module configured to use the updated cell-specific offset based on the time offset value and/or time window.
  • the signal information updating device proposed by the embodiment includes:
  • a determining module configured to determine a time offset value and/or a time window, the time offset value is used to indicate the delayed effective time of the updated cell-specific offset, and the time window is used to indicate the updated cell Invalid time of -specific offset;
  • a sending module configured to send configuration information for indicating the time offset value and/or time window to the UE
  • the sending module is further configured to send the updated cell-specific offset to the UE.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the above embodiment of another aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in another embodiment.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by another embodiment is implemented.
  • the UE will receive the time offset value and/or time window sent by the base station.
  • Configuration information wherein, the time offset value is used to indicate the delayed effective time of the updated cell-specific offset value, and the time window is used to indicate the invalid time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • Fig. 1a is a schematic diagram of communication between a UE and a base station in an information update method of a related art provided by an embodiment of the present disclosure
  • Fig. 1b is a schematic flowchart of an information update method provided by an embodiment of the present disclosure
  • Fig. 2a is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure
  • FIG. 2b is a schematic diagram of communication between a UE and a base station in an information update method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of an information update method provided by an embodiment of the present disclosure.
  • Fig. 4a is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure.
  • Fig. 4b is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of an information update method provided by an embodiment of the present disclosure.
  • Fig. 6a is a schematic flowchart of an information update method provided by an embodiment of the present disclosure.
  • Fig. 6b is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure.
  • Fig. 7a is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure.
  • Fig. 7b is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of an information update method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of an information update method provided by an embodiment of the present disclosure.
  • Fig. 11a is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure.
  • Fig. 11b is a schematic flowchart of an information updating method provided by an embodiment of the present disclosure.
  • Fig. 12a is a schematic flowchart of an information update method provided by an embodiment of the present disclosure.
  • Fig. 12b is a schematic flowchart of an information update method provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of an information update device provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an information updating device provided by another embodiment of the present disclosure.
  • Fig. 15 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 16 is a block diagram of a base station provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • Fig. 1a is a schematic diagram of communication between a UE and a base station in an information update method of a related technology provided by an embodiment of the present disclosure.
  • the near-end UE in the cell that is closer to the base station will first receive the message sent by the base station
  • the remote UE in the cell that is far away from the base station will receive the updated system information sent by the base station.
  • the present invention proposes an information update method, device, user equipment, base station and storage medium to solve the technical problem that the information update method in the related art tends to lead to low communication reliability.
  • Fig. 1b is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a UE supporting satellite communication, as shown in Fig. 1b, the information update method may include the following steps:
  • Step 101 Receive an updated cell-specific offset value sent by a base station.
  • the base station may be a base station supporting satellite communication
  • the UE may be a device that provides voice and/or data connectivity to a user.
  • Terminal equipment can communicate with one or more core networks via RAN (Radio Access Network, wireless access network), and UE can be an IoT terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a
  • the computer of the networked terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the base station sends the cell-specific offset value to the UE through system information, and specifically, the cell-specific offset value may be included in the system information.
  • the base station needs to update the cell-specific offset value , and need to send the updated cell-specific offset value to the UE through the updated system information.
  • the base station may determine whether to instruct the UE to update the cell-specific offset value based on the satellite communication scenario where the UE and the base station are located.
  • the base station will determine the satellite communication scene where the base station and the UE are based on the ephemeris information, wherein, if the base station determines that the satellite communication scene where the UE and the base station are is GEO (Geostationary In the Earth Orbit (stationary earth orbit) scenario, it means that the satellite is stationary relative to the ground. At this time, the base station does not need to instruct the UE to update the cell-specific offset value, that is, the base station does not send the updated cell-specific offset value to the UE.
  • the base station does not need to instruct the UE to update the cell-specific offset value, that is, the base station does not send the updated cell-specific offset value to the UE.
  • the base station determines that the satellite communication scenario where the UE and the base station are located is an NGSO (Non-GeoStationary Orbit, non-geostationary orbit) scenario, it means that the satellite will move relative to the ground. If the user moves, the base station needs to send the updated cell-specific offset value to the UE through the updated system information.
  • NGSO Non-GeoStationary Orbit, non-geostationary orbit
  • Step 102 receiving configuration information for indicating a time offset value and/or a time window sent by the base station.
  • the time offset value may be used to indicate the delayed effective time of the updated cell-specific offset value
  • the time window may be used to indicate the invalid time of the updated cell-specific offset value
  • the method for the UE to receive the configuration information for indicating the time offset value and/or the time window sent by the base station may include at least one of the following:
  • Step 103 using the updated cell-specific offset value based on the time offset value and/or the time window.
  • step 103 the detailed introduction about step 103 will be described in subsequent embodiments.
  • the execution sequence of the above steps 101 to 103 is only an execution sequence of an example of the present disclosure, and is not a fixed sequence.
  • step 101 may be executed first, and then step 102 may be executed, or step 102 may be executed first, and then Step 101.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value and/or the time window, where the time offset value is used
  • the time window is used to indicate the invalid time of the updated cell-specific offset value when indicating the delayed effective time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • Fig. 2a is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a UE supporting satellite communication, as shown in Fig. 2a, the information update method may include the following steps:
  • Step 201 Receive an updated cell-specific offset value sent by a base station.
  • step 201 for the related introduction of step 201, reference may be made to the description of the above-mentioned embodiments, and the embodiments of the present disclosure are not repeated here.
  • Step 202 receiving configuration information for indicating the time offset value sent by the base station.
  • the time offset value may be used to indicate the delayed effective time of the updated cell-specific offset value.
  • the time offset value may be determined by the base station based on RTT (Round Trip Time, round-trip time delay) of signal transmission within its coverage area.
  • RTT Red Trip Time, round-trip time delay
  • the time offset values corresponding to different UEs in the cell will be different.
  • the value of the time offset may be inversely proportional to the distance between the UE and the base station. For example, the UE farther away from the base station corresponds to a smaller time offset value, and the UE closer to the base station corresponds to a larger time offset value.
  • the time offset value may be a fixed value. In another embodiment of the present disclosure, the time offset value may be a configurable value.
  • Step 203 Use the updated cell-specific offset value based on the time offset value.
  • the method for using the updated cell-specific offset value based on the time offset value may include: after receiving the updated cell-specific offset value, between the time offset value communicate with the base station using the pre-updated cell-specific offset value, and/or, after delaying the time offset value, communicate with the base station using the updated cell-specific offset value.
  • the time offset value should satisfy the following condition: the time offset value enables the base station to have the same understanding of the cell-specific offset value used by each UE in the cell. That is, when each UE in the cell uses the updated cell-specific offset value to communicate with the base station after delaying the corresponding time offset value, there is no ambiguity period for the base station, and the ambiguity period is: due to each Due to the distance difference between the UE and the base station, the time points at which each UE receives the updated cell-specific offset value are different, so there is a period of time for the base station. During this period, different UEs in the cell and the base station The cell-specific offset values used for communication are different.
  • some UEs in the cell use the updated cell-specific offset value to communicate with the base station, and another part of UEs in the cell (such as far-end UEs with a short distance to the base station) ) communicates with the base station using the pre-updated cell-specific offset value.
  • FIG. 2b is a schematic diagram of communication between UE and base station in an information update method provided by an embodiment of the present disclosure.
  • the base station determines updated system information, and the updated system information includes With the updated cell-specific offset value, the base station will broadcast the updated system information to each UE in the cell, wherein the near-end UE will receive the updated system information first, and the remote UE will receive it later After receiving the updated system information, and when each UE receives the updated system information, it will parse the updated system information to obtain an updated cell-specific offset value, and each UE will After the cell-specific offset value, it will not immediately communicate with the base station based on the updated cell-specific offset value, but will first communicate with the base station based on the cell-specific offset value before the update.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value and/or the time window, where the time offset value is used
  • the time window is used to indicate the invalid time of the updated cell-specific offset value when indicating the delayed effective time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • FIG. 3 is a schematic flow chart of an information update method provided by an embodiment of the present disclosure. The method is executed by a UE supporting satellite communication. As shown in FIG. 3 , the information update method may include the following steps:
  • Step 301 Receive an updated cell-specific offset value sent by a base station.
  • step 301 For the relevant introduction of step 301, reference may be made to the description of the foregoing embodiments, and the embodiments of the present disclosure are not described in detail here.
  • Step 302 receiving configuration information for indicating the time window sent by the base station.
  • the time window may be used to indicate the invalid time of the updated cell-specific offset value.
  • Step 303. Use the updated cell-specific offset value based on the time offset value.
  • the method for using the updated cell-specific offset value based on the time offset value may include: using the UE-specific offset value (UE-specific offset) and the base station within the time window Communicating; communicating with the base station using the updated cell-specific offset value after the time window.
  • the pre-updated cell-specific offset value is used for communication before this time window.
  • the above-mentioned method of "using the UE-specific offset value to communicate with the base station within the time window” may include at least one of the following:
  • Method 1 Within the time window, the UE performs a communication operation that needs to use a cell-specific offset value based on the UE-specific offset value;
  • Method 2 Within the time window, the UE does not perform communication operations requiring the use of the cell-specific offset.
  • the above-mentioned communication operation may specifically be an uplink operation and/or a downlink operation between the UE and the base station.
  • the time window should satisfy the following condition: the time window enables the base station to have the same understanding of the cell-specific offset values used by each UE in the cell. That is, when each UE in the cell uses the updated cell-specific offset value to communicate with the base station after delaying the time window, there is no ambiguity period for the base station. The difference in distance between the UEs causes different time points for each UE to receive the updated cell-specific offset value, so for the base station, there is a period of time during which different UEs in the cell communicate with the base station using the The cell specific offset values are different.
  • some UEs in the cell use the updated cell-specific offset value to communicate with the base station, and another part of UEs in the cell (such as far-end UEs with a short distance to the base station) ) communicates with the base station using the pre-updated cell-specific offset value.
  • the UE-specific offset value may be determined according to a protocol agreement, may also be determined through signaling transmission, or determined according to other methods, which is not limited in the present disclosure.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value and/or the time window, where the time offset value is used
  • the time window is used to indicate the invalid time of the updated cell-specific offset value when indicating the delayed effective time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • Fig. 4a is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a UE supporting satellite communication, as shown in Fig. 4a, the information update method may include the following steps:
  • Step 401a receiving the configuration information for indicating the time offset value sent by the base station through UE specific signaling.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value, where the time offset value is used to indicate the updated The delayed effective time of the cell-specific offset value.
  • the UE will use the updated cell-specific offset value based on the time offset value.
  • the effective time of the updated cell-specific offset value is specifically determined through the time offset value, so as to ensure that each UE in the cell sends a message to the base station based on the updated cell-specific offset value.
  • the base station For uplink information, the base station has the same understanding of the cell-specific offset values used by different UEs to ensure communication reliability.
  • Fig. 4b is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a UE supporting satellite communication, as shown in Fig. 4b, the information update method may include the following steps:
  • Step 401b receiving the configuration information for indicating the time offset value sent by the base station through common signaling.
  • step 401b for the related introduction of step 401b, reference may be made to the description of the above-mentioned embodiments.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value, where the time offset value is used to indicate the updated The delayed effective time of the cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value.
  • the effective time of the updated cell-specific offset value is specifically determined through the time offset value, so as to ensure that each UE in the cell sends a message to the base station based on the updated cell-specific offset value.
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure communication reliability.
  • FIG. 5 is a schematic flow chart of an information update method provided by an embodiment of the present disclosure. The method is executed by a UE supporting satellite communication. As shown in FIG. 5 , the information update method may include the following steps:
  • Step 501 In response to receiving the configuration information indicating the time offset value, after receiving the updated cell-specific offset value, use the pre-updated cell-specific offset value to communicate with the base station within the time offset value , and/or, after delaying the time offset value, use the updated cell-specific offset value to communicate with the base station.
  • step 501 for the relevant introduction about step 501, reference may be made to the description of the above-mentioned embodiments.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value, where the time offset value is used to indicate the updated The delayed effective time of the cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value.
  • the effective time of the updated cell-specific offset value is specifically determined through the time offset value, so as to ensure that each UE in the cell sends a message to the base station based on the updated cell-specific offset value.
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure communication reliability.
  • Fig. 6a is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a UE supporting satellite communication, as shown in Fig. 6a, the information update method may include the following steps:
  • Step 601a receiving the configuration information for indicating the time window sent by the base station through UE specific signaling.
  • step 601a For the relevant introduction about step 601a, reference may be made to the description of the foregoing embodiments.
  • the UE will receive the configuration information sent by the base station to indicate the time window, where the time window is used to indicate the updated cell-specific offset
  • the delayed take effect time of the value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time window.
  • the effective time of the updated cell-specific offset value is specifically determined through the time window, so as to ensure that each UE in the cell sends uplink information to the base station based on the updated cell-specific offset value
  • the base station has the same understanding of the cell-specific offset values used by different UEs, ensuring communication reliability.
  • Fig. 6b is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a UE supporting satellite communication, as shown in Fig. 6b, the information update method may include the following steps:
  • Step 601b receiving the configuration information for indicating the time window sent by the base station through common signaling.
  • step 601b for related introductions about step 601b, reference may be made to the descriptions in the foregoing embodiments.
  • the UE will receive the configuration information sent by the base station to indicate the time window, where the time window is used to indicate the updated cell-specific offset Invalid time for value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time window.
  • the effective time of the updated cell-specific offset value is specifically determined through the time window, so as to ensure that each UE in the cell sends uplink information to the base station based on the updated cell-specific offset value
  • the base station has the same understanding of the cell-specific offset values used by different UEs, ensuring communication reliability.
  • the UE may also obtain the configuration information for indicating the time window in a manner stipulated in the protocol, or may also receive the configuration information for indicating the time window by receiving other signaling sent by the base station.
  • Fig. 7a is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a UE supporting satellite communication, as shown in Fig. 7a, the information update method may include the following steps:
  • Step 701a in response to receiving configuration information indicating a time window, within the time window, the UE performs a communication operation that needs to use a cell-specific offset value based on the UE-specific offset value.
  • step 701a For the relevant introduction about step 701a, reference may be made to the description of the foregoing embodiments.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value, where the time window is used to indicate the updated cell-specific Invalid time for offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value.
  • the effective time of the updated cell-specific offset value is specifically determined through the time offset value, so as to ensure that each UE in the cell sends a message to the base station based on the updated cell-specific offset value.
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure communication reliability.
  • Fig. 7b is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a UE supporting satellite communication, as shown in Fig. 7a, the information update method may include the following steps:
  • Step 701b in response to receiving configuration information indicating a time window, within the time window, the UE does not perform communication operations requiring the use of cell-specific offset.
  • step 701b for the relevant introduction about step 701b, reference may be made to the description of the foregoing embodiments.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value, where the time offset value is used to indicate the updated The delayed effective time of the cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value.
  • the effective time of the updated cell-specific offset value is specifically determined through the time offset value, so as to ensure that each UE in the cell sends a message to the base station based on the updated cell-specific offset value.
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure communication reliability.
  • the above-mentioned embodiments are example embodiments provided by the present disclosure, and the above-mentioned embodiments can also be combined with each other.
  • the above-mentioned embodiments corresponding to FIG. 2 and FIG. 3 can be combined and merged, that is, the base station can simultaneously send configuration information indicating the time offset value and the time window to the UE, and the UE can configure the time offset value and the time window based on the time offset value and the time window. Use the updated cell-specific offset value.
  • Fig. 8 is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a base station supporting satellite communication, as shown in Fig. 8, the information update method may include the following steps:
  • Step 801. Determine a time offset value and/or a time window.
  • the base station may determine the time offset value based on the maximum RTT of signal transmission within its coverage.
  • the time offset value may be used to indicate the delay effective time of the updated cell-specific offset value.
  • the time offset values corresponding to different UEs in the cell will be different.
  • the value of the time offset may be inversely proportional to the distance between the UE and the base station. For example, the UE farther away from the base station corresponds to a smaller time offset value, and the UE closer to the base station corresponds to a larger time offset value.
  • the time offset value should satisfy the following condition: the time offset value enables the base station to have the same understanding of the cell-specific offset value used by each UE in the cell. That is, when each UE in the cell uses the updated cell-specific offset value to communicate with the base station after delaying the corresponding time offset value, there is no ambiguity period for the base station, and the ambiguity period is: due to each The difference in distance between the UE and the base station results in different points in time for each UE to receive the updated cell-specific offset value, so there is a period for the base station during which different UEs within the cell communicate with the base station The cell-specific offset values used are different.
  • some UEs in the cell (for example, near-end UEs with a relatively short distance to the base station) communicate with the base station using the updated cell-specific offset value
  • another part of UEs in the cell (for example, far-end UEs with a short distance to the base station) communicates with the base station using the pre-updated cell-specific offset value.
  • the time offset value may be a fixed value. In another embodiment of the present disclosure, the time offset value may be a configurable value.
  • the above time window may be used to indicate the invalid time of the updated cell-specific offset value.
  • the time window should meet the following condition: the time window enables the base station to have the same understanding of the cell-specific offset values used by each UE in the cell. That is, when each UE in the cell uses the updated cell-specific offset value to communicate with the base station after delaying the time window, there is no ambiguity period for the base station. The difference in distance between the UEs causes different time points for each UE to receive the updated cell-specific offset value, so for the base station, there is a period of time during which different UEs in the cell communicate with the base station using the The cell specific offset values are different.
  • some UEs in the cell use the updated cell-specific offset value to communicate with the base station, and another part of UEs in the cell (such as far-end UEs with a short distance to the base station) ) communicates with the base station using the pre-updated cell-specific offset value.
  • Step 802 Send configuration information for indicating a time offset value and/or a time window to the UE.
  • the method for the base station to send configuration information for indicating the time offset value and/or the time window to the UE may include:
  • Step 803 sending the updated cell-specific offset value to the UE.
  • the base station may determine whether to instruct the UE to update the cell-specific offset value based on the satellite communication scenario where the UE and the base station are located.
  • the base station determines the satellite communication scenario where the base station and the UE are located based on the ephemeris information, wherein, if the base station determines that the satellite communication scenario where the UE and the base station are located is a GEO scenario, Then the base station does not instruct the UE to update the cell-specific offset value, that is, the base station does not send the updated cell-specific offset value to the UE. If the base station determines that the satellite communication scenario where the UE and the base station are located is an NGSO scenario, the base station will send the updated specific offset value to the UE.
  • the execution order of the above steps 801 to 803 is only an execution order of an example of the present disclosure, and is not a fixed order.
  • step 802 may be executed first, and then step 803 may be executed, or step 803 may be executed first, and then Step 802.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value and/or the time window, where the time offset value is used
  • the time window is used to indicate the invalid time of the updated cell-specific offset value when indicating the delayed effective time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • FIG. 9 is a schematic flow chart of an information update method provided by an embodiment of the present disclosure. The method is executed by a base station supporting satellite communication. As shown in FIG. 9, the information update method may include the following steps:
  • Step 901 determine a time offset value.
  • Step 902 Send configuration information for indicating the time offset value to the UE.
  • Step 903 sending the updated cell-specific offset value to the UE.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value and/or the time window, where the time offset value is used
  • the time window is used to indicate the invalid time of the updated cell-specific offset value when indicating the delayed effective time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • FIG. 10 is a schematic flow chart of an information update method provided by an embodiment of the present disclosure. The method is executed by a base station supporting satellite communication. As shown in FIG. 10 , the information update method may include the following steps:
  • Step 1001 determine the time window.
  • Step 1002 sending configuration information for indicating the time window to the UE.
  • Step 1003 sending the updated cell-specific offset value to the UE.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value and/or the time window, where the time offset value is used
  • the time window is used to indicate the invalid time of the updated cell-specific offset value when indicating the delayed effective time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • Fig. 11a is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a base station supporting satellite communication, as shown in Fig. 11a, the information update method may include the following steps:
  • Step 1101a sending configuration information for indicating the time offset value to the UE through UE specific signaling.
  • step 1101a For a detailed introduction of the above step 1101a, reference may be made to the description of the foregoing embodiments, and details are not described in this embodiment of the present disclosure.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value, where the time offset value is used to indicate the updated The delayed effective time of the cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value.
  • the effective time of the updated cell-specific offset value is specifically determined through the time offset value, so as to ensure that each UE in the cell sends a message to the base station based on the updated cell-specific offset value.
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure communication reliability.
  • Fig. 11b is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a base station supporting satellite communication, as shown in Fig. 11b, the information update method may include the following steps:
  • Step 1101b sending configuration information for indicating the time offset value to the UE through common signaling.
  • step 1101b For the detailed introduction of the above step 1101b, reference may be made to the foregoing description of the embodiments, and details are not described here in the embodiments of the present disclosure.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value, where the time offset value is used to indicate the updated The delayed effective time of the cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value.
  • the effective time of the updated cell-specific offset value is specifically determined through the time offset value, so as to ensure that each UE in the cell sends a message to the base station based on the updated cell-specific offset value.
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure communication reliability.
  • Fig. 12a is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a base station supporting satellite communication, as shown in Fig. 11a, the information update method may include the following steps:
  • Step 1201a sending configuration information for indicating the time window to the UE through UE specific signaling.
  • step 1201a For the detailed introduction of the above step 1201a, reference may be made to the foregoing description of the embodiments, and details are not described here in the embodiments of the present disclosure.
  • the UE will receive the configuration information sent by the base station to indicate the time window, where the time window is used to indicate the updated cell-specific offset value invalid time.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time window.
  • the effective time of the updated cell-specific offset value is specifically determined through the time window, so as to ensure that each UE in the cell sends uplink information to the base station based on the updated cell-specific offset value
  • the base station has the same understanding of the cell-specific offset values used by different UEs, ensuring communication reliability.
  • Fig. 12b is a schematic flowchart of an information update method provided by an embodiment of the present disclosure, the method is executed by a base station supporting satellite communication, as shown in Fig. 12b, the information update method may include the following steps:
  • Step 1201b sending configuration information for indicating the time window to the UE through common signaling.
  • step 1201b For the detailed introduction of the above step 1201b, reference may be made to the foregoing description of the embodiments, and details are not described here in the embodiments of the present disclosure.
  • the UE will receive the configuration information sent by the base station to indicate the time window, where the time window is used to indicate the updated cell-specific offset Invalid time for value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time window.
  • the effective time of the updated cell-specific offset value is specifically determined through the time window, so as to ensure that each UE in the cell sends uplink information to the base station based on the updated cell-specific offset value
  • the base station has the same understanding of the cell-specific offset values used by different UEs, ensuring communication reliability.
  • Fig. 13 is a schematic structural diagram of an information update method device provided by an embodiment of the present disclosure. As shown in Fig. 13 , the device 1300 may include:
  • the receiving module 1301 is configured to receive the updated cell-specific offset sent by the base station;
  • the receiving module 1301 is further configured to receive configuration information for indicating a time offset value and/or a time window sent by the base station, where the time offset value is used to indicate that the delayed entry into force of the updated cell-specific offset takes effect time, the time window is used to indicate the invalid time of the updated cell-specific offset;
  • the updating module 1302 is further configured to update the cell-specific offset based on the time offset value and/or the time window.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value and/or the time window, wherein the time offset value It is used to indicate the delay effective time of the updated cell-specific offset value, and the time window is used to indicate the invalid time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • the receiving module is also used for:
  • the receiving module is also used for:
  • the receiving module is also used for:
  • the updating module is also used for:
  • the time offset value is a fixed value or a configurable value.
  • the updating module is also used for:
  • the updating module is also used for:
  • the UE performs a communication operation that needs to use a cell-specific offset based on the UE-specific offset
  • the UE does not perform the communication operation that needs to use the cell-specific offset.
  • Fig. 14 is a schematic structural diagram of an information update method device provided by an embodiment of the present disclosure. As shown in Fig. 14, the device 1400 may include:
  • the determining module 1401 is configured to determine a time offset value and/or a time window, the time offset value is used to indicate the delayed effective time of the updated cell-specific offset, and the time window is used to indicate the updated cell-specific offset Invalid time of cell-specific offset;
  • a sending module 1402 configured to send configuration information for indicating the time offset value and/or time window to the UE;
  • the sending module 1402 is further configured to send the updated cell-specific offset to the UE.
  • the UE will receive the configuration information sent by the base station to indicate the time offset value and/or the time window, wherein the time offset value It is used to indicate the delay effective time of the updated cell-specific offset value, and the time window is used to indicate the invalid time of the updated cell-specific offset value.
  • the UE receives the updated cell-specific offset value sent by the base station, it will use the updated cell-specific offset value based on the time offset value and/or time window.
  • the effective time of the updated cell-specific offset value is determined specifically through the time offset value and/or time window, so as to ensure that each UE in the cell
  • the base station has the same understanding of the cell-specific offset values used by different UEs to ensure the reliability of communication.
  • the time offset value is a fixed value or a configurable value.
  • the determining module is further configured to:
  • the time offset value is determined based on a maximum round-trip time RTT of signal transmission within the coverage area of the base station.
  • the sending module is also used for:
  • the sending module is also used for:
  • Fig. 15 is a block diagram of a user equipment UE1500 provided by an embodiment of the present disclosure.
  • the UE 1500 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1500 may include at least one of the following components: a processing component 1502, a memory 1504, a power supply component 1506, a multimedia component 1508, an audio component 1510, an input/output (I/O) interface 1512, a sensor component 1513, and a communication component 1516.
  • a processing component 1502 may include at least one of the following components: a memory 1504, a power supply component 1506, a multimedia component 1508, an audio component 1510, an input/output (I/O) interface 1512, a sensor component 1513, and a communication component 1516.
  • a processing component 1502 may include at least one of the following components: a processing component 1502, a memory 1504, a power supply component 1506, a multimedia component 1508, an audio component 1510, an input/output (I/O) interface 1512, a sensor component 1513, and a communication component 1516.
  • I/O input/output
  • Processing component 1502 generally controls the overall operations of UE 1500, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1502 may include at least one processor 1511 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1502 can include at least one module to facilitate interaction between processing component 1502 and other components. For example, processing component 1502 may include a multimedia module to facilitate interaction between multimedia component 1508 and processing component 1502 .
  • the memory 1504 is configured to store various types of data to support operations at the UE 1500 . Examples of such data include instructions for any application or method operating on UE1500, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1504 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1506 provides power to various components of the UE 1500.
  • Power component 1506 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1500 .
  • the multimedia component 1508 includes a screen providing an output interface between the UE 1500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1508 includes a front camera and/or a rear camera. When UE1500 is in operation mode, such as shooting mode or video mode, the front camera and/or rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1510 is configured to output and/or input audio signals.
  • the audio component 1510 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1500 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1504 or sent via communication component 1516 .
  • the audio component 1510 also includes a speaker for outputting audio signals.
  • the I/O interface 1512 provides an interface between the processing component 1502 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1513 includes at least one sensor for providing various aspects of status assessment for the UE 1500 .
  • the sensor component 1513 can detect the open/close state of the device 1500, the relative positioning of components, such as the display and the keypad of the UE1500, the sensor component 1513 can also detect the position change of the UE1500 or a component of the UE1500, and the user and Presence or absence of UE1500 contact, UE1500 orientation or acceleration/deceleration and temperature change of UE1500.
  • Sensor assembly 1513 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1513 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1513 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1516 is configured to facilitate wired or wireless communications between UE 1500 and other devices.
  • UE1500 can access wireless networks based on communication standards, such as WiFi, 2G, 3G, 4G, 5G or a combination thereof.
  • the communication component 1516 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1516 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 1500 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • Fig. 16 is a block diagram of a base station 1600 provided by an embodiment of the present disclosure.
  • base station 1600 may be provided as a base station.
  • the base station 1600 includes a processing component 1611, which further includes at least one processor, and a memory resource represented by a memory 1632 for storing instructions executable by the processing component 1622, such as application programs.
  • the application programs stored in memory 1632 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1610 is configured to execute instructions, so as to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIG. 1 .
  • Base station 1600 may also include a power component 1626 configured to perform power management of base station 1600, a wired or wireless network interface 1650 configured to connect base station 1600 to a network, and an input output (I/O) interface 1658.
  • Base station 1600 may operate based on an operating system stored in memory 1632, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the method provided in an embodiment of the present disclosure is introduced from the perspectives of the base station and the UE respectively.
  • the base station and the UE may include a hardware structure and a software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the aforementioned method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the foregoing method embodiments): the processor is configured to execute any of the methods shown in FIG. 1-FIG. 7b.
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 8-Fig. 12b.
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (Gas), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • Gas gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the foregoing method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the foregoing embodiments and a communication device as a network device, Alternatively, the system includes the communication device as the terminal device in the foregoing embodiments (such as the first terminal device in the foregoing method embodiment) and the communication device as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种信息更新方法、装置、用户设备、基站及存储介质,属于通信技术领域。该方法包括:接收基站发送的更新后的小区特定偏移值cell-specific offset;接收所述基站发送的用于指示时间偏移值和/或时间窗口的配置信息,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;基于所述时间偏移值和/或时间窗口使用所述更新后的cell-specific offset。本公开提供的方法可以确保通信性能。

Description

一种信息更新方法、装置、用户设备、基站及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种信息更新方法、装置、用户设备、基站及存储介质。
背景技术
在卫星通信系统中,通常会引入小区特定偏移值(cell-specific offset)和UE(User Equipment,终端设备)特定偏移值(UE-specific offset)来补偿传输时延。
相关技术中,该小区特定偏移值会随着卫星移动发生更新,由此基站通常会通过向UE发送更新后的系统信息来向UE指示更新后的小区特定偏移值。
但是,相关技术中,处于同一小区内的各个UE与基站之间的距离不同,从而使得各个UE对于基站发送的更新后的系统信息的接收时间也不相同。也即是,各个UE获取到更新后的小区特定偏移值的时间不同。此时,会使得基站进入一模糊期,在该模糊期内,对于基站而言,其与不同UE进行通信时,不同UE所使用的小区特定偏移值不同(即基站不明确UE所使用的是哪个小区特定偏移值),则会影响通信的可靠性。
发明内容
本公开提出的信息更新方法、装置、用户设备、基站及存储介质,以解决相关技术中的信息更新方法易影响通信性能的技术问题。
本公开一方面实施例提出的信息更新方法,应用于支持卫星通信的UE,包括:
接收基站发送的更新后的小区特定偏移值cell-specific offset;
接收所述基站发送的用于指示时间偏移值和/或时间窗口的配置信息,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
基于所述时间偏移值和/或时间窗口使用所述更新后的cell-specific offset。
本公开另一方面实施例提出的信息更新方法,应用于支持卫星通信的基站,包括:
确定时间偏移值和/或时间窗口,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
向UE发送用于指示所述时间偏移值和/或时间窗口的配置信息;
向所述UE发送更新后的cell-specific offset。
本公开又一方面实施例提出的信号信息更新装置,包括:
接收模块,用于接收基站发送的更新后的小区特定偏移值cell-specific offset;
所述接收模块,还用于接收所述基站发送的用于指示时间偏移值和/或时间窗口的配置信息,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
更新模块,用于基于所述时间偏移值和/或时间窗口使用所述更新后的cell-specific offset。
本公开又一方面实施例提出的信号信息更新装置,包括:
确定模块,用于确定时间偏移值和/或时间窗口,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
发送模块,用于向UE发送用于指示所述时间偏移值和/或时间窗口的配置信息;
所述发送模块,还用于向所述UE发送更新后的cell-specific offset。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有 计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上另一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如另一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如另一方面实施例提出的方法被实现。
综上所述,在本公开一个实施例所提供的信息更新方法、装置、编码设备、解码设备及存储介质之中,UE会接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1a为本公开实施例提供的一种相关技术的信息更新方法时UE与基站之间的通信示意图;
图1b为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图2a为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图2b为本公开实施例提供的一种信息更新方法时UE与基站之间的通信示意图;
图3为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图4a为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图4b为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图5为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图6a为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图6b为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图7a为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图7b为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图8为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图9为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图10为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图11a为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图11b为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图12a为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图12b为本公开一个实施例所提供的一种信息更新方法的流程示意图;
图13为本公开一个实施例所提供的信息更新装置的结构示意图;
图14为本公开另一个实施例所提供的信息更新装置的结构示意图;
图15是本公开一个实施例所提供的一种用户设备的框图;
图16为本公开一个实施例所提供的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1a为本公开实施例提供的一种相关技术的信息更新方法中UE与基站之间的通信示意图,如图1a所示,小区内距离基站较近的近端UE会先接收到基站发送的更新后的系统信息,小区内距离基站较远的远端UE会后接收到基站发送的更新后的系统信息。其中,基于各个UE接收到更新后的系统信息的时间点不同,则会使得基站存在一模糊期,在该模糊期内:近端UE已经获取到更新后的小区特定偏移值,并使用该更新后的小区特定偏移值与基站进行通信,远端UE还未获取到更新后的小区特定偏移值,而是使用更新前的小区特定偏移值与基站进行通信,则会导致通信可靠性较低。基于此,本发明提出了一种信息更新方法、装置、用户设备、基站及存储介质,以解决相关技术中的信息更新方法易导致通信可靠性较低的技术问题。
下面参考附图对本公开一个实施例所提供的信息更新方法、装置、用户设备、基站及存储介质进行详细描述。
图1b为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图1b所示,该信息更新方法可以包括以下步骤:
步骤101、接收基站发送的更新后的小区特定偏移值。
在本公开的一个实施例之中,该基站可以是支持卫星通信的基站,该UE可以是指向用户提供语音和/或数据连通性的设备。终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,基站会通过系统信息向UE发送小区特定偏移值,具体可以将小区特定偏移值包含于系统信息中。以及,需要说明的是,基站通过系统信息向UE发送了一小区特定偏移值之后,若基站所处的卫星通信场景中的卫星相对于小区发生了移动,则基站需要更新小区特定偏移值,并需要通过更新后的系统信息向UE发送更新后的小区特定偏移值。
基于此,基站可以基于UE和基站所处的卫星通信场景来确定是否指示UE更新小区特定偏移值。
具体而言,在本公开的一个实施例之中,基站会基于星历信息确定基站和UE所处的卫星通信场景,其中,若基站确定出UE和基站所处的卫星通信场景为GEO(Geostationary Earth Orbit,静止地球轨道) 场景,则说明卫星相对于地静止,此时基站不需要指示UE进行小区特定偏移值的更新,即基站不向UE发送更新后的小区特定偏移值。当基站确定出UE和基站所处的卫星通信场景为NGSO(Non-GeoStationary Orbit,非对地静止轨道)场景时,则说明卫星相对于地会发生移动,此时,若卫星相对于地发生了移动,则基站需要通过更新后的系统信息向UE发送更新后的小区特定偏移值。
步骤102、接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息。
其中,在本公开的一个实施例之中,该时间偏移值可以用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口可以用于指示更新后的小区特定偏移值无效时间。以及,关于时间偏移值和时间窗口的详细介绍会在后续实施例进行描述。
进一步地,在本公开的一个实施例之中,UE接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息的方法可以包括以下至少一种:
接收基站通过用户设备特定(UE-specific)信令发送的配置信息;
接收所述基站通过公共(common)信令发送的配置信息。
步骤103、基于时间偏移值和/或时间窗口使用更新后的小区特定偏移值。
其中,关于步骤103的详细介绍会在后续实施例描述。
此外,需要说明的是,在本公开的一个实施例之中,上述步骤101-步骤103的执行顺序仅为本公开示例的一种执行顺序,并不是固定的先后顺序。例如,在本公开的一个实施例之中,上述的步骤101和步骤102之间并不存在固定先后顺序,其中,可以先执行步骤101,再执行步骤102,也可以先执行步骤102,在执行步骤101。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图2a为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图2a所示,该信息更新方法可以包括以下步骤:
步骤201、接收基站发送的更新后的小区特定偏移值。
其中,关于步骤201的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤202、接收基站发送的用于指示时间偏移值的配置信息。
在本公开的一个实施例之中,该时间偏移值可以用于指示更新后的小区特定偏移值的延迟生效时间。
其中,在本公开的一个实施例之中,该时间偏移值可以是基站基于其覆盖范围内信号传输的RTT(Round Trip Time,往返时延)确定的。并且,在本公开的一个实施例之中,小区内不同的UE对应的时间偏移值会有所不同。以及,在本公开的一个实施例之中,该时间偏移值的大小可以与UE和基站之间的距离成反比。例如,距离基站越远的UE对应的时间偏移值越小,距离基站越近的UE对应的时间偏移值越大。
进一步地,在本公开的一个实施例之中,该时间偏移值可以为一固定值。在本公开的另一个实施例之中,该时间偏移值可以为一可配置值。
步骤203、基于时间偏移值使用更新后的小区特定偏移值。
其中,在本公开的一个实施例之中,基于时间偏移值使用更新后的小区特定偏移值的方法可以包括:接收到更新后的小区特定偏移值之后,在该时间偏移值之内使用更新前的小区特定偏移值与基站进行通信,且/或,在延迟了该时间偏移值之后,使用更新后的小区特定偏移值与基站进行通信。
需要说明的是,在本公开的一个实施例之中,该时间偏移值应当满足以下条件:该时间偏移值使得基站对于小区内各个UE所使用的小区特定偏移值有相同的理解。即,小区内的各个UE在延迟了对应的时间偏移值之后使用更新后的小区特定偏移值与基站进行通信时,对于基站而言不存在模糊期,该模 糊期为:由于小区内各个UE与基站之间的距离差异等原因导致各个UE接收到更新后的小区特定偏移值的时间点不同,从而对于基站而言所存在一段时期,在该时期内,小区内的不同UE与基站进行通信时所使用的小区特定偏移值不同。例如,小区内的部分UE(如与基站距离较近的近端UE)利用更新后的小区特定偏移值与基站进行通信,小区内的另一部分UE(如与基站距离较近的远端UE)利用更新前的小区特定偏移值与基站进行通信。
示例的,图2b为本公开实施例提供的一种信息更新方法时UE与基站之间的通信示意图,如图2b所示,基站确定出更新后的系统信息,该更新后的系统信息中包括有更新后的小区特定偏移值,之后,基站会向小区内的各个UE广播该更新后的系统信息,其中,近端UE会先接收到该更新后的系统信息,远端UE会后接收到该更新后的系统信息,以及,当各个UE接收到该更新后的系统信息后,会解析该更新后的系统信息以得到更新后的小区特定偏移值,以及,各个UE在得到更新后的小区特定偏移值之后,并不会立刻基于该更新后的小区特定偏移值与基站进行通信,而是会先基于更新前的小区特定偏移值与基站进行通信,当延迟了对应的时间偏移值之后,再基于更新后的小区特定偏移值与基站进行通信,由此可以确保基站对于小区内各个UE所使用的小区特定偏移值有相同的理解,避免了模糊期的出现,确保了通信的可靠性。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图3为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图3所示,该信息更新方法可以包括以下步骤:
步骤301、接收基站发送的更新后的小区特定偏移值。
其中,关于步骤301的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤302、接收基站发送的用于指示时间窗口的配置信息。
在本公开的一个实施例之中,该时间窗口可以用于指示更新后的小区特定偏移值的无效时间。步骤303、基于时间偏移值使用更新后的小区特定偏移值。
其中,在本公开的一个实施例之中,基于时间偏移值使用更新后的小区特定偏移值的方法可以包括:在该时间窗口内使用UE特定偏移值(UE-specific offset)与基站进行通信;在时间窗口之后使用更新后的小区特定偏移值与基站进行通信。在该时间窗口之前使用更新前的小区特定偏移值进行通信。
进一步地,上述的“在该时间窗口内使用UE特定偏移值与基站进行通信”的方法可以包括以下至少一种:
方法一、在该时间窗口内,UE基于UE特定偏移值来执行需要使用小区特定偏移值的通信操作;
方法二、在该时间窗口内,UE不执行需要使用cell-specific offset的通信操作。
以及,在本公开的一个实施例之中,上述的通信操作具体可以为UE与基站之间的上行操作和/或下行操作。
需要说明的,在本公开的一个实施例之中,该时间窗口应当满足以下条件:该时间窗口使得基站对于小区内各个UE所使用的小区特定偏移值有相同的理解。即,小区内的各个UE在延迟了时间窗口之后使用更新后的小区特定偏移值与基站进行通信时,对于基站而言不存在模糊期,该模糊期为:由于小区内各个UE与基站之间的距离差异导致各个UE接收到更新后的小区特定偏移值的时间点不同,从而对于基站而言所存在一段时期,在该时期内,小区内的不同UE与基站进行通信时所使用的小区特定偏移值不同。例如,小区内的部分UE(如与基站距离较近的近端UE)利用更新后的小区特定偏移值与基站进行通信,小区内的另一部分UE(如与基站距离较近的远端UE)利用更新前的小区特定偏移值与基站进行通信。
此外,应理解,UE特定偏移值可以通过根据协议约定而确定,也可以通过信令发送而确定,或者根据其它方式而确定,本公开对此不作限制。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图4a为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图4a所示,该信息更新方法可以包括以下步骤:
步骤401a、接收基站通过UE specific信令发送的用于指示时间偏移值的配置信息。
其中,关于步骤401a的相关介绍可以参考上述实施例描述。综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图4b为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图4b所示,该信息更新方法可以包括以下步骤:
步骤401b、接收基站通过common信令发送的用于指示时间偏移值的配置信息。
其中,关于步骤401b的相关介绍可以参考上述实施例描述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图5为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图5所示,该信息更新方法可以包括以下步骤:
步骤501、响应于接收到指示时间偏移值的配置信息,在接收到更新后的小区特定偏移值之后,在该时间偏移值之内使用更新前的小区特定偏移值与基站进行通信,且/或,在延迟了该时间偏移值之后,再使用更新后的小区特定偏移值与基站进行通信。
其中,关于步骤501的相关介绍可以参考上述实施例描述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图6a为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图6a所示,该信息更新方法可以包括以下步骤:
步骤601a、接收基站通过UE specific信令发送的用于指示时间窗口的配置信息。
其中,关于步骤601a的相关介绍可以参考上述实施例描述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间窗口的配置信息,其中,该时间窗口用于指示更新后的小区特定偏移值的延迟生效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图6b为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图6b所示,该信息更新方法可以包括以下步骤:
步骤601b、接收基站通过common信令发送的用于指示时间窗口的配置信息。
其中,关于步骤601b的相关介绍可以参考上述实施例描述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间窗口的配置信息,其中,该时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
以及,需要说明的是,UE除了上述实施例中描写的“通过接收UE-specific信令和/或公共信令来接收用于指示时间窗口的配置信息”外,在本公开的另一个实施例之中,UE还可以通过协议约定的方式获取用于指示时间窗口的配置信息,或者,也可以通过接收基站发送的其他信令来接收用于指示时间窗口的配置信息。
图7a为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图7a所示,该信息更新方法可以包括以下步骤:
步骤701a、响应于接收到指示时间窗口的配置信息,在该时间窗口内,UE基于UE特定偏移值来执行需要使用小区特定偏移值的通信操作。
其中,关于步骤701a的相关介绍可以参考上述实施例描述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值的配置信息,其中,该时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图7b为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的UE执行,如图7a所示,该信息更新方法可以包括以下步骤:
步骤701b、响应于接收到指示时间窗口的配置信息,在该时间窗口内,UE不执行需要使用cell-specific offset的通信操作。
其中,关于步骤701b的相关介绍可以参考上述实施例描述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
以及,需要说明的是,上述各个实施例为本公开提供的示例实施例,并且,上述各个实施例之间还可以相互组合合并。例如,上述图2和图3对应的实施例可以组合合并,即基站可以同时向UE发送用于指示时间偏移值和时间窗口的配置信息,以及,UE可以基于时间偏移值和时间窗口来使用更新后的 小区特定偏移值。
图8为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的基站执行,如图8所示,该信息更新方法可以包括以下步骤:
步骤801、确定时间偏移值和/或时间窗口。
在本公开的一个实施例之中,基站可以基于其覆盖范围内信号传输的最大RTT来确定时间偏移值。其中,在本公开的一个实施例之中,时间偏移值可以用于指示更新后的小区特定偏移值的延迟生效时间。并且,在本公开的一个实施例之中,小区内不同的UE对应的时间偏移值会有所不同。以及,在本公开的一个实施例之中,该时间偏移值的大小可以与UE和基站之间的距离成反比。例如,距离基站越远的UE对应的时间偏移值越小,距离基站越近的UE对应的时间偏移值越大。
需要说明的是,在本公开的一个实施例之中,该时间偏移值应当满足以下条件:该时间偏移值使得基站对于小区内各个UE所使用的小区特定偏移值有相同的理解。即,小区内的各个UE在延迟了对应的时间偏移值之后使用更新后的小区特定偏移值与基站进行通信时,对于基站而言不存在模糊期,该模糊期为:由于小区内各个UE与基站之间的距离差异导致各个UE接收到更新后的小区特定偏移值的时间点不同,从而对于基站而言所存在一段时期,在该时期内,小区内的不同UE与基站进行通信时所使用的小区特定偏移值不同。例如,小区内的部分UE(例如与基站距离较近的近端UE)利用更新后的小区特定偏移值与基站进行通信,小区内的另一部分UE(例如与基站距离较近的远端UE)利用更新前的小区特定偏移值与基站进行通信。
进一步地,在本公开的一个实施例之中,该时间偏移值可以为一固定值。在本公开的另一个实施例之中,该时间偏移值可以为一可配置值。
再进一步地,上述时间窗口可以用于指示更新后的小区特定偏移值的无效时间。具体的,在本公开的一个实施例之中,该时间窗口应当满足以下条件:该时间窗口使得基站对于小区内各个UE所使用的小区特定偏移值有相同的理解。即,小区内的各个UE在延迟了时间窗口之后使用更新后的小区特定偏移值与基站进行通信时,对于基站而言不存在模糊期,该模糊期为:由于小区内各个UE与基站之间的距离差异导致各个UE接收到更新后的小区特定偏移值的时间点不同,从而对于基站而言所存在一段时期,在该时期内,小区内的不同UE与基站进行通信时所使用的小区特定偏移值不同。例如,小区内的部分UE(如与基站距离较近的近端UE)利用更新后的小区特定偏移值与基站进行通信,小区内的另一部分UE(如与基站距离较近的远端UE)利用更新前的小区特定偏移值与基站进行通信。
步骤802、向UE发送用于指示时间偏移值和/或时间窗口的配置信息。
在本公开的一个实施例之中,基站向UE发送用于指示时间偏移值和/或时间窗口的配置信息的方法可以包括:
通过UE-specific信令向UE发送所述配置信息;
通过common信令向UE发送所述配置信息。
步骤803、向UE发送更新后的小区特定偏移值。
其中,在本公开的一个实施例之中,基站可以是基于UE和基站所处的卫星通信场景,并基于该卫星通信场景来确定是否指示UE更新小区特定偏移值。
具体而言,在本公开的一个实施例之中,基站会基于星历信息确定基站和UE所处的卫星通信场景,其中,若基站确定出UE和基站所处的卫星通信场景为GEO场景,则基站不指示UE进行小区特定偏移值的更新,即基站不向UE发送更新后的小区特定偏移值。若基站确定出UE和基站所处的卫星通信场景为NGSO场景,则基站会向UE发送更新后的特定偏移值。
以及,需要说明的是,在本公开的一个实施例之中,上述步骤801-步骤803的执行顺序仅为本公开示例的一种执行顺序,并不是固定的先后顺序。例如,在本公开的一个实施例之中,上述的步骤802和步骤803之间并不存在固定先后顺序,其中,可以先执行步骤802,再执行步骤803,也可以先执行步骤803,在执行步骤802。
以及,关于上述步骤801-803的其他介绍可以参考前述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间 偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图9为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的基站执行,如图9所示,该信息更新方法可以包括以下步骤:
步骤901、确定时间偏移值。
步骤902、向UE发送用于指示时间偏移值的配置信息。
步骤903、向UE发送更新后的小区特定偏移值。
以及,关于上述步骤901-903的详细介绍可以参考前述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图10为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的基站执行,如图10所示,该信息更新方法可以包括以下步骤:
步骤1001、确定时间窗口。
步骤1002、向UE发送用于指示时间窗口的配置信息。
步骤1003、向UE发送更新后的小区特定偏移值。
以及,关于上述步骤1001-1003的详细介绍可以参考前述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图11a为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的基站执行,如图11a所示,该信息更新方法可以包括以下步骤:
步骤1101a、通过UE specific信令向UE发送用于指示时间偏移值的配置信息。
关于上述步骤1101a的详细介绍可以参考前述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图11b为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的基站执行,如图11b所示,该信息更新方法可以包括以下步骤:
步骤1101b、通过common信令向UE发送用于指示时间偏移值的配置信息。
关于上述步骤1101b的详细介绍可以参考前述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间偏移值的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图12a为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的基站执行,如图11a所示,该信息更新方法可以包括以下步骤:
步骤1201a、通过UE specific信令向UE发送用于指示时间窗口的配置信息。
关于上述步骤1201a的详细介绍可以参考前述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间窗口的配置信息,其中,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图12b为本公开一个实施例所提供的一种信息更新方法的流程示意图,该方法由支持卫星通信的基站执行,如图12b所示,该信息更新方法可以包括以下步骤:
步骤1201b、通过common信令向UE发送用于指示时间窗口的配置信息。
关于上述步骤1201b的详细介绍可以参考前述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开一个实施例所提供的信息更新方法之中,UE会接收基站发送的用于指示时间窗口的配置信息,其中,该时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
图13为本公开一个实施例所提供的一种信息更新方法装置的结构示意图,如图13所示,装置1300可以包括:
接收模块1301,用于接收基站发送的更新后的小区特定偏移值cell-specific offset;
所述接收模块1301,还用于接收所述基站发送的用于指示时间偏移值和/或时间窗口的配置信息,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
更新模块1302,还用于基于所述时间偏移值和/或时间窗口对cell-specific offset进行更新。
综上所述,在本公开一个实施例所提供的信息更新转置之中,UE会接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
可选的,在本公开的一个实施例之中,所述接收模块,还用于:
接收所述基站通过更新后的系统信息发送的更新后的cell-specific offset。
可选的,在本公开的一个实施例之中,所述接收模块,还用于:
当所述UE和所述基站处于非对地静止轨道NGSO场景下时,接收所述基站发送的更新后的 cell-specific offset。
可选的,在本公开的一个实施例之中,所述接收模块,还用于:
接收所述基站通过用户设备特定UE-specific信令发送的所述配置信息;
接收所述基站通过公共common信令发送的所述配置信息。
可选的,在本公开的一个实施例之中,所述更新模块,还用于:
接收到所述更新后的cell-specific offset之后,在所述时间偏移值之内使用更新前的cell-specific offset与所述基站进行通信,且/或,在延迟所述时间偏移值之后,再使用更新后的cell-specific offset与所述基站进行通信。
可选的,在本公开的一个实施例之中,所述时间偏移值为固定值或可配置值。
可选的,在本公开的一个实施例之中,所述更新模块,还用于:
在所述时间窗口内使用UE特定偏移值UE-specific offset与所述基站进行通信;在所述时间窗口之后使用所述更新后的cell-specific offset与所述基站进行通信。
可选的,在本公开的一个实施例之中,所述更新模块,还用于:
在所述时间窗口内,所述UE基于所述UE-specific offset来执行需要使用cell-specific offset的通信操作;
在所述时间窗口内,所述UE不执行所述需要使用cell-specific offset的通信操作。
图14为本公开一个实施例所提供的一种信息更新方法装置的结构示意图,如图14所示,装置1400可以包括:
确定模块1401,用于确定时间偏移值和/或时间窗口,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
发送模块1402,用于向UE发送用于指示所述时间偏移值和/或时间窗口的配置信息;
所述发送模块1402,还用于向所述UE发送更新后的cell-specific offset。
综上所述,在本公开一个实施例所提供的信息更新转置之中,UE会接收基站发送的用于指示时间偏移值和/或时间窗口的配置信息,其中,该时间偏移值用于指示更新后的小区特定偏移值的延迟生效时间,时间窗口用于指示更新后的小区特定偏移值的无效时间。当UE接收到基站发送的更新后的小区特定偏移值时,会基于该时间偏移值和/或时间窗口来使用该更新后的小区特定偏移值。由此可知,本公开实施例之中,具体是通过时间偏移值和/或时间窗口来确定更新后的小区特定偏移值的生效时间,以确保小区内各个UE基于更新后的小区特定偏移值向基站发送上行信息时,基站对于不同UE使用的小区特定偏移值有相同的理解,保证通信的可靠性。
可选的,在本公开的一个实施例之中,所述时间偏移值为固定值或可配置值。
可选的,在本公开的一个实施例之中,所述确定模块,还用于:
基于所述基站覆盖范围内信号传输的最大往返时间RTT确定所述时间偏移值。
可选的,在本公开的一个实施例之中,所述发送模块,还用于:
通过UE-specific信令向所述UE发送所述配置信息;
通过common信令向所述UE发送所述配置信息。
可选的,在本公开的一个实施例之中,所述发送模块,还用于:
基于星历信息确定所述基站和所述UE是否处于NGSO场景,若所述UE和所述基站处于NGSO场景,接收所述基站发送的更新后的cell-specific offset。
图15是本公开一个实施例所提供的一种用户设备UE1500的框图。例如,UE1500可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图15,UE1500可以包括以下至少一个组件:处理组件1502,存储器1504,电源组件1506,多媒体组件1508,音频组件1510,输入/输出(I/O)的接口1512,传感器组件1513,以及通信组件1516。
处理组件1502通常控制UE1500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1502可以包括至少一个处理器1511来执行指令,以完成上述的方法的 全部或部分步骤。此外,处理组件1502可以包括至少一个模块,便于处理组件1502和其他组件之间的交互。例如,处理组件1502可以包括多媒体模块,以方便多媒体组件1508和处理组件1502之间的交互。
存储器1504被配置为存储各种类型的数据以支持在UE1500的操作。这些数据的示例包括用于在UE1500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1506为UE1500的各种组件提供电力。电源组件1506可以包括电源管理系统,至少一个电源,及其他与为UE1500生成、管理和分配电力相关联的组件。
多媒体组件1508包括在所述UE1500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1508包括一个前置摄像头和/或后置摄像头。当UE1500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1510被配置为输出和/或输入音频信号。例如,音频组件1510包括一个麦克风(MIC),当UE1500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1504或经由通信组件1516发送。在一些实施例中,音频组件1510还包括一个扬声器,用于输出音频信号。
I/O接口1512为处理组件1502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1513包括至少一个传感器,用于为UE1500提供各个方面的状态评估。例如,传感器组件1513可以检测到设备1500的打开/关闭状态,组件的相对定位,例如所述组件为UE1500的显示器和小键盘,传感器组件1513还可以检测UE1500或UE1500一个组件的位置改变,用户与UE1500接触的存在或不存在,UE1500方位或加速/减速和UE1500的温度变化。传感器组件1513可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1513还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1513还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1516被配置为便于UE1500和其他设备之间有线或无线方式的通信。UE1500可以接入基于通信标准的无线网络,如WiFi,2G、3G、4G、5G或它们的组合。在一个示例性实施例中,通信组件1516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1500可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图16是本公开一个实施例所提供的一种基站1600的框图。例如,基站1600可以被提供为一基站。参照图16,基站1600包括处理组件1611,其进一步包括至少一个处理器,以及由存储器1632所代表的存储器资源,用于存储可由处理组件1622的执行的指令,例如应用程序。存储器1632中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1610被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图1所示方法。
基站1600还可以包括一个电源组件1626被配置为执行基站1600的电源管理,一个有线或无线网络接口1650被配置为将基站1600连接到网络,和一个输入输出(I/O)接口1658。基站1600可以操作基 于存储在存储器1632的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从基站、UE的角度对本公开一个实施例所提供的方法进行了介绍。为了实现上述本公开一个实施例所提供的方法中的各功能,基站和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开一个实施例所提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开一个实施例所提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如前述方法实施例中的终端设备):处理器用于执行图1-图7b任一所示的方法。
通信装置为网络设备:收发器用于执行图8-图12b任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、 硅锗(SiGe)、砷化镓(Gas)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的系统,该系统包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述实施例中作为终端设备(如前述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一 般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (21)

  1. 一种信息更新方法,其特征在于,应用于支持卫星通信的用户设备UE,包括:
    接收基站发送的更新后的小区特定偏移值cell-specific offset;
    接收所述基站发送的用于指示时间偏移值和/或时间窗口的配置信息,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
    基于所述时间偏移值和/或时间窗口使用所述更新后的cell-specific offset。
  2. 如权利要求1所述的方法,其特征在于,所述接收所述基站发送的更新后的cell-specific offset,包括:
    接收所述基站通过更新后的系统信息发送的更新后的cell-specific offset。
  3. 如权利要求1所述的方法,其特征在于,所述接收所述基站发送的更新后的cell-specific offset,包括:
    当所述UE和所述基站处于非对地静止轨道NGSO场景下时,接收所述基站发送的更新后的cell-specific offset。
  4. 如权利要求1所述的方法,其特征在于,所述接收所述基站发送的用于指示时间偏移值和/或时间窗口的配置信息的方法包括以下至少一种:
    接收所述基站通过用户设备特定UE-specific信令发送的所述配置信息;
    接收所述基站通过公共common信令发送的所述配置信息。
  5. 如权利要求1所述的方法,其特征在于,所述基于所述时间偏移值使用所述更新后的cell-specific offset,包括:
    接收到所述更新后的cell-specific offset之后,在所述时间偏移值之内使用更新前的cell-specific offset与所述基站进行通信,且/或,在延迟所述时间偏移值之后,再使用更新后的cell-specific offset与所述基站进行通信。
  6. 如权利要求4所述的方法,其特征在于,所述时间偏移值为固定值或可配置值。
  7. 如权利要求1所述的方法,其特征在于,所述基于所述时间窗口使用所述更新后的cell-specific offset,包括:
    在所述时间窗口内使用UE特定偏移值UE-specific offset与所述基站进行通信;在所述时间窗口之后使用所述更新后的cell-specific offset与所述基站进行通信。
  8. 如权利要求7所述的方法,其特征在于,所述在所述时间窗口内使用UE-specific offset与所述基站进行通信的方法包括以下至少一种:
    在所述时间窗口内,所述UE基于所述UE-specific offset来执行需要使用cell-specific offset的通信操作;
    在所述时间窗口内,所述UE不执行所述需要使用cell-specific offset的通信操作。
  9. 一种信息更新方法,其特征在于,应用于支持卫星通信的基站,包括:
    确定时间偏移值和/或时间窗口,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
    向UE发送用于指示所述时间偏移值和/或时间窗口的配置信息;
    向所述UE发送更新后的cell-specific offset。
  10. 如权利要求9所述的方法,其特征在于,所述时间偏移值为固定值或可配置值。
  11. 如权利要求9所述的方法,其特征在于,所述确定时间偏移值,包括:
    基于所述基站覆盖范围内信号传输的最大RTT确定所述时间偏移值。
  12. 如权利要求9所述的方法,其特征在于,所述向UE发送用于指示所述时间偏移值和/或时间窗口的配置信息的方法包括以下至少一种:
    通过UE-specific信令向所述UE发送所述配置信息;
    通过common信令向所述UE发送所述配置信息。
  13. 如权利要求9所述的方法,其特征在于,所述向所述UE发送的更新后的cell-specific offset,包括:
    基于星历信息确定所述基站和所述UE是否处于NGSO场景,若所述UE和所述基站处于NGSO场景,接收所述基站发送的更新后的cell-specific offset。
  14. 一种信息更新装置,其特征在于,包括:
    接收模块,用于接收基站发送的更新后的小区特定偏移值cell-specific offset;
    所述接收模块,还用于接收所述基站发送的用于指示时间偏移值和/或时间窗口的配置信息,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
    更新模块,用于基于所述时间偏移值和/或时间窗口使用所述更新后的cell-specific offset。
  15. 一种信息更新装置,其特征在于,包括:
    确定模块,用于确定时间偏移值和/或时间窗口,所述时间偏移值用于指示更新后的cell-specific offset的延迟生效时间,所述时间窗口用于指示所述更新后的cell-specific offset的无效时间;
    发送模块,用于向UE发送用于指示所述时间偏移值和/或时间窗口的配置信息;
    所述发送模块,还用于向所述UE发送更新后的cell-specific offset。
  16. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至8中任一项所述的方法。
  17. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求9至13中任一项所述的方法。
  18. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至8中任一项所述的方法。
  19. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求9至13任一所述的方法。
  20. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至8中任一项所述的方法被实现。
  21. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求9至13中任一项所述的方法被实现。
PCT/CN2021/129133 2021-11-05 2021-11-05 一种信息更新方法、装置、用户设备、基站及存储介质 WO2023077472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/129133 WO2023077472A1 (zh) 2021-11-05 2021-11-05 一种信息更新方法、装置、用户设备、基站及存储介质
CN202180003399.7A CN116406525A (zh) 2021-11-05 2021-11-05 一种信息更新方法、装置、用户设备、基站及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/129133 WO2023077472A1 (zh) 2021-11-05 2021-11-05 一种信息更新方法、装置、用户设备、基站及存储介质

Publications (1)

Publication Number Publication Date
WO2023077472A1 true WO2023077472A1 (zh) 2023-05-11

Family

ID=86240535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129133 WO2023077472A1 (zh) 2021-11-05 2021-11-05 一种信息更新方法、装置、用户设备、基站及存储介质

Country Status (2)

Country Link
CN (1) CN116406525A (zh)
WO (1) WO2023077472A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033094A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling timing for large cells and long propagation delays

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033094A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling timing for large cells and long propagation delays

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on timing relationship enhancements for NTN", 3GPP DRAFT; R1-2106482, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052037810 *
INTERDIGITAL, INC.: "On timing relationship for NTN", 3GPP DRAFT; R1-2009116, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945497 *
LG ELECTRONICS: "Discussions on timing relationship enhancements in NTN", 3GPP DRAFT; R1-2008410, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946657 *

Also Published As

Publication number Publication date
CN116406525A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN115004764A (zh) PScell添加或改变的成功报告的记录方法、装置
CN115004776A (zh) 成功PScell添加或更换报告的位置信息记录方法、装置
WO2023133686A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023060603A1 (zh) 一种寻呼分组的方法、装置、终端设备、基站及存储介质
WO2023028849A1 (zh) 参考信号测量方法、装置、用户设备、网络侧设备及存储介质
WO2023000178A1 (zh) 一种信号接收方法、装置、用户设备、基站及存储介质
WO2023077472A1 (zh) 一种信息更新方法、装置、用户设备、基站及存储介质
CN115004765A (zh) 成功PScell添加或更换报告的上报方法、装置
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2023065075A1 (zh) 一种上报方法、装置、用户设备、网络侧设备及存储介质
WO2023065339A1 (zh) 一种按需定位参考信号prs请求方法、装置、用户设备、网络侧设备及存储介质
WO2023102943A1 (zh) 一种随机接入资源配置的确定方法及设备/存储介质/装置
WO2023122986A1 (zh) 一种重复传输的终止方法及设备/存储介质/装置
WO2023035116A1 (zh) 一种无线资源控制rrc状态切换方法、装置、用户设备、基站及存储介质
WO2023108374A1 (zh) 一种测量方法/装置/用户设备/网络侧设备及存储介质
WO2023133694A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2023050155A1 (zh) 一种在非地面网络ntn调整定时提前ta的方法及装置
WO2023130283A1 (zh) 一种映射方式确定方法/装置/设备及存储介质
WO2023092602A1 (zh) 一种预编码方法、装置、用户设备、ris阵列、基站及存储介质
WO2023108574A1 (zh) 一种定位方法及设备/存储介质/装置
WO2023150989A1 (zh) 一种定位方法及设备/存储介质/装置
WO2023082279A1 (zh) 一种波束测量方法、装置、用户设备、网络侧设备及存储介质
WO2023155053A1 (zh) 一种辅助通信设备的发送方法及设备/存储介质/装置
WO2023150990A1 (zh) 一种定位方法/装置/设备及存储介质
WO2023060442A1 (zh) 一种有效信息指示方法、装置、用户设备、网络侧设备及存储介质

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024008720

Country of ref document: BR