WO2023074576A1 - Polycarbonate resin - Google Patents

Polycarbonate resin Download PDF

Info

Publication number
WO2023074576A1
WO2023074576A1 PCT/JP2022/039329 JP2022039329W WO2023074576A1 WO 2023074576 A1 WO2023074576 A1 WO 2023074576A1 JP 2022039329 W JP2022039329 W JP 2022039329W WO 2023074576 A1 WO2023074576 A1 WO 2023074576A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
polycarbonate resin
Prior art date
Application number
PCT/JP2022/039329
Other languages
French (fr)
Japanese (ja)
Inventor
昂志 中村
佳史 中村
寛幸 林
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202280063102.0A priority Critical patent/CN117980375A/en
Publication of WO2023074576A1 publication Critical patent/WO2023074576A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present disclosure relates to a polycarbonate resin, a polycarbonate resin molded article, a film, a method for producing a transparent film, and a retardation film.
  • Patent Document 1 discloses a polycarbonate copolymer having an oligofluorene structural unit and a retardation film using the same. A retardation film exhibiting properties is disclosed.
  • Patent Document 2 a structure derived from 6,6'-dihydroxy-3,3,3',3'-tetramethyl-1,1'-spirobiindane (hereinafter sometimes abbreviated as SBI) A polycarbonate copolymer containing units and a retardation film using the same are disclosed, which are excellent in heat resistance and optical properties.
  • SBI 6,6'-dihydroxy-3,3,3',3'-tetramethyl-1,1'-spirobiindane
  • organic EL displays have come to be used as in-vehicle displays, and the retardation film used in organic EL displays must function without problems even in harsher usage environments than before. is being sought.
  • organic EL displays for automobiles are used under high temperature and high humidity, so the retardation film is required to have higher resistance to heat and humidity than conventional ones.
  • some of the polycarbonate copolymers described in Patent Documents 1 and 2 satisfy the required optical properties, they have insufficient moisture and heat resistance, and can be used under higher temperature conditions and higher humidity atmospheres than before. However, the optical characteristics were insufficient. There is also room for improvement in mechanical properties such as toughness and melt processability.
  • the present disclosure has been made in view of such a background, with excellent optical properties, moist heat resistance and mechanical properties, polycarbonate resin with high melt processability, molded articles obtained using it, films, retardation films, and to provide a method for producing a transparent film.
  • a first aspect of the present disclosure is a structural unit (A) represented by the following formula (1) and/or the following formula (2), A structural unit (B) represented by the following formula (3); and a structural unit (C) derived from a dihydroxy compound having an acetal ring structure.
  • R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms.
  • R 4 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substitution or an unsubstituted vinyl group having 2 to 10 carbon atoms, a substituted or unsubstituted ethynyl group having 2 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a
  • R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms.
  • R 4 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substitution or an unsubstituted vinyl group having 2 to 10 carbon atoms, a substituted or unsubstituted ethynyl group having 2 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a
  • R 10 to R 17 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms.
  • X 1 represents a direct bond or a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • a second aspect of the present disclosure resides in a polycarbonate resin molded article composed of the above polycarbonate resin.
  • a third aspect of the present disclosure is a film composed of the polycarbonate resin.
  • a fourth aspect of the present disclosure is a retardation film made of the above film.
  • a fifth aspect of the present disclosure is a circularly polarizing plate including the retardation film.
  • a sixth aspect of the present disclosure resides in an image display device including the above-described circle changing plate.
  • a seventh aspect of the present disclosure is a method for producing a transparent film by molding the polycarbonate resin by a melt film-forming method, A method for producing a transparent film, wherein the polycarbonate resin is molded at a molding temperature of 280° C. or less.
  • An eighth aspect of the present disclosure is a structural unit (A) represented by the above formula (1) and/or the above formula (2), and a structural unit (B) represented by the above formula (3), a glass transition temperature of 120° C. or higher and 160° C. or lower;
  • the polycarbonate resin has a water absorption of 1.4% or less.
  • the polycarbonate resin has a structural unit having a specific oligofluorene structure and a specific copolymer component. Therefore, the polycarbonate resin has excellent optical properties and high moisture and heat resistance.
  • polycarbonate resins are excellent in mechanical properties such as toughness and in melt processability.
  • polycarbonate resin molded articles, films, retardation films, and circular polarizers composed of the polycarbonate resin have high moisture and heat resistance, and are excellent in optical properties and mechanical properties. Further, since the image display device has the circular polarizing plate, it can be suitably used for a flexible display, an in-vehicle display that requires high moisture and heat resistance, and the like.
  • the above polycarbonate resin is molded by a melt film forming method at a molding temperature of 280°C or less.
  • a transparent film having excellent mechanical properties such as toughness and optical properties and having high resistance to moist heat is produced.
  • the term “structural unit” refers to a partial structure sandwiched between adjacent linking groups in a polymer, a polymerizable group present at the terminal portion of the polymer, and the polymerizable reactive group. It refers to a partial structure sandwiched between adjacent linking groups.
  • when used in this specification, it is used in the sense of including the numerical values or physical values described before and after it. Numerical values or physical values described as the upper limit and the lower limit are used in the sense of including those values.
  • “%” means “% by weight” unless otherwise specified. Further, “parts by weight” and “parts by mass”, and “% by weight” and “% by mass” are substantially synonymous.
  • polycarbonate resin is a concept that includes not only polycarbonate resin but also polyester carbonate resin.
  • a polyester carbonate resin is a polymer containing a portion in which the structural units constituting the polymer are linked not only by carbonate bonds but also by ester bonds.
  • a polycarbonate resin is composed of at least a structural unit (A), a structural unit (B) and a structural unit (C), and has a large number of these structural units in the polymer chain.
  • Polycarbonate resin is, for example, a random copolymer.
  • Structural unit (A) is represented by the following formula (1) and/or the following formula (2). That is, the polycarbonate resin has a structural unit represented by the formula (1) and/or a structural unit represented by the formula (2) as the structural unit (A).
  • Structural unit (B) is represented by the following formula (3).
  • Structural unit (C) is a structural unit derived from a dihydroxy compound having an acetal ring structure. An acetal ring structure is also called a cyclic acetal structure.
  • R 1 to R 3 are each independently a direct bond, a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms.
  • R 4 to R 9 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, or a substituted or unsubstituted 2 carbon atoms -10 acyl groups, substituted or unsubstituted alkoxy groups having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 10 carbon atoms, substituted or unsubstituted amino groups, substituted or unsubstituted carbon atoms 2 to 10 vinyl groups, substituted or unsubstituted ethynyl groups having 2 to 10 carbon atoms, substituted sulfur atoms, substituted silicon atoms, halogen atoms, nitro
  • R 10 to R 17 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms.
  • X 1 represents a direct bond or a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • the polycarbonate resin contains structural units (A) composed of structural units represented by the following formula (1) and/or structural units represented by the following formula (2).
  • the structural unit may be referred to as "oligofluorene structural unit”.
  • R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms.
  • R 4 to R 9 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, or a substituted or unsubstituted 2 carbon atoms ⁇ 10 acyl group, substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted carbon number 2 to 10 vinyl groups, substituted or unsubstituted ethynyl groups having 2 to 10 carbon atoms, substituted sulfur atoms, substituted silicon atoms, halogen atoms, nitro groups
  • R 4 to R 9 may be the same or different, and at least two adjacent groups among R 4 to R 9 may combine with each other to form a ring.
  • the polycarbonate resin should contain a structural unit represented by formula (2). is preferred.
  • alkylene groups can be employed. Specifically, linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group; methylmethylene group, dimethylmethylene group, ethylmethylene group, propylmethylene group, (1-methylethyl ) methylene group, 1-methylethylene group, 2-methylethylene group, 1-ethylethylene group, 2-ethylethylene group, 1-methylpropylene group, 2-methylpropylene group, 1,1-dimethylethylene group, 2, Examples thereof include branched alkylene groups such as 2-dimethylpropylene group and 3-methylpropylene group.
  • linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group; methylmethylene group, dimethylmethylene group, ethylmethylene group, propylmethylene group, (1-methylethyl ) methylene group, 1-methylethylene group, 2-methylethylene group, 1-ethyl
  • R 1 and R 2 are preferably ethylene groups from the viewpoint that the fluorene rings in the polymer are easily oriented perpendicularly to the main chain direction and exhibit stronger reverse wavelength dispersion.
  • R1 and R2 can be related to the development of inverse dispersion wavelength dependence.
  • Polycarbonate resin exhibits the strongest reverse dispersion wavelength dependence in a state in which the fluorene rings are oriented perpendicular to the main chain direction (stretching direction).
  • R 1 and R 2 having 2 to 3 carbon atoms in the main chain of the alkylene group. preferable.
  • the number of carbon atoms is 1, there are cases where, unexpectedly, reverse dispersion wavelength dependence is not exhibited.
  • alkylene groups can be employed. Specifically, linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group; methylmethylene group, dimethylmethylene group, ethylmethylene group, propylmethylene group, (1-methylethyl ) methylene group, 1-methylethylene group, 2-methylethylene group, 1-ethylethylene group, 2-ethylethylene group, 1-methylpropylene group, 2-methylpropylene group, 1,1-dimethylethylene group, 2, Examples include branched alkylene groups such as 2-dimethylpropylene group and 3-methylpropylene group.
  • linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group; methylmethylene group, dimethylmethylene group, ethylmethylene group, propylmethylene group, (1-methylethyl ) methylene group, 1-methylethylene group, 2-methylethylene group, 1-ethylethylene
  • R 3 preferably has 1 to 2 carbon atoms on the main chain of the alkylene group, more preferably 1 carbon atom. If the number of carbon atoms on the main chain is too large, the fixation of the fluorene ring is weakened as in the case of R1 and R2 , resulting in a decrease in reverse dispersion wavelength dependence, an increase in the photoelastic coefficient, a decrease in heat resistance, etc. may invite. On the other hand, the smaller the number of carbon atoms on the main chain, the better the optical properties and heat resistance.
  • Substituents for R 1 to R 3 include, for example, a halogen atom (specifically, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom); an alkoxy group having 1 to 10 carbon atoms such as a methoxy group and an ethoxy group ; acyl group having 1 to 10 carbon atoms such as acetyl group and benzoyl group; acylamino group having 1 to 10 carbon atoms such as acetamide group and benzoylamide group; nitro group; cyano group; -10 aryl groups are included.
  • a halogen atom specifically, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom
  • an alkoxy group having 1 to 10 carbon atoms such as a methoxy group and an ethoxy group
  • acyl group having 1 to 10 carbon atoms such as acety
  • alkyl groups can be employed as the substituted or unsubstituted alkyl group for R 4 to R 9 .
  • linear alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl, n-decyl; isopropyl group, 2-methylpropyl group , 2,2-dimethylpropyl group and 2-ethylhexyl group; and cyclic alkyl groups such as cyclopropyl group, cyclopentyl group, cyclohexyl group and cyclooctyl group.
  • the number of carbon atoms in the alkyl group is preferably 4 or less, more preferably 2 or less. When the number of carbon atoms is within this range, steric hindrance between fluorene rings is less likely to occur, and desired optical properties derived from the fluorene rings are likely to be obtained.
  • Substituents for the alkyl group include the substituents described above for R 1 to R 3 .
  • the substituted or unsubstituted aryl group for R 4 to R 9 for example, the following aryl groups can be employed. Specific examples include aryl groups such as phenyl group, 1-naphthyl group and 2-naphthyl group; heteroaryl groups such as 2-pyridyl group, 2-thienyl group and 2-furyl group.
  • the number of carbon atoms in the aryl group is preferably 8 or less, more preferably 7 or less. When the number of carbon atoms is within this range, steric hindrance between fluorene rings is less likely to occur, and desired optical properties derived from the fluorene rings are likely to be obtained.
  • Substituents for the aryl group include the substituents described above for R 1 to R 3 .
  • acyl groups such as formyl group, acetyl group, propionyl group, 2-methylpropionyl group, 2,2-dimethylpropionyl group, and 2-ethylhexanoyl group; benzoyl group, 1-naphthylcarbonyl group, Aromatic acyl groups such as 2-naphthylcarbonyl group and 2-furylcarbonyl group can be mentioned.
  • the number of carbon atoms in the acyl group is preferably 4 or less, more preferably 2 or less.
  • Substituents for the acyl group include the substituents described above for R 1 to R 3 .
  • substituted or unsubstituted alkoxy group or aryloxy group for R 4 to R 9 for example, the following can be employed. Specific examples include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group, a trifluoromethoxy group, and a phenoxy group.
  • the number of carbon atoms in the alkoxy group or aryloxy group is preferably 4 or less, more preferably 2 or less. When the number of carbon atoms is within this range, steric hindrance between fluorene rings is less likely to occur, and desired optical properties derived from the fluorene rings are likely to be obtained.
  • Substituents for the alkoxy group or aryloxy group include the substituents described above for R 1 to R 3 .
  • the substituted or unsubstituted amino group for R 4 to R 9 for example, the following amino groups can be employed. Specifically, an amino group; N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group, N,N-methylethylamino group, N-propylamino group, N,N-dipropylamino group, N-isopropylamino group, N,N-diisopropylamino group and other aliphatic amino groups; N-phenylamino group, N,N-diphenylamino group and other aromatic amino groups; formamide acylamino groups such as radicals, acetamide group, decanoylamide group, benzoylamide group and chloroacetamide group; alkoxycarbonylamino groups such as benzyloxycarbonylamino group and tert-butyloxycarbonylamino group.
  • the amino group is preferably an N,N-dimethylamino group, an N-ethylamino group, or an N,N-diethylamino group, more preferably an N,N-dimethylamino group.
  • the amino group does not have protons with high acidity and the molecular weight of the amino group is small, the fluorene ratio can be increased. Therefore, in addition to improving the thermal stability, it is possible to reduce the amount of the monomer having an oligofluorene structural unit.
  • Examples of substituted or unsubstituted vinyl or ethynyl groups for R 4 to R 9 include the following. Specifically, vinyl group, 2-methylvinyl group, 2,2-dimethylvinyl group, 2-phenylvinyl group, 2-acetylvinyl group, ethynyl group, methylethynyl group, tert-butylethynyl group, phenylethynyl group , an acetylethynyl group, and a trimethylsilylethynyl group.
  • the number of carbon atoms in the vinyl group or ethynyl group is preferably 4 or less.
  • the substituted sulfur atom for R 4 to R 9 for example, the following sulfur-containing groups can be employed. Specifically, sulfo group; alkylsulfonyl group such as methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group and isopropylsulfonyl group; arylsulfonyl group such as phenylsulfonyl group and p-tolylsulfonyl group; methylsulfinyl group, ethylsulfinyl alkylsulfinyl groups such as phenylsulfinyl group and p-tolylsulfinyl group; alkylthio groups such as methylthio group and ethylthio group; arylthio groups such as phenylthio group and p-tolylthio group; Alkoxysulfonyl groups such as
  • the sulfo group may form a salt with lithium, sodium, potassium, magnesium, ammonium or the like.
  • the sulfur-containing group is preferably a methylsulfinyl group, an ethylsulfinyl group, or a phenylsulfinyl group, more preferably a methylsulfinyl group.
  • the sulfur-containing group does not have protons with high acidity and the molecular weight of the sulfur-containing group is small, so that the fluorene ratio can be increased. Therefore, in addition to improving the thermal stability, it is possible to reduce the amount of the monomer having an oligofluorene structural unit.
  • silyl groups As silicon atoms having substituents in R 4 to R 9 , for example, the following silyl groups can be employed. Specific examples include trialkylsilyl groups such as trimethylsilyl group and triethylsilyl group; and trialkoxysilyl groups such as trimethoxysilyl group and triethoxysilyl group. Trialkylsilyl groups are preferred. This is because it is excellent in stability and handleability.
  • a fluorine atom, a chlorine atom, a bromine atom and an iodine atom can be employed as the halogen atom.
  • a fluorine atom, a chlorine atom, or a bromine atom from the viewpoint that it is relatively easy to introduce and has a tendency to increase the reactivity of the fluorene 9-position due to its electron-withdrawing property.
  • a chlorine atom or a bromine atom is more preferably employed.
  • Specific examples of the ring formed by binding together at least two adjacent groups among R 4 to R 9 include substituted fluorene structures shown in the following group [I].
  • group [I] the wavy line indicates that the bond connecting the 9-position of the fluorene structure to R1 and R2 or R2 and R3 is schematically omitted.
  • the structural unit (A ) is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, particularly preferably 7% by mass or more, and 10 % or more is most preferable.
  • an improvement in the expression of the retardation is expected, and the ratio of the structural unit (A) in the resin can be reduced, thereby widening the range of molecular design.
  • the content of the structural unit (A) is preferably 45% by mass or less, more preferably 40% by mass or less, from the viewpoint of facilitating improvement when the resin is required to be modified. It is more preferably not more than 30% by mass, and particularly preferably not more than 30% by mass.
  • the linking group is specifically a carbonate group or an ester group present at the end of each structural unit.
  • the content of the structural unit (A) is the total content of the structural unit represented by the formula (1) and the structural unit represented by the formula (2). , the content of the other is zero.
  • Methods for adjusting the ratio of oligofluorene structural units in the resin include, for example, a method of copolymerizing a monomer having an oligofluorene structural unit and another monomer, and a method of copolymerizing a resin containing an oligofluorene structural unit with another resin.
  • a method of blending is mentioned.
  • the content of oligofluorene structural units can be precisely controlled, high transparency can be obtained, and uniform properties can be obtained over the entire surface of the film. method is preferred.
  • a polycarbonate resin contains a structural unit (B) represented by the following formula (3).
  • R 10 to R 17 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms.
  • X 1 represents a direct bond or a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • X 1 in formula (3) is a divalent hydrocarbon group having 1 to 20 carbon atoms
  • the hydrocarbon group is a substituted or unsubstituted chain alkylene group having 1 to 20 carbon atoms, a substituted or It is preferably an unsubstituted cyclic alkylene group having 6 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a fluorenylene group having 13 to 20 carbon atoms.
  • effects such as improvement in heat resistance and reduction in water absorption can be obtained.
  • chain alkylene groups and cyclic alkylene groups include -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CH(Ph)-, and -C(CH 3 )Ph- , —CPh 2 —, 1,2-ethylene group, 1,3-propylene group, 1,4-butylene group, 1,1-cyclopropylene group, 1,1-cyclobutylene group, 1,1-cyclopentylene group, 1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1,1-cyclododecylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1 ,2-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclobutylene group, 1,3-cyclopentylene group, 1,3-cyclohexylene group, 1,4-cyclohexylene group, etc.
  • Ph is an unsubstituted phenyl group.
  • Arylene groups include 1,2-phenylene groups, 1,3-phenylene groups and 1,4-phenylene groups.
  • the fluorenylene group includes a 9,9-fluorenylene group.
  • X 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms
  • the bonding positions on the benzene ring in the above formula (3) are 2,2′-position, 2,3′-position, 2,4 It may be at the '-position, 3,3'-position, 3,4'-position or 4,4'-position, preferably 4,4'-position. In this case, mechanical properties are further improved.
  • the biphenyl skeleton in the above formula (3) is 2,2′-biphenyl skeleton, 2,3′-biphenyl skeleton, 2,4′-biphenyl skeleton, 3,3′- A biphenyl skeleton, a 3,4'-biphenyl skeleton, or a 4,4'-biphenyl skeleton may be used, but the 4,4'-biphenyl skeleton is preferred.
  • X 1 in formula (3) is even more preferably -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, - CH(Ph)—, —C(CH 3 )Ph—, —CPh 2 —, 9,9-fluorenylene group, 1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group , 1,1-cyclododecylene group.
  • R 10 to R 17 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group.
  • the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may have a substituent such as a phenyl group. things are mentioned.
  • substituted or unsubstituted aryl groups include phenyl, o-tolyl, m-tolyl, p-tolyl, ethylphenyl, styryl, xylyl, n-propylphenyl, isopropylphenyl, A phenyl group and a naphthyl group which may have a substituent such as an alkyl group, such as a mesityl group, an ethynylphenyl group, a naphthyl group and a vinylnaphthyl group.
  • R 10 to R 17 are still more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom or a methyl group.
  • dihydroxy compound from which the structural unit (B) is derived examples include 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methyl -4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-diethylphenyl)propane, 2,2- Bis(4-hydroxy-(3-phenyl)phenyl)propane, 2,2-bis(4-hydroxy-(3,5-diphenyl)phenyl)propane, 2,2-bis(4-hydroxy-3,5- Dibromophenyl)propane, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl) ) Pentane, 1,1-bis(4-(4-)propane, 2,2-bis(3-methyl -4-hydroxy
  • the dihydroxy compound from which the structural unit (B) is derived is 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 4, 4'-(cyclododecane-1,1-diyl)diphenol, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-(cyclododecane-1,1-diyl)diphenol, 4,4'-( ⁇ -methylbenzylidene)bisphenol and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene.
  • Structural unit (B) preferably contains at least one selected from the group consisting of the following formulas (6) to (11), and at least one selected from the group consisting of the following formulas (8) to (11) It is more preferable to contain the following formula (8) and/or the following formula (9) is particularly preferable, and the following formula (8) is most preferable.
  • the heat resistance of the resin can be improved and the water absorption can be reduced. That is, the heat resistance can be efficiently improved and the water absorption can be efficiently reduced.
  • the photoelastic coefficient of the polycarbonate resin can be reduced, and the mechanical properties of the polymer are also improved.
  • the structural unit (B) relative to the total amount of 100% by mass of all the structural units and linking groups that constitute the polycarbonate resin
  • the content of is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, even more preferably 20% by mass or more, and 25 % by mass or more is most preferred.
  • the content of the structural unit (B) is preferably 50% by mass or less, more preferably 45% by mass or less, and 40% by mass. % or less, and particularly preferably 35 mass % or less.
  • the polycarbonate resin contains a structural unit (C) derived from a dihydroxy compound having an acetal ring structure.
  • a dihydroxy compound having an acetal ring structure for example, dioxane glycol represented by the following formula (13) and/or spiroglycol represented by the formula (14) can be used.
  • Structural unit (C) is preferably a structural unit derived from spiroglycol represented by formula (14). In this case, the heat resistance of the polycarbonate resin can be enhanced and the photoelastic coefficient can be reduced.
  • the total amount of all structural units and linking groups constituting the polycarbonate resin is 100% by mass.
  • the content of the structural unit (C) for the is particularly preferred. From the same viewpoint, the content of the structural unit (C) is preferably 75% by mass or less, more preferably 70% by mass or less, even more preferably 65% by mass or less, and 60% by mass or less. % by mass or less is particularly preferred.
  • the polycarbonate resin may contain a structural unit (D) derived from at least one compound selected from the group consisting of an aliphatic dihydroxy compound, an alicyclic dihydroxy compound, an oxyalkylene glycol, and a dihydroxy compound having a heterocyclic structure.
  • Structural unit (D) means a structural unit other than structural units (A) to (C), and does not include an acetal ring structure even if it has a heterocyclic ring structure.
  • the structural unit (D) is selected from the group consisting of aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, and dihydroxy compounds having a heterocyclic structure other than an acetal ring structure. It is preferably a structural unit derived from at least one compound.
  • aliphatic dihydroxy compounds include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,2 -pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 1,2-hexanediol, 1,3-hexanediol, 1,4-hexanediol, 1,5- Hexanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecane Linear aliphatic dihydroxy compounds such as diol
  • ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1 ,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol and other linear aliphatic dihydroxy compounds are available and easy to handle. preferable.
  • alicyclic dihydroxy compounds include the following dihydroxy compounds. Specifically, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, tricyclodecanedimethanol, pentacyclopentadecanedimethanol, 2,6-decanedimethanol, 1 ,5-decalindimethanol, 2,3-decalindimethanol, 2,3-norbornanedimethanol, 2,5-norbornanedimethanol, 1,3-adamantanedimethanol, dihydroxy compounds derived from terpene compounds such as limonene 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,3-adamantanediol, hydrogenated bisphenol A, 2,2, Examples include dihydroxy compounds that are secondary alcohols or tertiary alcohols of alicyclic hydrocarbons, such as 4,4-tetramethyl-1,3-cyclo
  • oxyalkylene glycols for example, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. can be used.
  • dihydroxy compounds having a heterocyclic structure examples include dihydroxy compounds represented by the following formula (12).
  • dihydroxy compounds represented by the above formula (12) examples include isosorbide, isomannide, and isoidet, which are related to stereoisomers.
  • isosorbide which is abundant as a resource, is easily available, and is obtained by dehydration condensation of sorbitol produced from various starches, is easy to obtain and easy to produce. It is most preferred from the aspect of moldability.
  • These dihydroxy compounds (12) may be used singly or in combination of two or more.
  • Structural unit (D) is preferably a structural unit derived from the compound of formula (12). In this case, effects such as development of high heat resistance and favorable polymerization reactivity can be obtained.
  • the structural unit (C) is a structural unit derived from the compound of formula (14), and the structural unit (D) is a structural unit of the formula It is preferably a structural unit derived from the compound (12).
  • the structural unit derived from the compound represented by formula (14) is represented by the following formula (4), and the structural unit derived from the compound represented by formula (12) is represented by the following formula (5) .
  • At least one compound selected from the group consisting of the aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, oxyalkylene glycols, and dihydroxy compounds having a heterocyclic structure includes 1,6-hexanediol, 2,2,4 ,4-tetramethyl-1,3-cyclobutanediol, 1,4-cyclohexanedimethanol, tricyclodecanedimethanol, isosorbide, dioxane glycol and spiroglycol are preferred, and isosorbide and spiroglycol are particularly preferred.
  • Polycarbonate resins containing structural units derived from these monomers have an even better balance of optical properties, heat resistance, mechanical properties, and the like.
  • the total amount of all structural units and linking groups constituting the polycarbonate resin is 100% by mass.
  • the total content of the structural unit (C) and the structural unit (D) is preferably 20% by mass or more, more preferably 25% by mass or more, and even more preferably 30% by mass or more , 35% by mass or more.
  • the total content of the structural unit (C) and the structural unit (D) is preferably 80% by mass or less, more preferably 75% by mass or less, and 70% by mass or less. More preferably, the content is particularly preferably 65% by mass or less.
  • R 18 and R 19 are each an optionally substituted aliphatic hydrocarbon group having 1 to 18 carbon atoms, or an optionally substituted C 6 to 10 and R 18 and R 19 may be the same or different.
  • R 18 and R 19 are preferably substituted or unsubstituted aromatic hydrocarbon groups, more preferably unsubstituted aromatic hydrocarbon groups.
  • substituents for the aliphatic hydrocarbon group include ester groups, ether groups, amide groups and halogen atoms
  • substituents for the aromatic hydrocarbon group include alkyl groups such as methyl and ethyl. be done.
  • Examples of the diester carbonate represented by the formula (15) include diphenyl carbonate (hereinafter sometimes abbreviated as DPC), substituted diphenyl carbonate such as ditolyl carbonate, dimethyl carbonate, diethyl carbonate and di-tert- Dialkyl carbonates such as butyl carbonate are exemplified, but diphenyl carbonate and substituted diphenyl carbonate are preferred, and diphenyl carbonate is particularly preferred.
  • DPC diphenyl carbonate
  • substituted diphenyl carbonate such as ditolyl carbonate, dimethyl carbonate, diethyl carbonate and di-tert- Dialkyl carbonates
  • butyl carbonate diphenyl carbonate and substituted diphenyl carbonate are preferred, and diphenyl carbonate is particularly preferred.
  • Carbonic acid diesters may contain impurities such as chloride ions, and these impurities may inhibit the polymerization reaction or deteriorate the hue of the resulting resin. It is preferred to use purified ones.
  • the polycarbonate resin preferably has the physical properties described below.
  • the glass transition temperature of the polycarbonate resin is preferably 120° C. or higher, more preferably 125° C. or higher, and even more preferably 130° C. or higher. When the glass transition temperature is at least the above lower limit, sufficient heat resistance can be obtained. Also, the glass transition temperature of the polycarbonate resin is preferably 160° C. or lower, more preferably 155° C. or lower, and even more preferably 150° C. or lower. When the glass transition temperature is equal to or lower than the above upper limit, the melt processability is improved.
  • the glass transition temperature of the polycarbonate resin can be measured by the method described in Examples. The glass transition temperature of the polycarbonate resin can be appropriately adjusted, for example, by changing the types and ratios of the structural units that constitute the resin.
  • the water absorption of the polycarbonate resin is preferably 1.4% or less, more preferably 1.3% or less, still more preferably 1.2% or less, particularly preferably 1.1% or less, and most preferably 1%. .0% or less.
  • the water absorption of the polycarbonate resin can be measured by the method described below.
  • the water absorption rate of the polycarbonate resin can be appropriately adjusted, for example, by changing the type and ratio of structural units constituting the resin.
  • the viscosity of the polycarbonate resin is preferably 25 ⁇ 10 ⁇ 12 Pa or less, more preferably 22 ⁇ 10 ⁇ 12 Pa or less, still more preferably 19 ⁇ 10 ⁇ 12 Pa or less, even more preferably 16 ⁇ 10 ⁇ 12 Pa or less, and 15 ⁇ 10 ⁇ 12 Pa or less is particularly preferable, and 14 ⁇ 10 ⁇ 12 Pa or less is most preferable.
  • the photoelastic coefficient is equal to or less than the above upper limit, sufficient environmental reliability (visibility does not change depending on usage environment) can be obtained when the polycarbonate resin is used as a retardation film. This property is particularly important for large display devices, flexible displays, and when used in high-temperature and high-humidity environments.
  • the structural unit (A) represented by the formula (1) or (2) and the structural unit (B) represented by the formula (3) photoelastic It becomes possible to keep the coefficient lower.
  • a polycarbonate resin can be produced by a generally used polymerization method.
  • it can be produced using a solution polymerization method or an interfacial polymerization method using phosgene or a carboxylic acid halide, or a melt polymerization method in which a reaction is performed without using a solvent.
  • the melt polymerization method is preferable because it does not use a solvent or a highly toxic compound, so that the environmental load can be reduced and the productivity is excellent.
  • the solvent When a solvent is used for polymerization, the solvent may remain in the polycarbonate resin, and its plasticizing effect lowers the glass transition temperature of the polycarbonate resin. obtain.
  • Halogen-based organic solvents such as methylene chloride are often used as solvents. It can also cause corrosion of parts. Since the polycarbonate resin obtained by the melt polymerization method does not contain a solvent, it is advantageous in terms of processing steps and stabilization of product quality.
  • a monomer having the structural unit described above, a diester carbonate, and a polymerization catalyst are mixed, and a transesterification reaction (also referred to as a polycondensation reaction) is carried out under melting.
  • the reaction rate is increased while removing the desorbed components out of the system.
  • the reaction proceeds to the target molecular weight under high temperature and high vacuum conditions.
  • the molten polycarbonate resin is withdrawn from the reactor. Thus, a polycarbonate resin is obtained.
  • the reaction rate and the molecular weight of the resulting polycarbonate resin can be controlled by strictly adjusting the molar ratio of all dihydroxy compounds and all diester compounds used in the reaction.
  • the molar ratio of diester carbonate to all dihydroxy compounds is preferably adjusted to 0.90 to 1.10, more preferably 0.96 to 1.08, and more preferably 0.98 to 1 Adjustment to 0.06 is particularly preferred.
  • the molar ratio of the total amount of carbonic acid diester and all diester compounds to all dihydroxy compounds is preferably adjusted to 0.90 to 1.10, and adjusted to 0.96 to 1.08. is more preferable, and adjusting to 0.98 to 1.06 is particularly preferable.
  • the above molar ratio deviates significantly up or down, it will not be possible to produce a resin with the desired molecular weight.
  • the above molar ratio is too small, the number of terminal hydroxy groups in the produced resin increases, and the thermal stability of the resin may deteriorate. In addition, a large amount of unreacted dihydroxy compound remains in the polycarbonate resin, which may cause contamination of the molding machine and poor appearance of the molded product in the subsequent molding process.
  • the above molar ratio is too large, the speed of the transesterification reaction will decrease under the same conditions, or the residual amount of carbonic acid diesters and diester compounds in the produced polycarbonate resin will increase. Residual low molecular weight components can also lead to problems in the molding process.
  • the melt polymerization method is usually carried out in a multistage process of two or more stages.
  • the polycondensation reaction may be carried out in two or more stages by using one polymerization reactor and sequentially changing the conditions, or by using two or more reactors and changing the respective conditions to perform two or more stages. However, from the viewpoint of production efficiency, it is carried out using two or more, preferably three or more reactors.
  • the polycondensation reaction may be batch type, continuous type, or a combination of batch type and continuous type, but the continuous type is preferred from the viewpoint of production efficiency and quality stability.
  • the polycondensation reaction it is important to appropriately control the balance between temperature and pressure in the reaction system. If either the temperature or the pressure is changed too quickly, unreacted monomers may distill out of the reaction system. As a result, the molar ratio of the dihydroxy compound and the diester compound changes, and a polycarbonate resin with a desired molecular weight may not be obtained. Moreover, the polymerization rate of the polycondensation reaction is controlled by the balance between the hydroxyl group terminal and the ester group terminal or carbonate group terminal.
  • the wavelength dispersion of the retardation is controlled by the ratio of the fluorene-based monomer and other copolymer components in the polycarbonate resin. There is a risk that it will not be possible.
  • the process of the melt polycondensation reaction will be described below by dividing it into a step of consuming monomers to produce oligomers and a step of allowing polymerization to proceed to a desired molecular weight to produce polymers.
  • the following conditions can be employed as reaction conditions in the first stage reaction. That is, the internal temperature of the polymerization reactor is usually 130° C. or higher, preferably 150° C. or higher, more preferably 170° C. or higher, and usually 250° C. or lower, preferably 240° C. or lower, more preferably 230° C. or lower. set.
  • the pressure in the polymerization reactor is usually 70 kPa or less (hereinafter, pressure represents absolute pressure), preferably 50 kPa or less, more preferably 30 kPa or less, and usually 1 kPa or more, preferably 3 kPa or more, more preferably.
  • pressure represents absolute pressure
  • the reaction time is set in the range of usually 0.1 hour or longer, preferably 0.5 hour or longer, and usually 10 hours or shorter, preferably 5 hours or shorter, more preferably 3 hours or shorter.
  • the first-stage reaction is carried out while distilling off the generated monohydroxy compound derived from the diester compound out of the reaction system.
  • the monohydroxy compound distilled out of the reaction system in the first stage reaction is phenol.
  • the pressure of the reaction system is gradually lowered from the pressure of the first stage, and the subsequently generated monohydroxy compound is removed from the reaction system, while the pressure of the reaction system is finally reduced to 5 kPa or less. It is preferably 3 kPa or less, more preferably 1 kPa or less.
  • the internal temperature is set in the range of usually 210° C. or higher, preferably 220° C. or higher, and usually 270° C. or lower, preferably 260° C. or lower.
  • the reaction time is usually 0.1 hour or more, preferably 0.5 hour or more, more preferably 1 hour or more, and usually 10 hours or less, preferably 5 hours or less, more preferably 3 hours or less. set.
  • the maximum temperature of the internal temperature in all reaction stages is 270° C. or less, preferably 265° C. or less, more preferably 260° C. or less. do it.
  • the transesterification reaction catalyst (hereinafter sometimes simply referred to as catalyst or polymerization catalyst) that can be used during polymerization has a very large effect on the reaction rate and the color tone and thermal stability of the polycarbonate resin obtained by polycondensation. obtain.
  • the catalyst to be used is not limited as long as it can satisfy the transparency, hue, heat resistance, thermal stability, and mechanical strength of the polycarbonate resin produced.
  • group hereinafter simply referred to as “group 1” and “group 2”) metal compounds, basic boron compounds, basic phosphorus compounds, basic ammonium compounds, basic compounds such as amine compounds.
  • at least one metal compound selected from the group consisting of metals of Group 2 of the long period periodic table and lithium is used.
  • Group 1 metal compound for example, the following compounds can be adopted, but it is also possible to adopt Group 1 metal compounds other than these.
  • Group 2 metal compound for example, the following compounds can be adopted, but Group 2 metal compounds other than these can also be adopted.
  • Group 1 metal compound and/or Group 2 metal compound it is also possible to use a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, an amine compound, etc. However, it is particularly preferable to use at least one metal compound selected from the group consisting of metals of Group 2 of the long period periodic table and lithium.
  • the amount of the polymerization catalyst used is generally 0.1 ⁇ mol to 300 ⁇ mol, preferably 0.5 ⁇ mol to 100 ⁇ mol, per 1 mol of all dihydroxy compounds used in the polymerization.
  • the amount of metal is The above polymerization catalyst is usually used in an amount of 1.0 ⁇ mol or more, preferably 5.0 ⁇ mol or more, particularly preferably 10 ⁇ mol or more per 1 mol of the total dihydroxy compound.
  • the amount of the polymerization catalyst used is generally 300 ⁇ mol or less, preferably 200 ⁇ mol or less, and particularly preferably 100 ⁇ mol or less.
  • a diester compound when used as a monomer to produce a polyester carbonate resin, a titanium compound, a tin compound, a germanium compound, an antimony compound, a zirconium compound, and lead are used in combination with or without the basic compound.
  • Compounds, osmium compounds, zinc compounds, manganese compounds, and other transesterification catalysts can also be used.
  • the amount of these transesterification catalysts to be used is usually in the range of 1 ⁇ mol to 1 mmol, preferably in the range of 5 ⁇ mol to 800 ⁇ mol, particularly preferably in the range of 5 ⁇ mol to 800 ⁇ mol, in terms of metal amount, per 1 mol of the total dihydroxy compounds used in the reaction. 10 ⁇ mol to 500 ⁇ mol.
  • the amount of catalyst is too small, the polymerization rate will be slow, so the polymerization temperature will have to be raised accordingly in order to obtain a polycarbonate resin with a desired molecular weight. For this reason, the hue of the resulting polycarbonate resin is likely to deteriorate, and unreacted raw materials volatilize during polymerization, resulting in a loss of the molar ratio of the dihydroxy compound and the diester compound, which may prevent the desired molecular weight from being reached. have a nature.
  • the amount of the polymerization catalyst used is too large, undesirable side reactions may occur concurrently, resulting in deterioration of the hue of the resulting polycarbonate resin and coloration or decomposition of the polycarbonate resin during molding.
  • the Group 1 metals sodium, potassium, and cesium may adversely affect the hue if contained in polycarbonate resin in large amounts. These metals may be mixed not only from the catalyst used, but also from raw materials and reactors. Regardless of the source, the total amount of these metal compounds in the polycarbonate resin is preferably 2 ⁇ mol or less, preferably 1 ⁇ mol or less, and more preferably 0.5 ⁇ mol or less per 1 mol of all the dihydroxy compounds.
  • the pelletization method is not limited, but may be a method of withdrawing in a molten state from the final-stage polymerization reactor, cooling and solidifying in the form of strands and pelletizing, a method of uniaxially or in a molten state from the final-stage polymerization reactor.
  • the polycarbonate resin is supplied again to a single-screw or twin-screw extruder after being made into a single-screw or twin-screw extruder, melt-extruded, and then solidified by cooling to form pellets.
  • the polycarbonate resin is suitable for optical applications, it is preferable that the content of foreign matter in the polycarbonate resin is small. In order to remove foreign matters such as scorch and gel in the polycarbonate resin obtained by melt polycondensation, it is preferable to perform filtration using a filter. Above all, after the polycarbonate resin is melt-extruded with the above-mentioned vented twin-screw extruder in order to remove residual monomers, by-product phenol, etc. by devolatilizing under reduced pressure and to mix additives such as heat stabilizers and release agents. , preferably through a filter.
  • the shape of this filter a known shape such as a candle type, pleated type, leaf disc type, etc. can be used.
  • the mesh size of the filter is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 20 ⁇ m or less, as a filtration accuracy of 99%. When it is desired to particularly reduce foreign matter, the filter mesh size is preferably 10 ⁇ m or less. 99% filtration accuracy is preferably 1 ⁇ m or more.
  • the opening of the filter mentioned here is determined in accordance with ISO16889.
  • the polycarbonate resin filtered by the above filter is extruded from the die head in the form of a strand, cooled and solidified, and pelletized with a rotary cutter or the like. is preferably performed in a clean room with a higher degree of cleanliness than Class 7, more preferably Class 6, defined in JISB 9920:2002, in order to prevent contamination from outside air.
  • a cooling method such as air cooling or water cooling. It is desirable to prevent redeposition of foreign matter.
  • water cooling it is desirable to use water from which metals have been removed with an ion exchange resin or the like, and foreign matter has been removed from the water with a water filter.
  • the mesh size of the water filter to be used is preferably 10 to 0.45 ⁇ m as filtration accuracy for 99% removal.
  • the polycarbonate resin may be blended with a heat stabilizer in order to prevent a decrease in molecular weight and a deterioration in hue during melt processing.
  • heat stabilizers include commonly known hindered phenol heat stabilizers and/or phosphorus heat stabilizers.
  • hindered phenol compound for example, the following compounds can be employed. 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4-methoxyphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di- tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,5-di-tert-butylhydroquinone, n-octadecyl-3-(3',5'-di- tert-butyl-4'-hydroxyphenyl)propionate, 2-tert-butyl-6-(3'-tert-butyl-5 '-methyl-2'-hydroxybenzyl)-4-methylphenyl acrylate, 2,2'-methylene-bis-(4-methyl-6-tert-butylphenol), 2,2'-methylene-bis-(6- cyclo
  • phosphorus compound for example, the following phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, esters thereof, and the like can be used, but phosphorus compounds other than these compounds can also be used. It is possible. triphenylphosphite, tris(nonylphenyl)phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tridecylphosphite, trioctylphosphite, trioctadecylphosphite, didecylmonophenylphosphite , dioctylmonophenylphosphite, diisopropylmonophenylphosphite, monobutyldiphenylphosphite, monodecyldiphenylphosphite, monooctyldiphenylphosphite, bis(2,6-di-tert
  • Such a heat stabilizer may be added to the reaction solution during melt polymerization, or may be added to the polycarbonate resin using an extruder and kneaded.
  • the heat stabilizer or the like may be added to the extruder to form the film, or the heat stabilizer or the like may be added to the polycarbonate resin in advance using an extruder. Alternatively, it may be used in the form of pellets or the like.
  • the blending amount of these heat stabilizers is preferably 0.0001 parts by mass or more, more preferably 0.0005 parts by mass or more, further preferably 0.001 parts by mass or more, when the polycarbonate resin is 100 parts by mass. , is preferably 3.0 parts by mass or less, more preferably 2.5 parts by mass or less, and even more preferably 2.0 parts by mass or less.
  • Catalyst deactivator Color tone and thermal stability can be improved by adding an acidic compound to the polycarbonate resin to neutralize and deactivate the catalyst used in the polymerization reaction.
  • an acidic compound used as the catalyst deactivator a compound having a carboxylic acid group, a phosphoric acid group, a sulfonic acid group, or an ester thereof can be used. It is preferable to use a phosphorus-based compound containing a partial structure represented by.
  • Phosphorus compounds represented by formula (16) or (17) above include phosphoric acid, phosphorous acid, phosphonic acid, hypophosphorous acid, polyphosphoric acid, phosphonic acid esters, acidic phosphate esters, and the like.
  • phosphorous acid, phosphonic acid, and phosphonic acid esters are more effective in deactivating the catalyst and suppressing coloration, and phosphorous acid is particularly preferred.
  • Phosphonic acids include phosphonic acid (phosphorous acid), methylphosphonic acid, ethylphosphonic acid, vinylphosphonic acid, decylphosphonic acid, phenylphosphonic acid, benzylphosphonic acid, aminomethylphosphonic acid, methylenediphosphonic acid, 1-hydroxyethane- 1,1-diphosphonic acid, 4-methoxyphenylphosphonic acid, nitrilotris (methylenephosphonic acid), propylphosphonic anhydride and the like.
  • Phosphonates include dimethyl phosphonate, diethyl phosphonate, bis(2-ethylhexyl) phosphonate, dilauryl phosphonate, dioleyl phosphonate, diphenyl phosphonate, dibenzyl phosphonate, dimethyl methylphosphonate, diphenyl methylphosphonate, and ethylphosphonic acid.
  • Acidic phosphates include dimethyl phosphate, diethyl phosphate, divinyl phosphate, dipropyl phosphate, dibutyl phosphate, bis(butoxyethyl) phosphate, bis(2-ethylhexyl) phosphate, diisotridecyl phosphate, phosphoric acid Phosphate diesters such as dioleyl, distearyl phosphate, diphenyl phosphate and dibenzyl phosphate, mixtures of diesters and monoesters, diethyl chlorophosphate, zinc stearyl phosphate and the like.
  • the amount of the phosphorus-based compound to be added corresponds to the amount of the catalyst used in the polymerization reaction.
  • the amount of phosphorus atoms in the phosphorus-based compound is preferably 0.5 to 5 times mol, more preferably 0.7 to 4 times mol, relative to 1 mol of the metal of the catalyst used in the polymerization reaction. It is preferably 0.8-fold mol or more and 3-fold mol or less is particularly preferable.
  • Aromatic polycarbonates aromatic polyesters, aliphatic polyesters, polyamides, polystyrenes, polyolefins, acrylics, amorphous polyolefins, ABS, AS, polylactic acid, and polybutylene succinate are used for the purpose of modifying properties such as mechanical properties and solvent resistance.
  • a polymer alloy may be obtained by kneading one or more of synthetic resins such as phosphates, rubbers, elastomers, etc. with the polycarbonate resin.
  • the above-mentioned additives and modifiers are produced by mixing the above-mentioned components with the polycarbonate resin at the same time or in any order using a mixer such as a tumbler, a V-type blender, a Nauta mixer, a Banbury mixer, a kneading roll, and an extruder.
  • a mixer such as a tumbler, a V-type blender, a Nauta mixer, a Banbury mixer, a kneading roll, and an extruder.
  • kneading with an extruder, particularly a twin-screw extruder is preferable from the viewpoint of improving dispersibility.
  • Method for producing retardation film As a method for forming an unstretched film using a polycarbonate resin, there is a casting method in which the polycarbonate resin is dissolved in a solvent and then cast, and then the solvent is removed.
  • a melt film-forming method can be employed. Specific examples of the melt film-forming method include a melt extrusion method using a T-die, a calendar molding method, a hot press method, a co-extrusion method, a co-melting method, a multi-layer extrusion method, an inflation molding method, and the like.
  • the method of forming the unstretched film is not particularly limited, but since the casting method may cause problems due to the residual solvent, the melt film forming method is preferable, and in particular, the T-die is used because of the ease of the subsequent stretching process. A hot melt extrusion method is preferred.
  • the forming temperature is preferably 280°C or lower, more preferably 270°C or lower, and particularly preferably 265°C or lower. If the molding temperature is too high, there is a possibility that defects due to the generation of foreign matter or air bubbles in the resulting film will increase, or that the film will be colored. However, if the molding temperature is too low, the melt viscosity of the polycarbonate resin will be too high, making it difficult to mold the original film and making it difficult to produce an unstretched film with a uniform thickness. is usually 200°C, preferably 210°C, more preferably 220°C.
  • the molding temperature of the unstretched film is the temperature at the time of molding in the melt film-forming method, and is usually the value obtained by measuring the temperature of the polycarbonate resin at the outlet of the die for extruding the molten polycarbonate resin.
  • the thickness of the unstretched film is determined according to the design of the thickness of the retardation film after stretching and the stretching conditions such as the stretching ratio. Therefore, it is usually 30 ⁇ m or more, preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, and is usually 200 ⁇ m or less, preferably 160 ⁇ m or less, more preferably 120 ⁇ m or less.
  • the thickness of the part used as the retardation film is preferably a set thickness ⁇ 3 ⁇ m or less, and a set thickness ⁇ 2 ⁇ m or less. It is more preferable that there is a thickness, and it is particularly preferable that the thickness is ⁇ 1 ⁇ m or less.
  • the length of the unstretched film in the longitudinal direction is preferably 500 m or longer, more preferably 1000 m or longer, and particularly preferably 1500 m or longer. From the viewpoint of productivity and quality, it is preferable to stretch continuously when manufacturing a retardation film. If the length is too short, the amount of product that can be obtained after conditioning will decrease.
  • the term "long" means that the dimension in the longitudinal direction is sufficiently larger than the width direction of the film, and the film can be substantially wound in the longitudinal direction to form a coil. means. More specifically, it means that the dimension in the longitudinal direction of the film is at least ten times greater than the dimension in the width direction.
  • the unstretched film obtained as described above preferably has an internal haze of 3% or less, more preferably 2% or less, and particularly preferably 1% or less. If the internal haze of the unstretched film is greater than the above upper limit, light scattering may occur, which may cause depolarization, for example, when laminated with a polarizer. Although the lower limit of the internal haze is not specified, it is usually 0.1%.
  • a transparent film with adhesive which had been measured in advance, was attached to both sides of the unstretched film, and the sample in which the influence of external haze was removed was used. The internal haze value is obtained by subtracting the haze value from the measured value of the above sample.
  • a retardation film can be obtained by stretching orienting the unstretched film.
  • known methods such as vertical uniaxial stretching, horizontal uniaxial stretching using a tenter or the like, simultaneous biaxial stretching combining them, and sequential biaxial stretching can be used. Stretching may be performed in batch mode, but continuous stretching is preferred in terms of productivity. Further, the continuous method can provide a retardation film with less variation in retardation in the film plane than the batch method.
  • the stretching temperature is in the range of (Tg ⁇ 20° C.) to (Tg+30° C.), preferably (Tg ⁇ 10° C.) to (Tg+20° C.), with respect to the glass transition temperature (Tg) of the polycarbonate resin used as the raw material. More preferably, it is within the range of (Tg-5°C) to (Tg+15°C).
  • the draw ratio is determined by the desired retardation value, and is 1.2 to 4 times, more preferably 1.5 to 3.5 times, and still more preferably 2 to 3 times in both the longitudinal and lateral directions. . If the draw ratio is too small, the effective range in which the desired degree of orientation and orientation angle can be obtained is narrowed. On the other hand, if the draw ratio is too large, the film may break or wrinkle during drawing.
  • the stretching rate is also appropriately selected depending on the purpose, but the strain rate represented by the following formula is usually 50 to 2000%/min, preferably 100 to 1500%/min, more preferably 200 to 1000%/min, especially Preferably, it can be selected to be 250-500%/min.
  • An excessively high drawing speed may cause breakage during drawing, or increase the variation in optical properties due to long-term use under high-temperature conditions.
  • the drawing speed is too low, not only is the productivity lowered, but the draw ratio must be excessively increased to obtain the desired retardation.
  • Strain rate (%/min) ⁇ stretching rate (mm/min)/raw film length (mm) ⁇ x 100
  • heat setting treatment may be performed in a heating furnace, or relaxation treatment may be performed by controlling the width of the tenter or adjusting the peripheral speed of the rolls.
  • the temperature of the heat setting treatment is in the range of 60° C. to (Tg), preferably 70° C. to (Tg ⁇ 5° C.) relative to the glass transition temperature (Tg) of the polycarbonate resin used for the unstretched film. If the heat treatment temperature is too high, the orientation of the molecules obtained by stretching may be disturbed and the desired retardation may be greatly reduced. Further, when a relaxation step is provided, the stress generated in the stretched film can be removed by shrinking it to 95% to 99% of the width of the film expanded by stretching.
  • the treatment temperature applied to the film at this time is the same as the heat setting treatment temperature.
  • a retardation film can be produced by appropriately selecting and adjusting the processing conditions in such a stretching process.
  • the retardation film preferably has an in-plane birefringence ( ⁇ n) at a wavelength of 550 nm of 0.001 or more, more preferably 0.0012 or more, and particularly preferably 0.0015 or more. Since the retardation is proportional to the thickness (d) and birefringence ( ⁇ n) of the film, by setting the birefringence in the above specific range, it is possible to express the desired retardation with a thin film, and the thin film A film compatible with the equipment can be easily produced. In order to develop high birefringence, the degree of orientation of the polymer molecules must be increased by lowering the stretching temperature, increasing the stretching ratio, etc.
  • the film tends to break.
  • the more excellent the toughness of the polycarbonate resin to be used the more advantageous.
  • the higher the toughness of the film for example, the more it is possible to suppress breakage at the clip portion during the film stretching process.
  • the film can be folded, bent back, and wound up, and can be applied to foldable applications, bendable applications, and winding applications.
  • the film is suitable as a member of a flexible display.
  • the retardation film preferably has a thickness of 110 ⁇ m or less, although it depends on the design value of the retardation. Further, the thickness of the retardation film is more preferably 105 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 95 ⁇ m or less. On the other hand, if the thickness is excessively thin, the film becomes difficult to handle, wrinkles occur during production, or breakage occurs. Therefore, the lower limit of the thickness of the retardation film is preferably 10 ⁇ m, more preferably 15 ⁇ m. is.
  • the value of wavelength dispersion (R450/R550), which is the ratio of the retardation (R450) measured at a wavelength of 450 nm to the retardation (R550) measured at a wavelength of 550 nm, is 0.60 or more and 1.00 or less. It is preferably 0.70 or more and 0.95 or less, and particularly preferably 0.80 or more and 0.90 or less. If the value of the wavelength dispersion is within this range, it is possible to obtain an ideal retardation characteristic over a wide wavelength range in the visible region.
  • a retardation film having such wavelength dependence as a quarter-wave plate and bonding it to a polarizing plate a circularly polarizing plate or the like can be produced, and a polarizing plate with less wavelength dependence of hue. and a display device.
  • the wavelength dependence of the hue increases, optical compensation is not performed at all wavelengths in the visible region, and coloration and contrast are affected by light passing through the polarizing plate and the display device. Problems, such as a fall, arise.
  • the retardation film becomes a circularly polarizing plate by laminating it with a known polarizing film and cutting it into desired dimensions.
  • a circularly polarizing plate is, for example, for viewing angle compensation of various displays (liquid crystal display device, organic EL display device, plasma display device, FED field emission display device, SED surface electric field display device), antireflection of external light, color It can be used for compensation, conversion of linearly polarized light into circularly polarized light, and the like.
  • polycarbonate copolymers examples are shown below, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
  • Various production conditions and values of evaluation results in the following examples have the meaning as preferable upper or lower limit values in the embodiments of the present invention, and the preferable range is the above upper or lower limit value and the following It may be a range defined by the value of the example or a combination of the values of the examples.
  • the measurement method and evaluation method of each physical property and characteristic are as follows.
  • (A) Glass transition temperature The glass transition temperature of the resin was measured using a differential scanning calorimeter DSC6220 manufactured by SII Nanotechnology. About 10 mg of a resin sample was placed in an aluminum pan manufactured by the same company, sealed, and heated from 30° C. to 200° C. at a temperature elevation rate of 20° C./min under a nitrogen stream of 50 mL/min. After holding the temperature for 3 minutes, it was cooled to 30°C at a rate of 20°C/min. The temperature was maintained at 30° C. for 3 minutes, and the temperature was again raised to 200° C. at a rate of 20° C./min.
  • the obtained film was cut into a square of 100 mm long and 100 mm wide to prepare a sample.
  • This sample was dried at a glass transition temperature of ⁇ 10° C. for 24 hours or more under a reduced pressure of 200 Pa or less.
  • the mass of the sample after drying was weighed to 0.1 mg, and this value was defined as the dry mass.
  • the dried sample was immersed in desalted water adjusted to 23° C. for 72 hours or more. After immersion, the sample was taken out of the water, and the water on the surface was wiped off with a clean and dry cloth or filter paper.
  • the emitted laser light is passed through a polarizer, a sample, a compensator, and an analyzer in this order, picked up by a photodetector (photodiode), and passed through a lock-in amplifier to obtain a waveform with an angular frequency of ⁇ or 2 ⁇ .
  • a phase difference was determined, and a distortion optical coefficient O' was determined.
  • the directions of the polarizer and the analyzer were orthogonal to each other, and adjusted to form an angle of ⁇ /4 with respect to the stretching direction of the sample.
  • the photoelastic coefficient C was obtained from the following equation using the storage elastic modulus E' and the strain optical coefficient O'.
  • test piece breaks into 2 pieces (or 3 pieces or more) at the bent portion until the joint surfaces are in complete contact, "cracked” is indicated, and the test piece is still in contact with the joint surfaces. When it was bent without cracking, it was evaluated as “no cracking”. The test was repeated 5 times for the same type of film, and if it was "cracked” three or more times, it was “x: brittle fracture”, and if it was “cracked” twice or less, it was “ ⁇ . : no brittle fracture", and those that did not brittle fracture were evaluated as having excellent toughness.
  • BPFM Bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane Synthesized by the method described in paragraph number [0596] of JP-A-2015-25111.
  • Example 1 Each raw material was prepared so that the content of each structural unit was the value shown in Table 1. Specifically, first, BP-TMC 30.20 parts by mass (0.097 mol), SPG 37.77 parts by mass (0.124 mol), BPFM 39.47 parts by mass (0.062 mol), DPC 35.41 parts by mass (0.165 mol), and 1.17 ⁇ 10 ⁇ 2 parts by mass (6.64 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate as a catalyst were put into a reaction vessel, and the inside of the reactor was replaced with nitrogen under reduced pressure. . The raw materials were dissolved under a nitrogen atmosphere with stirring at 150° C. for about 10 minutes. As the first step of the reaction, the temperature was raised to 220° C.
  • Example 2 BP-TMC 30.20 parts by mass (0.097 mol), SPG 39.50 parts by mass (0.130 mol), BPFM 36.65 parts by mass (0.057 mol), DPC 37.60 parts by mass (0.176 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.20 ⁇ 10 ⁇ 2 parts by mass (6.81 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • Example 3 BP-TMC 30.20 parts by mass (0.097 mol), SPG 41.23 parts by mass (0.135 mol), BPFM 33.83 parts by mass (0.053 mol), DPC 39.79 parts by mass (0.186 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.23 ⁇ 10 ⁇ 2 parts by mass (6.98 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. Evaluation results are shown in Tables 1 to 3.
  • Example 4 BP-TMC 30.20 parts by mass (0.097 mol), SPG 42.96 parts by mass (0.141 mol), BPFM 31.01 parts by mass (0.048 mol), DPC 41.98 parts by mass (0.196 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.26 ⁇ 10 ⁇ 2 parts by mass (7.15 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • Example 5 BP-TMC 30.20 parts by mass (0.097 mol), SPG 44.69 parts by mass (0.147 mol), BPFM 28.19 parts by mass (0.044 mol), DPC 44.17 parts by mass (0.206 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.29 ⁇ 10 ⁇ 2 parts by mass (7.32 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • Example 6 BisP-AP 30.21 parts by mass (0.104 mol), SPG 40.19 parts by mass (0.132 mol), BPFM 35.24 parts by mass (0.055 mol), DPC 40.06 parts by mass (0.187 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.25 ⁇ 10 ⁇ 2 parts by mass (7.08 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • Example 7 BisP-CDE 30.17 parts by mass (0.086 mol), SPG 43.26 parts by mass (0.142 mol), BPFM 31.01 parts by mass (0.048 mol), DPC 39.64 parts by mass (0.185 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.20 ⁇ 10 ⁇ 2 parts by mass (6.83 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • Example 8 BisP-CDE 30.17 parts by mass (0.086 mol), SPG 40.67 parts by mass (0.134 mol), BPFM 35.24 parts by mass (0.055 mol), DPC 36.35 parts by mass (0.170 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.16 ⁇ 10 ⁇ 2 parts by mass (6.58 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • Example 9 BP-TMC 20.13 parts by mass (0.065 mol), SPG 52.15 parts by mass (0.171 mol), BPFM 20.13 parts by mass (0.051 mol), DPC 41.02 parts by mass (0.191 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.25 ⁇ 10 ⁇ 2 parts by mass (7.09 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • Example 10 BP-TMC 20.13 parts by mass (0.065 mol), SPG 41.14 parts by mass (0.135 mol), ISB 10.14 parts by mass (0.069 mol), BPFM 32.42 parts by mass (0.051 mol), Using 48.31 parts by mass (0.226 mol) of DPC and 1.42 ⁇ 10 ⁇ 2 parts by mass (8.08 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate as a catalyst, heat was used as the second step of the reaction. Polyester carbonate pellets were obtained in the same manner as in Example 1, except that the medium temperature was raised to 245° C. over 15 minutes. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • BP-TMC 10.06 parts by mass (0.032 mol), SPG 35.12 parts by mass (0.115 mol), ISB 25.35 parts by mass (0.173 mol), BPFM 31.72 parts by mass (0.049 mol), Using 58.91 parts by mass (0.275 mol) of DPC and 1.70 ⁇ 10 ⁇ 2 parts by mass (9.64 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate as a catalyst, a heating medium was used in the second step of the reaction. Polyester carbonate pellets were obtained in the same manner as in Example 1, except that the temperature was raised to 250° C. over 15 minutes. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • Example 12 BP-TMC 15.10 parts by mass (0.049 mol), SPG 52.97 parts by mass (0.174 mol), ISB 5.07 parts by mass (0.035 mol), BPFM 30.31 parts by mass (0.047 mol), Using 46.37 parts by mass (0.216 mol) of DPC and 1.36 ⁇ 10 ⁇ 2 parts by mass (7.72 ⁇ 10 ⁇ 5 mol) of calcium acetate monohydrate as a catalyst, a heat medium was used in the second step of the reaction. Polyester carbonate pellets were obtained in the same manner as in Example 1, except that the temperature was raised to 250° C. over 15 minutes. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
  • the polycarbonate resins of Examples 1 to 14 containing structural units (A), structural units (B), and structural units (C) are excellent in heat and humidity resistance and optical properties.
  • the polycarbonate resins of Comparative Examples 1 to 3 which do not contain the structural unit (B), have low wet heat resistance or toughness.
  • the polycarbonate resin of Comparative Example 4 containing no structural unit (A), structural unit (B), or structural unit (C) is inferior in optical properties.
  • Comparative Example 5 which does not contain the structural unit (C) is not suitable for use as a retardation film under high humidity and heat because of its high water absorption rate and large dimensional change rate. Poor melt processability due to high viscosity.
  • Comparative Example 6, which does not contain the structural unit (C) cannot be formed into a film, and has poor formability.
  • Comparative Example 7, which does not contain the structural unit (A) has low toughness.

Abstract

The present invention relates to: a polycarbonate resin containing a structural unit (A), a structural unit (B), and a structural unit (C); a molded article obtained using the polycarbonate resin; a film; a retardation film; and a method for producing a transparent film. Structural unit (A) is represented by formula (1) and/or formula (2). Structural unit (B) is represented by formula (3). Structural unit (C) is derived from a dihydroxy compound having an acetal ring structure. [Formula 1] [Formula 2] [Formula 3]

Description

ポリカーボネート樹脂Polycarbonate resin
 本開示は、ポリカーボネート樹脂、ポリカーボネート樹脂成形品、フィルム、透明フィルムの製造方法、および位相差フィルムに関する。 The present disclosure relates to a polycarbonate resin, a polycarbonate resin molded article, a film, a method for producing a transparent film, and a retardation film.
 テレビやスマートフォンの前面板に代表される成形品、光学レンズ、光学フィルム、光学記録媒体といった光学用途に使用される透明樹脂の需要が増大している。中でも、有機ELディスプレイの普及が顕著であり、コントラストや色つきの改善、視野角拡大、外光反射防止等の表示品質を向上させる目的で各種の光学フィルムが開発されている。 Demand is increasing for transparent resins used for optical applications such as molded products, optical lenses, optical films, and optical recording media typified by the front panels of televisions and smartphones. Among them, the spread of organic EL displays is remarkable, and various optical films have been developed for the purpose of improving display quality such as improving contrast and coloring, widening the viewing angle, and preventing external light reflection.
 有機ELディスプレイにおいては、外光の反射を防止するための1/4波長板が用いられている。1/4波長板に用いられる位相差フィルムは、色つきを抑え、きれいな黒表示を可能とするため、可視領域の各波長において理想的な位相差特性を得ることができる、広帯域の波長分散性が求められている。これに相当するものとして、例えば、特許文献1には、オリゴフルオレン構造単位を有するポリカーボネート共重合体及びそれを用いた位相差フィルムが開示されており、短波長ほど位相差が小さくなる逆波長分散性を示す位相差フィルムが開示されている。また、特許文献2には、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン(以下、SBIと略記することがある。)に由来する構造単位を含有したポリカーボネート共重合体及びそれを用いた位相差フィルムが開示されており、耐熱性や光学特性に優れることを開示している。 A quarter-wave plate is used in organic EL displays to prevent reflection of external light. The retardation film used in the quarter-wave plate suppresses coloring and enables clear black display, so it is possible to obtain ideal retardation characteristics at each wavelength in the visible region, and broadband wavelength dispersion. is required. As an equivalent to this, for example, Patent Document 1 discloses a polycarbonate copolymer having an oligofluorene structural unit and a retardation film using the same. A retardation film exhibiting properties is disclosed. Further, in Patent Document 2, a structure derived from 6,6'-dihydroxy-3,3,3',3'-tetramethyl-1,1'-spirobiindane (hereinafter sometimes abbreviated as SBI) A polycarbonate copolymer containing units and a retardation film using the same are disclosed, which are excellent in heat resistance and optical properties.
特開2015-212368号公報JP 2015-212368 A 特開2019-178340号公報JP 2019-178340 A
 近年、有機ELディスプレイは車載用のディスプレイとして使用されるようになってきており、有機ELディスプレイに使われる位相差フィルムに要求される特性として、従来よりも厳しい使用環境でも問題なく機能を発揮することが求められてきている。具体的には、例えば車載用の有機ELディスプレイは、高温及び高湿度下で使用されるため、位相差フィルムには、従来よりも高い耐湿熱性が必要とされている。
 特許文献1や特許文献2に記載のポリカーボネート共重合体は、光学特性に関しては要求特性を満足するものもあるものの、耐湿熱性が不十分であり、従来よりも高い温度条件下及び高い湿度雰囲気下では光学特性が不十分であった。また、靭性などの機械物性や溶融加工性についても改良の余地がある。
In recent years, organic EL displays have come to be used as in-vehicle displays, and the retardation film used in organic EL displays must function without problems even in harsher usage environments than before. is being sought. Specifically, for example, organic EL displays for automobiles are used under high temperature and high humidity, so the retardation film is required to have higher resistance to heat and humidity than conventional ones.
Although some of the polycarbonate copolymers described in Patent Documents 1 and 2 satisfy the required optical properties, they have insufficient moisture and heat resistance, and can be used under higher temperature conditions and higher humidity atmospheres than before. However, the optical characteristics were insufficient. There is also room for improvement in mechanical properties such as toughness and melt processability.
 本開示は、かかる背景に鑑みてなされたものであり、光学特性に優れると共に、耐湿熱性及び機械物性、溶融加工性が高いポリカーボネート樹脂、それを用いて得られる成形品、フィルム、位相差フィルム、及び透明フィルムの製造方法を提供しようとするものである。 The present disclosure has been made in view of such a background, with excellent optical properties, moist heat resistance and mechanical properties, polycarbonate resin with high melt processability, molded articles obtained using it, films, retardation films, and to provide a method for producing a transparent film.
 本開示の第1の態様は、下記式(1)及び/又は下記式(2)で表される構造単位(A)と、
 下記式(3)で表される構造単位(B)と、
 アセタール環構造を有するジヒドロキシ化合物に由来する構造単位(C)と、を含む、ポリカーボネート樹脂にある。
A first aspect of the present disclosure is a structural unit (A) represented by the following formula (1) and/or the following formula (2),
A structural unit (B) represented by the following formula (3);
and a structural unit (C) derived from a dihydroxy compound having an acetal ring structure.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ただし、式(1)中、R~Rは、それぞれ独立に、直接結合、または、置換若しくは非置換の炭素数1~4のアルキレン基を表す。式(1)中、R~Rは、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~10のアルキル基、置換若しくは非置換の炭素数6~10のアリール基、置換若しくは非置換の炭素数2~10のアシル基、置換若しくは非置換の炭素数1~10のアルコキシ基、置換若しくは非置換の炭素数6~10のアリールオキシ基、置換若しくは非置換のアミノ基、置換若しくは非置換の炭素数2~10のビニル基、置換若しくは非置換の炭素数2~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、または、シアノ基を表す。式(1)中、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。 However, in formula (1), R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms. In formula (1), R 4 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substitution or an unsubstituted vinyl group having 2 to 10 carbon atoms, a substituted or unsubstituted ethynyl group having 2 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or cyano represents a group. In formula (1), R 4 to R 9 may be the same or different, and at least two adjacent groups among R 4 to R 9 are bonded to each other to form a ring; good too.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ただし、式(2)中、R~Rは、それぞれ独立に、直接結合、または、置換若しくは非置換の炭素数1~4のアルキレン基を表す。式(2)中、R~Rは、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~10のアルキル基、置換若しくは非置換の炭素数6~10のアリール基、置換若しくは非置換の炭素数2~10のアシル基、置換若しくは非置換の炭素数1~10のアルコキシ基、置換若しくは非置換の炭素数6~10のアリールオキシ基、置換若しくは非置換のアミノ基、置換若しくは非置換の炭素数2~10のビニル基、置換若しくは非置換の炭素数2~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、または、シアノ基を表す。式(2)中、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。 However, in formula (2), R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms. In formula (2), R 4 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substitution or an unsubstituted vinyl group having 2 to 10 carbon atoms, a substituted or unsubstituted ethynyl group having 2 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or cyano represents a group. In formula (2), R 4 to R 9 may be the same or different, and at least two adjacent groups among R 4 to R 9 are bonded to each other to form a ring; good too.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ただし、式(3)中、R10~R17は、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~20のアルキル基、または置換若しくは非置換の炭素数6~10のアリール基を表す。式(3)中、Xは直接結合又は炭素数1~20の2価の炭化水素基を表す。 However, in formula (3), R 10 to R 17 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms. represents In formula (3), X 1 represents a direct bond or a divalent hydrocarbon group having 1 to 20 carbon atoms.
 本開示の第2の態様は、上記ポリカーボネート樹脂から構成される、ポリカーボネート樹脂成形品にある。 A second aspect of the present disclosure resides in a polycarbonate resin molded article composed of the above polycarbonate resin.
 本開示の第3の態様は、上記ポリカーボネート樹脂から構成される、フィルムにある。 A third aspect of the present disclosure is a film composed of the polycarbonate resin.
 本開示の第4の態様は、上記フィルムからなる、位相差フィルムにある。 A fourth aspect of the present disclosure is a retardation film made of the above film.
 本開示の第5の態様は、上記位相差フィルムを含む、円偏光板にある。 A fifth aspect of the present disclosure is a circularly polarizing plate including the retardation film.
 本開示の第6の態様は、上記円変更板を含む、画像表示装置にある。 A sixth aspect of the present disclosure resides in an image display device including the above-described circle changing plate.
 本開示の第7の態様は、上記ポリカーボネート樹脂を溶融製膜法により成形することにより、透明フィルムを製造する方法において、
 上記ポリカーボネート樹脂を成形温度280℃以下で成形する、透明フィルムの製造方法にある。
A seventh aspect of the present disclosure is a method for producing a transparent film by molding the polycarbonate resin by a melt film-forming method,
A method for producing a transparent film, wherein the polycarbonate resin is molded at a molding temperature of 280° C. or less.
 本開示の第8の態様は、上記式(1)及び/又は上記式(2)で表される構造単位(A)と、
 上記式(3)で表される構造単位(B)と、を含み、
 ガラス転移温度が120℃以上160℃以下であり、
 吸水率が1.4%以下である、ポリカーボネート樹脂にある。
An eighth aspect of the present disclosure is a structural unit (A) represented by the above formula (1) and/or the above formula (2),
and a structural unit (B) represented by the above formula (3),
a glass transition temperature of 120° C. or higher and 160° C. or lower;
The polycarbonate resin has a water absorption of 1.4% or less.
 上記ポリカーボネート樹脂は、上記のごとく、特定のオリゴフルオレン構造を有する構造単位と、特定の共重合成分とを有する。そのため、ポリカーボネート樹脂は、光学特性に優れると共に、耐湿熱性が高い。また、ポリカーボネート樹脂は、靭性などの機械物性や溶融加工性に優れる。
 また、上記ポリカーボネート樹脂から構成される、ポリカーボネート樹脂成形品、フィルム、位相差フィルム、円偏向板は、高い耐湿熱性を有し、光学特性及び機械物性に優れている。また、上記画像表示装置は、上記円偏向板を有するため、フレキシブルディスプレイや高い耐湿熱性が求められる車載用ディスプレイなどに好適に使用することができる。
As described above, the polycarbonate resin has a structural unit having a specific oligofluorene structure and a specific copolymer component. Therefore, the polycarbonate resin has excellent optical properties and high moisture and heat resistance. In addition, polycarbonate resins are excellent in mechanical properties such as toughness and in melt processability.
In addition, polycarbonate resin molded articles, films, retardation films, and circular polarizers composed of the polycarbonate resin have high moisture and heat resistance, and are excellent in optical properties and mechanical properties. Further, since the image display device has the circular polarizing plate, it can be suitably used for a flexible display, an in-vehicle display that requires high moisture and heat resistance, and the like.
 上記製造方法では、280℃以下の成形温度で上記ポリカーボネート樹脂を溶融製膜法により成形する。これにより、靭性等の機械物性及び光学特性に優れると共に、耐湿熱性が高い、透明フィルムが製造される。 In the above manufacturing method, the above polycarbonate resin is molded by a melt film forming method at a molding temperature of 280°C or less. As a result, a transparent film having excellent mechanical properties such as toughness and optical properties and having high resistance to moist heat is produced.
 以下に、本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。なお、本明細書において、「構造単位」とは、重合体において隣り合う連結基に挟まれた部分構造、及び、重合体の末端部分に存在する重合反応性基と、該重合反応性基に隣り合う連結基とに挟まれた部分構造をいう。また、本明細書において「~」という表現を用いる場合、その前後に記載される数値あるいは物理値を含む意味で用いることとする。また、上限、下限として記載した数値あるいは物理値は、その値を含む意味で用いることとする。また、「%」は、特段の説明がない限り、「重量%」を意味する。また、「重量部」と「質量部」、「重量%」と「質量%」は、それぞれ実質的に同義である。 Embodiments of the present invention will be described in detail below. is not limited to the contents of As used herein, the term “structural unit” refers to a partial structure sandwiched between adjacent linking groups in a polymer, a polymerizable group present at the terminal portion of the polymer, and the polymerizable reactive group. It refers to a partial structure sandwiched between adjacent linking groups. In addition, when the expression "~" is used in this specification, it is used in the sense of including the numerical values or physical values described before and after it. Numerical values or physical values described as the upper limit and the lower limit are used in the sense of including those values. "%" means "% by weight" unless otherwise specified. Further, "parts by weight" and "parts by mass", and "% by weight" and "% by mass" are substantially synonymous.
 本開示において、ポリカーボネート樹脂は、ポリカーボネート樹脂だけでなく、ポリエステルカーボネート樹脂を含む概念である。ポリエステルカーボネート樹脂とは、ポリマーを構成する構造単位がカーボネート結合だけでなく、エステル結合で連結された部分を含むポリマーのことを言う。 In the present disclosure, polycarbonate resin is a concept that includes not only polycarbonate resin but also polyester carbonate resin. A polyester carbonate resin is a polymer containing a portion in which the structural units constituting the polymer are linked not only by carbonate bonds but also by ester bonds.
 本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 In this specification, when "~" is used to express numerical values or physical property values before and after it, it is used to include the values before and after it.
 ポリカーボネート樹脂は、少なくとも、構造単位(A)と構造単位(B)と構造単位(C)とから構成されており、これらの構造単位をポリマー鎖中に多数有する。ポリカーボネート樹脂は、たとえばランダム共重合体である。構造単位(A)は、下記式(1)及び/又は下記式(2)で表される。つまり、ポリカーボネート樹脂は、構造単位(A)として、式(1)で表される構造単位及び/式(2)で表される構造単位を有する。構造単位(B)は、下記式(3)で表される。構造単位(C)は、アセタール環構造を有するジヒドロキシ化合物に由来する構造単位である。アセタール環構造は、環状アセタール構造とも呼ばれる。 A polycarbonate resin is composed of at least a structural unit (A), a structural unit (B) and a structural unit (C), and has a large number of these structural units in the polymer chain. Polycarbonate resin is, for example, a random copolymer. Structural unit (A) is represented by the following formula (1) and/or the following formula (2). That is, the polycarbonate resin has a structural unit represented by the formula (1) and/or a structural unit represented by the formula (2) as the structural unit (A). Structural unit (B) is represented by the following formula (3). Structural unit (C) is a structural unit derived from a dihydroxy compound having an acetal ring structure. An acetal ring structure is also called a cyclic acetal structure.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(1)および(2)中、R~Rは、それぞれ独立に、直接結合、置換若しくは非置換の炭素数1~4のアルキレン基である。R~Rは、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~10のアルキル基、置換若しくは非置換の炭素数6~10のアリール基、置換若しくは非置換の炭素数2~10のアシル基、置換若しくは非置換の炭素数1~10のアルコキシ基、置換若しくは非置換の炭素数6~10のアリールオキシ基、置換若しくは非置換のアミノ基、置換若しくは非置換の炭素数2~10のビニル基、置換若しくは非置換の炭素数2~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、またはシアノ基である。R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。 In formulas (1) and (2), R 1 to R 3 are each independently a direct bond, a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms. R 4 to R 9 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, or a substituted or unsubstituted 2 carbon atoms -10 acyl groups, substituted or unsubstituted alkoxy groups having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 10 carbon atoms, substituted or unsubstituted amino groups, substituted or unsubstituted carbon atoms 2 to 10 vinyl groups, substituted or unsubstituted ethynyl groups having 2 to 10 carbon atoms, substituted sulfur atoms, substituted silicon atoms, halogen atoms, nitro groups, or cyano groups. R 4 to R 9 may be the same or different, and at least two adjacent groups among R 4 to R 9 may combine to form a ring.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(3)中、R10~R17は、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~20のアルキル基、または、置換若しくは非置換の炭素数6~10のアリール基を表す。Xは直接結合又は炭素数1~20の2価の炭化水素基を表す。 In formula (3), R 10 to R 17 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms. show. X 1 represents a direct bond or a divalent hydrocarbon group having 1 to 20 carbon atoms.
[ポリカーボネート樹脂の構造と原料]
 <オリゴフルオレン構造単位>
 ポリカーボネート樹脂は、下記式(1)で表される構造単位及び/又は下記式(2)で表される構造単位から構成される構造単位(A)を含む。以下、当該構造単位を「オリゴフルオレン構造単位」と称することがある。
[Structure and Raw Materials of Polycarbonate Resin]
<Oligofluorene structural unit>
The polycarbonate resin contains structural units (A) composed of structural units represented by the following formula (1) and/or structural units represented by the following formula (2). Hereinafter, the structural unit may be referred to as "oligofluorene structural unit".
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(1)および(2)中、R~Rは、それぞれ独立に、直接結合、置換または非置換の炭素数1~4のアルキレン基を表す。R~Rは、それぞれ独立に、水素原子、置換または非置換の炭素数1~10のアルキル基、置換または非置換の炭素数6~10のアリール基、置換または非置換の炭素数2~10のアシル基、置換または非置換の炭素数1~10のアルコキシ基、置換または非置換の炭素数6~10のアリールオキシ基、置換または非置換のアミノ基、置換または非置換の炭素数2~10のビニル基、置換または非置換の炭素数2~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、またはシアノ基である。ただし、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。なお、ポリマー中のフルオレン環が主鎖方向に対して垂直に配向しやすく、より強い逆波長分散性を示すという観点から、ポリカーボネート樹脂は、式(2)で表される構造単位を含有することが好ましい。 In formulas (1) and (2), R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms. R 4 to R 9 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, or a substituted or unsubstituted 2 carbon atoms ~10 acyl group, substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted carbon number 2 to 10 vinyl groups, substituted or unsubstituted ethynyl groups having 2 to 10 carbon atoms, substituted sulfur atoms, substituted silicon atoms, halogen atoms, nitro groups, or cyano groups. However, R 4 to R 9 may be the same or different, and at least two adjacent groups among R 4 to R 9 may combine with each other to form a ring. From the viewpoint that the fluorene rings in the polymer are likely to be oriented perpendicularly to the main chain direction and exhibit stronger reverse wavelength dispersion, the polycarbonate resin should contain a structural unit represented by formula (2). is preferred.
 RおよびRとしては、例えば、以下のアルキレン基を採用することができる。具体的には、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等の直鎖状のアルキレン基;メチルメチレン基、ジメチルメチレン基、エチルメチレン基、プロピルメチレン基、(1-メチルエチル)メチレン基、1-メチルエチレン基、2-メチルエチレン基、1-エチルエチレン基、2-エチルエチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,1-ジメチルエチレン基、2,2-ジメチルプロピレン基、3-メチルプロピレン基等の分岐鎖を有するアルキレン基等が挙げられる。ここで、RおよびRにおける分岐鎖の位置は、フルオレン環側の炭素が1位となるように付与した番号により示す。なお、ポリマー中のフルオレン環が主鎖方向に対して垂直に配向しやすく、より強い逆波長分散性を示すという観点から、R及びRはエチレン基が好ましい。 As R 1 and R 2 , for example, the following alkylene groups can be employed. Specifically, linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group; methylmethylene group, dimethylmethylene group, ethylmethylene group, propylmethylene group, (1-methylethyl ) methylene group, 1-methylethylene group, 2-methylethylene group, 1-ethylethylene group, 2-ethylethylene group, 1-methylpropylene group, 2-methylpropylene group, 1,1-dimethylethylene group, 2, Examples thereof include branched alkylene groups such as 2-dimethylpropylene group and 3-methylpropylene group. Here, the position of the branched chain in R 1 and R 2 is indicated by the number assigned so that the carbon on the fluorene ring side is at the 1st position. R 1 and R 2 are preferably ethylene groups from the viewpoint that the fluorene rings in the polymer are easily oriented perpendicularly to the main chain direction and exhibit stronger reverse wavelength dispersion.
 RおよびRの選択は、逆分散波長依存性の発現に関係し得る。ポリカーボネート樹脂は、フルオレン環が主鎖方向(延伸方向)に対して垂直に配向した状態において、最も強い逆分散波長依存性を示す。フルオレン環の配向状態をこのような状態に近づけ、強い逆分散波長依存性を発現させるためには、アルキレン基の主鎖の炭素数が2~3であるRおよびRを採用することが好ましい。炭素数が1の場合には、意外にも逆分散波長依存性を示さない場合がある。これは、たとえば、オリゴフルオレン構造単位の連結基であるカーボネート基および/またはエステル基の立体障害によって、フルオレン環の配向が主鎖方向に対して垂直ではない方向に固定化されてしまうためであると考えられる。一方、炭素数が多すぎる場合は、フルオレン環の配向の固定が弱くなることで、逆分散波長依存性が不十分となるおそれがある。さらに、ポリカーボネート樹脂の耐熱性が低下する場合がある。 The selection of R1 and R2 can be related to the development of inverse dispersion wavelength dependence. Polycarbonate resin exhibits the strongest reverse dispersion wavelength dependence in a state in which the fluorene rings are oriented perpendicular to the main chain direction (stretching direction). In order to bring the orientation state of the fluorene rings closer to this state and to express strong reverse dispersion wavelength dependence, it is possible to adopt R 1 and R 2 having 2 to 3 carbon atoms in the main chain of the alkylene group. preferable. When the number of carbon atoms is 1, there are cases where, unexpectedly, reverse dispersion wavelength dependence is not exhibited. This is because, for example, the steric hindrance of the carbonate group and/or the ester group, which are the linking groups of the oligofluorene structural units, fixes the orientation of the fluorene ring in a direction that is not perpendicular to the main chain direction. it is conceivable that. On the other hand, if the number of carbon atoms is too large, the fixation of the orientation of the fluorene ring is weakened, which may result in insufficient reverse dispersion wavelength dependence. Furthermore, the heat resistance of the polycarbonate resin may be lowered.
 Rとしては、例えば、以下のアルキレン基を採用することができる。具体的には、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等の直鎖状のアルキレン基;メチルメチレン基、ジメチルメチレン基、エチルメチレン基、プロピルメチレン基、(1-メチルエチル)メチレン基、1-メチルエチレン基、2-メチルエチレン基、1-エチルエチレン基、2-エチルエチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,1-ジメチルエチレン基、2,2-ジメチルプロピレン基、3-メチルプロピレン基等の分岐鎖を有するアルキレン基が挙げられる。Rは、アルキレン基の主鎖上の炭素数が1~2であることが好ましく、炭素数が1であることがより好ましい。主鎖上の炭素数が多すぎる場合は、RおよびRの場合と同様にフルオレン環の固定化が弱まり、逆分散波長依存性の低下、光弾性係数の増加、耐熱性の低下等を招くおそれがある。一方、主鎖上の炭素数は少ない方が光学特性および耐熱性は良好であるが、二つのフルオレン環の9位が直接結合でつながる場合は熱安定性が悪化する場合がある。 As R 3 , for example, the following alkylene groups can be employed. Specifically, linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group; methylmethylene group, dimethylmethylene group, ethylmethylene group, propylmethylene group, (1-methylethyl ) methylene group, 1-methylethylene group, 2-methylethylene group, 1-ethylethylene group, 2-ethylethylene group, 1-methylpropylene group, 2-methylpropylene group, 1,1-dimethylethylene group, 2, Examples include branched alkylene groups such as 2-dimethylpropylene group and 3-methylpropylene group. R 3 preferably has 1 to 2 carbon atoms on the main chain of the alkylene group, more preferably 1 carbon atom. If the number of carbon atoms on the main chain is too large, the fixation of the fluorene ring is weakened as in the case of R1 and R2 , resulting in a decrease in reverse dispersion wavelength dependence, an increase in the photoelastic coefficient, a decrease in heat resistance, etc. may invite. On the other hand, the smaller the number of carbon atoms on the main chain, the better the optical properties and heat resistance.
 R~Rにおける置換基としては、例えば、ハロゲン原子(具体的には、フッ素原子、塩素原子、臭素原子、またはヨウ素原子);メトキシ基、エトキシ基等の炭素数1~10のアルコキシ基;アセチル基、ベンゾイル基等の炭素数1~10のアシル基;アセトアミド基、ベンゾイルアミド基等の炭素数1~10のアシルアミノ基;ニトロ基;シアノ基;フェニル基、ナフチル基等の炭素数6~10のアリール基が挙げられる。なお、アリール基における1~3個の水素原子は、上述のハロゲン原子、アルコキシ基、アシル基、アシルアミノ基、ニトロ基、シアノ基等により置換されていてもよい。 Substituents for R 1 to R 3 include, for example, a halogen atom (specifically, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom); an alkoxy group having 1 to 10 carbon atoms such as a methoxy group and an ethoxy group ; acyl group having 1 to 10 carbon atoms such as acetyl group and benzoyl group; acylamino group having 1 to 10 carbon atoms such as acetamide group and benzoylamide group; nitro group; cyano group; -10 aryl groups are included. One to three hydrogen atoms in the aryl group may be substituted with the halogen atom, alkoxy group, acyl group, acylamino group, nitro group, cyano group or the like described above.
 R~Rにおける置換または非置換のアルキル基としては、例えば、以下のアルキル基を採用することができる。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル、n-デシル等の直鎖状のアルキル基;イソプロピル基、2-メチルプロピル基、2,2-ジメチルプロピル基、2-エチルヘキシル基等の分岐鎖を有するアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の環状のアルキル基が挙げられる。アルキル基の炭素数は、4以下であることが好ましく、2以下であることがより好ましい。炭素数がこの範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られやすい。アルキル基の置換基としては、R~Rについて上記した置換基が挙げられる。 As the substituted or unsubstituted alkyl group for R 4 to R 9 , for example, the following alkyl groups can be employed. Specifically, linear alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl, n-decyl; isopropyl group, 2-methylpropyl group , 2,2-dimethylpropyl group and 2-ethylhexyl group; and cyclic alkyl groups such as cyclopropyl group, cyclopentyl group, cyclohexyl group and cyclooctyl group. The number of carbon atoms in the alkyl group is preferably 4 or less, more preferably 2 or less. When the number of carbon atoms is within this range, steric hindrance between fluorene rings is less likely to occur, and desired optical properties derived from the fluorene rings are likely to be obtained. Substituents for the alkyl group include the substituents described above for R 1 to R 3 .
 R~Rにおける置換または非置換のアリール基としては、例えば、以下のアリール基を採用することができる。具体的には、フェニル基、1-ナフチル基、2-ナフチル基等のアリール基;2-ピリジル基、2-チエニル基、2-フリル基等のヘテロアリール基が挙げられる。アリール基の炭素数は、8以下であることが好ましく、7以下であることがより好ましい。炭素数がこの範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られやすい。アリール基の置換基としては、R~Rについて上記した置換基が挙げられる。 As the substituted or unsubstituted aryl group for R 4 to R 9 , for example, the following aryl groups can be employed. Specific examples include aryl groups such as phenyl group, 1-naphthyl group and 2-naphthyl group; heteroaryl groups such as 2-pyridyl group, 2-thienyl group and 2-furyl group. The number of carbon atoms in the aryl group is preferably 8 or less, more preferably 7 or less. When the number of carbon atoms is within this range, steric hindrance between fluorene rings is less likely to occur, and desired optical properties derived from the fluorene rings are likely to be obtained. Substituents for the aryl group include the substituents described above for R 1 to R 3 .
 R~Rにおける置換または非置換のアシル基としては、例えば、以下のアシル基を採用することができる。具体的には、ホルミル基、アセチル基、プロピオニル基、2-メチルプロピオニル基、2,2-ジメチルプロピオニル基、2-エチルヘキサノイル基等の脂肪族アシル基;ベンゾイル基、1-ナフチルカルボニル基、2-ナフチルカルボニル基、2-フリルカルボニル基等の芳香族アシル基が挙げられる。アシル基の炭素数は、4以下であることが好ましく、2以下であることがより好ましい。炭素数がこの範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られやすい。アシル基の置換基としては、R~Rについて上記した置換基が挙げられる。 As the substituted or unsubstituted acyl group for R 4 to R 9 , for example, the following acyl groups can be employed. Specifically, aliphatic acyl groups such as formyl group, acetyl group, propionyl group, 2-methylpropionyl group, 2,2-dimethylpropionyl group, and 2-ethylhexanoyl group; benzoyl group, 1-naphthylcarbonyl group, Aromatic acyl groups such as 2-naphthylcarbonyl group and 2-furylcarbonyl group can be mentioned. The number of carbon atoms in the acyl group is preferably 4 or less, more preferably 2 or less. When the number of carbon atoms is within this range, steric hindrance between fluorene rings is less likely to occur, and desired optical properties derived from the fluorene rings are likely to be obtained. Substituents for the acyl group include the substituents described above for R 1 to R 3 .
 R~Rにおける置換または非置換のアルコキシ基またはアリールオキシ基としては、例えば、以下を採用することができる。具体的には、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、トリフルオロメトキシ基、フェノキシ基が挙げられる。アルコキシ基またはアリールオキシ基の炭素数は、4以下であることが好ましく、2以下であることがより好ましい。炭素数がこの範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られやすい。アルコキシ基またはアリールオキシ基の置換基としては、R~Rについて上記した置換基が挙げられる。 As the substituted or unsubstituted alkoxy group or aryloxy group for R 4 to R 9 , for example, the following can be employed. Specific examples include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group, a trifluoromethoxy group, and a phenoxy group. The number of carbon atoms in the alkoxy group or aryloxy group is preferably 4 or less, more preferably 2 or less. When the number of carbon atoms is within this range, steric hindrance between fluorene rings is less likely to occur, and desired optical properties derived from the fluorene rings are likely to be obtained. Substituents for the alkoxy group or aryloxy group include the substituents described above for R 1 to R 3 .
 R~Rにおける置換または非置換のアミノ基としては、例えば、以下のアミノ基を採用することができる。具体的には、アミノ基;N-メチルアミノ基、N,N-ジメチルアミノ基、N-エチルアミノ基、N,N-ジエチルアミノ基、N,N-メチルエチルアミノ基、N-プロピルアミノ基、N,N-ジプロピルアミノ基、N-イソプロピルアミノ基、N,N-ジイソプロピルアミノ基等の脂肪族アミノ基;N-フェニルアミノ基、N,N-ジフェニルアミノ基等の芳香族アミノ基;ホルムアミド基、アセトアミド基、デカノイルアミド基、ベンゾイルアミド基、クロロアセトアミド基等のアシルアミノ基;ベンジルオキシカルボニルアミノ基、tert-ブチルオキシカルボニルアミノ基等のアルコキシカルボニルアミノ基が挙げられる。アミノ基としては、N,N-ジメチルアミノ基、N-エチルアミノ基、またはN,N-ジエチルアミノ基が好ましく、N,N-ジメチルアミノ基がより好ましい。この場合には、アミノ基が酸性度の高いプロトンを有さず、アミノ基の分子量が小さいため、フルオレン比率を高めることができる。そのため、熱安定性の向上に加えて、オリゴフルオレン構造単位を有するモノマーの使用量を削減できる。 As the substituted or unsubstituted amino group for R 4 to R 9 , for example, the following amino groups can be employed. Specifically, an amino group; N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group, N,N-methylethylamino group, N-propylamino group, N,N-dipropylamino group, N-isopropylamino group, N,N-diisopropylamino group and other aliphatic amino groups; N-phenylamino group, N,N-diphenylamino group and other aromatic amino groups; formamide acylamino groups such as radicals, acetamide group, decanoylamide group, benzoylamide group and chloroacetamide group; alkoxycarbonylamino groups such as benzyloxycarbonylamino group and tert-butyloxycarbonylamino group. The amino group is preferably an N,N-dimethylamino group, an N-ethylamino group, or an N,N-diethylamino group, more preferably an N,N-dimethylamino group. In this case, since the amino group does not have protons with high acidity and the molecular weight of the amino group is small, the fluorene ratio can be increased. Therefore, in addition to improving the thermal stability, it is possible to reduce the amount of the monomer having an oligofluorene structural unit.
 R~Rにおける置換または非置換のビニル基またはエチニル基としては、例えば、以下を採用することができる。具体的には、ビニル基、2-メチルビニル基、2,2-ジメチルビニル基、2-フェニルビニル基、2-アセチルビニル基、エチニル基、メチルエチニル基、tert-ブチルエチニル基、フェニルエチニル基、アセチルエチニル基、トリメチルシリルエチニル基が挙げられる。ビニル基またはエチニル基の炭素数は、4以下であることが好ましい。炭素数がこの範囲内であると、フルオレン環同士の立体障害が生じにくく、フルオレン環に由来する所望の光学特性が得られやすい。また、フルオレン環の共役系が長くなることにより、より強い逆分散波長依存性を得やすくなる。 Examples of substituted or unsubstituted vinyl or ethynyl groups for R 4 to R 9 include the following. Specifically, vinyl group, 2-methylvinyl group, 2,2-dimethylvinyl group, 2-phenylvinyl group, 2-acetylvinyl group, ethynyl group, methylethynyl group, tert-butylethynyl group, phenylethynyl group , an acetylethynyl group, and a trimethylsilylethynyl group. The number of carbon atoms in the vinyl group or ethynyl group is preferably 4 or less. When the number of carbon atoms is within this range, steric hindrance between fluorene rings is less likely to occur, and desired optical properties derived from the fluorene rings are likely to be obtained. In addition, the lengthening of the conjugated system of the fluorene ring makes it easier to obtain stronger reverse dispersion wavelength dependence.
 R~Rにおける置換基を有する硫黄原子としては、例えば、以下の硫黄含有基を採用することができる。具体的には、スルホ基;メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、イソプロピルスルホニル基等のアルキルスルホニル基;フェニルスルホニル基、p-トリルスルホニル基等のアリールスルホニル基;メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、イソプロピルスルフィニル基等のアルキルスルフィニル基;フェニルスルフィニル基、p-トリルスルフィニル基等のアリールスルフィニル基;メチルチオ基、エチルチオ基等のアルキルチオ基;フェニルチオ基、p-トリルチオ基等のアリールチオ基;メトキシスルホニル基、エトキシスルホニル基等のアルコキシスルホニル基;フェノキシスルホニル基等のアリールオキシスルホニル基;アミノスルホニル基;N-メチルアミノスルホニル基、N-エチルアミノスルホニル基、N-tert-ブチルアミノスルホニル基、N,N-ジメチルアミノスルホニル基、N,N-ジエチルアミノスルホニル基等のアルキルスルホニル基;N-フェニルアミノスルホニル基、N,N-ジフェニルアミノスルホニル基等のアリールアミノスルホニル基が挙げられる。なお、スルホ基は、リチウム、ナトリウム、カリウム、マグネシウム、アンモニウム等と塩を形成していてもよい。硫黄含有基としては、メチルスルフィニル基、エチルスルフィニル基、またはフェニルスルフィニル基が好ましく、メチルスルフィニル基がより好ましい。この場合には、硫黄含有基が、酸性度の高いプロトンを有さず、硫黄含有基の分子量が小さいため、フルオレン比率を高めることができる。そのため、熱安定性の向上に加えて、オリゴフルオレン構造単位を有するモノマーの使用量を削減できる。 As the substituted sulfur atom for R 4 to R 9 , for example, the following sulfur-containing groups can be employed. Specifically, sulfo group; alkylsulfonyl group such as methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group and isopropylsulfonyl group; arylsulfonyl group such as phenylsulfonyl group and p-tolylsulfonyl group; methylsulfinyl group, ethylsulfinyl alkylsulfinyl groups such as phenylsulfinyl group and p-tolylsulfinyl group; alkylthio groups such as methylthio group and ethylthio group; arylthio groups such as phenylthio group and p-tolylthio group; Alkoxysulfonyl groups such as methoxysulfonyl group and ethoxysulfonyl group; Aryloxysulfonyl groups such as phenoxysulfonyl group; Aminosulfonyl group; N-methylaminosulfonyl group, N-ethylaminosulfonyl group, N-tert-butylaminosulfonyl group alkylsulfonyl groups such as N,N-dimethylaminosulfonyl group and N,N-diethylaminosulfonyl group; and arylaminosulfonyl groups such as N-phenylaminosulfonyl group and N,N-diphenylaminosulfonyl group. The sulfo group may form a salt with lithium, sodium, potassium, magnesium, ammonium or the like. The sulfur-containing group is preferably a methylsulfinyl group, an ethylsulfinyl group, or a phenylsulfinyl group, more preferably a methylsulfinyl group. In this case, the sulfur-containing group does not have protons with high acidity and the molecular weight of the sulfur-containing group is small, so that the fluorene ratio can be increased. Therefore, in addition to improving the thermal stability, it is possible to reduce the amount of the monomer having an oligofluorene structural unit.
 R~Rにおける置換基を有するケイ素原子としては、例えば、以下のシリル基を採用することができる。具体的には、トリメチルシリル基、トリエチルシリル基等のトリアルキルシリル基;トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基が挙げられる。トリアルキルシリル基が好ましい。安定性および取扱い性に優れるからである。 As silicon atoms having substituents in R 4 to R 9 , for example, the following silyl groups can be employed. Specific examples include trialkylsilyl groups such as trimethylsilyl group and triethylsilyl group; and trialkoxysilyl groups such as trimethoxysilyl group and triethoxysilyl group. Trialkylsilyl groups are preferred. This is because it is excellent in stability and handleability.
 また、R~Rにおいて、ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子を採用することができる。これらの中でも、比較的導入が容易であり、かつ、電子吸引性を有するためにフルオレン9位の反応性を高める傾向を有するという観点から、フッ素原子、塩素原子、又は臭素原子を採用することが好ましく、塩素原子又は臭素原子を採用することがより好ましい。 Further, in R 4 to R 9 , for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom can be employed as the halogen atom. Among these, it is possible to adopt a fluorine atom, a chlorine atom, or a bromine atom from the viewpoint that it is relatively easy to introduce and has a tendency to increase the reactivity of the fluorene 9-position due to its electron-withdrawing property. Preferably, a chlorine atom or a bromine atom is more preferably employed.
 R~Rのうち隣接する少なくとも2つの基が互いに結合して形成する環の具体例としては、下記[I]群に示されるような置換フルオレン構造が挙げられる。下記[I]群において、波線は、フルオレン構造の9位からRとRあるいはRとRへと繋がる結合を図式上省略していることを表す。 Specific examples of the ring formed by binding together at least two adjacent groups among R 4 to R 9 include substituted fluorene structures shown in the following group [I]. In the following group [I], the wavy line indicates that the bond connecting the 9-position of the fluorene structure to R1 and R2 or R2 and R3 is schematically omitted.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 ポリカーボネート樹脂の波長分散を所望の範囲に調整することができることに加え、機械物性が向上するという観点から、ポリカーボネート樹脂を構成する全ての構造単位及び連結基の合計量100質量%に対する構造単位(A)の含有量は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、7質量%以上であることが特に好ましく、10質量%以上であることが最も好ましい。また、ポリカーボネート樹脂の光弾性係数が小さくなることに加え、位相差の発現性の向上が期待され、さらに樹脂中に占める構造単位(A)の割合を低減できることにより分子設計の幅が広くなり、樹脂の改質が求められた時に改良がしやすくなるという観点から、構造単位(A)の含有量は、45質量%以下であることが好ましく、40質量%以下であることがより好ましく、35質量%以下であることが更に好ましく、30質量%以下であることが特に好ましい。なお、連結基は、具体的には、各構造単位の端部に存在するカーボネート基、エステル基である。構造単位(A)の含有量は、式(1)で表される構造単位と式(2)で表される構造単位の合計含有量であり、いずれか一方の構造単位しか含有しない場合には、もう一方の含有量は0である。 In addition to being able to adjust the wavelength dispersion of the polycarbonate resin to a desired range, from the viewpoint of improving the mechanical properties, the structural unit (A ) is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, particularly preferably 7% by mass or more, and 10 % or more is most preferable. In addition to reducing the photoelastic coefficient of the polycarbonate resin, an improvement in the expression of the retardation is expected, and the ratio of the structural unit (A) in the resin can be reduced, thereby widening the range of molecular design. The content of the structural unit (A) is preferably 45% by mass or less, more preferably 40% by mass or less, from the viewpoint of facilitating improvement when the resin is required to be modified. It is more preferably not more than 30% by mass, and particularly preferably not more than 30% by mass. The linking group is specifically a carbonate group or an ester group present at the end of each structural unit. The content of the structural unit (A) is the total content of the structural unit represented by the formula (1) and the structural unit represented by the formula (2). , the content of the other is zero.
 樹脂中のオリゴフルオレン構造単位の比率を調節する方法としては、例えば、オリゴフルオレン構造単位を有するモノマーと他のモノマーを共重合する方法や、オリゴフルオレン構造単位を含有する樹脂と他の樹脂とをブレンドする方法が挙げられる。オリゴフルオレン構造単位の含有量を精密に制御でき、かつ、高い透明性が得られ、フィルムの面全体において均一な特性が得られることから、オリゴフルオレン構造単位を有するモノマーと他のモノマーを共重合する方法が好ましい。 Methods for adjusting the ratio of oligofluorene structural units in the resin include, for example, a method of copolymerizing a monomer having an oligofluorene structural unit and another monomer, and a method of copolymerizing a resin containing an oligofluorene structural unit with another resin. A method of blending is mentioned. The content of oligofluorene structural units can be precisely controlled, high transparency can be obtained, and uniform properties can be obtained over the entire surface of the film. method is preferred.
 ポリカーボネート樹脂は下記式(3)で表される構造単位(B)を含む。 A polycarbonate resin contains a structural unit (B) represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(3)中、R10~R17は、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~20のアルキル基、または置換若しくは非置換の炭素数6~10のアリール基を表す。Xは直接結合又は炭素数1~20の2価の炭化水素基を表す。ここで、式(3)のXが炭素数1~20の2価の炭化水素基の場合、この炭化水素基は、置換若しくは非置換の炭素数1~20の鎖状アルキレン基、置換若しくは非置換の炭素数6~20の環状アルキレン基、炭素数6~20アリーレン基、または炭素数13~20フルオレニレン基であることが好ましい。この場合には、耐熱性の向上や吸水率の低減という効果が得られる。
 鎖状アルキレン基、環状アルキレン基としては、例えば、-CH-、-CH(CH)-、-C(CH-、-CH(Ph)-、-C(CH)Ph-、-CPh-、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、1,1-シクロプロピレン基、1,1-シクロブチレン基、1,1-シクロペンチレン基、1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,1-シクロドデシレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロブチレン基、1,3-シクロペンチレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基などが挙げられる。ここで、Phは非置換のフェニル基である。
 アリーレン基としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基が挙げられる。
 フルオレニレン基としては、9,9-フルオレニレン基が挙げられる。
 また、Xが炭素数1~20の2価の炭化水素基の場合、上記式(3)におけるベンゼン環における結合位置は、2,2’-位、2,3’-位、2,4’-位、3,3’-位、3,4’-位、4,4’-位のいずれでもよいが、好ましくは4,4’-位である。この場合には、機械物性がより向上する。
 一方、Xが直接結合である場合、上記式(3)におけるビフェニル骨格は、2,2’-ビフェニル骨格、2,3’-ビフェニル骨格、2,4’-ビフェニル骨格、3,3’-ビフェニル骨格、3,4’-ビフェニル骨格、4,4’-ビフェニル骨格のいずれでもよいが、好ましくは4,4’-ビフェニル骨格である。
 ポリカーボネート樹脂の耐湿熱性をより向上させるという観点から、式(3)のXとして、更により好ましくは、-CH-、-CH(CH)-、-C(CH-、-CH(Ph)-、-C(CH)Ph-、-CPh-、9,9-フルオレニレン基、1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,1-シクロドデシレン基である。
 上記式(3)において、R10~R17は、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~20のアルキル基、または置換若しくは非置換のアリール基を表す。
 置換若しくは非置換の炭素数1~20のアルキル基としては、直鎖、分岐、環状のいずれであってもよく、また、フェニル基等の置換基を有していてもよく、次のようなものが挙げられる。
 例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、ナフチルメチル基、フェネチル基、2-フェニルイソプロピル基等である。
 置換若しくは非置換のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、エチルフェニル基、スチリル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、エチニルフェニル基、ナフチル基、ビニルナフチル基等の、アルキル基等の置換基を有していてもよいフェニル基、ナフチル基などである。
 R10~R17としては、更により好ましくは、水素原子、炭素数1~4のアルキル基であり、特に好ましくは水素原子、メチル基である。
In the above formula (3), R 10 to R 17 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms. show. X 1 represents a direct bond or a divalent hydrocarbon group having 1 to 20 carbon atoms. Here, when X 1 in formula (3) is a divalent hydrocarbon group having 1 to 20 carbon atoms, the hydrocarbon group is a substituted or unsubstituted chain alkylene group having 1 to 20 carbon atoms, a substituted or It is preferably an unsubstituted cyclic alkylene group having 6 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a fluorenylene group having 13 to 20 carbon atoms. In this case, effects such as improvement in heat resistance and reduction in water absorption can be obtained.
Examples of chain alkylene groups and cyclic alkylene groups include -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -CH(Ph)-, and -C(CH 3 )Ph- , —CPh 2 —, 1,2-ethylene group, 1,3-propylene group, 1,4-butylene group, 1,1-cyclopropylene group, 1,1-cyclobutylene group, 1,1-cyclopentylene group, 1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1,1-cyclododecylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1 ,2-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclobutylene group, 1,3-cyclopentylene group, 1,3-cyclohexylene group, 1,4-cyclohexylene group, etc. mentioned. Here, Ph is an unsubstituted phenyl group.
Arylene groups include 1,2-phenylene groups, 1,3-phenylene groups and 1,4-phenylene groups.
The fluorenylene group includes a 9,9-fluorenylene group.
Further, when X 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms, the bonding positions on the benzene ring in the above formula (3) are 2,2′-position, 2,3′-position, 2,4 It may be at the '-position, 3,3'-position, 3,4'-position or 4,4'-position, preferably 4,4'-position. In this case, mechanical properties are further improved.
On the other hand, when X 1 is a direct bond, the biphenyl skeleton in the above formula (3) is 2,2′-biphenyl skeleton, 2,3′-biphenyl skeleton, 2,4′-biphenyl skeleton, 3,3′- A biphenyl skeleton, a 3,4'-biphenyl skeleton, or a 4,4'-biphenyl skeleton may be used, but the 4,4'-biphenyl skeleton is preferred.
From the viewpoint of further improving the heat-and-moisture resistance of the polycarbonate resin, X 1 in formula (3) is even more preferably -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, - CH(Ph)—, —C(CH 3 )Ph—, —CPh 2 —, 9,9-fluorenylene group, 1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group , 1,1-cyclododecylene group.
In formula (3) above, R 10 to R 17 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group.
The substituted or unsubstituted alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may have a substituent such as a phenyl group. things are mentioned.
For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n-octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n- decyl group, cyclodecyl group, n-undecyl group, n-dodecyl group, cyclododecyl group, benzyl group, methylbenzyl group, dimethylbenzyl group, trimethylbenzyl group, naphthylmethyl group, phenethyl group, 2-phenylisopropyl group and the like. .
Examples of substituted or unsubstituted aryl groups include phenyl, o-tolyl, m-tolyl, p-tolyl, ethylphenyl, styryl, xylyl, n-propylphenyl, isopropylphenyl, A phenyl group and a naphthyl group which may have a substituent such as an alkyl group, such as a mesityl group, an ethynylphenyl group, a naphthyl group and a vinylnaphthyl group.
R 10 to R 17 are still more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom or a methyl group.
 構造単位(B)の由来となるジヒドロキシ化合物(つまり、構造単位(B)を構成するジヒドロキシ化合物)としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3-フェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3,5-ジフェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、1,1-ビス(4-ヒドロキシフェニル)デカン、ビス(4-ヒドロキシ-3-ニトロフェニル)メタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’ー(シクロドデカンー1,1ージイル)ジフェノール、1,1-ビス(4-ヒドロシキフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’ー(シクロドデカンー1,1ージイル)ジフェノール、4,4’ー(α―メチルベンジリデン)ビスフェノール等の芳香族ビスフェノール化合物;2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)プロパン、2,2-ビス(4-(2-ヒドロキシプロポキシ)フェニル)プロパン、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル等の芳香族基に結合したエーテル基を有するジヒドロキシ化合物;9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシプロポキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシプロポキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル)フルオレン、9,9-ビス(4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル)フルオレン等のフルオレン環を有するジヒドロキシ化合物などが挙げられる。好ましくは、構造単位(B)の由来となるジヒドロキシ化合物は、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’ー(シクロドデカンー1,1ージイル)ジフェノール、1,1-ビス(4-ヒドロシキフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’ー(シクロドデカンー1,1ージイル)ジフェノール、4,4’ー(α―メチルベンジリデン)ビスフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンである。 Examples of the dihydroxy compound from which the structural unit (B) is derived (that is, the dihydroxy compound that constitutes the structural unit (B)) include 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methyl -4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-diethylphenyl)propane, 2,2- Bis(4-hydroxy-(3-phenyl)phenyl)propane, 2,2-bis(4-hydroxy-(3,5-diphenyl)phenyl)propane, 2,2-bis(4-hydroxy-3,5- Dibromophenyl)propane, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl) ) Pentane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, bis(4-hydroxyphenyl)diphenylmethane, 1,1-bis(4-hydroxyphenyl)-2-ethylhexane, 1,1- bis(4-hydroxyphenyl)decane, bis(4-hydroxy-3-nitrophenyl)methane, 3,3-bis(4-hydroxyphenyl)pentane, 1,3-bis(2-(4-hydroxyphenyl)- 2-propyl)benzene, 1,3-bis(2-(4-hydroxyphenyl)-2-propyl)benzene, 2,2-bis(4-hydroxyphenyl)hexafluoropropane, 1,1-bis(4- hydroxyphenyl)cyclohexane, 4,4'-(cyclododecane-1,1-diyl)diphenol, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-(cyclododecane-1 Aromatic bisphenol compounds such as ,1-diyl)diphenol, 4,4'-(α-methylbenzylidene)bisphenol; 2,2-bis(4-(2-hydroxyethoxy)phenyl)propane, 2,2-bis( Dihydroxy compounds having an ether group bonded to an aromatic group such as 4-(2-hydroxypropoxy)phenyl)propane, 4,4′-bis(2-hydroxyethoxy)biphenyl; 9,9-bis(4-(2 -hydroxyethoxy)phenyl)fluorene, 9,9-bis(4-hydroxyphenyl)fluorene, 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 9,9-bis(4-(2-hydroxy propoxy)phenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)-3-methylphenyl)fluorene, 9,9-bis(4-(2-hydroxypropoxy)-3-methylphenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)-3-isopropylphenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)-3-isobutylphenyl)fluorene, 9,9-bis( 4-(2-hydroxyethoxy)-3-tert-butylphenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)-3-cyclohexylphenyl)fluorene, 9,9-bis(4-(2 -hydroxyethoxy)-3-phenylphenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)fluorene, 9,9-bis(4-(2-hydroxyethoxy) dihydroxy compounds having a fluorene ring such as -3-tert-butyl-6-methylphenyl)fluorene and 9,9-bis(4-(3-hydroxy-2,2-dimethylpropoxy)phenyl)fluorene. Preferably, the dihydroxy compound from which the structural unit (B) is derived is 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 4, 4'-(cyclododecane-1,1-diyl)diphenol, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-(cyclododecane-1,1-diyl)diphenol, 4,4'-(α-methylbenzylidene)bisphenol and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene.
 構造単位(B)の特に好適な具体例は、下記式(6)~(11)で表される。構造単位(B)は、下記式(6)~(11)からなる群より選ばれる少なくとも1つを含むことが好ましく、下記式(8)~(11)からなる群より選ばれる少なくとも1つを含むことがより好ましく、下記式(8)及び/又は下記(9)を含むことが特にさらに好ましく、下記式 (8)であることが最も好ましい。この場合には、ポリカーボネート樹脂中の構造単位(B)の含有量が少ない場合であっても、樹脂の耐熱性を向上させることができ、吸水率も低減することができる。つまり、耐熱性を効率的に向上させ、吸水性を効率的に低減させることができる。さらに、この場合には、ポリカーボネート樹脂の光弾性係数を低減することができ、ポリマーの機械物性も良好になる。 Particularly suitable specific examples of the structural unit (B) are represented by the following formulas (6) to (11). Structural unit (B) preferably contains at least one selected from the group consisting of the following formulas (6) to (11), and at least one selected from the group consisting of the following formulas (8) to (11) It is more preferable to contain the following formula (8) and/or the following formula (9) is particularly preferable, and the following formula (8) is most preferable. In this case, even if the content of the structural unit (B) in the polycarbonate resin is small, the heat resistance of the resin can be improved and the water absorption can be reduced. That is, the heat resistance can be efficiently improved and the water absorption can be efficiently reduced. Furthermore, in this case, the photoelastic coefficient of the polycarbonate resin can be reduced, and the mechanical properties of the polymer are also improved.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 ポリカーボネート樹脂の耐熱性を高め、吸水率を低減することができ、機械物性を向上できるという観点から、ポリカーボネート樹脂を構成する全ての構造単位及び連結基の合計量100質量%に対する構造単位(B)の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、20質量%以上であることがさらにより好ましく、25質量%以上が最も好ましい。また、ポリカーボネート樹脂の光弾性係数を低減することができるという観点から、構造単位(B)の含有量は50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましく、35質量%以下であることが特に好ましい。 From the viewpoint that the heat resistance of the polycarbonate resin can be increased, the water absorption rate can be reduced, and the mechanical properties can be improved, the structural unit (B) relative to the total amount of 100% by mass of all the structural units and linking groups that constitute the polycarbonate resin The content of is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, even more preferably 20% by mass or more, and 25 % by mass or more is most preferred. Further, from the viewpoint that the photoelastic coefficient of the polycarbonate resin can be reduced, the content of the structural unit (B) is preferably 50% by mass or less, more preferably 45% by mass or less, and 40% by mass. % or less, and particularly preferably 35 mass % or less.
 ポリカーボネート樹脂は、アセタール環構造を有するジヒドロキシ化合物に由来する構造単位(C)を含む。アセタール環構造を有するジヒドロキシ化合物としては、例えば、下記式(13)で表されるジオキサングリコール、及び/又は式(14)で表されるスピログリコールを用いることができる。 The polycarbonate resin contains a structural unit (C) derived from a dihydroxy compound having an acetal ring structure. As the dihydroxy compound having an acetal ring structure, for example, dioxane glycol represented by the following formula (13) and/or spiroglycol represented by the formula (14) can be used.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 好ましくは、構造単位(C)は、式(14)で表されるスピログリコールに由来する構造単位であることがよい。この場合には、ポリカーボネート樹脂の耐熱性を高め、さらに光弾性係数を低減できる。 Structural unit (C) is preferably a structural unit derived from spiroglycol represented by formula (14). In this case, the heat resistance of the polycarbonate resin can be enhanced and the photoelastic coefficient can be reduced.
 ポリカーボネート樹脂の優れた特性を大きく損なわずに、耐熱性や光学特性等の物性のバランスを調整することができるという観点から、ポリカーボネート樹脂を構成する全ての構造単位及び連結基の合計量100質量%に対する構造単位(C)の含有量は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましく、30質量%以上であることが特に好ましい。また、同様の観点から、構造単位(C)の含有量は、75質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%以下であることが更に好ましく、60質量%以下であることが特に好ましい。 From the viewpoint that the balance of physical properties such as heat resistance and optical properties can be adjusted without greatly impairing the excellent properties of the polycarbonate resin, the total amount of all structural units and linking groups constituting the polycarbonate resin is 100% by mass. The content of the structural unit (C) for the is particularly preferred. From the same viewpoint, the content of the structural unit (C) is preferably 75% by mass or less, more preferably 70% by mass or less, even more preferably 65% by mass or less, and 60% by mass or less. % by mass or less is particularly preferred.
 さらにポリカーボネート樹脂は、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、オキシアルキレングリコール、及び複素環構造を有するジヒドロキシ化合物からなる群より選ばれる少なくとも1つの化合物に由来する構造単位(D)を含んでもよい。構造単位(D)は、構造単位(A)~(C)以外の構造単位を意味し、例えば複素環構造を有してしいてもアセタール環構造は含まれない。ポリカーボネート樹脂の機械物性がより向上するという観点からは、構造単位(D)は、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、及びアセタール環構造以外の複素環構造を有するジヒドロキシ化合物からなる群より選ばれる少なくとも1つの化合物に由来する構造単位であることが好ましい。 Furthermore, the polycarbonate resin may contain a structural unit (D) derived from at least one compound selected from the group consisting of an aliphatic dihydroxy compound, an alicyclic dihydroxy compound, an oxyalkylene glycol, and a dihydroxy compound having a heterocyclic structure. . Structural unit (D) means a structural unit other than structural units (A) to (C), and does not include an acetal ring structure even if it has a heterocyclic ring structure. From the viewpoint of further improving the mechanical properties of the polycarbonate resin, the structural unit (D) is selected from the group consisting of aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, and dihydroxy compounds having a heterocyclic structure other than an acetal ring structure. It is preferably a structural unit derived from at least one compound.
 脂肪族ジヒドロキシ化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、1,3-ヘキサンジオール、1,4-ヘキサンジオール、1,5-ヘキサンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等の直鎖脂肪族ジヒドロキシ化合物、ネオペンチルグリコール、2-エチル-1,6-ヘキサンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、水素化ジリノレイルグリコール、水素化ジオレイルグリコール等の分岐鎖脂肪族ジヒドロキシ化合物が例として挙げられる。これらの中でも、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等の直鎖脂肪族ジヒドロキシ化合物が、入手のしやすさ、取り扱いのしやすさという観点から好ましい。 Examples of aliphatic dihydroxy compounds include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,2 -pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 1,2-hexanediol, 1,3-hexanediol, 1,4-hexanediol, 1,5- Hexanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecane Linear aliphatic dihydroxy compounds such as diols, neopentyl glycol, 2-ethyl-1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, hydrogenated dilinoleyl glycol, hydrogenated dihydroxy Examples include branched chain aliphatic dihydroxy compounds such as rail glycol. Among these, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1 ,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol and other linear aliphatic dihydroxy compounds are available and easy to handle. preferable.
 脂環式ジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物が挙げられる。具体的には、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6-デカリンジメタノール、1,5-デカリンジメタノール、2,3-デカリンジメタノール、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノール、1,3-アダマンタンジメタノール、リモネン等のテルペン化合物から誘導されるジヒドロキシ化合物等に例示される、脂環式炭化水素の1級アルコールであるジヒドロキシ化合物;1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,3-アダマンタンジオール、水添ビスフェノールA、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等に例示される、脂環式炭化水素の2級アルコール、又は3級アルコールであるジヒドロキシ化合物が挙げられる。 Examples of alicyclic dihydroxy compounds include the following dihydroxy compounds. Specifically, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, tricyclodecanedimethanol, pentacyclopentadecanedimethanol, 2,6-decanedimethanol, 1 ,5-decalindimethanol, 2,3-decalindimethanol, 2,3-norbornanedimethanol, 2,5-norbornanedimethanol, 1,3-adamantanedimethanol, dihydroxy compounds derived from terpene compounds such as limonene 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,3-adamantanediol, hydrogenated bisphenol A, 2,2, Examples include dihydroxy compounds that are secondary alcohols or tertiary alcohols of alicyclic hydrocarbons, such as 4,4-tetramethyl-1,3-cyclobutanediol.
 オキシアルキレングリコール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等を用いることができる。 As oxyalkylene glycols, for example, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. can be used.
 複素環構造を有するジヒドロキシ化合物としては、下記式(12)で表されるジヒドロキシ化合物が例として挙げられる。 Examples of dihydroxy compounds having a heterocyclic structure include dihydroxy compounds represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記式(12)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド、イソマンニド、イソイデットが挙げられる。これらのジヒドロキシ化合物(12)のうち、資源として豊富に存在し、容易に入手可能であり、種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、成形性の面から最も好ましい。これらのジヒドロキシ化合物(12)は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Examples of dihydroxy compounds represented by the above formula (12) include isosorbide, isomannide, and isoidet, which are related to stereoisomers. Among these dihydroxy compounds (12), isosorbide, which is abundant as a resource, is easily available, and is obtained by dehydration condensation of sorbitol produced from various starches, is easy to obtain and easy to produce. It is most preferred from the aspect of moldability. These dihydroxy compounds (12) may be used singly or in combination of two or more.
 構造単位(D)は、式(12)の化合物に由来する構造単位であることが好ましい。この場合には、高い耐熱性の発現や重合反応性が良好になるという効果が得られる。 Structural unit (D) is preferably a structural unit derived from the compound of formula (12). In this case, effects such as development of high heat resistance and favorable polymerization reactivity can be obtained.
 また、耐熱性や光学特性、機械物性、重合反応性のバランスを取りやすいという観点から、構造単位(C)が式(14)の化合物に由来する構造単位であり、構造単位(D)が式(12)の化合物に由来する構造単位であることが好ましい。式(14)で表される化合物に由来する構造単位は、下記式(4)で表され、式(12)で表される化合物に由来する構造単位は、下記式(5)で表される。 Further, from the viewpoint of easily balancing heat resistance, optical properties, mechanical properties, and polymerization reactivity, the structural unit (C) is a structural unit derived from the compound of formula (14), and the structural unit (D) is a structural unit of the formula It is preferably a structural unit derived from the compound (12). The structural unit derived from the compound represented by formula (14) is represented by the following formula (4), and the structural unit derived from the compound represented by formula (12) is represented by the following formula (5) .
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記した脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、オキシアルキレングリコール、及び複素環構造を有するジヒドロキシ化合物からなる群より選ばれる少なくとも1つの化合物としては、1,6-ヘキサンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、イソソルビド、ジオキサングリコール、スピログリコールが好ましく、イソソルビド、スピログリコールが特に好ましい。これらのモノマーに由来する構造単位を含むポリカーボネート樹脂は、光学特性、耐熱性、機械物性等のバランスに一層優れている。 At least one compound selected from the group consisting of the aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, oxyalkylene glycols, and dihydroxy compounds having a heterocyclic structure includes 1,6-hexanediol, 2,2,4 ,4-tetramethyl-1,3-cyclobutanediol, 1,4-cyclohexanedimethanol, tricyclodecanedimethanol, isosorbide, dioxane glycol and spiroglycol are preferred, and isosorbide and spiroglycol are particularly preferred. Polycarbonate resins containing structural units derived from these monomers have an even better balance of optical properties, heat resistance, mechanical properties, and the like.
 ポリカーボネート樹脂の優れた特性を大きく損なわずに、耐熱性や光学特性等の物性のバランスを調整することができるという観点から、ポリカーボネート樹脂を構成する全ての構造単位及び連結基の合計量100質量%に対する構造単位(C)と構造単位(D)との合計含有量は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、35質量%以上であることが特に好ましい。また、同様の観点から、構造単位(C)と構造単位(D)との合計含有量は、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、65質量%以下であることが特に好ましい。 From the viewpoint that the balance of physical properties such as heat resistance and optical properties can be adjusted without greatly impairing the excellent properties of the polycarbonate resin, the total amount of all structural units and linking groups constituting the polycarbonate resin is 100% by mass. The total content of the structural unit (C) and the structural unit (D) is preferably 20% by mass or more, more preferably 25% by mass or more, and even more preferably 30% by mass or more , 35% by mass or more. From the same viewpoint, the total content of the structural unit (C) and the structural unit (D) is preferably 80% by mass or less, more preferably 75% by mass or less, and 70% by mass or less. More preferably, the content is particularly preferably 65% by mass or less.
<炭酸ジエステル>
 ポリカーボネート樹脂に含有される上記の構造単位の連結基は、下記式(15)で表される炭酸ジエステルを重合することで導入される。
<Carbonic acid diester>
The linking group of the structural unit contained in the polycarbonate resin is introduced by polymerizing a diester carbonate represented by the following formula (15).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 式(15)中、R18およびR19は、それぞれ置換基を有していてもよい炭素数1~18の脂肪族炭化水素基、又は置換基を有していてもよい炭素数6~10の芳香族炭化水素基であり、R18とR19とは同一であっても異なっていてもよい。 In formula (15), R 18 and R 19 are each an optionally substituted aliphatic hydrocarbon group having 1 to 18 carbon atoms, or an optionally substituted C 6 to 10 and R 18 and R 19 may be the same or different.
 R18およびR19は、置換又は非置換の芳香族炭化水素基であることが好ましく、非置換の芳香族炭化水素基がより好ましい。尚、脂肪族炭化水素基の置換基としては、エステル基、エーテル基、アミド基、ハロゲン原子が挙げられ、芳香族炭化水素基の置換基としては、メチル基、エチル基等のアルキル基が挙げられる。 R 18 and R 19 are preferably substituted or unsubstituted aromatic hydrocarbon groups, more preferably unsubstituted aromatic hydrocarbon groups. Examples of substituents for the aliphatic hydrocarbon group include ester groups, ether groups, amide groups and halogen atoms, and examples of substituents for the aromatic hydrocarbon group include alkyl groups such as methyl and ethyl. be done.
 上記式(15)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(以下、DPCと略記することがある。)、ジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート及びジ-tert-ブチルカーボネート等のジアルキルカーボネートが例示されるが、好ましくはジフェニルカーボネート、置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。 Examples of the diester carbonate represented by the formula (15) include diphenyl carbonate (hereinafter sometimes abbreviated as DPC), substituted diphenyl carbonate such as ditolyl carbonate, dimethyl carbonate, diethyl carbonate and di-tert- Dialkyl carbonates such as butyl carbonate are exemplified, but diphenyl carbonate and substituted diphenyl carbonate are preferred, and diphenyl carbonate is particularly preferred.
 炭酸ジエステルは、塩化物イオン等の不純物を含む場合があり、これらの不純物が重合反応を阻害したり、得られる樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留等により精製したものを使用することが好ましい。 Carbonic acid diesters may contain impurities such as chloride ions, and these impurities may inhibit the polymerization reaction or deteriorate the hue of the resulting resin. It is preferred to use purified ones.
[ポリカーボネート樹脂の物性]
 ポリカーボネート樹脂は、以下に記載する物性を有することが好ましい。
[Physical properties of polycarbonate resin]
The polycarbonate resin preferably has the physical properties described below.
(ガラス転移温度)
 ポリカーボネート樹脂のガラス転移温度は、120℃以上が好ましく、125℃以上がより好ましく、130℃以上が更に好ましい。ガラス転移温度が上記下限以上であると、十分な耐熱性を得ることが出来る。また、ポリカーボネート樹脂のガラス転移温度は160℃以下が好ましく、155℃以下がより好ましく、150℃以下が更に好ましい。ガラス転移温度が上記上限以下であると、溶融加工性が向上する。ポリカーボネート樹脂のガラス転移温度は、実施例記載の方法により測定することができる。ポリカーボネート樹脂のガラス転移温度は、例えば樹脂を構成する構造単位の種類及び比率を変えることにより適宜調整することができる。
(Glass-transition temperature)
The glass transition temperature of the polycarbonate resin is preferably 120° C. or higher, more preferably 125° C. or higher, and even more preferably 130° C. or higher. When the glass transition temperature is at least the above lower limit, sufficient heat resistance can be obtained. Also, the glass transition temperature of the polycarbonate resin is preferably 160° C. or lower, more preferably 155° C. or lower, and even more preferably 150° C. or lower. When the glass transition temperature is equal to or lower than the above upper limit, the melt processability is improved. The glass transition temperature of the polycarbonate resin can be measured by the method described in Examples. The glass transition temperature of the polycarbonate resin can be appropriately adjusted, for example, by changing the types and ratios of the structural units that constitute the resin.
(吸水率)
 ポリカーボネート樹脂の吸水率は、好ましくは1.4%以下、より好ましくは1.3%以下、さらに好ましくは1.2%以下であり、特に好ましくは1.1%以下であり、最も好ましくは1.0%以下である。吸水率が上記上限以下であると、湿熱環境下での寸法変化率が十分に低減される。そのため、ポリカーボネート樹脂から構成される位相差フィルムを例えば表示装置に組み込んで使用した際には、表示特性の経時変化を抑制することができる。ポリカーボネート樹脂の吸水率は、後述の方法により測定することができる。ポリカーボネート樹脂の吸水率は、例えば樹脂を構成する構造単位の種類及び比率を変えることにより適宜調整することができる。
(water absorption rate)
The water absorption of the polycarbonate resin is preferably 1.4% or less, more preferably 1.3% or less, still more preferably 1.2% or less, particularly preferably 1.1% or less, and most preferably 1%. .0% or less. When the water absorption is equal to or less than the above upper limit, the dimensional change rate in a moist heat environment is sufficiently reduced. Therefore, when a retardation film made of a polycarbonate resin is incorporated in a display device, for example, the change in display characteristics over time can be suppressed. The water absorption of the polycarbonate resin can be measured by the method described below. The water absorption rate of the polycarbonate resin can be appropriately adjusted, for example, by changing the type and ratio of structural units constituting the resin.
(光弾性係数)
 ポリカーボネート樹脂のは、25×10-12Pa以下が好ましく、22×10-12Pa以下がより好ましく、19×10-12Pa以下がさらに好ましく、16×10-12Pa以下がさらにより好ましく、15×10―12Pa以下が特に好ましく、14×10―12Pa以下が最も好ましい。光弾性係数が上記上限以下であると、ポリカーボネート樹脂を位相差フィルムとして使用した際に十分な環境信頼性(使用環境により視認性が変化しない)を得ることが出来る。この特性は、特に大型の表示装置やフレキシブルディスプレイ、高温高湿環境下での使用時に重要となる。
 上記ポリカーボネート樹脂においては、上記式(1)又は(2)で表される構造単位(A)と、上記式(3)で表される構造単位(B)の含有量を減らすことにより、光弾性係数をより低く抑えることが可能になる。
(photoelastic coefficient)
The viscosity of the polycarbonate resin is preferably 25×10 −12 Pa or less, more preferably 22×10 −12 Pa or less, still more preferably 19×10 −12 Pa or less, even more preferably 16×10 −12 Pa or less, and 15 ×10 −12 Pa or less is particularly preferable, and 14×10 −12 Pa or less is most preferable. When the photoelastic coefficient is equal to or less than the above upper limit, sufficient environmental reliability (visibility does not change depending on usage environment) can be obtained when the polycarbonate resin is used as a retardation film. This property is particularly important for large display devices, flexible displays, and when used in high-temperature and high-humidity environments.
In the polycarbonate resin, by reducing the content of the structural unit (A) represented by the formula (1) or (2) and the structural unit (B) represented by the formula (3), photoelastic It becomes possible to keep the coefficient lower.
[ポリカーボネート樹脂の製造条件]
 ポリカーボネート樹脂は、一般に用いられる重合方法で製造することができる。例えば、ホスゲンやカルボン酸ハロゲン化物を用いた溶液重合法又は界面重合法や、溶媒を用いずに反応を行う溶融重合法を用いて製造することができる。これらの製造方法のうち、溶媒や毒性の高い化合物を使用しないことから環境負荷を低減することができ、また、生産性にも優れる溶融重合法によって製造することが好ましい。
[Conditions for manufacturing polycarbonate resin]
A polycarbonate resin can be produced by a generally used polymerization method. For example, it can be produced using a solution polymerization method or an interfacial polymerization method using phosgene or a carboxylic acid halide, or a melt polymerization method in which a reaction is performed without using a solvent. Among these production methods, the melt polymerization method is preferable because it does not use a solvent or a highly toxic compound, so that the environmental load can be reduced and the productivity is excellent.
 重合に溶媒を使用するとポリカーボネート樹脂中に溶媒が残存する場合があり、その可塑化効果によってポリカーボネート樹脂のガラス転移温度が低下することによって、後述する成形や延伸などの加工工程での品質変動要因となり得る。また、溶媒としては塩化メチレン等のハロゲン系の有機溶媒が用いられることが多いが、ハロゲン系溶媒がポリカーボネート樹脂中に残存する場合、この樹脂を用いた成形体が電子機器等に組み込まれると金属部の腐食の原因ともなり得る。溶融重合法によって得られるポリカーボネート樹脂は溶媒を含有しないため、加工工程や製品品質の安定化にとっても有利である。 When a solvent is used for polymerization, the solvent may remain in the polycarbonate resin, and its plasticizing effect lowers the glass transition temperature of the polycarbonate resin. obtain. Halogen-based organic solvents such as methylene chloride are often used as solvents. It can also cause corrosion of parts. Since the polycarbonate resin obtained by the melt polymerization method does not contain a solvent, it is advantageous in terms of processing steps and stabilization of product quality.
 溶融重合法によりポリカーボネート樹脂を製造する際は、前述した構造単位を有するモノマーと、炭酸ジエステルと、重合触媒とを混合し、溶融下でエステル交換反応(又は重縮合反応とも称する。)を行い、脱離成分を系外に除去しながら反応率を上げていく。重合の終盤では高温、高真空の条件で目的の分子量まで反応を進める。反応が完了したら、反応器から溶融状態のポリカーボネート樹脂を抜き出す。このようにして、ポリカーボネート樹脂が得られる。 When producing a polycarbonate resin by a melt polymerization method, a monomer having the structural unit described above, a diester carbonate, and a polymerization catalyst are mixed, and a transesterification reaction (also referred to as a polycondensation reaction) is carried out under melting. The reaction rate is increased while removing the desorbed components out of the system. At the end of the polymerization, the reaction proceeds to the target molecular weight under high temperature and high vacuum conditions. After the reaction is complete, the molten polycarbonate resin is withdrawn from the reactor. Thus, a polycarbonate resin is obtained.
 重縮合反応は、反応に用いる全ジヒドロキシ化合物と全ジエステル化合物のモル比率を厳密に調整することで、反応速度や得られるポリカーボネート樹脂の分子量を制御できる。ポリカーボネート樹脂の場合、全ジヒドロキシ化合物に対する炭酸ジエステルのモル比率を、0.90~1.10に調整することが好ましく、0.96~1.08に調整することがより好ましく、0.98~1.06に調整することが特に好ましい。ポリエステルカーボネート樹脂の場合は、全ジヒドロキシ化合物に対する炭酸ジエステルと全ジエステル化合物との合計量のモル比率を、0.90~1.10に調整することが好ましく、0.96~1.08に調整することがより好ましく、0.98~1.06に調整することが特に好ましい。 In the polycondensation reaction, the reaction rate and the molecular weight of the resulting polycarbonate resin can be controlled by strictly adjusting the molar ratio of all dihydroxy compounds and all diester compounds used in the reaction. In the case of polycarbonate resin, the molar ratio of diester carbonate to all dihydroxy compounds is preferably adjusted to 0.90 to 1.10, more preferably 0.96 to 1.08, and more preferably 0.98 to 1 Adjustment to 0.06 is particularly preferred. In the case of polyester carbonate resin, the molar ratio of the total amount of carbonic acid diester and all diester compounds to all dihydroxy compounds is preferably adjusted to 0.90 to 1.10, and adjusted to 0.96 to 1.08. is more preferable, and adjusting to 0.98 to 1.06 is particularly preferable.
 上記のモル比率が上下に大きく外れると、所望とする分子量の樹脂が製造できなくなる。また、上記のモル比率が小さくなりすぎると、製造された樹脂のヒドロキシ基末端が増加して、樹脂の熱安定性が悪化する場合がある。また、未反応のジヒドロキシ化合物がポリカーボネート樹脂中に多く残存し、その後の成形工程で成形機の汚れや成形品の外観不良の原因となり得る。一方、上記のモル比率が大きくなりすぎると、同一条件下ではエステル交換反応の速度が低下したり、製造されたポリカーボネート樹脂中の炭酸ジエステルやジエステル化合物の残存量が増加したりすることにより、この残存低分子成分が同様に成形工程での問題を招く可能性がある。 If the above molar ratio deviates significantly up or down, it will not be possible to produce a resin with the desired molecular weight. On the other hand, if the above molar ratio is too small, the number of terminal hydroxy groups in the produced resin increases, and the thermal stability of the resin may deteriorate. In addition, a large amount of unreacted dihydroxy compound remains in the polycarbonate resin, which may cause contamination of the molding machine and poor appearance of the molded product in the subsequent molding process. On the other hand, if the above molar ratio is too large, the speed of the transesterification reaction will decrease under the same conditions, or the residual amount of carbonic acid diesters and diester compounds in the produced polycarbonate resin will increase. Residual low molecular weight components can also lead to problems in the molding process.
 溶融重合法は、通常、2段階以上の多段工程で実施される。重縮合反応は、1つの重合反応器を用い、順次条件を変えて2段階以上の工程で実施してもよいし、2つ以上の反応器を用いて、それぞれの条件を変えて2段階以上の工程で実施してもよいが、生産効率の観点からは、2つ以上、好ましくは3つ以上の反応器を用いて実施する。重縮合反応はバッチ式、連続式、或いはバッチ式と連続式の組み合わせのいずれでも構わないが、生産効率と品質の安定性の観点から、連続式が好ましい。 The melt polymerization method is usually carried out in a multistage process of two or more stages. The polycondensation reaction may be carried out in two or more stages by using one polymerization reactor and sequentially changing the conditions, or by using two or more reactors and changing the respective conditions to perform two or more stages. However, from the viewpoint of production efficiency, it is carried out using two or more, preferably three or more reactors. The polycondensation reaction may be batch type, continuous type, or a combination of batch type and continuous type, but the continuous type is preferred from the viewpoint of production efficiency and quality stability.
 重縮合反応においては、反応系内の温度と圧力のバランスを適切に制御することが重要である。温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが反応系外に留出してしまうおそれがある。その結果、ジヒドロキシ化合物とジエステル化合物のモル比率が変化し、所望の分子量のポリカーボネート樹脂が得られない場合がある。
 また、重縮合反応の重合速度は、ヒドロキシ基末端と、エステル基末端或いはカーボネート基末端とのバランスによって制御される。そのため、特に連続式で重合を行う場合は、未反応モノマーの留出によって末端基のバランスが変動すると、重合速度を一定に制御することが難しくなり、得られるポリカーボネート樹脂の分子量の変動が大きくなるおそれがある。ポリカーボネート樹脂の分子量は溶融粘度と相関するため、得られたポリカーボネート樹脂を成形する際に、溶融粘度が変動し、均一な寸法の成形品が得られない等の問題を招くおそれがある。
In the polycondensation reaction, it is important to appropriately control the balance between temperature and pressure in the reaction system. If either the temperature or the pressure is changed too quickly, unreacted monomers may distill out of the reaction system. As a result, the molar ratio of the dihydroxy compound and the diester compound changes, and a polycarbonate resin with a desired molecular weight may not be obtained.
Moreover, the polymerization rate of the polycondensation reaction is controlled by the balance between the hydroxyl group terminal and the ester group terminal or carbonate group terminal. Therefore, especially in the case of continuous polymerization, if the balance of terminal groups fluctuates due to distillation of unreacted monomers, it becomes difficult to control the polymerization rate to be constant, and fluctuations in the molecular weight of the resulting polycarbonate resin increase. There is a risk. Since the molecular weight of the polycarbonate resin correlates with the melt viscosity, the melt viscosity may fluctuate during molding of the obtained polycarbonate resin, which may lead to problems such as the inability to obtain molded articles with uniform dimensions.
 さらに、未反応モノマーが留出すると、末端基のバランスだけでなく、ポリカーボネート樹脂の共重合組成が所望の組成から外れ、機械物性や光学特性にも影響するおそれがある。位相差フィルムにおいては、位相差の波長分散性はポリカーボネート樹脂中のフルオレン系モノマーとその他の共重合成分との比率によって制御されるため、重合中に比率が崩れると、設計どおりの光学特性が得られなくなるおそれがある。 Furthermore, if unreacted monomers are distilled, not only the terminal group balance but also the copolymerization composition of the polycarbonate resin deviates from the desired composition, which may affect the mechanical properties and optical properties. In the retardation film, the wavelength dispersion of the retardation is controlled by the ratio of the fluorene-based monomer and other copolymer components in the polycarbonate resin. There is a risk that it will not be possible.
 以下、溶融重縮合反応の工程を、モノマーを消費させてオリゴマーを生成させる段階と、所望の分子量まで重合を進行させてポリマーを生成させる段階に分けて述べる。
 具体的に、第1段目の反応における反応条件としては、以下の条件を採用することができる。即ち、重合反応器の内温は、通常130℃以上、好ましくは150℃以上、より好ましくは170℃以上、かつ、通常250℃以下、好ましくは240℃以下、より好ましくは230℃以下の範囲で設定する。また、重合反応器の圧力は、通常70kPa以下(以下、圧力とは絶対圧力を表す。)、好ましくは50kPa以下、より好ましくは30kPa以下、かつ、通常1kPa以上、好ましくは3kPa以上、より好ましくは5kPa以上の範囲で設定する。また、反応時間は、通常0.1時間以上、好ましくは0.5時間以上、かつ、通常10時間以下、好ましくは5時間以下、より好ましくは3時間以下の範囲で設定する。
The process of the melt polycondensation reaction will be described below by dividing it into a step of consuming monomers to produce oligomers and a step of allowing polymerization to proceed to a desired molecular weight to produce polymers.
Specifically, the following conditions can be employed as reaction conditions in the first stage reaction. That is, the internal temperature of the polymerization reactor is usually 130° C. or higher, preferably 150° C. or higher, more preferably 170° C. or higher, and usually 250° C. or lower, preferably 240° C. or lower, more preferably 230° C. or lower. set. In addition, the pressure in the polymerization reactor is usually 70 kPa or less (hereinafter, pressure represents absolute pressure), preferably 50 kPa or less, more preferably 30 kPa or less, and usually 1 kPa or more, preferably 3 kPa or more, more preferably. Set in the range of 5 kPa or more. Also, the reaction time is set in the range of usually 0.1 hour or longer, preferably 0.5 hour or longer, and usually 10 hours or shorter, preferably 5 hours or shorter, more preferably 3 hours or shorter.
 第1段目の反応は、発生するジエステル化合物由来のモノヒドロキシ化合物を反応系外へ留去しながら実施される。例えば炭酸ジエステルとしてジフェニルカーボネートを用いる場合には、第1段目の反応において反応系外へ留去されるモノヒドロキシ化合物はフェノールである。第1段目の反応においては、反応圧力を低くするほど重合反応を促進することができるが、一方で未反応モノマーの留出が多くなってしまう。未反応モノマーの留出の抑制と、減圧による反応の促進を両立させるためには、還流冷却器を具備した反応器を用いることが有効である。特に未反応モノマーの多い反応初期に還流冷却器を用いるのがよい。 The first-stage reaction is carried out while distilling off the generated monohydroxy compound derived from the diester compound out of the reaction system. For example, when diphenyl carbonate is used as the carbonic acid diester, the monohydroxy compound distilled out of the reaction system in the first stage reaction is phenol. In the first-stage reaction, the lower the reaction pressure is, the more the polymerization reaction can be promoted, but on the other hand, the amount of unreacted monomer is increased. In order to simultaneously suppress the distillation of unreacted monomers and promote the reaction by reducing the pressure, it is effective to use a reactor equipped with a reflux condenser. In particular, it is preferable to use a reflux condenser at the initial stage of the reaction when there is a large amount of unreacted monomers.
 第2段目の反応は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力を5kPa以下、好ましくは3kPa以下、より好ましくは1kPa以下にする。また、内温は、通常210℃以上、好ましくは220℃以上、かつ、通常270℃以下、好ましくは260℃以下の範囲で設定する。また、反応時間は、通常0.1時間以上、好ましくは0.5時間以上、より好ましくは1時間以上、かつ、通常10時間以下、好ましくは5時間以下、より好ましくは3時間以下の範囲で設定する。着色や熱劣化を抑制し、色相や熱安定性の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度を270℃以下、好ましくは265℃以下、さらに好ましくは260℃以下にするとよい。 In the second stage reaction, the pressure of the reaction system is gradually lowered from the pressure of the first stage, and the subsequently generated monohydroxy compound is removed from the reaction system, while the pressure of the reaction system is finally reduced to 5 kPa or less. It is preferably 3 kPa or less, more preferably 1 kPa or less. The internal temperature is set in the range of usually 210° C. or higher, preferably 220° C. or higher, and usually 270° C. or lower, preferably 260° C. or lower. The reaction time is usually 0.1 hour or more, preferably 0.5 hour or more, more preferably 1 hour or more, and usually 10 hours or less, preferably 5 hours or less, more preferably 3 hours or less. set. In order to suppress coloration and heat deterioration and obtain a polycarbonate resin with good hue and heat stability, the maximum temperature of the internal temperature in all reaction stages is 270° C. or less, preferably 265° C. or less, more preferably 260° C. or less. do it.
 重合時に使用し得るエステル交換反応触媒(以下、単に触媒、重合触媒と言うことがある。)は、反応速度や重縮合して得られるポリカーボネート樹脂の色調や熱安定性に非常に大きな影響を与え得る。用いられる触媒としては、製造されたポリカーボネート樹脂の透明性、色相、耐熱性、熱安定性、及び機械的強度を満足させ得るものであれば限定されないが、長周期型周期表における1族又は2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物が挙げられる。好ましくは長周期型周期表第2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属化合物が使用される。 The transesterification reaction catalyst (hereinafter sometimes simply referred to as catalyst or polymerization catalyst) that can be used during polymerization has a very large effect on the reaction rate and the color tone and thermal stability of the polycarbonate resin obtained by polycondensation. obtain. The catalyst to be used is not limited as long as it can satisfy the transparency, hue, heat resistance, thermal stability, and mechanical strength of the polycarbonate resin produced. group (hereinafter simply referred to as “group 1” and “group 2”) metal compounds, basic boron compounds, basic phosphorus compounds, basic ammonium compounds, basic compounds such as amine compounds. Preferably, at least one metal compound selected from the group consisting of metals of Group 2 of the long period periodic table and lithium is used.
 上記の1族金属化合物としては、例えば以下の化合物を採用することができるが、これら以外の1族金属化合物を採用することも可能である。水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、テトラフェニルホウ酸ナトリウム、テトラフェニルホウ酸カリウム、テトラフェニルホウ酸リチウム、テトラフェニルホウ酸セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩、2セシウム塩。これらのうち、重合活性と得られるポリカーボネート樹脂の色相の観点から、リチウム化合物を用いることが好ましい。 As the above Group 1 metal compound, for example, the following compounds can be adopted, but it is also possible to adopt Group 1 metal compounds other than these. sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, sodium acetate, potassium acetate, lithium acetate, cesium acetate, sodium stearate, potassium stearate, lithium stearate, cesium stearate, sodium borohydride, potassium borohydride, lithium borohydride, cesium borohydride, sodium tetraphenylborate, tetraphenyl potassium borate, lithium tetraphenylborate, cesium tetraphenylborate, sodium benzoate, potassium benzoate, lithium benzoate, cesium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, dilithium hydrogen phosphate, Dicesium hydrogen phosphate, disodium phenyl phosphate, dipotassium phenyl phosphate, dilithium phenyl phosphate, diso cesium phenyl phosphate, alcoholates of sodium, potassium, lithium, cesium, phenolates, disodium salts of bisphenol A , 2 potassium salts, 2 lithium salts, 2 cesium salts. Among these, it is preferable to use a lithium compound from the viewpoint of the polymerization activity and the hue of the resulting polycarbonate resin.
 上記の2族金属化合物としては、例えば以下の化合物を採用することができるが、これら以外の2族金属化合物を採用することも可能である。水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム。これらのうち、マグネシウム化合物、カルシウム化合物、バリウム化合物を用いることが好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物を用いることが更に好ましく、カルシウム化合物を用いることが最も好ましい。 As the Group 2 metal compound, for example, the following compounds can be adopted, but Group 2 metal compounds other than these can also be adopted. Calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, Magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate. Among these, it is preferable to use a magnesium compound, a calcium compound, and a barium compound. From the viewpoint of the polymerization activity and the hue of the resulting polycarbonate resin, it is more preferable to use a magnesium compound and/or a calcium compound, and a calcium compound is used. is most preferred.
 尚、上記の1族金属化合物及び/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、長周期型周期表第2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属化合物を使用することが特に好ましい。
 上記重合触媒の使用量は、通常、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol~300μmol、好ましくは0.5μmol~100μmolである。上記重合触媒として、長周期型周期表第2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属化合物を用いる場合、特にマグネシウム化合物及び/又はカルシウム化合物を用いる場合には、金属量として、上記全ジヒドロキシ化合物1mol当たり、通常、1.0μmol以上、好ましくは5.0μmol以上、特に好ましくは10μmol以上の上記重合触媒を使用する。また、上記重合触媒の使用量は、通常300μmol以下、好ましくは200μmol以下であり、特に好ましくは100μmol以下である。
In addition to the above Group 1 metal compound and/or Group 2 metal compound, it is also possible to use a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, an amine compound, etc. However, it is particularly preferable to use at least one metal compound selected from the group consisting of metals of Group 2 of the long period periodic table and lithium.
The amount of the polymerization catalyst used is generally 0.1 μmol to 300 μmol, preferably 0.5 μmol to 100 μmol, per 1 mol of all dihydroxy compounds used in the polymerization. When using at least one metal compound selected from the group consisting of metals of Group 2 of the long period periodic table and lithium as the polymerization catalyst, especially when using a magnesium compound and / or a calcium compound, the amount of metal is The above polymerization catalyst is usually used in an amount of 1.0 μmol or more, preferably 5.0 μmol or more, particularly preferably 10 μmol or more per 1 mol of the total dihydroxy compound. The amount of the polymerization catalyst used is generally 300 μmol or less, preferably 200 μmol or less, and particularly preferably 100 μmol or less.
 また、モノマーにジエステル化合物を用いて、ポリエステルカーボネート樹脂を製造する場合は、上記塩基性化合物と併用して、又は併用せずに、チタン化合物、スズ化合物、ゲルマニウム化合物、アンチモン化合物、ジルコニウム化合物、鉛化合物、オスミウム化合物、亜鉛化合物、マンガン化合物等のエステル交換触媒を用いることもできる。これらのエステル交換触媒の使用量は、反応に用いる全ジヒドロキシ化合物1molに対して、金属量として、通常、1μmol~1mmolの範囲内で用い、好ましくは5μmol~800μmolの範囲内であり、特に好ましくは10μmol~500μmolである。 Further, when a diester compound is used as a monomer to produce a polyester carbonate resin, a titanium compound, a tin compound, a germanium compound, an antimony compound, a zirconium compound, and lead are used in combination with or without the basic compound. Compounds, osmium compounds, zinc compounds, manganese compounds, and other transesterification catalysts can also be used. The amount of these transesterification catalysts to be used is usually in the range of 1 μmol to 1 mmol, preferably in the range of 5 μmol to 800 μmol, particularly preferably in the range of 5 μmol to 800 μmol, in terms of metal amount, per 1 mol of the total dihydroxy compounds used in the reaction. 10 μmol to 500 μmol.
 触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量のポリカーボネート樹脂を得ようとするにはその分だけ重合温度を高くせざるを得なくなる。そのために、得られるポリカーボネート樹脂の色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発して、ジヒドロキシ化合物とジエステル化合物のモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られるポリカーボネート樹脂の色相の悪化や成形時のポリカーボネート樹脂の着色や分解を招く可能性がある。 If the amount of catalyst is too small, the polymerization rate will be slow, so the polymerization temperature will have to be raised accordingly in order to obtain a polycarbonate resin with a desired molecular weight. For this reason, the hue of the resulting polycarbonate resin is likely to deteriorate, and unreacted raw materials volatilize during polymerization, resulting in a loss of the molar ratio of the dihydroxy compound and the diester compound, which may prevent the desired molecular weight from being reached. have a nature. On the other hand, if the amount of the polymerization catalyst used is too large, undesirable side reactions may occur concurrently, resulting in deterioration of the hue of the resulting polycarbonate resin and coloration or decomposition of the polycarbonate resin during molding.
 1族金属の中でもナトリウム、カリウム、セシウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料や反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート樹脂中のこれらの金属の化合物の合計量は、金属量として、上記全ジヒドロキシ化合物1mol当たり、2μmol以下がよく、好ましくは1μmol以下、より好ましくは0.5μmol以下である。 Among the Group 1 metals, sodium, potassium, and cesium may adversely affect the hue if contained in polycarbonate resin in large amounts. These metals may be mixed not only from the catalyst used, but also from raw materials and reactors. Regardless of the source, the total amount of these metal compounds in the polycarbonate resin is preferably 2 μmol or less, preferably 1 μmol or less, and more preferably 0.5 μmol or less per 1 mol of all the dihydroxy compounds.
 ポリカーボネート樹脂は、前述のとおり重合させた後、通常、冷却固化させ、回転式カッター等でペレット化することができる。ペレット化の方法は限定されるものではないが、最終段の重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終段の重合反応器から溶融状態で一軸又は二軸の押出機にポリカーボネート樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終段の重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸又は二軸の押出機にポリカーボネート樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。 After the polycarbonate resin is polymerized as described above, it can usually be solidified by cooling and pelletized with a rotary cutter or the like. The pelletization method is not limited, but may be a method of withdrawing in a molten state from the final-stage polymerization reactor, cooling and solidifying in the form of strands and pelletizing, a method of uniaxially or in a molten state from the final-stage polymerization reactor. A method in which polycarbonate resin is supplied to a twin-screw extruder, melt-extruded, and then solidified by cooling to form pellets. For example, the polycarbonate resin is supplied again to a single-screw or twin-screw extruder after being made into a single-screw or twin-screw extruder, melt-extruded, and then solidified by cooling to form pellets.
 ポリカーボネート樹脂は光学用途に好適に用いられるため、ポリカーボネート樹脂中の異物の含有が少ないことが好ましい。溶融重縮合して得られたポリカーボネート樹脂中のヤケやゲル等の異物を除去するために、フィルターを用いて濾過を行うことが好ましい。中でも、残存モノマーや副生フェノール等を減圧脱揮により除去し、熱安定剤や離型剤等の添加剤を混合するために、ポリカーボネート樹脂を上記のベント式二軸押出機で溶融押出した後、フィルターで濾過することが好ましい。 Since the polycarbonate resin is suitable for optical applications, it is preferable that the content of foreign matter in the polycarbonate resin is small. In order to remove foreign matters such as scorch and gel in the polycarbonate resin obtained by melt polycondensation, it is preferable to perform filtration using a filter. Above all, after the polycarbonate resin is melt-extruded with the above-mentioned vented twin-screw extruder in order to remove residual monomers, by-product phenol, etc. by devolatilizing under reduced pressure and to mix additives such as heat stabilizers and release agents. , preferably through a filter.
 このフィルターの形態としては、キャンドル型、プリーツ型、リーフディスク型等公知のものが使用できる。上記フィルターの目開きは、99%の濾過精度として、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは20μm以下である。異物を特に低減させたい場合にはフィルターの目開きは10μm以下が好ましいが、目開きが小さくなるとフィルターでの圧力損失が増大して、フィルターの破損を招いたり、剪断発熱によりポリカーボネート樹脂が劣化したりする可能性があるため、99%の濾過精度と
して、1μm以上であることが好ましい。なお、ここで言う上記フィルターの目開きはISO16889に準拠して決定されるものである。
As for the shape of this filter, a known shape such as a candle type, pleated type, leaf disc type, etc. can be used. The mesh size of the filter is preferably 50 μm or less, more preferably 40 μm or less, and even more preferably 20 μm or less, as a filtration accuracy of 99%. When it is desired to particularly reduce foreign matter, the filter mesh size is preferably 10 μm or less. 99% filtration accuracy is preferably 1 μm or more. The opening of the filter mentioned here is determined in accordance with ISO16889.
 上記フィルターで濾過されたポリカーボネート樹脂は、ダイスヘッドからストランドの形態で吐出し、冷却固化させ、回転式カッター等でペレット化されるが、ポリカーボネート樹脂が直接外気と触れるストランド化、ペレット化の際には、外気からの異物混入を防止するために、好ましくはJISB 9920:2002に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することが望ましい。 The polycarbonate resin filtered by the above filter is extruded from the die head in the form of a strand, cooled and solidified, and pelletized with a rotary cutter or the like. is preferably performed in a clean room with a higher degree of cleanliness than Class 7, more preferably Class 6, defined in JISB 9920:2002, in order to prevent contamination from outside air.
 ペレット化の際には、空冷、水冷等の冷却方法を使用することが好ましく、空冷の際に使用する空気は、ヘパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐことが望ましい。水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらに水用フィルターにて、水中の異物を取り除いた水を使用することが望ましい。用いる水用フィルターの目開きは、99%除去の濾過精度として10~0.45μmであることが好ましい。 When pelletizing, it is preferable to use a cooling method such as air cooling or water cooling. It is desirable to prevent redeposition of foreign matter. When water cooling is used, it is desirable to use water from which metals have been removed with an ion exchange resin or the like, and foreign matter has been removed from the water with a water filter. The mesh size of the water filter to be used is preferably 10 to 0.45 μm as filtration accuracy for 99% removal.
[添加剤]
 ポリカーボネート樹脂には本発明の目的を損なわない範囲で、通常用いられる熱安定剤、酸化防止剤、触媒失活剤、紫外線吸収剤、光安定剤、離型剤、染顔料、衝撃改良剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、核剤、難燃剤、無機充填剤、発泡剤等が含まれても差し支えない。
[Additive]
In polycarbonate resins, heat stabilizers, antioxidants, catalyst deactivators, ultraviolet absorbers, light stabilizers, mold release agents, dyes and pigments, impact modifiers, and electrifiers are added to the extent that the objects of the present invention are not impaired. Inhibitors, glidants, lubricants, plasticizers, compatibilizers, nucleating agents, flame retardants, inorganic fillers, blowing agents, and the like can also be included.
(熱安定剤)
 ポリカーボネート樹脂には、必要に応じて、溶融加工時等における分子量の低下や色相の悪化を防止するために熱安定剤を配合することができる。かかる熱安定剤としては、通常知られるヒンダードフェノール系熱安定剤および/又はリン系熱安定剤が挙げられる。
(Heat stabilizer)
If necessary, the polycarbonate resin may be blended with a heat stabilizer in order to prevent a decrease in molecular weight and a deterioration in hue during melt processing. Such heat stabilizers include commonly known hindered phenol heat stabilizers and/or phosphorus heat stabilizers.
 ヒンダードフェノール系化合物としては、例えば、以下の化合物を採用することができる。2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル-4-メトキシフェノール、2-tert-ブチル-4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,5-ジ-tert-ブチルヒドロキノン、n-オクタデシル-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5
’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,2’-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレン-ビス-(6-シクロヘキシル-4-メチルフェノール)、2,2’-エチリデン-ビス-(2,4-ジ-tert-ブチルフェノール)、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]-メタン、1,3,5-トリメチル-2,4,6-トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン等。中でも、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]-メタン、n-オクタデシル-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼンを用いることが好ましい。
As the hindered phenol compound, for example, the following compounds can be employed. 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4-methoxyphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di- tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,5-di-tert-butylhydroquinone, n-octadecyl-3-(3',5'-di- tert-butyl-4'-hydroxyphenyl)propionate, 2-tert-butyl-6-(3'-tert-butyl-5
'-methyl-2'-hydroxybenzyl)-4-methylphenyl acrylate, 2,2'-methylene-bis-(4-methyl-6-tert-butylphenol), 2,2'-methylene-bis-(6- cyclohexyl-4-methylphenol), 2,2′-ethylidene-bis-(2,4-di-tert-butylphenol), tetrakis-[methylene-3-(3′,5′-di-tert-butyl-4 '-hydroxyphenyl)propionate]-methane, 1,3,5-trimethyl-2,4,6-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)benzene and the like. Among them, tetrakis-[methylene-3-(3′,5′-di-tert-butyl-4′-hydroxyphenyl)propionate]-methane, n-octadecyl-3-(3′,5′-di-tert- Preference is given to using butyl-4'-hydroxyphenyl)propionate, 1,3,5-trimethyl-2,4,6-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)benzene.
 リン系化合物としては、例えば、以下に示す亜リン酸、リン酸、亜ホスホン酸、ホスホン酸及びこれらのエステル等を採用することができるが、これらの化合物以外のリン系化合物を採用することも可能である。トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル。これらの熱安定剤は、1種を単独で用いても良く、2種以上を併用してもよい。 As the phosphorus compound, for example, the following phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, esters thereof, and the like can be used, but phosphorus compounds other than these compounds can also be used. It is possible. triphenylphosphite, tris(nonylphenyl)phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tridecylphosphite, trioctylphosphite, trioctadecylphosphite, didecylmonophenylphosphite , dioctylmonophenylphosphite, diisopropylmonophenylphosphite, monobutyldiphenylphosphite, monodecyldiphenylphosphite, monooctyldiphenylphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol Diphosphite, 2,2-methylenebis(4,6-di-tert-butylphenyl)octylphosphite, bis(nonylphenyl)pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)penta Erythritol diphosphite, distearyl pentaerythritol diphosphite, tributyl phosphate, triethyl phosphate, trimethyl phosphate, triphenyl phosphate, diphenyl monoorthoxenyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, 4,4'-biphenylenediphosphinic acid Tetrakis(2,4-di-tert-butylphenyl), dimethyl benzenephosphonate, diethyl benzenephosphonate, dipropyl benzenephosphonate. These heat stabilizers may be used alone or in combination of two or more.
 かかる熱安定剤は、溶融重合時に反応液に添加してもよく、押出機を用いてポリカーボネート樹脂に添加し、混練してもよい。溶融押出法によりフィルムを製膜する場合、押出機に上記熱安定剤等を添加して製膜してもよいし、予め押出機を用いて、ポリカーボネート樹脂中に上記熱安定剤等を添加して、ペレット等の形状にしたものを用いてもよい。
 これらの熱安定剤の配合量は、ポリカーボネート樹脂を100質量部とした場合、0.0001質量部以上が好ましく、0.0005質量部以上がより好ましく、0.001質量部以上がさらに好ましく、また、3.0質量部以下が好ましく、2.5質量部以下がより好ましく、2.0質量部以下がさらに好ましい。
Such a heat stabilizer may be added to the reaction solution during melt polymerization, or may be added to the polycarbonate resin using an extruder and kneaded. When a film is formed by a melt extrusion method, the heat stabilizer or the like may be added to the extruder to form the film, or the heat stabilizer or the like may be added to the polycarbonate resin in advance using an extruder. Alternatively, it may be used in the form of pellets or the like.
The blending amount of these heat stabilizers is preferably 0.0001 parts by mass or more, more preferably 0.0005 parts by mass or more, further preferably 0.001 parts by mass or more, when the polycarbonate resin is 100 parts by mass. , is preferably 3.0 parts by mass or less, more preferably 2.5 parts by mass or less, and even more preferably 2.0 parts by mass or less.
(触媒失活剤)
 ポリカーボネート樹脂に、重合反応で用いた触媒を中和し、失活させるために酸性化合物を添加することで、色調や熱安定性を向上することができる。触媒失活剤として用いられる酸性化合物としては、カルボン酸基やリン酸基、スルホン酸基を有する化合物、又はそれらのエステル体などを用いることができるが、特に下記式(16)又は(17)で表される部分構造を含有するリン系化合物を用いることが好ましい。
(Catalyst deactivator)
Color tone and thermal stability can be improved by adding an acidic compound to the polycarbonate resin to neutralize and deactivate the catalyst used in the polymerization reaction. As the acidic compound used as the catalyst deactivator, a compound having a carboxylic acid group, a phosphoric acid group, a sulfonic acid group, or an ester thereof can be used. It is preferable to use a phosphorus-based compound containing a partial structure represented by.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式(16)又は(17)で表されるリン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル等が挙げられる。上記の中でも触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特に亜リン酸が好ましい。ホスホン酸としては、ホスホン酸(亜リン酸)、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、デシルホスホン酸、フェニルホスホン酸、ベンジルホスホン酸、アミノメチルホスホン酸、メチレンジホスホン酸、1-ヒドロキシエタン-1,1-ジホスホン酸、4-メトキシフェニルホスホン酸、ニトリロトリス(メチレンホスホン酸)、プロピルホスホン酸無水物などが挙げられる。 Phosphorus compounds represented by formula (16) or (17) above include phosphoric acid, phosphorous acid, phosphonic acid, hypophosphorous acid, polyphosphoric acid, phosphonic acid esters, acidic phosphate esters, and the like. Among the above, phosphorous acid, phosphonic acid, and phosphonic acid esters are more effective in deactivating the catalyst and suppressing coloration, and phosphorous acid is particularly preferred. Phosphonic acids include phosphonic acid (phosphorous acid), methylphosphonic acid, ethylphosphonic acid, vinylphosphonic acid, decylphosphonic acid, phenylphosphonic acid, benzylphosphonic acid, aminomethylphosphonic acid, methylenediphosphonic acid, 1-hydroxyethane- 1,1-diphosphonic acid, 4-methoxyphenylphosphonic acid, nitrilotris (methylenephosphonic acid), propylphosphonic anhydride and the like.
 ホスホン酸エステルとしては、ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2-エチルヘキシル)、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、エチルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2-ヒドロキシエチル)ホスホン酸ジメチル、p-メチルベンジルホスホン酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert-ブチル、(4-クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチルなどが挙げられる。 Phosphonates include dimethyl phosphonate, diethyl phosphonate, bis(2-ethylhexyl) phosphonate, dilauryl phosphonate, dioleyl phosphonate, diphenyl phosphonate, dibenzyl phosphonate, dimethyl methylphosphonate, diphenyl methylphosphonate, and ethylphosphonic acid. diethyl, diethyl benzylphosphonate, dimethyl phenylphosphonate, diethyl phenylphosphonate, dipropyl phenylphosphonate, diethyl (methoxymethyl)phosphonate, diethyl vinylphosphonate, diethyl hydroxymethylphosphonate, dimethyl (2-hydroxyethyl)phosphonate, diethyl p-methylbenzylphosphonate, diethylphosphonoacetate, ethyl diethylphosphonoacetate, tert-butyl diethylphosphonoacetate, diethyl (4-chlorobenzyl)phosphonate, diethyl cyanophosphonate, diethyl cyanomethylphosphonate, 3,5 -di-tert-butyl-4-hydroxybenzylphosphonate diethyl, diethylphosphonoacetaldehyde diethylacetal, (methylthiomethyl)phosphonate diethyl and the like.
 酸性リン酸エステルとしては、リン酸ジメチル、リン酸ジエチル、リン酸ジビニル、リン酸ジプロピル、リン酸ジブチル、リン酸ビス(ブトキシエチル)、リン酸ビス(2-エチルヘキシル)、リン酸ジイソトリデシル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸ジベンジルなどのリン酸ジエステル、又はジエステルとモノエステルの混合物、クロロリン酸ジエチル、リン酸ステアリル亜鉛塩などが挙げられる。 Acidic phosphates include dimethyl phosphate, diethyl phosphate, divinyl phosphate, dipropyl phosphate, dibutyl phosphate, bis(butoxyethyl) phosphate, bis(2-ethylhexyl) phosphate, diisotridecyl phosphate, phosphoric acid Phosphate diesters such as dioleyl, distearyl phosphate, diphenyl phosphate and dibenzyl phosphate, mixtures of diesters and monoesters, diethyl chlorophosphate, zinc stearyl phosphate and the like.
 これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 ポリカーボネート樹脂への上記リン系化合物の添加量が少なすぎると、触媒失活や着色抑制の効果が不十分であり、多すぎるとかえってポリカーボネート樹脂が着色してしまったり、特に高温高湿度下での耐久試験において、ポリカーボネート樹脂が着色しやすくなる。上記リン系化合物の添加量は、重合反応に用いた触媒量に対応した量を添加する。重合反応に用いた触媒の金属1molに対して、上記リン系化合物はリン原子の量として0.5倍mol以上、5倍mol以下が好ましく、さらに0.7倍mol以上、4倍mol以下が好ましく、特に0.8倍mol以上、3倍mol以下が好ましい。
One of these may be used alone, or two or more of them may be mixed and used in any combination and ratio.
If the amount of the phosphorus-based compound added to the polycarbonate resin is too small, the effect of deactivating the catalyst and suppressing coloration is insufficient. In the durability test, the polycarbonate resin tends to be colored. The amount of the phosphorus-based compound to be added corresponds to the amount of the catalyst used in the polymerization reaction. The amount of phosphorus atoms in the phosphorus-based compound is preferably 0.5 to 5 times mol, more preferably 0.7 to 4 times mol, relative to 1 mol of the metal of the catalyst used in the polymerization reaction. It is preferably 0.8-fold mol or more and 3-fold mol or less is particularly preferable.
(ポリマーアロイ)
 機械物性や耐溶剤性等の特性を改質する目的で、芳香族ポリカーボネート、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、AS、ポリ乳酸、ポリブチレンスクシネート等の合成樹脂やゴム、エラストマー等の1種又は2種以上と、上記ポリカーボネート樹脂とを混練して、ポリマーアロイとしてもよい。
(polymer alloy)
Aromatic polycarbonates, aromatic polyesters, aliphatic polyesters, polyamides, polystyrenes, polyolefins, acrylics, amorphous polyolefins, ABS, AS, polylactic acid, and polybutylene succinate are used for the purpose of modifying properties such as mechanical properties and solvent resistance. A polymer alloy may be obtained by kneading one or more of synthetic resins such as phosphates, rubbers, elastomers, etc. with the polycarbonate resin.
 上記の添加剤や改質剤は、ポリカーボネート樹脂に上記成分を同時に、又は任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。 The above-mentioned additives and modifiers are produced by mixing the above-mentioned components with the polycarbonate resin at the same time or in any order using a mixer such as a tumbler, a V-type blender, a Nauta mixer, a Banbury mixer, a kneading roll, and an extruder. However, kneading with an extruder, particularly a twin-screw extruder, is preferable from the viewpoint of improving dispersibility.
[位相差フィルムの製造方法]
(未延伸フィルムの製造方法)
 ポリカーボネート樹脂を用いて、未延伸フィルムを製膜する方法としては、ポリカーボネート樹脂を溶媒に溶解させてキャストした後、溶媒を除去する流延法や、溶媒を用いずにポリカーボネート樹脂を溶融させて製膜する溶融製膜法を採用することができる。溶融製膜法としては、具体的にはTダイを用いた溶融押出法、カレンダー成形法、熱プレス法、共押出法、共溶融法、多層押出、インフレーション成形法等がある。未延伸フィルムの製膜方法は特に限定されないが、流延法では残存溶媒による問題が生じるおそれがあるため、好ましくは溶融製膜法、中でも後の延伸処理のし易さから、Tダイを用いた溶融押出法が好ましい。
[Method for producing retardation film]
(Method for producing unstretched film)
As a method for forming an unstretched film using a polycarbonate resin, there is a casting method in which the polycarbonate resin is dissolved in a solvent and then cast, and then the solvent is removed. A melt film-forming method can be employed. Specific examples of the melt film-forming method include a melt extrusion method using a T-die, a calendar molding method, a hot press method, a co-extrusion method, a co-melting method, a multi-layer extrusion method, an inflation molding method, and the like. The method of forming the unstretched film is not particularly limited, but since the casting method may cause problems due to the residual solvent, the melt film forming method is preferable, and in particular, the T-die is used because of the ease of the subsequent stretching process. A hot melt extrusion method is preferred.
 溶融製膜法により未延伸フィルムを成形する場合、成形温度を280℃以下とすることが好ましく、270℃以下とすることがより好ましく、265℃以下とすることが特に好ましい。成形温度が高過ぎると、得られるフィルム中の異物や気泡の発生による欠陥が増加したり、フィルムが着色したりする可能性がある。ただし、成形温度が低過ぎるとポリカーボネート樹脂の溶融粘度が高くなりすぎ、原反フィルムの成形が困難となり、厚みの均一な未延伸フィルムを製造することが困難になる可能性があるので、成形温度の下限は通常200℃、好ましくは210℃、より好ましくは220℃である。ここで、未延伸フィルムの成形温度とは、溶融製膜法における成形時の温度であって、通常、溶融ポリカーボネート樹脂を押し出すダイス出口のポリカーボネート樹脂温度を測定した値である。 When an unstretched film is formed by a melt film-forming method, the forming temperature is preferably 280°C or lower, more preferably 270°C or lower, and particularly preferably 265°C or lower. If the molding temperature is too high, there is a possibility that defects due to the generation of foreign matter or air bubbles in the resulting film will increase, or that the film will be colored. However, if the molding temperature is too low, the melt viscosity of the polycarbonate resin will be too high, making it difficult to mold the original film and making it difficult to produce an unstretched film with a uniform thickness. is usually 200°C, preferably 210°C, more preferably 220°C. Here, the molding temperature of the unstretched film is the temperature at the time of molding in the melt film-forming method, and is usually the value obtained by measuring the temperature of the polycarbonate resin at the outlet of the die for extruding the molten polycarbonate resin.
 また、フィルム中に異物が存在すると、偏光板として用いられた場合に光抜け等の欠点として認識される。ポリカーボネート樹脂中の異物を除去するために、上記の押出機の後にポリマーフィルターを取り付け、ポリカーボネート樹脂を濾過した後に、ダイスから押し出してフィルムを成形する方法が好ましい。その際、押出機やポリマーフィルター、ダイスを配管でつなぎ、溶融ポリカーボネート樹脂を移送する必要があるが、配管内での熱劣化を極力抑制するため、滞留時間が最短になるように各設備を配置することが重要である。また、押出後のフィルムの搬送や巻き取りの工程はクリーンルーム内で行い、フィルムに異物が付着しないように最善の注意が求められる。 Also, if foreign matter is present in the film, it will be recognized as a defect such as light leakage when used as a polarizing plate. In order to remove foreign substances in the polycarbonate resin, it is preferable to attach a polymer filter to the end of the extruder, filter the polycarbonate resin, and then extrude it through a die to form a film. At that time, it is necessary to connect the extruder, polymer filter, and die with pipes to transfer the molten polycarbonate resin. It is important to. In addition, the transporting and winding processes of the extruded film are performed in a clean room, and the utmost care is required to prevent foreign substances from adhering to the film.
 未延伸フィルムの厚みは、延伸後の位相差フィルムの膜厚の設計や、延伸倍率等の延伸条件に合わせて決められるが、厚すぎると厚み斑が生じやすく、薄すぎると搬送時や延伸時の破断を招く可能性があるため、通常30μm以上、好ましくは40μm以上、さらに好ましくは50μm以上であり、また、通常200μm以下、好ましくは160μm以下、さらに好ましくは120μm以下である。また、未延伸フィルムに厚み斑があると、位相差フィルムの位相差斑を招くため、位相差フィルムとして使用する部分の厚みは設定厚み±3μm以下であることが好ましく、設定厚み±2μm以下であることがさらに好ましく、設定厚み±1μm以下であることが特に好ましい。 The thickness of the unstretched film is determined according to the design of the thickness of the retardation film after stretching and the stretching conditions such as the stretching ratio. Therefore, it is usually 30 μm or more, preferably 40 μm or more, more preferably 50 μm or more, and is usually 200 μm or less, preferably 160 μm or less, more preferably 120 μm or less. In addition, if the unstretched film has thickness unevenness, the retardation unevenness of the retardation film is caused, so the thickness of the part used as the retardation film is preferably a set thickness ± 3 μm or less, and a set thickness ± 2 μm or less. It is more preferable that there is a thickness, and it is particularly preferable that the thickness is ±1 μm or less.
 未延伸フィルムの長手方向の長さは500m以上であることが好ましく、さらに1000m以上が好ましく、特に1500m以上が好ましい。生産性や品質の観点から、位相差フィルムを製造する際は、連続で延伸を行うことが好ましいが、通常、延伸開始時に所定の位相差に合わせ込むために条件調整が必要であり、フィルムの長さが短すぎると条件調整後に取得できる製品の量が減ってしまう。尚、本明細書において「長尺」とは、フィルムの幅方向よりも長手方向の寸法が十分に大きいことを意味し、実質的には長手方向に巻回してコイル状にできる程度のものを意味する。より具体的には、フィルムの長手方向の寸法が幅方向の寸法よりも10倍以上大きいものを意味する。 The length of the unstretched film in the longitudinal direction is preferably 500 m or longer, more preferably 1000 m or longer, and particularly preferably 1500 m or longer. From the viewpoint of productivity and quality, it is preferable to stretch continuously when manufacturing a retardation film. If the length is too short, the amount of product that can be obtained after conditioning will decrease. In this specification, the term "long" means that the dimension in the longitudinal direction is sufficiently larger than the width direction of the film, and the film can be substantially wound in the longitudinal direction to form a coil. means. More specifically, it means that the dimension in the longitudinal direction of the film is at least ten times greater than the dimension in the width direction.
 上記のように得られた未延伸フィルムは、内部ヘイズが3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることが特に好ましい。未延伸フィルムの内部ヘイズが上記上限値よりも大きいと光の散乱が起こり、例えば偏光子と積層した際、偏光解消を生じる原因となる場合がある。内部ヘイズの下限値は特に定めないが、通常0.1%である。内部ヘイズの測定には、事前にヘイズ測定を行っておいた粘着剤付き透明フィルムを未延伸フィルムの両面に貼り合せ、外部ヘイズの影響を除去した状態のサンプルを用い、粘着剤付き透明フィルムのヘイズ値を上記サンプルの測定値から差し引いた値を内部ヘイズの値とする。 The unstretched film obtained as described above preferably has an internal haze of 3% or less, more preferably 2% or less, and particularly preferably 1% or less. If the internal haze of the unstretched film is greater than the above upper limit, light scattering may occur, which may cause depolarization, for example, when laminated with a polarizer. Although the lower limit of the internal haze is not specified, it is usually 0.1%. To measure the internal haze, a transparent film with adhesive, which had been measured in advance, was attached to both sides of the unstretched film, and the sample in which the influence of external haze was removed was used. The internal haze value is obtained by subtracting the haze value from the measured value of the above sample.
(位相差フィルムの製造方法)
 上記未延伸フィルムを延伸配向させることにより、位相差フィルムを得ることができる。延伸方法としては縦一軸延伸、テンター等を用いる横一軸延伸、あるいはそれらを組み合わせた同時二軸延伸、逐次二軸延伸等、公知の方法を用いることができる。延伸はバッチ式で行ってもよいが、連続で行うことが生産性において好ましい。さらにバッチ式に比べて、連続式の方がフィルム面内の位相差のばらつきの少ない位相差フィルムが得られる。
(Method for producing retardation film)
A retardation film can be obtained by stretching orienting the unstretched film. As a stretching method, known methods such as vertical uniaxial stretching, horizontal uniaxial stretching using a tenter or the like, simultaneous biaxial stretching combining them, and sequential biaxial stretching can be used. Stretching may be performed in batch mode, but continuous stretching is preferred in terms of productivity. Further, the continuous method can provide a retardation film with less variation in retardation in the film plane than the batch method.
 延伸温度は、原料として用いるポリカーボネート樹脂のガラス転移温度(Tg)に対して、(Tg-20℃)~(Tg+30℃)の範囲であり、好ましくは(Tg-10℃)~(Tg+20℃)、さらに好ましくは(Tg-5℃)~(Tg+15℃)の範囲内である。延伸倍率は目的とする位相差値により決められるが、縦、横それぞれ、1.2倍~4倍、より好ましくは1.5倍~3.5倍、さらに好ましくは2倍~3倍である。延伸倍率が小さすぎると、所望とする配向度と配向角が得られる有効範囲が狭くなる。一方、延伸倍率が大きすぎると、延伸中にフィルムが破断したり、しわが発生するおそれがある。 The stretching temperature is in the range of (Tg−20° C.) to (Tg+30° C.), preferably (Tg−10° C.) to (Tg+20° C.), with respect to the glass transition temperature (Tg) of the polycarbonate resin used as the raw material. More preferably, it is within the range of (Tg-5°C) to (Tg+15°C). The draw ratio is determined by the desired retardation value, and is 1.2 to 4 times, more preferably 1.5 to 3.5 times, and still more preferably 2 to 3 times in both the longitudinal and lateral directions. . If the draw ratio is too small, the effective range in which the desired degree of orientation and orientation angle can be obtained is narrowed. On the other hand, if the draw ratio is too large, the film may break or wrinkle during drawing.
 延伸速度も目的に応じて適宜選択されるが、下記数式で表される歪み速度で通常50~2000%/分、好ましくは100~1500%/分、より好ましくは200~1000%/分、特に好ましくは250~500%/分となるように選択することができる。延伸速度が過度に大きいと延伸時の破断を招いたり、高温条件下での長期使用による光学特性の変動が大きくなったりする可能性がある。また、延伸速度が過度に小さいと生産性が低下するだけでなく、所望の位相差を得るのに延伸倍率を過度に大きくしなければならない場合がある。
歪み速度(%/分)={延伸速度(mm/分)/原反フィルムの長さ(mm)}×100
The stretching rate is also appropriately selected depending on the purpose, but the strain rate represented by the following formula is usually 50 to 2000%/min, preferably 100 to 1500%/min, more preferably 200 to 1000%/min, especially Preferably, it can be selected to be 250-500%/min. An excessively high drawing speed may cause breakage during drawing, or increase the variation in optical properties due to long-term use under high-temperature conditions. On the other hand, if the drawing speed is too low, not only is the productivity lowered, but the draw ratio must be excessively increased to obtain the desired retardation.
Strain rate (%/min) = {stretching rate (mm/min)/raw film length (mm)} x 100
 フィルムを延伸した後、必要に応じて加熱炉により熱固定処理を行ってもよいし、テンターの幅を制御したり、ロール周速を調整したりして、緩和処理を行ってもよい。熱固定処理の温度としては、未延伸フィルムに用いられるポリカーボネート樹脂のガラス転移温度(Tg)に対し、60℃~(Tg)、好ましくは70℃~(Tg-5℃)の範囲で行う。熱処理温度が高すぎると、延伸により得られた分子の配向が乱れ、所望の位相差から大きく低下してしまう可能性がある。また、緩和工程を設ける場合は、延伸によって広がったフィルムの幅に対して、95%~99%に収縮させることで、延伸フィルムに生じた応力を取り除くことができる。この際にフィルムにかける処理温度は、熱固定処理温度と同様である。上記のような熱固定処理や緩和工程を行うことで、高温条件下での長期使用による光学特性の変動を抑制することができる。 After stretching the film, if necessary, heat setting treatment may be performed in a heating furnace, or relaxation treatment may be performed by controlling the width of the tenter or adjusting the peripheral speed of the rolls. The temperature of the heat setting treatment is in the range of 60° C. to (Tg), preferably 70° C. to (Tg−5° C.) relative to the glass transition temperature (Tg) of the polycarbonate resin used for the unstretched film. If the heat treatment temperature is too high, the orientation of the molecules obtained by stretching may be disturbed and the desired retardation may be greatly reduced. Further, when a relaxation step is provided, the stress generated in the stretched film can be removed by shrinking it to 95% to 99% of the width of the film expanded by stretching. The treatment temperature applied to the film at this time is the same as the heat setting treatment temperature. By performing the heat setting treatment and the relaxation process as described above, it is possible to suppress fluctuations in optical properties due to long-term use under high-temperature conditions.
 位相差フィルムは、このような延伸工程における処理条件を適宜選択・調整することによって作製することができる。位相差フィルムは、波長550nmにおける面内の複屈折(Δn)が0.001以上であると好ましく、0.0012以上がより好ましく、0.0015以上が特に好ましい。位相差は、フィルムの厚み(d)と複屈折(Δn)に比例するため、複屈折を上記特定の範囲にすることにより、薄い膜厚で所望の位相差を発現させることが可能となり、薄型の機器に適合するフィルムを容易に作製することができる。高い複屈折を発現させるためには、延伸温度を低くする、延伸倍率を高くする等して、ポリマー分子の配向度を上げなければならないが、そのような延伸条件ではフィルムが破断しやすくなるため、用いるポリカーボネート樹脂が靱性に優れているほど有利である。具体的には、フィルムの靭性が高いほど、例えばフィルム延伸工程時におけるクリップ部での破断を抑制することができる。また、靱性が高い場合には、フィルムの折り畳み、折り返し曲げ、巻き取りが可能になり、フォルダブル用途、ベンダブル用途、巻き取り用途への適用が可能になる。具体的には、フィルムがフレキシブルディスプレイの部材として好適になる。 A retardation film can be produced by appropriately selecting and adjusting the processing conditions in such a stretching process. The retardation film preferably has an in-plane birefringence (Δn) at a wavelength of 550 nm of 0.001 or more, more preferably 0.0012 or more, and particularly preferably 0.0015 or more. Since the retardation is proportional to the thickness (d) and birefringence (Δn) of the film, by setting the birefringence in the above specific range, it is possible to express the desired retardation with a thin film, and the thin film A film compatible with the equipment can be easily produced. In order to develop high birefringence, the degree of orientation of the polymer molecules must be increased by lowering the stretching temperature, increasing the stretching ratio, etc. However, under such stretching conditions, the film tends to break. , the more excellent the toughness of the polycarbonate resin to be used, the more advantageous. Specifically, the higher the toughness of the film, for example, the more it is possible to suppress breakage at the clip portion during the film stretching process. Moreover, when the toughness is high, the film can be folded, bent back, and wound up, and can be applied to foldable applications, bendable applications, and winding applications. Specifically, the film is suitable as a member of a flexible display.
 位相差フィルムは、位相差の設計値にもよるが、厚みが110μm以下であることが好ましい。また、位相差フィルムの厚みは105μm以下であることがより好ましく、100μm以下であることがさらに好ましく、95μm以下であることが特に好ましい。一方、厚みが過度に薄いと、フィルムの取り扱いが困難になり、製造中にしわが発生したり、破断が起こったりするため、位相差フィルムの厚みの下限としては、好ましくは10μm、より好ましくは15μmである。 The retardation film preferably has a thickness of 110 μm or less, although it depends on the design value of the retardation. Further, the thickness of the retardation film is more preferably 105 μm or less, still more preferably 100 μm or less, and particularly preferably 95 μm or less. On the other hand, if the thickness is excessively thin, the film becomes difficult to handle, wrinkles occur during production, or breakage occurs. Therefore, the lower limit of the thickness of the retardation film is preferably 10 μm, more preferably 15 μm. is.
 位相差フィルムは、波長550nmで測定した位相差(R550)に対する波長450nmで測定した位相差(R450)の比である波長分散(R450/R550)の値が、0.60以上1.00以下であることが好ましく、0.70以上0.95以下であることがより好ましく、0.80以上0.90以下であることが特に好ましい。上記波長分散の値がこの範囲であれば、可視領域の広い波長範囲において理想的な位相差特性を得ることができる。例えば1/4波長板としてこのような波長依存性を有する位相差フィルムを作製し、偏光板と貼り合わせることにより、円偏光板等を作製することができ、色相の波長依存性が少ない偏光板および表示装置の実現が可能である。一方、上記比率がこの範囲外の場合には、色相の波長依存性が大きくなり、可視領域のすべての波長において光学補償がなされなくなり、偏光板や表示装置に光が通り抜けることによる着色やコントラストの低下等の問題が生じる。 In the retardation film, the value of wavelength dispersion (R450/R550), which is the ratio of the retardation (R450) measured at a wavelength of 450 nm to the retardation (R550) measured at a wavelength of 550 nm, is 0.60 or more and 1.00 or less. It is preferably 0.70 or more and 0.95 or less, and particularly preferably 0.80 or more and 0.90 or less. If the value of the wavelength dispersion is within this range, it is possible to obtain an ideal retardation characteristic over a wide wavelength range in the visible region. For example, by producing a retardation film having such wavelength dependence as a quarter-wave plate and bonding it to a polarizing plate, a circularly polarizing plate or the like can be produced, and a polarizing plate with less wavelength dependence of hue. and a display device. On the other hand, if the above ratio is out of this range, the wavelength dependence of the hue increases, optical compensation is not performed at all wavelengths in the visible region, and coloration and contrast are affected by light passing through the polarizing plate and the display device. Problems, such as a fall, arise.
 上記位相差フィルムは、公知の偏光フィルムと積層貼合し、所望の寸法に切断することにより円偏光板となる。かかる円偏光板は、例えば、各種ディスプレイ(液晶表示装置、有機EL表示装置、プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用、色補償用、直線偏光の円偏光への変換用等に用いることができる。 The retardation film becomes a circularly polarizing plate by laminating it with a known polarizing film and cutting it into desired dimensions. Such a circularly polarizing plate is, for example, for viewing angle compensation of various displays (liquid crystal display device, organic EL display device, plasma display device, FED field emission display device, SED surface electric field display device), antireflection of external light, color It can be used for compensation, conversion of linearly polarized light into circularly polarized light, and the like.
 以下にポリカーボネート共重合体の実施例を示すが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は上記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
 なお、各物性や特性の測定方法や評価方法は以下の通りである。
Examples of polycarbonate copolymers are shown below, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Various production conditions and values of evaluation results in the following examples have the meaning as preferable upper or lower limit values in the embodiments of the present invention, and the preferable range is the above upper or lower limit value and the following It may be a range defined by the value of the example or a combination of the values of the examples.
In addition, the measurement method and evaluation method of each physical property and characteristic are as follows.
(A)ガラス転移温度
 樹脂のガラス転移温度は、エスアイアイ・ナノテクノロジー社製示差走査熱量計DSC6220を用いて測定した。約10mgの樹脂試料を同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で30℃から200℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
(A) Glass transition temperature The glass transition temperature of the resin was measured using a differential scanning calorimeter DSC6220 manufactured by SII Nanotechnology. About 10 mg of a resin sample was placed in an aluminum pan manufactured by the same company, sealed, and heated from 30° C. to 200° C. at a temperature elevation rate of 20° C./min under a nitrogen stream of 50 mL/min. After holding the temperature for 3 minutes, it was cooled to 30°C at a rate of 20°C/min. The temperature was maintained at 30° C. for 3 minutes, and the temperature was again raised to 200° C. at a rate of 20° C./min. From the DSC data obtained in the second temperature increase, a straight line extending the baseline on the low temperature side to the high temperature side and a tangent line drawn at the point where the slope of the curve of the stepwise change part of the glass transition becomes maximum. The extrapolated glass transition start temperature, which is the temperature at the intersection of , was determined and taken as the glass transition temperature.
(B)吸水率の測定
 ポリカーボネート樹脂のペレットを、200Pa以下の減圧下、100℃の温度で12時間以上乾燥した。次に、乾燥したペレット約4gを小型熱プレス機(アズワン株式会社、AH-2003C AH-1TC)を使用し、縦14cm、横14cm、厚さ0.1mmのスペーサーを用い、試料の上下にポリイミドフィルムを敷いて、温度200~230℃で3分間予熱し、圧力7MPaで5分間加圧後、スペーサーごと取り出し、冷却してフィルムを作製した。
(B) Measurement of water absorption Polycarbonate resin pellets were dried at a temperature of 100° C. for 12 hours or more under a reduced pressure of 200 Pa or less. Next, about 4 g of the dried pellets are placed on the top and bottom of the sample using a small heat press (AH-2003C AH-1TC, AS ONE Co., Ltd.), using spacers of 14 cm in length, 14 cm in width, and 0.1 mm in thickness. A film was laid, preheated at a temperature of 200 to 230° C. for 3 minutes, pressurized at a pressure of 7 MPa for 5 minutes, taken out together with the spacer, and cooled to prepare a film.
 得られたフィルムを縦100mm、横100mmの正方形に切り出して試料を作製した。この試料を200Pa以下の減圧下、ガラス転移温度-10℃の温度で24時間以上乾燥した。乾燥後の試料の質量を0.1mgまで量り、この値を乾燥質量とした。次に、乾燥後の試料を23℃に調温された脱塩水に72時間以上浸漬した。浸漬後の試料を水から取り出し、表面の水分を清浄で乾いた布又はフィルター紙で全て拭き取った後、試料を0.1mgまで量り、この値を吸水質量とした。吸水質量は水から取り出して1分以内に測定した。吸水率は式1を用いて求めた。
(吸水質量-乾燥質量)/乾燥質量×100=吸水率(%)・・・・・・・・式1
The obtained film was cut into a square of 100 mm long and 100 mm wide to prepare a sample. This sample was dried at a glass transition temperature of −10° C. for 24 hours or more under a reduced pressure of 200 Pa or less. The mass of the sample after drying was weighed to 0.1 mg, and this value was defined as the dry mass. Next, the dried sample was immersed in desalted water adjusted to 23° C. for 72 hours or more. After immersion, the sample was taken out of the water, and the water on the surface was wiped off with a clean and dry cloth or filter paper. The water absorption mass was measured within 1 minute after being removed from the water. Water absorption was determined using Equation 1.
(Water absorption mass - dry mass)/dry mass x 100 = water absorption rate (%) Equation 1
(C)樹脂の還元粘度
 上記樹脂を塩化メチレンに溶解させ、0.6g/dLの濃度の樹脂溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t及び溶液の通過時間tを測定した。得られたt及びtの値を用いて次式(I)により相対粘度ηrelを求め、更に、得られた相対粘度ηrelを用いて次式(ii)により比粘度ηspを求めた。
  ηrel=t/t  ・・・(I)
  ηsp=(η-η)/η=ηrel-1  ・・・(ii)
 その後、得られた比粘度ηspを濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
(C) Reduced Viscosity of Resin The above resin was dissolved in methylene chloride to prepare a resin solution having a concentration of 0.6 g/dL. Measurement was performed at a temperature of 20.0° C.±0.1° C. using an Ubbelohde viscosity tube manufactured by Moritomo Rika Kogyo Co., Ltd., and the passage time t0 of the solvent and the passage time t of the solution were measured. Using the obtained values of t0 and t, the relative viscosity η rel was determined by the following equation (I), and the relative viscosity η rel thus obtained was used to determine the specific viscosity η sp by the following equation (ii). .
η rel =t/t 0 (I)
η sp =(η−η 0 )/η 0rel −1 (ii)
Thereafter, the obtained specific viscosity η sp was divided by the concentration c (g/dL) to obtain the reduced viscosity η sp /c. The higher this value, the larger the molecular weight.
 <未延伸フィルムの評価>
(D)未延伸フィルムの成形
 ポリカーボネート樹脂のペレットを、200Pa以下の減圧下、100℃の温度で12時間以上乾燥した。次に、乾燥したペレット約4gを小型熱プレス機(アズワン株式会社、AH-2003C AH-1TC)を使用し、縦14cm、横14cm、厚さ0.1mmのスペーサーを用い、試料の上下にポリイミドフィルムを敷いて、温度200~230℃で3分間予熱し、圧力7MPaで5分間加圧後、スペーサーごと取り出し、冷却して未延伸フィルムを作製した。
<Evaluation of unstretched film>
(D) Molding of Unstretched Film Polycarbonate resin pellets were dried at a temperature of 100° C. for 12 hours or more under a reduced pressure of 200 Pa or less. Next, about 4 g of the dried pellets are placed on the top and bottom of the sample using a small heat press (AH-2003C AH-1TC, AS ONE Co., Ltd.), using spacers of 14 cm in length, 14 cm in width, and 0.1 mm in thickness. A film was laid, preheated at a temperature of 200 to 230° C. for 3 minutes, pressurized at a pressure of 7 MPa for 5 minutes, taken out together with the spacer, and cooled to prepare an unstretched film.
(E)光弾性係数の測定
 He-Neレーザー、偏光子、補償板、検光子、光検出器からなる複屈折測定装置と振動型粘弾性測定装置(レオロジー社製DVE-3)を組み合わせた装置を用いて測定した。(詳細は、日本レオロジー学会誌Vol.19,p93-97(1991)を参照。)
 上記の未延伸フィルムから長さ20mm、幅5mmの試験片を切り出し、粘弾性測定装置に固定し、25℃の室温で貯蔵弾性率E’を周波数96Hzにて測定した。同時に、出射されたレーザー光を偏光子、試料、補償板、検光子の順に通し、光検出器(フォトダイオード)で拾い、ロックインアンプを通して角周波数ω又は2ωの波形について、その振幅とひずみに対する位相差を求め、ひずみ光学係数O’を求めた。このとき、偏光子と検光子の方向は直交し、またそれぞれ、試料の伸長方向に対してπ/4の角度をなすように調整した。光弾性係数Cは、貯蔵弾性率E’とひずみ光学係数O’を用いて次式より求めた。
 C=O’/E’
 以下の実施例および比較例において、光弾性係数が19×10-12Pa-1以下であるものを、使用環境の変化によるフィルムの伸び縮みによる光学特性の変化が小さく優れたものであると評価した。
(E) Measurement of photoelastic coefficient A device combining a birefringence measuring device consisting of a He—Ne laser, a polarizer, a compensator, an analyzer, and a photodetector and a vibration type viscoelasticity measuring device (DVE-3 manufactured by Rheology). was measured using (For details, see Journal of the Japanese Society of Rheology, Vol. 19, p93-97 (1991).)
A test piece having a length of 20 mm and a width of 5 mm was cut out from the above unstretched film, fixed to a viscoelasticity measuring device, and the storage elastic modulus E′ was measured at a room temperature of 25° C. and a frequency of 96 Hz. At the same time, the emitted laser light is passed through a polarizer, a sample, a compensator, and an analyzer in this order, picked up by a photodetector (photodiode), and passed through a lock-in amplifier to obtain a waveform with an angular frequency of ω or 2ω. A phase difference was determined, and a distortion optical coefficient O' was determined. At this time, the directions of the polarizer and the analyzer were orthogonal to each other, and adjusted to form an angle of π/4 with respect to the stretching direction of the sample. The photoelastic coefficient C was obtained from the following equation using the storage elastic modulus E' and the strain optical coefficient O'.
C=O'/E'
In the following examples and comparative examples, those with a photoelastic coefficient of 19 × 10 -12 Pa -1 or less were evaluated as having small changes in optical properties due to expansion and contraction of the film due to changes in the usage environment. bottom.
(F)フィルムの靱性(折り曲げ試験)
 前述の方法により、厚み100~200μmの未延伸フィルムを作製し、このフィルムから長さ40mm、幅10mmの長方形の試験片を作製した。万力の左右の接合面の間隔を40mmに開き、試験片の両端を接合面内に固定した。次に左右の接合面の間隔を2mm/秒以下の速度で狭めていき、フィルムが万力の接合面の外にはみ出さないようにしながら、略U字状に折れ曲がったフィルム全体を該接合面内で圧縮していった。接合面間が完全に密着する迄に試験片が折れ曲がり部で2片(又は3片以上の破片)に割れた場合を「割れあり」、接合面間が完全に密着してもなお試験片が割れずに折り曲げられた場合「割れなし」とした。同一の種類のフィルムについて5回繰り返して試験を実施し、そのうち3回以上「割れあり」となったものを「×:脆性破壊する」、2回以下「割れあり」となったものを「○:脆性破壊しない」とし、脆性破壊しないものを、靭性に優れるものと評価した。
(F) Film toughness (bending test)
An unstretched film having a thickness of 100 to 200 μm was produced by the method described above, and a rectangular test piece having a length of 40 mm and a width of 10 mm was produced from this film. The distance between the joint surfaces on the left and right sides of the vise was set to 40 mm, and both ends of the test piece were fixed within the joint surfaces. Next, the gap between the left and right joint surfaces is narrowed at a speed of 2 mm/second or less, and the entire film bent in a substantially U-shape is moved to the joint surface while preventing the film from protruding outside the joint surface of the vise. It was compressed inside. If the test piece breaks into 2 pieces (or 3 pieces or more) at the bent portion until the joint surfaces are in complete contact, "cracked" is indicated, and the test piece is still in contact with the joint surfaces. When it was bent without cracking, it was evaluated as "no cracking". The test was repeated 5 times for the same type of film, and if it was "cracked" three or more times, it was "x: brittle fracture", and if it was "cracked" twice or less, it was "○. : no brittle fracture", and those that did not brittle fracture were evaluated as having excellent toughness.
(G)耐湿熱性試験(プレッシャークッカー(PCT)試験)
前述の未延伸フィルムを、株式会社トミー精工製のラボ用オートクレーブ(LSXー300)を使用して、110℃、0.15Mpa、100%RH、24時間の条件で蒸気処理を行い、試験前後でのフィルムの形状の変化や白化の有無を確認した。
<評価>
〇:不透明な部分が全く無い、あるいは一部のみ不透明
×:全体が不透明
(G) moist heat resistance test (pressure cooker (PCT) test)
The above-mentioned unstretched film is steamed under the conditions of 110 ° C., 0.15 Mpa, 100% RH, 24 hours using a laboratory autoclave (LSX-300) manufactured by Tomy Seiko Co., Ltd. Before and after the test. The change in the shape of the film and the presence or absence of whitening were confirmed.
<Evaluation>
〇: No opaque part at all, or only partly opaque ×: Entirely opaque
<位相差フィルムの評価>
(H)フィルムの延伸
 未延伸フィルムから幅50mm、長さ125mmのフィルム片を切り出し、バッチ式二軸延伸装置(アイランド工業社製二軸延伸装置BIX-277-AL)を用いて、樹脂のガラス転移温度+15℃の延伸温度、300%/分の延伸速度及び1.5倍の延伸倍率で上記フィルム片の自由端一軸延伸を行い、延伸フィルムを得た。
<Evaluation of Retardation Film>
(H) Stretching of film A film piece having a width of 50 mm and a length of 125 mm is cut out from the unstretched film, and a batch type biaxial stretching device (Biaxial stretching device BIX-277-AL manufactured by Island Industry Co., Ltd.) is used to stretch the resin glass. The above film piece was uniaxially stretched at the free end at a stretching temperature of transition temperature +15°C, a stretching speed of 300%/min and a stretching ratio of 1.5 times to obtain a stretched film.
(I)延伸フィルムの位相差、波長分散、複屈折
 上記の方法で得られた延伸フィルムの中央部を幅4cm、長さ4cmに切り出し、王子計測機器(株)製位相差測定装置KOBRA-WPRを用いて、測定波長450、500、550、590、630nmで位相差を測定し、波長分散性を測定した。波長分散性は450nmと550nmで測定した位相差R450とR550の比(R450/R550)で示した。R450/R550が1より大きいと波長分散は正であり、1未満では逆波長分散となる。1/4波長板として用いる場合、R450/R550の理想値は0.818である(450/550=0.818)。
(I) Retardation, wavelength dispersion, and birefringence of the stretched film Cut out the central portion of the stretched film obtained by the above method to have a width of 4 cm and a length of 4 cm, and use a retardation measuring device KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd. was used to measure the retardation at measurement wavelengths of 450, 500, 550, 590 and 630 nm, and the wavelength dispersion was measured. The wavelength dispersion was indicated by the ratio (R450/R550) of the phase differences R450 and R550 measured at 450 nm and 550 nm. When R450/R550 is greater than 1, the chromatic dispersion is positive, and when it is less than 1, the chromatic dispersion is reversed. When used as a quarter-wave plate, the ideal value of R450/R550 is 0.818 (450/550=0.818).
 また、550nmの位相差R550と延伸フィルムの厚みを用い、次式より複屈折Δnを求めることができる。複屈折=R550[nm]/(フィルム厚み[mm]×10)複屈折の値が大きいほど、ポリマーの配向度が高いことを示す。また、複屈折の値が大きいほど、所望の位相差値を得るためのフィルムの厚みを薄くすることができる。 Also, using the retardation R550 of 550 nm and the thickness of the stretched film, the birefringence Δn can be obtained from the following equation. Birefringence=R550 [nm]/(film thickness [mm]×10 6 ) A larger value of birefringence indicates a higher degree of orientation of the polymer. Also, the larger the birefringence value, the thinner the film thickness for obtaining the desired retardation value.
[使用原料]
 以下の実施例と製造例で用いた化合物の略号、および製造元は次のとおりである。
[raw materials used]
The abbreviations of the compounds used in the following Examples and Production Examples and the manufacturers are as follows.
[モノマー]
・SPG:スピログリコール(三菱ガス化学社製)
・ISB:イソソルビド(ロケットフルーレ社製)
・PEG-1000:ポリエチレングリコール(三洋化成社製)
・BP-TMC:1,1-ビス(4-ヒドロシキフェニル)-3,3,5-トリメチルシクロヘキサン(本州化学社製)
・BisP-CDE:4,4’ー(シクロドデカンー1,1ージイル)ジフェノール(本州化学社製)
・BCF:9,9-ビス(4-ヒドロキシ-2-メチルフェニル)フルオレン(本州化学社製)
・BisP-AP:4,4’ー(α―メチルベンジリデン)ビスフェノール(本州化学社製)
・BHEPF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(本州化学社製)
[monomer]
・SPG: Spiroglycol (manufactured by Mitsubishi Gas Chemical Company, Inc.)
・ISB: Isosorbide (manufactured by Rocket Fleuret)
・ PEG-1000: polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd.)
・ BP-TMC: 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (manufactured by Honshu Chemical Co., Ltd.)
・BisP-CDE: 4,4′-(cyclododecane-1,1-diyl)diphenol (manufactured by Honshu Chemical Co., Ltd.)
・ BCF: 9,9-bis (4-hydroxy-2-methylphenyl) fluorene (manufactured by Honshu Chemical Co., Ltd.)
・ BisP-AP: 4,4'-(α-methylbenzylidene) bisphenol (manufactured by Honshu Chemical Co., Ltd.)
・ BHEPF: 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (manufactured by Honshu Chemical Co., Ltd.)
・SBI:6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン
 特開2014-114281号公報の段落番号[0264]に記載の方法に従い合成した。
· SBI: 6,6'-dihydroxy-3,3,3',3'-tetramethyl-1,1'-spirobiindane Synthesized according to the method described in paragraph number [0264] of JP-A-2014-114281.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
・BPFM:ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン
 特開2015-25111号公報の段落番号[0596]に記載の方法で合成した。
BPFM: Bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane Synthesized by the method described in paragraph number [0596] of JP-A-2015-25111.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
・DPC:ジフェニルカーボネート(三菱ケミカル社製) ・DPC: diphenyl carbonate (manufactured by Mitsubishi Chemical Corporation)
 [実施例1]
 各構造単位の含有量が表1に示す値となるように各原料を仕込んだ。具体的には、まず、BP-TMC 30.20質量部(0.097mol)、SPG 37.77質量部(0.124mol)、BPFM 39.47質量部(0.062mol)、DPC 35.41質量部(0.165mol)、及び触媒として酢酸カルシウム1水和物1.17×10-2質量部(6.64×10-5mol)を反応容器に投入し、反応装置内を減圧窒素置換した。窒素雰囲気下、150℃で約10分間、攪拌しながら原料を溶解させた。反応1段目の工程として220℃まで30分かけて昇温し、60分間常圧にて反応した。次いで圧力を常圧から13.3kPaまで90分かけて減圧し、13.3kPaで30分間保持し、発生するフェノールを反応系外へ抜き出した。次いで反応2段目の工程として熱媒温度を15分かけて260℃まで昇温しながら、圧力を0.10kPa以下まで15分かけて減圧し、発生するフェノールを反応系外へ抜き出した。所定の撹拌トルクに到達後、窒素で常圧まで復圧して反応を停止し、生成したポリエステルカーボネートを水中に押し出し、ストランドをカッティングしてペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。なお、表1は、原料の仕込みをmol%の単位で示し、表2は、原料の仕込みを質量%で示すものである。
[Example 1]
Each raw material was prepared so that the content of each structural unit was the value shown in Table 1. Specifically, first, BP-TMC 30.20 parts by mass (0.097 mol), SPG 37.77 parts by mass (0.124 mol), BPFM 39.47 parts by mass (0.062 mol), DPC 35.41 parts by mass (0.165 mol), and 1.17×10 −2 parts by mass (6.64×10 −5 mol) of calcium acetate monohydrate as a catalyst were put into a reaction vessel, and the inside of the reactor was replaced with nitrogen under reduced pressure. . The raw materials were dissolved under a nitrogen atmosphere with stirring at 150° C. for about 10 minutes. As the first step of the reaction, the temperature was raised to 220° C. over 30 minutes, and the reaction was carried out at normal pressure for 60 minutes. Then, the pressure was reduced from normal pressure to 13.3 kPa over 90 minutes and maintained at 13.3 kPa for 30 minutes, and the generated phenol was discharged out of the reaction system. Next, as the second step of the reaction, the temperature of the heating medium was raised to 260° C. over 15 minutes while the pressure was reduced to 0.10 kPa or less over 15 minutes, and the generated phenol was discharged out of the reaction system. After reaching a predetermined stirring torque, the pressure was restored to normal pressure with nitrogen to stop the reaction, the polyester carbonate produced was extruded into water, and the strand was cut to obtain pellets. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3. Table 1 shows the charge of raw materials in units of mol %, and Table 2 shows the charge of raw materials in mass %.
[実施例2]
 BP-TMC 30.20質量部(0.097mol)、SPG 39.50質量部(0.130mol)、BPFM 36.65質量部(0.057mol)、DPC 37.60質量部(0.176mol)、及び触媒として酢酸カルシウム1水和物1.20×10-2質量部(6.81×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 2]
BP-TMC 30.20 parts by mass (0.097 mol), SPG 39.50 parts by mass (0.130 mol), BPFM 36.65 parts by mass (0.057 mol), DPC 37.60 parts by mass (0.176 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.20×10 −2 parts by mass (6.81×10 −5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例3]
 BP-TMC 30.20質量部(0.097mol)、SPG 41.23質量部(0.135mol)、BPFM 33.83質量部(0.053mol)、DPC 39.79質量部(0.186mol)、及び触媒として酢酸カルシウム1水和物1.23×10-2質量部(6.98×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。評価結果を表1~表3に示す。
[Example 3]
BP-TMC 30.20 parts by mass (0.097 mol), SPG 41.23 parts by mass (0.135 mol), BPFM 33.83 parts by mass (0.053 mol), DPC 39.79 parts by mass (0.186 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.23×10 −2 parts by mass (6.98×10 −5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. Evaluation results are shown in Tables 1 to 3.
[実施例4]
 BP-TMC 30.20質量部(0.097mol)、SPG 42.96質量部(0.141mol)、BPFM 31.01質量部(0.048mol)、DPC 41.98質量部(0.196mol)、及び触媒として酢酸カルシウム1水和物1.26×10-2質量部(7.15×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 4]
BP-TMC 30.20 parts by mass (0.097 mol), SPG 42.96 parts by mass (0.141 mol), BPFM 31.01 parts by mass (0.048 mol), DPC 41.98 parts by mass (0.196 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.26×10 −2 parts by mass (7.15×10 −5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例5]
 BP-TMC 30.20質量部(0.097mol)、SPG 44.69質量部(0.147mol)、BPFM 28.19質量部(0.044mol)、DPC 44.17質量部(0.206mol)、及び触媒として酢酸カルシウム1水和物1.29×10-2質量部(7.32×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 5]
BP-TMC 30.20 parts by mass (0.097 mol), SPG 44.69 parts by mass (0.147 mol), BPFM 28.19 parts by mass (0.044 mol), DPC 44.17 parts by mass (0.206 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.29×10 −2 parts by mass (7.32×10 −5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例6]
 BisP-AP 30.21質量部(0.104mol)、SPG 40.19質量部(0.132mol)、BPFM 35.24質量部(0.055mol)、DPC 40.06質量部(0.187mol)、及び触媒として酢酸カルシウム1水和物1.25×10-2質量部(7.08×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 6]
BisP-AP 30.21 parts by mass (0.104 mol), SPG 40.19 parts by mass (0.132 mol), BPFM 35.24 parts by mass (0.055 mol), DPC 40.06 parts by mass (0.187 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.25×10 −2 parts by mass (7.08×10 −5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例7]
 BisP-CDE 30.17質量部(0.086mol)、SPG 43.26質量部(0.142mol)、BPFM 31.01質量部(0.048mol)、DPC 39.64質量部(0.185mol)、及び触媒として酢酸カルシウム1水和物1.20×10-2質量部(6.83×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 7]
BisP-CDE 30.17 parts by mass (0.086 mol), SPG 43.26 parts by mass (0.142 mol), BPFM 31.01 parts by mass (0.048 mol), DPC 39.64 parts by mass (0.185 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.20×10 −2 parts by mass (6.83×10 −5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例8]
 BisP-CDE 30.17質量部(0.086mol)、SPG 40.67質量部(0.134mol)、BPFM 35.24質量部(0.055mol)、DPC 36.35質量部(0.170mol)、及び触媒として酢酸カルシウム1水和物1.16×10-2質量部(6.58×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 8]
BisP-CDE 30.17 parts by mass (0.086 mol), SPG 40.67 parts by mass (0.134 mol), BPFM 35.24 parts by mass (0.055 mol), DPC 36.35 parts by mass (0.170 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.16×10 −2 parts by mass (6.58×10 −5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例9]
 BP-TMC 20.13質量部(0.065mol)、SPG 52.15質量部(0.171mol)、BPFM 20.13質量部(0.051mol)、DPC 41.02質量部(0.191mol)、及び触媒として酢酸カルシウム1水和物 1.25×10-2質量部(7.09×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 9]
BP-TMC 20.13 parts by mass (0.065 mol), SPG 52.15 parts by mass (0.171 mol), BPFM 20.13 parts by mass (0.051 mol), DPC 41.02 parts by mass (0.191 mol), Polyester carbonate pellets were obtained in the same manner as in Example 1, except that 1.25×10 −2 parts by mass (7.09×10 −5 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例10]
 BP-TMC 20.13質量部(0.065mol)、SPG 41.14質量部(0.135mol)、ISB 10.14質量部(0.069mol)、BPFM 32.42質量部(0.051mol)、DPC 48.31質量部(0.226mol)、及び触媒として酢酸カルシウム1水和物1.42×10-2質量部(8.08×10-5mol)用い、反応2段目の工程として熱媒温度を15分かけて245℃まで昇温した以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 10]
BP-TMC 20.13 parts by mass (0.065 mol), SPG 41.14 parts by mass (0.135 mol), ISB 10.14 parts by mass (0.069 mol), BPFM 32.42 parts by mass (0.051 mol), Using 48.31 parts by mass (0.226 mol) of DPC and 1.42×10 −2 parts by mass (8.08×10 −5 mol) of calcium acetate monohydrate as a catalyst, heat was used as the second step of the reaction. Polyester carbonate pellets were obtained in the same manner as in Example 1, except that the medium temperature was raised to 245° C. over 15 minutes. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例11]
 BP-TMC 10.06質量部(0.032mol)、SPG 35.12質量部(0.115mol)、ISB 25.35質量部(0.173mol)、BPFM 31.72質量部(0.049mol)、DPC 58.91質量部(0.275mol)、及び触媒として酢酸カルシウム1水和物1.70×10-2質量部(9.64×10-5mol)用い、反応2段目の工程として熱媒温度を15分かけて250℃まで昇温した以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 11]
BP-TMC 10.06 parts by mass (0.032 mol), SPG 35.12 parts by mass (0.115 mol), ISB 25.35 parts by mass (0.173 mol), BPFM 31.72 parts by mass (0.049 mol), Using 58.91 parts by mass (0.275 mol) of DPC and 1.70×10 −2 parts by mass (9.64×10 −5 mol) of calcium acetate monohydrate as a catalyst, a heating medium was used in the second step of the reaction. Polyester carbonate pellets were obtained in the same manner as in Example 1, except that the temperature was raised to 250° C. over 15 minutes. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例12]
 BP-TMC 15.10質量部(0.049mol)、SPG 52.97質量部(0.174mol)、ISB 5.07質量部(0.035mol)、BPFM 30.31質量部(0.047mol)、DPC 46.37質量部(0.216mol)、及び触媒として酢酸カルシウム1水和物1.36×10-2質量部(7.72×10-5mol)用い、反応2段目の工程として熱媒温度を15分かけて250℃まで昇温した以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 12]
BP-TMC 15.10 parts by mass (0.049 mol), SPG 52.97 parts by mass (0.174 mol), ISB 5.07 parts by mass (0.035 mol), BPFM 30.31 parts by mass (0.047 mol), Using 46.37 parts by mass (0.216 mol) of DPC and 1.36×10 −2 parts by mass (7.72×10 −5 mol) of calcium acetate monohydrate as a catalyst, a heat medium was used in the second step of the reaction. Polyester carbonate pellets were obtained in the same manner as in Example 1, except that the temperature was raised to 250° C. over 15 minutes. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例13]
 BisP-CDE 20.11質量部(0.057mol)、SPG 41.35質量部(0.136mol)、ISB 10.14質量部(0.069mol)、BPFM 32.42質量部(0.051mol)、DPC 46.75質量部(0.218mol)、及び触媒として酢酸カルシウム1水和物1.39×10-2質量部(7.87×10-5mol)用い、反応2段目の工程として熱媒温度を15分かけて250℃まで昇温した以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 13]
BisP-CDE 20.11 parts by mass (0.057 mol), SPG 41.35 parts by mass (0.136 mol), ISB 10.14 parts by mass (0.069 mol), BPFM 32.42 parts by mass (0.051 mol), Using 46.75 parts by mass (0.218 mol) of DPC and 1.39×10 −2 parts by mass (7.87×10 −5 mol) of calcium acetate monohydrate as a catalyst, a heating medium was used in the second step of the reaction. Polyester carbonate pellets were obtained in the same manner as in Example 1, except that the temperature was raised to 250° C. over 15 minutes. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[実施例14]
 BisP-CDE 10.06質量部(0.029mol)、SPG 36.52質量部(0.120mol)、ISB 25.35質量部(0.173mol)、BPFM 29.60質量部(0.046mol)、DPC 59.76質量部(0.279mol)、及び触媒として酢酸カルシウム1水和物1.70×10-2質量部(9.66×10-5mol)用い、反応2段目の工程として熱媒温度を15分かけて250℃まで昇温した以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表3に示す。
[Example 14]
BisP-CDE 10.06 parts by mass (0.029 mol), SPG 36.52 parts by mass (0.120 mol), ISB 25.35 parts by mass (0.173 mol), BPFM 29.60 parts by mass (0.046 mol), Using 59.76 parts by mass (0.279 mol) of DPC and 1.70×10 −2 parts by mass (9.66×10 −5 mol) of calcium acetate monohydrate as a catalyst, a heating medium was used in the second step of the reaction. Polyester carbonate pellets were obtained in the same manner as in Example 1, except that the temperature was raised to 250° C. over 15 minutes. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. The results are shown in Tables 1-3.
[比較例1]
 SBI 25.16質量部(0.082mol)、SPG 56.62質量部(0.186mol)、BPFM 16.92質量部(0.026mol)、DPC 52.82質量部(0.247mol)、及び触媒として酢酸カルシウム1水和物1.41×10-2質量部(8.03×10-5mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表2、表4に示す。
[Comparative Example 1]
SBI 25.16 parts by mass (0.082 mol), SPG 56.62 parts by mass (0.186 mol), BPFM 16.92 parts by mass (0.026 mol), DPC 52.82 parts by mass (0.247 mol), and a catalyst Pellets of polyester carbonate were obtained in the same manner as in Example 1, except that 1.41×10 −2 parts by mass (8.03×10 −5 mol) of calcium acetate monohydrate was used as. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. Tables 1 to 2 and 4 show the results.
[比較例2]
 SBI 20.13質量部(0.065mol)、SPG 48.91質量部(0.161mol)、ISB 10.14質量部(0.069mol)、BPFM 19.74質量部(0.031mol)、DPC 58.25質量部(0.272mol)、及び触媒として酢酸カルシウム1水和物1.56×10-2質量部(8.86×10-5mol)を用い、反応2段目の工程として熱媒温度を15分かけて250℃まで昇温した以外は実施例1と同様の方法でポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表2、表4に示す。
[Comparative Example 2]
SBI 20.13 parts by mass (0.065 mol), SPG 48.91 parts by mass (0.161 mol), ISB 10.14 parts by mass (0.069 mol), BPFM 19.74 parts by mass (0.031 mol), DPC 58 .25 parts by mass (0.272 mol) and 1.56×10 −2 parts by mass (8.86×10 −5 mol) of calcium acetate monohydrate as a catalyst, and a heat medium Polycarbonate pellets were obtained in the same manner as in Example 1, except that the temperature was raised to 250° C. over 15 minutes. Using the obtained polycarbonate pellets, the various evaluations described above were carried out. Tables 1 to 2 and 4 show the results.
[比較例3]
 SPG 30.20質量部(0.099mol)、ISB 39.94質量部(0.273mol)、BPFM 30.31質量部(0.047mol)、DPC 69.67質量部(0.325mol)、及び触媒として酢酸カルシウム1水和物9.84×10-4質量部(5.59×10-6mol)を用いた以外は実施例10と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表2、表4に示す。
[Comparative Example 3]
SPG 30.20 parts by mass (0.099 mol), ISB 39.94 parts by mass (0.273 mol), BPFM 30.31 parts by mass (0.047 mol), DPC 69.67 parts by mass (0.325 mol), and a catalyst Pellets of polyester carbonate were obtained in the same manner as in Example 10, except that 9.84×10 −4 parts by mass (5.59×10 −6 mol) of calcium acetate monohydrate was used. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. Tables 1 to 2 and 4 show the results.
[比較例4]
 ISB 26.72質量部(0.183mol)、PEG1000♯ 0.99質量部(0.001mol)、BHEPF 63.74質量部(0.145mol)、DPC 70.24質量部(0.328mol)、及び触媒として酢酸カルシウム1水和物8.69×10-4質量部(4.93×10-6mol)を用いた以外は比較例3と同様の方法で、ポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表2、表4に示す。
[Comparative Example 4]
ISB 26.72 parts by mass (0.183 mol), PEG1000 # 0.99 parts by mass (0.001 mol), BHEPF 63.74 parts by mass (0.145 mol), DPC 70.24 parts by mass (0.328 mol), and Polycarbonate pellets were obtained in the same manner as in Comparative Example 3, except that 8.69×10 −4 parts by mass (4.93×10 −6 mol) of calcium acetate monohydrate was used as a catalyst. Using the obtained polycarbonate pellets, the various evaluations described above were carried out. Tables 1 to 2 and 4 show the results.
[比較例5]
 BP-TMC 10.07質量部(0.032mol)、ISB 54.13質量部(0.370mol)、BPFM 38.06質量部(0.059mol)、DPC 74.43質量部(0.347mol)、及び触媒として酢酸カルシウム1水和物1.06×10-3質量部(6.04×10-6mol)を用い、反応2段目の工程として熱媒温度を15分かけて250℃まで昇温した以外は実施例1と同様の方法でポリカーボネートのペレットを得た。得られたポリカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表2、表4に示す。
[Comparative Example 5]
BP-TMC 10.07 parts by mass (0.032 mol), ISB 54.13 parts by mass (0.370 mol), BPFM 38.06 parts by mass (0.059 mol), DPC 74.43 parts by mass (0.347 mol), And 1.06×10 −3 parts by mass (6.04×10 −6 mol) of calcium acetate monohydrate as a catalyst, and the temperature of the heating medium was raised to 250° C. over 15 minutes in the second step of the reaction. Polycarbonate pellets were obtained in the same manner as in Example 1 except that the mixture was heated. Using the obtained polycarbonate pellets, the various evaluations described above were carried out. Tables 1 to 2 and 4 show the results.
[比較例6]
 BP-TMC 24.16質量部(0.078mol)、ISB 28.45質量部(0.195mol)、BPFM 30.45質量部(0.048mol)、DPC 49.70質量部(0.232mol)、及び触媒として酢酸カルシウム1水和物1.44×10-3質量部(8.18×10-6mol)を用い、反応2段目の工程として熱媒温度を15分かけて250℃まで昇温した以外は実施例1と同様の方法でポリカーボネートのペレットを得た。本比較例で得られたポリカーボネートは脆く、フィルム成形品を作成することが出来なかったためフィルム成形品を用いた評価を行うことができなかった。
[Comparative Example 6]
BP-TMC 24.16 parts by mass (0.078 mol), ISB 28.45 parts by mass (0.195 mol), BPFM 30.45 parts by mass (0.048 mol), DPC 49.70 parts by mass (0.232 mol), And 1.44×10 −3 parts by mass (8.18×10 −6 mol) of calcium acetate monohydrate as a catalyst, and the temperature of the heating medium was raised to 250° C. over 15 minutes in the second step of the reaction. Polycarbonate pellets were obtained in the same manner as in Example 1 except that the mixture was heated. The polycarbonate obtained in this comparative example was brittle, and it was not possible to produce a film molded article, so evaluation using a film molded article could not be performed.
[比較例7]
 BCF 38.18質量部(0.101mol)、SPG 54.56質量部(0.179mol)、DPC 62.40質量部(0.291mol)、及び触媒として酢酸カルシウム1水和物2.47×10-2質量部(1.40×10-4mol)を用いた以外は実施例1と同様の方法で、ポリエステルカーボネートのペレットを得た。得られたポリエステルカーボネートのペレットを用いて、前述の各種評価を行った。結果を表1~表2、表4に示す。
[Comparative Example 7]
BCF 38.18 parts by mass (0.101 mol), SPG 54.56 parts by mass (0.179 mol), DPC 62.40 parts by mass (0.291 mol), and calcium acetate monohydrate 2.47 × 10 as a catalyst Pellets of polyester carbonate were obtained in the same manner as in Example 1 except that -2 parts by mass (1.40×10 −4 mol) were used. Using the obtained polyester carbonate pellets, the various evaluations described above were carried out. Tables 1 to 2 and 4 show the results.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表1~3から明らかなように、構造単位(A)、構造単位(B)、構造単位(C)を含有する実施例1~14のポリカーボネート樹脂は、耐湿熱性及び光学特性に優れる。これに対し、表1、表2、表4から明らかなように、構造単位(B)を含有しない比較例1~3のポリカーボネート樹脂は、耐湿熱性あるいは靭性が低い。また、構造単位(A)、構造単位(B)、構造単位(C)を含有しない比較例4のポリカーボネート樹脂は光学特性が劣る。構造単位(C)を含有していない比較例5は、吸水率が高く寸法変化率が大きくなるため高湿熱下での位相差フィルムとしての使用には適しておらず、加えてガラス転移温度が高いため溶融加工性に劣る。また、構造単位(C)を含有していない比較例6はフィルム状に成形できず、成形性が悪い。また、構造単位(A)を含有しない比較例7は、靭性が低い。 As is clear from Tables 1 to 3, the polycarbonate resins of Examples 1 to 14 containing structural units (A), structural units (B), and structural units (C) are excellent in heat and humidity resistance and optical properties. On the other hand, as is clear from Tables 1, 2 and 4, the polycarbonate resins of Comparative Examples 1 to 3, which do not contain the structural unit (B), have low wet heat resistance or toughness. Also, the polycarbonate resin of Comparative Example 4 containing no structural unit (A), structural unit (B), or structural unit (C) is inferior in optical properties. Comparative Example 5, which does not contain the structural unit (C), is not suitable for use as a retardation film under high humidity and heat because of its high water absorption rate and large dimensional change rate. Poor melt processability due to high viscosity. Moreover, Comparative Example 6, which does not contain the structural unit (C), cannot be formed into a film, and has poor formability. Moreover, Comparative Example 7, which does not contain the structural unit (A), has low toughness.

Claims (18)

  1.  下記式(1)及び/又は下記式(2)で表される構造単位(A)と、
     下記式(3)で表される構造単位(B)と、
     アセタール環構造を有するジヒドロキシ化合物に由来する構造単位(C)と、を含む、ポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、上記式(1)中、R~Rは、それぞれ独立に、直接結合、または、置換若しくは非置換の炭素数1~4のアルキレン基を表し、R~Rは、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~10のアルキル基、置換若しくは非置換の炭素数6~10のアリール基、置換若しくは非置換の炭素数2~10のアシル基、置換若しくは非置換の炭素数1~10のアルコキシ基、置換若しくは非置換の炭素数6~10のアリールオキシ基、置換若しくは非置換のアミノ基、置換若しくは非置換の炭素数2~10のビニル基、置換若しくは非置換の炭素数2~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、または、シアノ基を表し、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (ただし、上記式(2)中、R~Rは、それぞれ独立に、直接結合、または、置換若しくは非置換の炭素数1~4のアルキレン基を表し、R~Rは、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~10のアルキル基、置換若しくは非置換の炭素数6~10のアリール基、置換若しくは非置換の炭素数2~10のアシル基、置換若しくは非置換の炭素数1~10のアルコキシ基、置換若しくは非置換の炭素数6~10のアリールオキシ基、置換若しくは非置換のアミノ基、置換若しくは非置換の炭素数2~10のビニル基、置換若しくは非置換の炭素数2~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、または、シアノ基を表し、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (ただし、上記式(3)中、R10~R17は、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~20のアルキル基、または、置換若しくは非置換の炭素数6~10のアリール基を表し、Xは直接結合又は炭素数1~20の2価の炭化水素基を表す。)
    a structural unit (A) represented by the following formula (1) and/or the following formula (2);
    A structural unit (B) represented by the following formula (3);
    and a structural unit (C) derived from a dihydroxy compound having an acetal ring structure.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1) above, R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms, and R 4 to R 9 each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted vinyl group having 2 to 10 carbon atoms, substitution or an unsubstituted ethynyl group having 2 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or a cyano group ; may be present or different, and at least two adjacent groups among R 4 to R 9 may be bonded to each other to form a ring.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2) above, R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms, and R 4 to R 9 each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted vinyl group having 2 to 10 carbon atoms, substitution or an unsubstituted ethynyl group having 2 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or a cyano group ; may be present or different, and at least two adjacent groups among R 4 to R 9 may be bonded to each other to form a ring.)
    Figure JPOXMLDOC01-appb-C000003
    (where, in the above formula (3), R 10 to R 17 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted represents an aryl group, and X 1 represents a direct bond or a divalent hydrocarbon group having 1 to 20 carbon atoms.)
  2.  上記式(3)中のR10~R17が、それぞれ独立に、水素原子、または、置換若しくは非置換の炭素数1~20のアルキル基、または置換若しくは非置換の炭素数6~10のアリール基であり、Xが、置換若しくは非置換の1~20の鎖状のアルキレン基、置換若しくは非置換の炭素数6~20の環状のアルキレン基、炭素数6~20のアリーレン基、または、炭素数13~20のフルオレニレン基である、請求項1に記載のポリカーボネート樹脂。 R 10 to R 17 in the above formula (3) are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms is a group, and X 1 is a substituted or unsubstituted 1 to 20 chain alkylene group, a substituted or unsubstituted cyclic alkylene group having 6 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, or The polycarbonate resin according to claim 1, which is a fluorenylene group having 13 to 20 carbon atoms.
  3.  上記ポリカーボネート樹脂を構成する全ての構造単位及び連結基の含有量の合計100質量%に対して、上記構造単位(A)の含有量が1質量%以上45質量%以下である、請求項1又は2に記載のポリカーボネート樹脂。 The content of the structural unit (A) is 1% by mass or more and 45% by mass or less with respect to the total 100% by mass of the content of all structural units and linking groups constituting the polycarbonate resin, or 2. The polycarbonate resin according to 2 above.
  4.  上記ポリカーボネート樹脂を構成する全ての構造単位及び連結基の含有量の合計100質量%に対して、上記構造単位(B)の含有量が5質量%以上50質量%以下である、請求項1~3のいずれか1項に記載のポリカーボネート樹脂。 Claims 1 to 5, wherein the content of the structural unit (B) is 5% by mass or more and 50% by mass or less with respect to the total 100% by mass of the content of all structural units and linking groups constituting the polycarbonate resin. 4. The polycarbonate resin according to any one of 3.
  5.  上記ポリカーボネート樹脂を構成する全ての構造単位及び連結基の含有量の合計100質量%に対して、上記構造単位(C)の含有量が15質量%以上75質量%以下である、請求項1~4のいずれか1項に記載のポリカーボネート樹脂。 The content of the structural unit (C) is 15% by mass or more and 75% by mass or less with respect to the total 100% by mass of the content of all structural units and linking groups constituting the polycarbonate resin, claims 1 to 5. The polycarbonate resin according to any one of 4.
  6.  さらに、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、オキシアルキレングリコール及び複素環構造を有するジヒドロキシ化合物からなる群より選ばれる少なくとも1つの化合物に由来する構造単位(D)を含む、請求項1~5のいずれか1項に記載のポリカーボネート樹脂。 Furthermore, claims 1 to 5, comprising a structural unit (D) derived from at least one compound selected from the group consisting of aliphatic dihydroxy compounds, alicyclic dihydroxy compounds, oxyalkylene glycols and dihydroxy compounds having a heterocyclic structure. Polycarbonate resin according to any one of.
  7.  上記ポリカーボネート樹脂を構成する全ての構造単位及び連結基の含有量の合計100質量%に対して、上記構造単位(C)と上記構造単位(D)との合計含有量が20質量%以上80質量%以下である、請求項6に記載のポリカーボネート樹脂。 The total content of the structural unit (C) and the structural unit (D) is 20% by mass or more and 80% by mass with respect to the total 100% by mass of the content of all structural units and linking groups constituting the polycarbonate resin. % or less, the polycarbonate resin according to claim 6.
  8.  上記構造単位(C)が下記式(4)で表される構造単位であり、上記構造単位(D)が下記式(5)で表される構造単位である、請求項6又は7に記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    8. The structural unit according to claim 6 or 7, wherein the structural unit (C) is a structural unit represented by the following formula (4), and the structural unit (D) is a structural unit represented by the following formula (5). Polycarbonate resin.
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
  9.  上記ポリカーボネート樹脂のガラス転移温度が120℃以上160℃以下である、請求項1~8のいずれか1項に記載のポリカーボネート樹脂。 The polycarbonate resin according to any one of claims 1 to 8, wherein the polycarbonate resin has a glass transition temperature of 120°C or higher and 160°C or lower.
  10.  上記ポリカーボネート樹脂の吸水率が1.4%以下である、請求項1~9のいずれか1項に記載のポリカーボネート樹脂。 The polycarbonate resin according to any one of claims 1 to 9, wherein the polycarbonate resin has a water absorption rate of 1.4% or less.
  11.  請求項1~10のいずれか1項に記載のポリカーボネート樹脂から構成される、ポリカーボネート樹脂成形品。 A polycarbonate resin molded article composed of the polycarbonate resin according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか1項に記載のポリカーボネート樹脂から構成される、フィルム。 A film composed of the polycarbonate resin according to any one of claims 1 to 10.
  13.  請求項12に記載のフィルムからなる、位相差フィルム。 A retardation film made of the film according to claim 12.
  14.  上記フィルムの、波長550nmにおける位相差R550に対する波長450nmにおける位相差R450の比である波長分散の値が0.60以上、1.00以下である、請求項13に記載の位相差フィルム。 14. The retardation film according to claim 13, wherein the film has a wavelength dispersion value, which is a ratio of a retardation R450 at a wavelength of 450 nm to a retardation R550 at a wavelength of 550 nm, of 0.60 or more and 1.00 or less.
  15.  請求項13又は14に記載の位相差フィルムを含む、円偏光板。 A circularly polarizing plate, comprising the retardation film according to claim 13 or 14.
  16.  請求項15に記載の円偏光板を含む、画像表示装置。 An image display device comprising the circularly polarizing plate according to claim 15.
  17.  請求項1~10のいずれか1項に記載のポリカーボネート樹脂を溶融製膜法により成形することにより、透明フィルムを製造する方法において、
     上記ポリカーボネート樹脂を成形温度280℃以下で成形する、透明フィルムの製造方法。
    A method for producing a transparent film by molding the polycarbonate resin according to any one of claims 1 to 10 by a melt film forming method,
    A method for producing a transparent film, wherein the polycarbonate resin is molded at a molding temperature of 280° C. or less.
  18.  下記式(1)及び/又は下記式(2)で表される構造単位(A)と、
     下記式(3)で表される構造単位(B)と、を含み、
     ガラス転移温度が120℃以上160℃以下であり、
     吸水率が1.4%以下である、ポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000006
    (ただし、上記式(1)中、R~Rは、それぞれ独立に、直接結合、または、置換若しくは非置換の炭素数1~4のアルキレン基を表し、R~Rは、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~10のアルキル基、置換若しくは非置換の炭素数6~10のアリール基、置換若しくは非置換の炭素数2~10のアシル基、置換若しくは非置換の炭素数1~10のアルコキシ基、置換若しくは非置換の炭素数6~10のアリールオキシ基、置換若しくは非置換のアミノ基、置換若しくは非置換の炭素数2~10のビニル基、置換若しくは非置換の炭素数2~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、または、シアノ基を表し、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000007
    (ただし、上記式(2)中、R~Rは、それぞれ独立に、直接結合、または、置換若しくは非置換の炭素数1~4のアルキレン基を表し、R~Rは、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~10のアルキル基、置換若しくは非置換の炭素数6~10のアリール基、置換若しくは非置換の炭素数2~10のアシル基、置換若しくは非置換の炭素数1~10のアルコキシ基、置換若しくは非置換の炭素数6~10のアリールオキシ基、置換若しくは非置換のアミノ基、置換若しくは非置換の炭素数2~10のビニル基、置換若しくは非置換の炭素数2~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、または、シアノ基を表し、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000008
    (ただし、上記式(3)中、R10~R17は、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~20のアルキル基、または、置換若しくは非置換の炭素数6~10のアリール基を表し、Xは直接結合又は炭素数1~20の2価の炭化水素基を表す。)
    a structural unit (A) represented by the following formula (1) and/or the following formula (2);
    and a structural unit (B) represented by the following formula (3),
    a glass transition temperature of 120° C. or higher and 160° C. or lower;
    A polycarbonate resin having a water absorption of 1.4% or less.
    Figure JPOXMLDOC01-appb-C000006
    (In formula (1) above, R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms, and R 4 to R 9 each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted vinyl group having 2 to 10 carbon atoms, substitution or an unsubstituted ethynyl group having 2 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or a cyano group ; may be present or different, and at least two adjacent groups among R 4 to R 9 may be bonded to each other to form a ring.)
    Figure JPOXMLDOC01-appb-C000007
    (In formula (2) above, R 1 to R 3 each independently represent a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms, and R 4 to R 9 each independently, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted vinyl group having 2 to 10 carbon atoms, substitution or an unsubstituted ethynyl group having 2 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or a cyano group ; may be present or different, and at least two adjacent groups among R 4 to R 9 may be bonded to each other to form a ring.)
    Figure JPOXMLDOC01-appb-C000008
    (where, in the above formula (3), R 10 to R 17 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted represents an aryl group, and X 1 represents a direct bond or a divalent hydrocarbon group having 1 to 20 carbon atoms.)
PCT/JP2022/039329 2021-10-25 2022-10-21 Polycarbonate resin WO2023074576A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063102.0A CN117980375A (en) 2021-10-25 2022-10-21 Polycarbonate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-173952 2021-10-25
JP2021173952 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023074576A1 true WO2023074576A1 (en) 2023-05-04

Family

ID=86159870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039329 WO2023074576A1 (en) 2021-10-25 2022-10-21 Polycarbonate resin

Country Status (3)

Country Link
CN (1) CN117980375A (en)
TW (1) TW202334276A (en)
WO (1) WO2023074576A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212366A (en) * 2014-04-15 2015-11-26 三菱化学株式会社 Oligofluorenedi(meth)acrylate, (meth)acrylate resin composition, optical member and lens
JP2017075256A (en) * 2015-10-15 2017-04-20 三菱化学株式会社 Thermoplastic resin, and optical molding comprising the same
JP2017075255A (en) * 2015-10-15 2017-04-20 三菱化学株式会社 Thermoplastic resin, and optical molding comprising the same
JP2018172659A (en) * 2017-03-30 2018-11-08 大阪ガスケミカル株式会社 Polyester resin having fluorene skeleton, method for producing the same, and molded body
JP2022146496A (en) * 2021-03-22 2022-10-05 三菱ケミカル株式会社 Resin, and molding of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212366A (en) * 2014-04-15 2015-11-26 三菱化学株式会社 Oligofluorenedi(meth)acrylate, (meth)acrylate resin composition, optical member and lens
JP2017075256A (en) * 2015-10-15 2017-04-20 三菱化学株式会社 Thermoplastic resin, and optical molding comprising the same
JP2017075255A (en) * 2015-10-15 2017-04-20 三菱化学株式会社 Thermoplastic resin, and optical molding comprising the same
JP2018172659A (en) * 2017-03-30 2018-11-08 大阪ガスケミカル株式会社 Polyester resin having fluorene skeleton, method for producing the same, and molded body
JP2022146496A (en) * 2021-03-22 2022-10-05 三菱ケミカル株式会社 Resin, and molding of the same

Also Published As

Publication number Publication date
CN117980375A (en) 2024-05-03
TW202334276A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
JP6881512B2 (en) Polycarbonate resin, molded products and optical films
CN106461836B (en) Phase difference film, circularly polarizing plate, and image display device
JP6189355B2 (en) Retardation film, circularly polarizing plate and image display device
JP6398242B2 (en) Resin composition and film using the same
CN106489085B (en) Phase difference film, circularly polarizing plate, and image display device
TWI544001B (en) Polycarbonate resin and transparent film formed therefrom
JP6597157B2 (en) Thermoplastic resin and optical molded body comprising the same
JP6911972B2 (en) Polycondensation resin and optical film made of it
JP6565577B2 (en) Polycarbonate resin and optical film comprising the same
JP6597158B2 (en) Thermoplastic resin and optical molded body comprising the same
WO2023074576A1 (en) Polycarbonate resin
JP6801194B2 (en) Polycarbonate resin, a method for producing the polycarbonate resin, a method for producing a transparent film made of the polycarbonate resin, and a retardation film.
JP3643555B2 (en) Polycarbonate copolymer
JP2005015505A (en) High-refractive and heat-resistant aromatic polycarbonate resin composition
JP2005042021A (en) Polycarbonate resin composition
JP2005015545A (en) Additive master and heat-resistant polycarbonate resin composition using the same
JP2005041988A (en) Polycarbonate resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556402

Country of ref document: JP