WO2023075206A1 - Method and apparatus for detecting driving behavior without yaw calculation - Google Patents

Method and apparatus for detecting driving behavior without yaw calculation Download PDF

Info

Publication number
WO2023075206A1
WO2023075206A1 PCT/KR2022/015281 KR2022015281W WO2023075206A1 WO 2023075206 A1 WO2023075206 A1 WO 2023075206A1 KR 2022015281 W KR2022015281 W KR 2022015281W WO 2023075206 A1 WO2023075206 A1 WO 2023075206A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
acceleration
coordinate system
driving behavior
angular velocity
Prior art date
Application number
PCT/KR2022/015281
Other languages
French (fr)
Korean (ko)
Inventor
민영석
한용희
Original Assignee
캐롯손해보험 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210171257A external-priority patent/KR102544060B1/en
Application filed by 캐롯손해보험 주식회사 filed Critical 캐롯손해보험 주식회사
Publication of WO2023075206A1 publication Critical patent/WO2023075206A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/11Pitch movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces

Definitions

  • the present disclosure relates to methods and apparatus for sensing driving behavior of a vehicle.
  • a device including an acceleration sensor and a gyro sensor is generally installed in a vehicle to estimate the attitude of the device relative to the vehicle.
  • the posture of the device can be expressed as roll, pitch, and yaw.
  • a particularly large amount of calculation is required to calculate the yaw, and it is difficult to calculate an accurate yaw value by external noise such as vehicle vibration. There is a problem with it being difficult.
  • the main object of the present disclosure is to provide a method and apparatus capable of detecting a driving behavior of a vehicle without yaw calculation.
  • the process of estimating the roll angle and pitch angle of the sensor coordinate system with respect to the vehicle coordinate system converting the acceleration and angular velocity on the sensor coordinate system into the acceleration and angular velocity on the target coordinate system using the roll angle and the pitch angle; and detecting the driving behavior of the vehicle using the acceleration and angular velocity on the target coordinate system.
  • the estimation unit for estimating the roll angle and the pitch angle of the sensor coordinate system with respect to the vehicle coordinate system; a conversion unit that converts the acceleration and angular velocity on the sensor coordinate system into acceleration and angular velocity on the target coordinate system using the roll angle and the pitch angle; and a sensing unit configured to detect a driving behavior of the vehicle using acceleration and angular velocity on the target coordinate system.
  • a driving behavior of a vehicle may be detected without calculating a yaw.
  • a yaw whose accuracy is reduced due to external noise such as vehicle vibration, there is an effect that accurate driving behavior detection is possible through a small amount of calculation.
  • FIG. 1 is an exemplary view for explaining a sensor coordinate system and a vehicle coordinate system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic block diagram of an apparatus for detecting driving behavior according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a driving behavior sensing method according to an exemplary embodiment of the present disclosure.
  • first, second, A, B, (a), and (b) may be used in describing the components of the present disclosure. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term.
  • a part 'includes' or 'includes' a certain component it means that it may further include other components without excluding other components unless otherwise stated.
  • the '... Terms such as 'unit' and 'module' refer to a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software.
  • FIG. 1 is an exemplary view for explaining a sensor coordinate system and a vehicle coordinate system according to an embodiment of the present disclosure.
  • the coordinate system used in the present disclosure is divided into a vehicle coordinate system and a sensor coordinate system.
  • the vehicle coordinate system assumes that the vehicle is placed on a plane perpendicular to the direction of gravity (hereafter referred to as the horizontal plane), with the Y V axis pointing in the traveling direction of the vehicle, the X V axis pointing in the vehicle width direction, and the Z V axis pointing in the vehicle height direction. composed of axes.
  • the sensor coordinate system is a coordinate system in which a specific axis coincides with a specific direction of a sensor provided in a vehicle, and is composed of an X S axis, a Y S axis, and a Z S axis that are orthogonal to each other.
  • the relative rotation between the vehicle coordinate system and the sensor coordinate system may be expressed as a roll angle ( ⁇ ), a pitch angle ( ⁇ ), and a yaw angle ( ⁇ ).
  • a conversion matrix for converting an arbitrary point or vector on the sensor coordinate system to a point or vector on the vehicle coordinate system may be defined as in Equation 1.
  • Acceleration and angular velocity measured by a sensor provided in the vehicle may be converted into acceleration and angular velocity on the vehicle coordinate system as shown in Equations 2 and 3.
  • i-axis acceleration on the sensor coordinate system i-axis is the X S axis, Y S axis, or Z S axis
  • i-axis acceleration i-axis is X V axis, Y V axis, or Z V axis
  • i-axis angular velocity on the sensor coordinate system
  • i-axis is the X S axis, Y S axis, or Z S axis
  • i-axis is the X V axis, the Y V axis, or the Z V axis
  • Acceleration and angular velocity on the vehicle coordinate system can be used to sense the driving behavior of the vehicle. For example, acceleration on the Y and V axes in the direction of travel of the vehicle. If has a positive value, it can be determined that the vehicle is accelerating, and if it has a negative value, it can be determined that the vehicle is decelerating. In addition, the angular velocity of the Z V axis in the vertical direction of the vehicle If has a positive value, it can be determined that the vehicle rotates counterclockwise, and if it has a negative value, it can be determined that the vehicle rotates clockwise.
  • a constant acceleration value eg, a value close to the acceleration due to gravity
  • the roll angle and the pitch angle can be estimated as shown in Equations 4 and 5.
  • the yaw angle may be obtained as shown in Equation 6 using the acceleration, pitch angle, and roll angle measured when the vehicle travels at constant speed or accelerates and decelerates straight after stopping.
  • i-axis acceleration on the sensor coordinate system measured at point in time s is the i-axis acceleration on the sensor coordinate system measured at point in time k.
  • the acceleration/deceleration condition may be a condition in which the amount of change in acceleration on the X S -Y S plane of the sensor coordinate system is equal to or greater than a preset critical acceleration
  • the straight ahead condition may be a condition in which an angular velocity is equal to or less than a preset critical angular velocity.
  • ⁇ a ⁇ is a preset critical acceleration.
  • the critical acceleration may be set in consideration of noise and the like.
  • ⁇ ⁇ is a predetermined critical angular velocity.
  • the critical angular velocity may be set in consideration of noise and the like.
  • the present disclosure proposes a method for detecting a driving behavior of a vehicle without using such a yaw angle.
  • FIG. 2 is a schematic block diagram of an apparatus for detecting driving behavior according to an embodiment of the present disclosure.
  • the driving behavior detection apparatus 20 includes a sensor unit 200, an estimation unit 210, a conversion unit 220, an acquisition unit 230, and a determination unit ( 240) and the sensing unit 250 in whole or in part. All blocks shown in FIG. 2 are not essential components, and some blocks included in the driving behavior detection device 20 may be added, changed, or deleted in another embodiment. That is, in the case of FIG. 2 , the driving behavior detecting device 20 according to an embodiment of the present disclosure illustrates a component for detecting a driving behavior of a vehicle by way of example, and the driving behavior detecting device 20 is another It should be recognized that the implementation of functions may have more or less components than those shown or a configuration of different components.
  • the driving behavior detection device 20 may be configured to be mounted on a vehicle.
  • the driving behavior detecting device 20 may be configured in the form of a plug so as to be mounted on a cigar jack, which is a terminal for supplying external power provided in a vehicle.
  • the driving behavior detection device 20 may be configured to be plugged into a USB port provided in a vehicle.
  • the driving behavior detection device 20 may be implemented as a device carried by a vehicle occupant.
  • the driving behavior detecting device 20 may be a mobile device such as a smart phone, a smart watch, and a tablet.
  • the driving behavior detecting device 20 may mount an application for detecting a driving behavior of a vehicle.
  • the sensor unit 200 outputs acceleration and angular velocity for each axis direction of the sensor coordinate system.
  • the sensor unit 200 may include, for example, an inertial measurement unit (IMU) including a 3-axis acceleration sensor and a 3-axis gyro sensor. Since each component included in the sensor unit 200 is a well-known component, a detailed description thereof will be omitted.
  • IMU inertial measurement unit
  • the estimator 210 estimates a pitch angle and a roll angle, which are relative rotation angles of the sensor coordinate system with respect to the vehicle coordinate system, based on the acceleration and angular velocity output by the sensor unit 200 .
  • the estimator 210 may determine whether the vehicle is in a constant speed environment based on the acceleration and angular velocity measured for a predetermined time prior to estimating the roll angle and the pitch angle.
  • the predetermined time is longer than or equal to the minimum time required to determine the constant velocity environment, and may be set in consideration of the measurement period of the sensor unit 200, but is not limited thereto.
  • the estimator 210 determines that, when the difference between the accelerations measured for a certain period of time and the gravitational acceleration is maintained below a preset critical acceleration and the magnitudes of the angular velocities measured for a specific time are maintained below the preset critical angular velocity, the vehicle It can be judged to be in a constant velocity environment.
  • This constant velocity environment determination condition can be expressed as in Equation 9.
  • i-axis acceleration on the sensor coordinate system measured at point in time k is the i-axis angular velocity on the sensor coordinate system measured at point k
  • g is the magnitude of the gravitational acceleration
  • ⁇ a steady is the critical acceleration
  • is the critical angular velocity
  • N steady is the minimum time required to determine the constant velocity environment.
  • the estimator 210 determines whether the acceleration and angular velocity output by the sensor unit 200 for a predetermined time satisfy a constant speed condition, a measurement start point (k start ) and a measurement end time point. It is possible to determine whether the acceleration and angular velocity of (k end ) each satisfy the constant velocity condition, but is not limited to this example.
  • the estimator 210 determines whether all accelerations and angular velocities output by the sensor unit 200 for a predetermined period of time satisfy a constant speed condition, or whether the sensor unit 200 for a predetermined period of time It is possible to determine whether the average of the accelerations and the averages of the angular velocities outputted by each satisfies the constant speed condition.
  • the estimator 210 obtains the roll angle and the pitch angle from the acceleration on the sensor coordinate system using Equations 4 and 5.
  • the estimator 210 may estimate the roll angle and the pitch angle using one of the accelerations used to determine whether the vehicle is in a constant velocity environment or an average of corresponding accelerations, but is not limited thereto.
  • the estimator 210 may estimate the roll angle and the pitch angle using acceleration measured after it is determined that the vehicle is in a constant velocity environment.
  • the conversion unit 220 calculates a transformation matrix using the pitch angle and roll angle, and converts the coordinate system of the acceleration and angular velocity output from the sensor unit 200 (S310).
  • the conversion unit 220 converts acceleration and angular velocity on the sensor coordinate system into acceleration and angular velocity on a third coordinate system (hereinafter, an object coordinate system) other than the vehicle coordinate system.
  • the target coordinate system may have an X axis and a Y axis that are offset by a predetermined angle from the X V axis and the Y V axis of the vehicle coordinate system, and a Z axis parallel to the Z V axis of the vehicle coordinate system.
  • each axis of the target coordinate system may be expressed as an X V" axis, a Y V" axis, and a Z V" axis.
  • Equation 10 a conversion matrix for converting an arbitrary point on the sensor coordinate system to an arbitrary point on the target coordinate system can be calculated as shown in Equation 10.
  • the conversion unit 220 may convert the acceleration and angular velocity expressed on the sensor coordinate system into the target coordinate system using a conversion matrix as shown in Equations 11 and 12.
  • i-axis acceleration is the X V" axis, the Y V" axis, or the Z V" axis on the target coordinate system.
  • i-axis angular velocity (i-axis is the X V" axis, the Y V" axis, or the Z V" axis) on the target coordinate system.
  • Acquisition unit 230 acquires information related to the speed of the vehicle.
  • Information related to the speed of the vehicle may be any one of location, speed, and acceleration, but is not limited thereto.
  • the acquisition unit 230 may calculate the speed of the vehicle by obtaining a global positioning system (GPS) value as information related to the speed of the vehicle.
  • the acquisition unit 230 may include a GPS receiver.
  • the acquisition unit 230 may acquire the absolute speed of the vehicle from the vehicle's OBD (On Board Diagnostics) as information related to the vehicle's speed.
  • the acquisition unit 230 may include a communication unit for communicating with the OBD of the vehicle.
  • the acquisition unit 230 may calculate the speed of the vehicle by tracking sensor values output by the sensor unit 200 with a steady state of the vehicle as a starting point.
  • the determination unit 240 determines a reference axis and a reference sign based on the change in acceleration and speed of the vehicle on the target coordinate system.
  • the determination unit 240 determines a reference axis and a reference sign for detecting rotation of the vehicle among two axes orthogonal to the vertical direction of the vehicle in the target coordinate system, that is, the X V" axis and the Y V" axis.
  • the magnitude of the component orthogonal to the vertical direction of the vehicle in the acceleration on the target coordinate system that is, corresponds to the magnitude of straight-line acceleration of the vehicle.
  • the determination unit 240 determines two axes orthogonal to the vertical direction of the vehicle in the target coordinate system, and an axis having a larger magnitude of acceleration as a reference axis. for example, go If larger, the X V" axis can be determined as the reference axis.
  • the determination unit 240 detects an increase in the speed of the vehicle based on information related to the speed of the vehicle.
  • the determination unit 240 determines the acceleration with respect to the reference axis on the target coordinate system at the time when the speed of the vehicle increases as the reference sign. For example, assuming that the reference axis is the X V" axis, at the point when the speed of the vehicle increases When has a negative value, the determination unit 240 may determine the reference code as a negative sign (-).
  • the sensor 250 detects the driving behavior of the vehicle using acceleration and angular velocity on the target coordinate system.
  • the sensing unit 250 may detect acceleration and deceleration of the vehicle based on an acceleration along one of two axes orthogonal to the vertical direction of the vehicle in the target coordinate system.
  • the sensor 250 may detect acceleration and deceleration of the vehicle based on the acceleration with respect to the reference axis of the target coordinate system.
  • the sensor 250 may detect acceleration and deceleration of the vehicle by comparing the sign of the acceleration on the reference axis of the target coordinate system with the reference sign.
  • the sensor 250 determines that the vehicle is accelerating when the reference sign and the sign of acceleration on the reference axis are the same, and determines that the vehicle is decelerating when the reference sign and the sign of acceleration on the reference axis are different. can do. For example, assuming that the reference axis is the X V" axis and the reference sign is a negative sign (-), the X V" axis acceleration If has a negative value, it can be determined that the vehicle is accelerating, and if it has a positive value, it can be determined that the vehicle is decelerating.
  • the sensor 250 may include an angular velocity with respect to an axis corresponding to a vertical direction of the vehicle in the target coordinate system, that is, the Z V" axis. Based on the rotation of the vehicle can be detected.
  • the senor 250 may determine the angular velocity with respect to an axis corresponding to the vertical direction of the vehicle in the target coordinate system. If has a positive value, it can be determined that the vehicle rotates counterclockwise, and if it has a negative value, it can be determined that the vehicle rotates clockwise.
  • FIG. 3 is a flowchart illustrating a driving behavior sensing method according to an exemplary embodiment of the present disclosure.
  • the driving behavior detecting apparatus 20 estimates the pitch angle and roll angle of the sensor coordinate system with respect to the vehicle coordinate system (S300). According to embodiments, the driving behavior detecting device 20 determines whether the vehicle is driving at constant speed or is stopped, and based on the acceleration measured during constant speed driving or stopping of the vehicle, the sensor coordinate system with respect to the vehicle coordinate system. Pitch angle and roll angle can be estimated.
  • the driving behavior detecting apparatus 20 converts acceleration and angular velocity on the sensor coordinate system into acceleration and angular velocity on the target coordinate system using the estimated roll angle and pitch angle (S310).
  • the driving behavior detecting apparatus 20 may calculate a transformation matrix for converting the acceleration and angular velocity on the sensor coordinate system into the acceleration and angular velocity on the target coordinate system using the pitch angle and the roll angle.
  • the driving behavior detecting apparatus 20 determines a reference axis and a reference sign for detecting rotation of the vehicle (S320).
  • the driving behavior detecting apparatus 20 may determine a reference axis among two axes orthogonal to the vertical direction of the vehicle in the target coordinate system. Specifically, the driving behavior detecting apparatus 20 may determine, as a reference axis, an axis having a greater magnitude of acceleration among two axes orthogonal to the vertical direction of the vehicle in the target coordinate system.
  • the driving behavior detecting apparatus 20 may detect an increase in vehicle speed and determine a sign of acceleration on a reference axis at a time when the vehicle speed increases as a reference sign.
  • the driving behavior detecting apparatus detects acceleration and deceleration of the vehicle using the acceleration with respect to the reference axis (S330). For example, the driving behavior detecting apparatus 20 may determine that the vehicle is accelerating if the sign of the acceleration on the reference axis and the predetermined reference sign are the same at any point in time, and determine that the vehicle is decelerating if they are different.
  • the driving behavior detecting device detects rotation of the vehicle using the angular velocity in the vertical direction of the vehicle (S340). For example, the driving behavior detecting apparatus 20 determines that the vehicle rotates counterclockwise if the angular velocity of an axis corresponding to the vertical direction of the vehicle in the target coordinate system has a positive value, and if it has a negative value, the vehicle rotates clockwise. It can be judged by rotating in the direction.
  • the method for detecting driving behavior uses a simple conversion matrix considering only roll angle and pitch angle, the amount of computation can be reduced compared to the conventional method for detecting driving behavior.
  • the method for detecting driving behavior since there is no need to detect whether the vehicle is driving at constant speed or traveling with straight acceleration after stopping, a stateless type of implementation is possible.
  • a programmable system includes at least one programmable processor (which may be a special purpose processor) coupled to receive data and instructions from and transmit data and instructions to a storage system, at least one input device, and at least one output device. or may be a general-purpose processor).
  • Computer programs also known as programs, software, software applications or code
  • a computer-readable recording medium includes all kinds of recording devices that store data that can be read by a computer system. These computer-readable recording media include non-volatile or non-transitory media such as ROM, CD-ROM, magnetic tape, floppy disk, memory card, hard disk, magneto-optical disk, and storage device. It may be a medium, and may further include a transitory medium such as a data transmission medium. In addition, the computer-readable recording medium may be distributed to computer systems connected through a network, and computer-readable codes may be stored and executed in a distributed manner.
  • a programmable computer includes a programmable processor, a data storage system (including volatile memory, non-volatile memory, or other types of storage systems, or combinations thereof) and at least one communication interface.
  • a programmable computer may be one of a server, network device, set top box, embedded device, computer expansion module, personal computer, laptop, personal data assistant (PDA), cloud computing system, or mobile device.
  • PDA personal data assistant

Abstract

A method and an apparatus for detecting driving behavior without yaw calculation are disclosed. According to one aspect of the present disclosure, provided is a method for detecting driving behavior, comprising the steps of: estimating the roll angle and the pitch angle of a sensor coordinate system with respect to a vehicle coordinate system; converting acceleration and angular velocity on the sensor coordinate system into acceleration and angular velocity on a target coordinate system by using the roll angle and the pitch angle; and detecting the driving behavior of a vehicle by using the acceleration and the angular velocity on the target coordinate system.

Description

요 계산 없이 운전 행동을 감지하는 방법 및 장치Method and apparatus for detecting driving behavior without yaw calculation
본 개시는 차량의 운전 행동을 감지하는 방법 및 장치에 관한 것이다.The present disclosure relates to methods and apparatus for sensing driving behavior of a vehicle.
이 부분에 기술된 내용은 단순히 본 발명에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The information described in this section simply provides background information on the present invention and does not constitute prior art.
차량의 운전 행동(예컨대, 가속, 감속 및 회전 방향 등)을 감지하기 위해서, 일반적으로 가속도 센서 및 자이로 센서를 포함하는 디바이스를 차량에 설치하여 차량 대비 디바이스의 자세(attitude)를 추정하고 있다. In order to detect vehicle driving behavior (eg, acceleration, deceleration, rotation direction, etc.), a device including an acceleration sensor and a gyro sensor is generally installed in a vehicle to estimate the attitude of the device relative to the vehicle.
디바이스의 자세는 롤(roll), 피치(pitch) 및 요(yaw)로 표현될 수 있는데, 이 중에서 요를 산출하는데 특히 많은 계산량이 요구되며 차량의 진동 등 외부 노이즈에 의해 정확한 요 값을 산출하는 것이 어렵다는 문제가 있다. The posture of the device can be expressed as roll, pitch, and yaw. Among them, a particularly large amount of calculation is required to calculate the yaw, and it is difficult to calculate an accurate yaw value by external noise such as vehicle vibration. There is a problem with it being difficult.
본 개시는, 요 계산 없이도 차량의 운전 행동을 감지할 수 있는 방법 및 장치를 제공하는 데 주된 목적이 있다.The main object of the present disclosure is to provide a method and apparatus capable of detecting a driving behavior of a vehicle without yaw calculation.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본 개시의 일 측면에 의하면, 차량 좌표계에 대한 센서 좌표계의 롤 각 및 피치 각을 추정하는 과정; 상기 롤 각 및 상기 피치 각을 이용하여, 상기 센서 좌표계 상의 가속도 및 각속도를 대상 좌표계 상의 가속도 및 각속도로 변환하는 과정; 및 상기 대상 좌표계 상의 가속도 및 각속도를 이용하여 차량의 운전 행동을 감지하는 과정을 포함하는 것을 특징으로 하는 운전 행동 감지 방법을 제공한다.According to one aspect of the present disclosure, the process of estimating the roll angle and pitch angle of the sensor coordinate system with respect to the vehicle coordinate system; converting the acceleration and angular velocity on the sensor coordinate system into the acceleration and angular velocity on the target coordinate system using the roll angle and the pitch angle; and detecting the driving behavior of the vehicle using the acceleration and angular velocity on the target coordinate system.
본 개시의 다른 측면에 의하면, 차량 좌표계에 대한 센서 좌표계의 롤 각 및 피치 각을 추정하는 추정부; 상기 롤 각 및 상기 피치 각을 이용하여, 상기 센서 좌표계 상의 가속도 및 각속도를 대상 좌표계 상의 가속도 및 각속도로 변환하는 변환부; 및 상기 대상 좌표계 상의 가속도 및 각속도를 이용하여 차량의 운전 행동을 감지하는 감지부를 포함하는 것을 특징으로 하는 운전 행동 감지 장치를 제공한다.According to another aspect of the present disclosure, the estimation unit for estimating the roll angle and the pitch angle of the sensor coordinate system with respect to the vehicle coordinate system; a conversion unit that converts the acceleration and angular velocity on the sensor coordinate system into acceleration and angular velocity on the target coordinate system using the roll angle and the pitch angle; and a sensing unit configured to detect a driving behavior of the vehicle using acceleration and angular velocity on the target coordinate system.
이상에서 설명한 바와 같이 본 개시의 실시예에 의하면, 요 계산 없이도 차량의 운전 행동을 감지할 수 있다. 차량의 진동 등 외부 노이즈에 의해 정밀도가 떨어지는 요를 이용하지 않음으로써, 적은 계산량을 통해 정확한 운전 행동 감지가 가능하다는 효과가 있다. As described above, according to the exemplary embodiment of the present disclosure, a driving behavior of a vehicle may be detected without calculating a yaw. By not using a yaw whose accuracy is reduced due to external noise such as vehicle vibration, there is an effect that accurate driving behavior detection is possible through a small amount of calculation.
본 개시의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present disclosure are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
도 1은 본 개시의 일 실시예에 따른 센서 좌표계 및 차량 좌표계를 설명하기 위한 예시도이다.1 is an exemplary view for explaining a sensor coordinate system and a vehicle coordinate system according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 운전 행동 감지 장치를 개략적으로 나타낸 블록구성도이다.2 is a schematic block diagram of an apparatus for detecting driving behavior according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 운전 행동 감지 방법을 나타내는 순서도이다. 3 is a flowchart illustrating a driving behavior sensing method according to an exemplary embodiment of the present disclosure.
이하, 본 개시의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 개시를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present disclosure will be described in detail through exemplary drawings. In adding reference numerals to components of each drawing, it should be noted that the same components have the same numerals as much as possible even if they are displayed on different drawings. In addition, in describing the present disclosure, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present disclosure, the detailed description will be omitted.
또한, 본 개시의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 '포함', '구비'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 '…부', '모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Also, terms such as first, second, A, B, (a), and (b) may be used in describing the components of the present disclosure. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term. Throughout the specification, when a part 'includes' or 'includes' a certain component, it means that it may further include other components without excluding other components unless otherwise stated. . In addition, the '... Terms such as 'unit' and 'module' refer to a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software.
첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시형태를 설명하고자 하는 것이며, 본 개시가 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.The detailed description set forth below in conjunction with the accompanying drawings is intended to describe exemplary embodiments of the present disclosure, and is not intended to represent the only embodiments in which the present disclosure may be practiced.
본 개시의 다양한 실시예들을 서술하기에 앞서, 본 개시에서 언급되는 좌표계 및 좌표계 간 변환 관계를 설명한다. Prior to describing various embodiments of the present disclosure, a coordinate system and a conversion relationship between coordinate systems mentioned in the present disclosure will be described.
도 1은 본 개시의 일 실시예에 따른 센서 좌표계 및 차량 좌표계를 설명하기 위한 예시도이다.1 is an exemplary view for explaining a sensor coordinate system and a vehicle coordinate system according to an embodiment of the present disclosure.
도 1을 참조하면, 본 개시에서 이용되는 좌표계는 차량 좌표계와 센서 좌표계로 구분된다. 차량 좌표계는 차량이 중력 방향에 수직인 평면(이하, 지평면) 위에 놓여있다는 가정하에, 차량의 진행방향을 향하는 YV축, 차량의 넓이방향을 향하는 XV축, 차량의 높이방향을 향하는 ZV축으로 구성된다. 센서 좌표계는 차량에 구비된 센서의 특정 방향에 특정의 축을 일치시킨 좌표계로, 각각 서로 직교하는 XS축, YS축 및 ZS축으로 구성된다.Referring to FIG. 1 , the coordinate system used in the present disclosure is divided into a vehicle coordinate system and a sensor coordinate system. The vehicle coordinate system assumes that the vehicle is placed on a plane perpendicular to the direction of gravity (hereafter referred to as the horizontal plane), with the Y V axis pointing in the traveling direction of the vehicle, the X V axis pointing in the vehicle width direction, and the Z V axis pointing in the vehicle height direction. composed of axes. The sensor coordinate system is a coordinate system in which a specific axis coincides with a specific direction of a sensor provided in a vehicle, and is composed of an X S axis, a Y S axis, and a Z S axis that are orthogonal to each other.
차량 좌표계와 센서 좌표계 간의 상대적인 회전은 롤 각(roll angle, γ), 피치 각(pitch angle, θ) 및 요 각(yaw angle, φ)으로 표현될 수 있다. The relative rotation between the vehicle coordinate system and the sensor coordinate system may be expressed as a roll angle (γ), a pitch angle (θ), and a yaw angle (φ).
센서 좌표계 상의 임의의 점이나 벡터를 차량 좌표계 상의 점이나 벡터로 변환하기 위한 변환행렬은 수학식 1과 같이 정의될 수 있다.A conversion matrix for converting an arbitrary point or vector on the sensor coordinate system to a point or vector on the vehicle coordinate system may be defined as in Equation 1.
Figure PCTKR2022015281-appb-img-000001
Figure PCTKR2022015281-appb-img-000001
차량에 구비된 센서에서 측정된 가속도 및 각속도, 즉 센서 좌표계 상의 가속도 및 각속도는 수학식 2 및 수학식 3과 같이 차량 좌표계 상의 가속도 및 각속도로 변환될 수 있다. Acceleration and angular velocity measured by a sensor provided in the vehicle, that is, acceleration and angular velocity on the sensor coordinate system may be converted into acceleration and angular velocity on the vehicle coordinate system as shown in Equations 2 and 3.
Figure PCTKR2022015281-appb-img-000002
Figure PCTKR2022015281-appb-img-000002
여기서,
Figure PCTKR2022015281-appb-img-000003
는 센서 좌표계 상의 i축 가속도(i축은 XS축, YS축 또는 ZS축)이고,
Figure PCTKR2022015281-appb-img-000004
는 차량 좌표계 상의 i축 가속도(i축은 XV축, YV축 또는 ZV축)이다.
here,
Figure PCTKR2022015281-appb-img-000003
is the i-axis acceleration on the sensor coordinate system (i-axis is the X S axis, Y S axis, or Z S axis),
Figure PCTKR2022015281-appb-img-000004
is the i-axis acceleration (i-axis is X V axis, Y V axis, or Z V axis) on the vehicle coordinate system.
Figure PCTKR2022015281-appb-img-000005
Figure PCTKR2022015281-appb-img-000005
여기서,
Figure PCTKR2022015281-appb-img-000006
는 센서 좌표계 상의 i축 각속도(i축은 XS축, YS축 또는 ZS축)이고,
Figure PCTKR2022015281-appb-img-000007
는 차량 좌표계 상의 i축 각속도(i축은 XV축, YV축 또는 ZV축)이다.
here,
Figure PCTKR2022015281-appb-img-000006
is the i-axis angular velocity on the sensor coordinate system (i-axis is the X S axis, Y S axis, or Z S axis),
Figure PCTKR2022015281-appb-img-000007
is the i-axis angular velocity on the vehicle coordinate system (i-axis is the X V axis, the Y V axis, or the Z V axis).
차량 좌표계 상의 가속도 및 각속도는 차량의 운전 행동을 감지하는데 이용될 수 있다. 예컨대, 차량의 진행방향을 향하는 YV축 가속도
Figure PCTKR2022015281-appb-img-000008
가 양의 값을 가지면 차량이 가속하는 것으로 판단하고, 음의 값을 가지면 차량이 감속하는 것으로 판단할 수 있다. 또한, 차량의 수직방향을 향하는 ZV축 각속도
Figure PCTKR2022015281-appb-img-000009
가 양의 값을 가지면 차량이 반시계방향으로 회전하는 것으로 판단하고, 음의 값을 가지면 차량이 시계방향으로 회전하는 것으로 판단할 수 있다.
Acceleration and angular velocity on the vehicle coordinate system can be used to sense the driving behavior of the vehicle. For example, acceleration on the Y and V axes in the direction of travel of the vehicle.
Figure PCTKR2022015281-appb-img-000008
If has a positive value, it can be determined that the vehicle is accelerating, and if it has a negative value, it can be determined that the vehicle is decelerating. In addition, the angular velocity of the Z V axis in the vertical direction of the vehicle
Figure PCTKR2022015281-appb-img-000009
If has a positive value, it can be determined that the vehicle rotates counterclockwise, and if it has a negative value, it can be determined that the vehicle rotates clockwise.
한편, 센서 좌표계 상의 가속도 및 각속도를 차량 좌표계 상의 가속도 및 각속도로 변환하기 위해서는 롤 각, 피치 각 및 요 각의 추정이 선행되어야 한다. Meanwhile, in order to convert the acceleration and angular velocity on the sensor coordinate system to the acceleration and angular velocity on the vehicle coordinate system, estimation of the roll angle, pitch angle, and yaw angle must be preceded.
차량이 등속 환경(steady state)에 있는 경우, 즉 차량이 정속도 주행 또는 정지 중인 경우에는, 중력의 영향으로 인해 센서에서 일정한 가속도 값(예컨대, 중력 가속도에 가까운 값)이 측정된다. When the vehicle is in a steady state, that is, when the vehicle is traveling at constant speed or is stopped, a constant acceleration value (eg, a value close to the acceleration due to gravity) is measured by the sensor due to the influence of gravity.
따라서, 차량 좌표계상의 중력 가속도와 센서 좌표계 상의 가속도 간의 관계를 기초로, 수학식 4 및 수학식 5와 같이 롤 각 및 피치 각을 추정할 수 있다.Therefore, based on the relationship between the gravitational acceleration on the vehicle coordinate system and the acceleration on the sensor coordinate system, the roll angle and the pitch angle can be estimated as shown in Equations 4 and 5.
Figure PCTKR2022015281-appb-img-000010
Figure PCTKR2022015281-appb-img-000010
Figure PCTKR2022015281-appb-img-000011
Figure PCTKR2022015281-appb-img-000011
요 각은 차량이 정속도 주행 또는 정지 이후 직진 가감속 주행할 때 측정된 가속도와 피치 각 및 롤 각을 이용하여 수학식 6과 같이 구해질 수 있다. The yaw angle may be obtained as shown in Equation 6 using the acceleration, pitch angle, and roll angle measured when the vehicle travels at constant speed or accelerates and decelerates straight after stopping.
Figure PCTKR2022015281-appb-img-000012
Figure PCTKR2022015281-appb-img-000012
여기서,
Figure PCTKR2022015281-appb-img-000013
는 시점 s에서 측정된 센서 좌표계 상의 i축 가속도,
Figure PCTKR2022015281-appb-img-000014
는 시점 k에서 측정된 센서 좌표계 상의 i축 가속도이다.
here,
Figure PCTKR2022015281-appb-img-000013
is the i-axis acceleration on the sensor coordinate system measured at point in time s,
Figure PCTKR2022015281-appb-img-000014
is the i-axis acceleration on the sensor coordinate system measured at point in time k.
요 각을 추정하기 위해서는 차량이 정속도 주행 또는 정지 이후 직진 가속도 주행 중 인지 여부가 먼저 판단되어야 한다. 예컨대, 차량이 등속 환경에 있는 것으로 판단한 시점 이후의 임의의 시점에서 측정된 가속도 및 각속도가 직진 조건 및 가감속 조건을 만족하는 지가 판단될 수 있다. 여기서, 가감속 조건은 센서 좌표계의 XS-YS 평면 상에서 가속도 변화량이 기설정된 임계 가속도 이상일 조건이고, 직진 조건은 각속도의 크기가 기설정된 임계 각속도 이하일 조건일 수 있다. 이러한 가감속 조건 및 직진 조건은 수학식 7 및 수학식 8과 같이 표현될 수 있다.In order to estimate the yaw angle, it is first necessary to determine whether the vehicle is driving at constant speed or driving with straight acceleration after stopping. For example, it may be determined whether acceleration and angular velocity measured at an arbitrary point in time after determining that the vehicle is in a constant velocity environment satisfy a straight-going condition and an acceleration/deceleration condition. Here, the acceleration/deceleration condition may be a condition in which the amount of change in acceleration on the X S -Y S plane of the sensor coordinate system is equal to or greater than a preset critical acceleration, and the straight ahead condition may be a condition in which an angular velocity is equal to or less than a preset critical angular velocity. These acceleration/deceleration conditions and straight forward conditions may be expressed as Equations 7 and 8.
Figure PCTKR2022015281-appb-img-000015
Figure PCTKR2022015281-appb-img-000015
여기서, Δaφ는 기설정된 임계 가속도이다. 임계 가속도는 노이즈 등을 고려하여 설정될 수 있다. Here, Δa φ is a preset critical acceleration. The critical acceleration may be set in consideration of noise and the like.
Figure PCTKR2022015281-appb-img-000016
Figure PCTKR2022015281-appb-img-000016
여기서, Δωφ는 기설정된 임계 각속도이다. 임계 각속도는 노이즈 등을 고려하여 설정될 수 있다. Here, Δω φ is a predetermined critical angular velocity. The critical angular velocity may be set in consideration of noise and the like.
이와 같이, 차량 좌표계에 대한 센서 좌표계의 요 각을 추정하기 위해서는, 차량이 정속도 주행 또는 정지 이후 직진 가속도 주행하는 일련의 단계를 감지해야 하는데, 이에 따라 계산 시간 및 자원 낭비가 발생하게 된다. In this way, in order to estimate the yaw angle of the sensor coordinate system with respect to the vehicle coordinate system, it is necessary to detect a series of steps in which the vehicle travels at constant speed or travels with straight acceleration after stopping, which results in a waste of calculation time and resources.
본 개시에서는 이러한 요 각을 이용하지 않고서도 차량의 운전 행동을 감지할 수 있는 방법을 제안한다. The present disclosure proposes a method for detecting a driving behavior of a vehicle without using such a yaw angle.
도 2는 본 개시의 일 실시예에 따른 운전 행동 감지 장치를 개략적으로 나타낸 블록구성도이다.2 is a schematic block diagram of an apparatus for detecting driving behavior according to an embodiment of the present disclosure.
도 2에 도시되듯이, 본 개시의 일 실시예에 따른 운전 행동 감지 장치(20)는 센서부(200), 추정부(210), 변환부(220), 획득부(230), 결정부(240) 및 감지부(250)를 전부 또는 일부 포함한다. 도 2에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 운전 행동 감지 장치(20)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다. 즉, 도 2의 경우는 본 개시의 일 실시예에 따른 운전 행동 감지 장치(20)가 차량의 운전 행동을 감지하기 위한 구성요소를 예시적으로 도시한 것으로서, 운전 행동 감지 장치(20)는 다른 기능의 구현을 위해 도시한 것보다 많거나 적은 구성요소 또는 상이한 구성요소의 구성을 가질 수 있음을 인식하여야 한다. As shown in FIG. 2 , the driving behavior detection apparatus 20 according to an embodiment of the present disclosure includes a sensor unit 200, an estimation unit 210, a conversion unit 220, an acquisition unit 230, and a determination unit ( 240) and the sensing unit 250 in whole or in part. All blocks shown in FIG. 2 are not essential components, and some blocks included in the driving behavior detection device 20 may be added, changed, or deleted in another embodiment. That is, in the case of FIG. 2 , the driving behavior detecting device 20 according to an embodiment of the present disclosure illustrates a component for detecting a driving behavior of a vehicle by way of example, and the driving behavior detecting device 20 is another It should be recognized that the implementation of functions may have more or less components than those shown or a configuration of different components.
실시예들에 따라, 운전 행동 감지 장치(20)는 차량에 장착 가능하도록 구성될 수 있다. 일 예로, 운전 행동 감지 장치(20)는 차량에 구비된 외부 전원 공급용 단자인 시거잭(cigar jack)에 장착될 수 있도록 플러그(plug) 형태로 구성될 수 있다. 다른 예로, 운전 행동 감지 장치(20)는 차량에 구비된 USB 포트에 플러그되는 형태로 구성될 수도 있다.According to embodiments, the driving behavior detection device 20 may be configured to be mounted on a vehicle. For example, the driving behavior detecting device 20 may be configured in the form of a plug so as to be mounted on a cigar jack, which is a terminal for supplying external power provided in a vehicle. As another example, the driving behavior detection device 20 may be configured to be plugged into a USB port provided in a vehicle.
실시예들에 따라, 운전 행동 감지 장치(20)는 차량의 탑승자가 휴대하는 장치로 구현될 수 있다. 예를 들어, 운전 행동 감지 장치(20)는 스마트폰(smart phone), 스마트 워치(smart watch) 및 태블릿(tablet) 등과 같은 모바일 기기(mobile device)일 수 있다. 운전 행동 감지 장치(20)는 차량의 운전 행동을 감지하기 위한 애플리케이션(application)을 탑재할 수 있다.According to embodiments, the driving behavior detection device 20 may be implemented as a device carried by a vehicle occupant. For example, the driving behavior detecting device 20 may be a mobile device such as a smart phone, a smart watch, and a tablet. The driving behavior detecting device 20 may mount an application for detecting a driving behavior of a vehicle.
센서부(200)는 센서 좌표계의 각 축 방향에 대한 가속도 및 각속도를 출력한다. 센서부(200)는 예컨대, 3축 가속도 센서 및 3축 자이로 센서를 포함하는 관성 측정유닛(Inertial Measurement Unit, IMU)을 포함할 수 있다. 센서부(200)에 포함되는 각각의 구성들은 공지된 구성이므로 이에 대한 자세한 설명은 생략하도록 한다.The sensor unit 200 outputs acceleration and angular velocity for each axis direction of the sensor coordinate system. The sensor unit 200 may include, for example, an inertial measurement unit (IMU) including a 3-axis acceleration sensor and a 3-axis gyro sensor. Since each component included in the sensor unit 200 is a well-known component, a detailed description thereof will be omitted.
추정부(210)는 센서부(200)가 출력하는 가속도 및 각속도에 기초하여 차량 좌표계에 대한 센서 좌표계의 상대적인 회전각인 피치 각 및 롤 각을 추정한다. The estimator 210 estimates a pitch angle and a roll angle, which are relative rotation angles of the sensor coordinate system with respect to the vehicle coordinate system, based on the acceleration and angular velocity output by the sensor unit 200 .
추정부(210)는 롤 각 및 피치 각을 추정하기에 앞서, 일정 시간 동안 측정된 가속도 및 각속도에 기초하여, 차량이 등속 환경에 있는지를 판단할 수 있다. 여기서, 일정 시간은 등속 환경을 판단하기 위해 필요한 최소 시간보다 길거나 같은 시간으로, 센서부(200)의 측정 주기 등을 고려하여 설정될 수 있으나 이에 한정되는 것은 아니다.The estimator 210 may determine whether the vehicle is in a constant speed environment based on the acceleration and angular velocity measured for a predetermined time prior to estimating the roll angle and the pitch angle. Here, the predetermined time is longer than or equal to the minimum time required to determine the constant velocity environment, and may be set in consideration of the measurement period of the sensor unit 200, but is not limited thereto.
예컨대, 추정부(210)는 일정 시간 동안 측정된 가속도들과 중력 가속도 간의 차가 기설정된 임계 가속도 이하로 유지되고, 일정 시간 동안 측정된 각축 각속도들의 크기가 기설정된 임계 각속도 이하로 유지되면, 차량이 등속 환경에 있는 것으로 판단할 수 있다. 이러한 등속 환경 판단 조건은 수학식 9와 같이 표현될 수 있다. For example, the estimator 210 determines that, when the difference between the accelerations measured for a certain period of time and the gravitational acceleration is maintained below a preset critical acceleration and the magnitudes of the angular velocities measured for a specific time are maintained below the preset critical angular velocity, the vehicle It can be judged to be in a constant velocity environment. This constant velocity environment determination condition can be expressed as in Equation 9.
Figure PCTKR2022015281-appb-img-000017
Figure PCTKR2022015281-appb-img-000017
Figure PCTKR2022015281-appb-img-000018
Figure PCTKR2022015281-appb-img-000018
Figure PCTKR2022015281-appb-img-000019
Figure PCTKR2022015281-appb-img-000019
여기서,
Figure PCTKR2022015281-appb-img-000020
는 시점 k에서 측정된 센서 좌표계 상의 i축 가속도,
Figure PCTKR2022015281-appb-img-000021
는 시점 k에서 측정된 센서 좌표계 상의 i축 각속도, g는 중력 가속도의 크기, Δasteady는 임계 가속도, Δωsteady는 임계 각속도, Nsteady 는 등속 환경을 판단하기 위해 필요한 최소 시간이다.
here,
Figure PCTKR2022015281-appb-img-000020
is the i-axis acceleration on the sensor coordinate system measured at point in time k,
Figure PCTKR2022015281-appb-img-000021
is the i-axis angular velocity on the sensor coordinate system measured at point k, g is the magnitude of the gravitational acceleration, Δa steady is the critical acceleration, Δω is the critical angular velocity, and N steady is the minimum time required to determine the constant velocity environment.
본 개시의 일 실시예에 따른 추정부(210)는 일정 시간 동안 센서부(200)가 출력하는 가속도 및 각속도가 정속도 조건을 만족하는지를 판단하기 위해, 측정 시작시점(kstart) 및 측정 종료시점(kend)의 가속도 및 각속도가 각각 정속도 조건을 만족하는지를 판단할 수 있으나 이러한 예시에 한정되는 것은 아니다. 예컨대, 본 개시의 다른 실시예에 따른 추정부(210)는 일정 시간 동안 센서부(200)가 출력한 모든 가속도 및 각속도가 각각 정속도 조건을 만족하는지를 판단하거나, 일정 시간 동안 센서부(200)가 출력한 가속도의 평균 및 각속도의 평균이 각각 정속도 조건을 만족하는지를 판단할 수 있다. The estimator 210 according to an embodiment of the present disclosure determines whether the acceleration and angular velocity output by the sensor unit 200 for a predetermined time satisfy a constant speed condition, a measurement start point (k start ) and a measurement end time point. It is possible to determine whether the acceleration and angular velocity of (k end ) each satisfy the constant velocity condition, but is not limited to this example. For example, the estimator 210 according to another embodiment of the present disclosure determines whether all accelerations and angular velocities output by the sensor unit 200 for a predetermined period of time satisfy a constant speed condition, or whether the sensor unit 200 for a predetermined period of time It is possible to determine whether the average of the accelerations and the averages of the angular velocities outputted by each satisfies the constant speed condition.
차량이 등속 환경에 있는 것으로 판단되면, 추정부(210)는 수학식 4 및 수학식 5를 이용하여, 센서 좌표계 상의 가속도로부터 롤 각 및 피치 각을 구한다. If it is determined that the vehicle is in a constant velocity environment, the estimator 210 obtains the roll angle and the pitch angle from the acceleration on the sensor coordinate system using Equations 4 and 5.
여기서, 추정부(210)는 차량이 등속 환경에 있는지 판단하는 데 사용된 가속도 중 하나나 해당 가속도들의 평균을 이용하여 롤 각 및 피치 각을 추정할 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 추정부(210)는 차량이 등속 환경에 있는 것으로 판단된 이후에 측정된 가속도를 이용하여 롤 각 및 피치 각을 추정할 수도 있다. Here, the estimator 210 may estimate the roll angle and the pitch angle using one of the accelerations used to determine whether the vehicle is in a constant velocity environment or an average of corresponding accelerations, but is not limited thereto. For example, the estimator 210 may estimate the roll angle and the pitch angle using acceleration measured after it is determined that the vehicle is in a constant velocity environment.
변환부(220)는 피치 각 및 롤 각을 이용하여 변환행렬을 산출하고, 센서부(200)가 출력하는 가속도 및 각속도의 좌표계를 변환한다(S310). The conversion unit 220 calculates a transformation matrix using the pitch angle and roll angle, and converts the coordinate system of the acceleration and angular velocity output from the sensor unit 200 (S310).
본 개시에 일 실시예에 따른 변환부(220)는 센서 좌표계 상의 가속도 및 각속도를 차량 좌표계가 아닌 제3의 좌표계(이하, 대상 좌표계)로 상의 가속도 및 각속도로 변환한다. 이때, 대상 좌표계는 차량 좌표계의 XV축 및 YV축과 일정 각도 어긋나는 X축 및 Y축과, 차량 좌표계의 ZV축과 평행한 Z축을 가질 수 있다. 본 개시에서 대상 좌표계의 각 축은, XV"축, YV"축 및 ZV"축으로 표현될 수 있다. The conversion unit 220 according to an embodiment of the present disclosure converts acceleration and angular velocity on the sensor coordinate system into acceleration and angular velocity on a third coordinate system (hereinafter, an object coordinate system) other than the vehicle coordinate system. In this case, the target coordinate system may have an X axis and a Y axis that are offset by a predetermined angle from the X V axis and the Y V axis of the vehicle coordinate system, and a Z axis parallel to the Z V axis of the vehicle coordinate system. In the present disclosure, each axis of the target coordinate system may be expressed as an X V" axis, a Y V" axis, and a Z V" axis.
여기서, 센서 좌표계 상의 임의의 점을 대상 좌표계 상의 임의의 점으로 변환하기 위한 변환행렬은 수학식 10과 같이 산출될 수 있다. Here, a conversion matrix for converting an arbitrary point on the sensor coordinate system to an arbitrary point on the target coordinate system can be calculated as shown in Equation 10.
Figure PCTKR2022015281-appb-img-000022
Figure PCTKR2022015281-appb-img-000022
변환부(220)는 수학식 11 및 수학식 12와 같이 변환행렬을 이용하여 센서 좌표계 상에서 표현된 가속도 및 각속도를 대상 좌표계로 변환할 수 있다. The conversion unit 220 may convert the acceleration and angular velocity expressed on the sensor coordinate system into the target coordinate system using a conversion matrix as shown in Equations 11 and 12.
Figure PCTKR2022015281-appb-img-000023
Figure PCTKR2022015281-appb-img-000023
여기서,
Figure PCTKR2022015281-appb-img-000024
는 대상 좌표계 상의 i축 가속도(i축은 XV"축, YV"축 또는 ZV"축)이다.
here,
Figure PCTKR2022015281-appb-img-000024
is the i-axis acceleration (i-axis is the X V" axis, the Y V" axis, or the Z V" axis) on the target coordinate system.
Figure PCTKR2022015281-appb-img-000025
Figure PCTKR2022015281-appb-img-000025
여기서,
Figure PCTKR2022015281-appb-img-000026
는 대상 좌표계 상의 i축 각속도(i축은 XV"축, YV"축 또는 ZV"축)이다.
here,
Figure PCTKR2022015281-appb-img-000026
is the i-axis angular velocity (i-axis is the X V" axis, the Y V" axis, or the Z V" axis) on the target coordinate system.
획득부(230)는 차량의 속도와 관련된 정보를 획득한다. 차량의 속도와 관련된 정보는 위치, 속도 및 가속도 중 어느 하나일 수 있으나 이에 한정되는 것은 아니다. Acquisition unit 230 acquires information related to the speed of the vehicle. Information related to the speed of the vehicle may be any one of location, speed, and acceleration, but is not limited thereto.
일 예로, 획득부(230)는 차량의 속도와 관련된 정보로서, GPS(Global Positioning System) 값을 획득하여 차량의 속도를 계산할 수 있다. 이 경우, 획득부(230)는 GPS 수신기를 포함할 수 있다. 다른 예로, 획득부(230)는 차량의 속도와 관련된 정보로서, 차량의 OBD(On Board Diagnostics)로부터 차량의 절대 속도를 획득할 수 있다. 이 경우, 획득부(230)는 차량의 OBD와 통신하기 위한 통신부를 포함할 수 있다. 다른 예로, 획득부(230)는 차량의 등속 환경(steady state)을 시작점으로 하여 센서부(200)가 출력하는 센서 값들을 추적하여 차량의 속도를 계산할 수도 있다.For example, the acquisition unit 230 may calculate the speed of the vehicle by obtaining a global positioning system (GPS) value as information related to the speed of the vehicle. In this case, the acquisition unit 230 may include a GPS receiver. As another example, the acquisition unit 230 may acquire the absolute speed of the vehicle from the vehicle's OBD (On Board Diagnostics) as information related to the vehicle's speed. In this case, the acquisition unit 230 may include a communication unit for communicating with the OBD of the vehicle. As another example, the acquisition unit 230 may calculate the speed of the vehicle by tracking sensor values output by the sensor unit 200 with a steady state of the vehicle as a starting point.
결정부(240)는 대상 좌표계 상의 가속도 및 차량의 속도 변화에 기초하여, 기준 축 및 기준 부호를 결정한다. The determination unit 240 determines a reference axis and a reference sign based on the change in acceleration and speed of the vehicle on the target coordinate system.
결정부(240)는 대상 좌표계에서 차량의 수직 방향과 직교하는 두 축, 즉 XV"축 및 YV"축 중에서 차량의 회전을 감지하기 위한 기준 축 및 기준 부호를 결정한다.The determination unit 240 determines a reference axis and a reference sign for detecting rotation of the vehicle among two axes orthogonal to the vertical direction of the vehicle in the target coordinate system, that is, the X V" axis and the Y V" axis.
차량이 수학식 8의 직진조건을 만족하는 경우, 대상 좌표계 상의 가속도에서 차량의 수직 방향에 직교하는 성분의 크기, 즉
Figure PCTKR2022015281-appb-img-000027
는 차량의 직진 가속 크기에 해당한다. 결정부(240)는 대상 좌표계에서 차량의 수직 방향과 직교하는 두 축, 가속도의 크기가 더 큰 축을 기준 축으로 결정한다. 예컨대,
Figure PCTKR2022015281-appb-img-000028
Figure PCTKR2022015281-appb-img-000029
보다 큰 경우, XV"축이 기준 축으로 결정될 수 있다.
When the vehicle satisfies the straight-line condition of Equation 8, the magnitude of the component orthogonal to the vertical direction of the vehicle in the acceleration on the target coordinate system, that is,
Figure PCTKR2022015281-appb-img-000027
corresponds to the magnitude of straight-line acceleration of the vehicle. The determination unit 240 determines two axes orthogonal to the vertical direction of the vehicle in the target coordinate system, and an axis having a larger magnitude of acceleration as a reference axis. for example,
Figure PCTKR2022015281-appb-img-000028
go
Figure PCTKR2022015281-appb-img-000029
If larger, the X V" axis can be determined as the reference axis.
결정부(240)는 차량의 속도와 관련된 정보를 기초로 차량의 속도 증가를 감지한다. 결정부(240)는 차량의 속도가 증가하는 시점의 대상 좌표계 상의 기준축에 대한 가속도를 기준 부호로 결정한다. 예컨대, 기준 축이 XV"축이라 가정할 때, 차량의 속도가 증가하는 시점에서
Figure PCTKR2022015281-appb-img-000030
가 음의 값을 가지는 경우, 결정부(240)는 기준 부호를 음 부호(-)로 결정할 수 있다.
The determination unit 240 detects an increase in the speed of the vehicle based on information related to the speed of the vehicle. The determination unit 240 determines the acceleration with respect to the reference axis on the target coordinate system at the time when the speed of the vehicle increases as the reference sign. For example, assuming that the reference axis is the X V" axis, at the point when the speed of the vehicle increases
Figure PCTKR2022015281-appb-img-000030
When has a negative value, the determination unit 240 may determine the reference code as a negative sign (-).
감지부(250)는 대상 좌표계 상의 가속도 및 각속도를 이용하여 차량의 운전 행동을 감지한다. The sensor 250 detects the driving behavior of the vehicle using acceleration and angular velocity on the target coordinate system.
본 개시의 일 실시예에 따른 감지부(250)는 대상 좌표계에서 차량의 수직 방향과 직교하는 두 축 중 어느 한 축에 대한 가속도를 기초로 차량의 가감속을 감지할 수 있다. 감지부(250)는 대상 좌표계의 기준 축에 대한 가속도를 기초로, 차량의 가감속을 감지할 수 있다. 감지부(250)는 대상 좌표계의 기준축에 대한 가속도의 부호와 기준 부호를 비교하여 차량의 가감속을 감지할 수 있다. The sensing unit 250 according to an embodiment of the present disclosure may detect acceleration and deceleration of the vehicle based on an acceleration along one of two axes orthogonal to the vertical direction of the vehicle in the target coordinate system. The sensor 250 may detect acceleration and deceleration of the vehicle based on the acceleration with respect to the reference axis of the target coordinate system. The sensor 250 may detect acceleration and deceleration of the vehicle by comparing the sign of the acceleration on the reference axis of the target coordinate system with the reference sign.
구체적으로, 감지부(250)는 기준 부호와 기준 축에 대한 가속도의 부호가 동일하면 차량이 가속하는 것으로 판단하고, 기준 부호와 상기 기준 축에 대한 가속도의 부호가 상이하면 차량이 감속하는 것으로 판단할 수 있다. 예컨대, 기준 축이 XV"축이고 기준 부호가 음 부호(-)라 가정할 때, XV"축 가속도
Figure PCTKR2022015281-appb-img-000031
가 음의 값을 가지면 차량이 가속하는 것으로 판단하고, 양의 값을 가지면 차량이 감속하는 것으로 판단할 수 있다.
Specifically, the sensor 250 determines that the vehicle is accelerating when the reference sign and the sign of acceleration on the reference axis are the same, and determines that the vehicle is decelerating when the reference sign and the sign of acceleration on the reference axis are different. can do. For example, assuming that the reference axis is the X V" axis and the reference sign is a negative sign (-), the X V" axis acceleration
Figure PCTKR2022015281-appb-img-000031
If has a negative value, it can be determined that the vehicle is accelerating, and if it has a positive value, it can be determined that the vehicle is decelerating.
본 개시의 일 실시예에 따른 감지부(250)는 대상 좌표계의 차량의 수직 방향에 대응하는 축, 즉 ZV"축에 대한 각속도
Figure PCTKR2022015281-appb-img-000032
를 기초로 차량의 회전을 감지할 수 있다.
The sensor 250 according to an embodiment of the present disclosure may include an angular velocity with respect to an axis corresponding to a vertical direction of the vehicle in the target coordinate system, that is, the Z V" axis.
Figure PCTKR2022015281-appb-img-000032
Based on the rotation of the vehicle can be detected.
예컨대, 감지부(250)는 대상 좌표계의 차량의 수직 방향에 대응하는 축에 대한 각속도
Figure PCTKR2022015281-appb-img-000033
가 양의 값을 가지면 차량이 반시계방향으로 회전하는 것으로 판단하고, 음의 값을 가지면 차량이 시계방향으로 회전하는 것으로 판단할 수 있다.
For example, the sensor 250 may determine the angular velocity with respect to an axis corresponding to the vertical direction of the vehicle in the target coordinate system.
Figure PCTKR2022015281-appb-img-000033
If has a positive value, it can be determined that the vehicle rotates counterclockwise, and if it has a negative value, it can be determined that the vehicle rotates clockwise.
도 3은 본 개시의 일 실시예에 따른 운전 행동 감지 방법을 나타내는 순서도이다. 3 is a flowchart illustrating a driving behavior sensing method according to an exemplary embodiment of the present disclosure.
도 3에 도시된 방법은, 도 2에서 전술한 운전 행동 감지 장치(20)에 의해 수행될 수 있으므로, 중복되는 내용에 대해서는 자세한 설명을 생략한다.Since the method illustrated in FIG. 3 can be performed by the driving behavior detection device 20 described above in FIG. 2 , detailed descriptions of overlapping contents will be omitted.
운전 행동 감지 장치(20)는 차량 좌표계에 대한 센서 좌표계의 피치 각 및 롤 각을 추정한다(S300). 실시예들에 따라, 운전 행동 감지 장치(20)는 차량이 정속도 주행 또는 정지 중인지를 판단하고, 차량의 정속도 주행 또는 정지 중에 측정된 상기 가속도를 기초로, 차량 좌표계에 대한 상기 센서 좌표계의 피치 각 및 롤 각을 추정할 수 있다. The driving behavior detecting apparatus 20 estimates the pitch angle and roll angle of the sensor coordinate system with respect to the vehicle coordinate system (S300). According to embodiments, the driving behavior detecting device 20 determines whether the vehicle is driving at constant speed or is stopped, and based on the acceleration measured during constant speed driving or stopping of the vehicle, the sensor coordinate system with respect to the vehicle coordinate system. Pitch angle and roll angle can be estimated.
운전 행동 감지 장치(20)는 추정된 롤 각 및 피치 각을 이용하여, 센서 좌표계 상의 가속도 및 각속도를 대상 좌표계 상의 가속도 및 각속도로 변환한다(S310). 운전 행동 감지 장치(20)는 피치 각 및 상기 롤 각을 이용하여, 센서 좌표계 상의 가속도 및 각속도를 대상 좌표계 상의 가속도 및 각속도로 변환하기 위한 변환행렬을 산출할 수 있다. The driving behavior detecting apparatus 20 converts acceleration and angular velocity on the sensor coordinate system into acceleration and angular velocity on the target coordinate system using the estimated roll angle and pitch angle (S310). The driving behavior detecting apparatus 20 may calculate a transformation matrix for converting the acceleration and angular velocity on the sensor coordinate system into the acceleration and angular velocity on the target coordinate system using the pitch angle and the roll angle.
운전 행동 감지 장치(20)는 차량의 회전을 감지하기 위한 기준 축 및 기준 부호를 결정한다(S320). The driving behavior detecting apparatus 20 determines a reference axis and a reference sign for detecting rotation of the vehicle (S320).
실시예들에 따라, 운전 행동 감지 장치(20)는 대상 좌표계의 차량의 수직 방향과 직교하는 두 축 중에서 기준 축을 결정할 수 있다. 구체적으로, 운전 행동 감지 장치(20)는 대상 좌표계의 차량의 수직 방향과 직교하는 두 축 중에서 가속도의 크기가 큰 축을 기준 축으로 결정할 수 있다. According to embodiments, the driving behavior detecting apparatus 20 may determine a reference axis among two axes orthogonal to the vertical direction of the vehicle in the target coordinate system. Specifically, the driving behavior detecting apparatus 20 may determine, as a reference axis, an axis having a greater magnitude of acceleration among two axes orthogonal to the vertical direction of the vehicle in the target coordinate system.
실시예들에 따라, 운전 행동 감지 장치(20)는 차량의 속도 증가를 감지하고, 차량의 속도가 증가하는 시점의 기준 축에 대한 가속도의 부호를 기준 부호로 결정할 수 있다.According to embodiments, the driving behavior detecting apparatus 20 may detect an increase in vehicle speed and determine a sign of acceleration on a reference axis at a time when the vehicle speed increases as a reference sign.
운전 행동 감지 장치는 기준축에 대한 가속도를 이용하여 차량의 가감속을 감지한다(S330). 예컨대, 운전 행동 감지 장치(20)는 임의의 시점에서 기준 축에 대한 가속도의 부호와 기결정된 기준 부호가 동일하면 차량이 가속하는 것으로 판단하고, 상이하면 차량이 감속하는 것으로 판단할 수 있다. The driving behavior detecting apparatus detects acceleration and deceleration of the vehicle using the acceleration with respect to the reference axis (S330). For example, the driving behavior detecting apparatus 20 may determine that the vehicle is accelerating if the sign of the acceleration on the reference axis and the predetermined reference sign are the same at any point in time, and determine that the vehicle is decelerating if they are different.
운전 행동 감지 장치는 차량의 수직 방향에 대한 각속도를 이용하여 차량의 회전을 감지한다(S340). 예컨대, 운전 행동 감지 장치(20)는 대상 좌표계에서 차량의 수직 방향에 대응하는 축에 대한 각속도가 양의 값을 가지면 차량이 반시계방향으로 회전하는 것으로 판단하고, 음의 값을 가지면 차량이 시계방향으로 회전하는 것으로 판단할 수 있다. The driving behavior detecting device detects rotation of the vehicle using the angular velocity in the vertical direction of the vehicle (S340). For example, the driving behavior detecting apparatus 20 determines that the vehicle rotates counterclockwise if the angular velocity of an axis corresponding to the vertical direction of the vehicle in the target coordinate system has a positive value, and if it has a negative value, the vehicle rotates clockwise. It can be judged by rotating in the direction.
이상과 같이, 본 개시에 일 실시예에 따른 운전 행동 감지방법은 롤 각과 피치 각만 고려된 간단한 변환행렬을 이용하므로 기존의 운전 행동 감지방법 대비 연산량을 줄일 수 있다. 또한, 차량이 정속도 주행 또는 정지 이후 직진 가속도 주행하는 지를 감지할 필요가 없어 스테이트리스(stateless) 형태의 구현이 가능하다. As described above, since the method for detecting driving behavior according to an embodiment of the present disclosure uses a simple conversion matrix considering only roll angle and pitch angle, the amount of computation can be reduced compared to the conventional method for detecting driving behavior. In addition, since there is no need to detect whether the vehicle is driving at constant speed or traveling with straight acceleration after stopping, a stateless type of implementation is possible.
도면들에서는 각 과정들을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 개시의 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것이다. 다시 말해, 본 개시의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 개시의 일 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도면들에 기재된 순서를 변경하여 실행하거나 각 과정들 중 하나 이상의 과정을 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도면들은 시계열적인 순서로 한정되는 것은 아니다.In the drawings, it is described that each process is sequentially executed, but this is merely an example of the technical idea of an embodiment of the present disclosure. In other words, those skilled in the art to which an embodiment of the present disclosure belongs may change and execute the order described in the drawings without departing from the essential characteristics of the embodiment of the present disclosure, or one or more of the processes. Since it will be possible to apply various modifications and variations by executing in parallel, the drawings are not limited to a time-series order.
본 명세서에 설명되는 시스템들 및 기법들의 다양한 구현예들은, 디지털 전자 회로, 집적 회로, FPGA(field programmable gate array), ASIC(application specific integrated circuit), 컴퓨터 하드웨어, 펌웨어, 소프트웨어, 및/또는 이들의 조합으로 실현될 수 있다. 이러한 다양한 구현예들은 프로그래밍가능 시스템 상에서 실행가능한 하나 이상의 컴퓨터 프로그램들로 구현되는 것을 포함할 수 있다. 프로그래밍가능 시스템은, 저장 시스템, 적어도 하나의 입력 디바이스, 그리고 적어도 하나의 출력 디바이스로부터 데이터 및 명령들을 수신하고 이들에게 데이터 및 명령들을 전송하도록 결합되는 적어도 하나의 프로그래밍가능 프로세서(이것은 특수 목적 프로세서일 수 있거나 혹은 범용 프로세서일 수 있음)를 포함한다. 컴퓨터 프로그램들(이것은 또한 프로그램들, 소프트웨어, 소프트웨어 애플리케이션들 혹은 코드로서 알려져 있음)은 프로그래밍가능 프로세서에 대한 명령어들을 포함하며 "컴퓨터가 읽을 수 있는 기록매체"에 저장된다. Various implementations of the systems and techniques described herein may include digital electronic circuits, integrated circuits, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), computer hardware, firmware, software, and/or their can be realized in combination. These various implementations may include being implemented as one or more computer programs executable on a programmable system. A programmable system includes at least one programmable processor (which may be a special purpose processor) coupled to receive data and instructions from and transmit data and instructions to a storage system, at least one input device, and at least one output device. or may be a general-purpose processor). Computer programs (also known as programs, software, software applications or code) contain instructions for a programmable processor and are stored on a “computer readable medium”.
컴퓨터가 읽을 수 있는 기록매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 이러한 컴퓨터가 읽을 수 있는 기록매체는 ROM, CD-ROM, 자기 테이프, 플로피디스크, 메모리 카드, 하드 디스크, 광자기 디스크, 스토리지 디바이스 등의 비휘발성(non-volatile) 또는 비일시적인(non-transitory) 매체일 수 있으며, 또한 데이터 전송 매체(data transmission medium)와 같은 일시적인(transitory) 매체를 더 포함할 수도 있다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수도 있다.A computer-readable recording medium includes all kinds of recording devices that store data that can be read by a computer system. These computer-readable  recording media include non-volatile or non-transitory media such as ROM, CD-ROM, magnetic tape, floppy disk, memory card, hard disk, magneto-optical disk, and storage device. It may be a medium, and may further include a transitory medium such as a data transmission medium. In addition, the computer-readable recording medium may be distributed to computer systems connected through a network, and computer-readable codes may be stored and executed in a distributed manner.
본 명세서에 설명되는 시스템들 및 기법들의 다양한 구현예들은, 프로그램가능 컴퓨터에 의하여 구현될 수 있다. 여기서, 컴퓨터는 프로그램가능 프로세서, 데이터 저장 시스템(휘발성 메모리, 비휘발성 메모리, 또는 다른 종류의 저장 시스템이거나 이들의 조합을 포함함) 및 적어도 한 개의 커뮤니케이션 인터페이스를 포함한다. 예컨대, 프로그램가능 컴퓨터는 서버, 네트워크 기기, 셋탑 박스, 내장형 장치, 컴퓨터 확장 모듈, 개인용 컴퓨터, 랩탑, PDA(Personal Data Assistant), 클라우드 컴퓨팅 시스템 또는 모바일 장치 중 하나일 수 있다.Various implementations of the systems and techniques described herein may be implemented by a programmable computer. Here, the computer includes a programmable processor, a data storage system (including volatile memory, non-volatile memory, or other types of storage systems, or combinations thereof) and at least one communication interface. For example, a programmable computer may be one of a server, network device, set top box, embedded device, computer expansion module, personal computer, laptop, personal data assistant (PDA), cloud computing system, or mobile device.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an example of the technical idea of the present embodiment, and various modifications and variations can be made to those skilled in the art without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical idea of the present embodiment, but to explain, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of this embodiment should be construed according to the claims below, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of rights of this embodiment.
(부호의 설명)(Description of code)
20: 운전 행동 감지 장치20: driving behavior detection device
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은, 본 명세서에 그 전체가 참고로서 포함되는, 2021년 10월 28일에 한국에 출원한 특허출원번호 제10-2021-0146138호 및 2021년 12월 02일에 한국에 출원한 특허출원번호 제10-2021-0171257호에 대해 우선권을 주장한다.This patent application is a patent application number 10-2021-0146138 filed in Korea on October 28, 2021 and a patent filed in Korea on December 02, 2021, which are incorporated herein by reference in their entirety. Priority is claimed for Application No. 10-2021-0171257.

Claims (15)

  1. 차량 좌표계에 대한 센서 좌표계의 롤 각 및 피치 각을 추정하는 과정;estimating roll angles and pitch angles of the sensor coordinate system with respect to the vehicle coordinate system;
    상기 롤 각 및 상기 피치 각을 이용하여, 상기 센서 좌표계 상의 가속도 및 각속도를 대상 좌표계 상의 가속도 및 각속도로 변환하는 과정; 및converting the acceleration and angular velocity on the sensor coordinate system into the acceleration and angular velocity on the target coordinate system using the roll angle and the pitch angle; and
    상기 대상 좌표계 상의 가속도 및 각속도를 이용하여 차량의 운전 행동을 감지하는 과정A process of detecting a driving behavior of a vehicle using acceleration and angular velocity on the target coordinate system
    을 포함하는 것을 특징으로 하는 운전 행동 감지 방법.Driving behavior detection method comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 차량의 운전 행동을 감지하는 과정은,The process of detecting the driving behavior of the vehicle,
    상기 대상 좌표계에서 상기 차량의 수직 방향에 대응하는 축에 대한 각속도를 기초로 상기 차량의 회전을 감지하는 과정Detecting the rotation of the vehicle based on the angular velocity about an axis corresponding to the vertical direction of the vehicle in the target coordinate system
    을 포함하는 것을 특징으로 하는 운전 행동 감지 방법.Driving behavior detection method comprising a.
  3. 제2항에 있어서,According to claim 2,
    상기 차량의 회전을 감지하는 과정은,The process of detecting the rotation of the vehicle,
    상기 대상 좌표계에서 상기 차량의 수직 방향에 대응하는 축에 대한 각속도가 양의 값을 가지면 상기 차량이 반시계방향으로 회전하는 것으로 판단하고, 음의 값을 가지면 상기 차량이 시계방향으로 회전하는 것으로 판단하는 것을 특징으로 하는 운전 행동 감지 방법.If the angular velocity with respect to an axis corresponding to the vertical direction of the vehicle in the target coordinate system has a positive value, it is determined that the vehicle rotates counterclockwise, and if it has a negative value, it is determined that the vehicle rotates clockwise. Driving behavior detection method characterized in that.
  4. 제1항에 있어서,According to claim 1,
    상기 차량의 운전 행동을 감지하는 과정은,The process of detecting the driving behavior of the vehicle,
    상기 대상 좌표계에서 상기 차량의 수직 방향과 직교하는 두 축 중에서 기준 축을 결정하는 과정;determining a reference axis among two axes orthogonal to a vertical direction of the vehicle in the target coordinate system;
    상기 기준 축에 대한 가속도를 기초로, 상기 차량의 가감속을 감지하는 과정The process of detecting acceleration and deceleration of the vehicle based on the acceleration with respect to the reference axis
    을 포함하는 것을 특징으로 하는 운전 행동 감지 방법.Driving behavior detection method comprising a.
  5. 제4항에 있어서,According to claim 4,
    상기 결정하는 과정은,The process of determining
    상기 차량의 수직 방향과 직교하는 두 축 중에서 가속도의 크기가 더 큰 축을 기준 축으로 결정하는 것을 특징으로 하는 운전 행동 감지 방법.The method of detecting driving behavior, characterized in that determining an axis having a greater magnitude of acceleration as a reference axis among two axes orthogonal to the vertical direction of the vehicle.
  6. 제4항에 있어서,According to claim 4,
    상기 결정하는 과정은,The process of determining
    상기 차량의 속도 증가를 감지하는 과정; 및detecting an increase in speed of the vehicle; and
    상기 차량의 속도가 증가하는 시점의 상기 기준 축에 대한 가속도의 부호를 기준 부호로 결정하는 과정Determining the sign of the acceleration with respect to the reference axis at the time when the speed of the vehicle increases as a reference sign
    을 포함하는 것을 특징으로 하는 운전 행동 감지 방법.Driving behavior detection method comprising a.
  7. 제6항에 있어서,According to claim 6,
    상기 차량의 가감속을 감지하는 과정은,The process of detecting the acceleration and deceleration of the vehicle,
    상기 기준 부호와 상기 기준 축에 대한 가속도의 부호가 동일하면 상기 차량이 가속하는 것으로 판단하고, 상기 기준 부호와 상기 기준 축에 대한 가속도의 부호가 상이하면 상기 차량이 감속하는 것으로 판단하는 것을 특징으로 하는 운전 행동 감지 방법.If the reference sign and the sign of acceleration with respect to the reference axis are the same, it is determined that the vehicle is accelerating, and if the reference sign and the sign of acceleration with respect to the reference axis are different, it is determined that the vehicle is decelerating. A driving behavior detection method.
  8. 제1항에 있어서,According to claim 1,
    상기 변환하는 과정은,The conversion process is
    상기 롤 각 및 상기 피치 각을 이용하여, 상기 센서 좌표계 상의 가속도 및 각속도를 대상 좌표계 상의 가속도 및 각속도로 변환하기 위한 변환행렬을 산출하는 과정Calculating a conversion matrix for converting the acceleration and angular velocity on the sensor coordinate system into the acceleration and angular velocity on the target coordinate system using the roll angle and the pitch angle
    을 포함하는 것을 특징으로 하는 운전 행동 감지 방법.Driving behavior detection method comprising a.
  9. 제1항에 있어서,According to claim 1,
    상기 추정하는 과정은,The estimation process is
    차량이 정속도 주행 또는 정지 중인지를 판단하는 과정; 및determining whether the vehicle is traveling at a constant speed or is stopped; and
    상기 차량의 정속도 주행 또는 정지 중에 측정된 상기 가속도를 기초로, 상기 차량 좌표계에 대한 상기 센서 좌표계의 롤 각 및 피치 각을 추정하는 과정;estimating a roll angle and a pitch angle of the sensor coordinate system with respect to the vehicle coordinate system based on the acceleration measured while the vehicle is traveling at constant speed or stopped;
    을 포함하는 것을 특징으로 하는 운전 행동 감지 방법.Driving behavior detection method comprising a.
  10. 차량 좌표계에 대한 센서 좌표계의 롤 각 및 피치 각을 추정하는 추정부;an estimation unit for estimating roll and pitch angles of the sensor coordinate system with respect to the vehicle coordinate system;
    상기 롤 각 및 상기 피치 각을 이용하여, 상기 센서 좌표계 상의 가속도 및 각속도를 대상 좌표계 상의 가속도 및 각속도로 변환하는 변환부; 및a conversion unit that converts the acceleration and angular velocity on the sensor coordinate system into acceleration and angular velocity on the target coordinate system using the roll angle and the pitch angle; and
    상기 대상 좌표계 상의 가속도 및 각속도를 이용하여 차량의 운전 행동을 감지하는 감지부A sensing unit for detecting a driving behavior of a vehicle using acceleration and angular velocity on the target coordinate system.
    를 포함하는 것을 특징으로 하는 운전 행동 감지 장치.Driving behavior detection device comprising a.
  11. 제10항에 있어서,According to claim 10,
    상기 감지부는,the sensor,
    상기 대상 좌표계에서 상기 차량의 수직 방향에 대응하는 축에 대한 각속도를 기초로 상기 차량의 회전을 감지하는 것을 특징으로 하는 운전 행동 감지 장치.The driving behavior detection apparatus of claim 1 , wherein rotation of the vehicle is sensed based on an angular velocity about an axis corresponding to a vertical direction of the vehicle in the target coordinate system.
  12. 제11항에 있어서,According to claim 11,
    상기 감지부는,the sensor,
    상기 대상 좌표계에서 상기 차량의 수직 방향에 대응하는 축에 대한 각속도가 양의 값을 가지면 상기 차량이 반시계방향으로 회전하는 것으로 판단하고, 음의 값을 가지면 상기 차량이 시계방향으로 회전하는 것으로 판단하는 것을 특징으로 하는 운전 행동 감지 장치.If the angular velocity with respect to an axis corresponding to the vertical direction of the vehicle in the target coordinate system has a positive value, it is determined that the vehicle rotates counterclockwise, and if it has a negative value, it is determined that the vehicle rotates clockwise. Driving behavior detection device characterized in that.
  13. 제10항에 있어서,According to claim 10,
    상기 대상 좌표계에서 상기 차량의 수직 방향과 직교하는 두 축 중 어느 한 축에 대한 가속도를 기초로 상기 차량의 가감속을 감지하는 것을 특징으로 하는 운전 행동 감지 장치.The driving behavior detection device according to claim 1 , wherein acceleration and deceleration of the vehicle are sensed based on an acceleration of one of two axes orthogonal to a vertical direction of the vehicle in the target coordinate system.
  14. 제13항에 있어서,According to claim 13,
    상기 대상 좌표계에서 상기 차량의 수직 방향과 직교하는 두 축 중에서 가속도의 크기가 더 큰 축을 기준 축으로 결정하고, 상기 차량의 속도 증가를 감지하여 상기 차량의 속도가 증가하는 시점의 상기 기준 축에 대한 가속도의 부호를 기준 부호로 결정하는 결정부Among the two axes orthogonal to the vertical direction of the vehicle in the target coordinate system, an axis having a greater magnitude of acceleration is determined as a reference axis, and an increase in the speed of the vehicle is detected to determine the reference axis at the time when the speed of the vehicle increases. Determining unit for determining the sign of acceleration as a reference sign
    를 더 포함하는 것을 특징으로 하는 운전 행동 감지 장치.Driving behavior detection device further comprising a.
  15. 제14항에 있어서,According to claim 14,
    상기 감지부는,the sensor,
    상기 기준 부호와 상기 기준 축에 대한 가속도의 부호가 동일하면 상기 차량이 가속하는 것으로 판단하고, 상기 기준 부호와 상기 기준 축에 대한 가속도의 부호가 상이하면 상기 차량이 감속하는 것으로 판단하는 것을 특징으로 하는 운전 행동 감지 장치.If the reference sign and the sign of acceleration with respect to the reference axis are the same, it is determined that the vehicle is accelerating, and if the reference sign and the sign of acceleration with respect to the reference axis are different, it is determined that the vehicle is decelerating. driving behavior detection device.
PCT/KR2022/015281 2021-10-28 2022-10-11 Method and apparatus for detecting driving behavior without yaw calculation WO2023075206A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0146138 2021-10-28
KR20210146138 2021-10-28
KR10-2021-0171257 2021-12-02
KR1020210171257A KR102544060B1 (en) 2021-10-28 2021-12-02 Method and Device for Detecting Driving Behavior without Calculating Yaw

Publications (1)

Publication Number Publication Date
WO2023075206A1 true WO2023075206A1 (en) 2023-05-04

Family

ID=86158049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015281 WO2023075206A1 (en) 2021-10-28 2022-10-11 Method and apparatus for detecting driving behavior without yaw calculation

Country Status (1)

Country Link
WO (1) WO2023075206A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276094A (en) * 2008-05-12 2009-11-26 Sumitomo Electric Ind Ltd Attitude determination apparatus and method, movement direction determination apparatus, position determination apparatus, and computer program
US20130338915A1 (en) * 2011-03-02 2013-12-19 Seiko Epson Corporation Attitude determination method, position calculation method, and attitude determination device
US20170061710A1 (en) * 2015-09-01 2017-03-02 Ford Global Technologies, Llc Motion compensation for on-board vehicle sensors
JP6257865B2 (en) * 2015-10-15 2018-01-10 三菱電機株式会社 Positioning device and positioning method
WO2019081747A1 (en) * 2017-10-26 2019-05-02 Sony Semiconductor Solutions Corporation Heading determination device and method, rendering device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276094A (en) * 2008-05-12 2009-11-26 Sumitomo Electric Ind Ltd Attitude determination apparatus and method, movement direction determination apparatus, position determination apparatus, and computer program
US20130338915A1 (en) * 2011-03-02 2013-12-19 Seiko Epson Corporation Attitude determination method, position calculation method, and attitude determination device
US20170061710A1 (en) * 2015-09-01 2017-03-02 Ford Global Technologies, Llc Motion compensation for on-board vehicle sensors
JP6257865B2 (en) * 2015-10-15 2018-01-10 三菱電機株式会社 Positioning device and positioning method
WO2019081747A1 (en) * 2017-10-26 2019-05-02 Sony Semiconductor Solutions Corporation Heading determination device and method, rendering device and method

Similar Documents

Publication Publication Date Title
WO2018066754A1 (en) Method for estimating attitude of vehicle by using lidar sensor
WO2018124337A1 (en) Object detection method and apparatus utilizing adaptive area of interest and discovery window
WO2018143625A1 (en) System for precision measurement of structure and method therefor
WO2012005559A2 (en) Method and portable terminal for estimating step length of pedestrian
WO2014017693A1 (en) System and method for correcting gps using image recognition information
JP6190423B2 (en) Estimation apparatus, movement direction estimation method, and movement direction estimation program
WO2014046419A1 (en) Apparatus for inferring pedestrian position based on pedestrian movement detection, and method therefor
Cismas et al. Crash detection using imu sensors
WO2016003060A1 (en) Indoor navigation service providing method and device
WO2019172461A1 (en) Real-time acceleration sensor correction device for measuring vehicle movement, and acceleration sensor correction method using same
KR20080086711A (en) Initial alignment method of inertial navigation system
WO2014092237A1 (en) System for real-time monitoring of marine environment using mobile communication network
WO2021045445A1 (en) Driver's license test processing device
CN111121755B (en) Multi-sensor fusion positioning method, device, equipment and storage medium
US9599633B2 (en) Mounting angle calibration for an in-vehicle accelerometer device
WO2023075206A1 (en) Method and apparatus for detecting driving behavior without yaw calculation
US10168156B2 (en) Orient a mobile device coordinate system to a vehicular coordinate system
CN107270902B (en) MEMS inertial measurement unit with cross-axis coupling error compensation
WO2021221334A1 (en) Device for generating color map formed on basis of gps information and lidar signal, and control method for same
WO2017213289A1 (en) Vehicle speed measurement apparatus and method for vehicle accident image recording device
WO2017030233A1 (en) Method for position detection by mobile computing device, and mobile computing device performing same
WO2021075828A1 (en) Device and method for measuring distance using laser
US6502055B1 (en) Method and apparatus for determining the geographic heading of a body
WO2022191389A1 (en) Method and apparatus for detecting malicious plug re-installation by policyholder of auto insurance linked to mileage
KR102544060B1 (en) Method and Device for Detecting Driving Behavior without Calculating Yaw

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887409

Country of ref document: EP

Kind code of ref document: A1