WO2023075627A1 - Procédés de détermination de vitesses d'onde de tube - Google Patents

Procédés de détermination de vitesses d'onde de tube Download PDF

Info

Publication number
WO2023075627A1
WO2023075627A1 PCT/RU2021/000463 RU2021000463W WO2023075627A1 WO 2023075627 A1 WO2023075627 A1 WO 2023075627A1 RU 2021000463 W RU2021000463 W RU 2021000463W WO 2023075627 A1 WO2023075627 A1 WO 2023075627A1
Authority
WO
WIPO (PCT)
Prior art keywords
perforating gun
wellbore
reflection
tube wave
location
Prior art date
Application number
PCT/RU2021/000463
Other languages
English (en)
Inventor
Dmitry Viktorovich Badazhkov
Roman Vladimirovich Korkin
Original Assignee
Schlumberger Canada Limited
Schlumberger, Technology Corporation
Schlumberger, Technology B.V.
Services, Petroliers Schlumberger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Canada Limited, Schlumberger, Technology Corporation, Schlumberger, Technology B.V., Services, Petroliers Schlumberger filed Critical Schlumberger Canada Limited
Priority to PCT/RU2021/000463 priority Critical patent/WO2023075627A1/fr
Priority to ARP220102906A priority patent/AR127461A1/es
Publication of WO2023075627A1 publication Critical patent/WO2023075627A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • E21B47/095Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes by detecting an acoustic anomalies, e.g. using mud-pressure pulses

Definitions

  • the current state of the art for tracking the end of coiled tubing is measuring the length of coiled tubing deployed and using a tubing end locator, i.e., a set of sensors and physical down hole objects, such as a casing collar for ACTIVETM coil that interacts with the coil to obtain a good reference position.
  • a tubing end locator i.e., a set of sensors and physical down hole objects, such as a casing collar for ACTIVETM coil that interacts with the coil to obtain a good reference position.
  • physical completion objects placed in the well that the coil can pull or push on help indicate its current depth.
  • These tubing end locators have complicated issues associated with them, however, and do not always lead to a realistic depth measurement.
  • tubing end locators can provide a good position reference accurate to about 3 m (10 ft) when the coiled tubing is being deployed down hole; however, this reference can become inaccurate when the coiled tubing motion is reversed.
  • the calculation of the end of coil in vertical wells is easier because the tension on the coil is known, but the temperature in the wellbore can cause the coil to lengthen and/or balloon and introduce some inaccuracy.
  • the end of coiled tubing does not move immediately when pulled on since it must overcome any helical or sinusoidal buckling before the end starts to move.
  • the present disclosure proposes methods for calculating tube wave (TW) velocity in a wellbore, based on perforation gun movement.
  • the gun generates TW and the reflection time can be identified during movement.
  • TW velocity As far as the gun depth location and velocity are known, it is possible to calculate TW velocity.
  • the TW velocity may also be used for independent calculation (from known statistical methods) of the last reflection location or determination of stimulation efficiency.
  • embodiments relate to methods for determining tube wave velocity in a wellbore.
  • a perforating gun is deployed to a first location in the wellbore.
  • a tube wave is generated by moving the perforating gun.
  • a reflection of the tube wave is received from one or more wellbore features.
  • the depth of the perforating gun is determined.
  • the perforating gun is then moved to a second location in the wellbore. Then the receiving of the reflection is repeated and the tube wave velocity is determined by observing a difference between reflection times.
  • embodiments relate to methods for determining the location of a tube wave reflection.
  • a perforating gun is deployed to a first location in the wellbore.
  • a tube wave is generated by moving the perforating gun.
  • a reflection of the tube wave is received from one or more wellbore features.
  • the depth of the perforating gun is determined.
  • the perforating gun is then moved to a second location in the wellbore. Then the receiving of the reflection is repeated and the location of the last reflection is calculated.
  • Figure 1 is a schematic view of a perforating gun moving in a wellbore.
  • Figure 2 shows a pressure record of a hydraulic fracturing treatment, followed by moving a perforating gun (shaded area).
  • Figure 3 is an expanded view of the shaded area of Fig. 2.
  • Figure 4 is a cepstrogram derived from the information depicted in Fig. 3.
  • Figure 5 is a log showing the depth of the perforating gun versus time.
  • Figure 6 is a plot showing how reflection time varies with depth in the wellbore.
  • the term about should be understood as any amount or range within 10% of the recited amount or range (for example, a range from about 1 to about 10 encompasses a range from 0.9 to 11). Also, in the summary and this detailed description, it should be understood that a concentration range listed or described as being useful, suitable, or the like, is intended that any concentration within the range, including the end points, is to be considered as having been stated. For example, “a range of from 1 to 10” is to be read as indicating each possible number along the continuum between about 1 and about 10. Furthermore, one or more of the data points in the present examples may be combined together, or may be combined with one of the data points in the specification to create a range, and thus include each possible value or number within this range.
  • the present disclosure proposes methods for calculating tube wave (TW) velocity in a wellbore, based on perforation gun movement.
  • the gun generates TW and the reflection time can be identified during movement.
  • TW velocity As far as the gun depth location and velocity are known, it is possible to calculate TW velocity.
  • the TW velocity may also be used for independent calculation (from known statistical methods) of the last reflection location or determination of stimulation efficiency.
  • embodiments relate to methods for determining tube wave velocity in a wellbore.
  • a perforating gun is deployed to a first location in the wellbore.
  • a tube wave is generated by moving the perforating gun.
  • a reflection of the tube wave is received from one or more wellbore features.
  • the depth of the perforating gun is determined.
  • the perforating gun is then moved to a second location in the wellbore. Then the receiving of the reflection is repeated and the tube wave velocity is determined by observing a difference between reflection times.
  • embodiments relate to methods for determining the location of a tube wave reflection.
  • a perforating gun is deployed to a first location in the wellbore.
  • a tube wave is generated by moving the perforating gun.
  • a reflection of the tube wave is received from one or more wellbore features.
  • the depth of the perforating gun is determined.
  • the perforating gun is then moved to a second location in the wellbore. Then the receiving of the reflection is repeated and the location of the last reflection is calculated.
  • the input data for the analysis comprise surface pressure P(t) (Fig. 3) and gun depth position L(t) (Fig. 5).
  • a cepstrogram is calculated from the pressure signal using logarithm function in Fourier space of the signal (Fig. 4):
  • Step 4 If the region of interest (ROI) for gun movement is visually available on the cepstrogram, an initial line with a start point A (t lt T X ) and an end point A' (t 2 > ⁇ 2) is assigned on the cepstrogram (Fig. 4). The line is located in the ROI. If there is no gun movement traceable on the cepstrogram, the results are not available. [0027] Step 4:
  • the optimal position of the line from Step 3 may be found by calculating the minimal integral along the lines.
  • the integral is calculated by using the Radon transformation: where R(s, ⁇ ) is the integral along the cepstrum line and /(... ) is the cepstrogram intensity function.
  • the minimal integral (optimal position) is found via optimization over s, a.
  • the reflection time is calculated within every physical time window size w : [t start , t start + w] and the reflection time interval [ ⁇ 0 — ⁇ , ⁇ 0 + ⁇ ]. Calculation of the reflection times may be performed with the algorithm using the scalar product of physical time vectors.
  • the output from the step is two vectors: [t oi , ⁇ i ], [t oi , ⁇ ⁇ i ], where t 0i is middle of every time step and ⁇ ⁇ i is the reflection time tolerance.
  • c tw is TW velocity, 1599 m/sec (for data from Step 1)
  • the stimulation depth is calculated from c tw , ⁇ c tw and the reflection time received from the hammer at the end of the job (Fig. 2).
  • the reflection time is computed from the cepstrum representation of a pressure curve versus time.
  • the cepstrum is the result of taking the inverse Fourier transform of the logarithm of the estimated spectrum of a signal:

Landscapes

  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

La présente invention concerne des procédés pour déterminer une vitesse d'onde de tube dans un puits de forage souterrain, lesquels procédés impliquent le déploiement d'un canon de perforation vers un premier emplacement dans le puits de forage. Une onde de tube est générée en déplaçant le canon de perforation. Une réflexion de l'onde de tube est reçue à partir d'un ou plusieurs éléments de puits de forage. La profondeur du canon de perforation est déterminée. Le canon de perforation est déplacé vers un second emplacement dans le puits de forage. Après le déplacement du canon de perforation, la réception de la réflexion est répétée et la vitesse d'onde de tube est déterminée en observant une différence entre les temps de réflexion. Ces procédés peuvent également être utilisés pour calculer l'emplacement de la dernière réflexion.
PCT/RU2021/000463 2021-10-27 2021-10-27 Procédés de détermination de vitesses d'onde de tube WO2023075627A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/RU2021/000463 WO2023075627A1 (fr) 2021-10-27 2021-10-27 Procédés de détermination de vitesses d'onde de tube
ARP220102906A AR127461A1 (es) 2021-10-27 2022-10-26 Métodos para determinar las velocidades de las ondas tubulares

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2021/000463 WO2023075627A1 (fr) 2021-10-27 2021-10-27 Procédés de détermination de vitesses d'onde de tube

Publications (1)

Publication Number Publication Date
WO2023075627A1 true WO2023075627A1 (fr) 2023-05-04

Family

ID=86160136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2021/000463 WO2023075627A1 (fr) 2021-10-27 2021-10-27 Procédés de détermination de vitesses d'onde de tube

Country Status (2)

Country Link
AR (1) AR127461A1 (fr)
WO (1) WO2023075627A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145985A1 (fr) * 2010-05-21 2011-11-24 Schlumberger Canada Limited Procédé de diagnostic en temps réel d'opérations de fracture avec une combinaison d'ondes de tube et d'un suivi microsismique
WO2017083449A1 (fr) * 2015-11-12 2017-05-18 Schlumberger Technology Corporation Système mobile
WO2017223007A1 (fr) * 2016-06-20 2017-12-28 Schlumberger Technology Corporation Analyse d'ondes de tube de communication de puits
WO2018004369A1 (fr) * 2016-07-01 2018-01-04 Шлюмберже Канада Лимитед Procédé et système destiné à détecter dans le puits de forage des objets réfléchissant un signal hydraulique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145985A1 (fr) * 2010-05-21 2011-11-24 Schlumberger Canada Limited Procédé de diagnostic en temps réel d'opérations de fracture avec une combinaison d'ondes de tube et d'un suivi microsismique
WO2017083449A1 (fr) * 2015-11-12 2017-05-18 Schlumberger Technology Corporation Système mobile
WO2017223007A1 (fr) * 2016-06-20 2017-12-28 Schlumberger Technology Corporation Analyse d'ondes de tube de communication de puits
WO2018004369A1 (fr) * 2016-07-01 2018-01-04 Шлюмберже Канада Лимитед Procédé et système destiné à détecter dans le puits de forage des objets réfléchissant un signal hydraulique

Also Published As

Publication number Publication date
AR127461A1 (es) 2024-01-24

Similar Documents

Publication Publication Date Title
US11591900B2 (en) Method to predict overpressure uncertainty from normal compaction trendline uncertainty
US10487648B2 (en) Entropy based multiphase flow detection
EP3179277B1 (fr) Inversion par résonance d'impédance acoustique d'espace annulaire derrière un tubage
US20230350091A1 (en) Spectral analysis and machine learning for determining cluster efficiency during fracking operations
US8024124B2 (en) Determining maximum horizontal stress in an earth formation
US10539008B2 (en) Systems and methods for determining tool center, borehole boundary, and/or mud parameter
EP2656022A2 (fr) Procédés et systèmes d'interprétation de données d'écoulement de fluide à phases multiples dans un tube
DK201770009A1 (en) Method of estimating well productivity along a section of a wellbore
US20080105426A1 (en) Method and Apparatus for Estimating the Permeability Distribution During a Well Test
EP2957716A2 (fr) Determination d'une liaison quantitative utilisant une attenuation de signal
US11754747B2 (en) Systems and methods for hybrid model hydraulic fracture pressure forecasting
US10309816B2 (en) Methodologies and apparatus for the recognition of production tests stability
WO2023075627A1 (fr) Procédés de détermination de vitesses d'onde de tube
US20210388712A1 (en) Methods of monitoring a geometric property of a hydraulic fracture within a subsurface region, wells that perform the methods, and storage media that direct computing devices to perform the methods
US11079510B2 (en) Seismic well ties using blocking schemes
EP3482041B1 (fr) Inspection de tuyaux à effets de déformation
US20210073342A1 (en) Calibrating a diversion model for a hydraulic fracturing well system
US11933162B2 (en) Calibrating erosional sand prediction
US11947064B2 (en) Automatic recognition of environmental parameters with azimuthally distributed transducers
JP2002257030A (ja) スケール成長予測装置、方法、及びそのプログラムとプログラムを記録した記録媒体
WO2020226509A1 (fr) Détermination de la température et du profil de température dans un pipeline ou un puits de forage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962655

Country of ref document: EP

Kind code of ref document: A1