WO2023075004A1 - Support unit and substrate processing apparatus comprising same - Google Patents

Support unit and substrate processing apparatus comprising same Download PDF

Info

Publication number
WO2023075004A1
WO2023075004A1 PCT/KR2021/018055 KR2021018055W WO2023075004A1 WO 2023075004 A1 WO2023075004 A1 WO 2023075004A1 KR 2021018055 W KR2021018055 W KR 2021018055W WO 2023075004 A1 WO2023075004 A1 WO 2023075004A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support
support unit
area
unit
Prior art date
Application number
PCT/KR2021/018055
Other languages
French (fr)
Korean (ko)
Inventor
지성구
Original Assignee
피에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피에스케이 주식회사 filed Critical 피에스케이 주식회사
Publication of WO2023075004A1 publication Critical patent/WO2023075004A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Definitions

  • the present invention relates to a support unit and an apparatus for processing a substrate including the same, and more particularly, to a substrate processing apparatus having a support unit for supporting a substrate.
  • Semiconductor integrated circuits are generally very small and thin silicon chips, but are composed of various electronic components. Various processes such as a cleaning process, a deposition process, a photo process, an etching process, and an ion implantation process are performed until one semiconductor chip is produced.
  • An apparatus in which a semiconductor manufacturing process is performed includes a chuck for supporting a substrate such as a semiconductor wafer.
  • FIG. 1 is a view schematically showing damage to the lower surface of a substrate due to contact between a substrate and a support unit in a general substrate processing apparatus.
  • a chuck directly contacts a wafer and has a great influence on the yield of a semiconductor process.
  • the chuck causes damage to the bottom surface of the wafer by directly contacting the bottom surface of the wafer. Particles generated during the process of damage to the lower surface of the wafer float in the processing space and interfere with the process. In addition, the generated particles adhere to the lower surface of the wafer and adversely affect subsequent processes.
  • temperature uniformity of the wafer is important.
  • a warpage phenomenon of the wafer occurs.
  • the proper action of the plasma on the wafer is hindered.
  • An object of the present invention is to provide a support unit capable of minimizing damage to a substrate supported by the support unit and a substrate processing apparatus including the same.
  • Another object of the present invention is to provide a support unit and a substrate processing apparatus including the support unit capable of securing temperature uniformity of the substrate while supporting the substrate with a minimum contact area.
  • an object of the present invention is to provide a support unit capable of preventing warping of a substrate supported by the support unit and a substrate processing apparatus including the same.
  • An apparatus for processing a substrate includes a housing providing a processing space, a support unit disposed in the processing space to support a substrate, and a plasma source provided on an upper portion of the housing and generating plasma from a process gas, including:
  • the upper surface is composed of a first area including the center and a second area surrounding the first area, the support unit is formed between the first area and the second area, and is recessed inward from the upper surface of the support unit. grooves are formed, and the support unit includes a plurality of first support protrusions formed in the first region and supporting the lower surface of the substrate, and a plurality of first support protrusions formed in the second region and supporting the lower surface of the substrate.
  • a first form including two support protrusions and an adsorption hole formed on a lower surface of the groove to vacuum the substrate and forming a virtual straight line connecting the plurality of first support protrusions to the plurality of second support protrusions. It can form symmetry with the second form formed by the connected imaginary straight line.
  • the support unit may further include a heat transfer unit that transfers heat to the substrate via the support unit.
  • a third area surrounding the second area is further provided on the upper surface of the support unit, the groove is further formed between the second area and the third area in the support unit, and the support
  • the unit is formed in the third region and further includes a plurality of third support protrusions for supporting an edge and a lower surface of the substrate, and a virtual straight line connecting the second shape and the plurality of third support protrusions forms a first portion.
  • the three forms can form symmetry with each other.
  • upper surfaces of the first support protrusion, the second support protrusion, and the third support protrusion may be formed to be rounded.
  • the first shape, the second shape, and the third shape may be a triangle.
  • the support unit may include a vacuum line connected to the suction hole and installed inside the support unit, and a pressure reducing member that transfers negative pressure to the vacuum line.
  • the present invention provides a support unit for supporting a substrate on an upper surface.
  • the support unit is composed of a first region including a center and a second region surrounding the first region on the upper surface of the support unit, and is formed between the first region and the second region in the support unit, and the support unit is formed between the first region and the second region.
  • a groove recessed inward from an upper surface of the unit is formed, the support unit is formed in the first region, a plurality of first support protrusions supporting the lower surface of the substrate, formed in the second region, and A first form comprising a plurality of second support protrusions supporting a lower surface and an suction hole formed on the lower surface of the groove to vacuum-suck the substrate, and a virtual straight line connecting the plurality of first support protrusions is formed as described above. Symmetry may be formed with a second shape formed by a virtual straight line connecting a plurality of second support protrusions.
  • the support unit may further include a heat transfer unit that transfers heat to the substrate via the support unit.
  • a third area surrounding the second area is further provided on the upper surface of the support unit, the groove is further formed between the second area and the third area in the support unit, and the support
  • the unit is formed in the third region and further includes a plurality of third support protrusions for supporting an edge and a lower surface of the substrate, and a virtual straight line connecting the second shape and the plurality of third support protrusions forms a first portion.
  • the three forms can form symmetry with each other.
  • upper surfaces of the first support protrusion, the second support protrusion, and the third support protrusion may be formed to be rounded.
  • the first shape, the second shape, and the third shape may be a triangle.
  • the support unit may include a vacuum line connected to the suction hole and installed inside the support unit, and a pressure reducing member that transfers negative pressure to the vacuum line.
  • damage to a substrate supported by a support unit can be minimized.
  • FIG. 1 is a view schematically showing damage to the lower surface of a substrate due to contact between a substrate and a support unit in a general substrate processing apparatus.
  • FIG. 2 is a schematic view of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating an embodiment of a process chamber performing a plasma treatment process among process chambers of the substrate processing apparatus of FIG. 2 .
  • FIG. 4 is a cut perspective view schematically showing a state in which the support unit according to the embodiment of FIG. 3 is cut.
  • FIG. 5 is a view schematically showing the support unit according to the embodiment of FIG. 3 viewed from above.
  • FIG. 6 is a view showing a temperature change value of a substrate and a degree of warpage of a substrate according to an arrangement of support protrusions formed on an upper surface of a support unit.
  • FIG. 7 is a diagram showing a temperature change value of a substrate supported by a support unit and a degree of warpage of the substrate according to the exemplary embodiment of FIG. 3 .
  • the substrate processing apparatus 1 has a front end module (Equipment Front End Module, EFEM) 20 and a processing module 30 .
  • the front end module 20 and the processing module 30 are arranged in one direction.
  • the direction in which the front end module 20 and the processing module 30 are disposed is defined as a first direction (2)
  • a direction perpendicular to the same plane as the first direction (2) is defined as a second direction (4).
  • the front end module 20 has a load port (Load port, 200) and a transfer frame (220).
  • the load port 200 is disposed in front of the front end module 20 in the first direction 2 .
  • the load port 200 has a plurality of support parts 202 . Each support part 202 is arranged in a row in the second direction 4, and a carrier C (eg, a cassette, FOUP, etc.) is settled. In the carrier C, a substrate W to be subjected to a process and a substrate W after processing are accommodated.
  • the transfer frame 220 is disposed between the load port 200 and the processing module 30 .
  • the transfer frame 220 includes a first transfer robot 222 disposed therein and transferring the substrate W between the load port 200 and the processing module 30 .
  • the first transfer robot 222 moves along the transfer rail 224 provided in the second direction (4) to transfer the substrate (W) between the carrier (C) and the processing module (30).
  • the processing module 30 includes a load lock chamber 300 , a transfer chamber 400 , and a process chamber 500 .
  • the load lock chamber 300 is disposed adjacent to the transport frame 220 .
  • the load lock chamber 300 may be disposed between the transfer chamber 400 and the front end module 20 .
  • the load lock chamber 300 serves as a waiting space before a substrate W to be processed is transferred to the process chamber 500 or before a substrate W after processing is transferred to the front module 20. to provide.
  • the transfer chamber 400 is disposed adjacent to the load lock chamber 300 .
  • the transfer chamber 400 When viewed from the top, the transfer chamber 400 has a polygonal body.
  • the transfer chamber 400 may have a pentagonal body when viewed from the top.
  • a load lock chamber 300 and a plurality of process chambers 500 are disposed outside the body along the circumference of the body.
  • a passage (not shown) through which the substrate W enters and exits is formed on each sidewall of the body, and the passage connects the transfer chamber 400 and the load lock chamber 300 or the process chambers 500 .
  • Each passage is provided with a door (not shown) that opens and closes the passage to seal the inside.
  • a second transfer robot 420 that transfers the substrate W between the load lock chamber 300 and the process chamber 500 is disposed in the inner space of the transfer chamber 400 .
  • the second transfer robot 420 transfers an unprocessed substrate W waiting in the load lock chamber 300 to the process chamber 500 or transfers a substrate W after processing has been completed to the load lock chamber 300. do.
  • the substrates W are transferred between the process chambers 500 in order to sequentially provide the substrates W to the plurality of process chambers 500 .
  • load lock chambers 300 are disposed on sidewalls adjacent to the front end module 20, respectively, and process chambers 500 are disposed on the remaining sidewalls. are placed consecutively.
  • the shape of the transfer chamber 400 is not limited thereto, and may be modified and provided in various shapes according to required process modules.
  • the process chamber 500 is disposed along the circumference of the transfer chamber 400 .
  • a plurality of process chambers 500 may be provided.
  • processing of the substrate W is performed.
  • the process chamber 500 receives the substrate W from the second transfer robot 420 and processes the substrate W, and provides the substrate W upon completion of the process to the second transfer robot 420 .
  • Processes performed in each process chamber 500 may be different from each other.
  • FIG. 3 is a diagram schematically illustrating a process chamber in which a plasma treatment process is performed among process chambers of the substrate processing apparatus of FIG. 2 .
  • the process chamber 500 for performing a plasma treatment process will be described.
  • a process chamber 500 performs a predetermined process on a substrate W using plasma.
  • the thin film on the substrate W may be etched or ashed.
  • the thin film may be various types of films such as a polysilicon film, an oxide film, and a silicon nitride film.
  • the thin film may be a natural oxide film or a chemically generated oxide film.
  • the process chamber 500 may include a process processing unit 520 , a plasma generating unit 540 , a diffusion unit 560 , and an exhaust unit 580 .
  • the processing unit 520 provides a processing space 5200 in which a substrate W is placed and processing of the substrate W is performed.
  • a process gas is discharged in a plasma generating unit 540 to be described later to generate plasma, and the plasma is supplied to the processing space 5200 of the process processing unit 520 .
  • Process gases remaining in the process processor 520 and/or reaction by-products generated in the process of processing the substrate W are discharged to the outside of the process chamber 500 through an exhaust unit 580 described below. Due to this, the pressure in the process processing unit 520 can be maintained at the set pressure.
  • the process unit 520 may include a housing 5220 , a support unit 5240 , an exhaust baffle 5260 , and a baffle 5280 .
  • a processing space 5200 for performing a substrate processing process may be provided inside the housing 5220 .
  • An outer wall of the housing 5220 may be provided as a conductor.
  • the outer wall of the housing 5220 may be made of a metal material including aluminum.
  • An upper portion of the housing 5220 may be open, and an opening (not shown) may be formed in a side wall.
  • the substrate W enters and exits the inside of the housing 5220 through the opening.
  • the opening (not shown) may be opened and closed by an opening and closing member such as a door (not shown).
  • an exhaust hole 5222 is formed on the bottom surface of the housing 5220 .
  • the exhaust hole 5222 may be connected to components including an exhaust unit 580 to be described later.
  • FIG. 4 is a cut perspective view schematically showing a state in which the support unit according to the embodiment of FIG. 3 is cut.
  • FIG. 5 is a view schematically showing the support unit according to the embodiment of FIG. 3 viewed from above.
  • a support unit according to an embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5 .
  • a support unit 5240 is disposed inside a housing 5220 .
  • support unit 5240 may be disposed within processing space 5200 .
  • the support unit 5240 supports the substrate W in the processing space 5200 .
  • the support unit 5240 may be a chuck.
  • the support unit 5240 may include a body 5241 , a support shaft 5242 , a heat transfer unit 5243 , a support protrusion 5244 , and a vacuum unit 5248 .
  • the body 5241 has an upper surface on which the substrate W is seated.
  • An upper surface of the body 5241 may be provided in a substantially circular shape when viewed from above.
  • the upper surface of the body 5241 may have a larger diameter than the substrate W.
  • the upper surface of the body 5241 may have a larger area than the upper surface of the substrate W when viewed from above.
  • a protrusion may be formed along the outer side of the upper surface of the body 5241 . The protrusion may be formed to protrude upward from the upper surface of the body 5241 .
  • the height from the upper surface of the body 5241 to the upper end of the protrusion is greater than or equal to the height from the upper surface of the body 5241 to the upper end of the substrate W when the substrate W is seated on the support protrusion 5244 described below.
  • An inner surface of the protruding portion may be provided to contact an outer surface of the substrate W when the substrate W is seated on the support protrusion 5244 .
  • a heat transfer unit 5243 and a vacuum unit 5248 to be described below may be installed inside the body 5241 .
  • the upper surface of the body 5241 may be divided into a first area A1, a second area A2, and a third area A3.
  • the first area A1 is defined as an area including the center of the body 5241 .
  • the second area A2 is defined as an area surrounding the first area A1.
  • the third area A3 defines an area surrounding the second area A2.
  • the first area A1 , the second area A2 , and the third area A3 may be sequentially positioned from the center of the body 5241 toward the outside.
  • a first support protrusion 5245 to be described later is formed in the first area A1.
  • a second support protrusion 5246 to be described later is formed in the second area A2.
  • a third support protrusion 5247 to be described later is formed in the third area A3.
  • a groove G may be formed in the body 5241 .
  • a groove G may be formed on an upper surface of the body 5241 .
  • the groove G may be formed by indenting inward from the top surface of the body 5241 .
  • the groove G may be recessed downward from the upper surface of the body 5241 .
  • the groove (G) may be formed in a generally ring shape.
  • the groove G may be formed between the first area A1 and the second area A2. Also, the groove G may be formed between the second area A2 and the third area A3.
  • An adsorption hole H may be formed in the groove G.
  • An adsorption hole H may be formed on the lower surface of the groove G.
  • a plurality of suction holes H may be provided along the longitudinal direction of the groove G.
  • the suction hole H may communicate with a vacuum unit 5249 to be described later.
  • the adsorption hole (H) may provide negative pressure to the groove (G).
  • the adsorption hole (H) forms a negative pressure in the inner space of the groove (G), so that the negative pressure is formed in the space formed between the support protrusion 5244 described later, the lower surface of the substrate (W), and the protrusion formed on the outer side of the body 5241. can form Accordingly, the lower surface of the substrate W may be adsorbed and supported by vacuum force.
  • the support shaft 5242 couples to the body 5241.
  • the support shaft 5242 may be coupled to the lower surface of the body 5241.
  • the support shaft 5242 may be provided so that a longitudinal direction is directed in a vertical direction.
  • a vacuum line 5248a to be described below may be formed inside the support shaft 5242 .
  • the support shaft 5242 can move the object.
  • the support shaft 5242 may move the substrate W in a vertical direction.
  • the support shaft 5242 is coupled to the body 5241 to move the body 5241 up and down to move the substrate W up and down.
  • the heat transfer unit 5243 heats the substrate W.
  • the heat transfer unit 5243 may be buried inside the body 5241.
  • the heat transfer unit 5243 heats the substrate W by increasing the temperature of the body 5241 . That is, the heat transfer unit 5243 controls the temperature of the substrate W via the body 5241.
  • the heat transfer unit 5243 is connected to a power source not shown.
  • the heat transfer unit 5243 generates heat by resisting a current applied from a power supply not shown. The generated heat is transferred to the substrate W through the body 5241.
  • the substrate W may be maintained at a predetermined temperature by heat generated by the heat transfer unit 5243 .
  • a plurality of heat transfer units 5243 may be provided as spiral coils.
  • the heat transfer units 5243 may be provided in different regions of the body 5241, respectively.
  • heat transfer units 5243 for heating the central region of the body 5241 and the edge region of the body 5241 are provided, respectively, and the degree of heat generation can be independently controlled.
  • the heat transfer unit 5243 may be provided with a heating element such as tungsten.
  • the support protrusion 5244 is installed on the body 5241.
  • the support protrusion 5244 is installed on the upper surface of the body 5241.
  • the support protrusion 5244 supports the substrate W.
  • the upper end of the support protrusion 5244 supports the lower end of the substrate W.
  • the support protrusion 5244 may be integrally formed with the body 5241. However, it is not limited thereto, and the support protrusion 5244 may not be integrally formed with the body 5241.
  • a plurality of support protrusions 5244 may be formed.
  • the support protrusion 5244 may be formed in a substantially cylindrical shape. According to one example, the upper end of the support protrusion 5244 may be formed to be rounded. Accordingly, the support protrusion 5244 according to an example may make point contact with the lower surface of the substrate W.
  • the support protrusion 5244 may include a first support protrusion 5245 , a second support protrusion 5246 , and a third support protrusion 5247 .
  • the first support protrusion 5245 may be formed in the first area A1 including the center of the body 5241 among the upper surfaces of the body 5241 .
  • three first support protrusions 5245 may be provided in the first area A1.
  • a first shape formed by an imaginary straight line connecting the plurality of first support protrusions 5245 may be formed in a first triangle shape having one side having a first length.
  • the first support protrusion 5245 may support an area including the center of the substrate W.
  • the second support protrusion 5246 may be formed in the second area A2 surrounding the first area A1 of the upper surface of the body 5241 .
  • three second support protrusions 5246 may be provided in the second area A2 .
  • a second shape formed by an imaginary straight line connecting a plurality of second support protrusions 5246 may be a second triangle having one side having a second length.
  • the third support protrusion 5247 may be formed in the third area A3 surrounding the second area A2 of the upper surface of the body 52441 .
  • three third support protrusions 5247 may be provided in the third area A3.
  • a third shape formed by an imaginary straight line connecting a plurality of third support protrusions 5247 may form a third triangle having one side having a third length.
  • the first shape of the first support protrusion 5245 may be formed symmetrically with the second shape of the second support protrusion 5246 .
  • the first shape may be a shape in which the second shape is upside down.
  • the second shape of the second support protrusion 5246 and the third shape of the third support protrusion 5247 may be symmetrical to each other.
  • the second shape may be a shape in which the third shape is upside down.
  • the vacuum unit 5248 may provide vacuum force to the inner space of the groove G.
  • the vacuum unit 5248 may adsorb the substrate W to the support unit 5240 by applying negative pressure to the inner space of the groove G.
  • the vacuum unit 5248 may include a vacuum line 5248a and a pressure reducing member 5248b.
  • the vacuum line 5248a may be buried inside the vacuum unit 5240.
  • the vacuum line 5248a may be formed inside the body 5241 and the support shaft 5242.
  • the vacuum line 5248a may be installed at a location that does not overlap with the heat transfer unit 5243.
  • One end of the vacuum line 5248a may be connected to the suction hole H.
  • the other end of the vacuum line 5248a may be connected to a pressure reducing member 5248b to be described later.
  • the pressure reducing member 5248b may provide negative pressure to the groove G.
  • the pressure reducing member 5248b provides a vacuum force so that the substrate W is fixed to the support unit 5240 .
  • the pressure reducing member 5248b may be a pump. However, it is not limited thereto, and the pressure reducing member 5248b may be variously modified and provided as a known device that provides negative pressure.
  • FIG. 6 is a view showing a temperature change value of a substrate and a degree of warpage of a substrate according to an arrangement of support protrusions formed on an upper surface of a support unit.
  • FIG. 7 is a diagram showing a temperature change value of a substrate supported by a support unit and a degree of warpage of the substrate according to the exemplary embodiment of FIG. 3 .
  • Temp. (VAG) expressed in FIGS. 6 and 7 means the average temperature transmitted to the substrate W, and Temp. It means the difference value, and Bare Wafer Warpage means whether warpage of the substrate occurs.
  • the support unit according to an embodiment of the present invention ( 5240) to explain the effect.
  • the average temperature of the substrate W was measured as 245.9 degrees Celsius and the temperature deviation was measured as 10.5 degrees Celsius.
  • the substrate W does not warp.
  • the average temperature of the substrate W is measured at 247.5 degrees Celsius, and the temperature deviation is 10 degrees Celsius. has been measured
  • the temperature of the substrate W is 251.3 degrees Celsius and the temperature deviation of the substrate W is 7.4 degrees Celsius. was measured in degrees. In this case, the substrate W was warped.
  • the average temperature of the substrate W was measured as 248.9 degrees Celsius, and the temperature deviation for each region of the substrate W showed a lower temperature deviation value than other experimental examples shown in FIG. 6 at 4.3 degrees Celsius.
  • the temperature of the substrate (W) was uniformly formed, and at the same time, the phenomenon of bending of the substrate (W) did not occur.
  • the first support protrusion 5245, the second support protrusion 5246, and the third support protrusion 5247 are formed on the upper part of the body 5241 in a divided area.
  • the substrate W can be stably supported using the minimum number of support protrusions 5244 .
  • heat transmitted to the substrate W may be uniformly distributed.
  • contact impact applied to the lower surface of the substrate W may be minimized by using the minimum number of support protrusions 5244 . Accordingly, it is possible to improve the defect rate of the processing process caused by damage to the substrate W.
  • the upper end of the support protrusion 5244 is rounded, the upper end of the support protrusion 5244 and the lower surface of the substrate W may make point contact.
  • damage to the lower surface of the substrate (W) caused by contact can be minimized. Accordingly, when a predetermined process is performed on the substrate W by supporting the substrate W, it is possible to minimize the leakage of particles generated from damage to the substrate W into the processing space.
  • the above-described support unit 5240 has been described as an example of adsorbing the lower surface of the substrate W using a vacuum adsorption method and supporting the substrate W using vacuum pressure.
  • the support unit 5240 is a mechanical fixing method in which the support surface of the substrate W is pressed and fixed using an arm or a clamp, or static electricity between the substrate W and the support unit 5240. It is also possible to support the substrate (W) in a manner in which the substrate (W) is fixed by electrostatic force by generating a.
  • the upper surface of the body 5241 has been described as being divided into a first area A1, a second area A2, and a third area A3 as an example. It is not limited to this.
  • the upper surface of the body 5241 is partitioned into a first area A1 and a second area A2 surrounding the first area A1, and a first support protrusion forming a first shape in the first area A1.
  • 5245 may be provided, and a second support protrusion 5246 forming a second shape symmetrical to the first shape may be provided in the second region A2.
  • a plurality of regions surrounding the third region A3 may be further provided on the upper surface of the body 5241, and support protrusions symmetrical to each other may be further formed in the plurality of regions.
  • the exhaust baffle 5260 uniformly exhausts the plasma for each area in the processing space 5200 .
  • the exhaust baffle 5260 has an annular ring shape.
  • the exhaust baffle 5260 may be positioned between the inner wall of the housing 5220 and the support unit 5240 within the processing space 5200 .
  • a plurality of exhaust holes 5262 are formed in the exhaust baffle 5260 .
  • the exhaust holes 5262 may be provided to face up and down.
  • the exhaust holes 5262 may be provided as holes extending from an upper end to a lower end of the exhaust baffle 5260 .
  • the exhaust holes 5262 may be spaced apart from each other along the circumferential direction of the exhaust baffle 5260 .
  • the baffle 5280 may be disposed between the process processing unit 520 and the plasma generating unit 540 . Also, the baffle 5280 may be disposed between the process processing unit 520 and the diffusion unit 560 . Also, a baffle 5280 may be disposed between the support unit 5240 and the diffusion part 560 . A baffle 5280 may be disposed on top of the support unit 5240 . For example, the baffle 5280 may be disposed on top of the process processing unit 520 .
  • the baffle 5280 may uniformly transfer plasma generated from the plasma generating unit 540 to the processing space 5200 .
  • a baffle hole 5282 may be formed in the baffle 5280 .
  • a plurality of baffle holes 5282 may be provided.
  • the baffle holes 5282 may be provided spaced apart from each other.
  • the baffle holes 5282 may pass through the baffle 5280 from the top to the bottom.
  • the baffle holes 5282 may function as passages through which plasma generated in the plasma generating unit 540 flows into the processing space 5200 .
  • the baffle 5280 may have a plate shape. When viewed from the top, the baffle 5280 may have a disk shape. When the baffle 5280 is viewed in cross section, the height of its top surface may increase from the edge area to the center area. For example, when viewed in cross section, the baffle 5280 may have a shape in which an upper surface slopes upward from an edge area to a central area.
  • the plasma generated by the plasma generator 540 may flow to the edge region of the processing space 5200 along the inclined end surface of the baffle 5280 .
  • the cross section of the baffle 5280 may not be inclined.
  • the baffle 5280 may be provided in a disk shape having a predetermined thickness.
  • the plasma generating unit 540 may excite a process gas supplied from a gas supply unit 5440 to be described later to generate plasma and supply the generated plasma to the processing space 5200 .
  • the plasma generating unit 540 may be located above the process processing unit 520 .
  • the plasma generating unit 540 may be located above the housing 5220 and the diffusion unit 560 to be described later.
  • the process processing unit 520, the diffusion unit 560, and the plasma generating unit 540 are sequentially positioned from the ground along a third direction 6 perpendicular to both the first direction 2 and the second direction 4 can do.
  • the plasma generator 540 may include a plasma chamber 5420, a gas supply unit 5440, and a power application unit 5460.
  • the plasma chamber 5420 may have a shape with open top and bottom surfaces.
  • the plasma chamber 5420 may have a cylindrical shape with open top and bottom surfaces. Openings may be formed at upper and lower ends of the plasma chamber 5420 .
  • the plasma chamber 5420 may have a plasma generating space 5422 .
  • the plasma chamber 5420 may be made of a material including aluminum oxide (Al2O3).
  • An upper surface of the plasma chamber 5420 may be sealed by a gas supply port 5424 .
  • the gas supply port 5424 may be connected to a gas supply unit 5440 to be described later.
  • Process gas may be supplied to the plasma generation space 5422 through the gas supply port 5424 .
  • the process gas supplied to the plasma generating space 5422 may be uniformly distributed to the processing space 5200 through the baffle hole 5282 .
  • the gas supply unit 5440 may supply a process gas.
  • the gas supply unit 5440 may be connected to the gas supply port 5424 .
  • the process gas supplied by the gas supply unit 5440 may include fluorine and/or hydrogen.
  • the power application unit 5460 applies high frequency power to the plasma generating space 5422 .
  • the power application unit 5460 may be a plasma source that generates plasma by exciting a process gas in the plasma generating space 5422 .
  • the power application unit 5460 may include an antenna 5462 and a power source 5464 .
  • Antenna 5462 may be an inductively coupled plasma (ICP) antenna.
  • the antenna 5462 may be provided in a coil shape.
  • the antenna 5462 may wind the plasma chamber 5420 multiple times from the outside of the plasma chamber 5420 .
  • the antenna 5462 may spiral around the plasma chamber 5420 multiple times from the outside of the plasma chamber 5420 .
  • the antenna 5462 may be wound around the plasma chamber 5420 in a region corresponding to the plasma generating space 5422 .
  • One end of the antenna 5462 may be provided at a height corresponding to an upper region of the plasma chamber 5420 when viewed from a front end surface of the plasma chamber 5420 .
  • the other end of the antenna 5462 may be provided at a height corresponding to a lower region of the plasma chamber 5420 when viewed from the front end of the plasma chamber 5420 .
  • a power source 5464 can apply power to the antenna 5462 .
  • the power source 5464 may apply a high-frequency alternating current to the antenna 5462 .
  • the high-frequency alternating current applied to the antenna 5462 may form an induced electric field in the plasma generating space 5422 .
  • the process gas supplied into the plasma generation space 5422 may be converted into a plasma state by obtaining energy required for ionization from the induced electric field.
  • a power source 5464 may be coupled to one end of the antenna 5462.
  • the power source 5464 may be connected to one end of an antenna 5462 provided at a height corresponding to the upper region of the plasma chamber 5420 .
  • the other end of the antenna 5462 may be grounded.
  • the other end of the antenna 5462 provided at a height corresponding to the lower region of the plasma chamber 5420 may be grounded.
  • the present invention is not limited thereto, and one end of the antenna 5462 may be grounded and the power source 5464 may be connected to the other end of the antenna 5462.
  • the diffusion unit 560 may diffuse the plasma generated by the plasma generation unit 540 into the processing space 5200 .
  • the diffusion unit 560 may include a diffusion chamber 5620 .
  • the diffusion chamber 5620 provides a plasma diffusion space 5622 in which plasma generated in the plasma chamber 5420 is diffused. Plasma generated by the plasma generator 540 may diffuse while passing through the plasma diffusion space 5622 . Plasma introduced into the plasma diffusion space 5622 may be uniformly distributed to the processing space 5200 via the baffle 5280 .
  • the diffusion chamber 5620 may be located below the plasma chamber 5420 .
  • a diffusion chamber 5620 may be located between the housing 5220 and the plasma chamber 5420 .
  • the housing 5220, the diffusion chamber 5620, and the plasma chamber 5420 may be sequentially positioned from the ground along the third direction 6.
  • An inner circumferential surface of the diffusion chamber 5620 may be provided with an insulator.
  • an inner circumferential surface of the diffusion chamber 5620 may be made of a material including quartz.
  • the exhaust unit 580 may exhaust process gas and impurities inside the processing unit 520 to the outside.
  • the exhaust unit 580 may exhaust impurities and particles generated in the process of processing the substrate W to the outside of the process chamber 500 .
  • the exhaust unit 580 may exhaust the process gas supplied into the processing space 5200 to the outside of the process chamber 500 .
  • the exhaust 580 may include an exhaust line 5820 .
  • the exhaust line 5820 may be connected to an exhaust hole 5222 formed on a bottom surface of the housing 5220 .
  • the exhaust line 5820 is connected to a pump providing a negative pressure (not shown) to discharge plasma, impurities, and particles remaining in the processing space 5200 to the outside of the housing 5220.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention provides an apparatus for processing a substrate. The apparatus for processing a substrate comprises: a housing providing a processing space; a support unit disposed inside the processing space to support a substrate; and a plasma source provided above the housing and for generating plasma from a process gas. The top surface of the support unit comprises a first area comprising the center and a second area surrounding the first area. A groove, which is formed between the first area and the second area and is inwardly indented from the top surface of the support unit, is formed on the support unit. The support unit comprises: a plurality of first support protrusions formed on the first area and supporting the bottom surface of the substrate; a plurality of second support protrusions formed on the second area and supporting the bottom surface of the substrate; and a suctioning hole formed in the bottom surface of the groove to vacuum suction the substrate. A first shape formed by virtual straight lines connecting the plurality of first support protrusions may form symmetry with a second shape formed by virtual straight lines connecting the plurality of second support protrusions.

Description

지지 유닛 및 이를 포함하는 기판 처리 장치Support unit and substrate processing apparatus including the same
본 발명은 지지 유닛 및 이를 포함하는 기판을 처리하는 장치에 관한 것으로, 더욱 상세하게는 기판을 지지하는 지지 유닛을 가지는 기판 처리 장치에 관한 것이다.The present invention relates to a support unit and an apparatus for processing a substrate including the same, and more particularly, to a substrate processing apparatus having a support unit for supporting a substrate.
반도체 집적회는 일반적으로 매우 작고 얇은 실리콘 칩이지만, 다양한 전자 부품들로 구성되어 있다. 하나의 반도체 칩이 생산되기까지 세정 공정, 증착 공정, 포토 공정, 식각 공정, 그리고 이온 주입 공정과 같은 다양한 공정이 수행된다. 반도체 제조 공정이 수행되는 장치는 반도체 웨이퍼(Wafer)와 같은 기판을 지지하기 위한 척(Chuck)을 구비한다. Semiconductor integrated circuits are generally very small and thin silicon chips, but are composed of various electronic components. Various processes such as a cleaning process, a deposition process, a photo process, an etching process, and an ion implantation process are performed until one semiconductor chip is produced. An apparatus in which a semiconductor manufacturing process is performed includes a chuck for supporting a substrate such as a semiconductor wafer.
도 1은 일반적인 기판 처리 장치에서 기판과 지지 유닛 사이의 접촉에 의해 기판의 하면에 손상이 발생된 모습을 개략적으로 보여주는 도면이다. 도 1을 참조하면, 척은 직접적으로 웨이퍼와 접촉하는 구성으로써, 반도체 공정의 수율에 막대한 영향을 미친다. 척은 웨이퍼의 하면과 직접적으로 접촉함으로써 웨이퍼의 하면에 손상을 야기한다. 웨이퍼의 하면에 손상이 발생되는 과정에서 발생하는 파티클(Particle)은 처리 공간을 부유하며 공정 과정을 방해한다. 또한, 발생된 파티클이 웨이퍼의 하면에 부착되어 후속 공정에서도 악영향을 미친다. 1 is a view schematically showing damage to the lower surface of a substrate due to contact between a substrate and a support unit in a general substrate processing apparatus. Referring to FIG. 1 , a chuck directly contacts a wafer and has a great influence on the yield of a semiconductor process. The chuck causes damage to the bottom surface of the wafer by directly contacting the bottom surface of the wafer. Particles generated during the process of damage to the lower surface of the wafer float in the processing space and interfere with the process. In addition, the generated particles adhere to the lower surface of the wafer and adversely affect subsequent processes.
특히, 플라즈마를 이용하여 웨이퍼를 처리하는 공정에서는 웨이퍼의 온도 균일성이 중요하다. 웨이퍼의 온도가 단위 면적별로 다를 경우, 웨이퍼의 휨(Warpage) 현상이 발생된다. 또한, 웨이퍼의 온도가 단위 면적별로 일정 범위 내로 균일하게 형성되지 않는 경우, 플라즈마가 웨이퍼에 적절히 작용하는 것을 방해한다. In particular, in a process of processing a wafer using plasma, temperature uniformity of the wafer is important. When the temperature of the wafer is different for each unit area, a warpage phenomenon of the wafer occurs. In addition, if the temperature of the wafer is not uniformly formed within a certain range for each unit area, the proper action of the plasma on the wafer is hindered.
본 발명은 지지 유닛에 지지된 기판의 손상을 최소화할 수 있는 지지 유닛 및 이를 포함하는 기판 처리 장치를 제공하는 것을 일 목적으로 한다.An object of the present invention is to provide a support unit capable of minimizing damage to a substrate supported by the support unit and a substrate processing apparatus including the same.
또한, 본 발명은 기판을 최소한의 접촉 면적으로 지지하는 동시에 기판의 온도 균일성을 확보할 수 있는 지지 유닛 및 이를 포함하는 기판 처리 장치를 제공하는 것을 일 목적으로 한다.Another object of the present invention is to provide a support unit and a substrate processing apparatus including the support unit capable of securing temperature uniformity of the substrate while supporting the substrate with a minimum contact area.
또한, 본 발명은 지지 유닛에 지지된 기판에 휨이 발생하는 것을 방지할 수 있는 지지 유닛 및 이를 포함하는 기판 처리 장치를 제공하는 것을 일 목적으로 한다.In addition, an object of the present invention is to provide a support unit capable of preventing warping of a substrate supported by the support unit and a substrate processing apparatus including the same.
본 발명이 해결하고자 하는 과제가 상술한 과제들로 한정되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명의 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problems, and problems not mentioned can be clearly understood by those skilled in the art from this specification and the accompanying drawings. will be.
본 발명은 기판을 처리하는 장치를 제공한다. 기판을 처리하는 장치는 처리 공간을 제공하는 하우징, 상기 처리 공간 내에 배치되어 기판을 지지하는 지지 유닛 및 상기 하우징 상부에 구비되고, 공정 가스로부터 플라즈마를 발생시키는 플라즈마 소스를 포함하되, 상기 지지 유닛의 상면에는 중심을 포함하는 제1영역과 상기 제1영역을 감싸는 제2영역으로 구성되고, 상기 지지 유닛에는 상기 제1영역과 상기 제2영역 사이에 형성되고, 상기 지지 유닛의 상면으로부터 내측으로 만입된 그루브가 형성되고, 상기 지지 유닛은 상기 제1영역에 형성되고, 상기 기판의 하면을 지지하는 복수의 제1지지 돌기, 상기 제2영역에 형성되고, 상기 기판의 하면을 지지하는 복수의 제2지지 돌기 및 상기 그루브의 하면에 형성되어 상기 기판을 진공 흡착하는 흡착 홀을 포함하고, 상기 복수의 제1지지 돌기들을 연결한 가상의 직선이 이루는 제1형태는 상기 복수의 제2지지 돌기들을 연결한 가상의 직선이 이루는 제2형태와 대칭을 형성할 수 있다.The present invention provides an apparatus for processing a substrate. An apparatus for processing a substrate includes a housing providing a processing space, a support unit disposed in the processing space to support a substrate, and a plasma source provided on an upper portion of the housing and generating plasma from a process gas, including: The upper surface is composed of a first area including the center and a second area surrounding the first area, the support unit is formed between the first area and the second area, and is recessed inward from the upper surface of the support unit. grooves are formed, and the support unit includes a plurality of first support protrusions formed in the first region and supporting the lower surface of the substrate, and a plurality of first support protrusions formed in the second region and supporting the lower surface of the substrate. A first form including two support protrusions and an adsorption hole formed on a lower surface of the groove to vacuum the substrate and forming a virtual straight line connecting the plurality of first support protrusions to the plurality of second support protrusions. It can form symmetry with the second form formed by the connected imaginary straight line.
일 실시예에 의하면, 상기 지지 유닛은 상기 지지 유닛을 매개로 상기 기판에 열을 전달하는 열 전달 유닛을 더 포함할 수 있다. According to one embodiment, the support unit may further include a heat transfer unit that transfers heat to the substrate via the support unit.
일 실시예에 의하면, 상기 지지 유닛의 상면에는 상기 제2영역을 감싸는 제3영역이 더 제공되고, 상기 지지 유닛에는 상기 제2영역과 상기 제3영역 사이에 상기 그루브가 더 형성되고, 상기 지지 유닛은 상기 제3영역에 형성되고, 상기 기판의 가장자리 하면을 지지하는 복수의 제3지지 돌기를 더 포함하고, 상기 제2형태와 상기 복수의 제3지지 돌기들을 연결한 가상의 직선이 이루는 제3형태는 서로 대칭을 형성할 수 있다.According to an embodiment, a third area surrounding the second area is further provided on the upper surface of the support unit, the groove is further formed between the second area and the third area in the support unit, and the support The unit is formed in the third region and further includes a plurality of third support protrusions for supporting an edge and a lower surface of the substrate, and a virtual straight line connecting the second shape and the plurality of third support protrusions forms a first portion. The three forms can form symmetry with each other.
일 실시예에 의하면, 상기 제1지지 돌기, 상기 제2지지 돌기, 그리고 상기 제3지지 돌기의 상면은 라운드지게 형성될 수 있다.According to an embodiment, upper surfaces of the first support protrusion, the second support protrusion, and the third support protrusion may be formed to be rounded.
일 실시예에 의하면, 상기 제1형태, 상기 제2형태, 그리고 제3형태는 삼각형일 수 있다.According to one embodiment, the first shape, the second shape, and the third shape may be a triangle.
일 실시예에 의하면, 상기 지지 유닛은 상기 흡착 홀에 연결되고, 상기 지지 유닛의 내부에 설치되는 진공 라인 및 상기 진공 라인에 음압을 전달하는 감압 부재를 포함할 수 있다.According to one embodiment, the support unit may include a vacuum line connected to the suction hole and installed inside the support unit, and a pressure reducing member that transfers negative pressure to the vacuum line.
또한, 본 발명은 상면에 기판을 지지하는 지지 유닛을 제공한다. 지지 유닛은 상기 지지 유닛의 상면에는 중심을 포함하는 제1영역과 상기 제1영역을 감싸는 제2영역으로 구성되고, 상기 지지 유닛에는 상기 제1영역과 상기 제2영역 사이에 형성되고, 상기 지지 유닛의 상면으로부터 내측으로 만입된 그루브가 형성되고, 상기 지지 유닛은 상기 제1영역에 형성되고, 상기 기판의 하면을 지지하는 복수의 제1지지 돌기, 상기 제2영역에 형성되고, 상기 기판의 하면을 지지하는 복수의 제2지지 돌기 및 상기 그루브의 하면에 형성되어 상기 기판을 진공 흡착하는 흡착 홀을 포함하고, 상기 복수의 제1지지 돌기들을 연결한 가상의 직선이 이루는 제1형태는 상기 복수의 제2지지 돌기들을 연결한 가상의 직선이 이루는 제2형태와 대칭을 형성할 수 있다.In addition, the present invention provides a support unit for supporting a substrate on an upper surface. The support unit is composed of a first region including a center and a second region surrounding the first region on the upper surface of the support unit, and is formed between the first region and the second region in the support unit, and the support unit is formed between the first region and the second region. A groove recessed inward from an upper surface of the unit is formed, the support unit is formed in the first region, a plurality of first support protrusions supporting the lower surface of the substrate, formed in the second region, and A first form comprising a plurality of second support protrusions supporting a lower surface and an suction hole formed on the lower surface of the groove to vacuum-suck the substrate, and a virtual straight line connecting the plurality of first support protrusions is formed as described above. Symmetry may be formed with a second shape formed by a virtual straight line connecting a plurality of second support protrusions.
일 실시예에 의하면, 상기 지지 유닛은 상기 지지 유닛을 매개로 상기 기판에 열을 전달하는 열 전달 유닛을 더 포함할 수 있다.According to one embodiment, the support unit may further include a heat transfer unit that transfers heat to the substrate via the support unit.
일 실시예에 의하면, 상기 지지 유닛의 상면에는 상기 제2영역을 감싸는 제3영역이 더 제공되고, 상기 지지 유닛에는 상기 제2영역과 상기 제3영역 사이에 상기 그루브가 더 형성되고, 상기 지지 유닛은 상기 제3영역에 형성되고, 상기 기판의 가장자리 하면을 지지하는 복수의 제3지지 돌기를 더 포함하고, 상기 제2형태와 상기 복수의 제3지지 돌기들을 연결한 가상의 직선이 이루는 제3형태는 서로 대칭을 형성할 수 있다.According to an embodiment, a third area surrounding the second area is further provided on the upper surface of the support unit, the groove is further formed between the second area and the third area in the support unit, and the support The unit is formed in the third region and further includes a plurality of third support protrusions for supporting an edge and a lower surface of the substrate, and a virtual straight line connecting the second shape and the plurality of third support protrusions forms a first portion. The three forms can form symmetry with each other.
일 실시예에 의하면, 상기 제1지지 돌기, 상기 제2지지 돌기, 그리고 상기 제3지지 돌기의 상면은 라운드지게 형성될 수 있다. According to an embodiment, upper surfaces of the first support protrusion, the second support protrusion, and the third support protrusion may be formed to be rounded.
일 실시예에 의하면, 상기 제1형태, 상기 제2형태, 그리고 제3형태는 삼각형일 수 있다.According to one embodiment, the first shape, the second shape, and the third shape may be a triangle.
일 실시예에 의하면, 상기 지지 유닛은 상기 흡착 홀에 연결되고, 상기 지지 유닛의 내부에 설치되는 진공 라인 및 상기 진공 라인에 음압을 전달하는 감압 부재를 포함할 수 있다.According to one embodiment, the support unit may include a vacuum line connected to the suction hole and installed inside the support unit, and a pressure reducing member that transfers negative pressure to the vacuum line.
본 발명의 일 실시예에 의하면, 지지 유닛에 지지된 기판의 손상을 최소화할 수 있다.According to one embodiment of the present invention, damage to a substrate supported by a support unit can be minimized.
또한, 본 발명의 일 실시예에 의하면, 기판을 최소한의 접촉 면적으로 지지하는 동시에 기판의 온도 균일성을 확보할 수 있다.In addition, according to one embodiment of the present invention, it is possible to secure the temperature uniformity of the substrate while supporting the substrate with a minimum contact area.
또한, 본 발명의 일 실시예에 의하면, 지지 유닛에 지지된 기판에 휨이 발생하는 것을 방지할 수 있다.In addition, according to one embodiment of the present invention, it is possible to prevent warping from occurring in the substrate supported by the support unit.
본 발명의 효과가 상술한 효과들로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and effects not mentioned will be clearly understood by those skilled in the art from this specification and the accompanying drawings.
도 1은 일반적인 기판 처리 장치에서 기판과 지지 유닛 사이의 접촉에 의해 기판의 하면에 손상이 발생된 모습을 개략적으로 보여주는 도면이다.1 is a view schematically showing damage to the lower surface of a substrate due to contact between a substrate and a support unit in a general substrate processing apparatus.
도 2는 본 발명의 일 실시예에 따른 기판 처리 장치를 개략적으로 보여주는 도면이다.2 is a schematic view of a substrate processing apparatus according to an embodiment of the present invention.
도 3은 도 2의 기판 처리 장치의 프로세스 챔버 중 플라즈마 처리 공정을 수행하는 프로세스 챔버의 일 실시예를 개략적으로 보여주는 도면이다.FIG. 3 is a diagram schematically illustrating an embodiment of a process chamber performing a plasma treatment process among process chambers of the substrate processing apparatus of FIG. 2 .
도 4는 도 3의 일 실시예에 따른 지지 유닛을 절단한 모습을 개략적으로 보여주는 절단 사시도이다.4 is a cut perspective view schematically showing a state in which the support unit according to the embodiment of FIG. 3 is cut.
도 5는 도 3의 일 실시예에 따른 지지 유닛을 상부에서 바라본 모습을 개략적으로 보여주는 도면이다.FIG. 5 is a view schematically showing the support unit according to the embodiment of FIG. 3 viewed from above.
도 6은 지지 유닛의 상면에 형성된 지지 돌기의 배열에 따른 기판의 온도 변화 수치와 기판의 휨 발생 정도를 보여주는 도면이다.6 is a view showing a temperature change value of a substrate and a degree of warpage of a substrate according to an arrangement of support protrusions formed on an upper surface of a support unit.
도 7은 도 3의 일 실시예에 따른 지지 유닛에 지지된 기판의 온도 변화 수치와 기판의 휨 발생 정도를 보여주는 도면이다.FIG. 7 is a diagram showing a temperature change value of a substrate supported by a support unit and a degree of warpage of the substrate according to the exemplary embodiment of FIG. 3 .
이하, 본 발명의 실시 예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 서술하는 실시예로 인해 한정되어지는 것으로 해석되어서는 안된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서 도면에서의 구성 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장된 것이다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited due to the examples described below. This embodiment is provided to more completely explain the present invention to those skilled in the art. Accordingly, the shapes of components in the drawings are exaggerated to emphasize a clearer description.
이하에서는 도 2 내지 도 7을 참조하여 본 발명의 실시예에 대하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 2 to 7 .
도 2는 본 발명의 기판 처리 장치를 개략적으로 보여주는 도면이다. 도 2을 참조하면, 기판 처리 장치(1)는 전방 단부 모듈(Equipment Front End Module, EFEM)(20) 및 처리 모듈(30)을 가진다. 전방 단부 모듈(20)과 처리 모듈(30)은 일 방향으로 배치된다. 이하에서는, 전방 단부 모듈(20)과 처리 모듈(30)이 배치된 방향을 제1방향(2)으로 정의하고, 제1방향(2)과 같은 평면에서 수직한 방향을 제2방향(4)이라 정의한다.2 is a diagram schematically showing a substrate processing apparatus of the present invention. Referring to FIG. 2 , the substrate processing apparatus 1 has a front end module (Equipment Front End Module, EFEM) 20 and a processing module 30 . The front end module 20 and the processing module 30 are arranged in one direction. Hereinafter, the direction in which the front end module 20 and the processing module 30 are disposed is defined as a first direction (2), and a direction perpendicular to the same plane as the first direction (2) is defined as a second direction (4). is defined as
전방 단부 모듈(20)은 로드 포트(Load port, 200) 및 이송 프레임(220)을 가진다. 로드 포트(200)는 제1방향(2)으로 전방 단부 모듈(20)의 전방에 배치된다. 로드 포트(200)는 복수 개의 지지부(202)를 가진다. 각각의 지지부(202)는 제2방향(4)으로 일렬로 배치되며, 공정에 제공될 기판(W) 및 공정 처리가 완료된 기판(W)이 수납된 캐리어(C)(예를 들어, 카세트, FOUP등)가 안착된다. 캐리어(C)에는 공정에 제공될 기판(W) 및 공정 처리가 완료된 기판(W)이 수납된다. 이송 프레임(220)은 로드 포트(200)와 처리 모듈(30) 사이에 배치된다. 이송 프레임(220)은 그 내부에 배치되고 로드 포트(200)와 처리 모듈(30)간에 기판(W)을 이송하는 제1이송 로봇(222)을 포함한다. 제1이송 로봇(222)은 제2방향(4)으로 구비된 이송 레일(224)을 따라 이동하여 캐리어(C)와 처리 모듈(30)간에 기판(W)을 이송한다.The front end module 20 has a load port (Load port, 200) and a transfer frame (220). The load port 200 is disposed in front of the front end module 20 in the first direction 2 . The load port 200 has a plurality of support parts 202 . Each support part 202 is arranged in a row in the second direction 4, and a carrier C (eg, a cassette, FOUP, etc.) is settled. In the carrier C, a substrate W to be subjected to a process and a substrate W after processing are accommodated. The transfer frame 220 is disposed between the load port 200 and the processing module 30 . The transfer frame 220 includes a first transfer robot 222 disposed therein and transferring the substrate W between the load port 200 and the processing module 30 . The first transfer robot 222 moves along the transfer rail 224 provided in the second direction (4) to transfer the substrate (W) between the carrier (C) and the processing module (30).
처리 모듈(30)은 로드락 챔버(300), 트랜스퍼 챔버(400), 그리고 프로세스 챔버(500)를 포함한다. The processing module 30 includes a load lock chamber 300 , a transfer chamber 400 , and a process chamber 500 .
로드락 챔버(300)는 이송 프레임(220)에 인접하게 배치된다. 일 예로, 로드락 챔버(300)는 트랜스퍼 챔버(400)와 전방 단부 모듈(20)사이에 배치될 수 있다. 로드락 챔버(300)는 공정에 제공될 기판(W)이 프로세스 챔버(500)로 이송되기 전, 또는 공정 처리가 완료된 기판(W)이 전방 단부 모듈(20)로 이송되기 전 대기하는 공간을 제공한다. The load lock chamber 300 is disposed adjacent to the transport frame 220 . For example, the load lock chamber 300 may be disposed between the transfer chamber 400 and the front end module 20 . The load lock chamber 300 serves as a waiting space before a substrate W to be processed is transferred to the process chamber 500 or before a substrate W after processing is transferred to the front module 20. to provide.
트랜스퍼 챔버(400)는 로드락 챔버(300)에 인접하게 배치된다. 트랜스퍼 챔버(400)는 상부에서 바라볼 때, 다각형의 몸체를 갖는다. 일 예로, 트랜스퍼 챔버(400)는 상부에서 바라볼 때, 오각형의 몸체를 갖을 수 있다. 몸체의 외측에는 로드락 챔버(300)와 복수 개의 프로세스 챔버(500)들이 몸체의 둘레를 따라 배치된다. 몸체의 각 측벽에는 기판(W)이 출입하는 통로(미도시)가 형성되며, 통로는 트랜스퍼 챔버(400)와 로드락 챔버(300) 또는 프로세스 챔버(500)들을 연결한다. 각 통로에는 통로를 개폐하여 내부를 밀폐시키는 도어(미도시)가 제공된다. The transfer chamber 400 is disposed adjacent to the load lock chamber 300 . When viewed from the top, the transfer chamber 400 has a polygonal body. For example, the transfer chamber 400 may have a pentagonal body when viewed from the top. A load lock chamber 300 and a plurality of process chambers 500 are disposed outside the body along the circumference of the body. A passage (not shown) through which the substrate W enters and exits is formed on each sidewall of the body, and the passage connects the transfer chamber 400 and the load lock chamber 300 or the process chambers 500 . Each passage is provided with a door (not shown) that opens and closes the passage to seal the inside.
트랜스퍼 챔버(400)의 내부 공간에는 로드락 챔버(300)와 프로세스 챔버(500)들간에 기판(W)을 이송하는 제2이송 로봇(420)이 배치된다. 제2이송 로봇(420)은 로드락 챔버(300)에서 대기하는 미처리된 기판(W)을 프로세스 챔버(500)로 이송하거나, 공정 처리가 완료된 기판(W)을 로드락 챔버(300)로 이송한다. 그리고, 복수 개의 프로세스 챔버(500)에 기판(W)을 순차적으로 제공하기 위하여 프로세스 챔버(500)간에 기판(W)을 이송한다. 일 예로, 도 1과 같이, 트랜스퍼 챔버(400)가 오각형의 몸체를 가질 때, 전방 단부 모듈(20)과 인접한 측벽에는 로드락 챔버(300)가 각각 배치되며, 나머지 측벽에는 프로세스 챔버(500)들이 연속하여 배치된다. 트랜스퍼 챔버(400)의 형상은 이에 한정되지 않고, 요구되는 공정 모듈에 따라 다양한 형태로 변형되어 제공될 수 있다.A second transfer robot 420 that transfers the substrate W between the load lock chamber 300 and the process chamber 500 is disposed in the inner space of the transfer chamber 400 . The second transfer robot 420 transfers an unprocessed substrate W waiting in the load lock chamber 300 to the process chamber 500 or transfers a substrate W after processing has been completed to the load lock chamber 300. do. In addition, the substrates W are transferred between the process chambers 500 in order to sequentially provide the substrates W to the plurality of process chambers 500 . For example, as shown in FIG. 1 , when the transfer chamber 400 has a pentagonal body, load lock chambers 300 are disposed on sidewalls adjacent to the front end module 20, respectively, and process chambers 500 are disposed on the remaining sidewalls. are placed consecutively. The shape of the transfer chamber 400 is not limited thereto, and may be modified and provided in various shapes according to required process modules.
프로세스 챔버(500)는 트랜스퍼 챔버(400)의 둘레를 따라 배치된다. 프로세스 챔버(500)는 복수 개 제공될 수 있다. 각각의 프로세스 챔버(500)내에서는 기판(W)에 대한 공정 처리가 진행된다. 프로세스 챔버(500)는 제2이송 로봇(420)으로부터 기판(W)을 이송 받아 공정 처리를 하고, 공정 처리가 완료된 기판(W)을 제2이송 로봇(420)으로 제공한다. 각각의 프로세스 챔버(500)에서 진행되는 공정 처리는 서로 상이할 수 있다.The process chamber 500 is disposed along the circumference of the transfer chamber 400 . A plurality of process chambers 500 may be provided. In each process chamber 500, processing of the substrate W is performed. The process chamber 500 receives the substrate W from the second transfer robot 420 and processes the substrate W, and provides the substrate W upon completion of the process to the second transfer robot 420 . Processes performed in each process chamber 500 may be different from each other.
도 3은 도 2의 기판 처리 장치의 프로세스 챔버 중 플라즈마 처리 공정을 수행하는 프로세스 챔버를 개략적으로 보여주는 도면이다. 이하에서는 플라즈마 처리 공정을 수행하는 프로세스 챔버(500)에 대하여 설명한다.FIG. 3 is a diagram schematically illustrating a process chamber in which a plasma treatment process is performed among process chambers of the substrate processing apparatus of FIG. 2 . Hereinafter, the process chamber 500 for performing a plasma treatment process will be described.
도 3을 참조하면, 프로세스 챔버(500)는 플라즈마를 이용하여 기판(W) 상에 소정의 공정을 수행한다. 일 예로, 기판(W) 상의 박막을 식각 또는 애싱(Ashing)할 수 있다. 박막은 폴리 실리콘막, 산화막, 그리고 실리콘 질화막 등 다양한 종류의 막일 수 있다. 선택적으로, 박막은 자연 산화막이나 화학적으로 생성된 산화막일 수 있다. Referring to FIG. 3 , a process chamber 500 performs a predetermined process on a substrate W using plasma. For example, the thin film on the substrate W may be etched or ashed. The thin film may be various types of films such as a polysilicon film, an oxide film, and a silicon nitride film. Optionally, the thin film may be a natural oxide film or a chemically generated oxide film.
프로세스 챔버(500)는 공정 처리부(520), 플라즈마 발생부(540), 확산부(560), 그리고 배기부(580)를 포함할 수 있다. The process chamber 500 may include a process processing unit 520 , a plasma generating unit 540 , a diffusion unit 560 , and an exhaust unit 580 .
공정 처리부(520)는 기판(W)이 놓이고, 기판(W)에 대한 처리가 수행되는 처리 공간(5200)을 제공한다. 후술하는 플라즈마 발생부(540)에서 공정 가스를 방전시켜 플라즈마를 생성시키고, 이를 공정 처리부(520)의 처리 공간(5200)으로 공급한다. 공정 처리부(520)의 내부에 머무르는 공정 가스 및/또는 기판(W)을 처리하는 과정에서 발생한 반응 부산물 등은 후술하는 배기부(580)를 통해 프로세스 챔버(500)의 외부로 배출한다. 이로 인해, 공정 처리부(520) 내의 압력을 설정 압력으로 유지할 수 있다. The processing unit 520 provides a processing space 5200 in which a substrate W is placed and processing of the substrate W is performed. A process gas is discharged in a plasma generating unit 540 to be described later to generate plasma, and the plasma is supplied to the processing space 5200 of the process processing unit 520 . Process gases remaining in the process processor 520 and/or reaction by-products generated in the process of processing the substrate W are discharged to the outside of the process chamber 500 through an exhaust unit 580 described below. Due to this, the pressure in the process processing unit 520 can be maintained at the set pressure.
공정 처리부(520)는 하우징(5220), 지지 유닛(5240), 배기 배플(5260), 그리고 배플(5280)을 포함할 수 있다. The process unit 520 may include a housing 5220 , a support unit 5240 , an exhaust baffle 5260 , and a baffle 5280 .
하우징(5220)의 내부에는 기판 처리 공정을 수행하는 처리 공간(5200)이 제공될 수 있다. 하우징(5220)의 외벽은 도체로 제공될 수 있다. 일 예로, 하우징(5220)의 외벽은 알루미늄을 포함하는 금속 재질로 제공될 수 있다. 하우징(5220)은 상부가 개방되고, 측벽에는 개구(미도시)가 형성될 수 있다. 기판(W)은 개구를 통해 하우징(5220)의 내부로 출입한다. 개구(미도시)는 도어(미도시)와 같은 개폐 부재에 의해 개폐될 수 있다. 또한, 하우징(5220)의 바닥면에는 배기홀(5222)이 형성된다. A processing space 5200 for performing a substrate processing process may be provided inside the housing 5220 . An outer wall of the housing 5220 may be provided as a conductor. For example, the outer wall of the housing 5220 may be made of a metal material including aluminum. An upper portion of the housing 5220 may be open, and an opening (not shown) may be formed in a side wall. The substrate W enters and exits the inside of the housing 5220 through the opening. The opening (not shown) may be opened and closed by an opening and closing member such as a door (not shown). In addition, an exhaust hole 5222 is formed on the bottom surface of the housing 5220 .
배기홀(5222)을 통해 처리 공간(5200) 내를 유동하는 공정 가스 및/또는 부산물을 처리 공간(5200)의 외부로 배기할 수 있다. 배기홀(5222)은 후술하는 배기부(580)를 포함하는 구성들과 연결될 수 있다. Through the exhaust hole 5222 , process gas and/or by-products flowing in the processing space 5200 may be exhausted to the outside of the processing space 5200 . The exhaust hole 5222 may be connected to components including an exhaust unit 580 to be described later.
도 4는 도 3의 일 실시예에 따른 지지 유닛을 절단한 모습을 개략적으로 보여주는 절단 사시도이다. 도 5는 도 3의 일 실시예에 따른 지지 유닛을 상부에서 바라본 모습을 개략적으로 보여주는 도면이다. 이하에서는, 도 4와 도 5를 참조하여 본 발명의 일 실시예에 의한 지지 유닛에 대해 상세히 설명한다. 4 is a cut perspective view schematically showing a state in which the support unit according to the embodiment of FIG. 3 is cut. FIG. 5 is a view schematically showing the support unit according to the embodiment of FIG. 3 viewed from above. Hereinafter, a support unit according to an embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5 .
도 4와 도 5를 참조하면, 지지 유닛(5240)은 하우징(5220) 내부에 배치된다. 예컨대, 지지 유닛(5240)은 처리 공간(5200) 내에 배치될 수 있다. 지지 유닛(5240)은 처리 공간(5200)에서 기판(W)을 지지한다. 지지 유닛(5240)은 척(Chuck)일 수 있다. Referring to FIGS. 4 and 5 , a support unit 5240 is disposed inside a housing 5220 . For example, support unit 5240 may be disposed within processing space 5200 . The support unit 5240 supports the substrate W in the processing space 5200 . The support unit 5240 may be a chuck.
지지 유닛(5240)은 몸체(5241), 지지 축(5242), 열 전달 유닛(5243), 지지 돌기(5244), 그리고 진공 유닛(5248)을 포함할 수 있다.The support unit 5240 may include a body 5241 , a support shaft 5242 , a heat transfer unit 5243 , a support protrusion 5244 , and a vacuum unit 5248 .
몸체(5241)는 기판(W)이 안착되는 상부면을 가진다. 몸체(5241)의 상부면은 상부에서 바라볼 때, 대체로 원형으로 제공될 수 있다. 일 예로, 몸체(5241)의 상부면은 기판(W)보다 큰 직경을 가질 수 있다. 또한, 몸체(5241)의 상부면은 상부에서 바라볼 때, 기판(W)의 상부면보다 큰 면적으로 제공될 수 있다. 몸체(5241)의 상면 외측을 따라 돌출부가 형성될 수 있다. 돌출부는 몸체(5241)의 상면으로부터 위 방향으로 돌출되게 형성될 수 있다. 몸체(5241)의 상면으로부터 돌출부의 상단까지의 높이는 기판(W)이 후술하는 지지 돌기(5244)에 안착되었을 때, 몸체(5241)의 상면으로부터 기판(W)의 상단까지의 높이보다 크거나 같을 수 있다. 돌출부의 내측면은 기판(W)이 지지 돌기(5244)에 안착했을 때의 기판(W)의 외측면과 접하도록 제공될 수 있다.The body 5241 has an upper surface on which the substrate W is seated. An upper surface of the body 5241 may be provided in a substantially circular shape when viewed from above. For example, the upper surface of the body 5241 may have a larger diameter than the substrate W. In addition, the upper surface of the body 5241 may have a larger area than the upper surface of the substrate W when viewed from above. A protrusion may be formed along the outer side of the upper surface of the body 5241 . The protrusion may be formed to protrude upward from the upper surface of the body 5241 . The height from the upper surface of the body 5241 to the upper end of the protrusion is greater than or equal to the height from the upper surface of the body 5241 to the upper end of the substrate W when the substrate W is seated on the support protrusion 5244 described below. can An inner surface of the protruding portion may be provided to contact an outer surface of the substrate W when the substrate W is seated on the support protrusion 5244 .
몸체(5241)의 내부에는 후술하는 열 전달 유닛(5243)과 진공 유닛(5248)이 설치될 수 있다. 몸체(5241)의 상부면은 제1영역(A1), 제2영역(A2), 그리고 제3영역(A3)으로 구획될 수 있다. 제1영역(A1)은 몸체(5241)의 중심을 포함하는 영역으로 정의된다. 제2영역(A2)은 제1영역(A1)을 감싸는 영역으로 정의된다. 제3영역(A3)은 제2영역(A2)을 감싸는 영역을 정의된다. 예컨대, 제1영역(A1), 제2영역(A2), 그리고 제3영역(A3)은 몸체(5241)의 중심으로부터 바깥쪽을 향할 때 순차적으로 위치할 수 있다. 제1영역(A1)에는 후술하는 제1지지돌기(5245)가 형성된다. 제2영역(A2)에는 후술하는 제2지지돌기(5246)가 형성된다. 제3영역(A3)에는 후술하는 제3지지돌기(5247)가 형성된다.A heat transfer unit 5243 and a vacuum unit 5248 to be described below may be installed inside the body 5241 . The upper surface of the body 5241 may be divided into a first area A1, a second area A2, and a third area A3. The first area A1 is defined as an area including the center of the body 5241 . The second area A2 is defined as an area surrounding the first area A1. The third area A3 defines an area surrounding the second area A2. For example, the first area A1 , the second area A2 , and the third area A3 may be sequentially positioned from the center of the body 5241 toward the outside. A first support protrusion 5245 to be described later is formed in the first area A1. A second support protrusion 5246 to be described later is formed in the second area A2. A third support protrusion 5247 to be described later is formed in the third area A3.
몸체(5241)에는 그루브(G)가 형성될 수 있다. 몸체(5241)의 상면에는 그루브(G)가 형성될 수 있다. 그루브(G)는 몸체(5241)의 상면으로부터 내측으로 만입되어 형성될 수 있다. 그루브(G)는 몸체(5241)의 상면으로부터 아래 방향으로 만입될 수 있다. 그루브(G)는 상부에서 바라볼 때, 대체로 링 형상으로 형성될 수 있다. 그루브(G)는 제1영역(A1)과 제2영역(A2) 사이에 형성될 수 있다. 또한, 그루브(G)는 제2영역(A2)과 제3영역(A3) 사이에 형성될 수 있다. A groove G may be formed in the body 5241 . A groove G may be formed on an upper surface of the body 5241 . The groove G may be formed by indenting inward from the top surface of the body 5241 . The groove G may be recessed downward from the upper surface of the body 5241 . When viewed from above, the groove (G) may be formed in a generally ring shape. The groove G may be formed between the first area A1 and the second area A2. Also, the groove G may be formed between the second area A2 and the third area A3.
그루브(G)에는 흡착 홀(H)이 형성될 수 있다. 그루브(G)의 하면에는 흡착 홀(H)이 형성될 수 있다. 흡착 홀(H)은 그루브(G)의 길이 방향을 따라 복수 개 제공될 수 있다. 흡착 홀(H)은 후술하는 진공 유닛(5249)과 연통할 수 있다. 흡착 홀(H)은 그루브(G)에 음압을 제공할 수 있다. 흡착 홀(H)은 그루브(G)의 내부 공간에 음압을 형성함으로써, 후술하는 지지 돌기(5244), 기판(W)의 하면, 그리고 몸체(5241)의 외측에 형성된 돌출부 사이에 형성된 공간에 음압을 형성할 수 있다. 이에, 기판(W)의 하면은 진공력에 의해 흡착 지지될 수 있다.An adsorption hole H may be formed in the groove G. An adsorption hole H may be formed on the lower surface of the groove G. A plurality of suction holes H may be provided along the longitudinal direction of the groove G. The suction hole H may communicate with a vacuum unit 5249 to be described later. The adsorption hole (H) may provide negative pressure to the groove (G). The adsorption hole (H) forms a negative pressure in the inner space of the groove (G), so that the negative pressure is formed in the space formed between the support protrusion 5244 described later, the lower surface of the substrate (W), and the protrusion formed on the outer side of the body 5241. can form Accordingly, the lower surface of the substrate W may be adsorbed and supported by vacuum force.
지지 축(5242)은 몸체(5241)와 결합한다. 지지 축(5242)은 몸체(5241)의 하면과 결합할 수 있다. 지지 축(5242)은 길이 방향이 상하 방향을 향하도록 제공될 수 있다. 지지 축(5242)의 내부에는 후술하는 진공 라인(5248a)이 형성될 수 있다. 지지 축(5242)은 대상물을 이동시킬 수 있다. 일 예로, 지지 축(5242)은 기판(W)을 상하 방향으로 이동시킬 수 있다. 또한, 지지 축(5242)은 몸체(5241)와 결합하여 몸체(5241)를 승하강시켜 기판(W)을 상하 이동시킬 수 있다. The support shaft 5242 couples to the body 5241. The support shaft 5242 may be coupled to the lower surface of the body 5241. The support shaft 5242 may be provided so that a longitudinal direction is directed in a vertical direction. A vacuum line 5248a to be described below may be formed inside the support shaft 5242 . The support shaft 5242 can move the object. For example, the support shaft 5242 may move the substrate W in a vertical direction. In addition, the support shaft 5242 is coupled to the body 5241 to move the body 5241 up and down to move the substrate W up and down.
열 전달 유닛(5243)은 기판(W)을 가열한다. 열 전달 유닛(5243)은 몸체(5241)의 내부에 매설될 수 있다. 열 전달 유닛(5243)은 몸체(5241)의 온도를 상승시켜 기판(W)을 가열한다. 즉, 열 전달 유닛(5243)은 몸체(5241)를 매개로 하여 기판(W)의 온도를 조절한다. 열 전달 유닛(5243)은 도시되지 않은 전원과 연결된다. 열 전달 유닛(5243)은 도시되지 않은 전원에서 인가된 전류에 저항함으로써 발열한다. 발생된 열은 몸체(5241)를 통해 기판(W)으로 전달된다. 열 전달 유닛(5243)에서 발생한 열에 의해 기판(W)은 소정의 온도로 유지될 수 있다. The heat transfer unit 5243 heats the substrate W. The heat transfer unit 5243 may be buried inside the body 5241. The heat transfer unit 5243 heats the substrate W by increasing the temperature of the body 5241 . That is, the heat transfer unit 5243 controls the temperature of the substrate W via the body 5241. The heat transfer unit 5243 is connected to a power source not shown. The heat transfer unit 5243 generates heat by resisting a current applied from a power supply not shown. The generated heat is transferred to the substrate W through the body 5241. The substrate W may be maintained at a predetermined temperature by heat generated by the heat transfer unit 5243 .
일 예에 의하면, 열 전달 유닛(5243)은 나선 형상의 코일로 복수 개 제공될 수 있다. 열 전달 유닛(5243)은 몸체(5241)의 서로 다른 영역에 각각 제공될 수 있다. 예컨대, 몸체(5241)의 중앙 영역과 몸체(5241)의 가장자리 영역을 가열하는 열 전달 유닛(5243)이 각각 제공되고, 독립적으로 발열 정도가 조절될 수 있다. 일 예에 의하면, 열 전달 유닛(5243)은 텅스텐과 같은 발열체로 제공될 수 있다. According to an example, a plurality of heat transfer units 5243 may be provided as spiral coils. The heat transfer units 5243 may be provided in different regions of the body 5241, respectively. For example, heat transfer units 5243 for heating the central region of the body 5241 and the edge region of the body 5241 are provided, respectively, and the degree of heat generation can be independently controlled. According to one example, the heat transfer unit 5243 may be provided with a heating element such as tungsten.
지지 돌기(5244)는 몸체(5241)에 설치된다. 지지 돌기(5244)는 몸체(5241)의 상면에 설치된다. 지지 돌기(5244)는 기판(W)을 지지한다. 지지 돌기(5244)의 상단은 기판(W)의 하단을 지지한다. 지지 돌기(5244)는 몸체(5241)와 일체로 형성될 수 있다. 다만, 이에 한정되는 것은 아니고, 지지 돌기(5244)는 몸체(5241)와 일체로 형성되지 않을 수도 있다. The support protrusion 5244 is installed on the body 5241. The support protrusion 5244 is installed on the upper surface of the body 5241. The support protrusion 5244 supports the substrate W. The upper end of the support protrusion 5244 supports the lower end of the substrate W. The support protrusion 5244 may be integrally formed with the body 5241. However, it is not limited thereto, and the support protrusion 5244 may not be integrally formed with the body 5241.
지지 돌기(5244)는 복수 개로 형성될 수 있다. 지지 돌기(5244)는 대체로 원통 형상으로 형성될 수 있다. 일 예에 의하면, 지지 돌기(5244)의 상단은 라운드지게 형성될 수 있다. 이에, 일 예에 따른 지지 돌기(5244)는 기판(W)의 하면을 점 접촉할 수 있다.A plurality of support protrusions 5244 may be formed. The support protrusion 5244 may be formed in a substantially cylindrical shape. According to one example, the upper end of the support protrusion 5244 may be formed to be rounded. Accordingly, the support protrusion 5244 according to an example may make point contact with the lower surface of the substrate W.
지지 돌기(5244)는 제1지지 돌기(5245), 제2지지 돌기(5246), 그리고 제3지지 돌기(5247)를 포함할 수 있다. 제1지지 돌기(5245)는 몸체(5241)의 상부면 중 몸체(5241)의 중심을 포함하는 제1영역(A1)에 형성될 수 있다. 예컨대, 도 5와 같이 제1지지 돌기(5245)는 제1영역(A1) 내에서 3 개 제공될 수 있다. 복수 개의 제1지지 돌기(5245)들을 연결한 가상의 직선이 이루는 제1형태는 한 변이 제1길이를 가지는 제1삼각형 형태로 형성될 수 있다. 제1지지 돌기(5245)는 기판(W)의 중심을 포함하는 영역을 지지할 수 있다.The support protrusion 5244 may include a first support protrusion 5245 , a second support protrusion 5246 , and a third support protrusion 5247 . The first support protrusion 5245 may be formed in the first area A1 including the center of the body 5241 among the upper surfaces of the body 5241 . For example, as shown in FIG. 5 , three first support protrusions 5245 may be provided in the first area A1. A first shape formed by an imaginary straight line connecting the plurality of first support protrusions 5245 may be formed in a first triangle shape having one side having a first length. The first support protrusion 5245 may support an area including the center of the substrate W.
제2지지 돌기(5246)는 몸체(5241)의 상부면 중 제1영역(A1)을 감싸는 제2영역(A2)에 형성될 수 있다. 예컨대, 도 5와 같이, 제2지지 돌기(5246)는 제2영역(A2) 내에서 3개 제공될 수 있다. 복수 개의 제2지지 돌기(5246)들을 연결한 가상의 직선이 이루는 제2형태는 한 변이 제2길이를 가지는 제2삼각형의 형태를 구성할 수 있다.The second support protrusion 5246 may be formed in the second area A2 surrounding the first area A1 of the upper surface of the body 5241 . For example, as shown in FIG. 5 , three second support protrusions 5246 may be provided in the second area A2 . A second shape formed by an imaginary straight line connecting a plurality of second support protrusions 5246 may be a second triangle having one side having a second length.
제3지지 돌기(5247)는 몸체(52441)의 상부면 중 제2영역(A2)을 감싸는 제3영역(A3)에 형성될 수 있다. 예컨대, 도 5와 같이, 제3지지 돌기(5247)는 제3영역(A3) 내에서 3개 제공될 수 있다. 복수 개의 제3지지 돌기(5247)들을 연결한 가상의 직선이 이루는 제3형태는 한 변이 제3길이를 가지는 제3삼각형의 형태를 이룰 수 있다. The third support protrusion 5247 may be formed in the third area A3 surrounding the second area A2 of the upper surface of the body 52441 . For example, as shown in FIG. 5 , three third support protrusions 5247 may be provided in the third area A3. A third shape formed by an imaginary straight line connecting a plurality of third support protrusions 5247 may form a third triangle having one side having a third length.
제1지지 돌기(5245)가 이루는 제1형태는 제2지지 돌기(5246)가 이루는 제2형태와 대칭으로 형성될 수 있다. 예컨대, 제1형태는 제2형태가 상하 반전된 형태일 수 있다. 또한, 제2지지 돌기(5246)가 이루는 제2형태와 제3지지 돌기(5247)가 이루는 제3형태는 서로 대칭일 수 있다. 예컨대, 제2형태는 제3형태가 상하 반전된 형태일 수 있다.The first shape of the first support protrusion 5245 may be formed symmetrically with the second shape of the second support protrusion 5246 . For example, the first shape may be a shape in which the second shape is upside down. Also, the second shape of the second support protrusion 5246 and the third shape of the third support protrusion 5247 may be symmetrical to each other. For example, the second shape may be a shape in which the third shape is upside down.
진공 유닛(5248)은 그루브(G) 내부 공간에 진공력을 제공할 수 있다. 진공 유닛(5248)은 그루브(G) 내부 공간에 음압을 제공하여 기판(W)을 지지 유닛(5240)에 흡착시킬 수 있다. 진공 유닛(5248)은 진공 라인(5248a)과 감압 부재(5248b)를 포함할 수 있다.The vacuum unit 5248 may provide vacuum force to the inner space of the groove G. The vacuum unit 5248 may adsorb the substrate W to the support unit 5240 by applying negative pressure to the inner space of the groove G. The vacuum unit 5248 may include a vacuum line 5248a and a pressure reducing member 5248b.
진공 라인(5248a)은 진공 유닛(5240)의 내부에 매설될 수 있다. 예컨대, 진공 라인(5248a)은 몸체(5241)와 지지 축(5242)의 내부에 형성될 수 있다. 진공 라인(5248a)은 열 전달 유닛(5243)과 중첩되지 않는 위치에 설치될 수 있다. 진공 라인(5248a)의 일단은 흡착 홀(H)과 연결될 수 있다. 진공 라인(5248a)의 타단은 후술하는 감압 부재(5248b)와 연결될 수 있다. The vacuum line 5248a may be buried inside the vacuum unit 5240. For example, the vacuum line 5248a may be formed inside the body 5241 and the support shaft 5242. The vacuum line 5248a may be installed at a location that does not overlap with the heat transfer unit 5243. One end of the vacuum line 5248a may be connected to the suction hole H. The other end of the vacuum line 5248a may be connected to a pressure reducing member 5248b to be described later.
감압 부재(5248b)는 그루브(G)에 음압을 제공할 수 있다. 감압 부재(5248b)는 기판(W)이 지지 유닛(5240)에 고정되도록 진공력을 제공한다. 감압 부재(5248b)는 펌프일 수 있다. 다만, 이에 한정되는 것은 아니고, 감압 부재(5248b)는 음압을 제공하는 공지된 장치로 다양하게 변형되어 제공될 수 있다. The pressure reducing member 5248b may provide negative pressure to the groove G. The pressure reducing member 5248b provides a vacuum force so that the substrate W is fixed to the support unit 5240 . The pressure reducing member 5248b may be a pump. However, it is not limited thereto, and the pressure reducing member 5248b may be variously modified and provided as a known device that provides negative pressure.
도 6은 지지 유닛의 상면에 형성된 지지 돌기의 배열에 따른 기판의 온도 변화 수치와 기판의 휨 발생 정도를 보여주는 도면이다. 도 7은 도 3의 일 실시예에 따른 지지 유닛에 지지된 기판의 온도 변화 수치와 기판의 휨 발생 정도를 보여주는 도면이다. 6 is a view showing a temperature change value of a substrate and a degree of warpage of a substrate according to an arrangement of support protrusions formed on an upper surface of a support unit. FIG. 7 is a diagram showing a temperature change value of a substrate supported by a support unit and a degree of warpage of the substrate according to the exemplary embodiment of FIG. 3 .
도 6과 도 7에 표현된 Temp.(VAG)는 기판(W)에 전달되는 평균 온도를 의미하며, Temp.(Range)는 기판(W)의 영역 별 온도 중 가장 높은 온도와 가장 낮은 온도의 차이값을 의미하고, Bare Wafer Warpage는 기판의 휨 발생 여부를 의미한다. 이하에서는, 지지 유닛(5240)에 형성된 지지 돌기(5244)의 개수 및 배열에 따라 기판의 온도 분포와 기판의 휨 발생 여부에 대한 실험 데이터를 참고하여, 본 발명의 일 실시예에 따른 지지 유닛(5240)에 대한 효과를 설명한다.Temp. (VAG) expressed in FIGS. 6 and 7 means the average temperature transmitted to the substrate W, and Temp. It means the difference value, and Bare Wafer Warpage means whether warpage of the substrate occurs. Hereinafter, the support unit according to an embodiment of the present invention ( 5240) to explain the effect.
이하에서는 왼쪽에서 오른쪽의 실험 데이터를 순차적으로 참조하여 지지 돌기의 개수 및 배열에 따른 기판의 온도 분포와 휨 발생 여부에 대해 설명한다.Hereinafter, the temperature distribution of the substrate according to the number and arrangement of the support protrusions and whether warpage occurs will be described by sequentially referring to the experimental data from the left to the right.
지지 돌기(5244)가 몸체(5241)의 상부면 전 영역에 많은 개수로 형성되는 경우, 기판(W)의 평균 온도는 섭씨 245.9도로 측정되었으며, 온도 편차는 섭씨 10.5도로 측정되었다. 다만, 이 경우 많은 수의 지지 돌기(5244)들이 기판(W)의 하면에서 고르게 지지함으로써 기판(W)의 휨 현상은 발생하지 않았다.When a large number of support protrusions 5244 are formed on the entire upper surface of the body 5241, the average temperature of the substrate W was measured as 245.9 degrees Celsius and the temperature deviation was measured as 10.5 degrees Celsius. However, in this case, since a large number of support protrusions 5244 are evenly supported on the lower surface of the substrate W, the substrate W does not warp.
다음으로, 기판(W)의 중심 영역과 대응되는 영역에 복수 개의 지지 돌기(5244)들이 좁은 간격으로 배치된 경우, 기판(W)의 평균 온도는 섭씨 247.5도로 측정되었으며, 온도 편차는 섭씨 10도로 측정되었다.Next, when the plurality of support protrusions 5244 are arranged at narrow intervals in an area corresponding to the central area of the substrate W, the average temperature of the substrate W is measured at 247.5 degrees Celsius, and the temperature deviation is 10 degrees Celsius. has been measured
이어서, 기판(W)의 가장자리 영역에 대응되는 몸체(5241)의 가장자리 영역에만 지지 돌기(5244)들을 배치한 경우, 기판(W)의 온도는 섭씨 251.3도, 기판(W)의 온도 편차는 7.4도로 측정되었다. 이 경우, 기판(W)은 휨 현상이 발생하였다.Subsequently, when the support protrusions 5244 are disposed only on the edge region of the body 5241 corresponding to the edge region of the substrate W, the temperature of the substrate W is 251.3 degrees Celsius and the temperature deviation of the substrate W is 7.4 degrees Celsius. was measured in degrees. In this case, the substrate W was warped.
이와 달리, 도 7을 참조하면, 본 발명의 일 실시예에 따른 지지 유닛(5240)에 의할 때, 기판(W)의 평균 온도는 섭씨 248.9도로 측정되었으며, 기판(W)의 영역별 온도 편차는 섭씨 4.3도로 도 6에 나타난 다른 실험예들보다 낮은 온도 편차값을 보였다. 또한, 기판(W)의 온도가 균일하게 형성됨과 동시에, 기판(W)이 휘는 현상은 발생하지 않았다. Unlike this, referring to FIG. 7 , when using the support unit 5240 according to an embodiment of the present invention, the average temperature of the substrate W was measured as 248.9 degrees Celsius, and the temperature deviation for each region of the substrate W showed a lower temperature deviation value than other experimental examples shown in FIG. 6 at 4.3 degrees Celsius. In addition, the temperature of the substrate (W) was uniformly formed, and at the same time, the phenomenon of bending of the substrate (W) did not occur.
즉, 본 발명의 일 실시예에 따르면, 제1지지 돌기(5245), 제2지지 돌기(5246), 그리고 제3지지 돌기(5247)가 각각의 몸체(5241)의 상부에 구분된 영역에 형성되고, 각각의 영역에 형성된 지지 돌기(5244)들이 이루는 형태가 서로 대칭을 이루게 제공됨으로써, 최소한의 지지 돌기(5244)들을 사용하여 기판(W)을 안정적으로 지지할 수 있다. 또한, 최소한의 지지 돌기(5244)들을 사용하여 기판(W)을 지지하면서도, 기판(W)에 전달되는 열이 균일하게 분배될 수 있다. 또한, 최소한의 지지 돌기(5244)들을 사용함으로써, 기판(W)의 하면에 가해지는 접촉 충격을 최소화할 수 있다. 이에, 기판(W)의 손상으로 인해 발생하는 처리 공정의 불량률을 개선할 수 있다. That is, according to an embodiment of the present invention, the first support protrusion 5245, the second support protrusion 5246, and the third support protrusion 5247 are formed on the upper part of the body 5241 in a divided area. In addition, since the shapes of the support protrusions 5244 formed in each region are symmetrical to each other, the substrate W can be stably supported using the minimum number of support protrusions 5244 . In addition, while supporting the substrate W using the minimum number of support protrusions 5244 , heat transmitted to the substrate W may be uniformly distributed. In addition, contact impact applied to the lower surface of the substrate W may be minimized by using the minimum number of support protrusions 5244 . Accordingly, it is possible to improve the defect rate of the processing process caused by damage to the substrate W.
지지 돌기(5244)의 상단이 라운드지게 형성됨으로써, 지지 돌기(5244)의 상단과 기판(W)의 하면이 점 접촉을 할 수 있다. 기판(W)을 지지할 때, 접촉으로 인해 발생하는 기판(W)의 하면의 손상을 최소화할 수 있다. 이에, 기판(W)을 지지하여 기판(W)에 대한 소정의 처리가 수행될 때, 기판(W)의 손상으로부터 발생되는 파티클 등이 처리 공간으로 유출되는 것을 최소화할 수 있다. Since the upper end of the support protrusion 5244 is rounded, the upper end of the support protrusion 5244 and the lower surface of the substrate W may make point contact. When supporting the substrate (W), damage to the lower surface of the substrate (W) caused by contact can be minimized. Accordingly, when a predetermined process is performed on the substrate W by supporting the substrate W, it is possible to minimize the leakage of particles generated from damage to the substrate W into the processing space.
상술한 본 발명의 일 실시예에 의한 지지 유닛(5240)은 진공 흡착 방식으로 기판(W)의 하면을 흡착하여 진공압을 이용하여 기판(W)을 지지하는 것을 예로 들어 설명하였다. 다만, 이에 한정되는 것은 아니고, 지지 유닛(5240)은 아암 혹은 클램프 등을 이용하여 기판(W)의 지지 표면을 눌러 고정하는 기계적 고정 방식, 또는 기판(W)과 지지 유닛(5240) 사이에 정전기를 발생시켜 정전기력으로 기판(W)을 고정하는 방식으로 기판(W)을 지지할 수도 있다.The above-described support unit 5240 according to an embodiment of the present invention has been described as an example of adsorbing the lower surface of the substrate W using a vacuum adsorption method and supporting the substrate W using vacuum pressure. However, it is not limited thereto, and the support unit 5240 is a mechanical fixing method in which the support surface of the substrate W is pressed and fixed using an arm or a clamp, or static electricity between the substrate W and the support unit 5240. It is also possible to support the substrate (W) in a manner in which the substrate (W) is fixed by electrostatic force by generating a.
또한, 상술한 본 발명의 일 실시예에 따르면, 몸체(5241)의 상면은 제1영역(A1), 제2영역(A2), 그리고 제3영역(A3)으로 구분되는 것을 예로 들어 설명하였으나, 이에 한정되는 것은 아니다. 예컨대, 몸체(5241)의 상면은 제1영역(A1)과 제1영역(A1)을 감싸는 제2영역(A2)으로 구획되고, 제1영역(A1)에 제1형태를 이루는 제1지지 돌기(5245)가 제공되고, 제2영역(A2)에 제1형태와 대칭을 이루는 제2형태를 형성하는 제2지지 돌기(5246)가 제공될 수 있다.In addition, according to one embodiment of the present invention described above, the upper surface of the body 5241 has been described as being divided into a first area A1, a second area A2, and a third area A3 as an example. It is not limited to this. For example, the upper surface of the body 5241 is partitioned into a first area A1 and a second area A2 surrounding the first area A1, and a first support protrusion forming a first shape in the first area A1. 5245 may be provided, and a second support protrusion 5246 forming a second shape symmetrical to the first shape may be provided in the second region A2.
이와 같은 방식으로, 몸체(5241)의 상면에는 제3영역(A3)을 감싸는 복수 개의 영역들이 더 제공되고, 복수 개의 영역들에는 서로 대칭을 이루는 지지 돌기들이 더 형성될 수도 있다.In this way, a plurality of regions surrounding the third region A3 may be further provided on the upper surface of the body 5241, and support protrusions symmetrical to each other may be further formed in the plurality of regions.
다시 도 3을 참조하면, 배기 배플(5260)은 처리 공간(5200)에서 플라즈마를 영역 별로 균일하게 배기시킨다. 배기 배플(5260)은 상부에서 바라볼 때, 환형의 링 형상을 가진다. 배기 배플(5260)은 처리 공간(5200) 내에서 하우징(5220)의 내측벽과 지지 유닛(5240) 사이에 위치할 수 있다. 배기 배플(5260)에는 복수의 배기 홀(5262)들이 형성된다. 배기 홀(5262)들은 상하 방향을 향하도록 제공될 수 있다. 배기 홀(5262)들은 배기 배플(5260)의 상단에서 하단까지 연장되는 홀들로 제공될 수 있다. 배기 홀(5262)들은 배기 배플(5260)의 원주 방향을 따라 서로 이격되게 배열될 수 있다.Referring back to FIG. 3 , the exhaust baffle 5260 uniformly exhausts the plasma for each area in the processing space 5200 . When viewed from the top, the exhaust baffle 5260 has an annular ring shape. The exhaust baffle 5260 may be positioned between the inner wall of the housing 5220 and the support unit 5240 within the processing space 5200 . A plurality of exhaust holes 5262 are formed in the exhaust baffle 5260 . The exhaust holes 5262 may be provided to face up and down. The exhaust holes 5262 may be provided as holes extending from an upper end to a lower end of the exhaust baffle 5260 . The exhaust holes 5262 may be spaced apart from each other along the circumferential direction of the exhaust baffle 5260 .
배플(5280)은 공정 처리부(520)와 플라즈마 발생부(540) 사이에 배치될 수 있다. 또한, 배플(5280)은 공정 처리부(520)와 확산부(560) 사이에 배치될 수 있다. 또한, 배플(5280)은 지지 유닛(5240)과 확산부(560) 사이에 배치될 수 있다. 배플(5280)은 지지 유닛(5240)의 상부에 배치될 수 있다. 일 예로, 배플(5280)은 공정 처리부(520)의 상단에 배치될 수 있다. The baffle 5280 may be disposed between the process processing unit 520 and the plasma generating unit 540 . Also, the baffle 5280 may be disposed between the process processing unit 520 and the diffusion unit 560 . Also, a baffle 5280 may be disposed between the support unit 5240 and the diffusion part 560 . A baffle 5280 may be disposed on top of the support unit 5240 . For example, the baffle 5280 may be disposed on top of the process processing unit 520 .
배플(5280)은 플라즈마 발생부(540)에서 발생하는 플라즈마를 처리 공간(5200)으로 균일하게 전달할 수 있다. 배플(5280)에는 배플 홀(5282)이 형성될 수 있다. 배플 홀(5282)은 복수 개로 제공될 수 있다. 배플 홀(5282)들은 서로 이격되게 제공될 수 있다. 배플 홀(5282)들은 배플(5280)의 상단에서 하단까지 관통할 수 있다. 배플 홀(5282)들은 플라즈마 발생부(540)에서 발생하는 플라즈마가 처리 공간(5200)으로 유동하는 통로로 기능할 수 있다. The baffle 5280 may uniformly transfer plasma generated from the plasma generating unit 540 to the processing space 5200 . A baffle hole 5282 may be formed in the baffle 5280 . A plurality of baffle holes 5282 may be provided. The baffle holes 5282 may be provided spaced apart from each other. The baffle holes 5282 may pass through the baffle 5280 from the top to the bottom. The baffle holes 5282 may function as passages through which plasma generated in the plasma generating unit 540 flows into the processing space 5200 .
배플(5280)은 판 형상을 가질 수 있다. 배플(5280)은 상부에서 바라볼 때, 원판 형상을 가질 수 있다. 배플(5280)은 단면에서 바라볼 때, 그 상면의 높이가 가장자리 영역에서 중심 영역으로 갈수록 높아질 수 있다. 일 예로, 배플(5280)은 단면에서 바라볼 때, 그 상면이 가장자리 영역에서 중심 영역으로 갈수록 상향 경사지는 형상을 가질 수 있다. The baffle 5280 may have a plate shape. When viewed from the top, the baffle 5280 may have a disk shape. When the baffle 5280 is viewed in cross section, the height of its top surface may increase from the edge area to the center area. For example, when viewed in cross section, the baffle 5280 may have a shape in which an upper surface slopes upward from an edge area to a central area.
이에, 플라즈마 발생부(540)에서 발생하는 플라즈마는 배플(5280)의 경사진 단면을 따라 처리 공간(5200)의 가장자리 영역으로 유동할 수 있다. 상술한 예와 달리, 배플(5280)의 단면은 경사지게 제공되지 않을 수 있다. 일 예로, 배플(5280)은 소정의 두께를 가지는 원판 형상으로 제공될 수 있다.Accordingly, the plasma generated by the plasma generator 540 may flow to the edge region of the processing space 5200 along the inclined end surface of the baffle 5280 . Unlike the above example, the cross section of the baffle 5280 may not be inclined. For example, the baffle 5280 may be provided in a disk shape having a predetermined thickness.
플라즈마 발생부(540)는 후술하는 가스 공급 유닛(5440)으로부터 공급되는 공정 가스를 여기시켜 플라즈마를 생성하고, 생성된 플라즈마를 처리 공간(5200)으로 공급할 수 있다. The plasma generating unit 540 may excite a process gas supplied from a gas supply unit 5440 to be described later to generate plasma and supply the generated plasma to the processing space 5200 .
플라즈마 발생부(540)는 공정 처리부(520)의 상부에 위치할 수 있다. 플라즈마 발생부(540)는 하우징(5220)과 후술하는 확산부(560)보다 상부에 위치할 수 있다. 공정 처리부(520), 확산부(560), 그리고 플라즈마 발생부(540)는 제1방향(2) 및 제2방향(4)과 모두 수직한 제3방향(6)을 따라 지면으로부터 순차적으로 위치할 수 있다.The plasma generating unit 540 may be located above the process processing unit 520 . The plasma generating unit 540 may be located above the housing 5220 and the diffusion unit 560 to be described later. The process processing unit 520, the diffusion unit 560, and the plasma generating unit 540 are sequentially positioned from the ground along a third direction 6 perpendicular to both the first direction 2 and the second direction 4 can do.
플라즈마 발생부(540)는 플라즈마 챔버(5420), 가스 공급 유닛(5440), 그리고 전력 인가 유닛(5460)을 포함할 수 있다.The plasma generator 540 may include a plasma chamber 5420, a gas supply unit 5440, and a power application unit 5460.
플라즈마 챔버(5420)는 상면, 그리고 하면이 개방된 형상을 가질 수 있다. 일 예로, 플라즈마 챔버(5420)는 상면, 그리고 하면이 개방된 원통 형상을 가질 수 있다. 플라즈마 챔버(5420)의 상단 및 하단에는 개구가 형성될 수 있다. 플라즈마 챔버(5420)는 플라즈마 발생 공간(5422)을 가질 수 있다. 플라즈마 챔버(5420)는 산화 알루미늄(Al2O3)을 포함하는 재질로 제공될 수 있다. The plasma chamber 5420 may have a shape with open top and bottom surfaces. For example, the plasma chamber 5420 may have a cylindrical shape with open top and bottom surfaces. Openings may be formed at upper and lower ends of the plasma chamber 5420 . The plasma chamber 5420 may have a plasma generating space 5422 . The plasma chamber 5420 may be made of a material including aluminum oxide (Al2O3).
플라즈마 챔버(5420)의 상면은 가스 공급 포트(5424)에 의해 밀폐될 수 있다. 가스 공급 포트(5424)는 후술하는 가스 공급 유닛(5440)과 연결될 수 있다. 공정 가스는 가스 공급 포트(5424)를 통해 플라즈마 발생 공간(5422)으로 공급될 수 있다. 플라즈마 발생 공간(5422)으로 공급된 공정 가스는 배플 홀(5282)을 거쳐 처리 공간(5200)으로 균일하게 분배될 수 있다. An upper surface of the plasma chamber 5420 may be sealed by a gas supply port 5424 . The gas supply port 5424 may be connected to a gas supply unit 5440 to be described later. Process gas may be supplied to the plasma generation space 5422 through the gas supply port 5424 . The process gas supplied to the plasma generating space 5422 may be uniformly distributed to the processing space 5200 through the baffle hole 5282 .
가스 공급 유닛(5440)은 공정 가스를 공급할 수 있다. 가스 공급 유닛(5440)은 가스 공급 포트(5424)와 연결될 수 있다. 가스 공급 유닛(5440)이 공급하는 공정 가스는 플루오린(Fluorine) 및/또는 하이드러전(Hydrogen)을 포함할 수 있다.The gas supply unit 5440 may supply a process gas. The gas supply unit 5440 may be connected to the gas supply port 5424 . The process gas supplied by the gas supply unit 5440 may include fluorine and/or hydrogen.
전력 인가 유닛(5460)은 플라즈마 발생 공간(5422)에 고주파 전력을 인가한다. 전력 인가 유닛(5460)은 플라즈마 발생 공간(5422)에서 공정 가스를 여기하여 플라즈마를 발생시키는 플라즈마 소스일 수 있다. 전력 인가 유닛(5460)은 안테나(5462)와 전원(5464)을 포함할 수 있다. The power application unit 5460 applies high frequency power to the plasma generating space 5422 . The power application unit 5460 may be a plasma source that generates plasma by exciting a process gas in the plasma generating space 5422 . The power application unit 5460 may include an antenna 5462 and a power source 5464 .
안테나(5462)는 유도 결합형 플라즈마(ICP) 안테나일 수 있다. 안테나(5462)는 코일 형상으로 제공될 수 있다. 안테나(5462)는 플라즈마 챔버(5420)의 외부에서 플라즈마 챔버(5420)를 복수 회 감을 수 있다. 안테나(5462)는 플라즈마 챔버(5420)의 외부에서 나선 형으로 플라즈마 챔버(5420)를 복수 회 감을 수 있다. Antenna 5462 may be an inductively coupled plasma (ICP) antenna. The antenna 5462 may be provided in a coil shape. The antenna 5462 may wind the plasma chamber 5420 multiple times from the outside of the plasma chamber 5420 . The antenna 5462 may spiral around the plasma chamber 5420 multiple times from the outside of the plasma chamber 5420 .
안테나(5462)는 플라즈마 발생 공간(5422)에 대응하는 영역에서 플라즈마 챔버(5420)에 감길 수 있다. 안테나(5462)의 일단은 플라즈마 챔버(5420)의 정단면에서 바라볼 때, 플라즈마 챔버(5420)의 상부 영역과 대응되는 높이에 제공될 수 있다. 안테나(5462)의 타단은 플라즈마 챔버(5420)의 정단면에서 바라볼 때, 플라즈마 챔버(5420)의 하부 영역과 대응되는 높이에 제공될 수 있다. The antenna 5462 may be wound around the plasma chamber 5420 in a region corresponding to the plasma generating space 5422 . One end of the antenna 5462 may be provided at a height corresponding to an upper region of the plasma chamber 5420 when viewed from a front end surface of the plasma chamber 5420 . The other end of the antenna 5462 may be provided at a height corresponding to a lower region of the plasma chamber 5420 when viewed from the front end of the plasma chamber 5420 .
전원(5464)은 안테나(5462)에 전력을 인가할 수 있다. 전원(5464)은 안테나(5462)에 고주파 교류 전류를 인가할 수 있다. 안테나(5462)에 인가된 고주파 교류 전류는 플라즈마 발생 공간(5422)에 유도 전기장을 형성할 수 있다. 플라즈마 발생 공간(5422) 내로 공급되는 공정 가스는 유도 전기장으로부터 이온화에 필요한 에너지를 얻어 플라즈마 상태로 변환될 수 있다. A power source 5464 can apply power to the antenna 5462 . The power source 5464 may apply a high-frequency alternating current to the antenna 5462 . The high-frequency alternating current applied to the antenna 5462 may form an induced electric field in the plasma generating space 5422 . The process gas supplied into the plasma generation space 5422 may be converted into a plasma state by obtaining energy required for ionization from the induced electric field.
전원(5464)은 안테나(5462)의 일단에 연결될 수 있다. 전원(5464)은 플라즈마 챔버(5420)의 상부 영역과 대응되는 높이에 제공되는 안테나(5462)의 일단에 연결될 수 있다. 또한, 안테나(5462)의 타단은 접지될 수 있다. 플라즈마 챔버(5420)의 하부 영역과 대응되는 높이에 제공되는 안테나(5462)의 타단은 접지될 수 있다. 그러나, 이에 한정되는 것은 아니고, 안테나(5462)의 일단이 접지되고, 안테나(5462)의 타단에 전원(5464)이 연결될 수 있다.A power source 5464 may be coupled to one end of the antenna 5462. The power source 5464 may be connected to one end of an antenna 5462 provided at a height corresponding to the upper region of the plasma chamber 5420 . Also, the other end of the antenna 5462 may be grounded. The other end of the antenna 5462 provided at a height corresponding to the lower region of the plasma chamber 5420 may be grounded. However, the present invention is not limited thereto, and one end of the antenna 5462 may be grounded and the power source 5464 may be connected to the other end of the antenna 5462.
확산부(560)는 플라즈마 발생부(540)에서 발생된 플라즈마를 처리 공간(5200)으로 확산시킬 수 있다. 확산부(560)는 확산 챔버(5620)를 포함할 수 있다. 확산 챔버(5620)는 플라즈마 챔버(5420)에서 발생된 플라즈마를 확산시키는 플라즈마 확산 공간(5622)을 제공한다. 플라즈마 발생부(540)에서 발생된 플라즈마는 플라즈마 확산 공간(5622)을 거치면서 확산될 수 있다. 플라즈마 확산 공간(5622)으로 유입된 플라즈마는 배플(5280)을 거쳐 처리 공간(5200)으로 균일하게 분배될 수 있다.The diffusion unit 560 may diffuse the plasma generated by the plasma generation unit 540 into the processing space 5200 . The diffusion unit 560 may include a diffusion chamber 5620 . The diffusion chamber 5620 provides a plasma diffusion space 5622 in which plasma generated in the plasma chamber 5420 is diffused. Plasma generated by the plasma generator 540 may diffuse while passing through the plasma diffusion space 5622 . Plasma introduced into the plasma diffusion space 5622 may be uniformly distributed to the processing space 5200 via the baffle 5280 .
확산 챔버(5620)는 플라즈마 챔버(5420)의 하부에 위치할 수 있다. 확산 챔버(5620)는 하우징(5220)과 플라즈마 챔버(5420) 사이에 위치할 수 있다. 하우징(5220), 확산 챔버(5620), 그리고 플라즈마 챔버(5420)는 제3방향(6)을 따라 지면으로부터 순차적으로 위치할 수 있다. 확산 챔버(5620)의 내주면은 부도체로 제공될 수 있다. 일 예로, 확산 챔버(5620)의 내주면은 석영(Quartz)을 포함하는 재질로 제공될 수 있다.The diffusion chamber 5620 may be located below the plasma chamber 5420 . A diffusion chamber 5620 may be located between the housing 5220 and the plasma chamber 5420 . The housing 5220, the diffusion chamber 5620, and the plasma chamber 5420 may be sequentially positioned from the ground along the third direction 6. An inner circumferential surface of the diffusion chamber 5620 may be provided with an insulator. For example, an inner circumferential surface of the diffusion chamber 5620 may be made of a material including quartz.
배기부(580)는 처리부(520) 내부의 공정 가스 및 불순물을 외부로 배기할 수 있다. 배기부(580)는 기판(W)을 처리하는 과정에서 발생하는 불순물과 파티클 등을 프로세스 챔버(500)의 외부로 배기할 수 있다. 배기부(580)는 처리 공간(5200) 내로 공급된 공정 가스를 프로세스 챔버(500)의 외부로 배기할 수 있다. 배기부(580)는 배기 라인(5820)을 포함할 수 있다. 배기 라인(5820)은 하우징(5220)의 바닥면에 형성된 배기 홀(5222)과 연결될 수 있다. 배기 라인(5820)은 도시되지 않은 음압을 제공하는 펌프와 연결되어 하우징(5220)의 외부로 처리 공간(5200)에 잔류하는 플라즈마, 불순물, 그리고 파티클 등을 하우징(5220)의 외부로 배출한다.The exhaust unit 580 may exhaust process gas and impurities inside the processing unit 520 to the outside. The exhaust unit 580 may exhaust impurities and particles generated in the process of processing the substrate W to the outside of the process chamber 500 . The exhaust unit 580 may exhaust the process gas supplied into the processing space 5200 to the outside of the process chamber 500 . The exhaust 580 may include an exhaust line 5820 . The exhaust line 5820 may be connected to an exhaust hole 5222 formed on a bottom surface of the housing 5220 . The exhaust line 5820 is connected to a pump providing a negative pressure (not shown) to discharge plasma, impurities, and particles remaining in the processing space 5200 to the outside of the housing 5220.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 전술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The above detailed description is illustrative of the present invention. In addition, the foregoing is intended to illustrate and describe preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. That is, changes or modifications are possible within the scope of the concept of the invention disclosed in this specification, within the scope equivalent to the written disclosure and / or within the scope of skill or knowledge in the art. The foregoing embodiment describes the best state for implementing the technical idea of the present invention, and various changes required in specific application fields and uses of the present invention are also possible. Therefore, the above detailed description of the invention is not intended to limit the invention to the disclosed embodiments. Also, the appended claims should be construed to cover other embodiments as well.

Claims (12)

  1. 기판을 처리하는 장치에 있어서,In the apparatus for processing the substrate,
    처리 공간을 제공하는 하우징;a housing providing a processing space;
    상기 처리 공간 내에 배치되어 기판을 지지하는 지지 유닛; 및a support unit disposed within the processing space to support a substrate; and
    상기 하우징 상부에 구비되고, 공정 가스로부터 플라즈마를 발생시키는 플라즈마 소스를 포함하되,A plasma source provided on the upper part of the housing and generating plasma from a process gas,
    상기 지지 유닛의 상면에는 상기 지지 유닛의 중심을 포함하는 제1영역과 상기 제1영역을 감싸는 제2영역으로 구성되고,The upper surface of the support unit is composed of a first area including the center of the support unit and a second area surrounding the first area,
    상기 지지 유닛에는 상기 제1영역과 상기 제2영역 사이에 형성되고, 상기 지지 유닛의 상면으로부터 내측으로 만입된 그루브가 형성되고,The support unit has a groove formed between the first region and the second region and recessed inward from the upper surface of the support unit,
    상기 지지 유닛은,The support unit is
    상기 제1영역에 형성되고, 상기 기판의 하면을 지지하는 복수의 제1지지 돌기;a plurality of first support protrusions formed in the first region and supporting a lower surface of the substrate;
    상기 제2영역에 형성되고, 상기 기판의 하면을 지지하는 복수의 제2지지 돌기; 및a plurality of second support protrusions formed in the second region and supporting a lower surface of the substrate; and
    상기 그루브의 하면에 형성되어 상기 기판을 진공 흡착하는 흡착 홀을 포함하고,An adsorption hole formed on a lower surface of the groove to vacuum adsorb the substrate;
    상기 복수의 제1지지 돌기들을 연결한 가상의 직선이 이루는 제1형태는 상기 복수의 제2지지 돌기들을 연결한 가상의 직선이 이루는 제2형태와 대칭을 형성하는 기판 처리 장치.A first shape formed by an imaginary straight line connecting the plurality of first support protrusions is symmetrical with a second shape formed by an imaginary straight line connecting the plurality of second support protrusions.
  2. 제1항에 있어서,According to claim 1,
    상기 지지 유닛은,The support unit is
    상기 지지 유닛을 매개로 상기 기판에 열을 전달하는 열 전달 유닛을 더 포함하는 기판 처리 장치.The substrate processing apparatus further comprises a heat transfer unit for transferring heat to the substrate via the support unit.
  3. 제2항에 있어서,According to claim 2,
    상기 지지 유닛의 상면에는 상기 제2영역을 감싸는 제3영역이 더 제공되고,A third area surrounding the second area is further provided on the upper surface of the support unit,
    상기 지지 유닛에는 상기 제2영역과 상기 제3영역 사이에 상기 그루브가 더 형성되고,In the support unit, the groove is further formed between the second area and the third area,
    상기 지지 유닛은,The support unit is
    상기 제3영역에 형성되고, 상기 기판의 가장자리 하면을 지지하는 복수의 제3지지 돌기를 더 포함하고,Further comprising a plurality of third support protrusions formed in the third region and supporting an edge lower surface of the substrate,
    상기 제2형태와 상기 복수의 제3지지 돌기들을 연결한 가상의 직선이 이루는 제3형태는 서로 대칭을 형성하는 기판 처리 장치.A substrate processing apparatus in which a third shape formed by an imaginary straight line connecting the second shape and the plurality of third support protrusions forms symmetry with each other.
  4. 제3항에 있어서,According to claim 3,
    상기 제1지지 돌기, 상기 제2지지 돌기, 그리고 상기 제3지지 돌기의 상면은 라운드지게 형성되는 기판 처리 장치.Upper surfaces of the first support protrusion, the second support protrusion, and the third support protrusion are formed to be rounded.
  5. 제3항에 있어서,According to claim 3,
    상기 제1형태, 상기 제2형태, 그리고 제3형태는 삼각형인 기판 처리 장치.The first shape, the second shape, and the third shape are triangular substrate processing apparatus.
  6. 제1항에 있어서,According to claim 1,
    상기 지지 유닛은,The support unit is
    상기 흡착 홀에 연결되고, 상기 지지 유닛의 내부에 설치되는 진공 라인; 및a vacuum line connected to the suction hole and installed inside the support unit; and
    상기 진공 라인에 음압을 전달하는 감압 부재를 포함하는 기판 처리 장치.Substrate processing apparatus including a pressure reducing member for transmitting a negative pressure to the vacuum line.
  7. 상면에 기판을 지지하는 지지 유닛에 있어서,In the support unit for supporting the substrate on the upper surface,
    상기 지지 유닛의 상면에는 상기 지지 유닛의 중심을 포함하는 제1영역과 상기 제1영역을 감싸는 제2영역으로 구성되고,The upper surface of the support unit is composed of a first area including the center of the support unit and a second area surrounding the first area,
    상기 지지 유닛에는 상기 제1영역과 상기 제2영역 사이에 형성되고, 상기 지지 유닛의 상면으로부터 내측으로 만입된 그루브가 형성되고,The support unit has a groove formed between the first region and the second region and recessed inward from the upper surface of the support unit,
    상기 지지 유닛은,The support unit is
    상기 제1영역에 형성되고, 상기 기판의 하면을 지지하는 복수의 제1지지 돌기;a plurality of first support protrusions formed in the first region and supporting a lower surface of the substrate;
    상기 제2영역에 형성되고, 상기 기판의 하면을 지지하는 복수의 제2지지 돌기; 및a plurality of second support protrusions formed in the second region and supporting a lower surface of the substrate; and
    상기 그루브의 하면에 형성되어 상기 기판을 진공 흡착하는 흡착 홀을 포함하고,An adsorption hole formed on a lower surface of the groove to vacuum adsorb the substrate;
    상기 복수의 제1지지 돌기들을 연결한 가상의 직선이 이루는 제1형태는 상기 복수의 제2지지 돌기들을 연결한 가상의 직선이 이루는 제2형태와 대칭을 형성하는 지지 유닛.A first shape formed by an imaginary straight line connecting the plurality of first support protrusions is symmetrical with a second shape formed by an imaginary straight line connecting the plurality of second support protrusions.
  8. 제7항에 있어서,According to claim 7,
    상기 지지 유닛은,The support unit is
    상기 지지 유닛을 매개로 상기 기판에 열을 전달하는 열 전달 유닛을 더 포함하는 지지 유닛.The support unit further comprises a heat transfer unit that transfers heat to the substrate via the support unit.
  9. 제8항에 있어서,According to claim 8,
    상기 지지 유닛의 상면에는 상기 제2영역을 감싸는 제3영역이 더 제공되고,A third area surrounding the second area is further provided on the upper surface of the support unit,
    상기 지지 유닛에는 상기 제2영역과 상기 제3영역 사이에 상기 그루브가 더 형성되고,In the support unit, the groove is further formed between the second area and the third area,
    상기 지지 유닛은,The support unit is
    상기 제3영역에 형성되고, 상기 기판의 가장자리 하면을 지지하는 복수의 제3지지 돌기를 더 포함하고,Further comprising a plurality of third support protrusions formed in the third region and supporting an edge lower surface of the substrate,
    상기 제2형태와 상기 복수의 제3지지 돌기들을 연결한 가상의 직선이 이루는 제3형태는 서로 대칭을 형성하는 지지 유닛.A support unit in which a third shape formed by an imaginary straight line connecting the second shape and the plurality of third support protrusions forms symmetry with each other.
  10. 제9항에 있어서,According to claim 9,
    상기 제1지지 돌기, 상기 제2지지 돌기, 그리고 상기 제3지지 돌기의 상면은 라운드지게 형성되는 지지 유닛.The support unit of claim 1 , wherein upper surfaces of the first support protrusion, the second support protrusion, and the third support protrusion are rounded.
  11. 제10항에 있어서,According to claim 10,
    상기 제1형태, 상기 제2형태, 그리고 제3형태는 삼각형인 지지 유닛.The support unit of the first shape, the second shape, and the third shape are triangular.
  12. 제7항에 있어서,According to claim 7,
    상기 지지 유닛은,The support unit is
    상기 흡착 홀에 연결되고, 상기 지지 유닛의 내부에 설치되는 진공 라인; 및a vacuum line connected to the suction hole and installed inside the support unit; and
    상기 진공 라인에 음압을 전달하는 감압 부재를 포함하는 지지 유닛.A support unit comprising a pressure reducing member for transmitting negative pressure to the vacuum line.
PCT/KR2021/018055 2021-10-27 2021-12-02 Support unit and substrate processing apparatus comprising same WO2023075004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210144946A KR102654902B1 (en) 2021-10-27 2021-10-27 Support unit, and apparatus for treating substrate with the same
KR10-2021-0144946 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023075004A1 true WO2023075004A1 (en) 2023-05-04

Family

ID=86160052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018055 WO2023075004A1 (en) 2021-10-27 2021-12-02 Support unit and substrate processing apparatus comprising same

Country Status (2)

Country Link
KR (1) KR102654902B1 (en)
WO (1) WO2023075004A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122557A (en) * 2005-05-27 2006-11-30 삼성전자주식회사 Vaccum chuck of semiconductor manufaturing equipment
KR20070049689A (en) * 1999-05-25 2007-05-11 도토기키 가부시키가이샤 An electrostatic chuck for attracting an insulative substrate, and method and apparatus for electrostatically attracting and processing an insulative substrate
KR100839190B1 (en) * 2007-03-06 2008-06-17 세메스 주식회사 Apparatus and method for processing substrate
KR20160015510A (en) * 2014-07-30 2016-02-15 삼성전자주식회사 Electrostatic chuck assemblies, semiconducotor fabricating apparatus having the same, and plasma treatment methods using the same
KR20200137286A (en) * 2019-05-29 2020-12-09 주식회사 원익아이피에스 Substrate processing apparatus and method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251754A (en) * 2007-03-29 2008-10-16 Nikon Corp Substrate transfer method and apparatus, and exposure method and device
KR101057118B1 (en) * 2009-03-31 2011-08-16 피에스케이 주식회사 Substrate Processing Apparatus and Method
JP6108803B2 (en) * 2012-12-07 2017-04-05 日本特殊陶業株式会社 Substrate holding member
KR102000021B1 (en) * 2016-11-30 2019-07-17 세메스 주식회사 Substrate supporting unit, heat treatment unit and substrate treating apparatus including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070049689A (en) * 1999-05-25 2007-05-11 도토기키 가부시키가이샤 An electrostatic chuck for attracting an insulative substrate, and method and apparatus for electrostatically attracting and processing an insulative substrate
KR20060122557A (en) * 2005-05-27 2006-11-30 삼성전자주식회사 Vaccum chuck of semiconductor manufaturing equipment
KR100839190B1 (en) * 2007-03-06 2008-06-17 세메스 주식회사 Apparatus and method for processing substrate
KR20160015510A (en) * 2014-07-30 2016-02-15 삼성전자주식회사 Electrostatic chuck assemblies, semiconducotor fabricating apparatus having the same, and plasma treatment methods using the same
KR20200137286A (en) * 2019-05-29 2020-12-09 주식회사 원익아이피에스 Substrate processing apparatus and method using the same

Also Published As

Publication number Publication date
KR102654902B1 (en) 2024-04-29
KR20230060331A (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2023027342A1 (en) Substrate processing apparatus
WO2023075004A1 (en) Support unit and substrate processing apparatus comprising same
WO2023085662A1 (en) Support unit and substrate processing apparatus comprising same
WO2023080549A1 (en) Connector assembly, and substrate-processing apparatus comprising same
WO2023132402A1 (en) Substrate processing apparatus
TWI729592B (en) Substrate treating apparatus
WO2023027199A1 (en) Substrate processing device and substrate processing method
WO2023234568A1 (en) Substrate processing apparatus
WO2023128325A1 (en) Substrate treatment apparatus
WO2023080324A1 (en) Upper electrode unit and substrate processing apparatus comprising same
WO2023008805A1 (en) Substrate processing apparatus
WO2023027244A1 (en) Apparatus for processing substrate
WO2023090685A1 (en) Substrate treatment apparatus and substrate treatment method
WO2023033259A1 (en) Substrate treatment apparatus and dielectric plate alignment method
WO2022055313A1 (en) Substrate processing apparatus and method for sensing leakage from processing chamber
WO2022145737A1 (en) Substrate processing device
WO2023027245A1 (en) Substrate processing device and dielectric plate alignment method
WO2023017908A1 (en) Substrate processing device
WO2023003309A1 (en) Substrate processing apparatus and method for driving door assembly
WO2023096023A1 (en) Support unit and substrate processing apparatus comprising same
KR102665361B1 (en) A substrate processing apparatus
WO2023132401A1 (en) Light anaysis unit, and substrate processing apparatus comprising same
JP2626618B2 (en) Sample holding method for vacuum processing equipment
KR20190062850A (en) Baffle and apparatus for treating substrate
WO2023080325A1 (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE