WO2023074413A1 - Anode body and manufacturing method thereof, and electrolytic capacitor and manufacturing method thereof - Google Patents

Anode body and manufacturing method thereof, and electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
WO2023074413A1
WO2023074413A1 PCT/JP2022/038410 JP2022038410W WO2023074413A1 WO 2023074413 A1 WO2023074413 A1 WO 2023074413A1 JP 2022038410 W JP2022038410 W JP 2022038410W WO 2023074413 A1 WO2023074413 A1 WO 2023074413A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
anode body
powder
anode
particles
Prior art date
Application number
PCT/JP2022/038410
Other languages
French (fr)
Japanese (ja)
Inventor
徳彦 大形
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023074413A1 publication Critical patent/WO2023074413A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to an anode body and its manufacturing method, and an electrolytic capacitor and its manufacturing method.
  • Electrolytic capacitors have a low equivalent series resistance (ESR) and excellent frequency characteristics, so they are installed in various electronic devices. Electrolytic capacitors typically comprise a capacitor element comprising an anode portion and a cathode portion. The anode part includes a porous anode body, and a dielectric layer is formed on the surface of the anode body. The dielectric layer contacts the electrolyte. As an electrolyte, there is an electrolytic capacitor using a solid electrolyte such as a conductive polymer (see, for example, Patent Document 1).
  • the anode body of an electrolytic capacitor is formed porous, for example, by putting valve metal powder into a mold and sintering it.
  • Patent Document 2 describes a method for preparing foil-like tantalum powder, in which a nitriding step at a low temperature of 500° C. or lower is followed by a high-temperature heat treatment step at 1000° C. or higher. Are listed.
  • One aspect of the present disclosure is a method of manufacturing an anode body for an electrolytic capacitor, comprising: a powder preparation step of preparing an anode body powder containing a powder of a first metal that is a valve action metal; and sintering to obtain an anode body, wherein the powder of the first metal contains particles containing a second metal having magnetism in addition to the first metal, and the powder for the anode body
  • the present invention relates to a method for manufacturing an anode body, further comprising a magnetic separation step of removing particles containing the second metal from the powder of the first metal by magnetic separation before sintering the powder.
  • Another aspect of the present disclosure includes a capacitor element including a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer.
  • a method for manufacturing an electrolytic capacitor comprising the steps of: preparing the anode body; covering at least a portion of the anode body with the dielectric layer; and a step of covering a portion of the electrolytic capacitor with the solid electrolyte layer.
  • Still another aspect of the present disclosure includes particles of a first metal that is a valve metal and particles of a second metal having magnetism, and the content of the second metal is 10 mg per 1 kg of the first metal.
  • the following relates to anode bodies for electrolytic capacitors.
  • Yet another aspect of the present disclosure is a capacitor element including a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer.
  • the anode body contains particles of a first metal that is a valve metal and particles of a second metal having magnetism, and the content ratio of the second metal in the anode body is It relates to an electrolytic capacitor that is 10 mg or less per 1 kg of the first metal.
  • the reliability of electrolytic capacitors is improved.
  • FIG. 1 is a schematic configuration diagram showing an example of a magnetic separation device for separating particles containing a second metal from anode body powder.
  • FIG. 1 is a cross-sectional view schematically showing an example of a capacitor element according to an embodiment of the present disclosure
  • FIG. 1 is a cross-sectional view schematically showing an electrolytic capacitor manufactured by a manufacturing method according to an embodiment of the present disclosure
  • the present disclosure encompasses a combination of matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims. In other words, as long as there is no technical contradiction, the matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims can be combined.
  • one of the factors (modes) that cause poor reliability in electrolytic capacitors is a factor derived from a minute amount of metallic impurities contained in the anode body, and even if the amount of metallic impurities is extremely small, the failure will occur. Based on the knowledge that it can occur.
  • a method for manufacturing an anode body for an electrolytic capacitor is a method for manufacturing an anode body for an electrolytic capacitor, and prepares an anode body powder containing powder of a first metal that is a valve action metal. It has a powder preparation step and a step of sintering the anode body powder to obtain an anode body.
  • the powder of the first metal contains a small amount of particles containing a second magnetic metal (for example, iron (Fe)).
  • a second magnetic metal for example, iron (Fe)
  • the particles containing the second metal are removed to some extent by the supplier of the anode body powder.
  • the content of iron impurities in the anode body powder is at most about 20 ppm on a mass basis.
  • the particles containing the second metal are contained in the anode body, when the dielectric film is formed on the surface of the anode body by chemical conversion treatment, the current flows intensively in the particles containing the second metal, and the surrounding dielectric Body layer properties are reduced. In the vicinity of the particles containing the second metal, the dielectric layer may be thinned or not formed, resulting in poor insulation.
  • the second metal may be contained in the form of particles containing the second metal instead of being evenly distributed in each of the particles of the first metal constituting the main component of the anode body powder.
  • the anode body powder is a mixed powder of particles of the first metal, which accounts for the majority, and particles containing a small amount of the second metal. Therefore, even if the content of the second metal in the anode body powder is small, if the necessary amount of the anode body powder is subdivided to produce a plurality of anode bodies, most of the anode bodies contain the second metal.
  • the second metal may be present in relatively high concentrations in certain anode bodies. As a result, among the manufactured electrolytic capacitors, the electrolytic capacitor manufactured using the anode body containing the second metal at a high concentration shows deterioration in performance due to defective formation of the dielectric layer.
  • the electrolytic capacitors with chemical conversion defects can be removed in the initial defect detection process after manufacturing, but if the number of particles containing the second metal contained in the particles of the anode body powder is large, the production of electrolytic capacitors will be delayed. A yield will fall.
  • some electrolytic capacitors that have passed through the initial failure detection process, which contain particles containing the second metal show early deterioration in performance due to use, which contributes to reduced reliability.
  • the proportion of particles containing the second metal contained in the anode body of the electrolytic capacitor is preferably 10 ppm or less (that is, 10 mg or less per 1 kg of the first metal).
  • the anode body manufacturing method further includes a magnetic separation step of removing particles containing the second metal from the powder of the first metal by magnetic separation before sintering the powder for the anode body. This reduces the number of anode bodies containing particles containing the second metal. Therefore, by using the anode body produced by this method, the production yield of the electrolytic capacitor is improved, and a highly reliable electrolytic capacitor can be obtained.
  • the ratio of the particles containing the second metal to the powder of the first metal is 10 mg or less (that is, 10 ppm or less) per 1 kg of the powder of the first metal. It is preferable to remove the particles containing the second metal by magnetic separation so that The ratio of particles containing the second metal to the powder of the first metal after the removal step is more preferably 5 mg or less (that is, 5 ppm or less) or 3 mg or less (that is, 3 ppm or less) with respect to 1 kg of the first metal powder. About 10,000 anode bodies can be manufactured from 1 kg of the powder of the first metal, depending on the size of the anode body. When the ratio is 10 mg or less per 1 kg of the first metal powder, the number of particles containing the second metal contained in 1 kg of the first metal powder is, for example, 50 or less.
  • Particles containing a second metal may contain a non-magnetic metal (excluding the first metal) in addition to the second metal.
  • the particles containing the second metal can be particles of an alloy of the second metal and a non-magnetic metal.
  • the ratio of the particles containing the second metal to the powder of the first metal is calculated based on not only the mass of the second metal but also the mass of the entire alloy in the particles.
  • the particles containing the second metal may include, for example, stainless steel (SUS) particles.
  • the particles containing the second metal include iron (Fe), which is the second metal, and chromium (Cr).
  • the removal of the particles containing the second metal may be performed on the anode body powder before powder adjustment, or may be performed on the anode body powder after powder adjustment.
  • the agent it is preferable to add the agent to the anode body powder after powder conditioning, as will be described later.
  • the powder preparation step may be a step of mixing the powder of the first metal with a binder and stirring to prepare the powder for the anode body.
  • the sinterability of the anode body is good and the quality of the porous anode body can be improved.
  • the particles containing the second metal may be removed from the anode body powder containing the binder after the powder preparation step.
  • the powder for the anode body can be prepared by putting the powder of the first metal and the binder in a container and shaking them. At this time, the inner surface of the container may be scraped by colliding with the particles of the first metal, and the particles of the metal forming the container may be mixed with the powder of the first metal.
  • the container is made of stainless steel, particles containing metals such as iron (Fe), chromium (Cr), nickel (Ni), etc. may be mixed with the powder of the first metal.
  • the first metal contains tantalum (Ta)
  • tantalum particles since the tantalum particles are hard, the inner surface of the container is likely to be scraped by the collision of the tantalum particles. It is easily mixed with the powder for the anode body.
  • the first metal includes, for example, tantalum (Ta).
  • the second metal may include, for example, at least one selected from the group consisting of iron (Fe) and nickel (Ni).
  • a magnetic sieve may be used to remove particles containing the second metal.
  • the anode body powder may be passed through the sieve while vibrating the sieve horizontally and/or vertically.
  • the anode body powder passing side (the side opposite to the side where the anode body powder is fed) is moved toward the sieve.
  • a gas stream may be supplied.
  • the anode body powder may be passed through multiple sieves. For example, the step of passing the anode body powder through a magnetic sieve may be performed multiple times.
  • the belt conveyor shown in Fig. 1 may be used.
  • the method for separating particles containing the second metal is not limited to the method using a sieve and the method using a belt conveyor.
  • the magnetic separation device 100 includes a belt 101 and a belt conveyor 103 having magnetic rollers 102 .
  • the anode body powder 110 placed on the belt 101 is conveyed on the belt 101 toward the side of the magnetic roller 102 while being flattened to a uniform thickness by the doctor blade 104, and reaches the end of the magnetic roller 102 ( For example, it falls at position P) in FIG.
  • the particles containing the second metal are attracted by the magnetic force of the magnetic roller 102 and oppose the downward gravitational force. (for example, position Q in FIG. 1). Thereby, the particles containing the second metal can be separated from the anode body powder.
  • An anode body includes particles of a first metal that is a valve metal and particles of a second metal having magnetism, and the content of the second metal is 10 mg or less.
  • the content of the second metal is 100 ⁇ (10/1000000)% by mass or less (0.001% by mass or less).
  • a method for manufacturing an electrolytic capacitor according to an embodiment of the present disclosure includes a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer.
  • a method of manufacturing an electrolytic capacitor comprising a capacitor element comprising: providing an anode body; covering at least a portion of the anode body with a dielectric layer; and a covering step. In the step of preparing the anode body, the anode body manufactured by the method for manufacturing the anode body is prepared.
  • An electrolytic capacitor is a capacitor element including a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer.
  • the anode body contains particles of a first metal, which is a valve metal, and a small amount of particles containing a second metal having magnetism other than the first metal.
  • the content of the second metal in the anode body is 10 mg or less or 0.001% by mass or less per 1 kg of the first metal.
  • the content ratio of the second metal in the anode body can be calculated by, for example, an elemental analysis method such as ICP emission spectroscopy.
  • FIG. 2 is a cross-sectional view schematically showing an example of the capacitor element according to this embodiment.
  • FIG. 3 is a schematic cross-sectional view of an electrolytic capacitor manufactured by the manufacturing method according to this embodiment.
  • Electrolytic capacitor 20 is electrically connected to capacitor element 10 having anode portion 6 and cathode portion 7, exterior body 11 that seals capacitor element 10, and anode section 6, and a portion of exterior body 11 extends from An exposed anode lead terminal 13 and a cathode lead terminal 14 electrically connected to the cathode section 7 and partly exposed from the exterior body 11 are provided.
  • Anode section 6 has anode body 1 and anode wire 2 .
  • a dielectric layer 3 is formed on the surface of the anode body.
  • Cathode portion 7 has solid electrolyte layer 4 covering at least a portion of dielectric layer 3 and cathode layer 5 covering the surface of solid electrolyte layer 4 .
  • capacitor element 10 will be described in detail, taking as an example a case in which a solid electrolyte layer is provided as an electrolyte.
  • Anode section 6 has anode body 1 and anode wire 2 extending from one surface of anode body 1 and electrically connected to anode lead terminal 13 .
  • Anode body 1 is, for example, a cuboid porous sintered body obtained by sintering particles of a first metal.
  • particles of the first metal particles of valve action metal such as titanium (Ti), tantalum (Ta), niobium (Nb) are used. Particles of one or more first metals are used in anode body 1 .
  • the particles of the first metal may be an alloy of two or more metals. At least one of the two or more metals is the first metal.
  • an alloy containing a valve action metal (first metal) and silicon, vanadium, boron, or the like can be used.
  • a compound containing a valve action metal and a typical element such as nitrogen may also be used.
  • the alloy of the valve action metal is mainly composed of the valve action metal (first metal), and contains, for example, 50 atomic % or more of the valve action metal (first metal).
  • the anode wire 2 is made of a conductive material.
  • the material of the anode wire 2 is not particularly limited, and examples thereof include the above-described valve action metals, copper, aluminum, aluminum alloys, and the like.
  • the materials constituting anode body 1 and anode wire 2 may be of the same type or of different types.
  • Anode wire 2 has a first portion 2 a embedded inside anode body 1 from one surface of anode body 1 and a second portion 2 b extending from the one surface of anode body 1 .
  • the cross-sectional shape of the anode wire 2 is not particularly limited, and may be circular, track-shaped (a shape consisting of mutually parallel straight lines and two curved lines connecting the ends of these straight lines), elliptical, rectangular, polygonal, and the like. be done.
  • the anode portion 6 is produced, for example, by embedding the first portion 2a in the powder of the first metal particles, molding the first portion 2a into a rectangular parallelepiped shape, and sintering the first portion.
  • the second portion 2b of the anode wire 2 is pulled out from one surface of the anode body 1 so as to be erected.
  • the second portion 2b is joined to the anode lead terminal 13 by welding or the like, so that the anode wire 2 and the anode lead terminal 13 are electrically connected.
  • the welding method is not particularly limited, and includes resistance welding, laser welding, and the like. After that, the corners of the rectangular parallelepiped can be processed to form curved surfaces.
  • a dielectric layer 3 is formed on the surface of the anode body 1 .
  • the dielectric layer 3 is made of metal oxide, for example.
  • a method for forming a layer containing a metal oxide on the surface of anode body 1 for example, anode body 1 is immersed in a chemical solution to anodize the surface of anode body 1, or anode body 1 is immersed in oxygen.
  • the dielectric layer 3 is not limited to the layer containing the above-mentioned metal oxide, and may have insulating properties.
  • the cathode section 7 has a solid electrolyte layer 4 and a cathode layer 5 covering the solid electrolyte layer 4 .
  • Solid electrolyte layer 4 is formed to cover at least a portion of dielectric layer 3 .
  • a manganese compound or a conductive polymer is used for the solid electrolyte layer 4 .
  • conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and the like. These may be used alone, or may be used in combination. Also, the conductive polymer may be a copolymer of two or more monomers. Polythiophene, polyaniline, and polypyrrole may be used from the viewpoint of excellent conductivity. In particular, polypyrrole may be used because of its excellent water repellency.
  • the solid electrolyte layer 4 containing the conductive polymer is formed, for example, by polymerizing raw material monomers on the dielectric layer 3 . Alternatively, it is formed by coating the dielectric layer 3 with a liquid containing the conductive polymer.
  • the solid electrolyte layer 4 is composed of one or more solid electrolyte layers. When the solid electrolyte layer 4 is composed of two or more layers, the composition and formation method (polymerization method) of the conductive polymer used for each layer may be different.
  • polypyrrole, polythiophene, polyfuran, polyaniline, etc. mean polymers having polypyrrole, polythiophene, polyfuran, polyaniline, etc. as a basic skeleton, respectively. Therefore, polypyrrole, polythiophene, polyfuran, polyaniline, etc. may also include their respective derivatives.
  • polythiophenes include poly(3,4-ethylenedioxythiophene) and the like.
  • Various dopants may be added to the polymerization liquid, solution or dispersion of the conductive polymer for forming the conductive polymer, in order to improve the conductivity of the conductive polymer.
  • the dopant is not particularly limited, naphthalenesulfonic acid, p-toluenesulfonic acid, polystyrenesulfonic acid and the like can be mentioned, for example.
  • the average particle diameter D50 of the particles is, for example, 0.01 ⁇ m or more and 0.5 ⁇ m or less. If the average particle size D50 of the particles is within this range, the particles can easily penetrate into the anode body 1 .
  • the cathode layer 5 has, for example, a carbon layer 5a formed to cover the solid electrolyte layer 4 and a metal paste layer 5b formed on the surface of the carbon layer 5a.
  • the carbon layer 5a contains a conductive carbon material such as graphite and a resin.
  • the metal paste layer 5b contains, for example, metal particles (for example, silver) and resin.
  • the structure of the cathode layer 5 is not limited to this structure.
  • the configuration of the cathode layer 5 may be any configuration as long as it has a current collecting function.
  • Anode lead terminal 13 is electrically connected to anode body 1 through second portion 2 b of anode wire 2 .
  • the material of anode lead terminal 13 is not particularly limited as long as it is electrochemically and chemically stable and has conductivity.
  • the anode lead terminal 13 may be made of metal such as copper, or may be made of non-metal.
  • the shape is not particularly limited as long as it is flat.
  • the thickness of anode lead terminal 13 (the distance between the main surfaces of anode lead terminal 13) may be 25 ⁇ m or more and 200 ⁇ m or less, and may be 25 ⁇ m or more and 100 ⁇ m or less, from the viewpoint of height reduction.
  • anode lead terminal 13 may be joined to the anode wire 2 with a conductive adhesive or solder, or may be joined to the anode wire 2 by resistance welding or laser welding.
  • the other end of anode lead terminal 13 is led out of package 11 and exposed from package 11 .
  • the conductive adhesive is, for example, a mixture of a thermosetting resin, which will be described later, and carbon particles or metal particles.
  • the cathode lead terminal 14 is electrically connected to the cathode portion 7 at the joint portion 14a.
  • the junction portion 14 a is a portion where the cathode lead terminal 14 overlaps the cathode layer 5 .
  • the cathode lead terminal 14 is joined to the cathode layer 5 via a conductive adhesive 8, for example.
  • One end of the cathode lead terminal 14 constitutes, for example, a part of the joint portion 14 a and is arranged inside the exterior body 11 .
  • the other end of the cathode lead terminal 14 is led out to the outside. Therefore, a portion including the other end of cathode lead terminal 14 is exposed from exterior body 11 .
  • the material of the cathode lead terminal 14 is also not particularly limited as long as it is electrochemically and chemically stable and has conductivity.
  • the cathode lead terminal 14 may be made of metal such as copper, or may be made of non-metal.
  • the shape is not particularly limited, either, and for example, it is long and flat.
  • the thickness of the cathode lead terminal 14 may be 25 ⁇ m or more and 200 ⁇ m or less, or may be 25 ⁇ m or more and 100 ⁇ m or less, from the viewpoint of height reduction.
  • the exterior body 11 is provided to electrically insulate the anode lead terminal 13 and the cathode lead terminal 14, and is made of an insulating material (sheath material).
  • the exterior body material includes, for example, thermosetting resin.
  • thermosetting resins include epoxy resins, phenol resins, silicone resins, melamine resins, urea resins, alkyd resins, polyurethanes, polyimides, unsaturated polyesters, and the like.
  • an anode body is prepared.
  • the anode body is manufactured by a manufacturing method including a powder preparation step of preparing an anode body powder containing a powder of a first metal that is a valve metal, and a step of sintering the anode body powder to obtain an anode body. be done.
  • the powder of the first metal is placed in a shaker and stirred to obtain powder for the anode body.
  • the binder may be put into a shaker together with the powder of the first metal to adjust the powder for the anode body. This improves the fluidity of the anode body powder and improves the moldability. Further, in the sintering process, the particles are strongly bonded to form fine pores.
  • a polyacryl carbonate etc. are mentioned as a binder.
  • the binder may be mixed with the first metal powder in the form of a solution or dispersed dispersion in a solvent such as butanol or methanol.
  • the anode body powder and the anode wire 2 are put into a mold so that the first portion 2a is embedded in the anode body powder, and pressure-molded. After that, by sintering the molded body, the anode part 6 including the anode body 1, which is a porous sintered body of the first metal, is obtained. A first portion 2a of the anode wire is embedded inside the porous sintered body from one side thereof.
  • the pressure during pressure molding is not particularly limited. Sintering is preferably performed under reduced pressure.
  • the temperature during sintering is a high temperature of, for example, 1200.degree. C. to 1400.degree.
  • Organic components such as binders and solvents contained in the anode body powder are removed by the high temperature during sintering.
  • heat treatment at a relatively low temperature, eg, 300° C. to 500° C., may be performed to remove the binder.
  • a relatively low temperature eg, 300° C. to 500° C.
  • the surfaces of the particles of the first metal are melted, and the particles of the first metal and the particles of the first metal and the first portion 2a of the anode wire are bonded to each other while maintaining gaps between the particles of the first metal. Electrically connected by bonding.
  • the particles of the first metal usually contain a small amount of particles of the second metal having magnetism. If the anode body after sintering contains particles of the second metal, the formation of the dielectric layer by subsequent chemical conversion treatment may be insufficient, and the reliability of the electrolytic capacitor may decrease. Therefore, before pressure molding, a separate magnetic separation step is performed to remove the particles containing the second metal from the particles of the first metal.
  • the particles containing the second metal may be removed using a magnetic sieve, or the particles containing the second metal may be removed using the belt conveyor shown in FIG. The removing method is not limited to these methods.
  • the removal of particles containing the second metal may be performed before the powder adjustment process or after the powder adjustment process.
  • the powder preparation step the powder of the first metal is put into a shaker and stirred to obtain the powder for the anode body. may be scraped off by the powder and mixed into the powder for the anode body.
  • the anode body powder may contain particles containing metals such as iron, chromium, and nickel.
  • the magnetic separation step is preferably carried out after the powder adjustment step in that the magnetic metal particles originating from the container of the shaker can be removed.
  • the powder for the anode body is usually pressure-molded and sintered using a mold with a rectangular parallelepiped internal space.
  • the shape of anode body 1 after sintering is also a rectangular parallelepiped.
  • anode body 1 is subjected to chemical conversion treatment, and at least a portion of anode body 1 is covered with dielectric layer 3 .
  • the anode body 1 is immersed in an anodizing tank filled with an electrolytic aqueous solution (for example, a phosphoric acid aqueous solution), the second portion 2b of the anode wire 2 is connected to the anode body in the anodizing tank, and anodization is performed.
  • an electrolytic aqueous solution is not limited to the phosphoric acid aqueous solution, and nitric acid, acetic acid, sulfuric acid, or the like can be used.
  • Capacitor element 10 including anode body 1 , dielectric layer 3 , and solid electrolyte layer 4 is thus obtained.
  • the solid electrolyte layer 4 containing a conductive polymer is produced by, for example, impregnating the anode body 1 on which the dielectric layer 3 is formed with a monomer or oligomer, and then polymerizing the monomer or oligomer by chemical polymerization or electrolytic polymerization.
  • anode body 1 having dielectric layer 3 formed thereon is impregnated with a solution or dispersion of a conductive polymer, followed by drying to form at least part of dielectric layer 3 .
  • the solid electrolyte layer 4 can be formed, for example, by impregnating the anode body 1 with the dielectric layer 3 formed thereon in a dispersion liquid containing a conductive polymer, a binder, and a dispersion medium, taking it out, and drying it.
  • the dispersion may include a binder and/or conductive inorganic particles (eg, a conductive carbon material such as carbon black).
  • the conductive polymer may contain a dopant.
  • the conductive polymer and dopant may be selected from those exemplified for the solid electrolyte layer 4, respectively.
  • a known binder can be used.
  • the dispersion may contain known additives used in forming the solid electrolyte layer.
  • a carbon paste and a metal paste are sequentially applied to the surface of the solid electrolyte layer 4 to form the cathode layer 5 composed of the carbon layer 5a and the metal paste layer 5b.
  • the configuration of the cathode layer 5 is not limited to this, as long as it has a current collecting function.
  • anode lead terminal 13 and the cathode lead terminal 14 are prepared.
  • a second portion 2b of anode wire 2 erected from anode body 1 is joined to anode lead terminal 13 by laser welding, resistance welding, or the like.
  • the conductive adhesive 8 is applied to the cathode layer 5
  • the cathode lead terminal 14 is joined to the cathode portion 7 via the conductive adhesive 8 .
  • capacitor element 10 and exterior body 11 for example, uncured thermosetting resin and filler
  • materials of capacitor element 10 and exterior body 11 for example, uncured thermosetting resin and filler
  • capacitor element 10 is sealed by transfer molding, compression molding, or the like.
  • the anode lead terminal 13 and the cathode lead terminal 14 are partly exposed from the mold.
  • the molding conditions are not particularly limited, and the time and temperature conditions may be appropriately set in consideration of the curing temperature of the thermosetting resin used.
  • anode lead terminal 13 and cathode lead terminal 14 are bent along exterior body 11 to form bent portions.
  • a part of anode lead terminal 13 and cathode lead terminal 14 is arranged on the mounting surface of package 11 .
  • the electrolytic capacitor 20 is manufactured by the above method.
  • the present disclosure can be used for electrolytic capacitors, and preferably for electrolytic capacitors using a porous body as an anode body.
  • Electrolytic capacitor 10 Capacitor element 1: Anode body 2: Anode wire 2a: First part 2b: Second part 3: Dielectric layer 4: Solid electrolyte layer 5: Cathode layer 5a: Carbon layer 5b: Metal paste layer 6: Anode part 7: Cathode part 8: Conductive adhesive 11: Exterior body 13: Anode lead terminal 14: Cathode lead terminal 14a: Joint part 100: Magnetic separator 103: Belt conveyor 101: Belt 102: Magnetic roller 104: Doctor blade 110: Powder for anode body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A method for manufacturing an anode body for an electrolytic capacitor includes a powder preparation step for preparing anode body powder 110 containing powder of a first metal that is a valve action metal, and a step for sintering the anode body powder to obtain an anode body. The powder of the first metal contains, in addition to the first metal, a small amount of particles containing a second metal having magnetism. The manufacturing method further includes a magnetic separation step for removing particles containing the second metal from the first metal powder by magnetic separation before sintering the anode body powder 110.

Description

陽極体およびその製造方法、ならびに、電解コンデンサおよびその製造方法Anode body and manufacturing method thereof, and electrolytic capacitor and manufacturing method thereof
 本開示は、陽極体およびその製造方法、ならびに、電解コンデンサおよびその製造方法に関する。 The present disclosure relates to an anode body and its manufacturing method, and an electrolytic capacitor and its manufacturing method.
 電解コンデンサは、等価直列抵抗(ESR)が小さく、周波数特性が優れているため、様々な電子機器に搭載されている。電解コンデンサは、通常、陽極部および陰極部を備えるコンデンサ素子を備える。陽極部は、多孔質の陽極体を含み、陽極体の表面に誘電体層が形成される。誘電体層は、電解質と接触する。電解質として、導電性高分子などの固体電解質を用いた電解コンデンサがある(例えば、特許文献1参照)。 Electrolytic capacitors have a low equivalent series resistance (ESR) and excellent frequency characteristics, so they are installed in various electronic devices. Electrolytic capacitors typically comprise a capacitor element comprising an anode portion and a cathode portion. The anode part includes a porous anode body, and a dielectric layer is formed on the surface of the anode body. The dielectric layer contacts the electrolyte. As an electrolyte, there is an electrolytic capacitor using a solid electrolyte such as a conductive polymer (see, for example, Patent Document 1).
 電解コンデンサの陽極体は、例えば、弁作用金属の粉末を型に入れて焼結することにより、多孔質に形成される。陽極体に用いる金属粉末の調製方法として、特許文献2には、箔片状タンタル粉末の調製方法に関して、500℃以下の低温での窒化工程の後、1000℃以上の高温熱処理工程を行うことが記載されている。 The anode body of an electrolytic capacitor is formed porous, for example, by putting valve metal powder into a mold and sintering it. As a method for preparing a metal powder used for an anode body, Patent Document 2 describes a method for preparing foil-like tantalum powder, in which a nitriding step at a low temperature of 500° C. or lower is followed by a high-temperature heat treatment step at 1000° C. or higher. Are listed.
特開2009-182157号公報JP 2009-182157 A 特開2019-527300号公報JP 2019-527300 A
 固体電解質を用いた電解コンデンサの信頼性を高める。  Improve the reliability of electrolytic capacitors that use solid electrolytes.
 本開示の一局面は、電解コンデンサの陽極体を製造する方法であって、弁作用金属である第1金属の粉末を含む陽極体用粉末を調製する粉調工程と、前記陽極体用粉末を焼結し、陽極体を得る工程と、を有し、前記第1金属の粉末には、前記第1金属以外に、磁性を有する第2金属を含む粒子が含まれており、前記陽極体用粉末の焼結前に、前記第1金属の粉末から前記第2金属を含む粒子を磁気分離により除去する磁選工程をさらに含む、陽極体の製造方法に関する。 One aspect of the present disclosure is a method of manufacturing an anode body for an electrolytic capacitor, comprising: a powder preparation step of preparing an anode body powder containing a powder of a first metal that is a valve action metal; and sintering to obtain an anode body, wherein the powder of the first metal contains particles containing a second metal having magnetism in addition to the first metal, and the powder for the anode body The present invention relates to a method for manufacturing an anode body, further comprising a magnetic separation step of removing particles containing the second metal from the powder of the first metal by magnetic separation before sintering the powder.
 本開示の他の局面は、多孔質の陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える電解コンデンサを製造する方法であって、上記陽極体の製造方法により、前記陽極体を準備する工程と、前記陽極体の少なくとも一部を前記誘電体層で覆う工程と、前記誘電体層の少なくとも一部を前記固体電解質層で覆う工程と、を含む、電解コンデンサの製造方法に関する。 Another aspect of the present disclosure includes a capacitor element including a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer. A method for manufacturing an electrolytic capacitor, comprising the steps of: preparing the anode body; covering at least a portion of the anode body with the dielectric layer; and a step of covering a portion of the electrolytic capacitor with the solid electrolyte layer.
 本開示のさらに他の局面は、弁作用金属である第1金属の粒子と、磁性を有する第2金属の粒子とを含み、前記第2金属の含有割合は、前記第1金属1kgに対し10mg以下である、電解コンデンサ用の陽極体に関する。 Still another aspect of the present disclosure includes particles of a first metal that is a valve metal and particles of a second metal having magnetism, and the content of the second metal is 10 mg per 1 kg of the first metal. The following relates to anode bodies for electrolytic capacitors.
 本開示のさらに他の局面は、多孔質の陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える電解コンデンサであって、前記陽極体は、弁作用金属である第1金属の粒子と、磁性を有する第2金属の粒子とを含み、前記陽極体における前記第2金属の含有割合は、前記第1金属1kgに対し10mg以下である、電解コンデンサに関する。 Yet another aspect of the present disclosure is a capacitor element including a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer. wherein the anode body contains particles of a first metal that is a valve metal and particles of a second metal having magnetism, and the content ratio of the second metal in the anode body is It relates to an electrolytic capacitor that is 10 mg or less per 1 kg of the first metal.
 本開示によれば、電解コンデンサの信頼性が向上する。 According to the present disclosure, the reliability of electrolytic capacitors is improved.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the present invention are set forth in the appended claims, the present invention, both as to construction and content, together with other objects and features of the present invention, will be further developed by the following detailed description in conjunction with the drawings. will be well understood.
陽極体用粉末から第2金属を含む粒子を分離する磁気分離装置の一例を示す模式的な構成図である。1 is a schematic configuration diagram showing an example of a magnetic separation device for separating particles containing a second metal from anode body powder. FIG. 本開示の一実施形態に係るコンデンサ素子の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a capacitor element according to an embodiment of the present disclosure; FIG. 本開示の一実施形態に係る製造方法により製造される電解コンデンサを模式的に示す断面図である。1 is a cross-sectional view schematically showing an electrolytic capacitor manufactured by a manufacturing method according to an embodiment of the present disclosure; FIG.
 以下、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値、材料等を例示する場合があるが、本開示の効果が得られる限り、他の数値、材料等を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。  Hereinafter, embodiments of the present disclosure will be described with examples, but the present disclosure is not limited to the examples described below. In the following description, specific numerical values, materials, etc. may be exemplified, but other numerical values, materials, etc. may be applied as long as the effects of the present disclosure can be obtained. In this specification, the description "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as "numerical value A or more and numerical value B or less". In the following description, when lower and upper limits of numerical values relating to specific physical properties, conditions, etc. are exemplified, any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than or equal to the upper limit. . When a plurality of materials are exemplified, one of them may be selected and used alone, or two or more may be used in combination. 
 また、本開示は、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。 In addition, the present disclosure encompasses a combination of matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims. In other words, as long as there is no technical contradiction, the matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims can be combined.
 本開示は、電解コンデンサの信頼性不良が発現する要因(モード)の一つとして、陽極体に微量に含まれる金属不純物に由来する要因があり、金属不純物が相当に微量であっても不良が生じ得るという知見に基づく。 According to the present disclosure, one of the factors (modes) that cause poor reliability in electrolytic capacitors is a factor derived from a minute amount of metallic impurities contained in the anode body, and even if the amount of metallic impurities is extremely small, the failure will occur. Based on the knowledge that it can occur.
 本開示の一実施形態に係る電解コンデンサの陽極体の製造方法は、電解コンデンサの陽極体を製造する方法であって、弁作用金属である第1金属の粉末を含む陽極体用粉末を調製する粉調工程と、陽極体用粉末を焼結し、陽極体を得る工程と、を有する。 A method for manufacturing an anode body for an electrolytic capacitor according to an embodiment of the present disclosure is a method for manufacturing an anode body for an electrolytic capacitor, and prepares an anode body powder containing powder of a first metal that is a valve action metal. It has a powder preparation step and a step of sintering the anode body powder to obtain an anode body.
 第1金属の粉末には、第1金属以外に、磁性を有する第2金属(例えば、鉄(Fe))を含む粒子が微量に含まれている。通常、第2金属を含む粒子は陽極体用粉末のサプライヤー側で、ある程度は取り除かれている。例えば、特許文献2に記載されているように、陽極体用粉末に占める鉄不純物の含有率は、質量基準で高々20ppm程度である。しかしながら、第2金属の含有率がこのように低くても、信頼性不良の原因となることが見出された。 In addition to the first metal, the powder of the first metal contains a small amount of particles containing a second magnetic metal (for example, iron (Fe)). Usually, the particles containing the second metal are removed to some extent by the supplier of the anode body powder. For example, as described in Patent Document 2, the content of iron impurities in the anode body powder is at most about 20 ppm on a mass basis. However, it has been found that even such a low content of the second metal causes poor reliability.
 第2金属を含む粒子が陽極体に含まれていると、化成処理により陽極体の表面に誘電体皮膜を形成する際に、第2金属を含む粒子に電流が集中して流れ、周辺の誘電体層の特性が低下する。第2金属を含む粒子の近傍では誘電体層が薄膜化し、または誘電体層が形成されず、絶縁不良が生じる場合がある。 If the particles containing the second metal are contained in the anode body, when the dielectric film is formed on the surface of the anode body by chemical conversion treatment, the current flows intensively in the particles containing the second metal, and the surrounding dielectric Body layer properties are reduced. In the vicinity of the particles containing the second metal, the dielectric layer may be thinned or not formed, resulting in poor insulation.
 第2金属は、陽極体用粉末の主成分を構成する第1金属の粒子のそれぞれに均等に分布しているのではなく、第2金属を含む粒子の形で含まれ得る。換言すると、陽極体用粉末は、大半を占める第1金属の粒子と、微量の第2金属を含む粒子との混合粉末である。故に、陽極体用粉末に占める第2金属の含有量が僅かであっても、陽極体用粉末から必要量を小分けし、複数の陽極体を製造すると、大半の陽極体においては第2金属は実質的に含まれないが、特定の陽極体において第2金属が比較的高い濃度で含まれる場合がある。結果、製造された電解コンデンサのうち、第2金属を高濃度で含む陽極体を用いて製造された電解コンデンサについては、誘電体層の化成不良による性能低下が現れる。 The second metal may be contained in the form of particles containing the second metal instead of being evenly distributed in each of the particles of the first metal constituting the main component of the anode body powder. In other words, the anode body powder is a mixed powder of particles of the first metal, which accounts for the majority, and particles containing a small amount of the second metal. Therefore, even if the content of the second metal in the anode body powder is small, if the necessary amount of the anode body powder is subdivided to produce a plurality of anode bodies, most of the anode bodies contain the second metal. Although substantially free, the second metal may be present in relatively high concentrations in certain anode bodies. As a result, among the manufactured electrolytic capacitors, the electrolytic capacitor manufactured using the anode body containing the second metal at a high concentration shows deterioration in performance due to defective formation of the dielectric layer.
 化成不良となった電解コンデンサの一部は、製造後の初期不良検出工程において取り除かれ得るが、陽極体用粉末の粒子に含まれる第2金属を含む粒子の数が多いと、電解コンデンサ製造の歩留まりが低下することとなる。また、第2金属を含む粒子を含むが、初期不良検出工程を通過した電解コンデンサの一部は、使用に伴う性能低下が早期に現れ、信頼性低下の一因となる。化成不良を抑制する点で、電解コンデンサの陽極体に含まれる第2金属を含む粒子の割合は、10ppm以下(すなわち、第1金属1kgに対し10mg以下)であることが好ましい。 Some of the electrolytic capacitors with chemical conversion defects can be removed in the initial defect detection process after manufacturing, but if the number of particles containing the second metal contained in the particles of the anode body powder is large, the production of electrolytic capacitors will be delayed. A yield will fall. In addition, some electrolytic capacitors that have passed through the initial failure detection process, which contain particles containing the second metal, show early deterioration in performance due to use, which contributes to reduced reliability. From the viewpoint of suppressing poor formation, the proportion of particles containing the second metal contained in the anode body of the electrolytic capacitor is preferably 10 ppm or less (that is, 10 mg or less per 1 kg of the first metal).
 陽極体の製造方法は、陽極体用粉末の焼結前に、第1金属の粉末から第2金属を含む粒子を磁気分離により除去する磁選工程をさらに含む。これにより、第2金属を含む粒子を含む陽極体の数が低減される。よって、この方法で製造された陽極体を用いることで、電解コンデンサ製造の歩留まりが良くなるとともに、信頼性の高い電解コンデンサが得られる。 The anode body manufacturing method further includes a magnetic separation step of removing particles containing the second metal from the powder of the first metal by magnetic separation before sintering the powder for the anode body. This reduces the number of anode bodies containing particles containing the second metal. Therefore, by using the anode body produced by this method, the production yield of the electrolytic capacitor is improved, and a highly reliable electrolytic capacitor can be obtained.
 第1金属の粉末から第2金属を含む粒子を除去する工程では、第1金属の粉末に占める第2金属を含む粒子の割合が第1金属の粉末1kgに対し10mg以下(すなわち、10ppm以下)となるように、第2金属を含む粒子を磁気分離により除去することが好ましい。除去工程後の第1金属の粉末に占める第2金属を含む粒子の割合は、第1金属の粉末1kgに対し5mg以下(すなわち、5ppm以下)もしくは3mg以下(すなわち、3ppm以下)がより好ましい。
 なお、第1金属の粉末1kgに対して、陽極体のサイズにも依るが、大体10,000個の陽極体を製造できる。上記割合が第1金属の粉末1kgに対し10mg以下の場合、第1金属の粉末1kgに含まれる第2金属を含む粒子の数は、例えば50個以下である。
In the step of removing the particles containing the second metal from the powder of the first metal, the ratio of the particles containing the second metal to the powder of the first metal is 10 mg or less (that is, 10 ppm or less) per 1 kg of the powder of the first metal. It is preferable to remove the particles containing the second metal by magnetic separation so that The ratio of particles containing the second metal to the powder of the first metal after the removal step is more preferably 5 mg or less (that is, 5 ppm or less) or 3 mg or less (that is, 3 ppm or less) with respect to 1 kg of the first metal powder.
About 10,000 anode bodies can be manufactured from 1 kg of the powder of the first metal, depending on the size of the anode body. When the ratio is 10 mg or less per 1 kg of the first metal powder, the number of particles containing the second metal contained in 1 kg of the first metal powder is, for example, 50 or less.
 電解コンデンサの小型化の要請に伴い、陽極体のサイズを小さくするほど、陽極体の全体に占める第2金属を含む粒子の割合が相対的に大きくなり、前述の化成不良が顕在化する。よって、陽極体用粉末に含まれる第2金属を含む粒子の割合を予め低減しておくことが重要である。 With the demand for miniaturization of electrolytic capacitors, as the size of the anode body is reduced, the percentage of particles containing the second metal in the entire anode body becomes relatively large, and the above-mentioned chemical conversion failure becomes apparent. Therefore, it is important to previously reduce the proportion of particles containing the second metal contained in the anode body powder.
 第2金属を含む粒子は、第2金属に加えて、磁性を有さない金属(第1金属を除く)を含み得る。第2金属を含む粒子は、第2金属と、磁性を有さない金属との合金の粒子であり得る。この場合、第1金属の粉末に占める第2金属を含む粒子の割合は、第2金属の質量だけではなく、粒子における合金全体の質量に基づいて算出する。
 第2金属を含む粒子は、例えば、ステンレス鋼(SUS)の粒子を含んでいてもよい。この場合、第2金属を含む粒子には、第2金属である鉄(Fe)と、クロム(Cr)が含まれる。
Particles containing a second metal may contain a non-magnetic metal (excluding the first metal) in addition to the second metal. The particles containing the second metal can be particles of an alloy of the second metal and a non-magnetic metal. In this case, the ratio of the particles containing the second metal to the powder of the first metal is calculated based on not only the mass of the second metal but also the mass of the entire alloy in the particles.
The particles containing the second metal may include, for example, stainless steel (SUS) particles. In this case, the particles containing the second metal include iron (Fe), which is the second metal, and chromium (Cr).
 第2金属を含む粒子の除去は、紛調前の陽極体用粉末に対して行ってもよく、紛調後の陽極体用粉末に対して行ってもよいが、陽極体用粉末に結着剤を含ませる場合、後述するように、紛調後の陽極体用粉末に対して行うことが好ましい。 The removal of the particles containing the second metal may be performed on the anode body powder before powder adjustment, or may be performed on the anode body powder after powder adjustment. When the agent is added, it is preferable to add the agent to the anode body powder after powder conditioning, as will be described later.
 粉調工程は、第1金属の粉末に結着剤を混合して攪拌し、陽極体用粉末を調製する工程であってもよい。結着剤を含む陽極体用粉末を成型し、焼結することで、陽極体の焼結性がよく、多孔質な陽極体の品質を高められる。この場合、第2金属を含む粒子の除去は、粉調工程後の結着剤を含む陽極体用粉末に対して行ってもよい。 The powder preparation step may be a step of mixing the powder of the first metal with a binder and stirring to prepare the powder for the anode body. By molding and sintering the anode body powder containing the binder, the sinterability of the anode body is good and the quality of the porous anode body can be improved. In this case, the particles containing the second metal may be removed from the anode body powder containing the binder after the powder preparation step.
 紛調工程では、第1金属の粉末と、結着剤を容器に入れ、振とうさせることによって、陽極体用粉末が調製され得る。このとき、容器の内表面が第1金属の粒子と衝突することによって削られ、容器を構成する金属の粒子が第1金属の粉末に混入することがある。例えば、容器がステンレス鋼製の場合、鉄(Fe)、クロム(Cr)、ニッケル(Ni)などの金属を含む粒子が第1金属の粉末に混入し得る。特に、第1金属がタンタル(Ta)を含む場合、タンタル粒子は硬いため、タンタル粒子の衝突により容器の内表面が削られ易く、容器を構成する金属の粒子が、第2金属を含む粒子として陽極体用粉末に混入し易い。 In the powder adjusting step, the powder for the anode body can be prepared by putting the powder of the first metal and the binder in a container and shaking them. At this time, the inner surface of the container may be scraped by colliding with the particles of the first metal, and the particles of the metal forming the container may be mixed with the powder of the first metal. For example, if the container is made of stainless steel, particles containing metals such as iron (Fe), chromium (Cr), nickel (Ni), etc. may be mixed with the powder of the first metal. In particular, when the first metal contains tantalum (Ta), since the tantalum particles are hard, the inner surface of the container is likely to be scraped by the collision of the tantalum particles. It is easily mixed with the powder for the anode body.
 そこで、粉調工程後に、陽極体用粉末から第2金属を含む粒子を除去する磁選工程を設けることで、第2金属を含む粒子を含む陽極体の数が低減され、電解コンデンサ製造の歩留まりが良くなるとともに、信頼性の高い電解コンデンサが得られる。 Therefore, by providing a magnetic separation step for removing the particles containing the second metal from the anode body powder after the powder preparation process, the number of anode bodies containing particles containing the second metal is reduced, and the yield of electrolytic capacitor production is increased. and a highly reliable electrolytic capacitor can be obtained.
 第1金属は、例えば、タンタル(Ta)を含む。第2金属は、例えば、鉄(Fe)、およびニッケル(Ni)からなる群より選択される少なくとも1種を含み得る。 The first metal includes, for example, tantalum (Ta). The second metal may include, for example, at least one selected from the group consisting of iron (Fe) and nickel (Ni).
 第2金属を含む粒子の除去に、磁気を帯びたふるいを用いてもよい。陽極体用粉末をふるいに通すことにより、第1金属の粒子が篩を通過する一方、第2金属を含む粒子はふるいに付着する。よって、陽極体用粉末から第2金属を含む粒子を分離除去することができる。ふるいを水平方向および/または上下方向に振動させながら、陽極体用粉末をふるいに通してもよい。陽極体用粉末の粒子が凝集した大粒子の状態で分離除去が行われるのを避けるために、陽極体用粉末の通過側(陽極体用粉末を投入する側と反対側)からふるいに向かってガス流を供給してもよい。陽極体用粉末を複数のふるいに通してもよい。例えば、陽極体用粉末を磁気を帯びたふるいに通す工程を複数回行ってもよい。 A magnetic sieve may be used to remove particles containing the second metal. By passing the anode body powder through the sieve, the particles of the first metal pass through the sieve while the particles containing the second metal adhere to the sieve. Therefore, the particles containing the second metal can be separated and removed from the anode body powder. The anode body powder may be passed through the sieve while vibrating the sieve horizontally and/or vertically. In order to avoid separation and removal of the particles of the anode body powder in a state of agglomerated large particles, the anode body powder passing side (the side opposite to the side where the anode body powder is fed) is moved toward the sieve. A gas stream may be supplied. The anode body powder may be passed through multiple sieves. For example, the step of passing the anode body powder through a magnetic sieve may be performed multiple times.
 他の例として、図1に示すベルトコンベアを用いてもよい。しかしながら、第2金属を含む粒子の分離方法としては、上述のふるいを用いる方法、およびベルトコンベアを用いる方法に限られるものではない。 As another example, the belt conveyor shown in Fig. 1 may be used. However, the method for separating particles containing the second metal is not limited to the method using a sieve and the method using a belt conveyor.
 図1に示す例では、磁気分離装置100は、ベルト101、および磁気ローラー102を有するベルトコンベア103を備える。ベルト101の上に載置された陽極体用粉末110は、ドクターブレード104によって均一な厚みに均されながら、ベルト101上を磁気ローラー102の側に向かって搬送され、磁気ローラー102の端部(例えば、図1の位置P)において落下する。このとき、第2金属を含む粒子には、磁気ローラー102の磁力による吸着力が働き、下向きの重力と対抗するため、第2金属を含む粒子の落下位置は第1金属の粒子よりも磁気ローラーの回転方向側(例えば、図1の位置Q)になる。これにより、陽極体用粉末から第2金属を含む粒子を分離することができる。 In the example shown in FIG. 1 , the magnetic separation device 100 includes a belt 101 and a belt conveyor 103 having magnetic rollers 102 . The anode body powder 110 placed on the belt 101 is conveyed on the belt 101 toward the side of the magnetic roller 102 while being flattened to a uniform thickness by the doctor blade 104, and reaches the end of the magnetic roller 102 ( For example, it falls at position P) in FIG. At this time, the particles containing the second metal are attracted by the magnetic force of the magnetic roller 102 and oppose the downward gravitational force. (for example, position Q in FIG. 1). Thereby, the particles containing the second metal can be separated from the anode body powder.
 本開示の一実施形態に係る陽極体は、弁作用金属である第1金属の粒子と、磁性を有する第2金属の粒子とを含み、第2金属の含有割合は、第1金属1kgに対し10mg以下である。換言すれば、第2金属の含有割合は、100×(10/1000000)質量%以下(0.001質量%以下)である。 An anode body according to an embodiment of the present disclosure includes particles of a first metal that is a valve metal and particles of a second metal having magnetism, and the content of the second metal is 10 mg or less. In other words, the content of the second metal is 100×(10/1000000)% by mass or less (0.001% by mass or less).
 本開示の一実施形態に係る電解コンデンサの製造方法は、多孔質の陽極体と、陽極体の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える電解コンデンサを製造する方法であって、陽極体を準備する工程と、陽極体の少なくとも一部を誘電体層で覆う工程と、誘電体層の少なくとも一部を固体電解質層で覆う工程と、を含む。陽極体を準備する工程では、上記陽極体の製造方法によって製造された陽極体が準備される。 A method for manufacturing an electrolytic capacitor according to an embodiment of the present disclosure includes a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer. A method of manufacturing an electrolytic capacitor comprising a capacitor element comprising: providing an anode body; covering at least a portion of the anode body with a dielectric layer; and a covering step. In the step of preparing the anode body, the anode body manufactured by the method for manufacturing the anode body is prepared.
 本開示の一実施形態に係る電解コンデンサは、多孔質の陽極体と、陽極体の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える。陽極体は、弁作用金属である第1金属の粒子を含み、さらに、第1金属以外の磁性を有する第2金属を含む粒子を微量に含む。陽極体における第2金属の含有割合は、第1金属1kgに対し10mg以下もしくは0.001質量%以下である。陽極体における第2金属の含有割合は、例えばICP発光分光などの元素分析法により算出することができる。 An electrolytic capacitor according to an embodiment of the present disclosure is a capacitor element including a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer. Prepare. The anode body contains particles of a first metal, which is a valve metal, and a small amount of particles containing a second metal having magnetism other than the first metal. The content of the second metal in the anode body is 10 mg or less or 0.001% by mass or less per 1 kg of the first metal. The content ratio of the second metal in the anode body can be calculated by, for example, an elemental analysis method such as ICP emission spectroscopy.
 以下に、本実施形態に係る陽極体の製造方法および電解コンデンサの製造方法について、適宜図面を参照しながら説明する。しかしながら、本発明はこれに限定されるものではない。図2は、本実施形態に係るコンデンサ素子の一例を模式的に示す断面図である。図3は、本実施形態に係る製造方法により製造される電解コンデンサの断面模式図である。 A method for manufacturing an anode body and a method for manufacturing an electrolytic capacitor according to the present embodiment will be described below with reference to the drawings as appropriate. However, the invention is not limited to this. FIG. 2 is a cross-sectional view schematically showing an example of the capacitor element according to this embodiment. FIG. 3 is a schematic cross-sectional view of an electrolytic capacitor manufactured by the manufacturing method according to this embodiment.
 電解コンデンサ20は、陽極部6および陰極部7を有するコンデンサ素子10と、コンデンサ素子10を封止する外装体11と、陽極部6と電気的に接続し、かつ、外装体11から一部が露出する陽極リード端子13と、陰極部7と電気的に接続し、かつ、外装体11から一部が露出する陰極リード端子14と、を備えている。陽極部6は、陽極体1と陽極ワイヤ2とを有する。陽極体の表面に誘電体層3が形成されている。陰極部7は、誘電体層3の少なくとも一部を覆う固体電解質層4と、固体電解質層4の表面を覆う陰極層5とを有する。 Electrolytic capacitor 20 is electrically connected to capacitor element 10 having anode portion 6 and cathode portion 7, exterior body 11 that seals capacitor element 10, and anode section 6, and a portion of exterior body 11 extends from An exposed anode lead terminal 13 and a cathode lead terminal 14 electrically connected to the cathode section 7 and partly exposed from the exterior body 11 are provided. Anode section 6 has anode body 1 and anode wire 2 . A dielectric layer 3 is formed on the surface of the anode body. Cathode portion 7 has solid electrolyte layer 4 covering at least a portion of dielectric layer 3 and cathode layer 5 covering the surface of solid electrolyte layer 4 .
<コンデンサ素子>
 以下、コンデンサ素子10について、電解質として固体電解質層を備える場合を例に挙げて、詳細に説明する。
<Capacitor element>
Hereinafter, capacitor element 10 will be described in detail, taking as an example a case in which a solid electrolyte layer is provided as an electrolyte.
 陽極部6は、陽極体1と、陽極体1の一面から延出して陽極リード端子13と電気的に接続する陽極ワイヤ2と、を有する。
 陽極体1は、例えば、第1金属の粒子を焼結して得られる直方体の多孔質焼結体である。第1金属の粒子として、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)などの弁作用金属の粒子が用いられる。陽極体1には、1種または2種以上の第1金属の粒子が用いられる。第1金属の粒子は、2種以上の金属からなる合金であってもよい。2種以上の金属のうち、少なくとも1種は第1金属である。例えば、弁作用金属(第1金属)と、ケイ素、バナジウム、ホウ素等とを含む合金を用いることができる。また、弁作用金属と窒素等の典型元素とを含む化合物を用いてもよい。弁作用金属の合金は、弁作用金属(第1金属)を主成分とし、例えば、弁作用金属(第1金属)を50原子%以上含む。
Anode section 6 has anode body 1 and anode wire 2 extending from one surface of anode body 1 and electrically connected to anode lead terminal 13 .
Anode body 1 is, for example, a cuboid porous sintered body obtained by sintering particles of a first metal. As the particles of the first metal, particles of valve action metal such as titanium (Ti), tantalum (Ta), niobium (Nb) are used. Particles of one or more first metals are used in anode body 1 . The particles of the first metal may be an alloy of two or more metals. At least one of the two or more metals is the first metal. For example, an alloy containing a valve action metal (first metal) and silicon, vanadium, boron, or the like can be used. A compound containing a valve action metal and a typical element such as nitrogen may also be used. The alloy of the valve action metal is mainly composed of the valve action metal (first metal), and contains, for example, 50 atomic % or more of the valve action metal (first metal).
 陽極ワイヤ2は、導電性材料から構成されている。陽極ワイヤ2の材料は特に限定されず、例えば、上記弁作用金属の他、銅、アルミニウム、アルミニウム合金等が挙げられる。陽極体1および陽極ワイヤ2を構成する材料は、同種であってもよいし、異種であってもよい。陽極ワイヤ2は、陽極体1の一面から陽極体1の内部へ埋設された第一部分2aと、陽極体1の上記一面から延出した第二部分2bと、を有する。陽極ワイヤ2の断面形状は特に限定されず、円形、トラック形(互いに平行な直線とこれら直線の端部同士を繋ぐ2本の曲線とからなる形状)、楕円形、矩形、多角形等が挙げられる。 The anode wire 2 is made of a conductive material. The material of the anode wire 2 is not particularly limited, and examples thereof include the above-described valve action metals, copper, aluminum, aluminum alloys, and the like. The materials constituting anode body 1 and anode wire 2 may be of the same type or of different types. Anode wire 2 has a first portion 2 a embedded inside anode body 1 from one surface of anode body 1 and a second portion 2 b extending from the one surface of anode body 1 . The cross-sectional shape of the anode wire 2 is not particularly limited, and may be circular, track-shaped (a shape consisting of mutually parallel straight lines and two curved lines connecting the ends of these straight lines), elliptical, rectangular, polygonal, and the like. be done.
 陽極部6は、例えば、第一部分2aを上記第1金属の粒子の粉体中に埋め込んだ状態で直方体状に加圧成形し、焼結することにより作製される。これにより、陽極体1の一面から、陽極ワイヤ2の第二部分2bが植立するように引き出される。第二部分2bは、溶接等により、陽極リード端子13と接合されて、陽極ワイヤ2と陽極リード端子13とが電気的に接続する。溶接の方法は特に限定されず、抵抗溶接、レーザー溶接等が挙げられる。その後、直方体の角部分に曲面を形成する加工が施され得る。 The anode portion 6 is produced, for example, by embedding the first portion 2a in the powder of the first metal particles, molding the first portion 2a into a rectangular parallelepiped shape, and sintering the first portion. As a result, the second portion 2b of the anode wire 2 is pulled out from one surface of the anode body 1 so as to be erected. The second portion 2b is joined to the anode lead terminal 13 by welding or the like, so that the anode wire 2 and the anode lead terminal 13 are electrically connected. The welding method is not particularly limited, and includes resistance welding, laser welding, and the like. After that, the corners of the rectangular parallelepiped can be processed to form curved surfaces.
 陽極体1の表面には、誘電体層3が形成されている。誘電体層3は、例えば、金属酸化物から構成されている。陽極体1の表面に金属酸化物を含む層を形成する方法として、例えば、化成液中に陽極体1を浸漬して陽極体1の表面を陽極酸化する方法や、陽極体1を、酸素を含む雰囲気下で加熱する方法が挙げられる。誘電体層3は、上記金属酸化物を含む層に限定されず、絶縁性を有していればよい。 A dielectric layer 3 is formed on the surface of the anode body 1 . The dielectric layer 3 is made of metal oxide, for example. As a method for forming a layer containing a metal oxide on the surface of anode body 1, for example, anode body 1 is immersed in a chemical solution to anodize the surface of anode body 1, or anode body 1 is immersed in oxygen. A method of heating in an atmosphere containing The dielectric layer 3 is not limited to the layer containing the above-mentioned metal oxide, and may have insulating properties.
(陰極部)
 陰極部7は、固体電解質層4と、固体電解質層4を覆う陰極層5とを有している。固体電解質層4は、誘電体層3の少なくとも一部を覆うように形成されている。
(cathode)
The cathode section 7 has a solid electrolyte layer 4 and a cathode layer 5 covering the solid electrolyte layer 4 . Solid electrolyte layer 4 is formed to cover at least a portion of dielectric layer 3 .
 固体電解質層4には、例えば、マンガン化合物や導電性高分子が用いられる。導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、などが挙げられる。これらは、単独で用いてもよく、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体でもよい。導電性に優れる点で、ポリチオフェン、ポリアニリン、ポリピロールであってもよい。特に、撥水性に優れる点で、ポリピロールであってもよい。 For example, a manganese compound or a conductive polymer is used for the solid electrolyte layer 4 . Examples of conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and the like. These may be used alone, or may be used in combination. Also, the conductive polymer may be a copolymer of two or more monomers. Polythiophene, polyaniline, and polypyrrole may be used from the viewpoint of excellent conductivity. In particular, polypyrrole may be used because of its excellent water repellency.
 上記導電性高分子を含む固体電解質層4は、例えば、原料モノマーを誘電体層3上で重合することにより、形成される。あるいは、上記導電性高分子を含んだ液を誘電体層3に塗布することにより形成される。固体電解質層4は、1層または2層以上の固体電解質層から構成されている。固体電解質層4が2層以上から構成されている場合、各層に用いられる導電性高分子の組成や形成方法(重合方法)等は異なっていてもよい。 The solid electrolyte layer 4 containing the conductive polymer is formed, for example, by polymerizing raw material monomers on the dielectric layer 3 . Alternatively, it is formed by coating the dielectric layer 3 with a liquid containing the conductive polymer. The solid electrolyte layer 4 is composed of one or more solid electrolyte layers. When the solid electrolyte layer 4 is composed of two or more layers, the composition and formation method (polymerization method) of the conductive polymer used for each layer may be different.
 なお、本明細書では、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどは、それぞれ、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどには、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。 In this specification, polypyrrole, polythiophene, polyfuran, polyaniline, etc. mean polymers having polypyrrole, polythiophene, polyfuran, polyaniline, etc. as a basic skeleton, respectively. Therefore, polypyrrole, polythiophene, polyfuran, polyaniline, etc. may also include their respective derivatives. For example, polythiophenes include poly(3,4-ethylenedioxythiophene) and the like.
 導電性高分子を形成するための重合液、導電性高分子の溶液または分散液には、導電性高分子の導電性を向上させるために、様々なドーパントを添加してもよい。ドーパントは、特に限定されないが、例えば、ナフタレンスルホン酸、p-トルエンスルホン酸、ポリスチレンスルホン酸などが挙げられる。 Various dopants may be added to the polymerization liquid, solution or dispersion of the conductive polymer for forming the conductive polymer, in order to improve the conductivity of the conductive polymer. Although the dopant is not particularly limited, naphthalenesulfonic acid, p-toluenesulfonic acid, polystyrenesulfonic acid and the like can be mentioned, for example.
 導電性高分子が、粒子の状態で分散媒に分散している場合、その粒子の平均粒径D50は、例えば0.01μm以上、0.5μm以下である。粒子の平均粒径D50がこの範囲であれば、陽極体1の内部にまで粒子が侵入し易くなる。 When the conductive polymer is dispersed in the dispersion medium in the form of particles, the average particle diameter D50 of the particles is, for example, 0.01 μm or more and 0.5 μm or less. If the average particle size D50 of the particles is within this range, the particles can easily penetrate into the anode body 1 .
 陰極層5は、例えば、固体電解質層4を覆うように形成されたカーボン層5aと、カーボン層5aの表面に形成された金属ペースト層5bと、を有している。カーボン層5aは、黒鉛等の導電性炭素材料と樹脂を含む。金属ペースト層5bは、例えば、金属粒子(例えば、銀)と樹脂とを含む。なお、陰極層5の構成は、この構成に限定されない。陰極層5の構成は、集電機能を有する構成であればよい。 The cathode layer 5 has, for example, a carbon layer 5a formed to cover the solid electrolyte layer 4 and a metal paste layer 5b formed on the surface of the carbon layer 5a. The carbon layer 5a contains a conductive carbon material such as graphite and a resin. The metal paste layer 5b contains, for example, metal particles (for example, silver) and resin. In addition, the structure of the cathode layer 5 is not limited to this structure. The configuration of the cathode layer 5 may be any configuration as long as it has a current collecting function.
<陽極リード端子>
 陽極リード端子13は、陽極ワイヤ2の第二部分2bを介して、陽極体1と電気的に接続している。陽極リード端子13の材質は、電気化学的および化学的に安定であり、導電性を有するものであれば特に限定されない。陽極リード端子13は、例えば銅等の金属であってもよいし、非金属であってもよい。その形状は平板状であれば、特に限定されない。陽極リード端子13の厚み(陽極リード端子13の主面間の距離)は、低背化の観点から、25μm以上、200μm以下であってよく、25μm以上、100μm以下であってよい。
<Anode lead terminal>
Anode lead terminal 13 is electrically connected to anode body 1 through second portion 2 b of anode wire 2 . The material of anode lead terminal 13 is not particularly limited as long as it is electrochemically and chemically stable and has conductivity. The anode lead terminal 13 may be made of metal such as copper, or may be made of non-metal. The shape is not particularly limited as long as it is flat. The thickness of anode lead terminal 13 (the distance between the main surfaces of anode lead terminal 13) may be 25 μm or more and 200 μm or less, and may be 25 μm or more and 100 μm or less, from the viewpoint of height reduction.
 陽極リード端子13の一端は、導電性接着材やはんだにより、陽極ワイヤ2に接合されてもよいし、抵抗溶接やレーザー溶接により、陽極ワイヤ2に接合されてもよい。陽極リード端子13の他方の端部は、外装体11の外部へと導出されて、外装体11から露出している。導電性接着材は、例えば後述する熱硬化性樹脂と炭素粒子や金属粒子との混合物である。 One end of the anode lead terminal 13 may be joined to the anode wire 2 with a conductive adhesive or solder, or may be joined to the anode wire 2 by resistance welding or laser welding. The other end of anode lead terminal 13 is led out of package 11 and exposed from package 11 . The conductive adhesive is, for example, a mixture of a thermosetting resin, which will be described later, and carbon particles or metal particles.
<陰極リード端子>
 陰極リード端子14は、接合部14aにおいて陰極部7と電気的に接続している。接合部14aは、陰極層5と陰極層5に接合された陰極リード端子14とを、陰極層5の法線方向からみたとき、陰極リード端子14の陰極層5に重複する部分である。
<Cathode lead terminal>
The cathode lead terminal 14 is electrically connected to the cathode portion 7 at the joint portion 14a. When the cathode layer 5 and the cathode lead terminal 14 joined to the cathode layer 5 are viewed from the normal direction of the cathode layer 5 , the junction portion 14 a is a portion where the cathode lead terminal 14 overlaps the cathode layer 5 .
 陰極リード端子14は、例えば、導電性接着材8を介して、陰極層5に接合される。陰極リード端子14の一方の端部は、例えば接合部14aの一部を構成しており、外装体11の内部に配置される。陰極リード端子14の他方の端部は、外部へと導出されている。そのため、陰極リード端子14の他方の端部を含む一部は、外装体11から露出している。 The cathode lead terminal 14 is joined to the cathode layer 5 via a conductive adhesive 8, for example. One end of the cathode lead terminal 14 constitutes, for example, a part of the joint portion 14 a and is arranged inside the exterior body 11 . The other end of the cathode lead terminal 14 is led out to the outside. Therefore, a portion including the other end of cathode lead terminal 14 is exposed from exterior body 11 .
 陰極リード端子14の材質も、電気化学的および化学的に安定であり、導電性を有するものであれば、特に限定されない。陰極リード端子14は、例えば銅等の金属であってもよいし、非金属であってもよい。その形状も特に限定されず、例えば、長尺かつ平板状である。陰極リード端子14の厚みは、低背化の観点から、25μm以上200μm以下であってもよく、25μm以上100μm以下であってもよい。 The material of the cathode lead terminal 14 is also not particularly limited as long as it is electrochemically and chemically stable and has conductivity. The cathode lead terminal 14 may be made of metal such as copper, or may be made of non-metal. The shape is not particularly limited, either, and for example, it is long and flat. The thickness of the cathode lead terminal 14 may be 25 μm or more and 200 μm or less, or may be 25 μm or more and 100 μm or less, from the viewpoint of height reduction.
<外装体>
 外装体11は、陽極リード端子13と陰極リード端子14とを電気的に絶縁するために設けられており、絶縁性の材料(外装体材料)から構成されている。外装体材料は、例えば、熱硬化性樹脂を含む。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、ポリイミド、不飽和ポリエステル等が挙げられる。
<Exterior body>
The exterior body 11 is provided to electrically insulate the anode lead terminal 13 and the cathode lead terminal 14, and is made of an insulating material (sheath material). The exterior body material includes, for example, thermosetting resin. Examples of thermosetting resins include epoxy resins, phenol resins, silicone resins, melamine resins, urea resins, alkyd resins, polyurethanes, polyimides, unsaturated polyesters, and the like.
≪電解コンデンサの製造方法≫
 以下に、本実施形態に係る電解コンデンサの製造方法の一例を説明する。
≪Manufacturing method of electrolytic capacitor≫
An example of the method for manufacturing the electrolytic capacitor according to this embodiment will be described below.
(1)陽極体の準備工程
 先ず、陽極体を準備する。陽極体は、弁作用金属である第1金属の粉末を含む陽極体用粉末を調製する粉調工程と、陽極体用粉末を焼結し、陽極体を得る工程と、を有する製造方法により製造される。
(1) Anode Body Preparing Step First, an anode body is prepared. The anode body is manufactured by a manufacturing method including a powder preparation step of preparing an anode body powder containing a powder of a first metal that is a valve metal, and a step of sintering the anode body powder to obtain an anode body. be done.
 紛調工程では、例えば、第1金属の粉末を振とう機に入れて攪拌し、陽極体用粉末を得る。 In the powder adjustment process, for example, the powder of the first metal is placed in a shaker and stirred to obtain powder for the anode body.
 第1金属の粉末とともに結着剤を振とう機に投入し、陽極体用粉末の紛調を行ってもよい。これにより、陽極体用粉末の流動性が改善し、成形性が良くなる。また、焼結工程において粒子間が強固に結合し、細孔が緻密に形成される。結着剤としては、ポリアクリルカーボネートなどが挙げられる。結着剤は、ブタノールやメタノールなどの溶媒に溶解した溶液または分散した分散液の形で、第1金属の粉末と混合してもよい。 The binder may be put into a shaker together with the powder of the first metal to adjust the powder for the anode body. This improves the fluidity of the anode body powder and improves the moldability. Further, in the sintering process, the particles are strongly bonded to form fine pores. A polyacryl carbonate etc. are mentioned as a binder. The binder may be mixed with the first metal powder in the form of a solution or dispersed dispersion in a solvent such as butanol or methanol.
 続いて、陽極体用粉末と陽極ワイヤ2とを、第一部分2aが陽極体用粉末に埋め込まれるように型に入れ、加圧成形する。その後、成形体を焼結することにより、第1金属の多孔質焼結体である陽極体1を含む陽極部6を得る。陽極ワイヤの第一部分2aは、多孔質焼結体の一面からその内部に埋設されている。加圧成形の際の圧力は特に限定されない。焼結は、減圧下で行なうことが好ましい。焼結時の温度は、例えば1200℃~1400℃の高温である。焼結時の高温により、陽極体用粉末に含まれる結着剤や溶媒などの有機成分は除去される。焼結に先立って、例えば300℃~500℃での比較的低温での熱処理を行い、結着剤を除去してもよい。焼結により、第1金属の粒子の表面が溶融し、第1金属の粒子間に隙間を保持しながら、第1金属の粒子同士、および第1金属の粒子と陽極ワイヤの第一部分2aとが結合することにより電気的に接続する。 Subsequently, the anode body powder and the anode wire 2 are put into a mold so that the first portion 2a is embedded in the anode body powder, and pressure-molded. After that, by sintering the molded body, the anode part 6 including the anode body 1, which is a porous sintered body of the first metal, is obtained. A first portion 2a of the anode wire is embedded inside the porous sintered body from one side thereof. The pressure during pressure molding is not particularly limited. Sintering is preferably performed under reduced pressure. The temperature during sintering is a high temperature of, for example, 1200.degree. C. to 1400.degree. Organic components such as binders and solvents contained in the anode body powder are removed by the high temperature during sintering. Prior to sintering, heat treatment at a relatively low temperature, eg, 300° C. to 500° C., may be performed to remove the binder. By sintering, the surfaces of the particles of the first metal are melted, and the particles of the first metal and the particles of the first metal and the first portion 2a of the anode wire are bonded to each other while maintaining gaps between the particles of the first metal. Electrically connected by bonding.
 第1金属の粒子には、通常、磁性を有する第2金属の粒子が微量に含まれている。焼結後の陽極体に第2金属の粒子が含まれていると、その後の化成処理による誘電体層の形成が不十分となり、電解コンデンサの信頼性が低下する場合がある。そこで、加圧成形の前に、第1金属の粒子から第2金属を含む粒子を除去する磁選工程が別途行われる。磁選工程では、上述したように、磁気ふるいを用いて第2金属を含む粒子を除去してもよいし、図1に示すベルトコンベアを用いて第2金属を含む粒子を除去してもよい。除去方法は、これらの方法に限定されるものではない。 The particles of the first metal usually contain a small amount of particles of the second metal having magnetism. If the anode body after sintering contains particles of the second metal, the formation of the dielectric layer by subsequent chemical conversion treatment may be insufficient, and the reliability of the electrolytic capacitor may decrease. Therefore, before pressure molding, a separate magnetic separation step is performed to remove the particles containing the second metal from the particles of the first metal. In the magnetic separation step, as described above, the particles containing the second metal may be removed using a magnetic sieve, or the particles containing the second metal may be removed using the belt conveyor shown in FIG. The removing method is not limited to these methods.
 第2金属を含む粒子の除去は、粉調工程の前に行ってもよいし、紛調工程の後に行ってもよい。しかしながら、粉調工程では、第1金属の粉末を振とう機に投入して攪拌し、陽極体用粉末を得る際に、振とう機の容器内壁の金属成分が第1金属の粉末との衝突によって削られ、陽極体用粉末に混入する場合がある。例えば、容器がステンレス鋼(SUS)製の場合、鉄、クロム、ニッケルなどの金属を含む粒子が陽極体用粉末に含まれ得る。振とう機の容器に由来する磁性金属粒子を除去できる点で、磁選工程は、紛調工程の後に行うことが好ましい。 The removal of particles containing the second metal may be performed before the powder adjustment process or after the powder adjustment process. However, in the powder preparation step, the powder of the first metal is put into a shaker and stirred to obtain the powder for the anode body. may be scraped off by the powder and mixed into the powder for the anode body. For example, when the container is made of stainless steel (SUS), the anode body powder may contain particles containing metals such as iron, chromium, and nickel. The magnetic separation step is preferably carried out after the powder adjustment step in that the magnetic metal particles originating from the container of the shaker can be removed.
 陽極体用粉末は、通常、直方体の内部空間を有する型を用いて加圧成形され、焼結される。この場合、焼結後の陽極体1の形状も直方体である。 The powder for the anode body is usually pressure-molded and sintered using a mold with a rectangular parallelepiped internal space. In this case, the shape of anode body 1 after sintering is also a rectangular parallelepiped.
(2)誘電体層の形成工程
 次に、陽極体1を化成処理し、陽極体1の少なくとも一部を誘電体層3で覆う。具体的には、電解水溶液(例えば、リン酸水溶液)が満たされた化成槽に、陽極体1を浸漬し、陽極ワイヤ2の第二部分2bを化成槽の陽極体に接続して、陽極酸化を行うことにより、多孔質部分の表面に弁作用金属の酸化被膜からなる誘電体層3を形成することができる。電解水溶液としては、リン酸水溶液に限らず、硝酸、酢酸、硫酸などを用いることができる。
(2) Step of Forming Dielectric Layer Next, anode body 1 is subjected to chemical conversion treatment, and at least a portion of anode body 1 is covered with dielectric layer 3 . Specifically, the anode body 1 is immersed in an anodizing tank filled with an electrolytic aqueous solution (for example, a phosphoric acid aqueous solution), the second portion 2b of the anode wire 2 is connected to the anode body in the anodizing tank, and anodization is performed. can form the dielectric layer 3 made of an oxide film of the valve action metal on the surface of the porous portion. The electrolytic aqueous solution is not limited to the phosphoric acid aqueous solution, and nitric acid, acetic acid, sulfuric acid, or the like can be used.
(3)固体電解質層の形成工程
 続いて、誘電体層3の少なくとも一部を固体電解質層4で覆う。これにより、陽極体1、誘電体層3、および固体電解質層4を含むコンデンサ素子10を得る。
 導電性高分子を含む固体電解質層4は、例えば、誘電体層3が形成された陽極体1に、モノマーやオリゴマーを含浸させ、その後、化学重合や電解重合によりモノマーやオリゴマーを重合させる方法、あるいは、誘電体層3が形成された陽極体1に、導電性高分子の溶液または分散液を含浸し、乾燥させることにより、誘電体層3の少なくとも一部に形成される。
(3) Step of Forming Solid Electrolyte Layer Subsequently, at least part of the dielectric layer 3 is covered with the solid electrolyte layer 4 . Capacitor element 10 including anode body 1 , dielectric layer 3 , and solid electrolyte layer 4 is thus obtained.
The solid electrolyte layer 4 containing a conductive polymer is produced by, for example, impregnating the anode body 1 on which the dielectric layer 3 is formed with a monomer or oligomer, and then polymerizing the monomer or oligomer by chemical polymerization or electrolytic polymerization. Alternatively, anode body 1 having dielectric layer 3 formed thereon is impregnated with a solution or dispersion of a conductive polymer, followed by drying to form at least part of dielectric layer 3 .
 固体電解質層4は、例えば、誘電体層3が形成された陽極体1を、導電性高分子とバインダと分散媒とを含む分散液に含浸し、取り出して、乾燥させることにより形成され得る。分散液には、バインダ、および/または導電性の無機粒子(例えば、カーボンブラックなどの導電性炭素材料)が含まれていてもよい。また、導電性高分子には、ドーパントが含まれていてもよい。導電性高分子およびドーパントとしては、それぞれ、固体電解質層4について例示したものから選択すればよい。バインダは、公知のものを利用できる。分散液は、固体電解質層を形成する際に使用される公知の添加剤を含んでもよい。 The solid electrolyte layer 4 can be formed, for example, by impregnating the anode body 1 with the dielectric layer 3 formed thereon in a dispersion liquid containing a conductive polymer, a binder, and a dispersion medium, taking it out, and drying it. The dispersion may include a binder and/or conductive inorganic particles (eg, a conductive carbon material such as carbon black). Also, the conductive polymer may contain a dopant. The conductive polymer and dopant may be selected from those exemplified for the solid electrolyte layer 4, respectively. A known binder can be used. The dispersion may contain known additives used in forming the solid electrolyte layer.
 続いて、固体電解質層4の表面に、カーボンペーストおよび金属ペーストを順次、塗布することにより、カーボン層5aと金属ペースト層5bとで構成される陰極層5を形成する。陰極層5の構成は、これに限られず、集電機能を有する構成であればよい。 Subsequently, a carbon paste and a metal paste are sequentially applied to the surface of the solid electrolyte layer 4 to form the cathode layer 5 composed of the carbon layer 5a and the metal paste layer 5b. The configuration of the cathode layer 5 is not limited to this, as long as it has a current collecting function.
 次に、陽極リード端子13と陰極リード端子14とを準備する。陽極体1から植立する陽極ワイヤ2の第二部分2bを、レーザー溶接や抵抗溶接などにより、陽極リード端子13と接合する。また、陰極層5に導電性接着材8を塗布した後、陰極リード端子14を、導電性接着材8を介して陰極部7に接合する。 Next, the anode lead terminal 13 and the cathode lead terminal 14 are prepared. A second portion 2b of anode wire 2 erected from anode body 1 is joined to anode lead terminal 13 by laser welding, resistance welding, or the like. After the conductive adhesive 8 is applied to the cathode layer 5 , the cathode lead terminal 14 is joined to the cathode portion 7 via the conductive adhesive 8 .
 続いて、コンデンサ素子10および外装体11の材料(例えば、未硬化の熱硬化性樹脂およびフィラー)を金型に収容し、トランスファー成型法、圧縮成型法等により、コンデンサ素子10を封止する。このとき、陽極リード端子13および陰極リード端子14の一部を金型から露出させる。成型の条件は特に限定されず、使用される熱硬化性樹脂の硬化温度等を考慮して、適宜、時間および温度条件を設定すればよい。 Subsequently, the materials of capacitor element 10 and exterior body 11 (for example, uncured thermosetting resin and filler) are placed in a mold, and capacitor element 10 is sealed by transfer molding, compression molding, or the like. At this time, the anode lead terminal 13 and the cathode lead terminal 14 are partly exposed from the mold. The molding conditions are not particularly limited, and the time and temperature conditions may be appropriately set in consideration of the curing temperature of the thermosetting resin used.
 最後に、陽極リード端子13および陰極リード端子14の露出部分を、外装体11に沿って折り曲げ、屈曲部を形成する。これにより、陽極リード端子13および陰極リード端子14の一部が外装体11の搭載面に配置される。
 以上の方法により、電解コンデンサ20が製造される。
Finally, the exposed portions of anode lead terminal 13 and cathode lead terminal 14 are bent along exterior body 11 to form bent portions. As a result, a part of anode lead terminal 13 and cathode lead terminal 14 is arranged on the mounting surface of package 11 .
The electrolytic capacitor 20 is manufactured by the above method.
 本開示は、電解コンデンサに利用可能であり、好適には、多孔体を陽極体に用いる電解コンデンサに利用することができる。 The present disclosure can be used for electrolytic capacitors, and preferably for electrolytic capacitors using a porous body as an anode body.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of its presently preferred embodiments, such disclosure should not be construed as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art to which the invention pertains after reading the above disclosure. Therefore, the appended claims are to be interpreted as covering all variations and modifications without departing from the true spirit and scope of the invention.
20:電解コンデンサ
 10:コンデンサ素子
   1:陽極体
   2:陽極ワイヤ
    2a:第一部分
    2b:第二部分
   3:誘電体層
   4:固体電解質層
   5:陰極層
    5a:カーボン層
    5b:金属ペースト層
   6:陽極部
   7:陰極部
   8:導電性接着材
 11:外装体
 13:陽極リード端子
 14:陰極リード端子
  14a:接合部
100:磁気分離装置
 103:ベルトコンベア
  101:ベルト
  102:磁気ローラー
 104:ドクターブレード
 110:陽極体用粉末
20: Electrolytic capacitor 10: Capacitor element 1: Anode body 2: Anode wire 2a: First part 2b: Second part 3: Dielectric layer 4: Solid electrolyte layer 5: Cathode layer 5a: Carbon layer 5b: Metal paste layer 6: Anode part 7: Cathode part 8: Conductive adhesive 11: Exterior body 13: Anode lead terminal 14: Cathode lead terminal 14a: Joint part 100: Magnetic separator 103: Belt conveyor 101: Belt 102: Magnetic roller 104: Doctor blade 110: Powder for anode body

Claims (10)

  1.  電解コンデンサの陽極体を製造する方法であって、
     弁作用金属である第1金属の粉末を含む陽極体用粉末を調製する粉調工程と、
     前記陽極体用粉末を焼結し、陽極体を得る工程と、を有し、
     前記第1金属の粉末には、前記第1金属以外に、磁性を有する第2金属を含む粒子が含まれており、
     前記陽極体用粉末の焼結前に、前記第1金属の粉末から前記第2金属を含む粒子を磁気分離により除去する磁選工程をさらに含む、陽極体の製造方法。
    A method of manufacturing an anode body for an electrolytic capacitor, comprising:
    a powder preparation step of preparing an anode body powder containing a powder of a first metal that is a valve action metal;
    a step of sintering the anode body powder to obtain an anode body,
    The powder of the first metal contains particles containing a second metal having magnetism in addition to the first metal,
    The method for manufacturing an anode body, further comprising a magnetic separation step of removing particles containing the second metal from the powder of the first metal by magnetic separation before sintering the powder for an anode body.
  2.  前記磁選工程は、前記第1金属の粉末に占める前記第2金属を含む粒子の割合が前記第1金属の粉末1kgに対し10mg以下となるように、前記第2金属を含む粒子を磁気分離により除去する工程である、請求項1に記載の陽極体の製造方法。 In the magnetic separation step, the particles containing the second metal are separated by magnetic separation so that the ratio of the particles containing the second metal to the powder of the first metal is 10 mg or less per 1 kg of the powder of the first metal. 2. The method for manufacturing an anode body according to claim 1, which is a step of removing.
  3.  前記粉調工程は、前記第1金属の粉末に結着剤を混合して攪拌し、前記陽極体用粉末を調製する工程であり、
     前記磁選工程は、前記粉調工程後の前記結着剤を含む前記陽極体用粉末に対して行われる、請求項1または2に記載の陽極体の製造方法。
    The powder preparation step is a step of mixing a binder with the powder of the first metal and stirring the mixture to prepare the powder for the anode body,
    3. The method for manufacturing an anode body according to claim 1, wherein said magnetic separation step is performed on said anode body powder containing said binder after said powder adjustment step.
  4.  前記磁選工程は、磁気を帯びたふるいを用いて前記第2金属を含む粒子を除去することを含む、請求項1~3のいずれか1項に記載の陽極体の製造方法。 The method for manufacturing an anode body according to any one of claims 1 to 3, wherein the magnetic separation step includes removing particles containing the second metal using a magnetic sieve.
  5.  前記磁選工程は、磁気ローラーを有するベルトコンベアを用いて第2金属を含む粒子を除去することを含む、請求項1~3のいずれか1項に記載の陽極体の製造方法。 The method for producing an anode body according to any one of claims 1 to 3, wherein the magnetic separation step includes removing particles containing the second metal using a belt conveyor having magnetic rollers.
  6.  前記第1金属は、タンタルを含み、
     前記第2金属は、鉄およびニッケルからなる群より選択される少なくとも1種を含む、請求項1~5のいずれか1項に記載の陽極体の製造方法。
    the first metal includes tantalum,
    6. The method for producing an anode body according to claim 1, wherein said second metal includes at least one selected from the group consisting of iron and nickel.
  7.  多孔質の陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える電解コンデンサを製造する方法であって、
     請求項1~6のいずれか1項に記載の陽極体の製造方法により、前記陽極体を準備する工程と、
     前記陽極体の少なくとも一部を前記誘電体層で覆う工程と、
     前記誘電体層の少なくとも一部を前記固体電解質層で覆う工程と、を含む、電解コンデンサの製造方法。
    A method of manufacturing an electrolytic capacitor comprising a capacitor element including a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer. hand,
    a step of preparing the anode body by the anode body manufacturing method according to any one of claims 1 to 6;
    covering at least a portion of the anode body with the dielectric layer;
    and a step of covering at least part of the dielectric layer with the solid electrolyte layer.
  8.  弁作用金属である第1金属の粒子と、磁性を有する第2金属の粒子とを含み、
     前記第2金属の含有割合は、前記第1金属1kgに対し10mg以下である、電解コンデンサ用の陽極体。
    Containing particles of a first metal that is a valve action metal and particles of a second metal having magnetism,
    An anode body for an electrolytic capacitor, wherein the content of the second metal is 10 mg or less per 1 kg of the first metal.
  9.  前記第1金属は、タンタルを含み、
     前記第2金属は、鉄およびニッケルからなる群より選択される少なくとも1種を含む、請求項8に記載の電解コンデンサ用の陽極体。
    the first metal includes tantalum,
    9. The anode body for an electrolytic capacitor according to claim 8, wherein said second metal includes at least one selected from the group consisting of iron and nickel.
  10.  多孔質の陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う固体電解質層と、を含むコンデンサ素子を備える電解コンデンサであって、
     前記陽極体は、弁作用金属である第1金属の粒子と、磁性を有する第2金属の粒子とを含み、前記陽極体における前記第2金属の含有割合は、前記第1金属1kgに対し10mg以下である、電解コンデンサ。
     
    An electrolytic capacitor comprising a capacitor element including a porous anode body, a dielectric layer formed on the surface of the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer,
    The anode body contains particles of a first metal that is a valve metal and particles of a second metal having magnetism, and the content of the second metal in the anode body is 10 mg per 1 kg of the first metal. The following are electrolytic capacitors.
PCT/JP2022/038410 2021-10-28 2022-10-14 Anode body and manufacturing method thereof, and electrolytic capacitor and manufacturing method thereof WO2023074413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021176569 2021-10-28
JP2021-176569 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074413A1 true WO2023074413A1 (en) 2023-05-04

Family

ID=86157996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038410 WO2023074413A1 (en) 2021-10-28 2022-10-14 Anode body and manufacturing method thereof, and electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2023074413A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037023A (en) * 2001-05-17 2003-02-07 Wilson Greatbatch Ltd Capacitor-grade powder
CN203030392U (en) * 2012-11-20 2013-07-03 张良光 Iron removal sieve
JP2016519210A (en) * 2013-03-13 2016-06-30 ケメット エレクトロニクス コーポレーション Low energy grinding to produce flake powder
CN106392060A (en) * 2016-10-12 2017-02-15 宁夏东方钽业股份有限公司 Mixed tantalum powder and preparation method thereof
KR102000418B1 (en) * 2019-01-04 2019-07-15 김영삼 Magnetic Substance Particle Separation Apparatus using Magnetic Force
JP2019527300A (en) * 2016-07-13 2019-09-26 ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド Flaky tantalum powder and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037023A (en) * 2001-05-17 2003-02-07 Wilson Greatbatch Ltd Capacitor-grade powder
CN203030392U (en) * 2012-11-20 2013-07-03 张良光 Iron removal sieve
JP2016519210A (en) * 2013-03-13 2016-06-30 ケメット エレクトロニクス コーポレーション Low energy grinding to produce flake powder
JP2019527300A (en) * 2016-07-13 2019-09-26 ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド Flaky tantalum powder and preparation method thereof
CN106392060A (en) * 2016-10-12 2017-02-15 宁夏东方钽业股份有限公司 Mixed tantalum powder and preparation method thereof
KR102000418B1 (en) * 2019-01-04 2019-07-15 김영삼 Magnetic Substance Particle Separation Apparatus using Magnetic Force

Similar Documents

Publication Publication Date Title
US6775127B2 (en) Anode member for a solid electrolytic capacitor, method of producing the same and solid electrolytic capacitor using the same
JP2009505413A (en) Solid capacitor and manufacturing method thereof
JP2009218521A (en) Solid-state electrolytic capacitor
JP4655689B2 (en) Solid electrolytic capacitor and its use
JP2009071300A (en) Solid-state electrolytic capacitor
US8574319B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US11521801B2 (en) Solid electrolyte capacitor and fabrication method thereof
WO2023074413A1 (en) Anode body and manufacturing method thereof, and electrolytic capacitor and manufacturing method thereof
JP2012069788A (en) Solid electrolytic capacitor
CN108780705B (en) Solid electrolytic capacitor
US20160181021A1 (en) Solid electrolyte capacitor and manufacturing method thereof
US20090147445A1 (en) Micropowder of nb compound and process for production thereof
US11823845B2 (en) Electrolytic capacitor and method for manufacturing same
JP2009094155A (en) Method for manufacturing solid electrolytic capacitor
JP2006253169A (en) Solid electrolytic capacitor and manufacturing method thereof
JP4748726B2 (en) Solid electrolytic capacitor
JP7382591B2 (en) Electrolytic capacitor and its manufacturing method
CN115088049A (en) Capacitor element and electrolytic capacitor
WO2023120309A1 (en) Method for producing electrolytic capacitor
US20240153713A1 (en) Electrolytic capacitor
CN113228211B (en) Electrolytic capacitor and method for manufacturing the same
WO2024058159A1 (en) Solid electrolytic capacitor
WO2023032603A1 (en) Electrode foil for solid electrolytic capacitors, solid electrolytic capacitor element using same, and solid electrolytic capacitor
WO2023210693A1 (en) Method for manufacturing electrolytic capacitor
JP2019067923A (en) Solid electrolytic capacitor and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886742

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556320

Country of ref document: JP