WO2023075491A1 - Composition for preventing, alleviating, or treating muscular dystrophy - Google Patents

Composition for preventing, alleviating, or treating muscular dystrophy Download PDF

Info

Publication number
WO2023075491A1
WO2023075491A1 PCT/KR2022/016664 KR2022016664W WO2023075491A1 WO 2023075491 A1 WO2023075491 A1 WO 2023075491A1 KR 2022016664 W KR2022016664 W KR 2022016664W WO 2023075491 A1 WO2023075491 A1 WO 2023075491A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscular dystrophy
peony
paeonia
preventing
dystrophy
Prior art date
Application number
PCT/KR2022/016664
Other languages
French (fr)
Korean (ko)
Inventor
윤유식
이도헌
심인애
이종규
임혜미
Original Assignee
중앙대학교 산학협력단
재단법인 유전자동의보감 사업단
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단, 재단법인 유전자동의보감 사업단, 한국과학기술원 filed Critical 중앙대학교 산학협력단
Publication of WO2023075491A1 publication Critical patent/WO2023075491A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/65Paeoniaceae (Peony family), e.g. Chinese peony
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/316Foods, ingredients or supplements having a functional effect on health having an effect on regeneration or building of ligaments or muscles

Definitions

  • the present invention relates to a composition for preventing, improving or treating muscular dystrophy.
  • Muscular dystrophy refers to the progression of skeletal muscle degeneration independent of the central nervous system and the peripheral nervous system, resulting in muscle weakness, contracture, and deformation, and pseudohypertrophy or progressive symmetrical muscle atrophy in specific muscles. Muscular dystrophy is classified into several types according to the degree of muscle weakness and genetic pattern, such as Duchenne type, Becker type, limb-girdle muscular dystrophy, and facial scapulohueral dystrophy. ) and the like.
  • Duchenne muscular dystrophy is an X chromosome-linked degenerative muscle disease that affects about 1 in 3,500 men and is characterized by severe inflammation of the muscle and progressive loss of muscle function.
  • Duchenne muscular dystrophy is mainly caused by mutations in the dystrophin gene, and patients with these mutations mediate the interaction between actin filaments and the extracellular matrix to transmit physical force and organize the muscle cytoskeleton. This will be lacking A lack of dystrophin protein weakens the membranes of muscle cells, making them vulnerable to muscle contraction-induced damage, and repetitive contraction-induced damage leads to chronic muscle inflammation.
  • Duchenne muscular dystrophy Early symptoms include difficulty climbing stairs, abnormal gait, and frequent falls. Most patients with Duchenne muscular dystrophy lose the ability to walk between the ages of 6 and 12 and require assisted ventilation by the age of 20. With proper treatment, people can survive to the age of 40, but most patients die between the ages of 20 and 40 from heart failure or respiratory failure.
  • Duchenne muscular dystrophy is characterized by persistent muscle inflammation. Inflammatory cytokines and chemokines act as major causes of muscle damage in Duchenne muscular dystrophy. These cytokines and chemokines activate NF-kB, a major inflammatory transcription factor, and further up-regulate the expression of cytokines and chemokines to induce muscle inflammation, resulting in loss of muscle fibers. Therefore, controlling muscle inflammation is an important goal in maintaining muscle function in patients with Duchenne muscular dystrophy.
  • corticosteroids such as prednisone and prednisolone are used to slow the progression of the disease.
  • corticosteroids such as prednisolone are the only drugs clinically recommended for Duchenne muscular dystrophy.
  • the most recent guideline for the treatment of Duchenne muscular dystrophy is the continuous use of corticosteroids in patients throughout their life, beginning at the age of 4–5 years. There is evidence that corticosteroids maintain muscle strength and motor function for a period of time and slow the progression of loss of walking function and loss of lung function.
  • corticosteroids are not direct therapeutic agents, they only slow down the progression of the disease, such as the amount of time the patient becomes dependent on a wheelchair. In addition, the average delay in disease progression in patients who take daily corticosteroids is only 2 years. In addition, chronic use of corticosteroids causes various side effects such as high blood pressure, fluid retention, weight gain, and skin atrophy. Therefore, there is an urgent need to develop an effective and safe treatment for muscular dystrophy.
  • Paeoniaceae Peony ( Paeonia lactiflora Pall.) belonging to the family is used as a treatment for various inflammatory diseases such as rheumatoid arthritis, hepatitis, and systemic lupus erythematosus in many Asian countries such as China, Korea, Japan, Taiwan, and Thailand.
  • various inflammatory diseases such as rheumatoid arthritis, hepatitis, and systemic lupus erythematosus in many Asian countries such as China, Korea, Japan, Taiwan, and Thailand.
  • no study has been conducted on the efficacy of peony in the treatment of muscular dystrophy.
  • An object of the present invention is to provide a pharmaceutical composition for preventing or treating muscular dystrophy.
  • an object of the present invention is to provide a food composition for preventing or improving muscular dystrophy.
  • a pharmaceutical composition containing a peony extract improves muscle function, reduces muscle damage, reduces HMGB1 level, inhibits signaling of HMGB1-TLR4-NFkB, or reduces the level of cytokines and chemokines to prevent or improve muscular dystrophy. Or it can be usefully used for therapeutic purposes.
  • 1A and B show that oral administration of water, 30% ethanol, and 70% ethanol extract of peony improved muscle function in mdx mice.
  • Subsequent experiments were conducted using 30% ethanol extract (PL) of peony.
  • Figure 2 shows that oral administration of PL in mdx mice reduced muscle damage.
  • Figure 2A shows the results of observing degenerative fibers (arrows) by staining the gastrocnemius muscle with hematoxylin and eosin
  • Figure 2B shows the results of quantifying plasma creatine kinase activity with a kit.
  • Figure 3a is a result showing 100 DEPs (differentially expressed proteins) obtained by comparing the gastrocnemius of a wildtype control group (wildtype) and mdx mice administered with distilled water as a volcano plot (volcano plot).
  • One up-regulated DEPs is marked with a red dot
  • 99 down-regulated DEPs are marked with a green dot
  • a gray dot indicates that DEPs were not selected.
  • Figure 3b is a result showing nine DEPs obtained by comparing gastrocnemius muscles of mdx mice orally administered with PL and mdx mice administered with distilled water in a Volcano plot. Eight up-regulated DEPs are marked with a red dot, one down-regulated DEPs are marked with a green dot, and a gray dot indicates that DEPs were not selected.
  • Figure 3c shows the result of identifying 100 DEPs as a heat map by comparing the gastrocnemius of mdx mice with wildtype controls (wildtype) to which distilled water was administered. Up-regulated DEPs are marked in red, and down-regulated DEPs are marked in blue.
  • Figure 3d shows the result of identifying 9 DEPs as a heat map by comparing gastrocnemius muscles of mdx mice to which PL was orally administered and mdx mice to which distilled water was administered. Up-regulated DEPs are marked in red, and down-regulated DEPs are marked in blue.
  • Figure 3e is a Venn diagram of DEPs between wild-type control and mdx mice administered with distilled water, and DEPs between mdx mice orally administered PL and mdx mice administered with distilled water. Up-regulated DEPs are marked in red, and down-regulated DEPs are marked in green.
  • Figure 3f shows the results of analyzing the interaction of HMGB1 using the STRING database.
  • Figure 4a is a result of examining major proteins of the HMGB1-TLR4-NF-kB signaling pathway in skeletal muscle of mdx mice.
  • Figure 4g shows the level of IkB, an inhibitor of F-kB, decreased in muscle of mdx mice than wild-type mice, but increased by oral administration of PL.
  • Figure 4h (left) and Figure 4i show that the level of cytoplasmic NF-kB decreased in mdx mice compared to wild-type controls, but increased with oral administration of PL.
  • Figure 4h (right) and Figure 4j show that the level of nuclear NF-kB increased in mdx mice compared to wild-type controls, but decreased with oral administration of PL.
  • Figure 4k shows that NF-kB binding to the target DNA sequence was increased in mdx mice compared to wild-type controls, but decreased by oral administration of PL.
  • 5a to 5i show the mRNA levels of cytokines such as IL-6, IL-1 ⁇ , IL-1 ⁇ , IFN- ⁇ , and TNF- ⁇ and chemokines such as CCL2, CCL3, CCL4, and CCL5 in the gastrocnemius muscle of the wild-type control group. It was increased in mdx mice compared to , but decreased by oral administration of PL.
  • cytokines such as IL-6, IL-1 ⁇ , IL-1 ⁇ , IFN- ⁇ , and TNF- ⁇
  • chemokines such as CCL2, CCL3, CCL4, and CCL5
  • 6a to 6i show the mRNA levels of cytokines such as IL-6, IL-1 ⁇ , IL-1 ⁇ , IFN- ⁇ , and TNF- ⁇ and chemokines such as CCL2, CCL3, CCL4, and CCL5 in the diaphragm compared to wild-type controls. It was increased in mdx mice compared to , but decreased by oral administration of PL.
  • cytokines such as IL-6, IL-1 ⁇ , IL-1 ⁇ , IFN- ⁇ , and TNF- ⁇
  • chemokines such as CCL2, CCL3, CCL4, and CCL5
  • FIG. 8 shows a possible mechanism by which oral administration of PL increases muscle function in mdx mice.
  • Pathological changes in mdx mice compared to wild-type controls are indicated by red arrows, and changes caused by oral administration of PL in mdx mice are indicated by blue arrows.
  • one aspect of the present invention provides a pharmaceutical composition for preventing or treating muscular dystrophy comprising a peony extract as an active ingredient.
  • muscle dystrophy refers to degeneration of skeletal muscles that is not related to the central nervous system and the peripheral nervous system, showing muscle weakness, contracture, and deformation, and symmetrical muscular atrophy that comes to specific muscles in pseudohypertrophy or progressively. means to appear
  • the peony extract is red peony ( Paeonia lactiflora Pall.), Cham peony ( Paeonia lactiflora var. trichocarpa (Bunge) Stern), mincham peony ( Paeonia lactiflora f. nuda Nakai), ho peony ( Paeonia lactiflora f. pilosella Nakai), white peony ( Paeonia japonica (Makino) Miyabe & Takeda), hairy white peony ( Paeonia japonica var.
  • pillosa Nakai mountain peony ( Paeonia obovata Maxim), peony ( Paeonia veitchii Lynch) and other closely related plants It may be derived from one or more species selected from the group consisting of (Peonyaceae and Paeoniaceae), and preferably may be derived from dried roots of red peony.
  • the red peony extract can be prepared according to a conventional method known in the art.
  • a peony extract may be prepared by pulverizing the peony, adding a solvent commonly used for extraction, and extracting at an appropriate temperature and pressure.
  • the peony extract may be extracted with one or more solvents selected from the group consisting of alcohols having 1 to 4 carbon atoms and mixed solvents thereof, preferably 10 to 90, 15 to 85, It may be extracted with 20 to 80, 25 to 75, or 30 to 70%, or 30 or 70% ethanol.
  • the peony extract includes not only the extract by the above-described solvent extraction method, but also an extract that has undergone a conventional purification process.
  • fractions obtained through various additional purification methods such as separation using an ultrafiltration membrane having a certain molecular weight cut-off value, separation by various chromatography (made for separation according to size, charge, hydrophobicity or affinity), etc. It may also be included in the peony extract of the present invention.
  • the peony extract may be prepared in a powder state by an additional process such as distillation under reduced pressure and freeze drying or spray drying.
  • active ingredient means a component that exhibits the desired activity alone or that can exhibit activity in combination with a carrier that is not active itself.
  • Muscular dystrophy includes types such as Duchenne type, Becker type, limb-girdle muscular dystrophy, facial scapulohueral dystrophy, dystonia, and Emery-Dreifes.
  • the muscular dystrophy is Duchenne muscular dystrophy, Becker muscular dystrophy, Limb-girdle muscular dystrophy, Facioscpulohueral dystrophy, muscular dystrophy It may be one or more types selected from the group consisting of myotonic dystrophy and Emery-Dreifuss muscular dystrophy.
  • Duchenne type is the most common type, and it occurs most often in boys between the ages of 2 and 4 due to hemi-recessive inheritance.
  • the signs of Duchenne type include obvious muscle weakness around the age of 5, and pseudohypertrophy (adipose connective tissue, not actual muscle), in which the gastrocnemius muscle is enlarged due to disability-compensatory hypertrophy.
  • pseudohypertrophy asdipose connective tissue, not actual muscle
  • gastrocnemius muscle is enlarged due to disability-compensatory hypertrophy.
  • Gower's sign which occurs when rising from a prone position, usually by placing one hand on the thigh and then pushing the hand. It is mainly caused by a mutation of the dystrophin gene, and a significant number of patients have an abnormality on the X chromosome.
  • Becker's onset usually occurs between the ages of 5 and 20, a little later than Duchenne's, and the progression of the disease is slow. Compared to the Duchenne type, who has myocardial disorders and usually dies in their teens, the Becker type survives into their 20s and does not have myocardial disorders.
  • Limb-macrodystrophy usually occurs after the age of 20 and corresponds to autosomal recessive muscular dystrophy.
  • Facial scapulohumeral muscular dystrophy usually begins before the age of 20 and is an autosomal dominant muscular dystrophy with asymmetrical defects and atrophy of the muscles around the eyes, mouth, shoulders, abdominal muscles, upper arms, and lower legs.
  • prevention refers to any action that suppresses or delays the onset of muscular dystrophy by administration of the pharmaceutical composition according to the present invention.
  • treatment refers to all activities that improve or beneficially change the symptoms of muscular dystrophy by administration of the pharmaceutical composition according to the present invention.
  • the pharmaceutical composition may be preferably formulated as a pharmaceutical composition by including one or more pharmaceutically acceptable carriers in addition to the peony extract described above for administration.
  • Formulations of the pharmaceutical composition may be granules, powders, tablets, coated tablets, capsules, suppositories, solutions, syrups, juices, suspensions, emulsions, drops, or injectable solutions.
  • the active ingredient may be combined with an oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, or water.
  • suitable binders, lubricants, disintegrants and coloring agents may also be included in the mixture.
  • Suitable binders include, but are not limited to, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tracacanth or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like.
  • Disintegrants include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
  • acceptable pharmaceutical carriers are sterile and biocompatible, and include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostatic agents may be added if necessary.
  • diluents, dispersants, surfactants, binders, and lubricants may be additionally added to prepare formulations for injections such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
  • the pharmaceutical composition of the present invention can be administered orally or parenterally, and in the case of parenteral administration, intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, transdermal administration, etc. can be administered.
  • a suitable dosage of the pharmaceutical composition of the present invention may be determined by factors such as formulation method, administration method, patient's age, weight, sex, morbid condition, food, administration time, administration route, excretion rate and reaction sensitivity. .
  • a typical daily dosage of peony raw materials for humans may be 3 g when the standard human weight is 60 kg, and the dosage of ethanol extract of peony is 50 to 10000 mg/day, 100 to 8000 mg/day, 200 to 6000 mg /day, 300 to 4000 mg/day, 400 to 2000 mg/day, 450 to 1000 mg/day, 500 to 800 mg/day, preferably 600 to 700 mg/day.
  • the dose of the 30% ethanol extract (yield, 22.2%) of peony according to an embodiment of the present invention may be 666mg/day.
  • the pharmaceutical composition of the present invention is prepared in unit dosage form by formulation using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by those skilled in the art. or it may be prepared by incorporating into a multi-dose container.
  • the pharmaceutical composition comprising the peony extract as an active ingredient improves muscle function, reduces muscle damage, reduces HMGB1 level, inhibits HMGB1-TLR4-NFkB signaling or cytokine and chemokine levels By reducing, muscular dystrophy can be prevented or treated.
  • Another aspect of the present invention provides a method for preventing or treating muscular dystrophy, comprising administering to a subject a pharmaceutical composition containing a peony extract as an active ingredient.
  • Another aspect of the present invention provides a preventive or therapeutic use of a composition containing a peony extract as an active ingredient, muscular dystrophy.
  • Another aspect of the present invention provides a use of a composition containing a peony extract as an active ingredient for preparing a medicament for preventing or treating muscular dystrophy, or a food for preventing or improving muscular dystrophy.
  • the peony, extract, muscular dystrophy, prevention, treatment, improvement, pharmaceutical composition and food are as described above or below.
  • Another aspect of the present invention provides a food composition for preventing or improving muscular dystrophy comprising a peony extract.
  • the term “improvement” refers to all actions that at least reduce the parameters related to the condition to be treated, for example, the severity of symptoms.
  • the food composition may be used before or after the onset of the disease to prevent or improve muscular dystrophy, simultaneously with or separately from a drug for treatment.
  • the peony extract is red peony ( Paeonia lactiflora Pall.), Cham peony ( Paeonia lactiflora var. trichocarpa (Bunge) Stern), mincham peony ( Paeonia lactiflora f. nuda Nakai), ho peony ( Paeonia lactiflora f.pilosella Nakai), white peony ( Paeonia japonica (Makino) Miyabe & Takeda), hairy white peony ( Paeonia japonica var.
  • pillosa Nakai mountain peony ( Paeonia obovata Maxim), peony ( Paeonia veitchii Lynch) and other closely related plants It may be derived from one or more species selected from the group consisting of (Peonyaceae and Paeoniaceae), and preferably may be derived from dried roots of red peony.
  • the peony extract may be extracted with one or more solvents selected from the group consisting of alcohols having 1 to 4 carbon atoms and mixed solvents thereof, preferably 10 to 90, 15 to 85, It may be extracted with 20 to 80, 25 to 75, or 30 to 70%, or 30 or 70% ethanol.
  • the muscular dystrophy consists of Duchenne muscular dystrophy, Becker muscular dystrophy, limb-girdle muscular dystrophy and facial scapulohueral dystrophy. It may be one or more selected from the group.
  • the food composition according to the present invention can be formulated in the same way as the pharmaceutical composition and used as a functional food or added to various foods.
  • Foods to which the composition of the present invention can be added include, for example, beverages, confectionery, diet bars, dairy products, meat, chocolate, pizza, ramen, other noodles, chewing gum, ice cream, vitamin complexes, and health supplements. .
  • the food composition of the present invention may include ingredients commonly added during food preparation, and include, for example, proteins, carbohydrates, fats, nutrients, seasonings and flavors.
  • the aforementioned carbohydrates include monosaccharides such as glucose, fructose, and the like; disaccharides such as maltose, sucrose, oligosaccharides and the like; and polysaccharides such as conventional sugars such as dextrins and cyclodextrins and sugar alcohols such as xylitol, sorbitol and erythritol.
  • flavoring agents natural flavoring agents [thaumatin, stevia extract (eg, rebaudioside A, glycyrrhizin, etc.)] and synthetic flavoring agents (saccharin, aspartame, etc.) can be used.
  • thaumatin, stevia extract eg, rebaudioside A, glycyrrhizin, etc.
  • synthetic flavoring agents sacharin, aspartame, etc.
  • the food composition of the present invention is prepared as a drink or beverage
  • citric acid, high fructose corn syrup, sugar, glucose, acetic acid, malic acid, fruit juice, and various plant extracts may be further included. there is.
  • the food composition containing the peony extract improves muscle function, reduces muscle damage, reduces HMGB1 level, inhibits signaling of HMGB1-TLR4-NFkB or reduces the level of cytokines and chemokines to treat muscular dystrophy can be prevented or ameliorated.
  • Dried roots of Paeonia lactiflora Pall. were used. Red peony dried roots were grown and harvested in Uiseong, Korea, and were purchased from Sunil Oriental Medicine Company (Hongcheon, Korea) (lot # SQ-17053-2-2), and identified and standardized according to the Korean Pharmacopoeia.
  • the dried roots of red peony were put in 30% and 70% ethanol, which are 10 times the volume thereof, and extracted at 65 ° C. for 4 hours.
  • the extract was filtered through a 5 ⁇ m filter and concentrated by vacuum evaporation at 45 °C.
  • the concentrated extract was sterilized at 85 °C for 1 hour, and spray-dried to prepare an ethanol extract (PL) of peony.
  • the yield of PL was 22.2%.
  • the main compounds included in PL are paeoniflorin and albiflorin, and information on them is shown in Table 1 below.
  • Anti-HMGB1 high mobility group box 1 (cat# 3935), anti-TLR4 (cat# 14358), anti-IRAK1 (cat# 4504), anti-IKK ⁇ (cat# 8943), anti-IKK ⁇ (cat# 8943) used as primary antibodies -p-IKK ⁇ / ⁇ (Ser176/180) (cat# 2694), anti-IkB (cat# 9242), anti-p-IkB (Ser 32/36) (cat# 9246) and anti-NF-kB p65 ( cat# 8242) and anti-mouse antibody (cat# 7076) and anti-rabbit antibody (cat# 7074) used as secondary antibodies were purchased from Cell Signaling Technology (USA).
  • Anti-p-IRAK1 (Thr209) (cat# ABP54915) antibody was purchased from Abbkine (China).
  • Anti- ⁇ -actin (cat# 47778) and anti-TATA box-binding protein (TBP, cat# 204) antibodies were purchased from Santa Cruz Biotechnology, Inc. USA.
  • Prednisolone was purchased from Tokyo Chemical Industry Co., Japan.
  • PL or prednisolone was suspended in 200 ⁇ L of distilled water and orally administered to mice once a day for 4 weeks.
  • PL was administered based on human titrated doses.
  • a typical daily dose of peony raw material for humans is 3 g (Monograph, Alternative Medicine Review, 2001, volume 6, 495-499), which is equivalent to 666 mg of the 30% ethanol extract (yield, 22.2%) used in this study.
  • the central dose, the lowest dose, and the highest dose were set at 100 mg/kg, 50 mg/kg, and 200 mg/kg, respectively.
  • Prednisolone (1 mg/kg/day) was used as a comparator.
  • Control groups (vehicle-treated groups, vehicle) of mdx mice and wild-type mice were orally administered with only 200 ⁇ L of distilled water.
  • mice were anesthetized with 10 mg/kg alfaxalone (Jurox, Australia) after oral administration of the drug daily for 4 weeks. Blood was collected in EDTA-coated tubes and centrifuged at 2500g for 10 minutes to obtain plasma.
  • the gastrocnemius and diaphragm of the mouse were separated, rapidly frozen in liquid nitrogen, and then stored at -80°C.
  • wild-type mice were orally administered with distilled water (wildtype)
  • mdx mice were administered with distilled water (vehicle)
  • prednisolone was administered at 1 mg / kg (predn)
  • the group administered with PL at 50 mg/kg (PL 50), the group administered at 100 mg/kg (PL 100), and the group administered at 200 mg/kg (PL 200), and each drug was administered orally daily for 4 weeks. administered.
  • mice The muscle function of the mice was measured by grip strength test and rotarod test.
  • Forelimb grip strength was measured as an index of muscle strength, and a grip dynamometer (Bio-GS3, Bioseb, France) was used.
  • the motor coordination ability was measured by the rotarod test, using the rotarod device (Panlab, Spain) on a rotating rod with a diameter of 3 cm. ) was measured.
  • Data are expressed as mean ⁇ standard deviation of the results of three or more replicates. Statistical significance was assessed using an unpaired t test. p ⁇ 0.05 was considered to indicate statistical significance (* p ⁇ 0.05, ** p ⁇ 0.01 and *** p ⁇ 0.001). Data analysis was performed using SPSS version 18.0 software (SPSS Inc., Chicago, IL, USA). Data analysis for the subsequent experiment was also performed in the same way.
  • the forearm grip strength normalized to body weight of the mdx mice and the latencies in the rotarod test were significantly lower than those of the wild-type control group.
  • mdx mice orally administered PL showed significantly higher grip strength and latencies than mdx mice (vehicle) administered with distilled water in a dose-dependent manner.
  • FIGS. 1C and 1D it can be seen that the oral administration of PL effectively improved muscle strength and motor coordination ability of mdx mice.
  • a portion of the gastrocnemius muscle was fixed in formalin and standard procedures for histopathological examination, such as dehydration, paraffin embedding, and sectioning, were performed.
  • Degenerative fibers are stained basophil by hematoxylin due to leukocyte infiltration and nuclear pyknosis.
  • Degenerative fibers of the treated muscle tissue were stained with hematoxylin and eosin and observed under a microscope.
  • Creatine kinase (CK) activity in the blood is a clinically used biomarker for determining muscle damage.
  • the activity of plasma CK was assayed using a kit (Abcam, UK) (cat# ab155901).
  • Plasma CK activity was significantly higher in mdx mice than in wild-type controls.
  • oral administration of PL resulted in a significant decrease in plasma CK activity in mdx mice in a dose-dependent manner, confirming that PL reduced muscle damage in mdx mice (FIG. 2B).
  • Proteomic analysis of gastrocnemius muscles was performed in distilled water-administered wild-type control, distilled-water-administered mdx mice, and PL-administered mdx mice (100 mg/Kg). Gastrocnemius tissue was cryo-pulverized in liquid nitrogen.
  • trypsin: protein 1: 50 (w/w)
  • the digested peptides were separated using the EkspertTM nanoLC 425 system (Eksigent, USA), and the separated peptides were analyzed using the SCIEX TripleTOF 5600+ mass spectrometry system (Agilent Technologies, USA).
  • Mass spectrometry data were processed using the mouse reference spectrum library MouseRefSWATH (PASS01569).
  • Proteome mass spectrometry data were archived by the ProteomeXchange consortium through the PRIDE database with the dataset identifier PXD028886.
  • Data mining and graphic visualization including volcano plots and heat maps were performed using ExDEGA (Ebiogen Inc., Korea).
  • Interaction network analysis identified known or predictable interactions between genes and/or proteins using the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database.
  • HMGB1 is the only protein among 9 proteins whose expression level is different between mdx mice orally administered with PL and mdx mice administered with distilled water. It was found that the difference between In addition, compared to the wild-type control group, mdx mice show that the expression level of HMGB1 is only significantly restored by oral administration of PL among 100 proteins with different expression levels. Thus, HMGB1 may play an important role in muscle injury and PL-induced muscle recovery in mdx mice.
  • Protein was extracted from the gastrocnemius muscle using the NucleoSpin kit (Macherey-Nagel, Germany; cat# MN740933). Protein concentration was measured using the BCA protein assay kit (Pierce, USA), then 50 ⁇ g protein per sample was separated by 12% polyacrylamide gel electrophoresis and electrophoresis on a nitrocellulose membrane at 150 mA for 1 hour 30 minutes ( electrotransfer). The membrane was blocked for 3 hours with phosphate-buffered saline (PBS) containing 5% skim milk and 0.1% Tween-20 at room temperature (22 to 26 ° C).
  • PBS phosphate-buffered saline
  • HRP horseradish-peroxidase
  • HMGB1-TLR4-NF-kB Signal transduction of HMGB1-TLR4-NF-kB is known to play a role in progressing inflammation.
  • HMGB1 interacts with NF-kB and TLR4 (Fig. 3f)
  • Western blot analysis showed that HMGB1- TLR4 -HMGB1-TLR4-
  • the protein expression level of the NF-kB signaling pathway was analyzed (Fig. 4a). Although the HMGB1 protein level was higher in mdx mice compared to wild-type controls, it was found to be significantly reduced by oral administration of PL (FIG. 4b).
  • TLR4 protein (HMGB1 receptor) was found to be higher in mdx mice than in wild-type controls, oral administration of PL resulted in a significant decrease in TLR4 levels in mdx mice (Fig. 4c).
  • all signaling proteins from TLR4 to NF-kB activated in the muscles of mdx mice were suppressed by oral administration of PL. That is, p-IRAK, p-IKK, and p-IkB, which showed higher levels in the muscles of mdx mice than wild-type controls, were all significantly reduced by oral administration of PL compared to distilled water treatment (FIGS. 4d to 4f).
  • Oral administration of PL increased the level of IkB, an inhibitor of NF-kB, in muscle (Fig. 4g).
  • Nuclear lysates were collected from gastrocnemius muscles using NE-PER nuclear and cytoplasmic extraction reagent (Thermo Scientific; cat# 78833), and protein concentrations were determined using the BCA protein assay kit (Pierce).
  • the binding of NF-kB to the target DNA sequence (5'-GGACTTTCC-3') was evaluated using the TransAM NF-kB ELISA kit (Active Motif, cat# 40096). Briefly, 10 ⁇ g of nuclear protein extract was added to a 96-well plate coated with oligonucleotides containing the target DNA sequence. After the incubation and washing steps, the NF-kB antibody included in the kit was added to the wells, and then the HRP-conjugated secondary antibody, peroxidase substrate, and stop solution included in the kit were sequentially added. added.
  • NF-kB binding to the target DNA sequence was increased in mdx mice compared to wild-type controls as a result of NF-kB nuclear translocation, and NF-kB binding to the target DNA sequence was significantly decreased by oral administration of PL. appeared (Fig. 4k).
  • IL(interleukin)-6 (cat# Mm00446190_m1), IL-1 ⁇ (cat# Mm00434228_m1), IL-1 ⁇ (cat# Mm00439620_m1), IFN(interferon)- ⁇ (cat# Mm01168134_m1), TNF( tumor necrosis factor)- ⁇ (cat# Mm00443258_m1), CCL (C-C motif chemokine ligand)2 (cat# Mm00441242_m1), CCL3 (cat# Mm00441259_m1), CCL4 (cat# 00443111_m1), CCL5 (cat# Mm01302428_m1), and 18S ribosome RNA (cat# Hs99999901_s1) was ordered and used (Assay-on-Demand Gene Expression Products, Applied Biosystems). For each experimental group, the mRNA level was normalized to the 18S ribosomal RNA level,
  • NF-kB is a major inflammatory transcription factor, and is known to bind to target DNA sequences located in the promoters of many cytokine and chemokine genes and activate gene transcription. Since PL significantly reduced the binding of NF-kB to its target DNA (Fig. 4k), we measured the mRNA levels of cytokines and chemokines in muscle. The mRNA levels of inflammatory cytokines, such as IL-6, IL-1 ⁇ , IL-1 ⁇ , IFN- ⁇ , and TNF- ⁇ , and chemokines, such as CCL2, CCL3, CCL4, and CCL5, were significantly higher in the gastrocnemius muscle of mdx mice compared with wild-type controls. appeared to be high. It was confirmed that the mRNA levels of cytokines and chemokines in the gastrocnemius muscle of mdx mice were significantly lowered due to oral administration of PL (FIG. 5).
  • cytokine and chemokine mRNA levels in the diaphragm were measured to confirm the same results as gastrocnemius (Fig. 6), through which oral administration of PL improved the levels of cytokines and chemokines in respiratory muscles as well as skeletal muscles in mdx mice.
  • TNF- ⁇ , IL-6, and HMGB1 were measured using ELISA kits (cat# BMS607-3, cat# BMS603-2 from Invitrogen, USA; and cat# EM0382 from FineTest, China, respectively).
  • ELISA kits catalog# BMS607-3, cat# BMS603-2 from Invitrogen, USA; and cat# EM0382 from FineTest, China, respectively.
  • the total protein of gastrocnemius muscle was extracted with NucleoSpin Kit (Macherey-Nagel) and then ELISA was measured.
  • TNF- ⁇ and IL-6 protein levels in the gastrocnemius muscle showed a pattern similar to that of the mRNA levels (FIGS. 7a and 7b).
  • Plasma levels of inflammatory cytokines were also measured to assess systemic inflammation.
  • Plasma levels of TNF- ⁇ and IL-6 in mdx mice were significantly higher than those in wild-type controls and were reduced by oral administration of PL (Figs. 7c and 7d).
  • Plasma HMGB1 levels in mdx mice were also significantly higher than wild-type controls in a pattern similar to muscle, and were reduced by oral administration of PL.
  • the pharmaceutical composition comprising the peony extract of the present invention improves muscle function, reduces muscle damage, reduces HMGB1 level, inhibits HMGB1-TLR4-NFkB signaling or reduces the level of cytokines and chemokines to treat muscular dystrophy. Since it can be usefully used for preventive, ameliorative or therapeutic purposes, it has industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Alternative & Traditional Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The present invention relates to a composition comprising a peony extract for preventing, alleviating, or treating muscular dystrophy. The composition comprising a peony extract can be used to reduce muscle damage and HMGB1 levels, inhibit the HMGB1-TLR4-NFkB signaling, or lower cytokine and chemokine levels, thereby effectively preventing, alleviating, or treating muscular dystrophy.

Description

근이영양증의 예방, 개선 또는 치료용 조성물Composition for preventing, improving or treating muscular dystrophy
본 발명은 근이영양증의 예방, 개선 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing, improving or treating muscular dystrophy.
근이영양증(muscular dystrophy)은 중추신경계와 말초신경계와는 연관 없이 골격근의 퇴화가 진행되어 근육의 약화, 구축, 변형을 보이며 특정 근육에 가성비대나 진행성으로 오는 대칭성 근위축이 나타나는 것을 의미한다. 근이영양증은 근육 약화의 정도와 유전적 패턴에 따라 몇 가지 형태로 분류되며, 뒤센(Duchenne)형, 베커(Becker)형, 사지-대형이양증(Limb-girdle muscular dystrophy), 안면 견갑상완 근이영양증(Facioscpulohueral dystrophy) 등의 유형이 있다.Muscular dystrophy refers to the progression of skeletal muscle degeneration independent of the central nervous system and the peripheral nervous system, resulting in muscle weakness, contracture, and deformation, and pseudohypertrophy or progressive symmetrical muscle atrophy in specific muscles. Muscular dystrophy is classified into several types according to the degree of muscle weakness and genetic pattern, such as Duchenne type, Becker type, limb-girdle muscular dystrophy, and facial scapulohueral dystrophy. ) and the like.
뒤센 근이영양증(Duchenne muscular dystrophy, DMD)는 남성 3,500명 중 1명 꼴로 발병하는 X 염색체-연관 퇴행성 근육 질환이며 근육의 중증 염증과 근육 기능의 점진적인 감소를 특징으로 한다. Duchenne muscular dystrophy (DMD) is an X chromosome-linked degenerative muscle disease that affects about 1 in 3,500 men and is characterized by severe inflammation of the muscle and progressive loss of muscle function.
뒤센 근이영양증은 주로 디스트로핀(dystrophin) 유전자의 돌연변이에 의해 발생하며, 이러한 돌연변이를 가진 환자들은 물리적인 힘을 전달하기 위한 액틴 필라멘트와 세포외 기질 사이의 상호작용을 매개하고 근육 세포 골격을 조직하는 디스트로핀 단백질이 부족하게 된다. 디스트로핀 단백질의 부족은 근육 세포의 막을 약화시켜 결과적으로 근육 수축에 의한 손상에 취약하게 되며, 반복적인 수축에 의한 손상은 만성 근육 염증으로 이어지게 된다.Duchenne muscular dystrophy is mainly caused by mutations in the dystrophin gene, and patients with these mutations mediate the interaction between actin filaments and the extracellular matrix to transmit physical force and organize the muscle cytoskeleton. this will be lacking A lack of dystrophin protein weakens the membranes of muscle cells, making them vulnerable to muscle contraction-induced damage, and repetitive contraction-induced damage leads to chronic muscle inflammation.
뒤센 근이영양증의 초기 증상은 계단 오르기 시 어려움 호소, 비정상적 보행 및 잦은 낙상이다. 뒤센 근이영양증 환자의 대부분은 6세에서 12세 사이에 보행 능력을 상실하고 20세쯤이 되면 보조 환기(assisted ventilation)를 필요로 한다. 적절한 치료를 받은 경우 40세까지 생존할 수 있지만, 대부분의 환자들은 20세에서 40세 사이에 심장 기능 장애나 호흡 부전으로 사망하게 된다. Early symptoms of Duchenne muscular dystrophy include difficulty climbing stairs, abnormal gait, and frequent falls. Most patients with Duchenne muscular dystrophy lose the ability to walk between the ages of 6 and 12 and require assisted ventilation by the age of 20. With proper treatment, people can survive to the age of 40, but most patients die between the ages of 20 and 40 from heart failure or respiratory failure.
뒤센 근이영양증은 지속적인 근육 염증을 특징으로 한다. 염증성 사이토카인과 케모카인은 뒤센 근이영양증에서 근육 손상의 주요 원인으로 작용한다. 이러한 사이토카인과 케모카인은 주요 염증성 전사인자인 NF-kB를 활성화함으로써 사이토카인과 케모카인의 발현을 더욱 상향 조절하여 근육의 염증을 유발하고, 이로 인하여 근육 섬유가 손실된다. 따라서 근육의 염증을 조절하는 것은 뒤센 근이영양증 환자의 근육기능을 유지하는 데에 중요한 목표이다. Duchenne muscular dystrophy is characterized by persistent muscle inflammation. Inflammatory cytokines and chemokines act as major causes of muscle damage in Duchenne muscular dystrophy. These cytokines and chemokines activate NF-kB, a major inflammatory transcription factor, and further up-regulate the expression of cytokines and chemokines to induce muscle inflammation, resulting in loss of muscle fibers. Therefore, controlling muscle inflammation is an important goal in maintaining muscle function in patients with Duchenne muscular dystrophy.
현재 뒤센 근이영양증에 대한 효과적인 치료제는 없지만, 질환의 진행을 늦추기 위하여 프레드니손(prednisone)과 프레드니솔론(prednisolon)과 같은 코르티코스테로이드가 사용되고 있다. 현재 프레드니솔론과 같은 코르티코스테로이드는 뒤센 근이영양증에 대해 임상적으로 권장되고 있는 유일한 약물이다. 가장 최근의 뒤센 근이영양증의 치료 지침은 4~5세부터 시작하여 평생 동안 환자에게 지속적으로 코르티코스테로이드를 사용하는 것이다. 코르티코스테로이드가 근육의 힘과 운동 기능을 일정 기간 유지하고, 보행 기능 상실과 폐 기능이 상실되는 진행을 늦춘다는 증거가 있다.Currently, there is no effective treatment for Duchenne muscular dystrophy, but corticosteroids such as prednisone and prednisolone are used to slow the progression of the disease. Currently, corticosteroids such as prednisolone are the only drugs clinically recommended for Duchenne muscular dystrophy. The most recent guideline for the treatment of Duchenne muscular dystrophy is the continuous use of corticosteroids in patients throughout their life, beginning at the age of 4–5 years. There is evidence that corticosteroids maintain muscle strength and motor function for a period of time and slow the progression of loss of walking function and loss of lung function.
상술한 코르티코스테로이드는 직접적인 치료제가 아니므로, 환자가 휠체어에 의존하게 되는 시간 등 질병의 진행만 늦출 뿐이다. 또한, 매일 코르티코스테로이드를 복용하는 환자의 평균적인 질병 진행 지연 기간은 2년에 불과하다 또한 코르티코스테로이드를 만성적으로 사용하면 고혈압, 체액 보유, 체중 증가, 피부 위축 등의 다양한 부작용이 나타난다. 따라서 근이영양증에 대한 효과적이고 안전한 치료제 개발이 시급한 실정이다.Since the aforementioned corticosteroids are not direct therapeutic agents, they only slow down the progression of the disease, such as the amount of time the patient becomes dependent on a wheelchair. In addition, the average delay in disease progression in patients who take daily corticosteroids is only 2 years. In addition, chronic use of corticosteroids causes various side effects such as high blood pressure, fluid retention, weight gain, and skin atrophy. Therefore, there is an urgent need to develop an effective and safe treatment for muscular dystrophy.
한편, Paeoniaceae 과에 속하는 작약(Paeonia lactiflora Pall.)은 중국, 한국, 일본, 대만, 태국 등 아시아 여러 나라에서 류마티스 관절염, 간염, 전신 홍반성 루푸스 등 각종 염증성 질환의 치료제로 사용되고 있다. 그러나 작약의 근이영양증 치료 효능에 관하여는 연구된 바가 없다.On the other hand, Paeoniaceae Peony ( Paeonia lactiflora Pall.) belonging to the family is used as a treatment for various inflammatory diseases such as rheumatoid arthritis, hepatitis, and systemic lupus erythematosus in many Asian countries such as China, Korea, Japan, Taiwan, and Thailand. However, no study has been conducted on the efficacy of peony in the treatment of muscular dystrophy.
본 발명은 근이영양증의 예방 또는 치료용 약학적 조성물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a pharmaceutical composition for preventing or treating muscular dystrophy.
또한, 본 발명은 근이영양증의 예방 또는 개선용 식품 조성물을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a food composition for preventing or improving muscular dystrophy.
일 구체예에 따른 작약 추출물을 포함하는 약학적 조성물은 근육 기능 개선, 근육 손상 감소, HMGB1 수준 감소, HMGB1-TLR4-NFkB의 신호전달 억제 또는 사이토카인 및 케모카인의 수준을 감소시켜 근이영양증의 예방, 개선 또는 치료 용도로 유용하게 사용될 수 있다. A pharmaceutical composition containing a peony extract according to one embodiment improves muscle function, reduces muscle damage, reduces HMGB1 level, inhibits signaling of HMGB1-TLR4-NFkB, or reduces the level of cytokines and chemokines to prevent or improve muscular dystrophy. Or it can be usefully used for therapeutic purposes.
도 1의 A와 B는 mdx 마우스에서 작약의 물, 30% 에탄올, 70% 에탄올 추출물의 경구투여가 근육 기능을 개선한 것을 나타낸다. 마우스 별로 (n=8) 측정한 악력을 체중에 대해 정규화한 결과(A)와 로타로드 검사를 통하여 운동 협응 능력을 측정한 결과(B)를 나타낸다. 이후의 실험은 작약 30%에탄올 추출물(PL)을 사용하여 실시하였다.1A and B show that oral administration of water, 30% ethanol, and 70% ethanol extract of peony improved muscle function in mdx mice. The result of normalizing the grip strength measured for each mouse (n=8) to the body weight (A) and the result of measuring the motor coordination ability through the rotarod test (B) are shown. Subsequent experiments were conducted using 30% ethanol extract (PL) of peony.
도 1의 C와 D는 mdx 마우스에서 작약 30%에탄올 추출물(PL)의 경구투여가 근육 기능을 개선한 것을 나타낸다. 마우스 별로 (n=8) 측정한 악력을 체중에 대해 정규화한 결과(C)와 로타로드 검사를 통하여 운동 협응 능력을 측정한 결과(D)를 나타낸다.1C and D show that oral administration of peony 30% ethanol extract (PL) in mdx mice improved muscle function. The result of normalizing the grip strength measured for each mouse (n=8) to the body weight (C) and the result of measuring the motor coordination ability through the rotarod test (D) are shown.
도 2는 mdx 마우스에서 PL의 경구투여가 근육의 손상을 감소시킨 것을 나타낸다. 도 2A는 비복근을 헤마톡실린과 에오신으로 염색하여 퇴행성 섬유 (화살표)를 관찰한 결과를 나타나며, 도 2B는 혈장 크레아틴 키네이스 활성을 키트로 정량화한 결과를 나타낸다.Figure 2 shows that oral administration of PL in mdx mice reduced muscle damage. Figure 2A shows the results of observing degenerative fibers (arrows) by staining the gastrocnemius muscle with hematoxylin and eosin, and Figure 2B shows the results of quantifying plasma creatine kinase activity with a kit.
도 3a는 증류수를 투여한 야생형 대조군(wildtype)과 mdx 마우스의 비복근을 비교하여 얻은 100개의 DEPs(differentially expressed proteins)를 볼케이노 플롯(volcano plot)으로 나타낸 결과이다. 상향 조절된 1개의 DEPs 는 빨간점으로, 하향 조절된 99개의 DEPs는 녹색점으로 표시하였으며, 회색점은 DEPs로 선택되지 않은 것을 나타낸다.Figure 3a is a result showing 100 DEPs (differentially expressed proteins) obtained by comparing the gastrocnemius of a wildtype control group (wildtype) and mdx mice administered with distilled water as a volcano plot (volcano plot). One up-regulated DEPs is marked with a red dot, and 99 down-regulated DEPs are marked with a green dot, and a gray dot indicates that DEPs were not selected.
도 3b는 PL을 경구투여한 mdx 마우스와 증류수를 투여한 mdx 마우스의 비복근을 비교하여 얻은 9개의 DEPs를 볼케이노 플롯으로 나타낸 결과이다. 상향 조절된 8개의 DEPs는 빨간점으로, 하향 조절된 1개의 DEPs는 녹색점으로 표시하였으며, 회색점은 DEPs로 선택되지 않은 것을 나타낸다.Figure 3b is a result showing nine DEPs obtained by comparing gastrocnemius muscles of mdx mice orally administered with PL and mdx mice administered with distilled water in a Volcano plot. Eight up-regulated DEPs are marked with a red dot, one down-regulated DEPs are marked with a green dot, and a gray dot indicates that DEPs were not selected.
도 3c는 증류수를 투여한 야생형 대조군(wildtype)과 mdx 마우스의 비복근을 비교하여 100개의 DEPs를 식별한 결과를 히트 맵(heat map)으로 나타낸 것이다. 상향 조절된 DEPs는 빨간색, 하향 조절된 DEPs는 파란색으로 각각 표시하였다.Figure 3c shows the result of identifying 100 DEPs as a heat map by comparing the gastrocnemius of mdx mice with wildtype controls (wildtype) to which distilled water was administered. Up-regulated DEPs are marked in red, and down-regulated DEPs are marked in blue.
도 3d는 PL을 경구투여한 mdx 마우스와 증류수를 투여한 mdx 마우스의 비복근을 비교하여 9개의 DEPs를 식별한 결과를 히트 맵으로 나타낸 것이다. 상향 조절된 DEPs는 빨간색, 하향 조절된 DEPs는 파란색으로 각각 표시하였다.Figure 3d shows the result of identifying 9 DEPs as a heat map by comparing gastrocnemius muscles of mdx mice to which PL was orally administered and mdx mice to which distilled water was administered. Up-regulated DEPs are marked in red, and down-regulated DEPs are marked in blue.
도 3e는 야생형 대조군과 증류수를 투여한 mdx 마우스간의 DEPs와 PL을 경구투여한 mdx 마우스와 증류수를 투여한 mdx 마우스간의 DEPs의 벤다이어그램이다. 상향 조절된 DEPs는 빨간색, 하향 조절된 DEPs는 녹색으로 각각 표시하였다.Figure 3e is a Venn diagram of DEPs between wild-type control and mdx mice administered with distilled water, and DEPs between mdx mice orally administered PL and mdx mice administered with distilled water. Up-regulated DEPs are marked in red, and down-regulated DEPs are marked in green.
도 3f는 STRING 데이터베이스를 사용하여 HMGB1의 상호작용을 분석한 결과를 나타낸다.Figure 3f shows the results of analyzing the interaction of HMGB1 using the STRING database.
도 4a는 mdx 마우스의 골격근에서 HMGB1-TLR4-NF-kB 신호 전달경로의 주요 단백질을 조사한 결과이다.Figure 4a is a result of examining major proteins of the HMGB1-TLR4-NF-kB signaling pathway in skeletal muscle of mdx mice.
도 4b 및 도 4c는 mdx 마우스에서 PL의 경구투여로 인하여 HMGB1의 단백질 수준(b) 및 TLR4 수준(c)이 유의미하게 감소한 것을 나타낸다.4b and 4c show that the oral administration of PL in mdx mice significantly reduced the protein level (b) and TLR4 level (c) of HMGB1.
도 4d 내지 도 4f는 야생형 마우스보다 mdx 마우스의 근육에서 더 높은 수준을 나타낸 p-IRAK(d), p-IKK(e) 및 p-IkB(f)는 모두 증류수 투여군과 비교하여 PL의 경구투여에 의해 유의미하게 감소한 것을 나타낸다.4d to 4f show that p-IRAK (d), p-IKK (e), and p-IkB (f) showed higher levels in the muscles of mdx mice than wild-type mice, and oral administration of PL compared to the distilled water administration group. indicates a significant decrease by
도 4g는 야생형 마우스보다 mdx 마우스의 근육에서 감소하였으나 PL의 경구투여로 증가하는 F-kB의 억제제인 IkB 수준을 나타낸다.Figure 4g shows the level of IkB, an inhibitor of F-kB, decreased in muscle of mdx mice than wild-type mice, but increased by oral administration of PL.
도 4h (좌측) 및 도 4i는 야생형 대조군에 비해 mdx 마우스에서 세포질의 NF-kB 수준이 감소하였으나 PL의 경구투여로 증가하는 것을 보여준다.Figure 4h (left) and Figure 4i show that the level of cytoplasmic NF-kB decreased in mdx mice compared to wild-type controls, but increased with oral administration of PL.
도 4h (우측) 및 도 4j는 야생형 대조군에 비해 mdx 마우스에서 핵의 NF-kB 수준이 증가하였으나 PL의 경구투여로 감소하는 것을 보여준다.Figure 4h (right) and Figure 4j show that the level of nuclear NF-kB increased in mdx mice compared to wild-type controls, but decreased with oral administration of PL.
도 4k는 야생형 대조군에 비해 mdx 마우스에서 표적 DNA 염기서열에 대한 NF-kB 결합이 증가하였으나 PL의 경구투여로 감소하는 것을 보여준다.Figure 4k shows that NF-kB binding to the target DNA sequence was increased in mdx mice compared to wild-type controls, but decreased by oral administration of PL.
도 5a 내지 도 5i는 비복근에서 IL-6, IL-1β, IL-1α, IFN-γ, 및 TNF-α와 같은 사이토카인과 CCL2, CCL3, CCL4, 및 CCL5와 같은 케모카인의 mRNA 수준이 야생형 대조군에 비해 mdx 마우스에서 증가하였으나 PL의 경구투여로 감소하는 것을 보여준다.5a to 5i show the mRNA levels of cytokines such as IL-6, IL-1β, IL-1α, IFN-γ, and TNF-α and chemokines such as CCL2, CCL3, CCL4, and CCL5 in the gastrocnemius muscle of the wild-type control group. It was increased in mdx mice compared to , but decreased by oral administration of PL.
도 6a 내지 도 6i는 횡격막에서 IL-6, IL-1β, IL-1α, IFN-γ, 및 TNF-α와 같은 사이토카인과 CCL2, CCL3, CCL4, 및 CCL5와 같은 케모카인의 mRNA 수준이 야생형 대조군에 비해 mdx 마우스에서 증가하였으나 PL의 경구투여로 감소하는 것을 보여준다.6a to 6i show the mRNA levels of cytokines such as IL-6, IL-1β, IL-1α, IFN-γ, and TNF-α and chemokines such as CCL2, CCL3, CCL4, and CCL5 in the diaphragm compared to wild-type controls. It was increased in mdx mice compared to , but decreased by oral administration of PL.
도 7a 및 도 7b는 mdx 마우스에서 비복근의 TNF-α 및 IL-6 단백질 수준이 야생형 대조군보다 유의미하게 높았으나 PL의 경구투여에 의해 감소된 것을 나타낸다.7a and 7b show that the levels of TNF-α and IL-6 protein in the gastrocnemius muscle of mdx mice were significantly higher than those of the wild-type control group, but were reduced by oral administration of PL.
도 7c 및 도 7d는 mdx 마우스에서 TNF-α 와 IL-6의 혈장 단백질 수준이 야생형 대조군보다 유의미하게 높았으나 PL의 경구투여에 의해 감소된 것을 나타낸다.7c and 7d show that plasma protein levels of TNF-α and IL-6 in mdx mice were significantly higher than those in wild-type controls, but were reduced by oral administration of PL.
[규칙 제91조에 의한 정정 29.12.2022] 
[삭제]
[Correction under Rule 91 29.12.2022]
[delete]
도 8은 mdx 마우스에서 PL의 경구투여가 근육 기능을 증가시키는 가능한 기전을 나타낸다. 야생형 대조군과 비교한 mdx 마우스의 병리학적 변화는 빨간색 화살표로, mdx 마우스의 PL의 경구투여로 인한 변화는 파란색 화살표로 나타냈다.8 shows a possible mechanism by which oral administration of PL increases muscle function in mdx mice. Pathological changes in mdx mice compared to wild-type controls are indicated by red arrows, and changes caused by oral administration of PL in mdx mice are indicated by blue arrows.
상기 목적을 달성하기 위하여, 본 발명의 일 양상은 작약 추출물을 유효성분으로 포함하는 근이영양증의 예방 또는 치료용 약학적 조성물을 제공한다. In order to achieve the above object, one aspect of the present invention provides a pharmaceutical composition for preventing or treating muscular dystrophy comprising a peony extract as an active ingredient.
본 명세서에서 용어, "근이영양증(muscular dystrophy)"은 중추신경계와 말초신경계와는 연관 없이 골격근의 퇴화가 진행되어 근육의 약화, 구축, 변형을 보이며 특정 근육에 가성비대나 진행성으로 오는 대칭성 근위축이 나타나는 것을 의미한다.As used herein, the term "muscular dystrophy" refers to degeneration of skeletal muscles that is not related to the central nervous system and the peripheral nervous system, showing muscle weakness, contracture, and deformation, and symmetrical muscular atrophy that comes to specific muscles in pseudohypertrophy or progressively. means to appear
본 발명의 일 구체예에 따르면, 상기 작약 추출물은 적작약(Paeonia lactiflora Pall.), 참작약(Paeonia lactiflora var. trichocarpa (Bunge) Stern), 민참작약(Paeonia lactiflora f. nuda Nakai), 호작약(Paeonia lactiflora f. pilosella Nakai), 백작약(Paeonia japonica (Makino) Miyabe & Takeda), 털백작약(Paeonia japonica var. pillosa Nakai), 산작약(Paeonia obovata Maxim), 천작약(Paeonia veitchii Lynch) 및 기타동속근연식물 (작약과 Paeoniaceae)로 이루어진 군에서 선택되는 1종 이상으로부터 유래되는 것일 수 있으며, 바람직하게는 적작약의 건조 뿌리로부터 유래된 것일 수 있다.According to one embodiment of the present invention, the peony extract is red peony ( Paeonia lactiflora Pall.), Cham peony ( Paeonia lactiflora var. trichocarpa (Bunge) Stern), mincham peony ( Paeonia lactiflora f. nuda Nakai), ho peony ( Paeonia lactiflora f. pilosella Nakai), white peony ( Paeonia japonica (Makino) Miyabe & Takeda), hairy white peony ( Paeonia japonica var. pillosa Nakai), mountain peony ( Paeonia obovata Maxim), peony ( Paeonia veitchii Lynch) and other closely related plants It may be derived from one or more species selected from the group consisting of (Peonyaceae and Paeoniaceae), and preferably may be derived from dried roots of red peony.
본 발명의 일 구체예에 따르면, 상기 적작약 추출물은 당 업계에 공지된 통상의 방법에 따라 제조될 수 있다. 예를 들어, 작약을 분쇄한 후 추출에 통상적으로 사용되는 용매를 첨가하고, 적절한 온도와 압력으로 추출하여 작약 추출물을 제조할 수 있다.According to one embodiment of the present invention, the red peony extract can be prepared according to a conventional method known in the art. For example, a peony extract may be prepared by pulverizing the peony, adding a solvent commonly used for extraction, and extracting at an appropriate temperature and pressure.
본 발명의 일 구체예에 따르면, 상기 작약 추출물은 탄소수 1 내지 4의 알코올 및 이들의 혼합 용매로 이루어진 군에서 선택된 1종 이상의 용매로 추출한 것일 수 있으며, 바람직하게는 10 내지 90, 15 내지 85, 20 내지 80, 25 내지 75 또는 30 내지 70%, 또는 30 또는 70% 에탄올로 추출한 것일 수 있다.According to one embodiment of the present invention, the peony extract may be extracted with one or more solvents selected from the group consisting of alcohols having 1 to 4 carbon atoms and mixed solvents thereof, preferably 10 to 90, 15 to 85, It may be extracted with 20 to 80, 25 to 75, or 30 to 70%, or 30 or 70% ethanol.
한편, 상기 작약 추출물은 상술한 용매 추출법에 의한 추출물뿐만 아니라, 통상적인 정제 과정을 거친 추출물도 포함한다. 예컨대, 일정한 분자량 컷-오프 값을 갖는 한외 여과막을 이용한 분리, 다양한 크로마토그래피(크기, 전하, 소수성 또는 친화성에 따른 분리를 위해 제작된 것)에 의한 분리 등, 추가적으로 실시한 다양한 정제 방법을 통해 얻어진 분획도 본 발명의 작약 추출물에 포함될 수 있다. 또한, 상기 작약 추출물은 감압 증류 및 동결 건조 또는 분무 건조 등과 같은 추가적인 과정에 의해 분말 상태로 제조될 수도 있다.On the other hand, the peony extract includes not only the extract by the above-described solvent extraction method, but also an extract that has undergone a conventional purification process. For example, fractions obtained through various additional purification methods, such as separation using an ultrafiltration membrane having a certain molecular weight cut-off value, separation by various chromatography (made for separation according to size, charge, hydrophobicity or affinity), etc. It may also be included in the peony extract of the present invention. In addition, the peony extract may be prepared in a powder state by an additional process such as distillation under reduced pressure and freeze drying or spray drying.
본 명세서에서 사용된 용어 "유효성분"이란 단독으로 목적하는 활성을 나타내거나 또는 그 자체는 활성이 없는 담체와 함께 활성을 나타낼 수 있는 성분을 의미한다.As used herein, the term "active ingredient" means a component that exhibits the desired activity alone or that can exhibit activity in combination with a carrier that is not active itself.
근이영양증에는 뒤센(Duchenne)형, 베커(Becker)형, 사지-대형이양증(Limb-girdle muscular dystrophy), 안면 견갑상완 근이영양증(Facioscpulohueral dystrophy), 근긴장성, 에머리-드라이프스 등의 유형이 있다.Muscular dystrophy includes types such as Duchenne type, Becker type, limb-girdle muscular dystrophy, facial scapulohueral dystrophy, dystonia, and Emery-Dreifes.
본 발명의 일 구체예에 따르면, 상기 근이영양증은 뒤센 근이영양증(Duchenne muscular dystrophy), 베커 근이영양증(Becker muscular dystrophy), 사지-대형이양증(Limb-girdle muscular dystrophy), 안면 견갑상완 근이영양증(Facioscpulohueral dystrophy) 근긴장성 이영양증(myotonic dystrophy), 및 에머리-드라이프스 근이영양증(Emery-Dreifuss muscular dystrophy)으로 이루어진 군에서 선택된 1종 이상인 것일 수 있다. According to one embodiment of the present invention, the muscular dystrophy is Duchenne muscular dystrophy, Becker muscular dystrophy, Limb-girdle muscular dystrophy, Facioscpulohueral dystrophy, muscular dystrophy It may be one or more types selected from the group consisting of myotonic dystrophy and Emery-Dreifuss muscular dystrophy.
뒤센형은 가장 흔한 유형이며 반성 열성 유전으로 2세에서 4세 정도의 남아에게 많이 발생한다. 보통 뒤센형의 징후는 5세 경에 뚜렷한 근육 약화가 나타나며 장애 보상적인 비대로 비복근이 크게 보이는 가성비대(실제 근육이 아닌 지방 결합 조직)를 보인다. 이 질환의 초기에 있는 아동은 엎드린 후 일어날 때 한 손을 보통 대퇴부에 위치시킨 후 손을 밀면서 일어나는 가우어 징후(Gower's sign)를 보인다. 주로 디스트로핀(dystrophin) 유전자의 돌연변이에 의해 발생하며, 환자의 상당수는 X 염색체 상에 이상이 발견된다.Duchenne type is the most common type, and it occurs most often in boys between the ages of 2 and 4 due to hemi-recessive inheritance. Usually, the signs of Duchenne type include obvious muscle weakness around the age of 5, and pseudohypertrophy (adipose connective tissue, not actual muscle), in which the gastrocnemius muscle is enlarged due to disability-compensatory hypertrophy. Early in the disease, children show Gower's sign, which occurs when rising from a prone position, usually by placing one hand on the thigh and then pushing the hand. It is mainly caused by a mutation of the dystrophin gene, and a significant number of patients have an abnormality on the X chromosome.
베커형은 발병 시기가 보통 5세에서 20세로 뒤센형과는 조금 늦고 질환의 진행도 느리다. 심근장애를 갖고 있고 보통 10대에 사망하는 뒤센형에 비하여 베커형은 20대 이후에도 생존하며 심근장애를 갖지 않는다.Becker's onset usually occurs between the ages of 5 and 20, a little later than Duchenne's, and the progression of the disease is slow. Compared to the Duchenne type, who has myocardial disorders and usually dies in their teens, the Becker type survives into their 20s and does not have myocardial disorders.
사지-대형이양증은 주로 20세 이후에 발병하며, 상염색체 열성 근이영양증에 해당한다.Limb-macrodystrophy usually occurs after the age of 20 and corresponds to autosomal recessive muscular dystrophy.
안면 견갑상완 근이영양증은 보통 20세 이전에 시작되며, 눈과 입, 어깨, 복근, 상완 그리고 하퇴부 주변 근육의 결함과 위축이 비대칭적으로 나타나는 유전적 근육 장애로 상염색체 우성 근이영양증에 해당한다.Facial scapulohumeral muscular dystrophy usually begins before the age of 20 and is an autosomal dominant muscular dystrophy with asymmetrical defects and atrophy of the muscles around the eyes, mouth, shoulders, abdominal muscles, upper arms, and lower legs.
본 명세서에서 사용된 용어, “예방”은 본 발명에 따른 약학적 조성물의 투여에 의해 근이영양증을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.As used herein, the term "prevention" refers to any action that suppresses or delays the onset of muscular dystrophy by administration of the pharmaceutical composition according to the present invention.
본 명세서에서 사용된 용어, “치료”는 본 발명에 따른 약학적 조성물의 투여에 의해 근이영양증에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.As used herein, the term "treatment" refers to all activities that improve or beneficially change the symptoms of muscular dystrophy by administration of the pharmaceutical composition according to the present invention.
상기 약학적 조성물은 투여를 위해서 상기 기재한 작약 추출물 이외에 추가로 약학적으로 허용 가능한 담체를 1종 이상 포함하여 약학적 조성물로 바람직하게 제제화할 수 있다.The pharmaceutical composition may be preferably formulated as a pharmaceutical composition by including one or more pharmaceutically acceptable carriers in addition to the peony extract described above for administration.
상기 약학적 조성물의 제제 형태는 과립제, 산제, 정제, 피복정, 캡슐제, 좌제, 액제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 등이 될 수 있다. 예를 들어, 정제 또는 캡슐제의 형태로의 제제화를 위해, 유효성분은 에탄올, 글리세롤, 물 등과 같은 경구, 무독성의 약학적으로 허용 가능한 불활성 담체와 결합될 수 있다. 또한, 원하거나 필요한 경우, 적합한 결합제, 윤활제, 붕해제 및 발색제 또한 혼합물로 포함될 수 있다. 적합한 결합제는 이에 제한되는 것은 아니나, 녹말, 젤라틴, 글루코스 또는 베타-락토오스와 같은 천연 당, 옥수수 감미제, 아카시아, 트래커캔스 또는 소듐올레이트와 같은 천연 및 합성 검, 소듐 스테아레이트, 마그네슘 스테아레이트, 소듐 벤조에이트, 소듐 아세테이트, 소듐 클로라이드 등을 포함한다. 붕해제는 이에 제한되는 것은 아니나, 녹말, 메틸 셀룰로스, 아가, 벤토니트, 잔탄 검 등을 포함한다. Formulations of the pharmaceutical composition may be granules, powders, tablets, coated tablets, capsules, suppositories, solutions, syrups, juices, suspensions, emulsions, drops, or injectable solutions. For example, for formulation in the form of a tablet or capsule, the active ingredient may be combined with an oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, or water. In addition, if desired or necessary, suitable binders, lubricants, disintegrants and coloring agents may also be included in the mixture. Suitable binders include, but are not limited to, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tracacanth or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.In compositions formulated as liquid solutions, acceptable pharmaceutical carriers are sterile and biocompatible, and include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostatic agents may be added if necessary. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to prepare formulations for injections such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
본 발명의 약학적 조성물은 경구 또는 비경구로 투여할 수 있고, 비경구 투여인 경우에는 정맥 내 주입, 피하 주입, 근육 주입, 복강 주입, 경피 투여 등으로 투여할 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally, and in the case of parenteral administration, intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, transdermal administration, etc. can be administered.
본 발명의 약학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 결정될 수 있다. A suitable dosage of the pharmaceutical composition of the present invention may be determined by factors such as formulation method, administration method, patient's age, weight, sex, morbid condition, food, administration time, administration route, excretion rate and reaction sensitivity. .
인간에 대한 작약 원재료의 일반적인 하루 투여량은 인간의 표준 체중이 60kg일 때 3g일 수 있으며, 작약의 에탄올 추출물의 투여량은 50 내지 10000 mg/day, 100 내지 8000 mg/day, 200 내지 6000 mg/day, 300 내지 4000 mg/day, 400 내지 2000 mg/day, 450 내지 1000 mg/day, 500 내지 800 mg/day, 바람직하게는 600 내지 700 mg/day일 수 있다. 본 발명의 일 실시예에 따른 작약의 30% 에탄올 추출물(수율, 22.2%)의 투여량은 666mg/day일 수 있다.A typical daily dosage of peony raw materials for humans may be 3 g when the standard human weight is 60 kg, and the dosage of ethanol extract of peony is 50 to 10000 mg/day, 100 to 8000 mg/day, 200 to 6000 mg /day, 300 to 4000 mg/day, 400 to 2000 mg/day, 450 to 1000 mg/day, 500 to 800 mg/day, preferably 600 to 700 mg/day. The dose of the 30% ethanol extract (yield, 22.2%) of peony according to an embodiment of the present invention may be 666mg/day.
본 발명의 약학적 조성물은 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다.The pharmaceutical composition of the present invention is prepared in unit dosage form by formulation using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by those skilled in the art. or it may be prepared by incorporating into a multi-dose container.
본 발명의 일 구체예에 따르면, 상기 작약 추출물을 유효성분으로 포함하는 약학적 조성물은 근육 기능 개선, 근육 손상 감소, HMGB1 수준 감소, HMGB1-TLR4-NFkB의 신호전달 억제 또는 사이토카인 및 케모카인의 수준 감소에 의하여 근이영양증을 예방 또는 치료할 수 있다. According to one embodiment of the present invention, the pharmaceutical composition comprising the peony extract as an active ingredient improves muscle function, reduces muscle damage, reduces HMGB1 level, inhibits HMGB1-TLR4-NFkB signaling or cytokine and chemokine levels By reducing, muscular dystrophy can be prevented or treated.
본 발명의 다른 양상은, 작약 추출물을 유효성분으로 포함하는 약학 조성물을 개체에 투여하는 단계를 포함하는, 근이영양증의 예방 또는 치료방법을 제공한다.Another aspect of the present invention provides a method for preventing or treating muscular dystrophy, comprising administering to a subject a pharmaceutical composition containing a peony extract as an active ingredient.
본 발명의 다른 양상은, 작약 추출물을 유효성분으로 포함하는 조성물의, 근이영양증의 예방 또는 치료 용도를 제공한다.Another aspect of the present invention provides a preventive or therapeutic use of a composition containing a peony extract as an active ingredient, muscular dystrophy.
본 발명의 다른 양상은, 작약 추출물을 유효성분으로 포함하는 조성물의, 근이영양증의 예방 또는 치료를 위한 약제, 또는 근이영양증의 예방 또는 개선을 위한 식품을 제조하기 위한 용도를 제공한다.Another aspect of the present invention provides a use of a composition containing a peony extract as an active ingredient for preparing a medicament for preventing or treating muscular dystrophy, or a food for preventing or improving muscular dystrophy.
상기 치료방법, 및 용도에 있어서, 작약, 추출물, 근이영양증, 예방, 치료, 개선, 약학 조성물 및 식품에 대해서는 상기 또는 하기 설명한 바와 같다.In the treatment method and use, the peony, extract, muscular dystrophy, prevention, treatment, improvement, pharmaceutical composition and food are as described above or below.
본 발명의 다른 양상은 작약 추출물을 포함하는 근이영양증 예방 또는 개선용 식품 조성물을 제공한다.Another aspect of the present invention provides a food composition for preventing or improving muscular dystrophy comprising a peony extract.
여기서 전술한 내용과 공통되는 설명은 과도한 복잡성을 회피하기 위하여 그 기재를 생략한다.Descriptions common to the foregoing here are omitted in order to avoid excessive complexity.
본 발명에서 사용되는 용어, “개선”이란, 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다. 이때 상기 식품 조성물은 근이영양증의 예방 또는 개선을 위하여 해당 질환의 발병 단계 이전 또는 발병 후, 치료를 위한 약제와 동시에 또는 별개로서 사용될 수 있다. As used herein, the term "improvement" refers to all actions that at least reduce the parameters related to the condition to be treated, for example, the severity of symptoms. In this case, the food composition may be used before or after the onset of the disease to prevent or improve muscular dystrophy, simultaneously with or separately from a drug for treatment.
본 발명의 일 구체예에 따르면, 상기 작약 추출물은 적작약(Paeonia lactiflora Pall.), 참작약(Paeonia lactiflora var. trichocarpa (Bunge) Stern), 민참작약(Paeonia lactiflora f. nuda Nakai), 호작약(Paeonia lactiflora f.pilosella Nakai), 백작약(Paeonia japonica(Makino) Miyabe & Takeda), 털백작약(Paeonia japonica var. pillosa Nakai), 산작약(Paeonia obovata Maxim), 천작약 (Paeonia veitchii Lynch) 및 기타동속근연식물(작약과 Paeoniaceae)로 이루어진 군에서 선택되는 1종 이상으로부터 유래되는 것일 수 있으며, 바람직하게는 적작약의 건조 뿌리로부터 유래된 것일 수 있다.According to one embodiment of the present invention, the peony extract is red peony ( Paeonia lactiflora Pall.), Cham peony ( Paeonia lactiflora var. trichocarpa (Bunge) Stern), mincham peony ( Paeonia lactiflora f. nuda Nakai), ho peony ( Paeonia lactiflora f.pilosella Nakai), white peony ( Paeonia japonica (Makino) Miyabe & Takeda), hairy white peony ( Paeonia japonica var. pillosa Nakai), mountain peony ( Paeonia obovata Maxim), peony ( Paeonia veitchii Lynch) and other closely related plants It may be derived from one or more species selected from the group consisting of (Peonyaceae and Paeoniaceae), and preferably may be derived from dried roots of red peony.
본 발명의 일 구체예에 따르면, 상기 작약 추출물은 탄소수 1 내지 4의 알코올 및 이들의 혼합 용매로 이루어진 군에서 선택된 1종 이상의 용매로 추출한 것일 수 있으며, 바람직하게는 10 내지 90, 15 내지 85, 20 내지 80, 25 내지 75 또는 30 내지 70%, 또는 30 또는 70% 에탄올로 추출한 것일 수 있다.According to one embodiment of the present invention, the peony extract may be extracted with one or more solvents selected from the group consisting of alcohols having 1 to 4 carbon atoms and mixed solvents thereof, preferably 10 to 90, 15 to 85, It may be extracted with 20 to 80, 25 to 75, or 30 to 70%, or 30 or 70% ethanol.
본 발명의 일 구체예에 따르면, 상기 근이영양증은 뒤센 근이영양증(Duchenne muscular dystrophy), 베커 근이영양증(Becker muscular dystrophy), 사지-대형이양증(Limb-girdle muscular dystrophy) 및 안면 견갑상완 근이영양증(Facioscpulohueral dystrophy)으로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.According to one embodiment of the present invention, the muscular dystrophy consists of Duchenne muscular dystrophy, Becker muscular dystrophy, limb-girdle muscular dystrophy and facial scapulohueral dystrophy. It may be one or more selected from the group.
본 발명에 따른 식품 조성물은 상기 약학적 조성물과 동일한 방식으로 제제화하여 기능성 식품으로 이용하거나, 각종 식품에 첨가할 수 있다. 본 발명의 조성물을 첨가할 수 있는 식품으로는 예를 들어, 음료류, 과자류, 다이어트바, 유제품, 육류, 초코렛, 피자, 라면, 기타 면류, 껌류, 아이스크림류, 비타민 복합제, 건강보조식품류 등이 있다. The food composition according to the present invention can be formulated in the same way as the pharmaceutical composition and used as a functional food or added to various foods. Foods to which the composition of the present invention can be added include, for example, beverages, confectionery, diet bars, dairy products, meat, chocolate, pizza, ramen, other noodles, chewing gum, ice cream, vitamin complexes, and health supplements. .
본 발명의 식품 조성물은 작약 추출물을 포함하는 이외에 식품 제조 시에 통상적으로 첨가되는 성분을 포함할 수 있으며, 예를 들어, 단백질, 탄수화물, 지방, 영양소, 조미제 및 향미제를 포함한다. 상술한 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스, 올리고당 등; 및 폴리사카라이드, 예를 들어 덱스트린, 사이클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 향미제로서 천연 향미제 [타우마틴, 스테비아 추출물 (예를 들어 레바우디오시드 A, 글리시르히진 등)] 및 합성 향미제 (사카린, 아스파르탐 등)를 사용할 수 있다. 예를 들어, 본 발명의 식품 조성물이 드링크제와 음료류로 제조되는 경우에는 본 발명의 작약 추출물 이외에 구연산, 액상과당, 설탕, 포도당, 초산, 사과산, 과즙, 및 각종 식물 추출액 등을 추가로 포함시킬 수 있다. In addition to the peony extract, the food composition of the present invention may include ingredients commonly added during food preparation, and include, for example, proteins, carbohydrates, fats, nutrients, seasonings and flavors. Examples of the aforementioned carbohydrates include monosaccharides such as glucose, fructose, and the like; disaccharides such as maltose, sucrose, oligosaccharides and the like; and polysaccharides such as conventional sugars such as dextrins and cyclodextrins and sugar alcohols such as xylitol, sorbitol and erythritol. As flavoring agents, natural flavoring agents [thaumatin, stevia extract (eg, rebaudioside A, glycyrrhizin, etc.)] and synthetic flavoring agents (saccharin, aspartame, etc.) can be used. For example, when the food composition of the present invention is prepared as a drink or beverage, in addition to the peony extract of the present invention, citric acid, high fructose corn syrup, sugar, glucose, acetic acid, malic acid, fruit juice, and various plant extracts may be further included. there is.
본 발명의 일 구체예에 따르면, 상기 작약 추출물을 포함하는 식품 조성물은 근육 기능 개선, 근육 손상 감소, HMGB1 수준 감소, HMGB1-TLR4-NFkB의 신호전달 억제 또는 사이토카인 및 케모카인의 수준 감소에 의하여 근이영양증을 예방 또는 개선할 수 있다. According to one embodiment of the present invention, the food composition containing the peony extract improves muscle function, reduces muscle damage, reduces HMGB1 level, inhibits signaling of HMGB1-TLR4-NFkB or reduces the level of cytokines and chemokines to treat muscular dystrophy can be prevented or ameliorated.
이하 하나 이상의 구체예를 실시예를 통해 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are intended to illustrate one or more specific examples, and the scope of the present invention is not limited to these examples.
실시예 1. 작약 추출물 제조 Example 1. Preparation of peony extract
적작약(Paeonia lactiflora Pall.)의 뿌리를 건조한 것을 사용하였다. 적작약 건조근은 한국 의성에서 재배 및 수확된 것으로, 선일 한방 약재 회사(한국, 홍천)에서 구입하였으며(lot # SQ-17053-2-2), 대한민국약전에 따라 식별 및 표준화되었다. 적작약 건조근을 이의 10배 부피가 되는 30%, 70% 에탄올에 넣고 4시간 동안 65℃에서 추출하였다. 추출물은 5 μm 필터로 여과하고 45 ℃ 에서 진공 증발(vacuum evaporation)하여 농축하였다. 농축 추출물은 85 ℃ 에서 1시간 동안 멸균하고, 분무 건조하여 작약 에탄올 추출물(PL)을 제조하였다. PL의 수득률은 22.2% 였다. PL에 포함된 주요 화합물은 페오니플로린(paeoniflorin)과 알비플로린(albiflorin)이며 이에 대한 정보는 하기 표 1과 같다.Dried roots of Paeonia lactiflora Pall. were used. Red peony dried roots were grown and harvested in Uiseong, Korea, and were purchased from Sunil Oriental Medicine Company (Hongcheon, Korea) (lot # SQ-17053-2-2), and identified and standardized according to the Korean Pharmacopoeia. The dried roots of red peony were put in 30% and 70% ethanol, which are 10 times the volume thereof, and extracted at 65 ° C. for 4 hours. The extract was filtered through a 5 μm filter and concentrated by vacuum evaporation at 45 °C. The concentrated extract was sterilized at 85 °C for 1 hour, and spray-dried to prepare an ethanol extract (PL) of peony. The yield of PL was 22.2%. The main compounds included in PL are paeoniflorin and albiflorin, and information on them is shown in Table 1 below.
정보information 페오니플로린Peony Florin 알비플로린albiflorin
분자식molecular formula C23H28O11 C 23 H 28 O 11 C23H28O11 C 23 H 28 O 11
분자량Molecular Weight 480.46 g/mol480.46 g/mol 480.46 g/mol480.46 g/mol
CAS 등록번호CAS registration number 23180-57-623180-57-6 39011-90-039011-90-0
화학구조chemical structure
Figure PCTKR2022016664-appb-img-000001
Figure PCTKR2022016664-appb-img-000001
Figure PCTKR2022016664-appb-img-000002
Figure PCTKR2022016664-appb-img-000002
PL 내 함량(w/w)Content in PL (w/w) 8.9-13.5%8.9-13.5% 0.8-1.1%0.8-1.1%
준비예 1. 기타 시약 및 약물 준비Preparation Example 1. Preparation of other reagents and drugs
1차 항체로 사용된 항-HMGB1(high mobility group box 1)(cat# 3935), 항-TLR4(cat# 14358), 항-IRAK1(cat# 4504), 항-IKKβ(cat# 8943), 항-p-IKKα/β(Ser176/180)(cat# 2694), 항-IkB(cat# 9242), 항-p-IkB(Ser 32/36)(cat# 9246) 및 항-NF-kB p65(cat# 8242) 항체)와 2차 항체로 사용된 항-마우스 항체(cat# 7076) 및 항-토끼 항체(cat# 7074)는 셀 시그날링 테크놀로지(Cell Signaling Technology, USA)에서 구입하였다. 항-p-IRAK1 (Thr209) (cat# ABP54915) 항체는 압킨(Abbkine, China)에서 구매하였다. 항-β-actin (cat# 47778) 및 항-TATA box-binding protein (TBP, cat# 204) 항체는 산타 크루즈 바이오테크놀로지(Santa Cruz Biotechnology, Inc. USA)에서 구매하였다. 프레드니솔론(prednisolon)은 도쿄 케미컬(Tokyo Chemical Industry Co., Japan)에서 구매하였다. Anti-HMGB1 (high mobility group box 1) (cat# 3935), anti-TLR4 (cat# 14358), anti-IRAK1 (cat# 4504), anti-IKKβ (cat# 8943), anti-IKKβ (cat# 8943) used as primary antibodies -p-IKKα/β (Ser176/180) (cat# 2694), anti-IkB (cat# 9242), anti-p-IkB (Ser 32/36) (cat# 9246) and anti-NF-kB p65 ( cat# 8242) and anti-mouse antibody (cat# 7076) and anti-rabbit antibody (cat# 7074) used as secondary antibodies were purchased from Cell Signaling Technology (USA). Anti-p-IRAK1 (Thr209) (cat# ABP54915) antibody was purchased from Abbkine (China). Anti-β-actin (cat# 47778) and anti-TATA box-binding protein (TBP, cat# 204) antibodies were purchased from Santa Cruz Biotechnology, Inc. USA. Prednisolone was purchased from Tokyo Chemical Industry Co., Japan.
준비예 2. 실험 동물 준비Preparation Example 2. Preparation of experimental animals
모든 동물실험은 중앙대학교의 실험동물윤리위원회(Institutional Animal Care and Use Committee)에서 심의 및 승인 받았다 (승인번호 202000095). 4주령의 수컷 mdx 마우스 (C57BL/10ScSn-Dmdmdx/J)와 동일한 혈통(strain)의 야생형 대조군 (C57BL/10ScSnJ)은 모두 잭슨 연구소(Jackson Laboratory, USA)에서 구입하였다. mdx 마우스는 뒤센 근이영양증(Duchenne muscular dystrophy, DMD)의 동물모델로 널리 사용되며, 근육 기능의 심각한 저하가 특징이다. 실험 전 중앙대학교 사육장에서 7일간의 적응 기간을 거쳤으며, 특정 병원균이 없는(specific pathogen-free) 사육실에 케이지당 4마리씩 수용되었다. 명암은 12시간 주기를 유지하였다. 적응기간 동안 고형사료와 물을 자유로이 섭취시켰다. All animal experiments were reviewed and approved by the Institutional Animal Care and Use Committee of Chung-Ang University (approval number 202000095). 4-week-old male mdx mice (C57BL/10ScSn-Dmd mdx /J) and wild-type controls (C57BL/10ScSnJ) of the same strain were all purchased from Jackson Laboratory (USA). The mdx mouse is widely used as an animal model for Duchenne muscular dystrophy (DMD), which is characterized by severe decline in muscle function. Prior to the experiment, they went through a 7-day acclimatization period at the Chung-Ang University breeding farm, and were housed in a specific pathogen-free breeding room, four per cage. Light and dark were maintained in a 12-hour cycle. During the adaptation period, solid food and water were freely consumed.
마우스에 PL 또는 프레드니솔론을 증류수 200 μL에 현탁하여 4주 동안 하루에 한 번 경구투여하였다. PL or prednisolone was suspended in 200 μL of distilled water and orally administered to mice once a day for 4 weeks.
PL은 인간의 적정 용량에 기초하여 투여되었다. 인간에 대한 작약 원재료의 일반적인 하루 투여량은 3g으로 (Monograph, Alternative Medicine Review, 2001, volume 6, 495-499), 본 연구에서 사용된 30% 에탄올 추출물(수율, 22.2%)의 666mg과 같다. 인간의 표준 체중은 60kg이고, 마우스에 대한 인체등가용량(human-equivalent dose, HED) 상수는 12.3 이므로 (Nair and Jacob, J. Basic. Clin. Pharm., 2016, volume 7, 27-31), 마우스의 HED은 666 mg/60 kg Х 12.3 = 136.5 mg/kg로 계산되었다. 마우스 대상 용량 범위 실험에서 중심 용량, 최저 용량 및 최고 용량을 각각 100mg/kg, 50 mg/kg 및 200 mg/kg으로 설정하였다. 프레드니솔론(1 mg/kg/day)은 대조약으로 사용되었다. PL was administered based on human titrated doses. A typical daily dose of peony raw material for humans is 3 g (Monograph, Alternative Medicine Review, 2001, volume 6, 495-499), which is equivalent to 666 mg of the 30% ethanol extract (yield, 22.2%) used in this study. Since the standard weight of a human is 60 kg and the human-equivalent dose (HED) constant for a mouse is 12.3 (Nair and Jacob, J. Basic. Clin. Pharm., 2016, volume 7, 27-31), The HED of the mouse was calculated as 666 mg/60 kg Х 12.3 = 136.5 mg/kg. In the mouse dose range experiment, the central dose, the lowest dose, and the highest dose were set at 100 mg/kg, 50 mg/kg, and 200 mg/kg, respectively. Prednisolone (1 mg/kg/day) was used as a comparator.
mdx 마우스와 야생형 마우스의 대조군(vehicle-treated groups, vehicle)은 200 μL의 증류수만 경구투여되었다.Control groups (vehicle-treated groups, vehicle) of mdx mice and wild-type mice were orally administered with only 200 μL of distilled water.
마우스는 4주간 매일 약물을 경구투여한 후 10 mg/kg 알팍살론(alfaxalone)(Jurox, Australia)으로 마취하였다. 혈액은 EDTA 코팅 튜브에 채취한 다음 혈장을 얻기 위하여 10분 동안 2500g에서 원심 분리하였다. Mice were anesthetized with 10 mg/kg alfaxalone (Jurox, Australia) after oral administration of the drug daily for 4 weeks. Blood was collected in EDTA-coated tubes and centrifuged at 2500g for 10 minutes to obtain plasma.
근육 분석을 위하여 마우스의 비복근(gastrocnemius)과 횡격막(diaphragm)을 박리하여, 액체 질소에 급속 냉동시킨 후 -80℃에서 보관하였다.For muscle analysis, the gastrocnemius and diaphragm of the mouse were separated, rapidly frozen in liquid nitrogen, and then stored at -80°C.
실험예 1. 작약 추출물의 근육 기능 개선 효과 확인Experimental Example 1. Confirmation of muscle function improvement effect of peony extract
1-1. 실험 방법 - 악력 검사 및 로타로드 검사1-1. Experiment method - grip strength test and rotarod test
mdx 마우스의 근육 기능에 대한 PL의 영향을 평가하기 위하여, 야생형 마우스는 증류수를 경구투여하였으며(wildtype), mdx 마우스는 증류수 투여군(vehicle), 프레드니솔론을 1 mg/kg 로 투여한 군(predn), PL을 50 mg/kg로 투여한 군(PL 50), 100 mg/kg로 투여한 군(PL 100) 및 200 mg/kg로 투여한 군(PL 200)으로 나누어 각 약물을 4주 동안 매일 경구투여하였다. To evaluate the effect of PL on the muscle function of mdx mice, wild-type mice were orally administered with distilled water (wildtype), mdx mice were administered with distilled water (vehicle), prednisolone was administered at 1 mg / kg (predn), The group administered with PL at 50 mg/kg (PL 50), the group administered at 100 mg/kg (PL 100), and the group administered at 200 mg/kg (PL 200), and each drug was administered orally daily for 4 weeks. administered.
마우스의 근육 기능은 악력 검사(grip strength test)와 로타로드 검사(rotarod test)로 측정되었다. 근력의 지표로서 앞다리 악력을 측정하였으며, 악력계 (Bio-GS3, Bioseb, France)를 사용하였다. 운동 협응 능력은 로타로드 검사로 측정되었으며, 로타로드 장치 (Panlab, Spain)를 사용하여 직경 3 cm의 회전봉에서 지연 시간(Latency time, 로타로드 장치에서 실험동물이 낙하하기까지의 머무른 시간을 의미함)을 측정하였다.The muscle function of the mice was measured by grip strength test and rotarod test. Forelimb grip strength was measured as an index of muscle strength, and a grip dynamometer (Bio-GS3, Bioseb, France) was used. The motor coordination ability was measured by the rotarod test, using the rotarod device (Panlab, Spain) on a rotating rod with a diameter of 3 cm. ) was measured.
데이터는 3회 이상의 반복실험결과를 평균 ± 표준편차로 표시하였다. 통계적 유의성은 짝이 없는 t 검정 (unpaired t test)을 사용하여 평가되었다. p < 0.05는 통계적 유의성을 나타내는 것으로 간주하였다 (* p < 0.05, ** p < 0.01 및 *** p < 0.001). 데이터 분석은 SPSS 버전 18.0 소프트웨어(SPSS Inc., Chicago, IL, USA)를 사용하여 수행하였다. 이후 실험에 대한 데이터 분석도 동일하게 수행하였다.Data are expressed as mean ± standard deviation of the results of three or more replicates. Statistical significance was assessed using an unpaired t test. p < 0.05 was considered to indicate statistical significance (* p < 0.05, ** p < 0.01 and *** p < 0.001). Data analysis was performed using SPSS version 18.0 software (SPSS Inc., Chicago, IL, USA). Data analysis for the subsequent experiment was also performed in the same way.
1-2. 실험 결과1-2. Experiment result
mdx 마우스의 체중 대비 정규화한 앞다리의 악력(forearm grip strength normalized to body weight)과 로타로드 검사에서의 지연 시간은 야생형 대조군과 비교하여 현저하게 낮은 것으로 나타났다.The forearm grip strength normalized to body weight of the mdx mice and the latencies in the rotarod test were significantly lower than those of the wild-type control group.
하지만, PL을 경구투여한 mdx 마우스는 용량 의존적으로 증류수 투여 mdx 마우스(vehicle)보다 악력 및 지연 시간이 현저하게 높아지는 것으로 나타났다. 도 1C및 도 1D를 참조하면, PL의 경구투여로 인하여 mdx 마우스의 근력과 운동 협응 능력이 효과적으로 향상된 것을 알 수 있다. However, mdx mice orally administered PL showed significantly higher grip strength and latencies than mdx mice (vehicle) administered with distilled water in a dose-dependent manner. Referring to FIGS. 1C and 1D , it can be seen that the oral administration of PL effectively improved muscle strength and motor coordination ability of mdx mice.
실험예 2. 작약 추출물의 근육 손상 감소 효과 확인 1Experimental Example 2. Confirmation of muscle damage reduction effect of peony extract 1
2-1. 실험 방법 - 근육의 조직학적 분석2-1. Experimental method - Histological analysis of muscle
비복근의 일부는 포르말린에 고정하고 탈수(dehydration), 파라핀 포매(embedding), 절편화(sectioning)과 같은 조직병리학적 검사를 위한 표준 절차를 시행하였다. 퇴행성 섬유는 백혈구 침윤과 핵 농축증(nuclear pyknosis)으로 인하여, 헤마톡실린(hematoxylin)에 의해 호염기성으로 염색된다. 처리된 근육 조직의 퇴행성 섬유를 헤마톡실린과 에오신(eosin)으로 염색하여 현미경으로 관찰하였다. A portion of the gastrocnemius muscle was fixed in formalin and standard procedures for histopathological examination, such as dehydration, paraffin embedding, and sectioning, were performed. Degenerative fibers are stained basophil by hematoxylin due to leukocyte infiltration and nuclear pyknosis. Degenerative fibers of the treated muscle tissue were stained with hematoxylin and eosin and observed under a microscope.
2-2. 실험 결과 2-2. Experiment result
비복근에 대한 조직학적 검사 결과에서는 야생형 대조군에 비해 mdx 마우스에서 퇴행성 섬유의 수가 증가한 것으로 나타났다. 하지만, PL의 경구 투여로 인하여 mdx 마우스 근육의 퇴행성 섬유 수가 감소된 것을 확인할 수 있었다(도 2A).Histological examination of the gastrocnemius revealed an increased number of degenerative fibers in mdx mice compared to wild-type controls. However, it was confirmed that the number of degenerative fibers in the muscles of mdx mice was reduced due to oral administration of PL (FIG. 2A).
실험예 3. 작약 추출물의 근육 손상 감소 효과 확인 2Experimental Example 3. Confirmation of muscle damage reduction effect of peony extract 2
3-1. 실험 방법 -크레아틴 키네이스 활성 분석3-1. Experimental Method - Creatine Kinase Activity Assay
혈액 내 크레아틴 키네이스(creatine kinase, CK) 활성은 근육 손상을 판단하는데 임상적으로 사용되는 바이오 마커이다. 혈장 CK의 활성은 키트(Abcam, UK) (cat# ab155901)를 사용하여 분석하였다.Creatine kinase (CK) activity in the blood is a clinically used biomarker for determining muscle damage. The activity of plasma CK was assayed using a kit (Abcam, UK) (cat# ab155901).
3-2. 실험 결과3-2. Experiment result
혈장 내 CK 활성은 야생형 대조군보다 mdx 마우스에서 현저히 높았다. 하지만 PL 경구투여로 인해 mdx 마우스의 혈장 CK 활성은 PL의 투여 용량에 따라 의존적으로 유의미하게 감소한 것으로 나타나, PL이 mdx 마우스에서 근육 손상을 감소시켰음을 확인하였다(도 2B).Plasma CK activity was significantly higher in mdx mice than in wild-type controls. However, oral administration of PL resulted in a significant decrease in plasma CK activity in mdx mice in a dose-dependent manner, confirming that PL reduced muscle damage in mdx mice (FIG. 2B).
실험예 4. 작약 추출물에 의한 단백질 발현 변화 확인Experimental Example 4. Confirmation of protein expression change by peony extract
4-1. 실험 방법 - 근육 내 단백체 분석4-1. Experimental Method - Intramuscular Proteomic Analysis
증류수 투여 야생형 대조군, 증류수 투여 mdx 마우스 및 PL 투여 mdx 마우스(100 mg/Kg)에서 비복근(n = 3)의 단백체 분석을 수행하였다. 비복근 조직은 액체 질소에서 냉동 분쇄(cryo-pulverized)하였다.Proteomic analysis of gastrocnemius muscles (n = 3) was performed in distilled water-administered wild-type control, distilled-water-administered mdx mice, and PL-administered mdx mice (100 mg/Kg). Gastrocnemius tissue was cryo-pulverized in liquid nitrogen.
검체의 단백질은 37 ℃에서 30분 동안 트리스(2-카복시에틸)포스핀(tris(2-carboxyethyl)phosphine)으로 환원(reduce)한 다음, 암조건에서 25 ℃에서 요오드 초산(iodoacetic acid)으로 1시간 동안 알킬화 하였으며, 트립신(Promega, US)(트립신 : 단백질 = 1 : 50 (w/w))으로 37 ℃에서 18시간 동안 처리하였다. 소화된 펩타이드는 EkspertTM nanoLC 425 system (Eksigent, USA)를 사용하여 분리하였고, 분리된 펩타이드는 SCIEX TripleTOF 5600+ 질량분석시스템 (Agilent Technologies, USA)을 사용하여 분석하였다. 질량 분석 데이터는 마우스 참조 분광 라이브러리(mouse reference spectrum library) MouseRefSWATH(PASS01569)를 사용해 처리하였다. 단백체 질량 분석 데이터는 데이터 세트 식별자(dataset identifier) PXD028886가 있는 PRIDE 데이터베이스를 통하여 ProteomeXchange 컨소시엄에 보관하였다. 데이터 마이닝(data mining)과 볼케이노 플롯(volcano plot)과 히트 맵(heat map)을 포함한 그래픽 시각화는 ExDEGA(Ebiogen Inc., Korea)를 사용하여 수행하였다. 상호작용 네트워크 분석은 STRING(Search Tool for the Retrieval of Interacting Genes/Proteins) 데이터베이스를 사용하여 유전자 및/또는 단백질 간의 알려졌거나 예측 가능한 상호작용을 확인하였다.The protein of the sample was reduced with tris(2-carboxyethyl)phosphine at 37 °C for 30 minutes, and then reduced with iodoacetic acid at 25 °C in the dark. It was alkylated for 18 hours and treated with trypsin (Promega, US) (trypsin: protein = 1: 50 (w/w)) at 37° C. for 18 hours. The digested peptides were separated using the EkspertTM nanoLC 425 system (Eksigent, USA), and the separated peptides were analyzed using the SCIEX TripleTOF 5600+ mass spectrometry system (Agilent Technologies, USA). Mass spectrometry data were processed using the mouse reference spectrum library MouseRefSWATH (PASS01569). Proteome mass spectrometry data were archived by the ProteomeXchange consortium through the PRIDE database with the dataset identifier PXD028886. Data mining and graphic visualization including volcano plots and heat maps were performed using ExDEGA (Ebiogen Inc., Korea). Interaction network analysis identified known or predictable interactions between genes and/or proteins using the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database.
4-2. 실험 결과4-2. Experiment result
모든 실험군의 비복근에서 총 581개의 단백질을 확인하였다. 실험군의 581개 단백질에 대한 배수 변화(fold change) 분포와 p 값은 볼케이노 플롯으로 나타냈다(도 3a 및 도 3b). 실험군 중 유의미한 차이(배수 변화 > 2 및 p < 0.05)를 보인 단백질은 차등 발현 단백질(differentially expressed proteins, DEPs)로 선택하였다. 증류수 투여된 야생형 대조군(wildtype)와 mdx 마우스(mdx) 비복근의 비교를 통하여 100개의 DEPs를 식별했다. 상기 100개의 DEPs 중 과산화수소를 감소시키고 산화스트레스로부터 세포를 보호하는 페록시레독신-2(peroxiredoxin-2, PRDX2)는 mdx 마우스보다 야생형 대조군에서 더 높은 수준을 보인 반면, 나머지 99종의 단백질은 낮은 수준을 보이는 것으로 나타났다(도 3c). PL을 경구투여한 mdx 마우스의 근육 단백체와 증류수 투여 mdx 마우스의 근육 단백체를 비교한 결과 9개의 DEPs가 식별되었다(도 3d). 이 9개의 DEPs 중 HMGB1(high mobility group box 1)은 PL을 경구투여한 mdx 마우스(mdx+PL)에서 증류수 투여된 mdx 마우스(mdx) 보다 낮은 수준을 보였고, 나머지 8개는 더 높은 수준을 보였다.A total of 581 proteins were identified in the gastrocnemius muscles of all experimental groups. The fold change distribution and p value for 581 proteins in the experimental group were shown as a Volcano plot (FIGS. 3a and 3b). Proteins showing significant differences (fold change > 2 and p < 0.05) among the experimental groups were selected as differentially expressed proteins (DEPs). 100 DEPs were identified through comparison of gastrocnemius muscles of wild type control (wildtype) and mdx mice (mdx) administered with distilled water. Among the 100 DEPs, peroxiredoxin-2 (PRDX2), which reduces hydrogen peroxide and protects cells from oxidative stress, showed higher levels in the wild-type control group than mdx mice, whereas the remaining 99 proteins were low. level was found (Fig. 3c). Nine DEPs were identified as a result of comparing muscle proteomes of mdx mice orally administered PL with those of mdx mice given distilled water (Fig. 3d). Among these 9 DEPs, HMGB1 (high mobility group box 1) showed a lower level in mdx mice (mdx+PL) orally administered PL than in mdx mice (mdx) administered with distilled water, and the remaining 8 showed higher levels. .
도 3e를 참조하면, 두 세트의 DEPs에 대한 벤다이어그램은 PL을 경구투여한 mdx 마우스와 증류수 투여된 mdx 마우스 사이에서 발현량이 다른 9종의 단백질 중 유일하게 HMGB1이 야생형 대조군과 mdx 마우스에서 발현량의 차이를 보이는 것을 알 수 있었다. 또한, 야생형 대조군과 비교하여 mdx 마우스에서 발현량이 다른 100종의 단백질 중 유일하게 HMGB1이 PL의 경구투여에 의해 발현 수준이 유의미하게 회복된다는 것을 나타낸다. 따라서, HMGB1은 mdx 마우스의 근육 손상 및 PL에 의한 근육 회복에 중요한 역할을 할 수 있다.Referring to FIG . 3e, the Venn diagram for the two sets of DEPs shows that HMGB1 is the only protein among 9 proteins whose expression level is different between mdx mice orally administered with PL and mdx mice administered with distilled water. It was found that the difference between In addition, compared to the wild-type control group, mdx mice show that the expression level of HMGB1 is only significantly restored by oral administration of PL among 100 proteins with different expression levels. Thus, HMGB1 may play an important role in muscle injury and PL-induced muscle recovery in mdx mice.
실험예 5. 작약 추출물의 HMGB1-TLR4-NF-kB 신호전달에 미치는 효과 확인Experimental Example 5. Confirmation of effect of peony extract on HMGB1-TLR4-NF-kB signaling
5-1. 실험 방법 -웨스턴 블롯5-1. Experimental method - Western blot
단백질은 뉴클레오스핀 키트(NucleoSpin kit, Macherey-Nagel, Germany; cat# MN740933)를 사용하여 비복근에서 추출하였다. 단백질 농도는 BCA 단백질 분석 키트(Pierce, USA)를 사용하여 측정한 다음, 검체당 50μg 단백질을 12% 폴리아크릴아미드 겔 전기영동로 분리하고 1시간 30분 동안 150 mA에서 니트로셀룰로오스 막에 전기이동(electrotransfer)시켰다. 막을 상온(22 내지 26 ℃)에서 5% 탈지 우유(skim milk)와 0.1% 트윈-20(Tween-20)를 함유한 인산 완충 용액(phosphate-buffered saline, PBS)으로 3시간 동안 차단(blocking)하였다. 이후, 4 ℃에서 16시간 동안 1차 항체와 반응시킨 후, 상온에서 2시간 동안 HRP(horseradish-peroxidase)가 결합된 2차 항체와 반응시켰다. 단백질 밴드는 ECL 키트(Bio-Rad Laboratories Inc., USA)를 사용하여 검출하였다. 단백질 밴드의 강도는 Image J 소프트웨어(NIH, USA)를 사용하여 정량화하였다.Protein was extracted from the gastrocnemius muscle using the NucleoSpin kit (Macherey-Nagel, Germany; cat# MN740933). Protein concentration was measured using the BCA protein assay kit (Pierce, USA), then 50 μg protein per sample was separated by 12% polyacrylamide gel electrophoresis and electrophoresis on a nitrocellulose membrane at 150 mA for 1 hour 30 minutes ( electrotransfer). The membrane was blocked for 3 hours with phosphate-buffered saline (PBS) containing 5% skim milk and 0.1% Tween-20 at room temperature (22 to 26 ° C). did Thereafter, after reacting with the primary antibody for 16 hours at 4 ° C., it was reacted with the secondary antibody coupled to horseradish-peroxidase (HRP) for 2 hours at room temperature. Protein bands were detected using an ECL kit (Bio-Rad Laboratories Inc., USA). The intensity of protein bands was quantified using Image J software (NIH, USA).
5-2. 실험 결과5-2. Experiment result
HMGB1-TLR4-NF-kB의 신호전달은 염증을 진행시키는 역할을 하는 것으로 알려져 있다. HMGB1이 NF-kB 및 TLR4와 상호작용하는 것(도 3f)을 고려하여, 웨스턴 블롯을 통해 야생형 대조군, 증류수 투여 mdx 마우스, 프레드니솔론 경구 투여 mdx 마우스 또는 PL 경구 투여 mdx 마우스의 근육에서 HMGB1-TLR4-NF-kB 신호 전달경로의 단백질 발현 수준을 분석했다(도 4a). mdx 마우스에서 야생형 대조군과 비교하여 HMGB1 단백질 수준이 높은 것으로 나타났지만, PL의 경구투여로 인하여 유의미하게 감소한 것으로 나타났다(도 4b). TLR4 단백질(HMGB1 수용체)은 야생형 대조군보다 mdx 마우스에서 더 높은 것으로 나타났으나, PL의 경구 투여로 인하여 mdx 마우스에서 TLR4 수준이 유의미하게 감소한 것으로 나타났다(도 4c). 야생형 대조군에 비해 mdx 마우스의 근육에서 활성화된 TLR4에서 NF-kB까지의 신호전달 단백질들은 PL의 경구투여에 의하여 모두 억제되었다. 즉, 야생형 대조군보다 mdx 마우스의 근육에서 더 높은 수준을 나타낸 p-IRAK, p-IKK, p-IkB는 모두 증류수 처리와 비교하여 PL의 경구투여에 의해 유의미하게 감소한 것으로 나타났다(도 4d 내지 4f). PL의 경구투여로 인하여 근육에서 NF-kB의 억제제인 IkB 수준이 증가한 것으로 나타났다(도 4g).Signal transduction of HMGB1-TLR4-NF-kB is known to play a role in progressing inflammation. Considering that HMGB1 interacts with NF-kB and TLR4 (Fig. 3f), Western blot analysis showed that HMGB1- TLR4 -HMGB1-TLR4- The protein expression level of the NF-kB signaling pathway was analyzed (Fig. 4a). Although the HMGB1 protein level was higher in mdx mice compared to wild-type controls, it was found to be significantly reduced by oral administration of PL (FIG. 4b). Although TLR4 protein (HMGB1 receptor) was found to be higher in mdx mice than in wild-type controls, oral administration of PL resulted in a significant decrease in TLR4 levels in mdx mice (Fig. 4c). Compared to the wild-type control group, all signaling proteins from TLR4 to NF-kB activated in the muscles of mdx mice were suppressed by oral administration of PL. That is, p-IRAK, p-IKK, and p-IkB, which showed higher levels in the muscles of mdx mice than wild-type controls, were all significantly reduced by oral administration of PL compared to distilled water treatment (FIGS. 4d to 4f). . Oral administration of PL increased the level of IkB, an inhibitor of NF-kB, in muscle (Fig. 4g).
실험예 6. 작약 추출물의 NF-kB의 핵 전위 및 표적 DNA와의 결합에 미치는 효과 확인Experimental Example 6. Confirmation of effects of peony extract on NF-kB nuclear translocation and binding to target DNA
6-1. 실험 방법 -NF-kB의 표적 DNA와의 결합 평가6-1. Experimental method - Evaluation of binding of NF-kB to target DNA
핵 용해물(lysate)은 NE-PER 핵 및 세포질 추출 시약(Thermo Scientific; cat# 78833)을 사용하여 비복근에서 수집하였으며, 단백질 농도는 BCA 단백질 분석 키트(Pierce)를 사용하여 측정하였다. 표적 DNA 염기서열(5'-GGACTTTCC-3')에 대한 NF-kB의 결합은 TransAM NF-kB ELISA 키트(Active Motif, cat# 40096)를 사용하여 평가하였다. 간단히 설명하면, 표적 DNA 서열을 포함하는 올리고뉴클레오타이드(oligonucleotides)가 코팅된 96웰 플레이트에 10 μg의 핵 단백질 추출물을 첨가하였다. 배양 및 세척 단계 후, 키트에 포함된 NF-kB 항체를 웰에 첨가하였고, 이후 키트에 포함된 HRP-결합 2차 항체, 과산화효소 기질(peroxidase substrate) 및 반응 정지 용액(stop solution)을 순서대로 첨가하였다.Nuclear lysates were collected from gastrocnemius muscles using NE-PER nuclear and cytoplasmic extraction reagent (Thermo Scientific; cat# 78833), and protein concentrations were determined using the BCA protein assay kit (Pierce). The binding of NF-kB to the target DNA sequence (5'-GGACTTTCC-3') was evaluated using the TransAM NF-kB ELISA kit (Active Motif, cat# 40096). Briefly, 10 μg of nuclear protein extract was added to a 96-well plate coated with oligonucleotides containing the target DNA sequence. After the incubation and washing steps, the NF-kB antibody included in the kit was added to the wells, and then the HRP-conjugated secondary antibody, peroxidase substrate, and stop solution included in the kit were sequentially added. added.
6-2. 실험 결과6-2. Experiment result
야생형 대조군에 비해 mdx 마우스에서 세포질의 NF-kB 수준이 감소(도 4h 및 4i)한 반면 핵의 NF-kB 수준은 증가(도 4h 및 4j)하여 근이영양증에서 NF-kB의 핵 전위(nuclear translocation)가 나타나는 것을 확인하였다. PL의 경구투여는 NF-kB의 핵 전위를 억제하는 것으로 나타났다. 표적 DNA 염기서열에 대한 NF-kB 결합은 NF-kB 핵 전위의 결과로서 야생형 대조군과 비교하여 mdx 마우스에서 증가했으며, PL의 경구투여 의해 표적 DNA 염기서열에 대한 NF-kB 결합은 유의미하게 감소하는 것으로 나타났다(도 4k).Compared to wild-type controls, the cytoplasmic NF-kB level decreased in mdx mice (Figs. 4h and 4i), whereas the nuclear NF-kB level increased (Figs. 4h and 4j), suggesting nuclear translocation of NF-kB in muscular dystrophy. translocation) was confirmed. Oral administration of PL has been shown to inhibit nuclear translocation of NF-kB. NF-kB binding to the target DNA sequence was increased in mdx mice compared to wild-type controls as a result of NF-kB nuclear translocation, and NF-kB binding to the target DNA sequence was significantly decreased by oral administration of PL. appeared (Fig. 4k).
실험예 7. 작약 추출물의 사이토카인과 케모카인 수준에 미치는 영향 확인 (유전자 수준)Experimental Example 7. Confirmation of effect of peony extract on cytokine and chemokine levels (gene level)
7-1. 실험 방법 - RT-qPCR7-1. Experimental method - RT-qPCR
총 RNA는 RNeasy Kit(Qiagen; cat# 74106)를 사용하여 비복근 및 횡격막 조직에서 분리하였다. 1 μg의 총 RNA는 cDNA 역전사 키트(Applied Biosystems Inc., cat# 43-688-13)를 사용하여 역전사되었다. qPCR(quantitative polymerase chain reaction) 반응은 공지된 방법에 따라 수행하였다 (Bae et al. Journal of Ethnopharmacology, 2020, 246, 112222). RT-qPCR 반응을 위해 IL(interleukin)-6(cat# Mm00446190_m1), IL-1β(cat# Mm00434228_m1), IL-1α(cat# Mm00439620_m1), IFN(interferon)-γ(cat# Mm01168134_m1), TNF(tumor necrosis factor)-α (cat# Mm00443258_m1), CCL(C-C motif chemokine ligand)2 (cat# Mm00441242_m1), CCL3 (cat# Mm00441259_m1), CCL4 (cat# 00443111_m1), CCL5 (cat# Mm01302428_m1), 및 18S 리보솜 RNA (cat# Hs99999901_s1)를 주문하여 (Assay-on-Demand Gene Expression Products, Applied Biosystems) 사용하였다. 각 실험군에 대해 mRNA 수준은 18S 리보솜 RNA 수준에 대해 정규화(normalized)되었으며, 각 실험군에서 정규화된 mRNA 수준의 비율은 비교 Ct 방법(comparative Ct method)을 사용하여 야생형 대조군과 비교하였다.Total RNA was isolated from gastrocnemius and diaphragm tissues using the RNeasy Kit (Qiagen; cat# 74106). 1 μg of total RNA was reverse transcribed using a cDNA reverse transcription kit (Applied Biosystems Inc., cat# 43-688-13). Quantitative polymerase chain reaction (qPCR) reaction was performed according to a known method (Bae et al. Journal of Ethnopharmacology, 2020, 246, 112222). For RT-qPCR reaction, IL(interleukin)-6 (cat# Mm00446190_m1), IL-1β (cat# Mm00434228_m1), IL-1α (cat# Mm00439620_m1), IFN(interferon)-γ (cat# Mm01168134_m1), TNF( tumor necrosis factor)-α (cat# Mm00443258_m1), CCL (C-C motif chemokine ligand)2 (cat# Mm00441242_m1), CCL3 (cat# Mm00441259_m1), CCL4 (cat# 00443111_m1), CCL5 (cat# Mm01302428_m1), and 18S ribosome RNA (cat# Hs99999901_s1) was ordered and used (Assay-on-Demand Gene Expression Products, Applied Biosystems). For each experimental group, the mRNA level was normalized to the 18S ribosomal RNA level, and the ratio of the normalized mRNA level in each experimental group was compared to the wild-type control group using the comparative Ct method.
7-2. 실험 결과7-2. Experiment result
NF-kB는 주요 염증성 전사 인자로, 많은 사이토카인 및 케모카인 유전자의 프로모터에 위치한 표적 DNA 염기서열에 결합하여 유전자의 전사를 활성화시키는 것으로 알려져 있다. PL이 NF-kB의 표적 DNA 결합을 유의미하게 감소시켰기 때문에(도 4k) 근육에서 사이토카인 및 케모카인의 mRNA 수준을 측정했다. IL-6, IL-1β, IL-1α, IFN-γ 및 TNF-α와 같은 염증성 사이토카인과 CCL2, CCL3, CCL4 및 CCL5와 같은 케모카인의 mRNA 수준은 야생형 대조군과 비교하여 mdx 마우스의 비복근에서 현저하게 높은 것으로 나타났다. PL의 경구투여로 인하여 mdx 마우스의 비복근의 사이토카인과 케모카인의 mRNA 수준이 현저하게 낮아진 것을 확인하였다(도 5).NF-kB is a major inflammatory transcription factor, and is known to bind to target DNA sequences located in the promoters of many cytokine and chemokine genes and activate gene transcription. Since PL significantly reduced the binding of NF-kB to its target DNA (Fig. 4k), we measured the mRNA levels of cytokines and chemokines in muscle. The mRNA levels of inflammatory cytokines, such as IL-6, IL-1β, IL-1α, IFN-γ, and TNF-α, and chemokines, such as CCL2, CCL3, CCL4, and CCL5, were significantly higher in the gastrocnemius muscle of mdx mice compared with wild-type controls. appeared to be high. It was confirmed that the mRNA levels of cytokines and chemokines in the gastrocnemius muscle of mdx mice were significantly lowered due to oral administration of PL (FIG. 5).
또한 횡격막에서 사이토카인 및 케모카인 mRNA 수준을 측정하여 비복근과 동일한 결과를 확인하였으며(도 6), 이를 통하여 PL의 경구투여는 mdx 마우스의 골격근뿐만 아니라 호흡근의 사이토카인과 케모카인의 수준도 개선한다는 것을 알 수 있다. In addition, cytokine and chemokine mRNA levels in the diaphragm were measured to confirm the same results as gastrocnemius (Fig. 6), through which oral administration of PL improved the levels of cytokines and chemokines in respiratory muscles as well as skeletal muscles in mdx mice. can
실험예 8. 작약 추출물의 사이토카인과 케모카인 수준에 미치는 영향 확인 (단백질 수준)Experimental Example 8. Confirmation of effect of peony extract on cytokine and chemokine levels (protein level)
8-1. 실험 방법 - ELISA8-1. Experimental method - ELISA
TNF-α, IL-6, 및 HMGB1의 수준을 ELISA 키트 (각각 Invitrogen, USA의 cat# BMS607-3, cat# BMS603-2; 및 FineTest, China의 cat# EM0382)를 사용하여 측정하였다. 근육 내 TNF-α와 IL-6 수준을수준을 측정하기 위하여, 비복근의 전체 단백질을 NucleoSpin Kit (Macherey-Nagel)로 추출한 후 ELISA를 측정하였다. Levels of TNF-α, IL-6, and HMGB1 were measured using ELISA kits (cat# BMS607-3, cat# BMS603-2 from Invitrogen, USA; and cat# EM0382 from FineTest, China, respectively). In order to measure the levels of TNF-α and IL-6 in muscle, the total protein of gastrocnemius muscle was extracted with NucleoSpin Kit (Macherey-Nagel) and then ELISA was measured.
8-2. 실험 결과8-2. Experiment result
[규칙 제91조에 의한 정정 29.12.2022] 
비복근의 TNF-α 및 IL-6 단백질 수준은 mRNA 수준과 유사한 패턴을 보였다(도 7a 및 도 7b). 전신 염증을 평가하기 위해 염증성 사이토카인의 혈장 수준도 측정하였다. mdx 마우스에서 TNF-α 와 IL-6의 혈장 수준은 야생형 대조군보다 유의미하게 높았으며 PL의 경구투여에 의해 감소되었다(도 7c 및 7d). mdx 마우스의 혈장 HMGB1 수준도 근육과 유사한 패턴으로 야생형 대조군보다 유의미하게 높았고 PL의 경구투여에 의해 감소하였다. 이러한 데이터는 PL의 경구투여가 mdx 마우스에서 근육 및 전신의 염증을 유의미하게 감소시키는 것을 나타낸다.
[Correction under Rule 91 29.12.2022]
TNF-α and IL-6 protein levels in the gastrocnemius muscle showed a pattern similar to that of the mRNA levels (FIGS. 7a and 7b). Plasma levels of inflammatory cytokines were also measured to assess systemic inflammation. Plasma levels of TNF-α and IL-6 in mdx mice were significantly higher than those in wild-type controls and were reduced by oral administration of PL (Figs. 7c and 7d). Plasma HMGB1 levels in mdx mice were also significantly higher than wild-type controls in a pattern similar to muscle, and were reduced by oral administration of PL. These data indicate that oral administration of PL significantly reduces muscle and systemic inflammation in mdx mice.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at with respect to its preferred embodiments. Those skilled in the art to which the present invention pertains will be able to understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope will be construed as being included in the present invention.
일 구체예에 따른 본 발명의 작약 추출물을 포함하는 약학적 조성물은 근육 기능 개선, 근육 손상 감소, HMGB1 수준 감소, HMGB1-TLR4-NFkB의 신호전달 억제 또는 사이토카인 및 케모카인의 수준을 감소시켜 근이영양증의 예방, 개선 또는 치료 용도로 유용하게 사용될 수 있으므로 산업상 이용가능성이 있다.According to one embodiment, the pharmaceutical composition comprising the peony extract of the present invention improves muscle function, reduces muscle damage, reduces HMGB1 level, inhibits HMGB1-TLR4-NFkB signaling or reduces the level of cytokines and chemokines to treat muscular dystrophy. Since it can be usefully used for preventive, ameliorative or therapeutic purposes, it has industrial applicability.

Claims (12)

  1. 작약 추출물을 유효성분으로 포함하는 Containing peony extract as an active ingredient
    근이영양증의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating muscular dystrophy.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 작약 추출물은 적작약(Paeonia lactiflora Pall.), 참작약(Paeonia lactiflora var. trichocarpa (Bunge) Stern), 민참작약(Paeonia lactiflora f. nuda Nakai), 호작약(Paeonia lactiflora f. pilosella Nakai), 백작약(Paeonia japonica (Makino) Miyabe & Takeda), 털백작약(Paeonia japonica var. pillosa Nakai), 산작약(Paeonia obovata Maxim), 천작약(Paeonia veitchii Lynch) 및 기타동속근연식물 (작약과 Paeoniaceae)로 이루어진 군에서 선택되는 1종 이상으로부터 유래되는 것인,The peony extract is red peony ( Paeonia lactiflora Pall.), Cham peony ( Paeonia lactiflora var. trichocarpa (Bunge) Stern), mincham peony ( Paeonia lactiflora f. nuda Nakai), ho peony ( Paeonia lactiflora f. pilosella Nakai), white peony ( Paeonia japonica (Makino) Miyabe & Takeda), hairy peony ( Paeonia japonica var. pillosa Nakai), mountain peony ( Paeonia obovata Maxim), paeonia veitchii Lynch ( Paeonia veitchii Lynch) and other closely related plants (Paeoniaceae and Paeoniaceae). It is derived from one or more selected species,
    근이영양증의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating muscular dystrophy.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 작약 추출물은 탄소수 1 내지 4의 알코올 및 이들의 혼합 용매로 이루어진 군에서 선택된 1종 이상의 용매로 추출한 것인,The peony extract is extracted with at least one solvent selected from the group consisting of alcohols having 1 to 4 carbon atoms and mixed solvents thereof,
    근이영양증의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating muscular dystrophy.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 근이영양증은 뒤센 근이영양증(Duchenne muscular dystrophy), 베커 근이영양증(Becker muscular dystrophy), 사지-대형 근이영양증(Limb-girdle muscular dystrophy), 안면 견갑상완 근이영양증(Facioscpulohueral dystrophy), 근긴장성 이영양증(myotonic dystrophy), 및 에머리-드라이프스 근이영양증(Emery-Dreifuss muscular dystrophy)으로 이루어진 군에서 선택된 1종 이상인 것인,The muscular dystrophy includes Duchenne muscular dystrophy, Becker muscular dystrophy, Limb-girdle muscular dystrophy, Facioscpulohueral dystrophy, myotonic dystrophy, and Emery - At least one selected from the group consisting of Emery-Dreifuss muscular dystrophy,
    근이영양증의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating muscular dystrophy.
  5. 청구항 1 내지 5 중 어느 한 항에 있어서,According to any one of claims 1 to 5,
    상기 근이영양증의 예방 또는 치료는 근육 기능 개선, 근육 손상 감소, HMGB1 수준 감소, HMGB1-TLR4-NFkB의 신호전달 억제 또는 사이토카인 및 케모카인의 수준 감소에 의한 것인,The prevention or treatment of muscular dystrophy is by improving muscle function, reducing muscle damage, reducing HMGB1 level, inhibiting HMGB1-TLR4-NFkB signaling or reducing cytokine and chemokine levels,
    근이영양증의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating muscular dystrophy.
  6. 작약 추출물을 포함하는 Containing peony extract
    근이영양증의 예방 또는 개선용 식품 조성물.A food composition for preventing or improving muscular dystrophy.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 작약 추출물은 적작약(Paeonia lactiflora Pall.), 참작약(Paeonia lactiflora var. trichocarpa (Bunge) Stern), 민참작약(Paeonia lactiflora f. nuda Nakai), 호작약(Paeonia lactiflora f. pilosella Nakai), 백작약(Paeonia japonica (Makino) Miyabe & Takeda), 털백작약(Paeonia japonica var. pillosa Nakai), 산작약(Paeonia obovata Maxim), 천작약(Paeonia veitchii Lynch) 및 기타동속근연식물 (작약과 Paeoniaceae)로 이루어진 군에서 선택되는 1종 이상으로부터 유래되는 것인,The peony extract is red peony ( Paeonia lactiflora Pall.), Cham peony ( Paeonia lactiflora var. trichocarpa (Bunge) Stern), mincham peony ( Paeonia lactiflora f. nuda Nakai), ho peony ( Paeonia lactiflora f. pilosella Nakai), white peony ( Paeonia japonica (Makino) Miyabe & Takeda), hairy peony ( Paeonia japonica var. pillosa Nakai), mountain peony ( Paeonia obovata Maxim), paeonia veitchii Lynch ( Paeonia veitchii Lynch) and other closely related plants (Paeoniaceae and Paeoniaceae). It is derived from one or more selected species,
    근이영양증의 예방 또는 개선용 식품 조성물.A food composition for preventing or improving muscular dystrophy.
  8. 청구항 6에 있어서,The method of claim 6,
    상기 작약 추출물은 탄소수 1 내지 4의 알코올 및 이들의 혼합 용매로 이루어진 군에서 선택된 1종 이상의 용매로 추출한 것인,The peony extract is extracted with at least one solvent selected from the group consisting of alcohols having 1 to 4 carbon atoms and mixed solvents thereof,
    근이영양증의 예방 또는 개선용 식품 조성물.A food composition for preventing or improving muscular dystrophy.
  9. 청구항 6에 있어서,The method of claim 6,
    상기 근이영양증은 뒤센 근이영양증(Duchenne muscular dystrophy), 베커 근이영양증(Becker muscular dystrophy), 사지-대형이양증(Limb-girdle muscular dystrophy), 안면 견갑상완 근이영양증(Facioscpulohueral dystrophy) 근긴장성 이영양증(myotonic dystrophy), 및 에머리-드라이프스 근이영양증(Emery-Dreifuss muscular dystrophy)으로 이루어진 군에서 선택된 1종 이상인 것인,The muscular dystrophy includes Duchenne muscular dystrophy, Becker muscular dystrophy, Limb-girdle muscular dystrophy, Facioscpulohueral dystrophy, myotonic dystrophy, and Emery-girdle muscular dystrophy. At least one selected from the group consisting of Emery-Dreifuss muscular dystrophy,
    근이영양증의 예방 또는 개선용 식품 조성물.A food composition for preventing or improving muscular dystrophy.
  10. 청구항 6에 있어서,The method of claim 6,
    상기 근이영양증의 예방 또는 개선은 근육 손상 감소, HMGB1 수준 감소, HMGB1-TLR4-NFkB의 신호전달 억제 또는 사이토카인 및 케모카인의 수준 감소에 의한 것인,Prevention or improvement of the muscular dystrophy is due to reduction of muscle damage, reduction of HMGB1 level, inhibition of signaling of HMGB1-TLR4-NFkB or reduction of cytokine and chemokine levels,
    근이영양증의 예방 또는 개선용 식품 조성물.A food composition for preventing or improving muscular dystrophy.
  11. 작약 추출물을 유효성분으로 포함하는 약학 조성물을 개체에 투여하는 단계를 포함하는, 근이영양증의 예방 또는 치료방법.A method for preventing or treating muscular dystrophy, comprising administering to a subject a pharmaceutical composition containing a peony extract as an active ingredient.
  12. 작약 추출물을 유효성분으로 포함하는 조성물의, 근이영양증의 예방 또는 치료 용도.Use of a composition comprising a peony extract as an active ingredient for the prevention or treatment of muscular dystrophy.
PCT/KR2022/016664 2021-10-29 2022-10-28 Composition for preventing, alleviating, or treating muscular dystrophy WO2023075491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0146610 2021-10-29
KR1020210146610A KR20230063915A (en) 2021-10-29 2021-10-29 Composition for preventing, improving or treating muscular dystrophy

Publications (1)

Publication Number Publication Date
WO2023075491A1 true WO2023075491A1 (en) 2023-05-04

Family

ID=86159631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016664 WO2023075491A1 (en) 2021-10-29 2022-10-28 Composition for preventing, alleviating, or treating muscular dystrophy

Country Status (2)

Country Link
KR (1) KR20230063915A (en)
WO (1) WO2023075491A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090005296A (en) * 2006-02-10 2009-01-13 서미트 코포레이션 피엘씨 Treatment of duchenne muscular dystrophy
WO2010112092A1 (en) * 2009-04-02 2010-10-07 Biomarin Iga, Ltd. Compounds for treatment of duchenne musculary dystrophy
KR20170132705A (en) * 2015-05-26 2017-12-04 (주)앗코스텍 Composition for prevention, improvement or treatment of muscular disorder or improvement of muscular functions
KR20190103987A (en) * 2018-02-28 2019-09-05 중앙대학교 산학협력단 Composition for Preventing, Improving or Treating Cachexia and Muscle Loss

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210115915A (en) 2020-03-17 2021-09-27 (주)앗코스텍 Composition for prevention and treatment of muscular disorder or improvement of muscular functions comprising fennel extract or trans-anethole

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090005296A (en) * 2006-02-10 2009-01-13 서미트 코포레이션 피엘씨 Treatment of duchenne muscular dystrophy
WO2010112092A1 (en) * 2009-04-02 2010-10-07 Biomarin Iga, Ltd. Compounds for treatment of duchenne musculary dystrophy
KR20170132705A (en) * 2015-05-26 2017-12-04 (주)앗코스텍 Composition for prevention, improvement or treatment of muscular disorder or improvement of muscular functions
KR20190103987A (en) * 2018-02-28 2019-09-05 중앙대학교 산학협력단 Composition for Preventing, Improving or Treating Cachexia and Muscle Loss

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JANG JAEWOONG; LEE HYUNJI; SONG JAEWON; BAE TAEHYUN; PARK MINWOO; KWON YOUNG V.; LEE DOHEON; YOON YOOSIK: "Paeonia lactiflora extract suppresses cisplatin-induced muscle wasting via downregulation of muscle-specific ubiquitin E3 ligases, NF-κB signaling, and cytokine levels", JOURNAL OF ETHNOPHARMACOLOGY, ELSEVIER IRELAND LTD, IE, vol. 266, 21 September 2020 (2020-09-21), IE , XP086389391, ISSN: 0378-8741, DOI: 10.1016/j.jep.2020.113403 *
SIM INAE; JANG JAEWOONG; SONG JAEWON; LEE JONGKYU; LIM HYEMI; LEE HYUN JUNG; HWANG GYUSIK; KWON YOUNG V.; LEE DOHEON; YOON YOOSIK: "Paeonia lactiflora extract improves the muscle function of mdx mice, an animal model of Duchenne muscular dystrophy, via downregulating the high mobility group box 1 protein", JOURNAL OF ETHNOPHARMACOLOGY, ELSEVIER IRELAND LTD, IE, vol. 289, 8 February 2022 (2022-02-08), IE , XP086971678, ISSN: 0378-8741, DOI: 10.1016/j.jep.2022.115079 *

Also Published As

Publication number Publication date
KR20230063915A (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2012023660A1 (en) Antiviral drug for avian and swine influenza and novel flu, obtained from cleistocalyx operculatus
WO2015002393A1 (en) Composition for treating or preventing inflammatory skin disease, comprising, as active ingredient, immature citrus fruit extract, or synephrine or salt thereof
WO2018105926A1 (en) Anti-allergy composition containing lactobacillus-fermented composite medicinal herb extract as active ingredient
KR101509554B1 (en) Pharmaceutical composition for prevention and/or treatment of bone disease, functional food or health food comprising the composition, and pharmaceutical preparation comprising the composition as actⅳe ingredient
WO2021230581A1 (en) Discovery of novel akkermansia muciniphila ak32 and application thereof for prevention or treatment of intestinal injury
KR20130106600A (en) A labdane-type diterpenes compounds derived from hedychium coronarium and a use thereof
WO2014042325A1 (en) Composition for preventing and treating inflammatory diseases and immune diseases, containing apo-9&#39;-fucoxanthinone as active ingredient
WO2016010340A1 (en) Composition for preventing and treating inflammation or allergic diseases, containing gynura procumbens extract as active ingredient, and use thereof
WO2023075491A1 (en) Composition for preventing, alleviating, or treating muscular dystrophy
WO2021080129A1 (en) Composition for strengthening skin barrier and alleviating atopic dermatitis, having hydrangenol or phyllodulcin as active ingredient
WO2013062247A2 (en) Phorbol type diterpene compound, pharmaceutical composition for treatment or prevention of viral infectious diseases including same
WO2019125058A1 (en) Composition comprising a horse chestnut extract
WO2019124803A1 (en) Composition comprising selaginella rossii warb. extract or fractions thereof for preventing or treating metabolic syndromes
WO2021033995A1 (en) Composition comprising amomum tsaoko extract for prevention, alleviation, or treatment of sarcopenia-related disease
WO2012173392A2 (en) Curcuminoid-based compound/stevioside-containing complex for the prevention and treatment of an influenza virus infection
EP2668946B1 (en) Anti-leishmanial compound and anti-leishmanial drug
KR100627643B1 (en) Pharmaceutical composition for treating or preventing type ii diabetes
WO2023113151A1 (en) Composition for alleviating, preventing or treating inflammatory diseases
KR101620022B1 (en) Pharmaceuical composition for the prevention and treatment of type 1 diabetes comprising Polyphenols extracted from Broussonetia kazinoki as an active ingredient
WO2022215827A1 (en) Sanguisorba officinalis linne extract composition inhibiting 3cl protease and rdrp activity of sars-cov-2
WO2021075818A1 (en) Antarctic lichen umbilicaria antarctica extract having anti-inflammatory activity, and composition containing same
WO2020138912A1 (en) Pharmaceutical composition comprising pibf protein as active ingredient for prevention or treatment of inflammatory disease
KR20130106599A (en) A labdane-type diterpenoids compounds derived from hedychium coronarium and a use thereof
WO2014163413A1 (en) Composition for life extension containing ginseng berry extract
WO2022035220A1 (en) Composition for preventing, ameliorating or treating muscle weakness-related muscle diseases comprising chestnut flower extract

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887686

Country of ref document: EP

Kind code of ref document: A1