WO2023074962A1 - In-chamber wafer conveyance robot - Google Patents

In-chamber wafer conveyance robot Download PDF

Info

Publication number
WO2023074962A1
WO2023074962A1 PCT/KR2021/015394 KR2021015394W WO2023074962A1 WO 2023074962 A1 WO2023074962 A1 WO 2023074962A1 KR 2021015394 W KR2021015394 W KR 2021015394W WO 2023074962 A1 WO2023074962 A1 WO 2023074962A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
link
hand
coupling member
link coupling
Prior art date
Application number
PCT/KR2021/015394
Other languages
French (fr)
Korean (ko)
Inventor
장현석
정광민
변혜원
양희웅
Original Assignee
주식회사 라온테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 라온테크 filed Critical 주식회사 라온테크
Publication of WO2023074962A1 publication Critical patent/WO2023074962A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • B25J15/0057Gripping heads and other end effectors multiple gripper units or multiple end effectors mounted on a turret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0206Gripping heads and other end effectors servo-actuated comprising articulated grippers
    • B25J15/022Gripping heads and other end effectors servo-actuated comprising articulated grippers actuated by articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches

Definitions

  • the present invention relates to a wafer transfer robot technology, and more particularly, to an in-chamber wafer transfer robot capable of responding to a process chamber that is spatially enlarged and elongated in order to process a large amount of wafers.
  • a wafer transfer device for transferring a wafer is used to process a wafer, which is an object.
  • semiconductor devices are implemented by depositing and patterning various materials in the form of thin films on a wafer, which is a substrate. To this end, several process steps such as deposition, etching, cleaning, and drying are performed on the wafer.
  • the wafer needs to be transferred or returned to the process chamber where the process is performed so that the process can be performed in an optimal environment.
  • the wafer transfer device may include a load port, an equipment front end module (EFEM), a load lock module, a transfer module, and a process chamber in order to transfer the wafer to the process chamber where the process is performed.
  • EFEM equipment front end module
  • load lock module a load lock module
  • transfer module a transfer module
  • a plurality of processor chambers are coupled to surround one transfer module, so that a wafer processing process can be performed simultaneously in the plurality of processor chambers. That is, a robot included in the transfer module transfers the wafer to each process chamber in a manner of transferring the wafer from the load lock module to one of the plurality of processor chambers.
  • an in-chamber wafer transfer robot capable of coping with a spatially enlarged and elongated process chamber in order to process a large amount of wafers.
  • an in-chamber wafer transfer robot capable of coping with process chambers having different process times.
  • an in-chamber wafer transfer robot capable of simultaneously transferring and delivering wafers to a plurality of processes within a chamber.
  • an in-chamber wafer transfer robot includes a hand module including first and second hands respectively connected via ends of first and second hand arms; First and second hand link coupling members facing each other and connecting different ends of the first and second handarms, respectively, and located in the central region out of the straight position of the first and second hand link coupling members
  • a multi-link hive including a chamber link coupling member; and a chamber link having one end coupled to the chamber link coupling member to move the multi-link hive within the linear chamber.
  • the hand module further includes third and fourth hands respectively connected through ends of the third and fourth handarms, and controls the other ends of the first and third handarms through the first hand link coupling member.
  • the first and third handarms are operated independently by connecting them at a predetermined height difference, and the other ends of the second and fourth handarms are connected at a second predetermined height difference through the second hand link coupling member to It is characterized in that the second and fourth handarms operate independently, and collision prevention between the first and third hands or the second and fourth hands is controlled.
  • the hand module sets the first predetermined height difference so that the wafer can be loaded on either the first or third hand and overlapped based on the first hand link coupling member, and the second or fourth hand It is characterized in that the second predetermined height difference is set so that the wafer is loaded on any one of them and overlapped based on the second hand link coupling member.
  • the multi-link hive is formed through at least three vertices, and the first and second hand link coupling members are disposed on each side, and the chamber link coupling member is disposed on each other side.
  • the multi-link hive is characterized in that it is implemented to form an isosceles triangle having the same length between the chamber link coupling member and each of the first and second hand link coupling members through an imaginary straight line of the at least three vertices.
  • the multi-link hive performs a wafer loading or unloading operation in a process chamber disposed in the linear chamber by rotating the other end of the corresponding hand arm coupled to the first and second hand link coupling members. do.
  • the chamber link is implemented as an interconnected articulated link, one end of the articulated link is coupled to the chamber link coupling member, and the other end of the articulated link is coupled to another chamber link coupling member disposed on the central side of the linear chamber. characterized in that they are combined.
  • the disclosed technology may have the following effects. However, it does not mean that a specific embodiment must include all of the following effects or only the following effects, so it should not be understood that the scope of rights of the disclosed technology is limited thereby.
  • An in-chamber wafer transfer robot may correspond to a process chamber that is spatially enlarged and elongated in order to process a large amount of wafers.
  • An in-chamber wafer transfer robot can correspond to process chambers with different process times.
  • An in-chamber wafer transfer robot can simultaneously transfer and transfer wafers to a plurality of processes within a chamber.
  • FIG. 1 is a plan view illustrating an in-chamber wafer transfer robot according to an embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view for explaining the in-chamber wafer transfer robot of FIG. 1 .
  • FIG. 3 is a plan view for explaining a state in which the chamber links in FIG. 1 are overlapped.
  • FIG. 4 is a diagram for explaining a linear chamber apparatus including the in-chamber wafer transfer robot of FIG. 1 .
  • 5A-5K are diagrams for explaining an operation example of the in-chamber wafer transfer robot in FIG. 1 .
  • 6A-6C are diagrams for explaining a state of use of an in-chamber wafer transfer robot in the linear chamber device of FIG. 4 .
  • first and second are used to distinguish one component from another, and the scope of rights should not be limited by these terms.
  • a first element may be termed a second element, and similarly, a second element may be termed a first element.
  • the identification code (eg, a, b, c, etc.) is used for convenience of explanation, and the identification code does not describe the order of each step, and each step clearly follows a specific order in context. Unless otherwise specified, it may occur in a different order than specified. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • FIG. 1 is a plan view for explaining an in-chamber wafer transfer robot according to an embodiment of the present invention
  • FIG. 2 is a side cross-sectional view for explaining the in-chamber wafer transfer robot in FIG. 1
  • FIG. 3 is FIG. It is a plan view for explaining the state in which the chamber links in are overlapped.
  • the in-chamber wafer transfer robot 100 may include a hand module 110, a multi-link hive 130, and a chamber link 150.
  • the hand module 110 may be formed by connecting a plurality of hand arms, and the hand arms connected to each other may freely rotate around each part to which the hand arms are connected.
  • the hand module 110 may include first to fourth handarms 111, 112, 113, and 114 and first to fourth hands 121, 122, 123, and 124 respectively connected through ends of the first to fourth handarms 111, 112, 113, and 114. there is.
  • the hand module 110 may connect the first and third handarms 111 and 113 to each other through different ends of the first and third handarms 111 and 113 .
  • the hand module 110 may connect the second and fourth handarms 112 and 114 to each other through the other ends of the second and fourth handarms 112 and 114 .
  • the first and third handarms 111 and 113 may be connected with a first predetermined height difference
  • the second and fourth handarms 112 and 114 may be connected with a second predetermined height difference and independently operate.
  • the first and second predetermined height differences may be the same or different.
  • the hand module 110 may prevent a collision between the first and third hands 121 and 123 or the second and fourth hands 122 and 124 connected to the handarms.
  • the operation between the first and third handarms 111 and 113 or the second and fourth handarms 112 and 114 can be controlled so as to
  • the first predetermined height difference may be set as a height difference in which either the first hand 121 or the third hand 123 may be loaded with a wafer and the hands 121 and 123 may be stacked vertically.
  • the second predetermined height difference may be set as a height difference in which either the second hand 122 or the fourth hand 124 may be loaded with a wafer and the hands 122 and 124 may be stacked vertically.
  • the hand module 110 may connect the first and third handarms 111 and 113 and the second and fourth handarms 112 and 114 connected to each other through the multi-link hive 130 .
  • the multi-link hive 130 includes first and second hand link coupling members 131 and 132 facing each other and connecting different ends of the first and second handarms 111 and 112, respectively, and the first and second hands. It may include a chamber link coupling member 133 located in a central area deviated from a straight line position of the link coupling members 131 and 132 .
  • the first hand link coupling member 131 connects the other ends of the first and third handarms 111 and 113 with a first predetermined height difference so that the first and third handarms 111 and 113 can be independently operated. do.
  • the first and third handarms 111 and 113 may be overlapped by rotating with respect to the first hand link coupling member 131 .
  • the second hand link coupling member 132 connects the other ends of the second and fourth handarms 112 and 114 with a second predetermined height difference so that the second and fourth handarms 112 and 114 can be independently operated. do.
  • the second and fourth handarms 112 and 114 may be overlapped by rotating with respect to the second hand link coupling member 132 .
  • the multi-link hive 130 is formed through at least three vertices, disposing the first and second hand link coupling members 131 and 132 on each side, and having the chamber link coupling member 133 on each other side. place The multi-link hive 130 may place the first and second hand link coupling members 131 and 132 on the upper surface and the chamber link coupling member 133 on the lower surface.
  • the multi-link hive 130 will be implemented to form an isosceles triangle having the same length between the chamber link coupling member 133 and the first and second hand link coupling members 131 and 132, respectively, through an imaginary straight line of at least three vertices.
  • the first and second hand link coupling members 131 and 132 are disposed opposite to each other at equal intervals with respect to the chamber link coupling member 133 and rotate the other end of the coupled handarm.
  • the multi-link hive 130 rotates the other end of the corresponding handarm coupled to the first and second hand link coupling members 131 and 132 to perform a wafer loading or unloading operation in a process chamber disposed in a linear chamber. make it possible
  • the multi-link hive 130 rotates the other end of the first or third handarms 111 and 113 coupled to the first hand link coupling member 131, and the first or third hand connected to one end of the corresponding handarm ( 121 and 123) may perform a transfer operation of the loaded wafer.
  • the multi-link hive 130 rotates the other end of the second or fourth handarm 112 or 114 coupled to the second hand link coupling member 132 to rotate the second or fourth hand connected to one end of the corresponding handarm ( 122 and 124) may perform a transfer operation of the loaded wafer.
  • the chamber link 150 has one end coupled to the chamber link coupling member 133 to move the multi-link hive 130 in the linear chamber.
  • the chamber link 150 is implemented as an articulated link 151 connected to each other.
  • the multi-joint link 151 may be composed of an upper link and a lower link.
  • one end of the articulated link 151 is coupled to the chamber link coupling member 133 and the other end of the articulated link 151 is coupled to another chamber leak coupling member 170 disposed in the linear chamber. do.
  • another chamber link coupling member 170 may be disposed on the central side of the linear chamber.
  • the chamber link coupling member 133 is coupled to the upper link of the multi-joint link 151 and the other chamber link coupling member 170 is coupled to the lower link.
  • the chamber link 150 operates the multi-joint link 151 to move the multi-link hive 130 within the linear chamber.
  • the multi-joint link 151 may freely move the multi-link hive 130 coupled to one end of the upper link in the linear chamber according to the joint movement between the upper link and the lower link.
  • FIG. 4 is a diagram for explaining a linear chamber apparatus including the in-chamber wafer transfer robot of FIG. 1 .
  • the linear chamber apparatus 400 includes a process chamber 410 and a chamber transfer path 430, and in the chamber transfer path 430 according to the present invention, in-chamber wafer transfer A robot 100 may be included.
  • the process chamber 410 is composed of first and second process chambers that are linearly disposed on both sides of the chamber transfer path 430 .
  • the first-side and second-side process chambers 410 may perform a deposition process or the like on a wafer.
  • Each of the first-side and second-side process chambers 410 may be driven independently. Wafer processing is performed in each process chamber 410 . In this case, processing of wafers in each process chamber 410 may be performed in the same process, or may be performed in different processes if necessary.
  • the chamber transfer path 430 may be formed between the first side and the second side process chambers 410 and may include a first chamber link coupling member 170 at a center side.
  • the chamber transfer path 430 includes a plurality of process chambers 410 disposed in first and second outer directions, a load lock 200 disposed in a third outer direction, and includes an opening area therein, , wafers can be transferred cyclically.
  • the chamber transfer path 430 may serve to transfer wafers loaded on the load lock 200 to the first and second side process chambers 410 , respectively.
  • the chamber transfer path 430 may have a circular shape like a conveyor belt.
  • the chamber transfer path 430 may transfer wafers through a transfer rail, and at this time, stop and move repeatedly at designated locations to deliver wafers to a corresponding process chamber at designated locations.
  • the load lock 200 may be disposed on a short side of the chamber transfer path 430 , and the process chambers 410 may be disposed facing each other on a long side of the transfer path 430 .
  • the length of each side of the chamber transport path 430 may vary depending on the size and number of the load lock 200 and the process chambers 410 to be disposed.
  • the inner space of the chamber transport passage 430 is kept sealed against the outside, and may be maintained in a vacuum state or filled with an inert gas as needed. Accordingly, when a wafer is provided into the chamber transfer path 430 or discharged therefrom, it passes through the load lock 200 .
  • the interior space of the chamber transfer path 430 is maintained at a level of cleanliness higher than a predetermined level because wafers in which manufacturing processes are performed are transferred.
  • the load lock 200 is disposed between the equipment front end module (EFEM) 300 and the chamber transfer path 430, and loads wafers transferred from the EFEM 300. In addition, the load lock 200 loads wafers transferred from the chamber transfer path 430 .
  • the load lock 200 has at least two chambers, in which a wafer to be processed, i.e., a wafer provided to the chamber transfer path 430, is waiting in one chamber, and in the other chamber, a wafer to be processed, i.e., a wafer to be processed is prepared. Wafers that have completed the process may be on standby.
  • the load lock 200 since the load lock 200 is disposed between the EFEM 300 in an atmospheric state and the chamber transport path 430 in a vacuum state, it serves to switch between an atmospheric pressure state and a vacuum state. That is, when a wafer is transferred from the EFEM 300 in an atmospheric pressure state, the load lock 200 converts the atmospheric pressure state into a vacuum state. In addition, the load lock 200 transfers or receives wafers to the chamber transfer path 430 in a vacuum state, and converts the vacuum state to atmospheric pressure to transfer the wafer transferred from the chamber transfer path 430 to the EFEM 300 do.
  • the in-chamber wafer transfer robot 100 is coupled to the central side of the chamber transfer path 430 in an opening area inside.
  • the in-chamber wafer transfer robot 100 includes a hand module 110 , a multi-link hive 130 and a chamber link 150 .
  • the in-chamber wafer transfer robot 100 is coupled to the chamber transfer path 430 through a chamber link 150 .
  • the chamber link 150 is implemented as an interconnected multi-joint link, one end coupled to the multi-link hive 130 and the other end coupled to the central side of the chamber transfer path 430.
  • the in-chamber wafer transfer robot 100 continuously moves at a first position adjacent to the load lock 200 and at a first position around the central side of the chamber transfer path 430 by multi-joint movement of the chamber link 150. It can be moved to the second position.
  • the in-chamber wafer transfer robot 100 couples between the hand module 110 and the chamber link 150 through the multi-link hive 130 .
  • the multi-link hive 130 can load or unload wafers from the load lock 200 to the chamber transfer path 430 by rotating corresponding hand arms without collision between the hands of the hand module 110.
  • a wafer on the transfer path 430 may be moved to a corresponding process chamber or a wafer may be moved from the corresponding process chamber onto the chamber transfer path 430 .
  • the in-chamber wafer transfer robot 100 moves the multi-link hive 130 to a first position adjacent to the load lock 200 by multi-joint movement of the chamber link 150 and moves the multi-link
  • the hand module 110 may be rotated through the hive 130 to take out the load lock wafer in the load lock 200, and the load lock wafer may be provided with priority to a process chamber adjacent to the first position.
  • the in-chamber wafer transfer robot 100 may carry out a chamber wafer in a process chamber adjacent to the first position and directly provide the chamber wafer to the load lock 200 .
  • the in-chamber wafer transfer robot 100 moves the multi-link hive 130 to a second position adjacent to the first and second side process chambers 410 by multi-joint movement of the chamber link 150 and By rotating the hand module 110 through the multi-link hive 130, the wafer on the chamber transfer path 430 is moved to the corresponding process chamber or the wafer is moved from the corresponding process chamber onto the chamber transfer path 430. can be moved
  • the transfer distance of the in-chamber wafer transfer robot 100 can be spatially extended, the position of the process chamber in charge is not specified.
  • FIG. 5 is a view for explaining an operation example of the in-chamber wafer transfer robot in FIG. 1 .
  • the chamber link 150 is implemented as an articulated link, and one end of the articulated link is connected by the operation of the articulated link.
  • the combined multi-link hive 130 may be moved within the linear chamber device 400.
  • the multi-link hive 130 is made of an isosceles triangular shape having three vertices, and the first and second hand link coupling members 131 and 132 are disposed on the upper surfaces of the vertices on both sides to face each other, and on the lower surfaces of the remaining vertices.
  • the chamber link coupling member 133 is disposed and moves within the linear chamber device 400 along the multi-joint movement of the chamber link 150 coupled through the chamber link coupling member 133, and at the same time, the first and second hand links At least one of the handarms may be rotated through the coupling members 131 and 132 to move the handarms in various positions as shown in (a) to (k) of FIG. 5 .
  • the in-chamber wafer transfer robot 100 may transfer wafers to process chambers that are spatially larger and longer without designating the location of the process chambers.
  • FIG. 6 is a view for explaining a state of use of an in-chamber wafer transfer robot in the linear chamber device of FIG. 4 .
  • the in-chamber wafer transfer robot 100 rotates the corresponding handarm coupled to the first and second hand link coupling members 131 and 132 of the multi-link hive 130 as shown in (a).
  • both hands of the hand module 110 may be used in one of the first and second side process chambers 410 .
  • the in-chamber wafer transfer robot 100 also moves one of the hands 121, 122, 123, and 124 to the first and second process chambers 410 by moving the multi-joint link of the chamber link 150 as shown in (b). ) can be used for all
  • the in-chamber wafer transfer robot 100 may also move the multi-link hive 130 as shown in (c) to move the wafer from the first process to the second process without a hand swap operation.
  • the in-chamber wafer transfer robot can expand the spatial movement for wafer transfer without additionally disposing the wafer transfer robot in the linear chamber, enabling additional arrangement of process chambers and improving wafer throughput. .
  • An in-chamber wafer transfer robot is capable of responding to process chambers with different processing times, and is in charge of two process chambers at the same time, or is in charge of one process chamber in which the process is completed first or later because the wafer processing time is different. All movements are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention relates to an in-chamber wafer conveyance robot comprising: a hand module that includes first and second hands connected via ends of first and second hand arms, respectively; a multi-link hive including first and second hand link coupling members, which face each other and respectively connect the other ends of the first and second hand arms, and a chamber link coupling member, which is positioned in a central region outside the straight line positions of the first and second hand link coupling members; and a chamber link that has one end coupled to the chamber link coupling member and moves the multi-link hive inside a linear chamber.

Description

인-챔버 웨이퍼 이송 로봇In-chamber wafer transfer robot
본 발명은 웨이퍼 이송 로봇 기술에 관한 것으로, 보다 상세하게는 대량의 웨이퍼를 처리하기 위해 공간적으로 커지고 길어진 프로세스 챔버에 대응할 수 있는 인-챔버 웨이퍼 이송 로봇에 관한 것이다.The present invention relates to a wafer transfer robot technology, and more particularly, to an in-chamber wafer transfer robot capable of responding to a process chamber that is spatially enlarged and elongated in order to process a large amount of wafers.
반도체 제조 공정에서 대상물인 웨이퍼(wafer)를 처리하기 위해 웨이퍼를이송하는 웨이퍼 이송 장치가 이용된다. 통상, 반도체 소자는 기판인 웨이퍼 상에 여러 가지 물질을 박막형태로 증착하고 패터닝하여 구현한다. 이를 위해 웨이퍼에 증착, 식각, 세정 및 건조 등의 여러 공정 단계를 거친다.In a semiconductor manufacturing process, a wafer transfer device for transferring a wafer is used to process a wafer, which is an object. In general, semiconductor devices are implemented by depositing and patterning various materials in the form of thin films on a wafer, which is a substrate. To this end, several process steps such as deposition, etching, cleaning, and drying are performed on the wafer.
이때, 상기와 같은 공정을 수행하기 위해, 웨이퍼가 최적의 환경에서 공정이 수행될 수 있도록 공정이 수행되는 프로세스 챔버로 이송되거나 회송될 필요가 있다.At this time, in order to perform the above process, the wafer needs to be transferred or returned to the process chamber where the process is performed so that the process can be performed in an optimal environment.
이러한 웨이퍼 이송 장치는 상기와 같이, 공정이 수행되는 프로세스 챔버로 이송하기 위해, 로드 포트, 장비 전단부 모듈(EFEM), 로드락 모듈, 트랜스퍼 모듈 및 프로세스 챔버를 포함할 수 있다.As described above, the wafer transfer device may include a load port, an equipment front end module (EFEM), a load lock module, a transfer module, and a process chamber in order to transfer the wafer to the process chamber where the process is performed.
종래의 웨이퍼 이송 장치는 하나의 트랜스퍼 모듈을 둘러싸도록 복수의 프로세서 챔버가 결합되어, 복수의 프로세서 챔버에서 동시에 웨이퍼 처리 공정이 이루어질 수 있도록 한다. 즉, 트랜스퍼 모듈 내에 포함된 로봇이 로드락 모듈에서 복수의 프로세서 챔버 중 하나로 웨이퍼를 전달하는 방식으로 각 프로세스 챔버에 웨이퍼를 이송한다.In a conventional wafer transfer device, a plurality of processor chambers are coupled to surround one transfer module, so that a wafer processing process can be performed simultaneously in the plurality of processor chambers. That is, a robot included in the transfer module transfers the wafer to each process chamber in a manner of transferring the wafer from the load lock module to one of the plurality of processor chambers.
그런데, 반도체 웨이퍼의 공정시간이 길어지면서 많은 양의 웨이퍼를 처리하기 위해 프로세스 챔버를 추가 확장하는 경우, 이에 대응하여 웨이퍼를 이송할 수 있는 새로운 웨이퍼 이송 로봇이 필요하게 되었다.However, when a process chamber is additionally expanded to process a large amount of wafers as the process time of semiconductor wafers increases, a new wafer transfer robot capable of transferring wafers is required in response to this.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
한국 등록특허공보 제10-1845797(2018.03.20.)호Korean Registered Patent Publication No. 10-1845797 (2018.03.20.)
본 발명의 일 실시예에 따르면, 대량의 웨이퍼를 처리하기 위해 공간적으로 커지고 길어진 프로세스 챔버에 대응할 수 있는 인-챔버 웨이퍼 이송 로봇을 제공하고자 한다.According to one embodiment of the present invention, it is intended to provide an in-chamber wafer transfer robot capable of coping with a spatially enlarged and elongated process chamber in order to process a large amount of wafers.
본 발명의 일 실시예에 따르면, 공정 시간이 다른 프로세스 챔버에 대응 가능한 인-챔버 웨이퍼 이송 로봇을 제공하고자 한다.According to one embodiment of the present invention, it is intended to provide an in-chamber wafer transfer robot capable of coping with process chambers having different process times.
본 발명의 일 실시예에 따르면, 챔버 내에서 웨이퍼를 복수의 프로세스에 동시 이송하여 전달할 수 있는 인-챔버 웨이퍼 이송 로봇을 제공하고자 한다.According to one embodiment of the present invention, it is intended to provide an in-chamber wafer transfer robot capable of simultaneously transferring and delivering wafers to a plurality of processes within a chamber.
실시예들 중에서, 인-챔버 웨이퍼 이송 로봇은 제1 및 제2 핸드암들(hand arms)의 일단들을 통해 각각 연결된 제1 및 제2 핸드들을 포함하는 핸드 모듈; 서로 대향하고 상기 제1 및 제2 핸드암들의 다른 일단들을 각각 연결한 제1 및 제2 핸드 링크 결합부재들, 및 상기 제1 및 제2 핸드 링크 결합부재들의 직선 위치에서 벗어난 중앙 영역에 위치된 챔버 링크 결합부재를 포함하는 멀티-링크 하이브; 및 상기 챔버 링크 결합부재에 일단이 결합되어 상기 멀티-링크 하이브를 리니어 챔버 내에서 이동시키는 챔버 링크를 포함한다.Among embodiments, an in-chamber wafer transfer robot includes a hand module including first and second hands respectively connected via ends of first and second hand arms; First and second hand link coupling members facing each other and connecting different ends of the first and second handarms, respectively, and located in the central region out of the straight position of the first and second hand link coupling members A multi-link hive including a chamber link coupling member; and a chamber link having one end coupled to the chamber link coupling member to move the multi-link hive within the linear chamber.
상기 핸드 모듈은 제3 및 제4 핸드암들의 일단들을 통해 각각 연결된 제3 및 제4 핸드들을 더 포함하고, 상기 제1 핸드 링크 결합부재를 통해 상기 제1 및 제3 핸드암들의 다른 일단들을 제1 일정 높이 차로 연결하여 상기 제1 및 제3의 핸드암들을 독립적으로 동작시키며, 상기 제2 핸드 링크 결합부재를 통해 상기 제2 및 제4 핸드암들의 다른 일단들을 제2 일정 높이 차로 연결하여 상기 제2 및 제4의 핸드암들을 독립적으로 동작시키고, 상기 제1 및 제3 핸드들 또는 상기 제2 및 제4 핸드들 간의 충돌 방지를 제어하는 것을 특징으로 한다.The hand module further includes third and fourth hands respectively connected through ends of the third and fourth handarms, and controls the other ends of the first and third handarms through the first hand link coupling member. The first and third handarms are operated independently by connecting them at a predetermined height difference, and the other ends of the second and fourth handarms are connected at a second predetermined height difference through the second hand link coupling member to It is characterized in that the second and fourth handarms operate independently, and collision prevention between the first and third hands or the second and fourth hands is controlled.
상기 핸드 모듈은 상기 제1 또는 제3 핸드 중 어느 하나에 웨이퍼가 로딩되고 상기 제1 핸드 링크 결합부재를 기준으로 포개어질 수 있도록 상기 제1 일정 높이 차를 설정하며, 상기 제2 또는 제4 핸드 중 어느 하나에 웨이퍼가 로딩되고 상기 제2 핸드 링크 결합부재를 기준으로 포개어질 수 있도록 상기 제2 일정 높이 차를 설정하는 것을 특징으로 한다.The hand module sets the first predetermined height difference so that the wafer can be loaded on either the first or third hand and overlapped based on the first hand link coupling member, and the second or fourth hand It is characterized in that the second predetermined height difference is set so that the wafer is loaded on any one of them and overlapped based on the second hand link coupling member.
상기 멀티-링크 하이브는 적어도 3 개의 꼭지점들을 통해 형성되고, 각각의 일면에 상기 제1 및 제2 핸드 링크 결합부재들을 배치하며 각각의 다른 일면에 상기 챔버 링크 결합부재를 배치하는 것을 특징으로 한다.The multi-link hive is formed through at least three vertices, and the first and second hand link coupling members are disposed on each side, and the chamber link coupling member is disposed on each other side.
상기 멀티-링크 하이브는 상기 적어도 3개의 꼭지점들의 가상 직선을 통해 상기 챔버 링크 결합부재와 상기 제1 및 제2 핸드 링크 결합부재들 각각 간의 길이가 동일한 이등변 삼각형을 형성하도록 구현되는 것을 특징으로 한다.The multi-link hive is characterized in that it is implemented to form an isosceles triangle having the same length between the chamber link coupling member and each of the first and second hand link coupling members through an imaginary straight line of the at least three vertices.
상기 멀티-링크 하이브는 상기 제1 및 제2 핸드 링크 결합부재들에 결합된 해당 핸드암의 다른 일단을 회전시켜 상기 리니어 챔버에 배치된 프로세스 챔버에 웨이퍼 로딩 또는 언로딩 작업을 수행하는 것을 특징으로 한다.The multi-link hive performs a wafer loading or unloading operation in a process chamber disposed in the linear chamber by rotating the other end of the corresponding hand arm coupled to the first and second hand link coupling members. do.
상기 챔버 링크는 상호 연결된 다관절 링크로 구현되고 상기 다관절 링크의 일단은 상기 챔버 링크 결합부재에 결합되고 상기 다관절 링크의 다른 일단은 상기 리니어 챔버의 중앙 측면에 배치된 다른 챔버 링크 결합부재에 결합되는 것을 특징으로 한다.The chamber link is implemented as an interconnected articulated link, one end of the articulated link is coupled to the chamber link coupling member, and the other end of the articulated link is coupled to another chamber link coupling member disposed on the central side of the linear chamber. characterized in that they are combined.
개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.The disclosed technology may have the following effects. However, it does not mean that a specific embodiment must include all of the following effects or only the following effects, so it should not be understood that the scope of rights of the disclosed technology is limited thereby.
본 발명의 일 실시예에 따른 인-챔버 웨이퍼 이송 로봇은 대량의 웨이퍼를 처리하기 위해 공간적으로 커지고 길어진 프로세스 챔버에 대응할 수 있다.An in-chamber wafer transfer robot according to an embodiment of the present invention may correspond to a process chamber that is spatially enlarged and elongated in order to process a large amount of wafers.
본 발명의 일 실시예에 따른 인-챔버 웨이퍼 이송 로봇은 공정 시간이 다른 프로세스 챔버에 대응 가능한다.An in-chamber wafer transfer robot according to an embodiment of the present invention can correspond to process chambers with different process times.
본 발명의 일 실시예에 따른 인-챔버 웨이퍼 이송 로봇은 챔버 내에서 웨이퍼를 복수의 프로세스에 동시 이송하여 전달할 수 있다.An in-chamber wafer transfer robot according to an embodiment of the present invention can simultaneously transfer and transfer wafers to a plurality of processes within a chamber.
도 1은 본 발명의 일 실시예에 따른 인-챔버 웨이퍼 이송 로봇을 설명하기 위한 평면도이다.1 is a plan view illustrating an in-chamber wafer transfer robot according to an embodiment of the present invention.
도 2는 도 1에 있는 인-챔버 웨이퍼 이송 로봇을 설명하기 위한 측단면도이다.FIG. 2 is a side cross-sectional view for explaining the in-chamber wafer transfer robot of FIG. 1 .
도 3은 도 1에 있는 챔버링크가 포개진 상태를 설명하기 위한 평면도이다.FIG. 3 is a plan view for explaining a state in which the chamber links in FIG. 1 are overlapped.
도 4는 도 1에 있는 인-챔버 웨이퍼 이송 로봇을 포함하는 리니어 챔버 장치를 설명하기 위한 도면이다.FIG. 4 is a diagram for explaining a linear chamber apparatus including the in-chamber wafer transfer robot of FIG. 1 .
도 5a-5k는 도 1에 있는 인-챔버 웨이퍼 이송 로봇의 작동예를 설명하기 위한 도면이다.5A-5K are diagrams for explaining an operation example of the in-chamber wafer transfer robot in FIG. 1 .
도 6a-6c는 도 4에 있는 리니어 챔버 장치에서 인-챔버 웨이퍼 이송 로봇의 사용 상태를 설명하기 위한 도면이다.6A-6C are diagrams for explaining a state of use of an in-chamber wafer transfer robot in the linear chamber device of FIG. 4 .
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.Since the description of the present invention is only an embodiment for structural or functional description, the scope of the present invention should not be construed as being limited by the embodiments described in the text. That is, since the embodiment can be changed in various ways and can have various forms, it should be understood that the scope of the present invention includes equivalents capable of realizing the technical idea. In addition, since the object or effect presented in the present invention does not mean that a specific embodiment should include all of them or only such effects, the scope of the present invention should not be construed as being limited thereto.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.Meanwhile, the meaning of terms described in this application should be understood as follows.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as "first" and "second" are used to distinguish one component from another, and the scope of rights should not be limited by these terms. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element.
어떤 구성요소가 다른 구성요소에 "연결되어"있다고 언급된 때에는, 그다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.It should be understood that when an element is referred to as being “connected” to another element, it may be directly connected to the other element, but other elements may exist in the middle. On the other hand, when an element is referred to as being “directly connected” to another element, it should be understood that no intervening elements exist. Meanwhile, other expressions describing the relationship between components, such as “between” and “immediately between” or “adjacent to” and “directly adjacent to” should be interpreted similarly.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Expressions in the singular number should be understood to include plural expressions unless the context clearly dictates otherwise, and terms such as “comprise” or “have” refer to an embodied feature, number, step, operation, component, part, or these. It is intended to specify that a combination exists, but it should be understood that it does not preclude the possibility of the existence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.
각 단계들에 있어 식별부호(예를 들어, a, b, c 등)는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In each step, the identification code (eg, a, b, c, etc.) is used for convenience of explanation, and the identification code does not describe the order of each step, and each step clearly follows a specific order in context. Unless otherwise specified, it may occur in a different order than specified. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs, unless defined otherwise. Terms defined in commonly used dictionaries should be interpreted as consistent with meanings in the context of the related art, and cannot be interpreted as having ideal or excessively formal meanings unless explicitly defined in this application.
도 1은 본 발명의 일 실시예에 따른 인-챔버 웨이퍼 이송 로봇을 설명하기 위한 평면도이고, 도 2는 도 1에 있는 인-챔버 웨이퍼 이송 로봇을 설명하기 위한 측단면도이고, 도 3은 도 1에 있는 챔버 링크가 포개진 상태를 설명하기 위한 평면도이다.1 is a plan view for explaining an in-chamber wafer transfer robot according to an embodiment of the present invention, FIG. 2 is a side cross-sectional view for explaining the in-chamber wafer transfer robot in FIG. 1, and FIG. 3 is FIG. It is a plan view for explaining the state in which the chamber links in are overlapped.
도 1 내지 도 3을 참조하면, 인-챔버 웨이퍼 이송 로봇(100)은 핸드 모듈(110), 멀티-링크 하이브(130), 챔버 링크(150)를 포함할 수 있다.1 to 3 , the in-chamber wafer transfer robot 100 may include a hand module 110, a multi-link hive 130, and a chamber link 150.
핸드 모듈(110)은 다수의 핸드암들(hand arms)이 연결되어 이루어질 수 있고, 그 핸드암들이 연결된 각 부분을 중심으로 연결된 핸드암들이 서로 자유롭게 회전할 수 있다. The hand module 110 may be formed by connecting a plurality of hand arms, and the hand arms connected to each other may freely rotate around each part to which the hand arms are connected.
핸드 모듈(110)은 제1 내지 제4 핸드암들(111,112,113,114)과, 제1 내지 제4 핸드암들(111,112,113,114)의 일단들을 통해 각각 연결된 제1 내지 제4 핸드들(121,122,123,124)을 포함할 수 있다. The hand module 110 may include first to fourth handarms 111, 112, 113, and 114 and first to fourth hands 121, 122, 123, and 124 respectively connected through ends of the first to fourth handarms 111, 112, 113, and 114. there is.
핸드 모듈(110)은 제1 및 제3 핸드암들(111,113)의 다른 일단들을 통해 제1 및 제3 핸드암들(111,113)을 서로 연결할 수 있다. 핸드 모듈(110)은 제2 및 제4 핸드암들(112,114)의 다른 일단들을 통해 제2 및 제4 핸드암들(112,114)을 서로 연결할 수 있다. 제1 및 제3 핸드암들(111,113)은 제1 일정 높이 차로 연결될 수 있고, 제2 및 제4 핸드암들(112,114)은 제2 일정 높이 차로 연결되어 각각 독립적으로 동작할 수 있다. 여기에서, 제1 및 제2 일정 높이 차는 같거나 다를 수 있다. 제1 및 제2 일정 높이 차가 같을 경우에는, 핸드 모듈(110)은 핸드암들에 연결된 제1 및 제3 핸드들(121,123) 또는 제2 및 제4 핸드들(122,124) 간의 충돌을 방지할 수 있도록 제1 및 제3 핸드암들(111,113) 또는 제2 및 제4 핸드암들(112,114) 간의 동작을 제어할 수 있다.The hand module 110 may connect the first and third handarms 111 and 113 to each other through different ends of the first and third handarms 111 and 113 . The hand module 110 may connect the second and fourth handarms 112 and 114 to each other through the other ends of the second and fourth handarms 112 and 114 . The first and third handarms 111 and 113 may be connected with a first predetermined height difference, and the second and fourth handarms 112 and 114 may be connected with a second predetermined height difference and independently operate. Here, the first and second predetermined height differences may be the same or different. When the first and second predetermined height difference is the same, the hand module 110 may prevent a collision between the first and third hands 121 and 123 or the second and fourth hands 122 and 124 connected to the handarms. The operation between the first and third handarms 111 and 113 or the second and fourth handarms 112 and 114 can be controlled so as to
제1 일정 높이 차는 제1 핸드(121) 또는 제3 핸드(123) 중 어느 하나에 웨이퍼가 로딩되고 이들 핸드(121,123)가 상하로 포개어질 수 있는 높이 차로 설정될 수 있다. 제2 일정 높이 차는 제2 핸드(122) 또는 제4 핸드(124) 중 어느 하나에 웨이퍼가 로딩되고 이들 핸드(122,124)가 상하로 포개어질 수 있는 높이 차로 설정될 수 있다. The first predetermined height difference may be set as a height difference in which either the first hand 121 or the third hand 123 may be loaded with a wafer and the hands 121 and 123 may be stacked vertically. The second predetermined height difference may be set as a height difference in which either the second hand 122 or the fourth hand 124 may be loaded with a wafer and the hands 122 and 124 may be stacked vertically.
핸드 모듈(110)은 멀티-링크 하이브(130)를 통해 서로 연결된 제1 및 제3 핸드암들(111,113)과 제2 및 제4 핸드암들(112,114) 사이를 연결할 수 있다.The hand module 110 may connect the first and third handarms 111 and 113 and the second and fourth handarms 112 and 114 connected to each other through the multi-link hive 130 .
멀티-링크 하이브(130)는 서로 대향하고 제1 및 제2 핸드암들(111,112)의 다른 일단들을 각각 연결한 제1 및 제2 핸드 링크 결합부재들(131,132), 및 제1 및 제2 핸드 링크 결합부재들(131,132)의 직선 위치에서 벗어난 중앙 영역에 위치한 챔버 링크 결합부재(133)를 포함할 수 있다.The multi-link hive 130 includes first and second hand link coupling members 131 and 132 facing each other and connecting different ends of the first and second handarms 111 and 112, respectively, and the first and second hands. It may include a chamber link coupling member 133 located in a central area deviated from a straight line position of the link coupling members 131 and 132 .
제1 핸드 링크 결합부재(131)는 제1 및 제3 핸드암들(111,113)의 다른 일단들을 제1 일정 높이 차로 연결하여 제1 및 제3 핸드암들(111,113)을 독립적으로 동작시킬 수 있도록 한다. 제1 및 제3 핸드암들(111,113)은 제1 핸드 링크 결합부재(131)를 기준으로 회전하여 포개어질 수 있다. 제2 핸드 링크 결합부재(132)는 제2 및 제4 핸드암들(112,114)의 다른 일단들을 제2 일정 높이 차로 연결하여 제2 및 제4 핸드암들(112,114)을 독립적으로 동작시킬 수 있도록 한다. 제2 및 제4 핸드암들(112,114)은 제2 핸드 링크 결합부재(132)를 기준으로 회전하여 포개어질 수 있다. The first hand link coupling member 131 connects the other ends of the first and third handarms 111 and 113 with a first predetermined height difference so that the first and third handarms 111 and 113 can be independently operated. do. The first and third handarms 111 and 113 may be overlapped by rotating with respect to the first hand link coupling member 131 . The second hand link coupling member 132 connects the other ends of the second and fourth handarms 112 and 114 with a second predetermined height difference so that the second and fourth handarms 112 and 114 can be independently operated. do. The second and fourth handarms 112 and 114 may be overlapped by rotating with respect to the second hand link coupling member 132 .
멀티-링크 하이브(130)는 적어도 3개의 꼭지점들을 통해 형성되고, 각각의 일면에 제1 및 제2 핸드 링크 결합부재들(131,132)을 배치하며 각각의 다른 일면에 챔버 링크 결합부재(133)를 배치한다. 멀티-링크 하이브(130)는 상부면에 제1 및 제2 핸드 링크 결합부재들(131,132)을 배치하고 하부면에 챔버 링크 결합부재(133)를 배치할 수 있다. The multi-link hive 130 is formed through at least three vertices, disposing the first and second hand link coupling members 131 and 132 on each side, and having the chamber link coupling member 133 on each other side. place The multi-link hive 130 may place the first and second hand link coupling members 131 and 132 on the upper surface and the chamber link coupling member 133 on the lower surface.
멀티-링크 하이브(130)는 적어도 3개의 꼭지점들의 가상 직선을 통해 챔버 링크 결합부재(133)와 제1 및 제2 핸드 링크 결합부재들(131,132) 각각 간의 길이가 동일한 이등변 삼각형을 형성하도록 구현될 수 있다. 제1 및 제2 핸드 링크 결합부재들(131,132)은 챔버 링크 결합부재(133)를 기준으로 양측에 등간격으로 대향 배치되고 결합된 해당 핸드암의 다른 일단을 회전시킨다. The multi-link hive 130 will be implemented to form an isosceles triangle having the same length between the chamber link coupling member 133 and the first and second hand link coupling members 131 and 132, respectively, through an imaginary straight line of at least three vertices. can The first and second hand link coupling members 131 and 132 are disposed opposite to each other at equal intervals with respect to the chamber link coupling member 133 and rotate the other end of the coupled handarm.
멀티-링크 하이브(130)는 제1 및 제2 핸드 링크 결합부재들(131,132)에 결합된 해당 핸드암의 다른 일단을 회전시켜 리니어 챔버에 배치된 프로세스 챔버에 웨이퍼 로딩 또는 언로딩 작업을 수행할 수 있도록 한다. 멀티-링크 하이브(130)는 제1 핸드 링크 결합부재(131)에 결합된 제1 또는 제3 핸드암(111,113)의 다른 일단을 회전시켜 해당 핸드암의 일단에 연결된 제1 또는 제3 핸드(121,123)에 로딩된 웨이퍼의 이송 작업을 수행할 수 있다. 멀티-링크 하이브(130)는 제2 핸드 링크 결합부재(132)에 결합된 제2 또는 제4 핸드암(112,114)의 다른 일단을 회전시켜 해당 핸드암의 일단에 연결된 제2 또는 제4 핸드(122,124)에 로딩된 웨이퍼의 이송 작업을 수행할 수 있다. The multi-link hive 130 rotates the other end of the corresponding handarm coupled to the first and second hand link coupling members 131 and 132 to perform a wafer loading or unloading operation in a process chamber disposed in a linear chamber. make it possible The multi-link hive 130 rotates the other end of the first or third handarms 111 and 113 coupled to the first hand link coupling member 131, and the first or third hand connected to one end of the corresponding handarm ( 121 and 123) may perform a transfer operation of the loaded wafer. The multi-link hive 130 rotates the other end of the second or fourth handarm 112 or 114 coupled to the second hand link coupling member 132 to rotate the second or fourth hand connected to one end of the corresponding handarm ( 122 and 124) may perform a transfer operation of the loaded wafer.
챔버 링크(150)는 챔버 링크 결합부재(133)에 일단이 결합되어 멀티-링크하이브(130)를 리니어 챔버 내에서 이동시킨다. 챔버 링크(150)는 상호 연결된 다관절 링크(151)로 구현된다. 다관절 링크(151)는 상부 링크와 하부 링크로 구성될 수 있다. 챔버 링크(150)는 다관절 링크(151)의 일단은 챔버 링크 결합부재(133)에 결합되고 다관절 링크(151)의 다른 일단은 리니어 챔버에 배치된 다른 챔버 리크 결합부재(170)에 결합된다. 여기에서, 다른 챔버 링크 결합부재(170)는 리니어 챔버의 중앙 측면에 배치될 수 있다. 다관절 링크(151)의 상부 링크에 챔버 링크 결합부재(133)가 결합되고 하부 링크에 다른 챔버 링크 결합부재(170)가 결합된다. 챔버 링크(150)는 다관절 링크(151)를 동작시켜 멀티-링크 하이브(130)를 리니어 챔버 내에서 이동시킨다. 다관절 링크(151)는 상부 링크와 하부 링크 간의 관절 움직임에 따라 상부 링크의 일단에 결합된 멀티-링크 하이브(130)를 리니어 챔버 내에서 자유 이동시킬 수 있다. The chamber link 150 has one end coupled to the chamber link coupling member 133 to move the multi-link hive 130 in the linear chamber. The chamber link 150 is implemented as an articulated link 151 connected to each other. The multi-joint link 151 may be composed of an upper link and a lower link. In the chamber link 150, one end of the articulated link 151 is coupled to the chamber link coupling member 133 and the other end of the articulated link 151 is coupled to another chamber leak coupling member 170 disposed in the linear chamber. do. Here, another chamber link coupling member 170 may be disposed on the central side of the linear chamber. The chamber link coupling member 133 is coupled to the upper link of the multi-joint link 151 and the other chamber link coupling member 170 is coupled to the lower link. The chamber link 150 operates the multi-joint link 151 to move the multi-link hive 130 within the linear chamber. The multi-joint link 151 may freely move the multi-link hive 130 coupled to one end of the upper link in the linear chamber according to the joint movement between the upper link and the lower link.
도 4는 도 1에 있는 인-챔버 웨이퍼 이송 로봇을 포함하는 리니어 챔버 장치를 설명하기 위한 도면이다.FIG. 4 is a diagram for explaining a linear chamber apparatus including the in-chamber wafer transfer robot of FIG. 1 .
도 4를 참조하면, 리니어 챔버 장치(400)는 프로세스 챔버(process chamber)(410)와 챔버 이송로(430)를 포함하고, 챔버 이송로(430) 내에는 본 발명에 따른 인-챔버 웨이퍼 이송 로봇(100)이 포함될 수 있다.Referring to FIG. 4 , the linear chamber apparatus 400 includes a process chamber 410 and a chamber transfer path 430, and in the chamber transfer path 430 according to the present invention, in-chamber wafer transfer A robot 100 may be included.
프로세스 챔버(410)는 챔버 이송로(430)의 양측면에 리니어 하게 배치되는 제1측 및 제2측 프로세스 챔버들로 구성된다. 제1측 및 제2측 프로세스 챔버들(410)은 웨이퍼(wafer)에 대한 증착 공정 등을 수행할 수 있다. 제1측 및 제2측 프로세스 챔버들(410) 각각은 독립적으로 구동될 수 있다. 각 프로세스 챔버(410) 내에서 웨이퍼에 대한 처리가 이루어진다. 이때, 각 프로세스 챔버(410)에서 이루어지는 웨이퍼의 처리는 동일한 공정이 이루어질 수 있으며, 필요에 따라 각기 다른 공정이 이루어질 수도 있다.The process chamber 410 is composed of first and second process chambers that are linearly disposed on both sides of the chamber transfer path 430 . The first-side and second-side process chambers 410 may perform a deposition process or the like on a wafer. Each of the first-side and second-side process chambers 410 may be driven independently. Wafer processing is performed in each process chamber 410 . In this case, processing of wafers in each process chamber 410 may be performed in the same process, or may be performed in different processes if necessary.
챔버 이송로(430)는 제1측 및 제2측 프로세스 챔버들(410) 사이에 형성되고 중앙 측면에 제1 챔버 링크 결합부재(170)를 포함할 수 있다. The chamber transfer path 430 may be formed between the first side and the second side process chambers 410 and may include a first chamber link coupling member 170 at a center side.
챔버 이송로(430)는 제1측 및 제2측 바깥 방향들에 복수의 프로세스 챔버들(410)이 배치되고 제3측 바깥 방향에 로드락(200)이 배치되며 내부에 개구 영역을 포함하고, 웨이퍼를 순환적으로 이송할 수 있다. 챔버 이송로(430)는 로드락(200)에 적재된 웨이퍼를 제1측 및 제2측 프로세스 챔버들(410)로 각각 이송하는 역할을 수행할 수 있다. 이를 위해, 챔버 이송로(430)는 컨베이어 벨트(Conveyor Belt)처럼 순환형 형상을 가질 수 있다. 챔버 이송로(430)는 이송 레일을 통해 웨이퍼를 이송할 수 있으며 이때 지정된 위치마다 정지 및 이동을 반복 수행하여 지정된 위치마다 해당 프로세스 챔버에 웨이퍼를 전달해줄 수 있다. 챔버 이송로(430)는 짧은 면 측에 로드락(200)이 배치될 수 있고, 긴 면 측에 각각 프로세스 챔버들(410)이 서로 대향하여 배치될 수 있다. 여기에서, 챔버 이송로(430)의 각 측면의 길이는 배치되는 로드락(200) 및 프로세스 챔버들(410)의 크기 및 개수에 따라 달라질 수 있다.The chamber transfer path 430 includes a plurality of process chambers 410 disposed in first and second outer directions, a load lock 200 disposed in a third outer direction, and includes an opening area therein, , wafers can be transferred cyclically. The chamber transfer path 430 may serve to transfer wafers loaded on the load lock 200 to the first and second side process chambers 410 , respectively. To this end, the chamber transfer path 430 may have a circular shape like a conveyor belt. The chamber transfer path 430 may transfer wafers through a transfer rail, and at this time, stop and move repeatedly at designated locations to deliver wafers to a corresponding process chamber at designated locations. The load lock 200 may be disposed on a short side of the chamber transfer path 430 , and the process chambers 410 may be disposed facing each other on a long side of the transfer path 430 . Here, the length of each side of the chamber transport path 430 may vary depending on the size and number of the load lock 200 and the process chambers 410 to be disposed.
챔버 이송로(430)의 내부 공간은 외부에 대하여 밀봉된 상태로 유지되며, 필요에 따라 진공 상태로 유지되거나 불활성 기체로 채워질 수 있다. 이에 따라, 챔버 이송로(430) 내부로 웨이퍼가 제공되거나 그로부터 웨이퍼가 배출되는 경우에는 로드락(200)을 경유한다. 챔버 이송로(430) 내부 공간은 제조 공정이 수행되는 웨이퍼가 이송되기 때문에 소정 수준 이상의 청정도가 유지된다.The inner space of the chamber transport passage 430 is kept sealed against the outside, and may be maintained in a vacuum state or filled with an inert gas as needed. Accordingly, when a wafer is provided into the chamber transfer path 430 or discharged therefrom, it passes through the load lock 200 . The interior space of the chamber transfer path 430 is maintained at a level of cleanliness higher than a predetermined level because wafers in which manufacturing processes are performed are transferred.
로드락(200)은 장비 전단부 모듈(Equipment Front End Module; EFEM)(300)과 챔버 이송로(430) 사이에 배치되며, EFEM(300)에서 전달된 웨이퍼를 적재한다. 또한, 로드락(200)은 챔버 이송로(430)에서 전달된 웨이퍼를 적재한다. 이를 위해, 로드락(200)은 적어도 2개의 챔버를 구비하여 하나의 챔버에는 처리될 웨이퍼, 즉 챔버 이송로(430)로 제공되는 웨이퍼가 대기하고, 다른 하나의 챔버에는 처리된 웨이퍼, 즉 제조 공정을 마친 웨이퍼가 대기할 수 있다. 이때, 로드락(200)은 대기 상태의 EFEM(300)과 진공 상태의 챔버 이송로(430) 사이에 배치되므로, 대기압 상태와 진공 상태를 전환하는 역할을 한다. 즉, 로드락(200)은 대기압 상태의 EFEM(300)에서 웨이퍼가 전달되면, 대기압 상태를 진공 상태로 전환한다. 그리고 로드락(200)은 진공 상태에서 챔버 이송로(430)로 웨이퍼를 전달하거나 전달받고, 챔버 이송로(430)에서 전달된 웨이퍼를 EFEM(300)으로 전달하기 위해 진공 상태를 대기압 상태로 전환한다.The load lock 200 is disposed between the equipment front end module (EFEM) 300 and the chamber transfer path 430, and loads wafers transferred from the EFEM 300. In addition, the load lock 200 loads wafers transferred from the chamber transfer path 430 . To this end, the load lock 200 has at least two chambers, in which a wafer to be processed, i.e., a wafer provided to the chamber transfer path 430, is waiting in one chamber, and in the other chamber, a wafer to be processed, i.e., a wafer to be processed is prepared. Wafers that have completed the process may be on standby. At this time, since the load lock 200 is disposed between the EFEM 300 in an atmospheric state and the chamber transport path 430 in a vacuum state, it serves to switch between an atmospheric pressure state and a vacuum state. That is, when a wafer is transferred from the EFEM 300 in an atmospheric pressure state, the load lock 200 converts the atmospheric pressure state into a vacuum state. In addition, the load lock 200 transfers or receives wafers to the chamber transfer path 430 in a vacuum state, and converts the vacuum state to atmospheric pressure to transfer the wafer transferred from the chamber transfer path 430 to the EFEM 300 do.
인-챔버 웨이퍼 이송 로봇(100)은 챔버 이송로(430) 내부의 개구 영역에서 중앙 측면에 결합된다. 인-챔버 웨이퍼 이송 로봇(100)은 도 1을 통해 설명한 바와 같이, 핸드 모듈(110), 멀티-링크 하이브(130) 및 챔버 링크(150)를 포함한다. 인-챔버 웨이퍼 이송 로봇(100)은 챔버 링크(150)를 통해 챔버 이송로(430)에 결합된다. 챔버 링크(150)는 상호 연결된 다관절 링크로 구현되고 일단이 멀티-링크 하이브(130)에 결합되고 다른 일단이 챔버 이송로(430)의 중앙 측면에 결합된다. 인-챔버 웨이퍼 이송 로봇(100)은 챔버 링크(150)의 다관절 움직임에 의해 챔버 이송로(430)의 중앙 측면을 중심으로 로드락(200)과 인접한 제1 위치 및 제1 위치에 연속적으로 이어진 제2 위치로 이동될 수 있다. 인-챔버 웨이퍼 이송 로봇(100)은 멀티-링크 하이브(130)를 통해 핸드 모듈(110)과 챔버 링크(150) 사이를 결합한다. 멀티-링크 하이브(130)는 핸드 모듈(110)의 핸드들 간에 충돌하지 않고 해당 핸드암들을 회전시켜 로드락(200)으로부터 챔버 이송로(430)로 웨이퍼를 로딩 또는 언로딩할 수 있고, 챔버 이송로(430) 상에 있는 웨이퍼를 해당 프로세스 챔버에 이동시키거나 또는 해당 프로세스 챔버로부터 챔버 이송로(430) 상에 웨이퍼를 이동시킬 수 있다. The in-chamber wafer transfer robot 100 is coupled to the central side of the chamber transfer path 430 in an opening area inside. As described with reference to FIG. 1 , the in-chamber wafer transfer robot 100 includes a hand module 110 , a multi-link hive 130 and a chamber link 150 . The in-chamber wafer transfer robot 100 is coupled to the chamber transfer path 430 through a chamber link 150 . The chamber link 150 is implemented as an interconnected multi-joint link, one end coupled to the multi-link hive 130 and the other end coupled to the central side of the chamber transfer path 430. The in-chamber wafer transfer robot 100 continuously moves at a first position adjacent to the load lock 200 and at a first position around the central side of the chamber transfer path 430 by multi-joint movement of the chamber link 150. It can be moved to the second position. The in-chamber wafer transfer robot 100 couples between the hand module 110 and the chamber link 150 through the multi-link hive 130 . The multi-link hive 130 can load or unload wafers from the load lock 200 to the chamber transfer path 430 by rotating corresponding hand arms without collision between the hands of the hand module 110. A wafer on the transfer path 430 may be moved to a corresponding process chamber or a wafer may be moved from the corresponding process chamber onto the chamber transfer path 430 .
일 실시예에서, 인-챔버 웨이퍼 이송 로봇(100)은 챔버 링크(150)의 다관절 움직임에 의해 멀티-링크 하이브(130)를 로드락(200)과 인접한 제1 위치로 이동시키고 멀티-링크 하이브(130)를 통해 핸드 모듈(110)을 회전시켜 로드락(200)에 있는 로드락 웨이퍼를 반출하고 제1 위치에 인접한 프로세스 챔버를 우선하여 로드락 웨이퍼를 제공할 수 있다. 인-챔버 웨이퍼 이송 로봇(100)은 제1 위치에 인접한 프로세스 챔버에 있는 챔버 웨이퍼를 반출하고 로드락(200)에 챔버 웨이퍼를 직접 제공할 수 있다. 인-챔버 웨이퍼 이송 로봇(100)은 챔버 링크(150)의 다관절 움직임에 의해 멀티-링크 하이브(130)를 제1측 및 제2측 프로세스 챔버들(410)과 인접한 제2 위치로 이동시키고 멀티-링크 하이브(130)를 통해 핸드 모듈(110)을 회전시켜 챔버 이송로(430) 상에 있는 웨이퍼를 해당 프로세스 챔버에 이동시키거나 또는 해당 프로세스 챔버로부터 챔버 이송로(430) 상에 웨이퍼를 이동시킬 수 있다. 여기에서, 인-챔버 웨이퍼 이송 로봇(100)은 공간적으로 이송 거리의 확장이 가능하여 담당하는 프로세스 챔버의 위치가 특정되지 않는다. In one embodiment, the in-chamber wafer transfer robot 100 moves the multi-link hive 130 to a first position adjacent to the load lock 200 by multi-joint movement of the chamber link 150 and moves the multi-link The hand module 110 may be rotated through the hive 130 to take out the load lock wafer in the load lock 200, and the load lock wafer may be provided with priority to a process chamber adjacent to the first position. The in-chamber wafer transfer robot 100 may carry out a chamber wafer in a process chamber adjacent to the first position and directly provide the chamber wafer to the load lock 200 . The in-chamber wafer transfer robot 100 moves the multi-link hive 130 to a second position adjacent to the first and second side process chambers 410 by multi-joint movement of the chamber link 150 and By rotating the hand module 110 through the multi-link hive 130, the wafer on the chamber transfer path 430 is moved to the corresponding process chamber or the wafer is moved from the corresponding process chamber onto the chamber transfer path 430. can be moved Here, since the transfer distance of the in-chamber wafer transfer robot 100 can be spatially extended, the position of the process chamber in charge is not specified.
도 5는 도 1에 있는 인-챔버 웨이퍼 이송 로봇의 작동예를 설명하기 위한 도면이다.FIG. 5 is a view for explaining an operation example of the in-chamber wafer transfer robot in FIG. 1 .
도 5의 (a) 내지 (k)에 나타낸 바와 같이, 인-챔버 웨이퍼 이송 로봇(100)은 챔버 링크(150)를 다관절 링크로 구현하고 다관절 링크의 작동에 의해 다관절 링크의 일단에 결합된 멀티-링크 하이브(130)를 리니어 챔버 장치(400) 내에서 이동시킬 수 있다. 멀티-링크 하이브(130)는 3개의 꼭지점들을 갖는 이등변 삼각형 형상으로 이루어지고 양측 꼭지점의 상부면에 서로 대향하여 제1 및 제2 핸드 링크 결합부재들(131,132)이 배치되고 나머지 꼭지점의 하부면에 챔버 링크 결합부재(133)가 배치되어 챔버 링크 결합부재(133)를 통해 결합되는 챔버 링크(150)의 다관절 움직임을 따라 리니어 챔버 장치(400) 내에서 이동됨과 동시에 제1 및 제2 핸드 링크 결합부재들(131,132)을 통해 핸드암들 중 적어도 하나를 회전시켜 도 5의 (a) 내지 (k) 처럼 다양하게 핸드암들을 위치 이동시킬 수 있다. As shown in (a) to (k) of FIG. 5, in the in-chamber wafer transfer robot 100, the chamber link 150 is implemented as an articulated link, and one end of the articulated link is connected by the operation of the articulated link. The combined multi-link hive 130 may be moved within the linear chamber device 400. The multi-link hive 130 is made of an isosceles triangular shape having three vertices, and the first and second hand link coupling members 131 and 132 are disposed on the upper surfaces of the vertices on both sides to face each other, and on the lower surfaces of the remaining vertices. The chamber link coupling member 133 is disposed and moves within the linear chamber device 400 along the multi-joint movement of the chamber link 150 coupled through the chamber link coupling member 133, and at the same time, the first and second hand links At least one of the handarms may be rotated through the coupling members 131 and 132 to move the handarms in various positions as shown in (a) to (k) of FIG. 5 .
이에 따라, 인-챔버 웨이퍼 이송 로봇(100)은 공간적으로 더 커지고 길어진 프로세스 챔버들에 대해 프로세스 챔버의 위치를 지정하지 않고 웨이퍼 이송을 담당할 수 있다.Accordingly, the in-chamber wafer transfer robot 100 may transfer wafers to process chambers that are spatially larger and longer without designating the location of the process chambers.
도 6은 도 4에 있는 리니어 챔버 장치에서 인-챔버 웨이퍼 이송 로봇의 사용 상태를 설명하기 위한 도면이다.FIG. 6 is a view for explaining a state of use of an in-chamber wafer transfer robot in the linear chamber device of FIG. 4 .
도 6을 참조하면, 인-챔버 웨이퍼 이송 로봇(100)은 (a)와 같이 멀티-링크 하이브(130)의 제1 및 제2 핸드 링크 결합부재들(131,132)에 결합된 해당 핸드암을 회전시켜 제1측 및 제2측 프로세스 챔버들(410) 중 하나의 프로세스 챔버에 핸드 모듈(110)의 양쪽 핸드를 모두 사용할 수 있다. Referring to FIG. 6, the in-chamber wafer transfer robot 100 rotates the corresponding handarm coupled to the first and second hand link coupling members 131 and 132 of the multi-link hive 130 as shown in (a). Thus, both hands of the hand module 110 may be used in one of the first and second side process chambers 410 .
인-챔버 웨이퍼 이송 로봇(100)은 또한, (b)와 같이 챔버 링크(150)의 다관절 링크를 움직여 헨드들(121,122,123,124) 중 하나의 핸드를 제1측 및 제2측 프로세스 챔버들(410)에 모두 사용할 수 있다. The in-chamber wafer transfer robot 100 also moves one of the hands 121, 122, 123, and 124 to the first and second process chambers 410 by moving the multi-joint link of the chamber link 150 as shown in (b). ) can be used for all
인-챔버 웨이퍼 이송 로봇(100)은 또한, (c)와 같이 멀티-링크 하이브(130)를 이동시켜 핸드 교체(swap) 동작없이 웨이퍼를 1공정에서 2공정으로 이동시킬 수 있다.The in-chamber wafer transfer robot 100 may also move the multi-link hive 130 as shown in (c) to move the wafer from the first process to the second process without a hand swap operation.
일 실시예에 따른 인-챔버 웨이퍼 이송 로봇은 리니어 챔버에 웨이퍼 이송 로봇을 추가 배치하지 않아도 웨이퍼 이송을 위한 공간 이동을 확장할 수 있어 프로세스 챔버들의 추가 배치가 가능하고 웨이퍼의 처리량을 향상시킬 수 있다.The in-chamber wafer transfer robot according to an embodiment can expand the spatial movement for wafer transfer without additionally disposing the wafer transfer robot in the linear chamber, enabling additional arrangement of process chambers and improving wafer throughput. .
일 실시예에 따른 인-챔버 웨이퍼 이송 로봇은 공정 시간이 다른 프로세스 챔버에 대응 가능하고, 동시에 두 프로세스 챔버를 담당하거나 혹은 웨이퍼 처리 시간이 달라 공정이 먼저 끝나거나 나중에 끝난 한쪽의 프로세스 챔버를 담당하는 움직임이 모두 가능하다.An in-chamber wafer transfer robot according to an embodiment is capable of responding to process chambers with different processing times, and is in charge of two process chambers at the same time, or is in charge of one process chamber in which the process is completed first or later because the wafer processing time is different. All movements are possible.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention within the scope not departing from the spirit and scope of the present invention described in the claims below. You will understand that it can be done.
[부호의 설명][Description of code]
100: 인-챔버 웨이퍼 이송 로봇100: In-chamber wafer transfer robot
110: 핸드 모듈110: hand module
111,112,113,114: 핸드암들111, 112, 113, 114: handarms
121,122,123,124: 핸드들121,122,123,124: hands
130: 멀티-링크 하이브130: multi-link hive
131,132: 핸드 링크 결합부재들131,132: hand link coupling members
133: 챔버 링크 결합부재(제2 챔버 링크 결합부재)133: chamber link coupling member (second chamber link coupling member)
150: 챔버 링크150: chamber link
151: 다관절 링크151: articulated link
170: 다른 챔버 링크 결합부재(제1 챔버 링크 결합부재)170: another chamber link coupling member (first chamber link coupling member)
200: 로드락200: load lock
300: EFEM(Equipment Front End Module)300: EFEM (Equipment Front End Module)
400: 리니어 챔버 장치400: linear chamber device
410: 프로세스 챔버들410: process chambers
430: 챔버 이송로430: chamber conveyance

Claims (7)

  1. 제1 및 제2 핸드암들(hand arms)의 일단들을 통해 각각 연결된 제1 및 제2 핸드들을 포함하는 핸드 모듈;a hand module including first and second hands respectively connected through ends of first and second hand arms;
    서로 대향하고 상기 제1 및 제2 핸드암들의 다른 일단들을 각각 연결한 제1 및 제2 핸드 링크 결합부재들, 및 상기 제1 및 제2 핸드 링크 결합부재들의 직선 위치에서 벗어난 중앙 영역에 위치된 챔버 링크 결합부재를 포함하는 멀티-링크 하이브; 및First and second hand link coupling members facing each other and connecting different ends of the first and second handarms, respectively, and located in the central region out of the straight position of the first and second hand link coupling members A multi-link hive including a chamber link coupling member; and
    상기 챔버 링크 결합부재에 일단이 결합되어 상기 멀티-링크 하이브를 리니어 챔버 내에서 이동시키는 챔버 링크를 포함하는 인-챔버 웨이퍼 이송 로봇.An in-chamber wafer transfer robot comprising a chamber link having one end coupled to the chamber link coupling member to move the multi-link hive in a linear chamber.
  2. 제1항에 있어서, 상기 핸드 모듈은The method of claim 1, wherein the hand module
    제3 및 제4 핸드암들의 일단들을 통해 각각 연결된 제3 및 제4 핸드들을 더 포함하고,further comprising third and fourth hands connected through ends of the third and fourth handarms, respectively;
    상기 제1 핸드 링크 결합부재를 통해 상기 제1 및 제3 핸드암들의 다른 일단들을 제1 일정 높이 차로 연결하여 상기 제1 및 제3의 핸드암들을 독립적으로 동작시키며,The first and third handarms are operated independently by connecting the other ends of the first and third handarms with a first predetermined height difference through the first hand link coupling member;
    상기 제2 핸드 링크 결합부재를 통해 상기 제2 및 제4 핸드암들의 다른 일단들을 제2 일정 높이 차로 연결하여 상기 제2 및 제4의 핸드암들을 독립적으로 동작시키고,The second and fourth handarms are operated independently by connecting the other ends of the second and fourth handarms with a second predetermined height difference through the second hand link coupling member;
    상기 제1 및 제3 핸드들 또는 상기 제2 및 제4 핸드들 간의 충돌 방지를 제어하는 것을 특징으로 하는 인-챔버 웨이퍼 이송 로봇.Controlling collision prevention between the first and third hands or the second and fourth hands.
  3. 제1항에 있어서, 상기 핸드 모듈은The method of claim 1, wherein the hand module
    상기 제1 또는 제3 핸드 중 어느 하나에 웨이퍼가 로딩되고 상기 제1 핸드 링크 결합부재를 기준으로 포개어질 수 있도록 상기 제1 일정 높이 차를 설정하며,The first predetermined height difference is set so that the wafer is loaded in either the first or the third hand and overlapped based on the first hand link coupling member,
    상기 제2 또는 제4 핸드 중 어느 하나에 웨이퍼가 로딩되고 상기 제2 핸드 링크 결합부재를 기준으로 포개어질 수 있도록 상기 제2 일정 높이 차를 설정하는 것을 특징으로 하는 인-챔버 웨이퍼 이송 로봇.The in-chamber wafer transfer robot, characterized in that the second predetermined height difference is set so that the wafer can be loaded on one of the second or fourth hands and overlapped with respect to the second hand link coupling member.
  4. 제1항에 있어서, 상기 멀티-링크 하이브는The method of claim 1, wherein the multi-link hive
    적어도 3 개의 꼭지점들을 통해 형성되고, 각각의 일면에 상기 제1 및 제2 핸드 링크 결합부재들을 배치하며 각각의 다른 일면에 상기 챔버 링크 결합부재를 배치하는 것을 특징으로 하는 인-챔버 웨이퍼 이송 로봇.In-chamber wafer transfer robot, characterized in that formed through at least three vertices, disposing the first and second hand link coupling members on each side and disposing the chamber link coupling member on each other side.
  5. 제4항에 있어서, 상기 멀티-링크 하이브는The method of claim 4, wherein the multi-link hive
    상기 적어도 3개의 꼭지점들의 가상 직선을 통해 상기 챔버 링크 결합부재와 상기 제1 및 제2 핸드 링크 결합부재들 각각 간의 길이가 동일한 이등변 삼각형을 형성하도록 구현되는 것을 특징으로 하는 인-챔버 웨이퍼 이송 로봇.In-chamber wafer transfer robot, characterized in that implemented to form an isosceles triangle having the same length between the chamber link coupling member and each of the first and second hand link coupling members through an imaginary straight line of the at least three vertices.
  6. 제4항에 있어서, 상기 멀티-링크 하이브는The method of claim 4, wherein the multi-link hive
    상기 제1 및 제2 핸드 링크 결합부재들에 결합된 해당 핸드암의 다른 일단을 회전시켜 상기 리니어 챔버에 배치된 프로세스 챔버에 웨이퍼 로딩 또는 언로딩 작업을 수행하는 것을 특징으로 하는 인-챔버 웨이퍼 이송 로봇.In-chamber wafer transfer characterized in that performing a wafer loading or unloading operation in the process chamber disposed in the linear chamber by rotating the other end of the corresponding hand arm coupled to the first and second hand link coupling members. robot.
  7. 제1항에 있어서, 상기 챔버 링크는The method of claim 1, wherein the chamber link
    상호 연결된 다관절 링크로 구현되고 상기 다관절 링크의 일단은 상기 챔버 링크 결합부재에 결합되고 상기 다관절 링크의 다른 일단은 상기 리니어 챔버의 중앙 측면에 배치된 다른 챔버 링크 결합부재에 결합되는 것을 특징으로 하는 인-챔버 웨이퍼 이송 로봇.It is implemented as an interconnected multi-joint link, one end of the multi-joint link is coupled to the chamber link coupling member, and the other end of the multi-joint link is coupled to another chamber link coupling member disposed on the central side of the linear chamber. In-chamber wafer transfer robot.
PCT/KR2021/015394 2021-10-29 2021-10-29 In-chamber wafer conveyance robot WO2023074962A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210146332A KR20230063904A (en) 2021-10-29 2021-10-29 In-chamber wafer transfer robot
KR10-2021-0146332 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074962A1 true WO2023074962A1 (en) 2023-05-04

Family

ID=86158215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015394 WO2023074962A1 (en) 2021-10-29 2021-10-29 In-chamber wafer conveyance robot

Country Status (2)

Country Link
KR (1) KR20230063904A (en)
WO (1) WO2023074962A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070017560A1 (en) * 2005-07-25 2007-01-25 Tokyo Electron Limited Substrate carrier
KR20090013328A (en) * 2007-08-01 2009-02-05 세메스 주식회사 Wafer transferring robot and semiconductor manufacturing apparatus having the same
KR20100006207A (en) * 2008-07-09 2010-01-19 주식회사 로보스타 Substrate transfer robot
KR20100036659A (en) * 2008-09-30 2010-04-08 주식회사 아토 Robot for transferring wafer
JP2016162936A (en) * 2015-03-03 2016-09-05 川崎重工業株式会社 Substrate transfer robot and substrate processing system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101845797B1 (en) 2016-04-21 2018-04-10 주식회사 라온테크 Substrate transfer robot and substrate processing equipment using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070017560A1 (en) * 2005-07-25 2007-01-25 Tokyo Electron Limited Substrate carrier
KR20090013328A (en) * 2007-08-01 2009-02-05 세메스 주식회사 Wafer transferring robot and semiconductor manufacturing apparatus having the same
KR20100006207A (en) * 2008-07-09 2010-01-19 주식회사 로보스타 Substrate transfer robot
KR20100036659A (en) * 2008-09-30 2010-04-08 주식회사 아토 Robot for transferring wafer
JP2016162936A (en) * 2015-03-03 2016-09-05 川崎重工業株式会社 Substrate transfer robot and substrate processing system

Also Published As

Publication number Publication date
KR20230063904A (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2010011013A1 (en) Multi-workpiece processing chamber and workpiece processing system including the same
EP1119022B1 (en) Vacuum processing apparatus and semiconductor manufacturing line using the same
US8562275B2 (en) Transfer device and semiconductor processing system
US8313277B2 (en) Semiconductor manufacturing process modules
EP0502412B1 (en) Processing system
KR101015228B1 (en) Multi-chamber system for manufacturing semiconductor device and method for substrate processing in the system
WO2010016650A1 (en) Substrate-processing apparatus and method of transferring substrate in the same
US4927484A (en) Reactive ion etching appartus
KR19990023624A (en) Substrate Processing Equipment
TW202203356A (en) Substrate processing apparatus
JP4256551B2 (en) Vacuum processing system
WO2010016649A1 (en) Substrate-processing apparatus and method of transferring substrate in the same
KR100578134B1 (en) Multi chamber system
JP2011124565A (en) System and method for vacuum processing of semiconductor substrate to be processed
WO2004030085A1 (en) Method for carrying object to be processed
WO1999062107A1 (en) Batch end effector for semiconductor wafer handling
WO1999052143A1 (en) Alignment processing mechanism and semiconductor processing device using it
WO2023074962A1 (en) In-chamber wafer conveyance robot
WO2016171452A1 (en) Substrate processing apparatus and method for cleaning chamber
WO2013122311A1 (en) Substrate processing module and substrate processing apparatus including same
WO2020055138A1 (en) Seven axis transport robot
US20020162742A1 (en) Cluster tool with vacuum wafer transfer module
US11387127B2 (en) Substrate treating apparatus and substrate transfer apparatus
KR100274308B1 (en) Multi Chamber Processing System
KR20080079779A (en) Multi-chamber system for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962586

Country of ref document: EP

Kind code of ref document: A1