WO2023113151A1 - Composition for alleviating, preventing or treating inflammatory diseases - Google Patents

Composition for alleviating, preventing or treating inflammatory diseases Download PDF

Info

Publication number
WO2023113151A1
WO2023113151A1 PCT/KR2022/013419 KR2022013419W WO2023113151A1 WO 2023113151 A1 WO2023113151 A1 WO 2023113151A1 KR 2022013419 W KR2022013419 W KR 2022013419W WO 2023113151 A1 WO2023113151 A1 WO 2023113151A1
Authority
WO
WIPO (PCT)
Prior art keywords
inflammatory
preventing
disease
composition
group
Prior art date
Application number
PCT/KR2022/013419
Other languages
French (fr)
Korean (ko)
Inventor
박종환
조정용
안재훈
송은정
장아라
박지연
김영준
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2023113151A1 publication Critical patent/WO2023113151A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • A61K36/282Artemisia, e.g. wormwood or sagebrush
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/324Foods, ingredients or supplements having a functional effect on health having an effect on the immune system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts

Definitions

  • the present invention relates to a composition for improving, preventing or treating inflammatory diseases, and specifically, to a composition for improving, preventing or treating inflammatory diseases comprising estafiatin as an active ingredient.
  • the immune system in the living body maintains homeostasis by secreting various inflammatory factors including cytokines in response to the invasion of external pathogens or abnormal cellular reactions in the living body.
  • cytokines various inflammatory factors including cytokines in response to the invasion of external pathogens or abnormal cellular reactions in the living body.
  • Such inflammatory diseases include infectious inflammatory diseases such as pneumonia, periodontitis, hepatitis, and sepsis, and autoimmune diseases such as rheumatoid arthritis and multiple sclerosis.
  • infectious inflammatory diseases such as pneumonia, periodontitis, hepatitis, and sepsis
  • autoimmune diseases such as rheumatoid arthritis and multiple sclerosis.
  • inflammatory bowel diseases such as ulcerative colitis and Crohn's disease, metabolic diseases such as obesity, diabetes, and atherosclerosis, and neurodegenerative diseases such as Alzheimer's and Parkinson's diseases.
  • Pattern recognition receptors present in the cell membrane and cytoplasm recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), and NF- Interleukin-6 (IL-6), tumor necrosis factor- ⁇ (TNF- ⁇ ), IL through activation of inflammatory transcription factors such as ⁇ B and MAP-Kinase It increases the expression of various inflammatory proteins including -1 ⁇ inducible nitric oxide synthase (iNOS).
  • PAMPs pathogen-associated molecular patterns
  • DAMPs damage-associated molecular patterns
  • IL-6 NF- Interleukin-6
  • TNF- ⁇ tumor necrosis factor- ⁇
  • IL IL through activation of inflammatory transcription factors
  • ⁇ B and MAP-Kinase IL through activation of inflammatory transcription factors
  • iNOS -1 ⁇ inducible nitric oxide synthase
  • inflammasome a specific immune signaling mechanism
  • NLRP3 inflammasome is involved in the onset and prognosis of diseases more specifically than the general inflammatory activation mechanism. Accordingly, the NLRP3 inflammasome has emerged as a key control factor for various inflammatory-mediated diseases, and research and development of new drugs based on NLRP3 inflammasome inhibition is actively progressing worldwide.
  • Artemisia scoparia is a perennial plant belonging to the Asteraceae family and is an edible and medicinal halophyte that grows on sandy beaches.
  • Estafiatin isolated from artemisia extract is known as a typical sesquiterpene lactone, and sesquiterpene lactone is mostly found in Asteraceae plants.
  • the present inventors have made intensive research efforts to develop a composition for improving, preventing or treating inflammatory diseases.
  • the present invention was completed by identifying that estafiatin has an effect on inflammatory diseases.
  • an object of the present invention is to provide a pharmaceutical composition for preventing or treating inflammatory diseases comprising estapiatin as an active ingredient.
  • Another object of the present invention is to provide a food composition for preventing or improving inflammatory diseases comprising estapiatin as an active ingredient.
  • Another object of the present invention is to provide a use of estapiatin for improving, preventing or treating inflammatory diseases.
  • Another object of the present invention is to provide a method for treating inflammatory diseases using estapiatin.
  • the present invention relates to a pharmaceutical composition for preventing or treating inflammatory diseases containing estafiatin as an active ingredient, a food composition for preventing or improving inflammatory diseases containing estafiatin as an active ingredient, and improving inflammatory diseases by estafiatin. , preventive or therapeutic use, and methods for treating inflammatory diseases using estapiatin.
  • One example of the present invention relates to a pharmaceutical composition for preventing or treating inflammatory diseases comprising estafiatin as an active ingredient.
  • estapiatin is a compound with a molecular formula of C 15 H 18 O 3 and has a molar mass of 246.3 g/mol, and the structural formula is shown in Structural Formula I below:
  • the inflammatory disease may be at least one selected from the group consisting of infectious inflammatory disease, autoimmune disease, inflammatory bowel disease and gout, but is not limited thereto.
  • the infectious inflammatory disease may be at least one selected from the group consisting of pneumonia, gastritis, meningitis, periodontitis, hepatitis, sepsis, bronchitis, otitis media, sinusitis, sore throat and osteomyelitis, but is not limited thereto.
  • the autoimmune disease may be at least one selected from the group consisting of rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, systemic sclerosis, vasculitis, dermatomyositis, and polymyositis, but is not limited thereto.
  • the inflammatory bowel disease may be at least one selected from the group consisting of ulcerative colitis, ulcerative duodenitis, Crohn's disease, enteritis, and ischemic colitis, but is not limited thereto.
  • the pharmaceutical composition of the present invention may contain a pharmaceutically effective amount of the extract of Artemisia.
  • the term "comprising as an active ingredient” means containing an amount sufficient to achieve the efficacy or activity of the artemisia extract.
  • pharmaceutically effective amount in the present specification means an amount sufficient to achieve the efficacy or activity of the above-mentioned artemisia extract.
  • composition of the present invention may further include adjuvants such as pharmaceutically suitable and physiologically acceptable carriers, excipients, and diluents in addition to the extract of Artemisia.
  • adjuvants such as pharmaceutically suitable and physiologically acceptable carriers, excipients, and diluents in addition to the extract of Artemisia.
  • Carriers, excipients and diluents that may be included in the composition of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate , cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants may be used.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and these solid preparations contain at least one excipient, for example, starch, calcium carbonate, sucrose ( It can be prepared by mixing sucrose, lactose, gelatin, etc.
  • lubricants such as magnesium stearate and talc are also used.
  • Oral preparations include suspensions, solutions for oral use, emulsions, syrups, ointments, etc.
  • various excipients such as wetting agents, sweeteners, aromatics, and preservatives may be included. there is.
  • Preparations for parenteral administration include sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories, transdermal preparations, and the like.
  • Propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate may be used as non-aqueous solvents and suspending agents.
  • suppositories As preparations for suppositories, witepsol, macrogol, tween 61, cacao butter, laurin paper, glycerogeratin and the like may be used.
  • the pharmaceutical composition according to the present invention may be administered to mammals including humans by various routes.
  • the administration method may be any method commonly used, and may be administered by, for example, oral, dermal, intravenous, intramuscular, subcutaneous, etc. routes, preferably orally.
  • composition of the present invention may be in the form of a tablet containing starch or lactose, or in the form of a capsule either alone or containing an excipient, or in the form of an elixir or suspension containing a flavoring or coloring chemical. It may be administered orally, buccally or sublingually.
  • liquid formulations may be prepared by suspending agents (e.g. methylcellulose, semi-synthetic glycerides such as witepsol or mixtures of apricot kernel oil and PEG-6 esters or PEG-8 and caprylic/capric acid). It can be formulated with pharmaceutically acceptable excipients such as mixtures of glycerides).
  • the suitable dosage of the pharmaceutical composition of the present invention varies depending on factors such as formulation method, administration method, patient's age, weight, sex, morbid condition, food, administration time, administration route, excretion rate and reaction sensitivity, A ordinarily skilled physician can readily determine and prescribe dosages effective for the desired treatment or prophylaxis.
  • composition of the present invention may be administered alone, but is generally mixed with a pharmaceutical carrier selected in consideration of the administration method and standard pharmaceutical practice. can be administered.
  • the dosage of the extract-containing composition of the present invention may vary depending on the patient's age, weight, sex, dosage form, state of health and degree of disease, and may be administered once or several times a day at regular time intervals according to the judgment of a doctor or pharmacist. Split doses may also be administered.
  • the pharmaceutical composition has an amount of artemisia extract per 1 kg of body weight of 5 to 500 mg/day, 5 to 400 mg/day, 5 to 300 mg/day, 5 to 200 mg/day, 5 to 100 mg/day. day, 10 to 500 mg/day, 10 to 400 mg/day, 10 to 300 mg/day, 10 to 200 mg/day, 10 to 100 mg/day, 20 to 500 mg/day, 20 to 400 mg/day , 20 to 300 mg/day, 20 to 200 mg/day, 20 to 100 mg/day, 50 to 500 mg/day, 50 to 400 mg/day, 50 to 300 mg/day or 50 to 200 mg/day, For example, it may be administered in the range of 50 to 100 mg/day.
  • the daily dose of the artemisia extract-containing composition of the present invention is less than the above dose, a significant effect cannot be obtained, and if it exceeds the dose, it is not only uneconomical but also out of the range of the usual dose, so there is a concern that undesirable side effects may occur. Since it can occur, it is good to set it as the said range.
  • treatment refers to all activities in which symptoms of an inflammatory disease are improved or cured by administration of the composition according to the present invention.
  • prevention refers to any action that suppresses or delays the symptoms of an inflammatory disease by administering the composition according to the present invention.
  • estapiatin may be derived from a wormwood extract, but is not limited thereto.
  • Mugwort is a perennial plant belonging to the genus Artemisia of the Asteraceae family ( Compositae ), and is a perennial plant that grows in sandy seashores and resembles Artemisia, but has a different smell.
  • the stem of wormwood is tree-like and does not die in winter, but the stem of wormwood dries out completely in winter.
  • Mugwort is a rare herb that is rarely used in oriental medicine.
  • the mugwort may be one or more selected from the group consisting of leaves, stems, fruits, roots, and flowers, and may be, for example, leaves, but is not limited thereto.
  • the artemisia extract may be a crude extract obtained by extracting artemisia artemisia with a polar solvent, a non-polar solvent, or a mixture thereof.
  • the polar solvent may be at least one selected from the group consisting of water, alcohol, acetic acid, dimethyl formamide (DMFO), and dimethyl sulfoxide (DMSO), but is not limited thereto.
  • the alcohol is a straight chain or branched alcohol having 1 to 4 carbon atoms, for example, methanol, ethanol, propanol, butanol, normal-propanol, iso-propanol, normal-butanol, 1-pentanol, 2-butoxy It may be ethanol, ethylene glycol or a mixture thereof, but is not limited thereto.
  • the fractions are a normal hexane fraction obtained by solvent fractionation of a crude extract extracted with a solvent with normal hexane, a chloroform fraction obtained by solvent fractionation with chloroform for an aqueous solution fraction remaining after solvent fractionation of a crude extract extracted with a solvent with normal hexane, and a chloroform fraction obtained with solvent
  • the aqueous fraction remaining after solvent fractionation of the extracted crude extract with normal hexane, the ethyl acetate fraction obtained by solvent fractionation with ethyl acetate, the aqueous fraction remaining after solvent fractionation with chloroform, and the aqueous fraction remaining after solvent fractionation of the crude extract extracted with normal hexane It may be one or more fractions selected from the group consisting of a saturated butanol fraction obtained by solvent fractionation with saturated butanol in the aqueous fraction remaining after solvent fractionation with ethyl acetate in the aqueous fraction remaining after solvent fractionation with chlor
  • the extract of artemisia contained in the composition of the present invention is a natural plant material and has no cytotoxicity.
  • Another example of the present invention relates to a food composition for preventing or improving inflammatory diseases comprising estapiatin as an active ingredient.
  • the inflammatory disease may be at least one selected from the group consisting of infectious inflammatory disease, autoimmune disease, inflammatory bowel disease and gout, but is not limited thereto.
  • the infectious inflammatory disease may be at least one selected from the group consisting of pneumonia, periodontitis, hepatitis and sepsis, but is not limited thereto.
  • the autoimmune disease may be at least one selected from the group consisting of rheumatoid arthritis and multiple sclerosis, but is not limited thereto.
  • the inflammatory bowel disease may be at least one selected from the group consisting of ulcerative colitis, ulcerative duodenitis, Crohn's disease, enteritis, and ischemic colitis, but is not limited thereto.
  • the food composition of the present invention When used as a food additive, the food composition may be added as it is or used together with other foods or food ingredients, and may be appropriately used according to a conventional method. In general, when preparing food or beverage, the food composition of the present invention may be added in an amount of 15% by weight or less, preferably 10% by weight or less, based on the raw material.
  • foods to which the substance can be added include meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gum, dairy products including ice cream, various soups, beverages, tea, drinks, There are alcoholic beverages, vitamin complexes, and the like, and includes all foods in a conventional sense.
  • the beverage may contain various flavoring agents or natural carbohydrates as additional ingredients.
  • the aforementioned natural carbohydrates may include monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, natural sweeteners such as dextrin and cyclodextrin, and synthetic sweeteners such as saccharin and aspartame. .
  • the ratio of the natural carbohydrates may be appropriately determined by a person skilled in the art.
  • the food composition of the present invention includes various nutrients, vitamins, electrolytes, flavors, colorants, pectic acid and its salts, alginic acid and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol , carbonation agents used in carbonated beverages, and the like.
  • the food composition of the present invention may contain fruit flesh for the production of natural fruit juice, fruit juice beverages and vegetable beverages. These components may be used independently or in combination. The ratio of these additives can also be appropriately selected by those skilled in the art.
  • the contents overlapping with the pharmaceutical composition are omitted in consideration of the complexity of the present specification.
  • the term “improvement” refers to all activities in which symptoms of inflammatory diseases are improved or cured by administration of the composition according to the present invention.
  • Another example of the present invention relates to a method for preparing an extract of Artemisia.
  • the term "extract" has a meaning commonly used as a crude extract in the art, but also includes fractions obtained by additional fractionation of the extract in a broad sense.
  • the extract of Wispswort includes not only those obtained by using an extraction solvent, but also those obtained by additionally applying a purification process thereto.
  • Fractions obtained through various purification methods are also included in the extract of artemisia of the present invention.
  • the extract of artemisia may be in the form of a solution, concentrate or powder.
  • the extraction method used in the present invention may be any method commonly used, and may be, for example, cold brewing, hot water extraction, ultrasonic extraction, or reflux cooling extraction, but is not limited thereto.
  • Room temperature extraction is performed with an extraction solvent of about 8 to 50 times the weight of the mugwort powder. After extraction, filter and collect the filtrate.
  • the extraction temperature is not particularly limited, but is preferably 15 to 110°C, preferably 20 to 90°C.
  • the extraction process may be repeated once or several times, and in one preferred example of the present invention, a method of re-extracting again after the first extraction may be adopted, which means that even if the extract is effectively filtered in the case of mass production, its water content Since this is high, loss occurs, and the extraction efficiency drops only with the first extraction, so this is to be prevented.
  • a method of re-extracting again after the first extraction may be adopted, which means that even if the extract is effectively filtered in the case of mass production, its water content Since this is high, loss occurs, and the extraction efficiency drops only with the first extraction, so this is to be prevented.
  • the extraction step may be reflux extraction twice, preferably 8 to 12 times by volume.
  • the obtained residue is again combined with the extraction solvent, about 5 to 15 times the volume, and the filtrate, and concentrated under reduced pressure to prepare an extract.
  • the extraction efficiency can be increased by mixing the filtrate obtained after the second extraction and each extraction, the extract of the present invention is not limited to the number of extractions.
  • the amount of the solvent used in preparing the artemisia extract is too small, stirring becomes difficult and the solubility of the extract decreases, resulting in a decrease in extraction efficiency. Since it is not economical and problems in handling may occur, the amount of the solvent used is preferably within the above range.
  • the filtered extract obtained in this way is about 10 to 30 times, preferably 15 to 25 times, more preferably about 15 to 25 times the total amount of the concentrate in order to adjust the remaining lower alcohol content so that it is suitable for use as a pharmaceutical and food raw material. It can be azeotropically concentrated 1 to 5 times, preferably 2 to 3 times with 20 weight times of water, and then homogeneously suspended by adding the same amount of water again, and then freeze-dried to prepare a powdery artemisia extract.
  • the present invention relates to a composition for improving, preventing or treating inflammatory diseases, and specifically, to a composition for improving, preventing or treating inflammatory diseases comprising estafiatin as an active ingredient.
  • estafiatin 1 is a structural formula of estafiatin.
  • Figure 2 is a graph of the results of measuring cell viability by evaluating cytotoxicity after treating mouse macrophages with estafiatin according to an embodiment of the present invention.
  • Figure 3a is a graph of the result of measuring the gene expression level of the inflammatory cytokine IL-6 after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
  • Figure 3b is a graph of the result of measuring the gene expression level of the inflammatory cytokine TNF- ⁇ after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
  • Figure 3c is a graph of the result of measuring the gene expression level of iNOS after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
  • Figure 4a is a graph of the result of measuring the protein expression level of the inflammatory cytokine IL-6 after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
  • Figure 4b is a graph of the result of measuring the protein expression level of the inflammatory cytokine TNF- ⁇ after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
  • Figure 5 is a Western blot result of measuring the iNOS protein expression level after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
  • Figure 6 is a Western blot showing the results of measuring phosphorylation of inflammatory transcription factors (p65, p38, JNK, ERK) after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention. .
  • Figure 7a is a graph showing the results of measuring the NLRP3 inflammasome inhibitory effect (IL-1 ⁇ release) after treating estapiatin to NLRP3 inflammasome induced by LPS+ATP according to an embodiment of the present invention.
  • Figure 7b is a graph showing the results of measuring the NLRP3 inflammasome inhibitory effect (IL-1 ⁇ release) after treating estapiatin to NLRP3 inflammasome induced by LPS+Nigericin according to an embodiment of the present invention.
  • Figure 7c is a graph showing the results of measuring the NLRP3 inflammasome inhibitory effect (IL-1 ⁇ release) after treating estapiatin to NLRP3 inflammasomes induced by LPS+MSU according to an embodiment of the present invention.
  • Figure 8a is a NLRP3 inflammasome inhibitory effect (caspase 1, IL-1 ⁇ and ⁇ -actin protein production) after treatment with estapiatin to NLRP3 inflammasome induced by LPS + ATP according to an embodiment of the present invention. is the result of measuring
  • Figure 8b is a NLRP3 inflammasome inhibitory effect (caspase 1, IL-1 ⁇ and ⁇ -actin protein production) after treatment with estapiatin to NLRP3 inflammasome induced by LPS + Nigericin according to an embodiment of the present invention. is the result of measuring
  • Figure 8c is a NLRP3 inflammasome inhibitory effect (caspase 1, IL-1 ⁇ and ⁇ -actin protein production amount) after treatment with estapiatin to NLRP3 inflammasome induced by LPS + MSU according to an embodiment of the present invention. is the result of measuring
  • Figure 9a shows the effect of inhibiting the production of inflammatory cytokine IL-6 in peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. It is a graph of the result of measuring .
  • Figure 9b shows the effect of inhibiting the production of the inflammatory cytokine TNF- ⁇ in the peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. It is a graph of the result of measuring .
  • Figure 9c shows the effect of inhibiting the production of the inflammatory cytokine IL-1 ⁇ in the peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. It is a graph of the result of measuring .
  • Figure 9d shows the effect of inhibiting the production of inflammatory cytokine CXCL1 in peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
  • Figure 9e is a measurement of the inhibitory effect on the production of the inflammatory cytokine CXCL2 in peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
  • Figure 10a is a measurement of the inhibitory effect on the production of the inflammatory cytokine IL-6 in serum after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
  • Figure 10b is a measurement of the inhibitory effect on the production of the inflammatory cytokine TNF- ⁇ in serum after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
  • Figure 10c is a measurement of the inhibitory effect on the production of the inflammatory cytokine IL-1 ⁇ in serum after estafiatin was administered to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
  • Figure 10d is a result of measuring the inhibitory effect on the production of inflammatory cytokine CXCL1 in serum after administering estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. it's a graph
  • Figure 10e is a result of measuring the effect of inhibiting the production of inflammatory cytokine CXCL2 in serum after administering estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. it's a graph
  • 11 is a graph showing the result of measuring the lethality improvement effect after administering estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention.
  • a pharmaceutical composition for preventing or treating inflammatory diseases comprising estapiatin as an active ingredient.
  • % used to indicate the concentration of a particular substance is (weight/weight) % for solids/solids, (weight/volume) % for solids/liquids, and liquid/liquid is (volume/volume) %.
  • the extract of the aqueous solution of artemisia sagebrush obtained in Preparation Example 1 was suspended in double distilled water (1.2 L), and then solvent fractionation was repeated three times with normal hexane (1.2 L) to obtain a normal hexane fraction, and then chloroform (CHCl 3 , 1.2 L) was subjected to repeated solvent fractionation three times to obtain a chloroform fraction.
  • the aqueous fraction was subjected to repeated solvent fractionation with ethyl acetate (EtOAc, 1.2 L) three times to obtain an ethyl acetate fraction, and the aqueous fraction was subjected to repeated solvent fractionation with saturated butanol (BuOH, 0.9 L) three times to obtain a saturated butanol fraction. .
  • EtOAc ethyl acetate
  • BuOH saturated butanol
  • Each obtained fraction was concentrated under reduced pressure at 45° C. using a vacuum concentrator to prepare a normal hexane fraction, a chloroform fraction, an ethyl acetate fraction, and a hydrosaturated butanol fraction.
  • estapiatin a compound isolated in Preparation Example 2
  • MS and NMR analysis From the HR-ESI-MS (positive) spectrum of estapiatin, a molecular weight ion peak m/z 269.1254 [M+Na] + was observed, and it was found that the molecular weight of this compound was 246 (C 15 H 18 O 3 ) .
  • Table 1 below shows 1 H- (500 MHz) and 13 C-NMR (125 MHz) data (CD 3 OD) of estapiatin, and its structure is shown in FIG. 1 .
  • Bone marrow was isolated from the femur and tibia of 8- to 12-week-old C57BL/6J mice using a 26 g syringe.
  • the isolated bone marrow was cultured in a 150° cell culture plate in IMDM medium, 30% L929 cell supernatant, 10% fetal bovine serum, 1% penicillin/streptomycin, and 1% non-essential amino acids. After differentiation into macrophages for 6 days in a medium composed of (non-essential amino acid) and 1% sodium pyruvate, they were used in the experiment.
  • Differentiated macrophages were seeded in 200 ⁇ L at a concentration of 1 ⁇ 10 6 cells/ml in a 48-well plate. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, 200 ⁇ l of estafiatin was diluted to a concentration of 0.5, 1, 2, 4, 8 or 16 ⁇ M in a serum-free medium and treated at 37°C, 5% CO 2 conditions. Incubated for 24 hours. Thereafter, the supernatant of the cultured cells was removed, and 200 ⁇ L of an MTT solution having a concentration of 400 ⁇ g/m was treated, followed by reaction at 7°C and 5% CO 2 for 4 hours.
  • Differentiated macrophages were seeded at a concentration of 1 ⁇ 10 6 cells/mL in 1 ml each in a 12-well plate. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, estapiatin was diluted to a concentration of 4 ⁇ M in a serum-free medium and treated with 900 ul each. After 2 hours, 100 ul of LPS was added at a concentration of 1 ⁇ g/ml, followed by incubation at 37° C. and 5% CO 2 for 0, 3, 6 or 12 hours. After removing the supernatant of the cultured cells, the cells attached to the plate were homogenized with trizol. After RNA was extracted from each sample, the expression levels of inflammatory cytokines and iNOS genes were quantified by qPCR, and are shown in FIGS. 3a to 3c and Table 3.
  • Inflammatory cytokine and iNOS gene expression levels incubation time (hour) 0 3 3 6 6 12 12 LPS (ng/ml) - 100 100 100 100 100 100 100 100 Estapiatin ( ⁇ M) - - 4 - 4 - 4 IL-6 expression level One 8899 1809 13692 1073 7501 692.8 TNF- ⁇ expression level One 173.9 160.9 147.4 97.59 111 60.91 iNOS expression level One 421.6 23.67 1006 123.5 848.3 59.82
  • Differentiated macrophages were seeded in 200ul each in a 48-well plate at a concentration of 1x10 6 cells/mL. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 condition. After removing the supernatant of the cultured cells, estafiatin was diluted in a serum-free medium at a concentration of 1, 2 or 4 ⁇ M and treated with 180 ul each. After 2 hours, 20 ul of LPS was added at a concentration of 1 ⁇ g/ml, followed by incubation at 37° C. and 5% CO 2 conditions for 24 hours. After taking a sample of the supernatant of the cultured cells, the amount of inflammatory cytokines was measured through an enzyme-linked immunosorbent assay (ELISA) technique and shown in FIGS. 4a and 4b and Table 4.
  • ELISA enzyme-linked immunosorbent assay
  • Differentiated macrophages were seeded in 1 ml each in a 12-well plate at a concentration of 1x10 6 cells/ml. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 condition. After removing the supernatant of the cultured cells, 900 ul each of estapiatin was diluted to a concentration of 2.5, 5 or 10 ⁇ M in a serum-free medium. After 2 hours, 100 ul of LPS was added at a concentration of 1 ⁇ g/ml, followed by incubation at 37° C. and 5% CO 2 conditions for 24 hours. After removing the supernatant of the cultured cells, the cells attached to the plate were homogenized using NP40 cell lysis buffer. Protein was extracted from each sample. The amount of iNOS and ⁇ -actin protein production was measured by western blot and shown in FIG. 5 .
  • Differentiated macrophages were seeded in 1 ml each in a 12-well plate at a concentration of 1x10 6 cells/ml. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, estapiatin was diluted to a concentration of 4 ⁇ M in a serum-free medium and treated with 900 ul each. After 2 hours, 100 ul of LPS was added at a concentration of 1 ⁇ g/ml, followed by incubation at 37°C and 5% CO 2 conditions for 0, 15, 30, or 60 minutes, respectively.
  • the cells attached to the plate were homogenized using NP40 cell lysis buffer containing a phosphatase inhibitor. After extracting proteins from each sample, the amount of each protein produced was measured by Western blotting and is shown in FIG. 6 .
  • Differentiated macrophages were seeded in 200 ⁇ L at a concentration of 1 ⁇ 10 6 cells/ml in a 48-well plate. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, 180 ul of LPS was treated in a serum-free medium at a concentration of 100 ng/ml and primed for 5 hours. Then, estapiatin was diluted to a concentration of 10, 20 or 40 ⁇ M and added in 20 ul portions (working at a concentration of 1, 2 or 4 ⁇ M).
  • ATP 20 ul at a concentration of 10 mM and incubated for 30 minutes
  • Nigericin 20 ul at a concentration of 25 ⁇ M and cultured for 30 minutes
  • MSU 20 ul at a concentration of 2 mg/ml and then cultured for 4 hours
  • IL-1 ⁇ release by ATP LPS ng/ml
  • Nigericin-induced IL-1 ⁇ release LPS (ng/ml) - 100 100 100 100 100 100 Nigericin ( ⁇ M) - - 2.5 2.5 2.5 2.5 2.5 2.5 Estapiatin ( ⁇ M) - - - One 2 4 IL-1 ⁇ (pg/ml) 0 0 8153 4758 2928 888.5
  • IL-1 ⁇ release by MSU LPS (ng/ml) - 100 100 100 100 100 MSU ( ⁇ g/ml) - - 200 200 200 200 estapiatin ( ⁇ M) - - - One 2 4 IL-1 ⁇ (pg/ml) 0 0 7906 5948 1397 0
  • estapiatin inhibits cleavage and IL-1 ⁇ maturation of caspase 1 increased by ATP, nigericin, and MSU. It was confirmed that the inhibition was concentration-dependent. In particular, it was found that 4 ⁇ M of estapiatin effectively inhibited caspase 1 cleavage and IL-1 ⁇ maturation.
  • Differentiated macrophages were seeded at 1 ml each in a 12-well plate at a concentration of 1x10 6 cells/ml. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, 450 ul of LPS was treated in a serum-free medium at a concentration of 100 ng/ml and primed for 5 hours. Estapiatin was diluted to a concentration of 10, 20 or 40 ⁇ M and added in 50 ul each (1. 2 or 4 ⁇ M concentration).
  • estapiatin inhibited the cleavage of caspase 1 and IL-1 ⁇ maturation increased by ATP, nigericin, and MSU in a concentration-dependent manner.
  • Inflammatory cytokines in serum LPS (mg/kg) - 2.5 2.5 2.5 2.5 Estapiatin (mg/kg) - - 1.25 2.5 IL-6 (pg/ml) 0 88663 67310 47245 TNF- ⁇ (pg/ml) 0 742.8 589.8 204.7 IL-1 ⁇ (pg/ml) 459.5 772.1 609.4 543.6 CXCL1 (pg/ml) 0 97143 64244 38472 CXCL2 (pg/ml) 232.4 24146 23708 11805
  • Inflammatory cytokines in peritoneal fluid LPS (mg/kg) - 2.5 2.5 2.5 2.5 Estapiatin (mg/kg) - - 1.25 2.5 IL-6 (pg/ml) 0 29848 6521 6527 TNF- ⁇ (pg/ml) 0 0 0 0 IL-1 ⁇ (pg/ml) 0 91.72 2.808 36.1 CXCL1 (pg/ml) 0 74303 70685 51835 CXCL2 (pg/ml) 10.84 3162 2804 1408
  • mice 200 ⁇ l of LPS (25 mg/kg) was intraperitoneally administered to 8-week-old female C57BL/6 mice to induce septic shock. Immediately thereafter, 200 ul of estapiatin at 1.25 or 2.5 mg/kg was administered intraperitoneally. In the control group, the same dose of saline was administered intraperitoneally. Then, the survival rate of mice was checked every 4 hours and shown in FIG. 11 .
  • the present invention relates to a composition for improving, preventing or treating inflammatory diseases, and specifically, to a composition for improving, preventing or treating inflammatory diseases comprising estafiatin as an active ingredient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The present invention relates to a composition for alleviating, preventing or treating inflammatory diseases and, specifically, to a composition for alleviating, preventing or treating inflammatory diseases, comprising estafiatin as an active ingredient.

Description

염증성 질환 개선, 예방 또는 치료용 조성물Composition for improving, preventing or treating inflammatory diseases
본 특허출원은 2021년 12월 15일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2021-0179758호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.This patent application claims priority to Korean Patent Application No. 10-2021-0179758 filed with the Korean Intellectual Property Office on December 15, 2021, the disclosure of which is incorporated herein by reference.
본 발명은 염증성 질환 개선, 예방 또는 치료용 조성물에 관한 것으로, 구체적으로는, 에스타피아틴 (estafiatin)을 유효성분으로 포함하는 염증성 질환 개선, 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for improving, preventing or treating inflammatory diseases, and specifically, to a composition for improving, preventing or treating inflammatory diseases comprising estafiatin as an active ingredient.
생체 내의 면역계는 외부 병원체의 침입이나 생체 내의 비정상적인 세포반응에 대하여 사이토카인을 포함하는 다양한 염증 인자를 분비하여 항상성을 유지한다. 이러한 항상성의 균형이 붕괴되어 염증반응이 과도하게 유발되는 경우에 염증성 질환이 발생하게 된다.The immune system in the living body maintains homeostasis by secreting various inflammatory factors including cytokines in response to the invasion of external pathogens or abnormal cellular reactions in the living body. When this homeostatic balance is disrupted and an inflammatory response is excessively induced, an inflammatory disease occurs.
이러한 염증성 질환에는 폐렴, 치주염, 간염, 패혈증 (sepsis) 등과 같은 감염성 염증 질환이 있고, 류마티스관절염, 다발성경화증 등과 같은 자가면역질환이 있다. 또한, 궤양성 대장염, 크론병 등의 염증성 장질환있고, 비만, 당뇨, 동맥경화 등의 대사성질환이 있으며, 알츠하이머, 파킨슨병 등과 같은 신경병성 질환 등이 있다.Such inflammatory diseases include infectious inflammatory diseases such as pneumonia, periodontitis, hepatitis, and sepsis, and autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. In addition, there are inflammatory bowel diseases such as ulcerative colitis and Crohn's disease, metabolic diseases such as obesity, diabetes, and atherosclerosis, and neurodegenerative diseases such as Alzheimer's and Parkinson's diseases.
세포막과 세포질 내에 존재하는 패턴인식 수용체 (pattern recognition receptor, PRR)는 병원체 연관 분자유형 (pathogen-associated molecular pattern, PAMP) 및 세포 손상 연관 분자유형 (damage-associated molecular pattern, DAMP)를 인식하고 NF-κB, MAP-키나제 (MAP-Kinase)와 같은 염증성 전사인자를 활성화를 통해 인터루킨-6 (interleukin-6, IL-6), 종양 괴사 인자-α (tumor necrosis factor-α, TNF-α), IL-1β 유도성 산화질소 합성효소 (inducible nitric oxide synthase, iNOS)를 포함하는 다양한 염증 단백질의 발현을 증가시킨다.Pattern recognition receptors (PRRs) present in the cell membrane and cytoplasm recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), and NF- Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), IL through activation of inflammatory transcription factors such as κB and MAP-Kinase It increases the expression of various inflammatory proteins including -1β inducible nitric oxide synthase (iNOS).
한편, 대부분의 염증성 단백질과는 다르게 IL-1β 및 IL-18을 포함하는 일부 염증성 단백질은 인플라마좀 (Inflammasome)이라는 특이적인 면역신호기전 활성에 의해 세포 외부로 방출된다.On the other hand, unlike most inflammatory proteins, some inflammatory proteins including IL-1β and IL-18 are released to the outside of cells by a specific immune signaling mechanism called inflammasome.
그리고, 대사질환, 신경변성질환, 자가면역질환과 같은 다양한 질병에서 NLRP3 인플라마좀이 일반적인 염증활성 기전보다 더 특이적으로 질병의 발병 및 예후에 연관되어 있는 것으로 확인되었다. 이에, NLRP3 인플라마좀이 다양한 염증매개 질환의 핵심 제어인자로 대두되며, NLRP3 인플라마좀 억제기반 신약연구개발이 전세계적으로 활발하게 진행되고 있다.In addition, in various diseases such as metabolic diseases, neurodegenerative diseases, and autoimmune diseases, it has been confirmed that the NLRP3 inflammasome is involved in the onset and prognosis of diseases more specifically than the general inflammatory activation mechanism. Accordingly, the NLRP3 inflammasome has emerged as a key control factor for various inflammatory-mediated diseases, and research and development of new drugs based on NLRP3 inflammasome inhibition is actively progressing worldwide.
한편, 천연물로부터 질병을 예방 또는 억제할 수 있는 생리활성 물질에 대한 연구가 증대되고 있고, 특히 생리활성물질의 보고 알려진 해양식물의 탐색에 관한 연구 및 해조류로부터 질병을 억제하거나 개선시킬 수 있는 소재를 찾으려는 연구가 활발히 진행되고 있다. On the other hand, studies on physiologically active substances capable of preventing or suppressing diseases from natural products are increasing. Research is actively under way to find out.
비쑥 (Artemisia scoparia)은 국화과에 속하는 다년초로 바닷가 모래땅에서 자라는 식용 및 약용 염생식물이다. 비쑥 추출물에서 분리한 에스타피아틴 (estafiatin)은 대표적인 세스퀴테르펜 락톤 (sesquiterpene lactone)으로 알려져 있으며 세스퀴테르펜 락톤은 대부분 국화과 식물에서 발견된다.Artemisia scoparia is a perennial plant belonging to the Asteraceae family and is an edible and medicinal halophyte that grows on sandy beaches. Estafiatin isolated from artemisia extract is known as a typical sesquiterpene lactone, and sesquiterpene lactone is mostly found in Asteraceae plants.
세스퀴테르펜 락톤 계열의 여러 가지 컴파운드에서 항비만, 항암, 그리고 항산화 효과가 있음이 과학적으로 입증되고 있으나, 염증성 질환에 대한 효과에 대한 연구는 알려진 바가 없는 실정이며, 환자에서는 치료가 제한적인 경우가 많아 이를 보완할 신규 약물의 개발이 계속해서 요구된다.Although various compounds of the sesquiterpene lactone series have been scientifically proven to have anti-obesity, anti-cancer, and antioxidant effects, studies on their effects on inflammatory diseases have not been known, and treatment in patients is limited. There are many, so the development of new drugs to complement them is continuously required.
본 발명자들은 염증성 질환 개선, 예방 또는 치료용 조성물을 개발하고자 예의 연구 노력하였다. 그 결과, 에스타피아틴 (estafiatin)이 염증성 질환에 효과를 나타낸 다는 것을 규명함으로써, 본 발명을 완성하게 되었다.The present inventors have made intensive research efforts to develop a composition for improving, preventing or treating inflammatory diseases. As a result, the present invention was completed by identifying that estafiatin has an effect on inflammatory diseases.
이에, 본 발명의 목적은 에스타피아틴을 유효성분으로 포함하는 염증성 질환 예방 또는 치료용 약제학적 조성물을 제공하는 것이다.Accordingly, an object of the present invention is to provide a pharmaceutical composition for preventing or treating inflammatory diseases comprising estapiatin as an active ingredient.
본 발명의 다른 목적은 에스타피아틴을 유효성분으로 포함하는 염증성 질환 예방 또는 개선용 식품 조성물을 제공하는 것이다.Another object of the present invention is to provide a food composition for preventing or improving inflammatory diseases comprising estapiatin as an active ingredient.
본 발명의 또 다른 목적은 에스타피아틴의 염증성 질환 개선, 예방 또는 치료 용도를 제공하는 것이다.Another object of the present invention is to provide a use of estapiatin for improving, preventing or treating inflammatory diseases.
본 발명의 또 다른 목적은 에스타피아틴을 이용한 염증성 질환 치료 방법을 제공하는 것이다.Another object of the present invention is to provide a method for treating inflammatory diseases using estapiatin.
본 발명은 에스타피아틴 (estafiatin)을 유효성분으로 포함하는 염증성 질환 예방 또는 치료용 약제학적 조성물, 에스타피아틴을 유효성분으로 포함하는 염증성 질환 예방 또는 개선용 식품 조성물, 에스타피아틴의 염증성 질환 개선, 예방 또는 치료 용도, 및 에스타피아틴을 이용한 염증성 질환 치료 방법에 관한 것이다.The present invention relates to a pharmaceutical composition for preventing or treating inflammatory diseases containing estafiatin as an active ingredient, a food composition for preventing or improving inflammatory diseases containing estafiatin as an active ingredient, and improving inflammatory diseases by estafiatin. , preventive or therapeutic use, and methods for treating inflammatory diseases using estapiatin.
이하 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 예는 에스타피아틴 (estafiatin)을 유효성분으로 포함하는 염증성 질환 예방 또는 치료용 약제학적 조성물에 관한 것이다.One example of the present invention relates to a pharmaceutical composition for preventing or treating inflammatory diseases comprising estafiatin as an active ingredient.
본 명세서의 용어 "에스타피아틴"은 C15H18O3의 분자식의 화합물로 246.3 g/mol 몰질량을 가지며, 구조식은 하기 구조식 I과 같다:As used herein, the term "estapiatin" is a compound with a molecular formula of C 15 H 18 O 3 and has a molar mass of 246.3 g/mol, and the structural formula is shown in Structural Formula I below:
[구조식 I][Structural formula I]
Figure PCTKR2022013419-appb-img-000001
Figure PCTKR2022013419-appb-img-000001
본 발명에 있어서 염증성 질환은 감염성 염증질환, 자가면역질환, 염증성 장질환 및 통풍으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the inflammatory disease may be at least one selected from the group consisting of infectious inflammatory disease, autoimmune disease, inflammatory bowel disease and gout, but is not limited thereto.
본 발명에 있어서 감염성 염증질환은 폐렴, 위염, 뇌수막염, 치주염, 간염, 패혈증, 기관지염, 중이염, 부비동염, 인후염 및 골수염으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the infectious inflammatory disease may be at least one selected from the group consisting of pneumonia, gastritis, meningitis, periodontitis, hepatitis, sepsis, bronchitis, otitis media, sinusitis, sore throat and osteomyelitis, but is not limited thereto.
본 발명에 있어서 자가면역질환은 류마티스 관절염, 전신 홍반성 루푸스, 쇼그렌 증후군, 전신 경화증, 혈관염, 피부근염 및 다발근염으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the autoimmune disease may be at least one selected from the group consisting of rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, systemic sclerosis, vasculitis, dermatomyositis, and polymyositis, but is not limited thereto.
본 발명에 있어서 염증성 장질환은 궤양성 대장염, 궤양성 십이지장염, 크론병, 장염 및 허혈성 대장염으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the inflammatory bowel disease may be at least one selected from the group consisting of ulcerative colitis, ulcerative duodenitis, Crohn's disease, enteritis, and ischemic colitis, but is not limited thereto.
본 발명의 약제학적 조성물은 비쑥 추출물의 약제학적 유효량을 포함하는 것일 수 있다.The pharmaceutical composition of the present invention may contain a pharmaceutically effective amount of the extract of Artemisia.
본 명세서에서 용어 "유효성분으로 포함하는"이란, 비쑥 추출물의 효능 또는 활성을 달성하는 데 충분한 양을 포함하는 것을 의미한다.As used herein, the term "comprising as an active ingredient" means containing an amount sufficient to achieve the efficacy or activity of the artemisia extract.
본 명세서상의 용어 "약제학적 유효량"은 상술한 비쑥 추출물의 효능 또는 활성을 달성하는데 충분한 양을 의미한다. The term "pharmaceutically effective amount" in the present specification means an amount sufficient to achieve the efficacy or activity of the above-mentioned artemisia extract.
본 발명의 조성물은 비쑥 추출물 이외에 약제학적으로 적합하고 생리학적으로 허용되는 담체, 부형제 및 희석제 등의 보조제를 추가로 포함하는 것일 수 있다. The composition of the present invention may further include adjuvants such as pharmaceutically suitable and physiologically acceptable carriers, excipients, and diluents in addition to the extract of Artemisia.
본 발명의 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는, 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.Carriers, excipients and diluents that may be included in the composition of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate , cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용할 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 상기 추출물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트 (calcium carbonate), 수크로스 (sucrose) 또는 락토오스 (lactose), 젤라틴 등을 섞어 조제될 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다.In the case of formulation, diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants may be used. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and these solid preparations contain at least one excipient, for example, starch, calcium carbonate, sucrose ( It can be prepared by mixing sucrose, lactose, gelatin, etc. In addition to simple excipients, lubricants such as magnesium stearate and talc are also used.
경구를 위한 제제로는 현탁제, 내용액제, 유제, 시럽제, 연고제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.Oral preparations include suspensions, solutions for oral use, emulsions, syrups, ointments, etc. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweeteners, aromatics, and preservatives may be included. there is.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제, 경피제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌 글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.Preparations for parenteral administration include sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories, transdermal preparations, and the like. Propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate may be used as non-aqueous solvents and suspending agents.
좌제의 제제로는 위텝솔 (witepsol), 마크로골, 트윈 (tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.As preparations for suppositories, witepsol, macrogol, tween 61, cacao butter, laurin paper, glycerogeratin and the like may be used.
본 발명에 따른 약제학적 조성물은 인간을 포함하는 포유동물에 다양한 경로로 투여될 수 있다. 투여 방식은 통상적으로 사용되는 모든 방식일 수 있으며, 예컨대, 경구, 피부, 정맥, 근육, 피하 등의 경로로 투여될 수 있으며, 바람직하게는 경구로 투여될 수 있다.The pharmaceutical composition according to the present invention may be administered to mammals including humans by various routes. The administration method may be any method commonly used, and may be administered by, for example, oral, dermal, intravenous, intramuscular, subcutaneous, etc. routes, preferably orally.
예를 들면, 본 발명의 조성물은 전분 또는 락토오즈를 함유하는 정제 형태로, 또는 단독 또는 부형제를 함유하는 캡슐 형태로, 또는 맛을 내거나 색을 띄게 하는 화학 약품을 함유하는 엘릭시르 또는 현탁제 형태로 경구, 구강 내 또는 혀 밑 투여될 수 있다. 이러한 액체 제제는 현탁제 (예를 들면, 메틸셀룰로오즈, 위텝솔 (witepsol)과 같은 반합성 글리세라이드 또는 행인유 (apricot kernel oil)와 PEG-6 에스테르의 혼합물 또는 PEG-8과 카프릴릭/카프릭 글리세라이드의 혼합물과 같은 글리세라이드 혼합물)와 같은 약제학적으로 허용 가능한 첨가제와 함께 제형화 될 수 있다.For example, the composition of the present invention may be in the form of a tablet containing starch or lactose, or in the form of a capsule either alone or containing an excipient, or in the form of an elixir or suspension containing a flavoring or coloring chemical. It may be administered orally, buccally or sublingually. Such liquid formulations may be prepared by suspending agents (e.g. methylcellulose, semi-synthetic glycerides such as witepsol or mixtures of apricot kernel oil and PEG-6 esters or PEG-8 and caprylic/capric acid). It can be formulated with pharmaceutically acceptable excipients such as mixtures of glycerides).
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여방식, 환자의 연령, 체중, 성별, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다.The suitable dosage of the pharmaceutical composition of the present invention varies depending on factors such as formulation method, administration method, patient's age, weight, sex, morbid condition, food, administration time, administration route, excretion rate and reaction sensitivity, A ordinarily skilled physician can readily determine and prescribe dosages effective for the desired treatment or prophylaxis.
본 발명의 조성물을 인간에게 적용하는 구체예에 있어서, 본 발명의 조성물은 단독으로 투여될 수 있으나, 일반적으로 투여방식과 표준 약제학적 관행 (standard phamaceutical practice)을 고려하여 선택된 약제학적 담체와 혼합되어 투여될 수 있다.In the embodiment of applying the composition of the present invention to humans, the composition of the present invention may be administered alone, but is generally mixed with a pharmaceutical carrier selected in consideration of the administration method and standard pharmaceutical practice. can be administered.
본 발명의 추출물 함유 조성물의 투여 용량은 환자의 나이, 몸무게, 성별, 투여형태, 건강상태 및 질환 정도에 따라 달라질 수 있으며, 의사 또는 약사의 판단에 따라 일정 시간간격으로 1일 1회 내지 수회로 분할 투여할 수도 있다.The dosage of the extract-containing composition of the present invention may vary depending on the patient's age, weight, sex, dosage form, state of health and degree of disease, and may be administered once or several times a day at regular time intervals according to the judgment of a doctor or pharmacist. Split doses may also be administered.
본 발명에 있어서 약제학적 조성물은 비쑥 추출물의 함량을 체중 1 kg 당 5 내지 500 mg/day, 5 내지 400 mg/day, 5 내지 300 mg/day, 5 내지 200 mg/day, 5 내지 100 mg/day, 10 내지 500 mg/day, 10 내지 400 mg/day, 10 내지 300 mg/day, 10 내지 200 mg/day, 10 내지 100 mg/day, 20 내지 500 mg/day, 20 내지 400 mg/day, 20 내지 300 mg/day, 20 내지 200 mg/day, 20 내지 100 mg/day, 50 내지 500 mg/day, 50 내지 400 mg/day, 50 내지 300 mg/day 또는 50 내지 200 mg/day, 예를 들어, 50 내지 100 mg/day 범위로 하여 투여되는 것일 수 있다. In the present invention, the pharmaceutical composition has an amount of artemisia extract per 1 kg of body weight of 5 to 500 mg/day, 5 to 400 mg/day, 5 to 300 mg/day, 5 to 200 mg/day, 5 to 100 mg/day. day, 10 to 500 mg/day, 10 to 400 mg/day, 10 to 300 mg/day, 10 to 200 mg/day, 10 to 100 mg/day, 20 to 500 mg/day, 20 to 400 mg/day , 20 to 300 mg/day, 20 to 200 mg/day, 20 to 100 mg/day, 50 to 500 mg/day, 50 to 400 mg/day, 50 to 300 mg/day or 50 to 200 mg/day, For example, it may be administered in the range of 50 to 100 mg/day.
본 발명의 비쑥 추출물 함유 조성물의 1일 투여량이 상기 투여 용량 미만이면 유의성 있는 효과를 얻을 수 없으며, 그 이상을 초과하는 경우 비경제적일 뿐만 아니라 상용량의 범위를 벗어나므로 바람직하지 않은 부작용이 나타날 우려가 발생할 수 있으므로, 상기 범위로 하는 것이 좋다.If the daily dose of the artemisia extract-containing composition of the present invention is less than the above dose, a significant effect cannot be obtained, and if it exceeds the dose, it is not only uneconomical but also out of the range of the usual dose, so there is a concern that undesirable side effects may occur. Since it can occur, it is good to set it as the said range.
본 명세서상 용어 "치료"는 본 발명에 따른 조성물의 투여로 염증성 질환의 증상이 호전되거나 완치되는 모든 행위를 의미한다. As used herein, the term "treatment" refers to all activities in which symptoms of an inflammatory disease are improved or cured by administration of the composition according to the present invention.
본 명세서상 용어 "예방"은 본 발명에 따른 조성물의 투여로 염증성 질환의 증상을 억제 또는 지연시키는 모든 행위를 의미한다.As used herein, the term "prevention" refers to any action that suppresses or delays the symptoms of an inflammatory disease by administering the composition according to the present invention.
본 발명에 있어서 에스타피아틴은 비쑥 추출물 유래인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, estapiatin may be derived from a wormwood extract, but is not limited thereto.
본 명세서상 용어 "비쑥"은 국화과 (Compositae)의 쑥속 (Artemisia)에 속하는 다년초 식물로서, 바닷가 모래땅에서 자라는 다년초로서 사철쑥과 닮았으나 냄새가 다르다. 사철쑥은 줄기가 나무처럼 되어 있어 겨울철에도 죽지 않지만 비쑥은 겨울철에 줄기가 완전히 말라 죽는 것이 특징이다. 비쑥은 한방에서는 거의 쓰지 않는 희귀한 풀이다.In the present specification, the term "Mugwort" is a perennial plant belonging to the genus Artemisia of the Asteraceae family ( Compositae ), and is a perennial plant that grows in sandy seashores and resembles Artemisia, but has a different smell. The stem of wormwood is tree-like and does not die in winter, but the stem of wormwood dries out completely in winter. Mugwort is a rare herb that is rarely used in oriental medicine.
본 발명에 있어서 비쑥은 잎, 줄기, 열매, 뿌리 및 꽃으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으며, 예를 들어, 잎일 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the mugwort may be one or more selected from the group consisting of leaves, stems, fruits, roots, and flowers, and may be, for example, leaves, but is not limited thereto.
본 발명에 있어서 비쑥 추출물은 비쑥을 극성 용매, 비극성 용매 또는 이들의 혼합 용매로 추출하여 얻어진 조추출물일 수 있다.In the present invention, the artemisia extract may be a crude extract obtained by extracting artemisia artemisia with a polar solvent, a non-polar solvent, or a mixture thereof.
본 발명에 있어서 극성 용매는 물, 알코올, 아세트산, 디메틸 포름아미드 (dimethyl formamide; DMFO) 및 디메틸 술폭시드 (dimethyl sulfoxide; DMSO) 로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the polar solvent may be at least one selected from the group consisting of water, alcohol, acetic acid, dimethyl formamide (DMFO), and dimethyl sulfoxide (DMSO), but is not limited thereto.
본 발명에 있어서 알코올은 탄소수 1 내지 4개의 직쇄 또는 분지형 알코올, 예를 들어, 메탄올, 에탄올, 프로판올, 부탄올, 노말-프로판올, 이소-프로판올, 노말-부탄올, 1-펜탄올, 2-부톡시에탄올, 에틸렌글리콜 또는 이들의 혼합물인 것일 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the alcohol is a straight chain or branched alcohol having 1 to 4 carbon atoms, for example, methanol, ethanol, propanol, butanol, normal-propanol, iso-propanol, normal-butanol, 1-pentanol, 2-butoxy It may be ethanol, ethylene glycol or a mixture thereof, but is not limited thereto.
본 발명에 있어서 용매 물과 알코올의 혼합물인 경우에는 10% 이상 내지 100% (v/v) 미만, 20%이상 내지 100% (v/v) 미만, 30%이상 내지 100% (v/v) 미만, 40%이상 내지 100% (v/v) 미만, 50% 이상 내지 100% (v/v) 미만, 50%이상 내지 95% (v/v) 미만, 50%이상 내지 92% (v/v) 미만, 60% 이상 내지 100% (v/v) 미만, 60% 이상 내지 95% (v/v) 미만, 60% 이상 내지 92% (v/v) 미만, 70% 이상 내지 100% (v/v) 미만, 70% 이상 내지 95% (v/v) 미만, 70% 이상 내지 92% (v/v) 미만, 80% 이상 내지 100% (v/v) 미만, 80% 이상 내지 95% (v/v) 미만, 80% 이상 내지 92% 미만의 탄소수 1 내지 4개의 직쇄 또는 분지형 알코올 수용액일 수 있으며, 예를 들어, 90% (v/v)일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, in the case of a mixture of solvent water and alcohol, 10% or more to less than 100% (v / v), 20% or more to less than 100% (v / v), 30% or more to 100% (v / v) Less than, 40% or more to less than 100% (v/v), 50% or more to less than 100% (v/v), 50% or more to less than 95% (v/v), 50% or more to 92% (v/v) v) less than, 60% or more to less than 100% (v/v), 60% or more to less than 95% (v/v), 60% or more to less than 92% (v/v), 70% or more to 100% ( v/v), greater than or equal to 70% to less than 95% (v/v), greater than or equal to 70% to less than 92% (v/v), greater than or equal to 80% to less than 100% (v/v), greater than or equal to 80% to 95 It may be an aqueous solution of less than % (v/v), 80% or more to less than 92% of a straight-chain or branched alcohol having 1 to 4 carbon atoms, for example, 90% (v/v), but is not limited thereto no.
본 발명에 있어서 분획물은 용매로 추출한 조추출물을 노멀헥산으로 용매분획하여 얻은 노멀헥산 획분, 용매로 추출한 조추출물을 노멀헥산으로 용매분획 후 남은 수용액 획분에 클로로포름으로 용매분획하여 얻은 클로로포름 획분, 용매로 추출한 조추출물을 노멀헥산으로 용매분획 후 남은 수용액 획분에 클로로포름으로 용매분획 후 남은 수용액 획분에 에틸아세테이트로 용매분획하여 얻은 에틸아세테이트 획분, 용매로 추출한 조추출물을 노멀헥산으로 용매분획 후 남은 수용액 획분에 클로로포름으로 용매분획 후 남은 수용액 획분에 에틸아세테이트로 용매분획 후 남은 수용액 획분에 수포화부탄올로 용매분획하여 얻은 수포화부탄올 획분, 및 이들의 혼합으로 이루어진 군에서 선택된 1종 이상의 분획물일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the fractions are a normal hexane fraction obtained by solvent fractionation of a crude extract extracted with a solvent with normal hexane, a chloroform fraction obtained by solvent fractionation with chloroform for an aqueous solution fraction remaining after solvent fractionation of a crude extract extracted with a solvent with normal hexane, and a chloroform fraction obtained with solvent The aqueous fraction remaining after solvent fractionation of the extracted crude extract with normal hexane, the ethyl acetate fraction obtained by solvent fractionation with ethyl acetate, the aqueous fraction remaining after solvent fractionation with chloroform, and the aqueous fraction remaining after solvent fractionation of the crude extract extracted with normal hexane It may be one or more fractions selected from the group consisting of a saturated butanol fraction obtained by solvent fractionation with saturated butanol in the aqueous fraction remaining after solvent fractionation with ethyl acetate in the aqueous fraction remaining after solvent fractionation with chloroform, and a mixture thereof. It is not limited.
본 발명의 조성물에 포함된 비쑥 추출물은 천연식물재료로서 세포 독성이 없다. The extract of artemisia contained in the composition of the present invention is a natural plant material and has no cytotoxicity.
본 발명의 다른 일 예는 에스타피아틴을 유효성분으로 포함하는 염증성 질환 예방 또는 개선용 식품 조성물에 관한 것이다.Another example of the present invention relates to a food composition for preventing or improving inflammatory diseases comprising estapiatin as an active ingredient.
본 발명에 있어서 염증성 질환은 감염성 염증질환, 자가면역질환, 염증성 장질환 및 통풍으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the inflammatory disease may be at least one selected from the group consisting of infectious inflammatory disease, autoimmune disease, inflammatory bowel disease and gout, but is not limited thereto.
본 발명에 있어서 감염성 염증질환은 폐렴, 치주염, 간염 및 패혈증으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the infectious inflammatory disease may be at least one selected from the group consisting of pneumonia, periodontitis, hepatitis and sepsis, but is not limited thereto.
본 발명에 있어서 자가면역질환은 류마티스관절염 및 다발성경화증으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the autoimmune disease may be at least one selected from the group consisting of rheumatoid arthritis and multiple sclerosis, but is not limited thereto.
본 발명에 있어서 염증성 장질환은 궤양성 대장염, 궤양성 십이지장염, 크론병, 장염 및 허혈성 대장염으로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the inflammatory bowel disease may be at least one selected from the group consisting of ulcerative colitis, ulcerative duodenitis, Crohn's disease, enteritis, and ischemic colitis, but is not limited thereto.
본 발명의 식품 조성물을 식품 첨가물로 사용할 경우, 상기 식품조성물을 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용할 수 있고, 통상적인 방법에 따라 적절하게 사용할 수 있다. 일반적으로, 식품 또는 음료의 제조 시에 본 발명의 식품조성물은 원료에 대하여 15 중량% 이하, 바람직하게는 10 중량% 이하의 양으로 첨가될 수 있다. When the food composition of the present invention is used as a food additive, the food composition may be added as it is or used together with other foods or food ingredients, and may be appropriately used according to a conventional method. In general, when preparing food or beverage, the food composition of the present invention may be added in an amount of 15% by weight or less, preferably 10% by weight or less, based on the raw material.
상기 식품의 종류에는 특별한 제한은 없다. 상기 물질을 첨가할 수 있는 식품의 예로는 육류, 소세지, 빵, 초콜릿, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 식품을 모두 포함한다. There is no particular limitation on the type of food. Examples of foods to which the substance can be added include meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gum, dairy products including ice cream, various soups, beverages, tea, drinks, There are alcoholic beverages, vitamin complexes, and the like, and includes all foods in a conventional sense.
상기 음료는 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드, 말토스, 슈크로스와 같은 디사카라이드, 및 덱스트린, 사이클로덱스트린과 같은 천연 감미제나, 사카린, 아스파르탐과 같은 합성 감미제 등을 사용할 수 있다. 상기 천연 탄수화물의 비율은 당업자의 선택에 의해 적절하게 결정될 수 있다. The beverage may contain various flavoring agents or natural carbohydrates as additional ingredients. The aforementioned natural carbohydrates may include monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, natural sweeteners such as dextrin and cyclodextrin, and synthetic sweeteners such as saccharin and aspartame. . The ratio of the natural carbohydrates may be appropriately determined by a person skilled in the art.
상기 외에 본 발명의 식품조성물은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 식품조성물은 천연 과일주스, 과일주스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율 또한 당업자에 의해 적절히 선택될 수 있다. In addition to the above, the food composition of the present invention includes various nutrients, vitamins, electrolytes, flavors, colorants, pectic acid and its salts, alginic acid and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol , carbonation agents used in carbonated beverages, and the like. In addition, the food composition of the present invention may contain fruit flesh for the production of natural fruit juice, fruit juice beverages and vegetable beverages. These components may be used independently or in combination. The ratio of these additives can also be appropriately selected by those skilled in the art.
상기 식품 조성물에 있어서, 상기 약제학적 조성물과 중복되는 내용은 본 명세서의 복잡성을 고려하여 생략한다.In the food composition, the contents overlapping with the pharmaceutical composition are omitted in consideration of the complexity of the present specification.
본 명세서상 용어 "개선"은 본 발명에 따른 조성물의 투여로 염증성 질환의 증상이 호전되거나 완치되는 모든 행위를 의미한다.As used herein, the term "improvement" refers to all activities in which symptoms of inflammatory diseases are improved or cured by administration of the composition according to the present invention.
본 발명의 또 다른 일 예는 비쑥 추출물을 제조하는 방법에 관한 것이다.Another example of the present invention relates to a method for preparing an extract of Artemisia.
본 명세서상 용어 "추출물"은 당업계에서 조추출물 (crude extract)로 통용되는 의미를 갖지만, 광의적으로는 추출물을 추가적으로 분획 (fractionation)한 분획물도 포함한다. 즉, 비쑥 추출물은 추출용매를 이용하여 얻은 것뿐만 아니라, 여기에 정제과정을 추가적으로 적용하여 얻은 것도 포함한다. 예를 들어, 상기 추출물을 일정한 분자량 컷-오프 값을 갖는 한외 여과막을 통과시켜 얻은 분획, 다양한 크로마토그래피 (크기, 전하, 소수성 또는 친화성에 따른 분리를 위해 제작된 것)에 의한 분리 등, 추가적으로 실시된 다양한 정제 방법을 통해 얻어진 분획도 본 발명의 비쑥 추출물에 포함되는 것이다. 또한, 비쑥 추출물은 용액, 농축물 또는 분말 상태일 수 있다.In the present specification, the term "extract" has a meaning commonly used as a crude extract in the art, but also includes fractions obtained by additional fractionation of the extract in a broad sense. In other words, the extract of Wispswort includes not only those obtained by using an extraction solvent, but also those obtained by additionally applying a purification process thereto. For example, a fraction obtained by passing the extract through an ultrafiltration membrane having a certain molecular weight cut-off value, separation by various chromatography (made for separation according to size, charge, hydrophobicity or affinity), etc. Fractions obtained through various purification methods are also included in the extract of artemisia of the present invention. Also, the extract of artemisia may be in the form of a solution, concentrate or powder.
본 발명에 사용된 추출 방법은 통상적으로 사용되는 모든 방법일 수 있으며, 예를 들어, 냉침, 열수추출, 초음파 추출, 또는 환류 냉각 추출법일 수 있으나, 이에 한정되는 것은 아니다.The extraction method used in the present invention may be any method commonly used, and may be, for example, cold brewing, hot water extraction, ultrasonic extraction, or reflux cooling extraction, but is not limited thereto.
본 발명에 따른 비쑥 추출물의 제조 과정을 보다 상세하게 설명하면 다음과 같다: The manufacturing process of the artemisia extract according to the present invention in more detail is as follows:
비쑥 분말의 중량에 대하여 약 8 내지 50배 중량의 추출용매로 상온 추출한다. 추출 후 여과하여 여과액을 모은다. 추출 온도는 특별한 제한은 없지만 15 내지 110℃ 바람직하게는 20 내지 90℃인 것이 좋다.Room temperature extraction is performed with an extraction solvent of about 8 to 50 times the weight of the mugwort powder. After extraction, filter and collect the filtrate. The extraction temperature is not particularly limited, but is preferably 15 to 110°C, preferably 20 to 90°C.
추출공정은 1회 또는 수회 반복할 수 있으며, 본 발명의 한 바람직한 예에서는 1차 추출 후 다시 재추출하는 방법을 채택할 수 있는데, 이는 추출물을 대량 생산하는 경우 효과적으로 여과를 한다 하더라도 자체의 수분 함량이 높기 때문에 손실이 발생하게 되어 1차 추출만으로는 추출효율이 떨어지므로 이를 방지하기 위함이다. 또한, 각 단계별 추출효율을 검증한 결과 2차 추출에 의해 전체 추출량의 80 내지 90% 정도가 추출되는 것으로 밝혀졌다.The extraction process may be repeated once or several times, and in one preferred example of the present invention, a method of re-extracting again after the first extraction may be adopted, which means that even if the extract is effectively filtered in the case of mass production, its water content Since this is high, loss occurs, and the extraction efficiency drops only with the first extraction, so this is to be prevented. In addition, as a result of verifying the extraction efficiency at each stage, it was found that about 80 to 90% of the total extraction amount was extracted by the secondary extraction.
본 발명에 있어서 추출공정을 2회 바람직하게는 8 내지 12 부피배로 환류 추출하는 것일 수 있다. 추출 후 여과하고 이전에 얻어진 반복하는 경우, 상기 얻어진 잔사에 다시 추출용매, 약 5 내지 15 부피배, 여과액과 합쳐서 감압 농축을 하여 비쑥 추출물을 제조한다. 이와 같이 2차에 걸친 추출 및 각각의 추출 후 얻어진 여과액을 혼합함으로써 추출 효율을 높일 수 있으나, 본 발명의 추출물이 추출 회수에 한정되는 것은 아니다.In the present invention, the extraction step may be reflux extraction twice, preferably 8 to 12 times by volume. When filtering after extraction and repeating the previously obtained residue, the obtained residue is again combined with the extraction solvent, about 5 to 15 times the volume, and the filtrate, and concentrated under reduced pressure to prepare an extract. Although the extraction efficiency can be increased by mixing the filtrate obtained after the second extraction and each extraction, the extract of the present invention is not limited to the number of extractions.
본 발명에 있어서 비쑥 추출물 제조 시에 사용되는 용매의 양이 너무 적으면 교반이 어렵게 되고 추출물의 용해도가 낮아져 추출효율이 떨어지게 되고, 지나치게 많은 경우는 다음의 정제단계에서 사용되는 용매의 사용량이 많아져 경제적이지 못하여 취급상 문제가 발생할 수 있으므로, 용매의 사용량은 상기 범위로 하는 것이 좋다.In the present invention, if the amount of the solvent used in preparing the artemisia extract is too small, stirring becomes difficult and the solubility of the extract decreases, resulting in a decrease in extraction efficiency. Since it is not economical and problems in handling may occur, the amount of the solvent used is preferably within the above range.
이와 같이 얻어진 여과된 추출물은 의약품 및 식품 원료로 사용하기에 적합하도록 잔존하는 저급 알코올의 함량을 조절하기 위하여 농축물 총량의 약 10 내지 30배, 바람직하게는 15 내지 25배, 보다 바람직하게는 약 20 중량배의 물로 1 내지 5회, 바람직하게는 2 내지 3회 공비 농축하고 재차 동량의 물을 가하여 균질 하게 현탁시킨 후 동결 건조하여 분말상태의 비쑥 추출물로 제조될 수 있다.The filtered extract obtained in this way is about 10 to 30 times, preferably 15 to 25 times, more preferably about 15 to 25 times the total amount of the concentrate in order to adjust the remaining lower alcohol content so that it is suitable for use as a pharmaceutical and food raw material. It can be azeotropically concentrated 1 to 5 times, preferably 2 to 3 times with 20 weight times of water, and then homogeneously suspended by adding the same amount of water again, and then freeze-dried to prepare a powdery artemisia extract.
본 발명은 염증성 질환 개선, 예방 또는 치료용 조성물에 관한 것으로, 구체적으로는, 에스타피아틴 (estafiatin)을 유효성분으로 포함하는 염증성 질환 개선, 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for improving, preventing or treating inflammatory diseases, and specifically, to a composition for improving, preventing or treating inflammatory diseases comprising estafiatin as an active ingredient.
도 1은 에스타피아틴 (estafiatin)의 구조식이다.1 is a structural formula of estafiatin.
도 2는 본 발명의 일 실시예에 따라 마우스 대식세포에 에스타피아틴을 처리한 후 세포독성을 평가하여 세포생존율을 측정한 결과 그래프이다.Figure 2 is a graph of the results of measuring cell viability by evaluating cytotoxicity after treating mouse macrophages with estafiatin according to an embodiment of the present invention.
도 3a는 본 발명의 일 실시예에 따라 LPS로 자극된 마우스 대식세포에 에스타피아틴을 처리한 후 염증성 사이토카인 IL-6의 유전자 발현량을 측정한 결과 그래프이다.Figure 3a is a graph of the result of measuring the gene expression level of the inflammatory cytokine IL-6 after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
도 3b는 본 발명의 일 실시예에 따라 LPS로 자극된 마우스 대식세포에 에스타피아틴을 처리한 후 염증성 사이토카인 TNF-α의 유전자 발현량을 측정한 결과 그래프이다.Figure 3b is a graph of the result of measuring the gene expression level of the inflammatory cytokine TNF-α after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
도 3c는 본 발명의 일 실시예에 따라 LPS로 자극된 마우스 대식세포에 에스타피아틴을 처리한 후 iNOS의 유전자 발현량을 측정한 결과 그래프이다.Figure 3c is a graph of the result of measuring the gene expression level of iNOS after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
도 4a는 본 발명의 일 실시예에 따라 LPS로 자극된 마우스 대식세포에 에스타피아틴을 처리한 후 염증성 사이토카인 IL-6의 단백질 발현량을 측정한 결과 그래프이다.Figure 4a is a graph of the result of measuring the protein expression level of the inflammatory cytokine IL-6 after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
도 4b는 본 발명의 일 실시예에 따라 LPS로 자극된 마우스 대식세포에 에스타피아틴을 처리한 후 염증성 사이토카인 TNF-α의 단백질 발현량을 측정한 결과 그래프이다.Figure 4b is a graph of the result of measuring the protein expression level of the inflammatory cytokine TNF-α after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따라 LPS로 자극된 마우스 대식세포에 에스타피아틴을 처리한 후 iNOS 단백질 발현량을 측정한 웨스턴블롯 결과이다.Figure 5 is a Western blot result of measuring the iNOS protein expression level after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따라 LPS로 자극된 마우스 대식세포에 에스타피아틴을 처리한 후 염증성 전사인자 (p65, p38, JNK, ERK)의 인산화를 측정한 결과를 나타낸 웨스턴블롯 결과이다.Figure 6 is a Western blot showing the results of measuring phosphorylation of inflammatory transcription factors (p65, p38, JNK, ERK) after treating mouse macrophages stimulated with LPS with estapiatin according to an embodiment of the present invention. .
도 7a는 본 발명의 일 실시예에 따라 LPS+ATP로 유도된 NLRP3 인플라마좀에 에스타피아틴을 처리한 후 NLRP3 인플라마좀 억제효과 (IL-1β의 방출량)를 측정한 결과 그래프이다.Figure 7a is a graph showing the results of measuring the NLRP3 inflammasome inhibitory effect (IL-1β release) after treating estapiatin to NLRP3 inflammasome induced by LPS+ATP according to an embodiment of the present invention.
도 7b는 본 발명의 일 실시예에 따라 LPS+Nigericin로 유도된 NLRP3 인플라마좀에 에스타피아틴을 처리한 후 NLRP3 인플라마좀 억제효과 (IL-1β의 방출량)를 측정한 결과 그래프이다.Figure 7b is a graph showing the results of measuring the NLRP3 inflammasome inhibitory effect (IL-1β release) after treating estapiatin to NLRP3 inflammasome induced by LPS+Nigericin according to an embodiment of the present invention.
도 7c는 본 발명의 일 실시예에 따라 LPS+MSU로 유도된 NLRP3 인플라마좀에 에스타피아틴을 처리한 후 NLRP3 인플라마좀 억제효과 (IL-1β의 방출량)를 측정한 결과 그래프이다.Figure 7c is a graph showing the results of measuring the NLRP3 inflammasome inhibitory effect (IL-1β release) after treating estapiatin to NLRP3 inflammasomes induced by LPS+MSU according to an embodiment of the present invention.
도 8a는 본 발명의 일 실시예에 따라 LPS+ATP로 유도된 NLRP3 인플라마좀에 에스타피아틴을 처리한 후 NLRP3 인플라마좀 억제효과 (카스파제 1, IL-1β 및 β-actin 단백질 생성량)을 측정한 결과이다.Figure 8a is a NLRP3 inflammasome inhibitory effect (caspase 1, IL-1β and β-actin protein production) after treatment with estapiatin to NLRP3 inflammasome induced by LPS + ATP according to an embodiment of the present invention. is the result of measuring
도 8b는 본 발명의 일 실시예에 따라 LPS+Nigericin로 유도된 NLRP3 인플라마좀에 에스타피아틴을 처리한 후 NLRP3 인플라마좀 억제효과 (카스파제 1, IL-1β 및 β-actin 단백질 생성량)을 측정한 결과이다.Figure 8b is a NLRP3 inflammasome inhibitory effect (caspase 1, IL-1β and β-actin protein production) after treatment with estapiatin to NLRP3 inflammasome induced by LPS + Nigericin according to an embodiment of the present invention. is the result of measuring
도 8c는 본 발명의 일 실시예에 따라 LPS+MSU로 유도된 NLRP3 인플라마좀에 에스타피아틴을 처리한 후 NLRP3 인플라마좀 억제효과 (카스파제 1, IL-1β 및 β-actin 단백질 생성량)을 측정한 결과이다.Figure 8c is a NLRP3 inflammasome inhibitory effect (caspase 1, IL-1β and β-actin protein production amount) after treatment with estapiatin to NLRP3 inflammasome induced by LPS + MSU according to an embodiment of the present invention. is the result of measuring
도 9a는 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 복강액 (Peritoneal fluid) 내 염증성 사이토카인 IL-6의 생성 억제효과를 측정한 결과 그래프이다.Figure 9a shows the effect of inhibiting the production of inflammatory cytokine IL-6 in peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. It is a graph of the result of measuring .
도 9b는 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 복강액 (Peritoneal fluid) 내 염증성 사이토카인 TNF-α의 생성 억제효과를 측정한 결과 그래프이다.Figure 9b shows the effect of inhibiting the production of the inflammatory cytokine TNF-α in the peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. It is a graph of the result of measuring .
도 9c는 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 복강액 (Peritoneal fluid) 내 염증성 사이토카인 IL-1β의 생성 억제효과를 측정한 결과 그래프이다.Figure 9c shows the effect of inhibiting the production of the inflammatory cytokine IL-1β in the peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. It is a graph of the result of measuring .
도 9d는 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 복강액 (Peritoneal fluid) 내 염증성 사이토카인 CXCL1의 생성 억제효과를 측정한 결과 그래프이다.Figure 9d shows the effect of inhibiting the production of inflammatory cytokine CXCL1 in peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
도 9e는 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 복강액 (Peritoneal fluid) 내 염증성 사이토카인 CXCL2의 생성 억제효과를 측정한 결과 그래프이다.Figure 9e is a measurement of the inhibitory effect on the production of the inflammatory cytokine CXCL2 in peritoneal fluid after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
도 10a은 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 혈청 (Serum) 내 염증성 사이토카인 IL-6의 생성 억제효과를 측정한 결과 그래프이다.Figure 10a is a measurement of the inhibitory effect on the production of the inflammatory cytokine IL-6 in serum after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
도 10b은 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 혈청 (Serum) 내 염증성 사이토카인 TNF-α의 생성 억제효과를 측정한 결과 그래프이다.Figure 10b is a measurement of the inhibitory effect on the production of the inflammatory cytokine TNF-α in serum after administration of estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
도 10c은 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 혈청 (Serum) 내 염증성 사이토카인 IL-1β의 생성 억제효과를 측정한 결과 그래프이다.Figure 10c is a measurement of the inhibitory effect on the production of the inflammatory cytokine IL-1β in serum after estafiatin was administered to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. This is the resulting graph.
도 10d은 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 혈청 (Serum) 내 염증성 사이토카인 CXCL1의 생성 억제효과를 측정한 결과 그래프이다.Figure 10d is a result of measuring the inhibitory effect on the production of inflammatory cytokine CXCL1 in serum after administering estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. it's a graph
도 10e은 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 (septic shock) 동물모델에 에스타피아틴을 투여한 후 혈청 (Serum) 내 염증성 사이토카인 CXCL2의 생성 억제효과를 측정한 결과 그래프이다.Figure 10e is a result of measuring the effect of inhibiting the production of inflammatory cytokine CXCL2 in serum after administering estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention. it's a graph
도 11은 본 발명의 일 실시예에 따라 LPS로 유도된 마우스 패혈성 쇼크 동물모델에 에스타피아틴을 투여한 후 치사율(Lethality) 개선효과를 측정한 결과 그래프이다.11 is a graph showing the result of measuring the lethality improvement effect after administering estapiatin to an LPS-induced mouse septic shock animal model according to an embodiment of the present invention.
에스타피아틴을 유효성분으로 포함하는 염증성 질환 예방 또는 치료용 약제학적 조성물.A pharmaceutical composition for preventing or treating inflammatory diseases comprising estapiatin as an active ingredient.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, these examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 및 액체/액체는 (부피/부피) %이다.Throughout this specification, unless otherwise specified, "%" used to indicate the concentration of a particular substance is (weight/weight) % for solids/solids, (weight/volume) % for solids/liquids, and liquid/liquid is (volume/volume) %.
제조예 1. 비쑥 에탄올 수용액 추출물의 제조Preparation Example 1. Preparation of ethanol aqueous solution extract
비쑥 지상부 분말 140 g를 95% (V/V)의 에탄올 2.2 L를 가하여 호모게나이저로 분쇄한 다음 상온에서 24시간 동안 추출하였으며, 여과지 (No. 2, Whatman)로 여과를 행하여 에탄올 수용액 추출여액을 얻었다. 또한 잔사에 95% (V/V)의 에탄올 1 L를 가하여 상기와 동일 방법으로 재차 추출 및 여과하였다. 얻어진 에탄올 수용액 추출 여액은 아스피레이터가 장착된 진공농축기 (A-3S, Eyela, Tokyo, Japan)를 사용하여 45℃에서 감압 농축하여 비쑥 에탄올 수용액 추출물을 제조하였다.140 g of the powder of the aerial part of Artemisia was added with 2.2 L of 95% (V/V) ethanol, pulverized with a homogenizer, extracted at room temperature for 24 hours, and filtered with a filter paper (No. 2, Whatman) to obtain an aqueous ethanol solution. got In addition, 1 L of 95% (V/V) ethanol was added to the residue, followed by extraction and filtration again in the same manner as above. The obtained ethanol aqueous solution extraction filtrate was concentrated under reduced pressure at 45° C. using a vacuum concentrator equipped with an aspirator (A-3S, Eyela, Tokyo, Japan) to prepare an ethanol aqueous solution extract.
제조예 2. 에스타피아틴의 분리Preparation Example 2. Isolation of estapiatin
제조예 1에서 얻어진 비쑥 에탄올 수용액 추출물을 2차 증류수 (1.2 L)로 현탁시킨 다음 노멀헥산 (1.2 L)으로 3회 반복 용매분획하여 노멀헥산 획분을 얻은 다음, 수용액 획분에 클로로포름 (CHCl3, 1.2 L)으로 3회 반복 용매분획하여 클로로포름 획분을 얻었다. 이어 수용액 획분에 에틸아세테이트 (EtOAc, 1.2 L)로 3회 반복 용매분획하여 에틸아세테이트 획분을 얻고, 수용액 획분에 수포화부탄올 (BuOH, 0.9 L)로 3회 반복 용매분획하여 수포화부탄올 획분을 얻었다. 얻어진 각 획분을 진공농축기를 이용하여 45℃에서 감압 농축하여 노멀헥산 분획물, 클로로포름 분획물, 에틸아세테이트 분획물, 및 수포화부탄올 분획물을 제조하였다.The extract of the aqueous solution of artemisia sagebrush obtained in Preparation Example 1 was suspended in double distilled water (1.2 L), and then solvent fractionation was repeated three times with normal hexane (1.2 L) to obtain a normal hexane fraction, and then chloroform (CHCl 3 , 1.2 L) was subjected to repeated solvent fractionation three times to obtain a chloroform fraction. Subsequently, the aqueous fraction was subjected to repeated solvent fractionation with ethyl acetate (EtOAc, 1.2 L) three times to obtain an ethyl acetate fraction, and the aqueous fraction was subjected to repeated solvent fractionation with saturated butanol (BuOH, 0.9 L) three times to obtain a saturated butanol fraction. . Each obtained fraction was concentrated under reduced pressure at 45° C. using a vacuum concentrator to prepare a normal hexane fraction, a chloroform fraction, an ethyl acetate fraction, and a hydrosaturated butanol fraction.
에틸아세테이트 분획물 (13.74 g)을 대상으로 실리카젤 컬럼이 장착된 MPLC를 이용하여 정제하였다. 즉, 에틸아세테이트 분획물 (13.74 g)을 실리카젤에 흡착시켜 컬럼에 충진시킨 다음 이를 실리카젤 컬럼 (SNAP KP-Sil 340 g, Biotage, Seongnam, Korea)에 연결하였다. 이후 클로로포름/메탄올 = 9:1, 4:6 및 0:10 (v/v) 용매계로 한 단계별 (step-wise) 용출 방법 (각 단계 별 3,400 mL, 100 mL/min)으로 용출 및 분획하였다.The ethyl acetate fraction (13.74 g) was purified using MPLC equipped with a silica gel column. That is, the ethyl acetate fraction (13.74 g) was adsorbed onto silica gel, filled in a column, and then connected to a silica gel column (SNAP KP-Sil 340 g, Biotage, Seongnam, Korea). Thereafter, chloroform/methanol = 9:1, 4:6, and 0:10 (v/v) solvent systems were eluted and fractionated by a step-wise elution method (3,400 mL for each step, 100 mL/min).
상기 실리카젤 컬럼 크로마토그래피로부터 얻어진 획분 A (6.37 g, 클로로포름/메탄올 = 9:1, v/v)를 대상으로 실리카젤 컬럼이 장착된 MPLC를 이용하여 재정제하였다. 즉, 상기와 동일한 방법으로 획분 A를 실리카젤에 흡착시켜 컬럼에 충진한 다음 화합물 분리용 실리카젤 컬럼 (ZIP KP-Sil 120 g, Biotage, Seongnam, Korea)과 연결하였다. 이어 초기 10분은 노멀헥산/에틸아세테이트 = 90:10 (v/v)로, 10분에서 40분까지 분노멀헥산/에틸아세테이트 = 0:100 (v/v)으로 한 그래디언트 용출 방법(50 mL/min)으로 하여 에스타피아틴가 함유된 획분 A7 (1.14 g, 머무름값 23-25 min)을 얻었다.Fraction A (6.37 g, chloroform/methanol = 9:1, v/v) obtained from the silica gel column chromatography was re-purified using MPLC equipped with a silica gel column. That is, in the same manner as above, fraction A was adsorbed onto silica gel, filled in a column, and then connected to a silica gel column for compound separation (ZIP KP-Sil 120 g, Biotage, Seongnam, Korea). Subsequently, the gradient elution method (50 mL) with normal hexane / ethyl acetate = 90:10 (v / v) for the first 10 minutes and normal hexane / ethyl acetate = 0:100 (v / v) from 10 to 40 minutes /min) to obtain fraction A7 (1.14 g, retention value 23-25 min) containing estapiatin.
실험예 1. 비쑥 에탄올 수용액 추출물로부터 분리한 에스타피아틴의 구조 확인Experimental Example 1. Structure confirmation of estapiatin isolated from ethanol aqueous solution extract
제조예 2에서 분리된 화합물인 에스타피아틴의 구조는 MS 및 NMR 분석을 통하여 확인할 수 있었다. 에스타피아틴의 HR-ESI-MS (positive) 스펙트럼으로부터 분자량 이온 피크인 m/z 269.1254 [M+Na]+가 관찰되었고, 이 화합물의 분자량이 246 (C15H18O3)임을 알 수 있었다. The structure of estapiatin, a compound isolated in Preparation Example 2, could be confirmed through MS and NMR analysis. From the HR-ESI-MS (positive) spectrum of estapiatin, a molecular weight ion peak m/z 269.1254 [M+Na] + was observed, and it was found that the molecular weight of this compound was 246 (C 15 H 18 O 3 ) .
1H-NMR 및 13C-NMR 스펙트라로부터 이 화합물은 구아이아올라이드 (guaiadienolide)계 화합물로 시사되었다. 즉, 1H-NMR (500 MHz, CD3OD) 스펙트럼에서 2종의 sp2 메틸렌에 귀속되는 4종의 프로톤 시그널들[δ 6.21 (1H, d, J = 3.6 Hz, H-13a), 5.48 (1H, d, J = 3.6 Hz, H-13b), 4.95 (1H, br. s, H-14a), 4.86 (1H, br. s, H-14b)]과 5종의 메틴 프로톤 시그널들 [δ 2.97 (1H, dt, J = 11.0, 8.0 Hz, H-1), 3.37 (1H, s, H-3), 2.31 (1H, dd, J = 11.0, 8.5 Hz, H-5), 4.08 (1H, dd, J = 11.0, 8.5 Hz, H-6), 2.87 (1H, m, H-7)]이 관찰되었다. 또한, 3종의 메틸렌 그룹에 귀속되는 5종의 프로톤 시그널들 [δ 2.06 (1H, dt, J = 11.0, 8.0 Hz, H-2a), 2.06 (1H, dd, J = 14.0, 7.0 Hz, H-2b), 2.26 (2H, m, H-8), 2.21 (1H, m, H-9a), 1.53 (1H, m, H-9b)]과 1종의 메틴 프로톤 시그널들 [δ 1.62 (3H, s, H-15)]이 관찰되었다. 13C-NMR (125 MHz) 스펙트럼에서는 1종의 카르보닐 카본 시그널 [δ 169.7 (C-12)] 및 3종의 쿼터너리 시그널 들[δ 65.8 (C-4), 146.1 (C-10), 139.5 (C-11)]를 포함한 총 15종의 카본 시그널들이 관찰되었으며, 이는 ESI-MS 및 1H-NMR 스페트럼의 분석 결과와 일치되었다. 이상의 결과로부터 이 화합물은 구아이아놀라이드계 화합물인 에스타피아틴으로 구조해석되었다.From 1 H-NMR and 13 C-NMR spectra, this compound was suggested to be a guaiadienolide-based compound. That is, in the 1 H-NMR (500 MHz, CD 3 OD) spectrum, 4 proton signals attributed to 2 sp 2 methylenes [δ 6.21 (1H, d, J = 3.6 Hz, H-13a), 5.48 (1H, d, J = 3.6 Hz, H-13b), 4.95 (1H, br. s, H-14a), 4.86 (1H, br. s, H-14b)] and five methine proton signals [ δ 2.97 (1H, dt, J = 11.0, 8.0 Hz, H-1), 3.37 (1H, s, H-3), 2.31 (1H, dd, J = 11.0, 8.5 Hz, H-5), 4.08 ( 1H, dd, J = 11.0, 8.5 Hz, H-6), 2.87 (1H, m, H-7)] were observed. In addition, 5 types of proton signals attributed to 3 types of methylene groups [δ 2.06 (1H, dt, J = 11.0, 8.0 Hz, H-2a), 2.06 (1H, dd, J = 14.0, 7.0 Hz, H -2b), 2.26 (2H, m, H-8), 2.21 (1H, m, H-9a), 1.53 (1H, m, H-9b)] and one methine proton signal [δ 1.62 (3H , s, H-15)] was observed. In the 13 C-NMR (125 MHz) spectrum, one carbonyl carbon signal [δ 169.7 (C-12)] and three quaternary signals [δ 65.8 (C-4), 146.1 (C-10), 139.5 (C-11)] were observed, which was consistent with the results of ESI-MS and 1 H-NMR spectrum analysis. From the above results, this compound was structurally interpreted as estapiatin, a guaianolide-based compound.
하기 표 1은 에스타피아틴의 1H- (500 MHz) 및 13C-NMR (125 MHz) 자료 (CD3OD)이며, 그 구조는 도 1에 도시된 바와 같다.Table 1 below shows 1 H- (500 MHz) and 13 C-NMR (125 MHz) data (CD 3 OD) of estapiatin, and its structure is shown in FIG. 1 .
위치location δH (rel. Int., Multi., J in Hz)δH (rel. Int., Multi., J in Hz) δCδC
1One 2.97 (1H, td, 11.0, 8.0)2.97 (1H, td, 11.0, 8.0) 44.844.8
2a2a 2.06 (1H, dd, 14.0, 7.0)2.06 (1H, dd, 14.0, 7.0) 33.133.1
2b2b 1.81 (1H, dd, 3.5, 1.0)1.81 (1H, dd, 3.5, 1.0)
33 3.37 (1H, s)3.37 (1H, s) 63.363.3
44 -- 65.865.8
55 2.31 (1H, dd, 11.0, 8.5)2.31 (1H, dd, 11.0, 8.5) 50.850.8
66 4.08 (1H, dd, 11.0, 8.5)4.08 (1H, dd, 11.0, 8.5) 80.580.5
77 2.87 (1H, m)2.87 (1H, m) 44.144.1
88 2.26 (2H, m)2.26 (2H, m) 28.628.6
9a9a 2.21 (1H, m)2.21 (1H, m) 29.229.2
9b9b 1.53 (1H, m)1.53 (1H, m)
1010 -- 146.1146.1
1111 -- 139.5139.5
1212 -- 169.7169.7
13a13a 6.21 (1H, d, 3.5)6.21 (1H, d, 3.5) 120.2120.2
13b13b 5.48 (1H, d, 3.5)5.48 (1H, d, 3.5)
14a14a 4.95 (1H, br. s)4.95 (1H, br.s) 115.3115.3
14b14b 4.86 (1H, br. d, 2)4.86 (1H, br. d, 2)
1515 1.62 (3H, s)1.62 (3H, s) 18.618.6
실험예 2: 에스타피아틴의 염증반응 억제 효과Experimental Example 2: Inhibitory effect of estapiatin on inflammatory response
8 내지 12주령 C57BL/6J 마우스의 넙다리뼈 및 정강뼈에서 26g 주사기를 이용하여 골수를 분리하였다. 분리한 골수는 150ð 세포배양 플레이트에서 IMDM 배지, 30% L929 세포 상청액 (cell supernatnant), 10% 우태아 혈청 (fetal bovine serum), 1% 페니실린/스트렙토마이신 (pencillin/streptomycin), 1% 비필수 아미노산 (non-essential amino acid) 및 1% 피루브산나트륨 (sodium pyruvate)으로 조성된 배지로 6일 동안 대식세포로 분화시킨 후 실험에 사용하였다.Bone marrow was isolated from the femur and tibia of 8- to 12-week-old C57BL/6J mice using a 26 g syringe. The isolated bone marrow was cultured in a 150° cell culture plate in IMDM medium, 30% L929 cell supernatant, 10% fetal bovine serum, 1% penicillin/streptomycin, and 1% non-essential amino acids. After differentiation into macrophages for 6 days in a medium composed of (non-essential amino acid) and 1% sodium pyruvate, they were used in the experiment.
2-1. 세포 독성 평가2-1. Cytotoxicity assessment
분화된 대식세포를 1x106 셀/ml 농도로 48 웰플레이트에 200μL씩 시딩하였다. 그 후, 37°C, 5% CO2 조건에서 12 시간 동안 안정화하였다. 배양한 세포의 상층액을 제거한 후 무혈청 (Serum free) 배지에 에스타피아틴 0.5, 1, 2, 4, 8 또는 16 μM 농도로 희석하여 200μl씩 처리하고 37°C, 5% CO2 조건에서 24 시간 동안 배양하였다. 이후 배양한 세포의 상층액을 제거하고 400μg/m 농도의 MTT 용액을 200 μL 처리한 후, 7°C, 5% CO2 조건에서 4 시간 반응시켰다. 이후 반응액을 제거하고 DMSO를 200μl 첨가하여 570㎚에서 흡광도를 측정하였다. 아무것도 처리하지 않은 세포의 세포 생존율을 기준으로 하여 (100%), 시료를 처리한 세포의 생존율을 계산하여 도 2 및 표 2에 나타내었다.Differentiated macrophages were seeded in 200 μL at a concentration of 1×10 6 cells/ml in a 48-well plate. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, 200 μl of estafiatin was diluted to a concentration of 0.5, 1, 2, 4, 8 or 16 μM in a serum-free medium and treated at 37°C, 5% CO 2 conditions. Incubated for 24 hours. Thereafter, the supernatant of the cultured cells was removed, and 200 μL of an MTT solution having a concentration of 400 μg/m was treated, followed by reaction at 7°C and 5% CO 2 for 4 hours. Then, the reaction solution was removed, and 200 μl of DMSO was added to measure the absorbance at 570 nm. Based on the cell viability of cells not treated with anything (100%), the viability of cells treated with the sample was calculated and shown in FIG. 2 and Table 2.
세포 독성 평가Cytotoxicity assessment
에스타피아틴
(μM)
Estapiatin
(μM)
-- 0.50.5 1One 22 44 88 1616
세포생존률
(%)
cell viability
(%)
100100 98.2798.27 97.6197.61 101.3101.3 93.593.5 79.8479.84 76.276.2
도 2 및 표 2에서 확인할 수 있듯이, 마우스 골수유래 대식세포에 4μM 이하 농도의 에스타피아틴을 처리하는 경우 세포 생존률은 93% 이상으로 유지됨을 확인하였다. 즉, 4μM 이하 농도의 에스타피아틴 처리시 세포 독성을 나타내지 않는 것을 알 수 있었다.As can be seen in Figure 2 and Table 2, it was confirmed that the cell viability was maintained at 93% or more when mouse bone marrow-derived macrophages were treated with estapiatin at a concentration of 4 μM or less. That is, it was found that no cytotoxicity was observed when estapiatin was treated at a concentration of 4 μM or less.
2-2. 유전자 발현량 측정2-2. Gene expression level measurement
분화된 대식세포를 1x106 셀/mL 농도로 12 웰플레이트에 1ml씩 시딩하였다. 그 후, 37°C, 5% CO2 조건에서 12 시간 동안 안정화하였다. 배양한 세포의 상층액을 제거한 후 무혈청 (Serum free) 배지에 에스타피아틴을 4μM 농도로 희석하여 900ul씩 처리하였다. 2시간 후 LPS를 1μg/ml농도로 100 ul 첨가한 후 0, 3, 6 또는 12 시간 동안 37℃, 5% CO2 조건에서 배양하였다. 배양한 세포의 상층액을 제거한 후 플레이트에 부착된 세포는 트리졸 (trizol)로 균질화 하였다. 각각의 시료에서 RNA를 추출한 후 qPCR 기법을 통해 염증성 사이토카인 및 iNOS 유전자 발현량을 정량화 하여 도 3a 내지 3c 및 표 3에 나타내었다.Differentiated macrophages were seeded at a concentration of 1×10 6 cells/mL in 1 ml each in a 12-well plate. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, estapiatin was diluted to a concentration of 4 μM in a serum-free medium and treated with 900 ul each. After 2 hours, 100 ul of LPS was added at a concentration of 1 μg/ml, followed by incubation at 37° C. and 5% CO 2 for 0, 3, 6 or 12 hours. After removing the supernatant of the cultured cells, the cells attached to the plate were homogenized with trizol. After RNA was extracted from each sample, the expression levels of inflammatory cytokines and iNOS genes were quantified by qPCR, and are shown in FIGS. 3a to 3c and Table 3.
염증성 사이토카인 및 iNOS 유전자 발현량Inflammatory cytokine and iNOS gene expression levels
배양시간
(시간)
incubation time
(hour)
00 33 33 66 66 1212 1212
LPS
(ng/ml)
LPS
(ng/ml)
-- 100100 100100 100100 100100 100100 100100
에스타피아틴
(μM)
Estapiatin
(μM)
-- -- 44 -- 44 -- 44
IL-6
발현량
IL-6
expression level
1One 88998899 18091809 1369213692 10731073 75017501 692.8692.8
TNF-α
발현량
TNF-α
expression level
1One 173.9173.9 160.9160.9 147.4147.4 97.5997.59 111111 60.9160.91
iNOS
발현량
iNOS
expression level
1One 421.6421.6 23.6723.67 10061006 123.5123.5 848.3848.3 59.8259.82
도 3a 내지 3c 및 표 3에서 확인할 수 있듯이, 마우스 골수유래 대식세포에 LPS를 처리하는 경우 시간이 지남에 따라 IL-6, TNF-α, iNOS의 유전자 발현이 억제됨을 확인할 수 있었다. LPS와 에스타피아틴을 함께 처리하는 경우 LPS에 의한 IL-6, TNF-α, iNOS의 유전자 발현은 더욱 억제되었다. 즉, 에스타피아틴이 항염증용 조성물로 유용하게 사용할 수 있음을 알 수 있었다.As can be seen in Figures 3a to 3c and Table 3, when mouse bone marrow-derived macrophages were treated with LPS, it was confirmed that the gene expression of IL-6, TNF-α, and iNOS was suppressed over time. When LPS and estapiatin were treated together, the gene expression of IL-6, TNF-α, and iNOS by LPS was further suppressed. That is, it was found that estapiatin can be usefully used as an anti-inflammatory composition.
2-3. 단백질 발현량 측정2-3. Protein expression level measurement
분화된 대식세포를 1x106 셀/mL 농도로 48 웰플레이트에 200ul씩 시딩하였다. 그 후, 37℃, 5% CO2 조건에서 12 시간 동안 안정화하였다. 배양한 세포의 상층액을 제거한 후 무혈청 배지에 에스타피아틴을 1, 2 또는 4μM 농도로 희석하여 180 ul씩 처리하였다. 2시간 후 LPS를 1 μg/ml 농도로 20 ul 첨가한 후 24시간 동안 37℃, 5% CO2 조건에서 배양하였다. 배양한 세포의 상층액 샘플을 채취한 후 효소 면역 분석법 (enzyme-Linked Immunosorbent Assay, ELISA) 기법을 통해 염증성 사이토카인의 양을 측정하여 도 4a, 4b 및 표 4에 나타내었다.Differentiated macrophages were seeded in 200ul each in a 48-well plate at a concentration of 1x10 6 cells/mL. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 condition. After removing the supernatant of the cultured cells, estafiatin was diluted in a serum-free medium at a concentration of 1, 2 or 4 μM and treated with 180 ul each. After 2 hours, 20 ul of LPS was added at a concentration of 1 μg/ml, followed by incubation at 37° C. and 5% CO 2 conditions for 24 hours. After taking a sample of the supernatant of the cultured cells, the amount of inflammatory cytokines was measured through an enzyme-linked immunosorbent assay (ELISA) technique and shown in FIGS. 4a and 4b and Table 4.
염증성 사이토카인 (IL-6 TNF-α) 생성량Production of inflammatory cytokines (IL-6, TNF-α)
LPS
(ng/ml)
LPS
(ng/ml)
-- 100100 100100 100100 100100
에스타피아틴 (μM)Estapiatin (μM) -- -- 1 One 22 44
IL-6(pg/ml)IL-6 (pg/ml) 66826682 46934693 18751875 00
TNF-α(pg/ml)TNF-α (pg/ml) 72597259 56075607 27322732 00
도 4a, 4b 및 표 4에서 확인할 수 있듯이, 마우스 골수유래 대식세포에 에스타피아틴을 처리하는 경우 LPS에 의한 IL-6, TNF-α의 단백질 생성이 농도 의존적으로 억제됨을 확인할 수 있었다. 특히, 4μM의 에스타피아틴을 처리하는 경우 IL-6, TNF-α의 단백질 생성이 완전히 억제되었다. 즉, 에스타피아틴이 항염증용 조성물로 유용하게 사용할 수 있음을 알 수 있었다.As can be seen in Figures 4a, 4b and Table 4, it was confirmed that the production of IL-6 and TNF-α by LPS was inhibited in a concentration-dependent manner when mouse bone marrow-derived macrophages were treated with estapiatin. In particular, the production of IL-6 and TNF-α was completely suppressed when estapiatin was treated at 4 μM. That is, it was found that estapiatin can be usefully used as an anti-inflammatory composition.
2-4. iNOS 및 β-actin 단백질 생성량 측정2-4. Measurement of iNOS and β-actin protein production
분화된 대식세포를 1x106 셀/ml 농도로 12 웰플레이트에 1ml씩 시딩하였다. 그 후, 37℃, 5% CO2 조건에서 12 시간 동안 안정화하였다. 배양한 세포의 상층액을 제거한 후 무혈청 배지에 에스타피아틴을 2.5, 5 또는 10μM 농도로 희석하여 900 ul씩 처리하였다. 2시간 후 LPS를 1μg/ml 농도로 100 ul 첨가한 후 24 시간 동안 37℃, 5% CO2 조건에서 배양하였다. 배양한 세포의 상층액을 제거한 후 플레이트에 부착된 세포는 NP40 세포 용해 (cell lysis) 버퍼를 통해 균질화 하였다. 각각의 시료에서 단백질을 추출하였다. 웨스턴 블롯 (western blot)으로 iNOS 및 β-actin 단백질 생성량을 측정하여 도 5에 나타내었다.Differentiated macrophages were seeded in 1 ml each in a 12-well plate at a concentration of 1x10 6 cells/ml. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 condition. After removing the supernatant of the cultured cells, 900 ul each of estapiatin was diluted to a concentration of 2.5, 5 or 10 μM in a serum-free medium. After 2 hours, 100 ul of LPS was added at a concentration of 1 μg/ml, followed by incubation at 37° C. and 5% CO 2 conditions for 24 hours. After removing the supernatant of the cultured cells, the cells attached to the plate were homogenized using NP40 cell lysis buffer. Protein was extracted from each sample. The amount of iNOS and β-actin protein production was measured by western blot and shown in FIG. 5 .
도 5에서 확인할 수 있듯이, 마우스 골수유래 대식세포에 에스타피아틴을 처리하는 경우 LPS에 의한 iNOS 단백질 생성을 농도 의존적으로 억제하는 것을 확인할 수 있었다. 즉, 에스타피아틴이 항염증용 조성물로 유용하게 사용할 수 있음을 알 수 있었다.As can be seen in Figure 5, it was confirmed that iNOS protein production by LPS was inhibited in a concentration-dependent manner when mouse bone marrow-derived macrophages were treated with estapiatin. That is, it was found that estapiatin can be usefully used as an anti-inflammatory composition.
2-5. 염증성 전사인자의 인산화 측정2-5. Measurement of phosphorylation of inflammatory transcription factors
분화된 대식세포를 1x106 셀/ml 농도로 12 웰플레이트에 1ml씩 시딩하였다. 그 후, 37°C, 5% CO2 조건에서 12 시간 동안 안정화하였다. 배양한 세포의 상층액을 제거한 후 무혈청 배지에 에스타피아틴을 4 μM 농도로 희석하여 900 ul씩 처리하였다. 2시간 후 LPS를 1μg/ml 농도로 100 ul 첨가한 후 각각 0, 15, 30 또는 60 분 동안 37°C, 5% CO2 조건에서 배양하였다. 배양한 세포의 상층액을 제거한 후 플레이트에 부착된 세포는 포스파타제 억제제 (phosphatase inhibitor) 가 포함된 NP40 세포 용해 버퍼를 통해 균질화 하였다. 각각의 시료에서 단백질을 추출한 후 웨스턴 블롯으로 각각의 단백질 생성량을 측정하여 도 6에 나타내었다.Differentiated macrophages were seeded in 1 ml each in a 12-well plate at a concentration of 1x10 6 cells/ml. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, estapiatin was diluted to a concentration of 4 μM in a serum-free medium and treated with 900 ul each. After 2 hours, 100 ul of LPS was added at a concentration of 1 μg/ml, followed by incubation at 37°C and 5% CO 2 conditions for 0, 15, 30, or 60 minutes, respectively. After removing the supernatant of the cultured cells, the cells attached to the plate were homogenized using NP40 cell lysis buffer containing a phosphatase inhibitor. After extracting proteins from each sample, the amount of each protein produced was measured by Western blotting and is shown in FIG. 6 .
도 6에서 확인할 수 있듯이, 마우스 골수유래 대식세포에 에스타피아틴을 처리하는 경우 LPS에 의한 염증성 전사인자의 인산화가 억제되는 것을 확인할 수 있었다. 즉, 에스타피아틴이 항염증용 조성물로 유용하게 사용할 수 있음을 알 수 있었다.As can be seen in Figure 6, it was confirmed that phosphorylation of inflammatory transcription factors by LPS was inhibited when mouse bone marrow-derived macrophages were treated with estapiatin. That is, it was found that estapiatin can be usefully used as an anti-inflammatory composition.
실험예 3: 에스타피아틴의 NLRP3 인플라마좀 억제 효과 측정Experimental Example 3: Measurement of NLRP3 inflammasome inhibitory effect of estapiatin
3-1. IL-1β의 방출량 측정3-1. Measurement of IL-1β release
분화된 대식세포를 1x106 셀/ml 농도로 48 웰플레이트에 200μL씩 시딩하였다. 그 후, 37°C, 5% CO2 조건에서 12 시간 동안 안정화하였다. 배양한 세포의 상층액을 제거한 후 무혈청 (Serum free) 배지에 LPS를 100 ng/ml 농도로 180 ul 처리하여 5시간 동안 프라이밍하였다. 그 다음, 에스타피아틴을 10, 20 또는 40μM 농도로 희석하여 20 ul씩 첨가하였다(1, 2 또는 4 μM 농도로 작용). 1 시간 후, ATP (10 mM 농도로 20 ul 첨가 후 30분 배양), 나이제리신 (Nigericin, 25μM 농도로 20ul 첨가 후 30분 배양), MSU (2 mg/ml 농도로 20ul 첨가 후 4시간 배양)를 각각 처리하였다. 배양한 세포 상층액 샘플을 채취한 후 엘라이자 (ELISA) 기법으로 염증성 사이토카인의 양을 측정하여 도 7a 내지 7c 및 표 5 내지 표 7에 나타내었다.Differentiated macrophages were seeded in 200 μL at a concentration of 1×10 6 cells/ml in a 48-well plate. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, 180 ul of LPS was treated in a serum-free medium at a concentration of 100 ng/ml and primed for 5 hours. Then, estapiatin was diluted to a concentration of 10, 20 or 40 μM and added in 20 ul portions (working at a concentration of 1, 2 or 4 μM). After 1 hour, ATP (20 ul at a concentration of 10 mM and incubated for 30 minutes), Nigericin (Nigericin, 20 ul at a concentration of 25 μM and cultured for 30 minutes), MSU (20 ul at a concentration of 2 mg/ml and then cultured for 4 hours) ) were treated respectively. After collecting cultured cell supernatant samples, the amount of inflammatory cytokines was measured by ELISA technique and shown in FIGS. 7a to 7c and Tables 5 to 7.
ATP에 의한 IL-1β 방출량IL-1β release by ATP
LPS (ng/ml)LPS (ng/ml) -- 100100 100100 100100 100100 100100
ATP (mM)ATP (mM) -- -- 1One 1One 1One 1One
에스타피아틴 (μM)Estapiatin (μM) -- -- -- 1 One 22 44
IL-1β (pg/ml)IL-1β (pg/ml) 00 00 33283328 13941394 307307 00
Nigericin에 의한 IL-1β 방출량Nigericin-induced IL-1β release
LPS (ng/ml)LPS (ng/ml) -- 100100 100100 100100 100100 100100
나이제리신 (μM)Nigericin (μM) -- -- 2.52.5 2.52.5 2.52.5 2.52.5
에스타피아틴 (μM)Estapiatin (μM) -- -- -- 1 One 22 44
IL-1β (pg/ml)IL-1β (pg/ml) 00 00 81538153 47584758 29282928 888.5888.5
MSU에 의한 IL-1β 방출량IL-1β release by MSU
LPS (ng/ml)LPS (ng/ml) -- 100100 100100 100100 100100 100100
MSU (μg/ml)MSU (μg/ml) -- -- 200200 200200 200200 200200
에스타피아틴 (μM)Estapiatin (μM) -- -- -- 1 One 22 44
IL-1β (pg/ml)IL-1β (pg/ml) 00 00 79067906 59485948 13971397 00
도 7a 내지 7c 및 표 5 내지 표 7에서 확인할 수 있듯이, 에스타피아틴은 ATP, 나이제리신, MSU에 의해 증가된 카스파제 1 (caspase1)의 분열 (cleavage) 및 IL-1β 성숙 (maturation)을 농도 의존적으로 억제함을 확인할 수 있었다. 특히 에스타피아틴을 4μM 처리하는 경우 카스파제 1의 분열 및 IL-1β 성숙을 효과적으로 억제하는 것을 알 수 있었다. As can be seen in Figures 7a to 7c and Tables 5 to 7, estapiatin inhibits cleavage and IL-1β maturation of caspase 1 increased by ATP, nigericin, and MSU. It was confirmed that the inhibition was concentration-dependent. In particular, it was found that 4 μM of estapiatin effectively inhibited caspase 1 cleavage and IL-1β maturation.
3-2. 카스파제 1, IL-1β 및 β-actin 단백질 생성량을 측정3-2. Measurement of caspase 1, IL-1β and β-actin protein production
분화된 대식세포를 1x106 셀/ml 농도로 12 웰플레이트에 1 ml씩 시딩하였다. 그 후, 37°C, 5% CO2 조건에서 12 시간 동안 안정화하였다. 배양한 세포의 상층액을 제거한 후 무혈청 배지에 LPS를 100 ng/ml 농도로 450ul 처리하여 5시간 동안 프라이밍하였다. 에스타피아틴을 10, 20 또는 40 μM 농도로 희석하여 50 ul씩 첨가하였다 (1. 2 또는 4μM 농도로 작용). 1 시간 후, ATP (10 mM 농도로 50 ul 첨가 후 30분 배양), 나이제리신 (25μM 농도로 50ul 첨가 후 30분 배양), MSU (2 mg/ml 농도로 50ul 첨가 후 4시간 배양)를 각각 처리하였다. 부착된 세포와 배양액을 함께 트리톤 X-100 세포 용해 버퍼로 균질화 하였다. 각각의 시료에서 단백질을 추출한 후 웨스턴 블롯 (western blot)으로 카스파제 1, IL-1β 및 β-actin 단백질 생성량을 측정하여 도 8a 내지 8c에 나타내었다.Differentiated macrophages were seeded at 1 ml each in a 12-well plate at a concentration of 1x10 6 cells/ml. Then, it was stabilized for 12 hours at 37°C and 5% CO 2 conditions. After removing the supernatant of the cultured cells, 450 ul of LPS was treated in a serum-free medium at a concentration of 100 ng/ml and primed for 5 hours. Estapiatin was diluted to a concentration of 10, 20 or 40 µM and added in 50 ul each (1. 2 or 4 µM concentration). After 1 hour, ATP (50 ul at a concentration of 10 mM and incubated for 30 minutes), Nigericin (50 ul at a concentration of 25 μM and then cultured for 30 minutes), MSU (50 ul at a concentration of 2 mg / ml and then cultured for 4 hours) each was treated. The adherent cells and culture medium were homogenized together with Triton X-100 cell lysis buffer. After protein was extracted from each sample, the amounts of caspase 1, IL-1β, and β-actin protein produced were measured by western blotting, and are shown in FIGS. 8a to 8c.
도 8a 내지 8c에서 확인할 수 있듯이, 에스타피아틴이 ATP, 나이제리신, MSU에 의해 증가된 카스파제 1 의 분열 및 IL-1β 성숙을 농도 의존적으로 억제하였다. As can be seen in Figures 8a to 8c, estapiatin inhibited the cleavage of caspase 1 and IL-1β maturation increased by ATP, nigericin, and MSU in a concentration-dependent manner.
실험예 4: 에스타피아틴의 항염증 효능 검증Experimental Example 4: Verification of anti-inflammatory efficacy of estapiatin
4-1. 염증성 사이토카인 생성 억제효과 측정 4-1. Measurement of inhibitory effect on inflammatory cytokine production
LPS (2.5 mg/kg) 200μl를 8주령의 암컷 C57BL/6 마우스의 복강에 투여하여 패혈성 쇼크 (septic shock)를 유도하였다. 그 직후, 1.25 또는 2.5 mg/kg의 에스타피아틴 200ul를 각각 복강에 투여하였다. 대조군에는 동일한 용량의 식염을 복강에 투여하였다. 투여 4시간 후 안와정맥총에서 혈액을 채취하였다. 안락사 후 1 ml의 PBS를 복강 내로 투여하한 후, 복강 내 삼출액을 채취하였다. 복강 내 삼출액과 응고된 혈액을 15000 RPM에서 10분간 원심분리하여 상층액만을 분리하였다. 엘라이자 (ELISA)로 각 시료의 염증성 사이토카인 양을 측정하여 도 9a 내지 10e 및 표 8 내지 표 9에 나타냈다.200 μl of LPS (2.5 mg/kg) was intraperitoneally administered to 8-week-old female C57BL/6 mice to induce septic shock. Immediately thereafter, 200 ul of 1.25 or 2.5 mg/kg of estapiatin was administered intraperitoneally. In the control group, the same dose of saline was administered intraperitoneally. Blood was collected from the orbital venous plexus 4 hours after administration. After euthanasia, 1 ml of PBS was intraperitoneally administered, and intraperitoneal exudate was collected. The intraperitoneal exudate and coagulated blood were centrifuged at 15000 RPM for 10 minutes to separate only the supernatant. The amount of inflammatory cytokines in each sample was measured by ELISA and shown in FIGS. 9a to 10e and Tables 8 to 9.
혈청 (Serum) 내 염증성 사이토카인Inflammatory cytokines in serum
LPS (mg/kg)LPS (mg/kg) -- 2.52.5 2.52.5 2.52.5
에스타피아틴 (mg/kg)Estapiatin (mg/kg) -- -- 1.251.25 2.52.5
IL-6 (pg/ml)IL-6 (pg/ml) 00 8866388663 6731067310 4724547245
TNF-α (pg/ml)TNF-α (pg/ml) 00 742.8742.8 589.8589.8 204.7204.7
IL-1β (pg/ml)IL-1β (pg/ml) 459.5459.5 772.1772.1 609.4609.4 543.6543.6
CXCL1 (pg/ml)CXCL1 (pg/ml) 00 9714397143 6424464244 3847238472
CXCL2 (pg/ml)CXCL2 (pg/ml) 232.4232.4 2414624146 2370823708 1180511805
복강액 (Peritoneal fluid) 내 염증성 사이토카인Inflammatory cytokines in peritoneal fluid
LPS (mg/kg)LPS (mg/kg) -- 2.52.5 2.52.5 2.52.5
에스타피아틴 (mg/kg)Estapiatin (mg/kg) -- -- 1.251.25 2.52.5
IL-6 (pg/ml)IL-6 (pg/ml) 00 2984829848 65216521 65276527
TNF-α (pg/ml)TNF-α (pg/ml) 00 00 00 00
IL-1β (pg/ml)IL-1β (pg/ml) 00 91.7291.72 2.8082.808 36.136.1
CXCL1 (pg/ml)CXCL1 (pg/ml) 00 7430374303 7068570685 5183551835
CXCL2 (pg/ml)CXCL2 (pg/ml) 10.8410.84 31623162 28042804 14081408
도 9a 내지 10e 및 표 8 내지 표 9에서 확인할 수 있듯이, 에스타피아틴을 투여한 마우스에서는 LPS에 의한 염증성 사이토 카인의 생성이 농도의존적으로 억제됨을 확인하였다. 즉, 에스타피아틴이 항염증용 조성물로 유용하게 사용할 수 있음을 알 수 있었다.As can be seen in Figures 9a to 10e and Tables 8 to 9, it was confirmed that the production of inflammatory cytokines by LPS was inhibited in a concentration-dependent manner in mice administered with estapiatin. That is, it was found that estapiatin can be usefully used as an anti-inflammatory composition.
4-2. 치사율 (Lethality) 개선효과 측정4-2. Measurement of lethality improvement effect
LPS (25 mg/kg) 200μl를 8주령의 암컷 C57BL/6 마우스의 복강에 투여하여 패혈성 쇼크를 유도하였다. 그 직후, 1.25 또는, 2.5 mg/kg의 에스타피아틴 200ul를 각각 복강에 투여하였다. 대조군에는 동일한 용량의 식염을 복강에 투여하였다. 그리고 4시간마다 마우스의 생존률을 확인하여 도 11에 나타냈다. 200 μl of LPS (25 mg/kg) was intraperitoneally administered to 8-week-old female C57BL/6 mice to induce septic shock. Immediately thereafter, 200 ul of estapiatin at 1.25 or 2.5 mg/kg was administered intraperitoneally. In the control group, the same dose of saline was administered intraperitoneally. Then, the survival rate of mice was checked every 4 hours and shown in FIG. 11 .
도 11에서 확인할 수 있듯이, 에스타피아틴을 투여한 마우스에서는 LPS에 의한 치사율이 농도의존적으로 개선됨을 확인하였다. 즉, 에스타피아틴이 항염증용 조성물로 유용하게 사용할 수 있음을 알 수 있었다.As can be seen in Figure 11, it was confirmed that mortality by LPS was improved in a concentration-dependent manner in mice administered with estapiatin. That is, it was found that estapiatin can be usefully used as an anti-inflammatory composition.
본 발명은 염증성 질환 개선, 예방 또는 치료용 조성물에 관한 것으로, 구체적으로는, 에스타피아틴 (estafiatin)을 유효성분으로 포함하는 염증성 질환 개선, 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for improving, preventing or treating inflammatory diseases, and specifically, to a composition for improving, preventing or treating inflammatory diseases comprising estafiatin as an active ingredient.

Claims (18)

  1. 하기 구조식 I로 표시되는 에스타피아틴을 유효성분으로 포함하는 염증성 질환 예방 또는 치료용 약제학적 조성물:A pharmaceutical composition for preventing or treating inflammatory diseases comprising estapiatin represented by the following structural formula I as an active ingredient:
    [구조식 I][Structural formula I]
    Figure PCTKR2022013419-appb-img-000002
    .
    Figure PCTKR2022013419-appb-img-000002
    .
  2. 제1항에 있어서, 상기 염증성 질환은 감염성 염증질환, 자가면역질환, 염증성 장질환 및 통풍으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 치료용 약제학적 조성물.According to claim 1, wherein the inflammatory disease is an infectious inflammatory disease, an autoimmune disease, inflammatory bowel disease and at least one member selected from the group consisting of gout, inflammatory disease prevention or treatment for the pharmaceutical composition.
  3. 제2항에 있어서, 상기 감염성 염증질환은 폐렴, 위염, 뇌수막염, 치주염, 간염, 패혈증, 기관지염, 중이염, 부비동염, 인후염 및 골수염으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 치료용 약제학적 조성물.The method of claim 2, wherein the infectious inflammatory disease is at least one selected from the group consisting of pneumonia, gastritis, meningitis, periodontitis, hepatitis, sepsis, bronchitis, otitis media, sinusitis, sore throat and osteomyelitis, an agent for preventing or treating inflammatory diseases academic composition.
  4. 제2항에 있어서, 상기 자가면역질환은 류마티스 관절염, 전신 홍반성 루푸스, 쇼그렌 증후군, 전신 경화증, 혈관염, 피부근염 및 다발근염으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 치료용 약제학적 조성물.The agent for preventing or treating inflammatory diseases according to claim 2, wherein the autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, systemic sclerosis, vasculitis, dermatomyositis, and polymyositis. academic composition.
  5. 제2항에 있어서, 상기 염증성 장질환은 궤양성 대장염, 궤양성 십이지장염, 크론병, 장염 및 허혈성 대장염으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 치료용 약제학적 조성물.The pharmaceutical composition for preventing or treating inflammatory diseases according to claim 2, wherein the inflammatory bowel disease is at least one selected from the group consisting of ulcerative colitis, ulcerative duodenitis, Crohn's disease, enteritis and ischemic colitis.
  6. 제1항에 있어서, 상기 에스타피아틴은 비쑥 (Artemisia scoparia) 추출물 유래인 것인, 염증성 질환 예방 또는 치료용 약제학적 조성물.According to claim 1, wherein the estafiatin is wormwood ( Artemisia scoparia ) Of the extract derived from, inflammatory disease prevention or treatment for the pharmaceutical composition.
  7. 제6항에 있어서, 상기 비쑥 추출물은 물, 메탄올, 에탄올 또는 이들의 조합으로 이루어진 용매로 추출한 조추출물인 것인, 염증성 질환 예방 또는 치료용 약제학적 조성물.[Claim 7] The pharmaceutical composition for preventing or treating inflammatory diseases according to claim 6, wherein the extract of artemisia is a crude extract extracted with a solvent consisting of water, methanol, ethanol or a combination thereof.
  8. 제7항에 있어서, 상기 비쑥 추출물은 상기 조추출물을 노멀헥산, 클로로포름, 에틸아세테이트 및 수포화부탄올로 이루어진 군에서 선택된 1종 이상의 용매로 분획한 것인, 염증성 질환 예방 또는 치료용 약제학적 조성물.According to claim 7, wherein the artemisia extract is obtained by fractionating the crude extract with one or more solvents selected from the group consisting of normal hexane, chloroform, ethyl acetate and saturated butanol, inflammatory disease prevention or treatment pharmaceutical composition.
  9. 제6항에 있어서, 상기 비쑥은 비쑥의 잎, 줄기, 열매, 뿌리 및 꽃으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 치료용 약제학적 조성물.According to claim 6, wherein the Artemisia is at least one selected from the group consisting of leaves, stems, fruits, roots and flowers of Artemisia, a pharmaceutical composition for preventing or treating inflammatory diseases.
  10. 하기 구조식 I로 표시되는 에스타피아틴을 유효성분으로 포함하는 염증성 질환 예방 또는 개선용 식품 조성물:A food composition for preventing or improving inflammatory diseases comprising estapiatin represented by the following structural formula I as an active ingredient:
    [구조식 I][Structural Formula I]
    Figure PCTKR2022013419-appb-img-000003
    .
    Figure PCTKR2022013419-appb-img-000003
    .
  11. 제10항에 있어서, 상기 염증성 질환은 감염성 염증질환, 자가면역질환, 염증성 장질환 및 통풍으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 개선용 식품 조성물.11. The method of claim 10, wherein the inflammatory disease is an infectious inflammatory disease, an autoimmune disease, inflammatory bowel disease, and at least one selected from the group consisting of gout, inflammatory disease prevention or improvement food composition.
  12. 제11항에 있어서, 상기 감염성 염증질환은 폐렴, 위염, 뇌수막염, 치주염, 간염, 패혈증, 기관지염, 중이염, 부비동염, 인후염 및 골수염으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 개선용 식품 조성물.The food for preventing or improving inflammatory diseases according to claim 11, wherein the infectious inflammatory disease is at least one selected from the group consisting of pneumonia, gastritis, meningitis, periodontitis, hepatitis, sepsis, bronchitis, otitis media, sinusitis, sore throat and osteomyelitis. composition.
  13. 제11항에 있어서, 상기 자가면역질환은 류마티스 관절염, 전신 홍반성 루푸스, 쇼그렌 증후군, 전신 경화증, 혈관염, 피부근염 및 다발근염으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 개선용 식품 조성물.The food for preventing or improving inflammatory diseases according to claim 11, wherein the autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, systemic sclerosis, vasculitis, dermatomyositis, and polymyositis. composition.
  14. 제11항에 있어서, 상기 염증성 장질환은 궤양성 대장염, 궤양성 십이지장염, 크론병, 장염 및 허혈성 대장염으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 개선용 식품 조성물.The food composition for preventing or improving inflammatory diseases according to claim 11, wherein the inflammatory bowel disease is at least one selected from the group consisting of ulcerative colitis, ulcerative duodenitis, Crohn's disease, enteritis and ischemic colitis.
  15. 제10항에 있어서, 상기 에스타피아틴은 비쑥 (Artemisia scoparia) 추출물 유래인 것인, 염증성 질환 예방 또는 개선용 식품 조성물.[Claim 11] The method of claim 10, wherein the estafiatin is wormwood ( Artemisia scoparia ) Of the extract derived from, inflammatory disease prevention or improvement food composition.
  16. 제15항에 있어서, 상기 비쑥 추출물은 물, 메탄올, 에탄올 또는 이들의 조합으로 이루어진 용매로 추출한 조추출물인 것인, 염증성 질환 예방 또는 개선용 식품 조성물.[Claim 16] The food composition for preventing or improving inflammatory diseases according to claim 15, wherein the extract of artemisia is a crude extract extracted with a solvent consisting of water, methanol, ethanol or a combination thereof.
  17. 제16항에 있어서, 상기 비쑥 추출물은 상기 조추출물을 노멀헥산, 클로로포름, 에틸아세테이트 및 수포화부탄올로 이루어진 군에서 선택된 1종 이상의 용매로 분획한 것인, 염증성 질환 예방 또는 개선용 식품 조성물.17. The method of claim 16, wherein the artemisia extract is obtained by fractionating the crude extract with one or more solvents selected from the group consisting of normal hexane, chloroform, ethyl acetate and saturated butanol, inflammatory disease preventing or improving food composition.
  18. 제15항에 있어서, 상기 비쑥은 비쑥의 잎, 줄기, 열매, 뿌리 및 꽃으로 이루어진 군에서 선택된 1종 이상인 것인, 염증성 질환 예방 또는 개선용 식품 조성물.[Claim 16] The food composition for preventing or improving inflammatory diseases according to claim 15, wherein the sagebrush is at least one selected from the group consisting of leaves, stems, fruits, roots and flowers of sagebrush.
PCT/KR2022/013419 2021-12-15 2022-09-07 Composition for alleviating, preventing or treating inflammatory diseases WO2023113151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0179758 2021-12-15
KR1020210179758A KR20230090730A (en) 2021-12-15 2021-12-15 Composition for improving, preventing or treating inflammatory disease

Publications (1)

Publication Number Publication Date
WO2023113151A1 true WO2023113151A1 (en) 2023-06-22

Family

ID=86772887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013419 WO2023113151A1 (en) 2021-12-15 2022-09-07 Composition for alleviating, preventing or treating inflammatory diseases

Country Status (2)

Country Link
KR (1) KR20230090730A (en)
WO (1) WO2023113151A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221927A1 (en) * 2019-05-01 2020-11-05 Immutep S.A.S. Anti-lag-3 binding molecules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221927A1 (en) * 2019-05-01 2020-11-05 Immutep S.A.S. Anti-lag-3 binding molecules

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
086415128 SALAZAR-GÓMEZ ANUAR; ONTIVEROS-RODRÍGUEZ JULIO C; PABLO-PÉREZ SAUDY S; VARGAS-DÍAZ M ELENA; GARDUÑO-SICILIANO LETICIA: "The potential role of sesquiterpene lactones isolated from medicinal plants in the treatment of the metabolic syndrome – A review", SOUTH AFRICAN JOURNAL OF BOTANY - SUID-AFRIKAANS TYDSKRIFT VIRPLANTKUNDE, FOUNDATION FOR EDUCATION, SCIENCE AND TECHNOLOGY, PRETORIA,, SA, vol. 135, 16 September 2020 (2020-09-16), SA , pages 240 - 251, XP086415128, ISSN: 0254-6299, DOI: 10.1016/j.sajb.2020.08.020 *
ADEKENOV S.M.: "Study of antiopisthorchiasis activity of sesquiterpene lactones and their derivatives", FITOTERAPIA, IDB HOLDING, MILAN., IT, vol. 133, 1 January 1900 (1900-01-01), IT , pages 200 - 211, XP085611067, ISSN: 0367-326X, DOI: 10.1016/j.fitote.2018.12.017 *
KONOVALOV D. A., V. A. CHELOMBIT'KO : "Sesquiterpene lactones from Achillea millefolium", CHEMISTRY OF NATURAL COMPOUNDS, vol. 27, 1 September 1991 (1991-09-01), pages 640 - 641, XP093070980 *
SCHEPETKIN IGOR A.; KIRPOTINA LILIYA N.; MITCHELL PETE T.; KISHKENTAEVA АNARKUL S.; SHAIMERDENOVA ZHANAR R.; ATAZHANOVA GAYA: "The natural sesquiterpene lactones arglabin, grosheimin, agracin, parthenolide, and estafiatin inhibit T cell receptor (TCR) activation", PHYTOCHEMISTRY, ELSEVIER, AMSTERDAM , NL, vol. 146, 1 January 1900 (1900-01-01), Amsterdam , NL , pages 36 - 46, XP085322098, ISSN: 0031-9422, DOI: 10.1016/j.phytochem.2017.11.010 *

Also Published As

Publication number Publication date
KR20230090730A (en) 2023-06-22

Similar Documents

Publication Publication Date Title
WO2012074183A1 (en) Pharmaceutical composition for preventing or treating inflammatory diseases comprising trachelospermi caulis extract and paeonia suffruticosa andrews extract, and method for preparing the same
WO2020246777A1 (en) Method for preparing iridoid-rich noni fruit extract or fraction thereof, method for preparing immune-enhancing active material-rich noni fruit extract or fraction thereof and use of noni fruit extract or fraction thereof
WO2015002391A1 (en) Composition having a function for alleviating premenstrual syndrome and menstrual pain
WO2013058484A2 (en) Ingenane-type diterpene compound, and pharmaceutical composition for treating or preventing viral infectious diseases containing same
WO2017179931A1 (en) Pharmaceutical composition for preventing or treating respiratory disease comprising extract of justicia procumbens l.
WO2018088862A1 (en) Pharmaceutical composition for preventing or treating neurodegenerative diseases which includes flower extract of daphne genkwa or fractions thereof as active ingredient
WO2016153211A2 (en) Method for preparing citrus peel extract and composition for preventing, alleviating, or treating liver damage
WO2019168388A1 (en) Composition for preventing, alleviating, or treating cachexia and muscle loss
WO2016010340A1 (en) Composition for preventing and treating inflammation or allergic diseases, containing gynura procumbens extract as active ingredient, and use thereof
WO2016186349A2 (en) Composition, containing quisaqualis indica extract, for preventing or treating prostatic hyperplasia
WO2021080297A1 (en) Composition containing evening primrose flower extract as active ingredient for preventing or treating obesity or metabolic syndromes induced thereby
WO2023113151A1 (en) Composition for alleviating, preventing or treating inflammatory diseases
WO2014098306A1 (en) Pharmaceutical composition for preventing or treating dementia
WO2022173116A1 (en) Composition for alleviating, preventing or treating bone diseases
WO2013012117A1 (en) Pharmaceutical compositions for preventing or treating inflammatory diseases, comprising phytosterol compound
WO2019209061A1 (en) Bone growth-promoting composition comprising allium fistulosum linn as active ingredient
WO2019225783A1 (en) Composition comprising inotodiol compound as effective ingredient for prevention or treatment of allergy disease
WO2021150077A1 (en) Pharmaceutical composition or health functional food for prevention or treatment of non-alcoholic fatty liver disease
WO2019098461A1 (en) Composition for preventing or treating inflammatory diseases, containing marine fungus penicillium sp. sf-5859-derived curvularin-type metabolites
WO2021040416A1 (en) Pharmaceutical composition, for preventing or treating bone loss induced by metabolic bone diseases, comprising artemisia scoparia extract as active ingredient
WO2009151236A2 (en) The composition comprising extracts or fractions of magnolia obovata thunb for treating and preventing inflammation disease
WO2017030419A1 (en) Composition including euphorbia supina raf. extract or fraction as active ingredient for preventing or treating obesity
WO2015105373A1 (en) Composition for prevention or treatment of asthma, comprising e uonymus alatus extract or fraction thereof
WO2021261660A1 (en) Method for preparing sesame oil meal extract and food composition comprising same as active ingredient for preventing or alleviating colitis
WO2021033995A1 (en) Composition comprising amomum tsaoko extract for prevention, alleviation, or treatment of sarcopenia-related disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907622

Country of ref document: EP

Kind code of ref document: A1