WO2023074166A1 - Hypochlorous acid water supply device - Google Patents

Hypochlorous acid water supply device Download PDF

Info

Publication number
WO2023074166A1
WO2023074166A1 PCT/JP2022/034360 JP2022034360W WO2023074166A1 WO 2023074166 A1 WO2023074166 A1 WO 2023074166A1 JP 2022034360 W JP2022034360 W JP 2022034360W WO 2023074166 A1 WO2023074166 A1 WO 2023074166A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hypochlorous acid
electrolytic cell
water supply
unit
Prior art date
Application number
PCT/JP2022/034360
Other languages
French (fr)
Japanese (ja)
Inventor
伎朗 松本
智裕 林
将秀 福本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023074166A1 publication Critical patent/WO2023074166A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • the present disclosure relates to a hypochlorous acid water supply device that generates and feeds hypochlorous acid water by electrolysis.
  • hypochlorous acid is supplied by linking with the purification system, and the air supplied indoors is air containing purification components (active oxygen species such as hypochlorous acid).
  • purification components active oxygen species such as hypochlorous acid.
  • an air-conditioning system that sterilizes a space by contacting a liquid contact member portion and discharging it (see, for example, Patent Literature 1).
  • hypochlorous acid water supply device when an electrolytic solution (for example, an aqueous sodium chloride solution) in which an electrolyte and tap water are mixed is electrolyzed in an electrolytic cell to generate hypochlorous acid water, there is a risk that calcium, magnesium, etc., will precipitate and accumulate as scales, and will adhere to movable members such as water level sensors or pumps in the electrolytic cell, or clog water channels. Therefore, cleaning maintenance, such as manual descaling, has been performed, and such maintenance has been troublesome.
  • an electrolytic solution for example, an aqueous sodium chloride solution
  • electrolyte and tap water in which an electrolyte and tap water are mixed
  • the purpose of the present disclosure is to provide a technique for reducing the frequency of cleaning maintenance for removing scale accumulated in the electrolytic cell and improving the maintainability of the hypochlorous acid water supply device.
  • the hypochlorous acid water supply device includes an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water, and an electrolyte supply unit that supplies the electrolyte to the electrolytic cell. , a water supply unit for supplying water to the electrolytic cell, and a water supply unit for supplying the hypochlorous acid water generated in the electrolytic cell to the outside. Then, when the supply of hypochlorous acid water from the electrolytic cell to the outside is completed, the water supply unit starts supplying water to the electrolytic cell as cleaning processing of the electrolytic cell, and the supply of water to the electrolytic cell is stopped. The electrolytic cell is drained by the water supply unit within a predetermined time after completion.
  • an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water, and an electrolyte that is supplied to the electrolytic cell It comprises an electrolyte supply unit, a water supply unit that supplies the water to the electrolytic cell, and a water supply unit that supplies the hypochlorous acid water produced in the electrolytic cell to the outside. Then, when the supply of hypochlorous acid water from the electrolytic cell to the outside is completed, the electrolytic cell is drained by the water supply unit while the water supply unit supplies water to the electrolytic cell as the cleaning process of the electrolytic cell. is done.
  • FIG. 1 is a diagram showing the configuration of a space purification system including a hypochlorous acid water supply device according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram showing the configuration of an air purification control unit included in the hypochlorous acid water supply apparatus according to Embodiment 1 of the present disclosure.
  • the hypochlorous acid water supply device includes an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water, and an electrolyte supply unit that supplies the electrolyte to the electrolytic cell. , a water supply unit for supplying water to the electrolytic cell, and a water supply unit for supplying the hypochlorous acid water produced in the electrolytic cell to the outside. Then, when the supply of hypochlorous acid water from the electrolytic cell to the outside is completed, the water supply unit starts supplying water to the electrolytic cell as cleaning processing of the electrolytic cell, and the supply of water to the electrolytic cell is stopped. The electrolytic cell is drained by the water supply unit within a predetermined time after completion.
  • the water supply from the water supply unit scatters the scale residue, and the water containing the scale residue is electrolyzed in a state in which the scale residue is scattered in the water by the drainage within a predetermined time after the completion of the water supply. Drain from the tank. Therefore, accumulation of scale residue in the electrolytic cell is suppressed. As a result, the frequency of cleaning maintenance for removing the scale accumulated in the electrolytic cell can be reduced, and the maintainability of the hypochlorous acid water supply apparatus can be improved.
  • the predetermined time is set within the time until the scale residue scattered in the electrolytic cell by the water supplied from the water supply unit settles in the electrolytic cell. good too.
  • the cleaning process may be repeated multiple times.
  • an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water, and an electrolyte that is supplied to the electrolytic cell It comprises an electrolyte supply unit, a water supply unit that supplies the water to the electrolytic cell, and a water supply unit that supplies the hypochlorous acid water produced in the electrolytic cell to the outside. Then, when the supply of hypochlorous acid water from the electrolytic cell to the outside is completed, the electrolytic cell is drained by the water supply unit while the water supply unit supplies water to the electrolytic cell as the cleaning process of the electrolytic cell. is done.
  • the cleaning process may be performed for a predetermined time.
  • the cleaning process may be repeated multiple times.
  • the water supply unit is connected to an external space purification device, and the wastewater from the water supply unit is discharged from the space purification device. It may be carried out by circulating.
  • the cleaning process can be performed without providing a separate drainage path for the hypochlorous acid water supply device.
  • FIG. 1 is a diagram showing a configuration of a space purification system 100 including a hypochlorous acid water supply device (hypochlorous acid water generation unit 30) according to Embodiment 1 of the present disclosure.
  • the space purification system 100 When circulating the air in the indoor space 18, the space purification system 100 performs cooling processing (dehumidification processing) or heating processing on the air 8 (RA) from the indoor space 18 as necessary, and circulates the air inside. It is a device that makes the air 8 containing fine water and a component that purifies the air (hereinafter also simply referred to as an "air cleaning component").
  • the space purification system 100 sterilizes and deodorizes the indoor space 18 by supplying the air 9 (SA) that has circulated inside to the indoor space 18 .
  • SA air 9
  • hypochlorous acid is used as the air purification component
  • the water containing the air purification component is an aqueous solution containing hypochlorous acid (hypochlorous acid water).
  • the space purification system 100 mainly includes a space purification device 10, an air conditioner 15, and a hypochlorous acid water generator 30, as shown in FIG.
  • the hypochlorous acid water generator 30 is also referred to as a hypochlorous acid water supply device.
  • the space purification device 10 includes an air outlet 3, an air purification section 11, and an air purification control section 41.
  • the air conditioner 15 includes a suction port 2 , a blower 13 , a refrigerant coil 14 , and an air conditioning controller 42 .
  • Each of the space purification device 10 and the air conditioner 15 has a housing that constitutes the outer frame of the device, and the space purification device 10 and the air conditioner 15 are connected by a duct 24 .
  • the suction port 2 is formed on the side of the air conditioner 15 and the outlet 3 is formed on the side of the space cleaning device 10 .
  • the intake port 2 is an intake port that takes in the air 8 from the indoor space 18 into the air conditioner 15 .
  • the suction port 2 communicates through a duct 16 with an indoor suction port 16 a provided on the ceiling of an indoor space 18 or the like. As a result, the air inlet 2 can draw air in the indoor space 18 into the air conditioner 15 from the indoor air inlet 16a.
  • the air outlet 3 is an outlet for discharging the air 9 (SA) that has flowed through the space purification device 10 into the indoor space 18 .
  • the air outlet 3 communicates through a duct 17 with an indoor air outlet 17 a provided on the ceiling of an indoor space 18 or the like. As a result, the air outlet 3 can blow out the air 9 that has circulated inside the space cleaning device 10 toward the indoor space 18 from the indoor air outlet 17a.
  • air passages front air passage 4, middle air passage 5, rear air passage 6) communicating the suction port 2 and the air outlet 3 through the duct 24.
  • the front air passage 4 is an air passage adjacent to the suction port 2 .
  • a blower 13 and a refrigerant coil 14 are provided in the front air passage 4 .
  • the middle air passage 5 is an air passage through which the air 8 that has flowed through the front air passage 4 flows, at a position adjacent to the front air passage 4 (duct 24).
  • the middle air passage 5 is provided with an air purifier 11 in the air passage.
  • the rear air passage 6 is an air passage adjacent to the outlet 3, and in the rear air passage 6, the air 8 that has flowed through the middle air passage 5 flows through the air purification unit 11 and is purified with hypochlorous acid along with water that has been made finer. becomes air 9 containing
  • the air 8 sucked from the suction port 2 flows through the front air passage 4, the middle air passage 5 and the rear air passage 6, and is released as air 9 from the air outlet 3. blown out.
  • the blower 13 of the air conditioner 15 is a device for conveying the air 8 (RA) in the indoor space 18 from the suction port 2 into the air conditioner 15 .
  • the blower 13 is installed upstream of the refrigerant coil 14 in the front air passage 4 .
  • on/off of operation is controlled according to the blowing output information from the air conditioning control section 42 .
  • the air 8 in the indoor space 18 is taken into the air conditioner 15 and directed toward the refrigerant coil 14 .
  • the refrigerant coil 14 is a member arranged downstream of the blower 13 in the front air passage 4 to cool or heat the introduced air 8 .
  • the refrigerant coil 14 changes its output state (cooling, heating, or off) in accordance with the output signal from the air conditioning control unit 42 to change the cooling capacity (cooling amount) or heating capacity (heating amount) for the introduced air 8. adjust.
  • the introduced air 8 is cooled, the introduced air 8 is dehumidified. I can say.
  • the refrigerant coil 14 functions as a heat absorber or a heat radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. is configured to absorb (cool) or dissipate (heat) heat to More specifically, the refrigerant coil 14 is connected to the outdoor unit 20 via a refrigerant circuit 21 through which refrigerant flows.
  • the outdoor unit 20 is an outdoor unit installed in the outdoor space 19, and has a compressor 20a, an expander 20b, an outdoor heat exchanger 20c, a blower fan 20d, and a four-way valve 20e. Since the outdoor unit 20 has a general configuration, detailed description of each device (compressor 20a, expander 20b, outdoor heat exchanger 20c, blower fan 20d, and four-way valve 20e) is omitted.
  • the four-way valve 20e Since the four-way valve 20e is connected to the refrigeration cycle including the refrigerant coil 14, in the air conditioner 15, the four-way valve 20e allows the refrigerant to flow in the first direction to cool and dehumidify the air (air 8). It is possible to switch between a cooling mode (dehumidifying mode) and a heating mode in which the four-way valve 20e circulates the refrigerant in the second direction to heat the air (air 8).
  • the first direction is the direction in which the refrigerant flows through the compressor 20a, the outdoor heat exchanger 20c, the expander 20b, and the refrigerant coil 14 in this order.
  • the second direction is the direction in which the refrigerant flows through the compressor 20a, the refrigerant coil 14, the expander 20b, and the outdoor heat exchanger 20c in this order.
  • the refrigerant coil 14 can cool or heat the introduced air (air 8).
  • the air purifier 11 of the space purifier 10 is a unit for humidifying the air 8 that is taken inside. During humidification, the air is made to contain hypochlorous acid together with finely divided water. More specifically, the air purification section 11 has a water level sensor 90, a mixing tank 92, a humidification motor 11a, and a humidification nozzle 11b. The air purifying unit 11 rotates the humidifying nozzle 11b using the humidifying motor 11a, sucks up the water (hypochlorous acid water) stored in the mixing tank 92 of the air purifying unit 11 by centrifugal force, and spreads it around (in the centrifugal direction). .
  • the air purification unit 11 changes the rotation speed (hereinafter referred to as rotation output value) of the humidification motor 11a according to the output signal from the air purification control unit 41 to adjust the humidification capacity (humidification amount).
  • the amount of humidification can also be said to be the amount of addition of hypochlorous acid to the air.
  • the water level sensor 90 measures the water level of hypochlorous acid water (mixed water) in the mixing tank 92 and outputs the measured value to the air purification control section 41 .
  • the mixing tank 92 is a tank that stores the hypochlorous acid water in the air purifying section 11, and can also be said to be a water storage section.
  • the supplied water is mixed in the tank and stored as mixed water composed of diluted hypochlorous acid water.
  • the hypochlorous acid water generator 30 includes an electrolytic cell 31 , an electrode 32 , an electromagnetic valve 33 , a salt water tank 34 , a salt water transfer pump 35 , a water level sensor 39 , and a hypochlorous acid water supply unit 36 .
  • the hypochlorous acid water generating unit 30 corresponds to the "hypochlorous acid water supply unit" in the claims
  • the hypochlorous acid water supply unit 36 corresponds to the "water supply unit" in the claims.
  • the electromagnetic valve 33 controls whether tap water from a water supply pipe (a water pipe 52 described later) such as tap water is sent to the electrolytic cell 31 according to an output signal from the air purification control unit 41 .
  • the electromagnetic valve 33 constitutes a water supply unit 50 which will be described later.
  • the salt water tank 34 is a container that stores a liquid (salt water) containing chloride ions.
  • the salt water transfer pump 35 supplies the salt water in the salt water tank 34 to the electrolytic cell 31 according to the output signal from the air purification control unit 41 .
  • the salt water tank 34 and the salt water transfer pump 35 constitute a member corresponding to an "electrolyte supply section" in the claims.
  • the electrolytic cell 31 stores salt water to be electrolyzed supplied from the salt water tank 34 .
  • Tap water is also supplied to the electrolytic cell 31 from a water supply pipe (water pipe 52) of tap water or the like through an electromagnetic valve 33 in response to an output signal from the air purification control unit 41, and the supplied tap water and salt water are mixed. are mixed and a predetermined concentration of brine is pooled.
  • the electrode 32 is composed of a pair of electrodes.
  • the electrode 32 is arranged in the electrolytic bath 31 and electrolyzes salt water for a predetermined time by energization in response to an output signal from the air purification control unit 41 to generate hypochlorous acid water having a predetermined concentration.
  • the electrolytic cell 31 generates hypochlorous acid water by electrolyzing a chloride aqueous solution (for example, a sodium chloride aqueous solution) as an electrolyte between a pair of electrodes. Since a common device is used for the electrolytic cell 31, detailed description is omitted.
  • the electrolyte is an electrolyte that can generate hypochlorous acid water, and is not particularly limited as long as it contains chloride ions even in a small amount.
  • sodium chloride, calcium chloride, magnesium chloride, etc. are dissolved as a solute.
  • Aqueous solutions are mentioned. There is no problem with hydrochloric acid.
  • an aqueous sodium chloride solution (salt water) in which sodium chloride is added to water is used as the electrolyte.
  • the water level sensor 39 measures the water level in the electrolytic cell 31 and outputs the measured value to the air purification control section 41 .
  • the hypochlorous acid water supply unit 36 supplies hypochlorous acid water from the electrolytic cell 31 to the mixing tank 92 of the air purification unit 11 according to the output signal from the air purification control unit 41 .
  • the hypochlorous acid water supply unit 36 has a hypochlorous acid water transport pump 37 and a water pipe 38 .
  • the hypochlorous acid water transfer pump 37 sends out the hypochlorous acid water in the electrolytic cell 31 to the water pipe 38 according to the output signal from the air purification control unit 41 .
  • the water pipe 38 is connected between the hypochlorous acid water conveying pump 37 and the mixing tank 92 and feeds the hypochlorous acid water toward the mixing tank 92 .
  • the water supply unit 50 supplies water to the mixing tank 92 according to the output signal from the air purification control unit 41 .
  • the water supply unit 50 has an electromagnetic valve 51 and a water pipe 52 .
  • the water supply unit 50 also includes the electromagnetic valve 33 described above.
  • the electromagnetic valve 51 controls whether or not water supplied from a water pipe outside the space purification device 10 is allowed to flow through the water pipe 52 according to an output signal from the air purification control section 41 .
  • the water pipe 52 is connected between the electromagnetic valve 51 and the mixing tank 92 and feeds water toward the mixing tank 92 . Since the water supply unit 50 includes the electromagnetic valve 33 described above, it can be said that it corresponds to the "water supply unit" in the claims.
  • hypochlorous acid water from the hypochlorous acid water supply unit 36 and water from the water supply unit 50 are supplied to the mixing tank 92 . Then, the hypochlorous acid water and water are mixed in the mixing tank 92 of the air purifier 11 . That is, the hypochlorous acid water is mixed and diluted with water from the water supply unit 50 in the mixing tank 92 .
  • Mixed water of hypochlorous acid water and water can also be called hypochlorous acid water. More specifically, in the mixing tank 92 of the air purification unit 11, hypochlorous acid water from the hypochlorous acid water supply unit 36 or the water supply unit is added to the hypochlorous acid water remaining in the mixing tank 92 Water from 50 is fed and mixed.
  • the air purifier 11 discharges air containing hypochlorous acid water to the indoor space 18 by centrifugally crushing the mixed water of hypochlorous acid water and water stored in the mixing tank 92 .
  • the micronized hypochlorous acid water is discharged into the indoor space 18 with the liquid component evaporated.
  • An operation device 43 is installed on the wall surface of the indoor space 18 .
  • the operation device 43 has a user interface that can be operated by the user, and receives information from the user regarding the temperature setting value, the humidity setting value, and the operation of the humidification/purification operation.
  • the operating device 43 includes a temperature/humidity sensor 44 that measures the temperature and humidity of the air in the indoor space 18 .
  • a well-known technique may be used to measure the temperature and humidity in the temperature/humidity sensor 44, so the explanation is omitted here.
  • the operation device 43 is connected to the air purification control unit 41 and the air conditioning control unit 42 by wire or wirelessly, and in addition to information on the temperature setting value, the humidity setting value, the temperature measurement value, and the humidity measurement value, the humidification Information about the operation of the purification operation is transmitted to the air purification control section 41 and the air conditioning control section 42 . All of these pieces of information may be transmitted together, arbitrary two or more may be transmitted together, and each of them may be transmitted. Alternatively, the operation device 43 may transmit information to the air purification control section 41 , and the air purification control section 41 may transfer the information to the air conditioning control section 42 .
  • the air conditioning control unit 42 of the air conditioner 15 receives the temperature setting value and the temperature measurement value, and controls the refrigerant coil 14 and the outdoor unit 20 so that the temperature measurement value approaches the temperature setting value. In the heating mode, when the measured temperature value is lower than the set temperature value, the air conditioning control unit 42 increases the degree of heating as the difference between the measured temperature value and the set temperature value increases.
  • the air purification control unit 41 as the processing operations of the hypochlorous acid water generating unit 30 and the space purification device 10, relates to operations related to electrolysis processing in the electrolytic cell 31 and processing related to supply of hypochlorous acid water to the air purification unit 11. It controls the operation, the operation related to water supply processing to the air purification unit 11, the operation related to the humidification purification processing in the air purification unit 11, and the operation related to the cleaning processing of the electrolytic cell 31, respectively.
  • the air purification control unit 41 has a computer system having a processor and memory. The computer system functions as a controller by the processor executing the program stored in the memory. Although the program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. may be provided through
  • FIG. 2 is a block diagram showing the configuration of the air purification control section 41.
  • the air purification control section 41 includes an input section 41a, a storage section 41b, a clock section 41c, a processing section 41d, and an output section 41e.
  • the air purification control unit 41 causes the following processes to be executed as operations related to the electrolysis process in the electrolytic cell 31 .
  • the air purification control unit 41 receives water level information (dry water signal) from the water level sensor 39 and information on time (time information) from the timing unit 41c as a trigger for electrolysis processing of the electrolytic cell 31, and outputs the information to the processing unit 41d. do.
  • the processing unit 41d identifies control information based on the water level information from the water level sensor 39, the time information from the clock unit 41c, and the setting information from the storage unit 41b, and outputs it to the output unit 41e.
  • the setting information includes information on the start time or end time of hypochlorous acid water generation, information on the supply amount of tap water to be introduced into the electrolytic cell 31, information on the amount of salt water supplied by the salt water transfer pump 35, and electrode Information on the electrolysis conditions (time, current value, voltage, etc.) in 32, information on the opening/closing timing of the electromagnetic valve 33, and information on the on/off operation of the hypochlorous acid water transfer pump 37 are included.
  • the electrolysis conditions for the electrode 32 can be determined from the amount of tap water in the electrolytic cell 31, the chloride ion concentration, the electrolysis time, and the degree of deterioration of the electrode 32, and are set by creating an algorithm. stored in
  • the output unit 41e outputs a signal (control signal) to each device (salt water conveying pump 35, solenoid valve 33, hypochlorous acid water conveying pump 37).
  • the salt water conveying pump 35 is kept stopped based on the signal from the output section 41e, and the hypochlorous acid water conveying pump 37 is stopped based on the signal from the output section 41e. maintain state.
  • the salt water conveying pump 35 starts operating based on a signal from the output section 41e, conveys a predetermined amount of salt water to the electrolytic cell 31, and then stops.
  • the electrolytic bath 31 is supplied with a predetermined amount of chloride ions.
  • the electromagnetic valve 33 is opened based on the signal from the output section 41e.
  • supply of tap water from the water pipe is started to the electrolytic cell 31 .
  • the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the water level information (full water) from the water level sensor 39.
  • FIG. As a result, the chloride ions are diluted with the tap water in the electrolytic cell 31, and an aqueous solution containing a predetermined amount of chloride ions (aqueous chloride solution) is generated.
  • the electrode 32 starts electrolyzing the chloride aqueous solution based on the signal from the output unit 41e, generates hypochlorous acid water under the set conditions, and stops the electrolysis.
  • the hypochlorous acid water generated by the electrode 32 has, for example, a hypochlorous acid concentration of 100 ppm to 150 ppm (eg, 120 ppm) and a pH of 7.0 to 8.5 (eg, 8.0). becomes.
  • the air purification control unit 41 performs electrolysis processing in the electrolytic cell 31 to generate hypochlorous acid water with a predetermined concentration and amount.
  • the air purification control unit 41 causes the following processing to be executed as operations related to the hypochlorous acid water supply processing to the air purification unit 11 .
  • the timer unit 41c measures the operation time of the humidification motor 11a as a trigger for supplying hypochlorous acid water to the air purification unit 11, and the operation time elapses for a predetermined time (for example, 60 minutes).
  • a hypochlorous acid water supply request is output to the hypochlorous acid water generating unit 30 (hypochlorous acid water supply unit 36).
  • the predetermined time is a time estimated in advance by experimental evaluation, based on the fact that hypochlorous acid in the hypochlorous acid water evaporates and decreases over time.
  • the processing unit 41d identifies the control information based on the time information (time information) from the clock unit 41c and the setting information from the storage unit 41b, and outputs the control information to the output unit 41e.
  • the setting information includes information about the hypochlorous acid water supply interval (for example, 60 minutes) and information about the ON/OFF operation of the hypochlorous acid water transfer pump 37 .
  • the output unit 41e outputs a signal (control signal) to the hypochlorous acid water transport pump 37 of the hypochlorous acid water supply unit 36 based on the received control information.
  • the hypochlorous acid water transport pump 37 operates based on the signal from the output section 41e. As a result, in the hypochlorous acid water generating unit 30, supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (mixing tank 92) is started. In addition, in order to ensure the concentration of the hypochlorous acid water stored in the electrolytic cell 31, when the hypochlorous acid water is supplied from the hypochlorous acid water generation unit 30 to the mixing tank 92, The hypochlorous acid water produced is supplied in full. Therefore, after the hypochlorous acid water is supplied, the electrolytic cell 31 is in an empty state, and the hypochlorous acid water is not started from the state where the hypochlorous acid water remains in the electrolytic cell 31. .
  • the water level sensor 39 outputs a water shortage signal as water level information when the hypochlorous acid water in the electrolytic cell 31 is completely supplied.
  • the hypochlorous acid water conveying pump 37 stops based on the signal from the output section 41e that receives the time information (required time for supplying the specified amount) from the clock section 41c.
  • the hypochlorous acid water generator 30 supplies the hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (mixing tank 92) at the set supply amount.
  • the air purification control unit 41 causes the hypochlorous acid water supply process from the hypochlorous acid water generation unit 30 (the electrolytic cell 31) to the air purification unit 11 to be executed.
  • the control in which the air purification control unit 41 causes the hypochlorous acid water supply unit 36 to supply the hypochlorous acid water at predetermined time intervals is referred to as "first control".
  • the air purification control unit 41 causes the following processes to be executed as operations related to water supply processing to the air purification unit 11 .
  • the air purification control unit 41 receives water level information (dry water signal) from the water level sensor 90 of the space purification device 10 as a trigger for water supply processing to the air purification unit 11, and outputs a water supply request to the water supply unit 50. do.
  • the input unit 41a receives water level information (a water shortage signal) from the water level sensor 90 of the space purification device 10 and outputs it to the processing unit 41d.
  • water level information a water shortage signal
  • the processing unit 41d identifies and outputs control information based on the water level information (water shortage signal) from the input unit 41a, the time information (time information) from the clock unit 41c, and the setting information from the storage unit 41b. Output to the unit 41e.
  • the setting information includes information regarding the ON/OFF operation of the solenoid valve 51 of the water supply section 50 .
  • the output unit 41e outputs a signal (control signal) to the electromagnetic valve 51 based on the received control information.
  • the solenoid valve 51 operates based on the signal from the output section 41e. As a result, in the water supply unit 50 , supply of water from the external water supply pipe to the air cleaning unit 11 (mixing tank 92 ) is started via the water pipe 52 .
  • the solenoid valve 51 stops based on the signal from the output section 41e that receives the water level information (full water signal) from the water level sensor 90 of the space purification device 10. Thereby, the water supply unit 50 supplies water from the external water supply pipe to the air purification unit 11 (mixing tank 92) until the set amount of water is reached.
  • the air purification control unit 41 causes the water supply unit 50 to supply water to the air purification unit 11 .
  • the control in which the air purification control unit 41 supplies water by the water supply unit 50 based on the information (water shortage information) about the water level of the mixing tank 92 from the water level sensor 90 is referred to as "second control".
  • the input unit 41a receives user input information from the operation device 43, temperature and humidity information of the air in the indoor space 18 from the temperature and humidity sensor 44, and hypochlorous acid water (mixed water) in the mixing tank 92 from the water level sensor 90. ) and receive the water level information.
  • the input unit 41a outputs each received information to the processing unit 41d.
  • the operation device 43 inputs user input information (for example, air volume, target temperature, target humidity, presence or absence of addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.) regarding the space purification device 10. It is a terminal that communicates with the air purification control unit 41 wirelessly or by wire.
  • user input information for example, air volume, target temperature, target humidity, presence or absence of addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.
  • the temperature/humidity sensor 44 is a sensor that is provided in the indoor space 18 and senses the temperature/humidity of the air in the indoor space 18 .
  • the storage unit 41b stores user input information received by the input unit 41a and supply setting information in the operation of supplying hypochlorous acid to the air circulating in the device.
  • the storage unit 41b outputs the stored supply setting information to the processing unit 41d.
  • the supply setting information in the hypochlorous acid supply operation can also be said to be the humidification setting information in the humidification purification operation of the air purifier 11 .
  • the clocking unit 41c outputs time information regarding the current time to the processing unit 41d.
  • the processing unit 41d receives various information (user input information, temperature/humidity information, water level information) from the input unit 41a, time information from the clock unit 41c, and supply setting information from the storage unit 41b.
  • the processing unit 41d uses the received user input information, time information, and supply setting information to identify control information related to the humidification/purification operation.
  • the processing unit 41d detects the target humidity stored in the storage unit 41b and the temperature/humidity information of the air in the indoor space 18 from the temperature/humidity sensor 44 at regular time intervals based on the time information from the clock unit 41c. Identifies the required humidification demand for the indoor space 18 based on the humidity difference between. Then, the processing unit 41d identifies control information related to the humidifying and purifying operation based on the identified humidification request amount and the supply setting information stored in the storage unit 41b. Then, the processing unit 41d outputs the specified control information to the output unit 41e.
  • the processing unit 41d If the water level information from the water level sensor 90 includes water level information (water shortage signal) indicating a water shortage of the hypochlorous acid water (mixed water) in the mixing tank 92, the processing unit 41d outputs the output unit 41e outputs the signal of the water supply request
  • a predetermined time for example, 60 minutes
  • the water level at which the hypochlorous acid water (mixed water) in the mixing tank 92 indicates a water shortage is about 1% from the state where the hypochlorous acid water (mixed water) in the mixing tank 92 is full.
  • the water level is set when the amount of hypochlorous acid water is reduced to /3.
  • the output unit 41e outputs the received signals to the air purification unit 11, the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36), and the water supply unit 50, respectively.
  • the air purifying unit 11 receives a signal from the output unit 41e, and controls the driving operation based on the received signal.
  • the hypochlorous acid water generating unit 30 receives a signal (hypochlorous acid water supply request signal) from the output unit 41e, and based on the received signal, An operation (first control) relating to the process of supplying hypochlorous acid water to the air purifier 11 described above is executed.
  • the water supply unit 50 receives a signal (a water supply request signal) from the output unit 41e, and based on the received signal, performs an operation (second control) related to water supply processing to the air purification unit 11 described above. to run.
  • the air purification control unit 41 performs first control to supply hypochlorous acid water by the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36) at predetermined time intervals;
  • a second control for supplying water by the water supply unit 50 is executed based on information (shortage information) on the water level of the mixing tank 92 from the water level sensor 90 , and mixed water is stored in the mixing tank 92 .
  • the air purification control unit 41 controls the hypochlorous acid water supply cycle (every predetermined time) and the water The supply cycle (every water shortage detection) is made different, and the air circulating through the space purification device 10 (air purification unit 11) is subjected to humidification purification processing.
  • the cleaning process is a process for removing scale components such as calcium and magnesium contained in the water supplied from the water supply unit 50 that accumulate in the electrolytic bath 31 and become scale residue in the electrolytic bath 31 . More specifically, the cleaning process is performed when the supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (outside the hypochlorous acid water supply device) is completed in the humidifying and purifying operation.
  • the air purification control unit 41 causes the following processes to be executed as operations related to the cleaning process in the electrolytic cell 31.
  • the air purification control unit 41 causes the hypochlorous acid water supply unit 36 to supply hypochlorous acid water to the air purification unit 11 by the first control a predetermined number of times (for example, 5 times). After confirming that the
  • the air purification control unit 41 receives water level information (dry water signal) from the water level sensor 39 and time information (time information) from the clock unit 41c, and outputs them to the processing unit 41d. .
  • the processing unit 41d identifies control information based on the water level information from the water level sensor 39, the time information from the clock unit 41c, and the setting information from the storage unit 41b, and outputs it to the output unit 41e.
  • the setting information includes information on the amount of tap water supplied to the electrolytic cell 31, information on the opening/closing timing of the solenoid valve 33, and information on the on/off operation of the hypochlorous acid water transport pump 37.
  • the output unit 41e outputs a signal (control signal) to each device (solenoid valve 33, hypochlorous acid water conveying pump 37) based on the received control information.
  • the solenoid valve 33 maintains the closed state based on the signal from the output section 41e, and the hypochlorous acid water transfer pump 37 stops based on the signal from the output section 41e. maintain.
  • the solenoid valve 33 is opened based on the signal from the output section 41e.
  • supply of tap water from the water pipe 52 is started to the electrolytic cell 31 .
  • the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the water level information (full water) from the water level sensor 39.
  • FIG. As a result, the electrolytic cell 31 is filled with tap water, and scale residues accumulated in the electrolytic cell 31 are scattered in the water due to the water pressure when water is supplied by the water supply unit 50 .
  • the hypochlorous acid water conveying pump 37 operates after a predetermined time (for example, 1 minute) has elapsed based on the signal from the output unit 41e, and the hypochlorous acid water generating unit 30 sends air Drainage to the purification unit 11 (mixing tank 92) is started.
  • the predetermined time is set to the time until the scale residue scattered in the electrolytic cell by the water supplied from the water supply unit settles in the electrolytic cell.
  • the scale residue scattered in the water in the electrolytic bath 31 is discharged to the air purifier 11 (mixing bath 92) together with the water.
  • the hypochlorous acid water conveying pump 37 stops based on the signal from the output section 41e that receives the time information (required time for discharging the specified amount) from the clock section 41c.
  • the time required for draining the prescribed amount of the hypochlorous acid water conveying pump 37 is set sufficiently long so that the entire amount of water in the electrolytic cell 31 can be drained. All the water in the tank 31 is discharged.
  • the air purification control unit 41 controls the water supply unit 50 (solenoid valve 33) to operate the water supply unit 50 (solenoid valve 33) when the supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 is completed as the cleaning process.
  • the air purification control unit 41 may repeat the above-described first cleaning process a plurality of times (for example, three times) in succession.
  • hypochlorous acid water supply apparatus (hypochlorous acid water generation unit 30) according to Embodiment 1
  • the following effects can be obtained.
  • hypochlorous acid water supply device hyperchlorous acid water generation unit 30
  • an electrolytic solution sodium chloride aqueous solution in which an electrolyte (sodium chloride) and water are mixed is electrolyzed to produce hypochlorous acid water.
  • an electrolyte supply unit salt water tank 34 and salt water conveying pump 35
  • a water supply unit 50 that supplies water to the electrolytic cell 31
  • a water supply unit (hypochlorous acid water supply unit 36) that supplies the hypochlorous acid water thus obtained to the outside (mixing tank 92 of air purification unit 11) is provided.
  • the supply of hypochlorous acid water from the electrolytic cell 31 to the outside is completed, the supply of water to the electrolytic cell 31 by the water supply unit 50 is started as a cleaning process (first cleaning process) of the electrolytic cell 31, Within a predetermined time (for example, 1 minute) after the water supply to the electrolytic cell 31 is completed, the electrolytic cell 31 is drained by the water supply unit.
  • the water supply from the water supply unit 50 scatters the scale residue, and the water is discharged within a predetermined time after the completion of the water supply, and the water contains the scale residue in a state in which the scale residue is scattered.
  • Water is drained from the electrolytic cell 31 . Therefore, accumulation of scale residues in the electrolytic bath 31 is suppressed.
  • the frequency of cleaning maintenance for removing scale accumulated in the electrolytic cell 31 can be reduced, and the maintainability of the hypochlorous acid water supply device (hypochlorous acid water generation unit 30) can be improved.
  • hypochlorous acid water supply device hypochlorous acid water generation unit 30
  • the water supplied from the water supply unit 50 causes the scale residue scattered in the electrolytic cell 31 to flow into the electrolytic cell 31. It is set within the time until it settles.
  • hypochlorous acid water supply device hyperchlorous acid water generation unit 30
  • the first cleaning process is repeated multiple times.
  • hypochlorous acid water supply device hypochlorous acid water generation unit 30
  • the water supply unit hypochlorous acid water supply unit 36
  • Drainage is carried out by circulating the space purification device 10 .
  • hypochlorous acid water supply device hyperochlorous acid water supply unit 36
  • space purification device 10 the cleaning process is performed without providing a separate drainage path. be able to.
  • hypochlorous acid water supply apparatus (hypochlorous acid water generation unit 30 ) according to the second embodiment, as the cleaning process controlled by the air purification control unit 41 , hypochlorous acid is supplied from the electrolytic cell 31 to the air purification unit 11 .
  • the first embodiment is characterized in that the hypochlorous acid water supply unit 36 drains the water from the electrolytic cell 31 while the water supply unit 50 supplies water to the electrolytic cell 31 when the supply of chloric acid water is completed.
  • Other configurations of the space purification system 100 including the hypochlorous acid water supply device (hypochlorous acid water generation unit 30) are the same as those of the space purification system 100 according to the first embodiment.
  • the cleaning process described above is hereinafter also referred to as "second cleaning process".
  • Embodiment 1 hypochlorous acid
  • FIGS. 1 and 2 which are different from Embodiment 1, hypochlorous acid
  • hypochlorous acid The operation of the acid water supply device (hypochlorous acid water generation unit 30) for cleaning the electrolytic cell 31 will be described.
  • the air purification control unit 41 causes the following processes to be executed as operations related to the cleaning process in the electrolytic cell 31 .
  • the air purification control unit 41 causes the hypochlorous acid water supply unit 36 to supply hypochlorous acid water to the air purification unit 11 by the first control as a trigger for the second cleaning process a predetermined number of times (for example, 5 times). After confirming that the
  • the air purification control unit 41 receives water level information (dry water signal) from the water level sensor 39 and time information (time information) from the clock unit 41c, and outputs the information to the processing unit 41d. .
  • the processing unit 41d identifies control information based on the water level information from the water level sensor 39, the time information from the clock unit 41c, and the setting information from the storage unit 41b, and outputs it to the output unit 41e.
  • the setting information includes information on the amount of tap water supplied to the electrolytic cell 31, information on the opening/closing timing of the solenoid valve 33, and information on the on/off operation of the hypochlorous acid water transport pump 37.
  • the output unit 41e outputs a signal (control signal) to each device (solenoid valve 33, hypochlorous acid water conveying pump 37) based on the received control information.
  • the solenoid valve 33 maintains the closed state based on the signal from the output section 41e, and the hypochlorous acid water transfer pump 37 stops based on the signal from the output section 41e. maintain.
  • the solenoid valve 33 is opened based on the signal from the output section 41e.
  • supply of tap water from the water pipe 52 is started to the electrolytic cell 31, and scale residues in the electrolytic cell 31 are scattered in the water by the force of the water.
  • the hypochlorous acid water conveying pump 37 operates based on the signal from the output section 41e, and in the hypochlorous acid water generation section 30, the electrolytic cell 31 to the air purification section 11 Drainage to (mixing tank 92) is also started at the same time.
  • the scale residue scattered in the water in the electrolytic bath 31 is discharged to the air purifier 11 (mixing bath 92) together with the water.
  • the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the time information (required time for supplying the specified amount) from the clock section 41c.
  • the hypochlorous acid water conveying pump 37 stops based on the signal from the output section 41e that receives the time information (required time for discharging the specified amount) from the clock section 41c.
  • the time required for draining the prescribed amount of the hypochlorous acid water conveying pump 37 is set sufficiently long so that the entire amount of water in the electrolytic cell 31 can be drained. All the water in the tank 31 is discharged.
  • the specified amount of the solenoid valve 33 is supplied. It is necessary to set the time required for this process so that the amount of water held in the electrolytic cell 31 does not exceed the capacity of the electrolytic cell 31 .
  • the solenoid valve 33 is closed when the water level sensor 39 detects the full water level.
  • the water supply flow rate from the water supply unit 50 is smaller than the drainage flow rate from the hypochlorous acid water supply unit 36, the water supplied from the water supply unit 50 is immediately drained.
  • the amount of water to be held does not exceed the capacity of the electrolytic cell 31, and the required time for supplying the specified amount of the solenoid valve 33 can be set without an upper limit.
  • the required time for supplying the specified amount of the solenoid valve 33 is set so as to obtain a sufficient scale washing effect within the range of the above limit.
  • the required time is set to 3 minutes, for example.
  • the air purification control unit 41 controls the water supply unit 50 (solenoid valve 33) to operate the water supply unit 50 (solenoid valve 33) when the supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 is completed as the cleaning process. While water is being supplied to the electrolytic cell 31, the hypochlorous acid water supply unit 36 (hypochlorous acid water conveying pump 37) drains the electrolytic cell 31 (second cleaning process). Note that the air purification control unit 41 may repeat the above-described second cleaning process a plurality of times (for example, three times).
  • hypochlorous acid water supply device (hypochlorous acid water generation unit 30) according to Embodiment 2
  • the following effects can be obtained.
  • hypochlorous acid water supply device (hypochlorous acid water generation unit 30)
  • an electrolytic solution sodium chloride aqueous solution in which an electrolyte (sodium chloride) and water are mixed is electrolyzed to produce hypochlorous acid water.
  • an electrolyte supply unit salt water tank 34 and salt water conveying pump 35
  • a water supply unit 50 that supplies water to the electrolytic cell 31
  • a water supply unit (hypochlorous acid water supply unit 36) that supplies the hypochlorous acid water thus obtained to the outside (mixing tank 92 of air purification unit 11).
  • hypochlorous acid water supply device hyperchlorous acid water generation unit 30
  • the second cleaning process is performed for a predetermined time (for example, 3 minutes).
  • hypochlorous acid water supply device hyperchlorous acid water generation unit 30
  • the second cleaning process is repeated multiple times.
  • hypochlorous acid water supply device hypochlorous acid water generation unit 30
  • the water supply unit hypochlorous acid water supply unit 36
  • Drainage is carried out by circulating the space purification device 10 .
  • hypochlorous acid water supply device hyperochlorous acid water supply unit 36
  • space purification device 10 the cleaning process is performed without providing a separate drainage path. be able to.
  • the air purification control unit 41 adjusts the flow rate of water supply from the water supply unit 50 (solenoid valve 33) to the hypochlorous acid water supply unit 36
  • the flow rate is controlled to be greater than the drainage flow rate by the hypochlorous acid water conveying pump 37, and the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the water level information (full water) from the water level sensor 39. You may do so.
  • hypochlorous acid water supply unit 36 which is performed while water is being supplied to the electrolytic cell 31 by the water supply unit 50, and the second cleaning process is performed once.
  • the descaling effect per hit can be enhanced.
  • the air purification control unit 41 receives the water level information (full water) from the water level sensor 39 in the first cleaning process.
  • the electromagnetic valve 33 is controlled to be closed based on the received signal from the output portion 41e, the present invention is not limited to this.
  • the air purification control unit 41 may control the solenoid valve 33 to close before the electrolytic cell 31 becomes full in the first cleaning process.
  • the air purification control unit 41 closes the electromagnetic valve 33 after a certain period of time (for example, 30 seconds) has passed since the electromagnetic valve 33 was opened. By doing so, since the first cleaning process is performed without filling the electrolytic cell 31 with water, the scale residue can be removed by supplying a smaller amount of water to the electrolytic cell 31 .
  • the water supply unit 50 in each cleaning process (first cleaning process or second cleaning process), the water supply unit 50 Although tap water was supplied to the electrolytic cell 31 by , it is not limited to this.
  • a separate system of supply piping supply piping including an electromagnetic valve
  • a liquid containing an acidic component such as hydrochloric acid or citric acid may be supplied through the supply piping.
  • hypochlorous acid water in each cleaning process Drainage of the electrolytic cell 31 by the supply unit 36 is performed by circulating the space cleaning device 10, but it is not limited to this.
  • a drain pipe a drain pipe including an electromagnetic valve
  • water may be drained from the inside of the electrolytic cell 31 to the outside of the apparatus through the drain pipe.
  • hypochlorous acid water supply device hyperchlorous acid water supply unit 36
  • the first control As a trigger for each cleaning process (first cleaning process or second cleaning process), the first control
  • the supply of hypochlorous acid water to the air purifier 11 by is performed a predetermined number of times (for example, 5 times), it is not limited to this.
  • a separate system of drainage piping it may be executed each time hypochlorous acid water is supplied to the air purifier 11 by the first control.
  • the cleaning process is performed before the scale components contained in the hypochlorous acid water are dried in the electrolytic cell 31, so that the accumulation of scale residue generated in the electrolytic cell 31 can be reduced. can.
  • a hypochlorous acid water supply device improves the maintainability of a device that generates hypochlorous acid by electrolysis and feeds water, and is a device that disinfects or deodorizes the air in a target space. Or it is useful as a system using this.

Abstract

A hypochlorous acid water supply device (30) of the present disclosure is provided with: an electrolytic cell (31) that electrolyzes an electrolyte solution obtained by mixing an electrolyte and water to generate hypochlorous acid water; electrolyte supply parts (34, 35) that supply the electrolyte to the electrolytic cell (31); a water supply part (50) that supplies water to the electrolytic cell (31); and a water delivery part (36) that delivers the hypochlorous acid water generated in the electrolytic cell (31) to the outside. When the delivery of the hypochlorous acid water from the electrolytic cell (31) to the outside is completed, the supply of water to the electrolytic cell (31) by the water supply part (50) is started for a cleaning treatment of the electrolytic cell (31), and the discharge of water from the electrolytic cell (31) by the water delivery part (36) is performed within a predetermined time after the supply of water to the electrolytic cell (31) is completed.

Description

次亜塩素酸水供給装置Hypochlorous acid water supply device
 本開示は、電気分解によって次亜塩素酸水を生成して送水する次亜塩素酸水供給装置に関する。 The present disclosure relates to a hypochlorous acid water supply device that generates and feeds hypochlorous acid water by electrolysis.
 従来の次亜塩素酸水供給装置において、浄化システムと連動することで次亜塩素酸を供給し、屋内に供給する空気を浄化成分(次亜塩素酸などの活性酸素種)が含まれた気液接触部材部に接触させて放出することで空間を除菌する空気調和システムが知られている(例えば、特許文献1参照)。 In the conventional hypochlorous acid water supply device, hypochlorous acid is supplied by linking with the purification system, and the air supplied indoors is air containing purification components (active oxygen species such as hypochlorous acid). There is known an air-conditioning system that sterilizes a space by contacting a liquid contact member portion and discharging it (see, for example, Patent Literature 1).
特開2009-133521号公報JP 2009-133521 A
 しかしながら、従来の次亜塩素酸水供給装置では、電解質と水道水を混合した電解液(例えば、塩化ナトリウム水溶液)を電解槽で電気分解して次亜塩素酸水を生成する際に、水道水中のカルシウム及びマグネシウム等がスケールとして析出及び蓄積し、電解槽中の水位センサまたはポンプなどの可動部材に固着したり、水路部を閉塞させたりするリスクがある。そのため、手作業でスケール除去する洗浄メンテナンスなどが行われており、そのようなメンテナンスが手間となっていた。 However, in a conventional hypochlorous acid water supply device, when an electrolytic solution (for example, an aqueous sodium chloride solution) in which an electrolyte and tap water are mixed is electrolyzed in an electrolytic cell to generate hypochlorous acid water, There is a risk that calcium, magnesium, etc., will precipitate and accumulate as scales, and will adhere to movable members such as water level sensors or pumps in the electrolytic cell, or clog water channels. Therefore, cleaning maintenance, such as manual descaling, has been performed, and such maintenance has been troublesome.
 本開示は、電解槽に蓄積されたスケールを除去する洗浄メンテナンスの頻度を低減し、次亜塩素酸水供給装置のメンテナンス性を向上させる技術を提供することを目的とする。 The purpose of the present disclosure is to provide a technique for reducing the frequency of cleaning maintenance for removing scale accumulated in the electrolytic cell and improving the maintainability of the hypochlorous acid water supply device.
 本開示に係る次亜塩素酸水供給装置は、電解質と水とを混合した電解液を電気分解して次亜塩素酸水を生成する電解槽と、電解槽に電解質を供給する電解質供給部と、電解槽に水を供給する水供給部と、電解槽で生成された次亜塩素酸水を外部へ送水する送水部と、を備える。そして、電解槽から外部への次亜塩素酸水の送水が完了した場合、電解槽の洗浄処理として、水供給部による電解槽への水の供給が開始され、電解槽への水の供給が完了してから所定時間以内に送水部による電解槽の排水が行われる。 The hypochlorous acid water supply device according to the present disclosure includes an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water, and an electrolyte supply unit that supplies the electrolyte to the electrolytic cell. , a water supply unit for supplying water to the electrolytic cell, and a water supply unit for supplying the hypochlorous acid water generated in the electrolytic cell to the outside. Then, when the supply of hypochlorous acid water from the electrolytic cell to the outside is completed, the water supply unit starts supplying water to the electrolytic cell as cleaning processing of the electrolytic cell, and the supply of water to the electrolytic cell is stopped. The electrolytic cell is drained by the water supply unit within a predetermined time after completion.
 また、本開示に係る別の次亜塩素酸水供給装置では、電解質と水とを混合した電解液を電気分解して次亜塩素酸水を生成する電解槽と、電解槽に電解質を供給する電解質供給部と、電解槽に前記水を供給する水供給部と、電解槽で生成された次亜塩素酸水を外部へ送水する送水部と、を備える。そして、電解槽から外部への次亜塩素酸水の送水が完了した場合、電解槽の洗浄処理として、水供給部による電解槽への水の供給が行われながら、送水部による電解槽の排水が行われる。 In another hypochlorous acid water supply device according to the present disclosure, an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water, and an electrolyte that is supplied to the electrolytic cell It comprises an electrolyte supply unit, a water supply unit that supplies the water to the electrolytic cell, and a water supply unit that supplies the hypochlorous acid water produced in the electrolytic cell to the outside. Then, when the supply of hypochlorous acid water from the electrolytic cell to the outside is completed, the electrolytic cell is drained by the water supply unit while the water supply unit supplies water to the electrolytic cell as the cleaning process of the electrolytic cell. is done.
 本開示によれば、電解槽に蓄積されたスケールを除去する洗浄メンテナンスの頻度を低減し、次亜塩素酸水供給装置のメンテナンス性を向上させる技術を提供することができる。 According to the present disclosure, it is possible to provide a technique for reducing the frequency of cleaning maintenance for removing scale accumulated in the electrolytic cell and improving maintainability of the hypochlorous acid water supply device.
図1は、本開示の実施の形態1に係る次亜塩素酸水供給装置を備えた空間浄化システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a space purification system including a hypochlorous acid water supply device according to Embodiment 1 of the present disclosure. 図2は、本開示の実施の形態1に係る次亜塩素酸水供給装置が備える空気浄化制御部の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of an air purification control unit included in the hypochlorous acid water supply apparatus according to Embodiment 1 of the present disclosure.
 本開示に係る次亜塩素酸水供給装置は、電解質と水とを混合した電解液を電気分解して次亜塩素酸水を生成する電解槽と、電解槽に電解質を供給する電解質供給部と、電解槽に水を供給する水供給部と、電解槽で生成された次亜塩素酸水を外部へ送水する送水部とを備える。そして、電解槽から外部への次亜塩素酸水の送水が完了した場合、電解槽の洗浄処理として、水供給部による電解槽への水の供給が開始され、電解槽への水の供給が完了してから所定時間以内に送水部による電解槽の排水が行われる。 The hypochlorous acid water supply device according to the present disclosure includes an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water, and an electrolyte supply unit that supplies the electrolyte to the electrolytic cell. , a water supply unit for supplying water to the electrolytic cell, and a water supply unit for supplying the hypochlorous acid water produced in the electrolytic cell to the outside. Then, when the supply of hypochlorous acid water from the electrolytic cell to the outside is completed, the water supply unit starts supplying water to the electrolytic cell as cleaning processing of the electrolytic cell, and the supply of water to the electrolytic cell is stopped. The electrolytic cell is drained by the water supply unit within a predetermined time after completion.
 こうした構成によれば、洗浄処理において、水供給部による給水によってスケール残渣を散乱させ、給水の完了後の所定時間以内での排水によって水中にスケール残渣が散乱した状態でスケール残渣を含む水を電解槽から排出させる。このため、電解槽にスケール残渣が蓄積することが抑制される。この結果、電解槽に蓄積されたスケールを除去する洗浄メンテナンスの頻度を低減し、次亜塩素酸水供給装置のメンテナンス性を向上させることができる。 According to this configuration, in the cleaning process, the water supply from the water supply unit scatters the scale residue, and the water containing the scale residue is electrolyzed in a state in which the scale residue is scattered in the water by the drainage within a predetermined time after the completion of the water supply. Drain from the tank. Therefore, accumulation of scale residue in the electrolytic cell is suppressed. As a result, the frequency of cleaning maintenance for removing the scale accumulated in the electrolytic cell can be reduced, and the maintainability of the hypochlorous acid water supply apparatus can be improved.
 また、本開示に係る次亜塩素酸水供給装置では、所定時間は、水供給部から供給される水によって電解槽内で散乱するスケール残渣が電解槽に沈殿するまでの時間以内に設定されてもよい。 Further, in the hypochlorous acid water supply device according to the present disclosure, the predetermined time is set within the time until the scale residue scattered in the electrolytic cell by the water supplied from the water supply unit settles in the electrolytic cell. good too.
 このようにすることで、洗浄処理において、水供給部による給水によって電解槽内で散乱したスケール残渣が電解槽に沈殿する前に、スケール残渣が排水と共に装置外に排出される。このため、より多くのスケール残渣を除去することができる。 By doing so, in the cleaning process, before the scale residue scattered in the electrolytic cell due to the water supply from the water supply unit settles in the electrolytic cell, the scale residue is discharged outside the apparatus together with the waste water. Therefore, more scale residue can be removed.
 また、本開示に係る次亜塩素酸水供給装置では、洗浄処理は複数回繰り返されてもよい。 Also, in the hypochlorous acid water supply apparatus according to the present disclosure, the cleaning process may be repeated multiple times.
 これにより、洗浄処理により電解槽のスケール残渣を繰り返し散乱させて排出させる。このため、電解槽内からより多くのスケール残渣を除去することができる。 As a result, the scale residue in the electrolytic cell is repeatedly scattered and discharged by the cleaning process. Therefore, more scale residue can be removed from the inside of the electrolytic cell.
 また、本開示に係る別の次亜塩素酸水供給装置では、電解質と水とを混合した電解液を電気分解して次亜塩素酸水を生成する電解槽と、電解槽に電解質を供給する電解質供給部と、電解槽に前記水を供給する水供給部と、電解槽で生成された次亜塩素酸水を外部へ送水する送水部と、を備える。そして、電解槽から外部への次亜塩素酸水の送水が完了した場合、電解槽の洗浄処理として、水供給部による電解槽への水の供給が行われながら、送水部による電解槽の排水が行われる。 In another hypochlorous acid water supply device according to the present disclosure, an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water, and an electrolyte that is supplied to the electrolytic cell It comprises an electrolyte supply unit, a water supply unit that supplies the water to the electrolytic cell, and a water supply unit that supplies the hypochlorous acid water produced in the electrolytic cell to the outside. Then, when the supply of hypochlorous acid water from the electrolytic cell to the outside is completed, the electrolytic cell is drained by the water supply unit while the water supply unit supplies water to the electrolytic cell as the cleaning process of the electrolytic cell. is done.
 こうした別の構成によれば、洗浄処理において、水供給部による給水によってスケール残渣を散乱させながら排水し、水中にスケール残渣が散乱した状態でスケール残渣を含む水を電解槽から排出させることができる。このため、電解槽にスケール残渣が蓄積することが抑制される。この結果、電解槽に蓄積されたスケールを除去する洗浄メンテナンスの頻度を低減し、次亜塩素酸水供給装置のメンテナンス性を向上させることができる。 According to such another configuration, in the cleaning process, water is discharged while the scale residue is scattered by the water supply from the water supply unit, and the water containing the scale residue can be discharged from the electrolytic cell in a state in which the scale residue is scattered in the water. . Therefore, accumulation of scale residue in the electrolytic cell is suppressed. As a result, the frequency of cleaning maintenance for removing the scale accumulated in the electrolytic cell can be reduced, and the maintainability of the hypochlorous acid water supply apparatus can be improved.
 また、本開示に係る別の次亜塩素酸水供給装置では、洗浄処理は所定時間行われてもよい。 Also, in another hypochlorous acid water supply device according to the present disclosure, the cleaning process may be performed for a predetermined time.
 これにより、洗浄処理によって一定のスケール残渣の除去効果を得ることができる。 As a result, a certain scale residue removal effect can be obtained by the cleaning treatment.
 また、本開示に係る別の次亜塩素酸水供給装置では、洗浄処理は複数回繰り返されてもよい。 Also, in another hypochlorous acid water supply device according to the present disclosure, the cleaning process may be repeated multiple times.
 これにより、洗浄処理により電解槽のスケールを繰り返し散乱させながら排出させる。このため、電解槽内からより多くのスケール残渣を除去することができる。 As a result, the scale of the electrolytic cell is repeatedly scattered and discharged by the cleaning process. Therefore, more scale residue can be removed from the inside of the electrolytic cell.
 また、本開示に係る次亜塩素酸水供給装置及び別の次亜塩素酸水供給装置では、送水部は、外部の空間浄化装置と接続されており、送水部による排水は、空間浄化装置を流通させて行われてもよい。 In addition, in the hypochlorous acid water supply device according to the present disclosure and another hypochlorous acid water supply device, the water supply unit is connected to an external space purification device, and the wastewater from the water supply unit is discharged from the space purification device. It may be carried out by circulating.
 このようにすることで、次亜塩素酸水供給装置に別途排水経路を設けることなく、洗浄処理を行うことができる。 By doing so, the cleaning process can be performed without providing a separate drainage path for the hypochlorous acid water supply device.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置、及び接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings. It should be noted that each of the embodiments described below is a preferred specific example of the present disclosure. Therefore, numerical values, shapes, materials, constituent elements, arrangement positions of constituent elements, connection forms, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest concept of the present disclosure will be described as optional constituent elements. Moreover, in each figure, the same code|symbol is attached|subjected to the substantially same structure, and the overlapping description is abbreviate|omitted or simplified.
 (実施の形態1)
 図1は、本開示の実施の形態1に係る次亜塩素酸水供給装置(次亜塩素酸水生成部30)を備えた空間浄化システム100の構成を示す図である。空間浄化システム100は、屋内空間18の空気を循環させる際に、屋内空間18からの空気8(RA)に対して必要に応じて冷却処理(除湿処理)または加熱処理を行うとともに、内部を流通する空気8に対して微細化された水とともに空気浄化を行う成分(以下、単に「空気浄化成分」ともいう)を含ませる装置である。空間浄化システム100は、内部を流通した空気9(SA)を屋内空間18に供給することで、屋内空間18の殺菌及び消臭を行う。ここでは、空気浄化成分として次亜塩素酸が用いられ、空気浄化成分を含む水は、次亜塩素酸を含む水溶液(次亜塩素酸水)である。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a space purification system 100 including a hypochlorous acid water supply device (hypochlorous acid water generation unit 30) according to Embodiment 1 of the present disclosure. When circulating the air in the indoor space 18, the space purification system 100 performs cooling processing (dehumidification processing) or heating processing on the air 8 (RA) from the indoor space 18 as necessary, and circulates the air inside. It is a device that makes the air 8 containing fine water and a component that purifies the air (hereinafter also simply referred to as an "air cleaning component"). The space purification system 100 sterilizes and deodorizes the indoor space 18 by supplying the air 9 (SA) that has circulated inside to the indoor space 18 . Here, hypochlorous acid is used as the air purification component, and the water containing the air purification component is an aqueous solution containing hypochlorous acid (hypochlorous acid water).
 空間浄化システム100は、図1に示すように、主として、空間浄化装置10、空気調和装置15、及び次亜塩素酸水生成部30を有して構成される。なお、本実施の形態では、次亜塩素酸水生成部30は、次亜塩素酸水供給装置とも言う。 The space purification system 100 mainly includes a space purification device 10, an air conditioner 15, and a hypochlorous acid water generator 30, as shown in FIG. In the present embodiment, the hypochlorous acid water generator 30 is also referred to as a hypochlorous acid water supply device.
 空間浄化装置10は、吹出口3、空気浄化部11、及び空気浄化制御部41を含む。空気調和装置15は、吸込口2、送風機13、冷媒コイル14、及び空気調和制御部42を含む。空間浄化装置10と空気調和装置15のそれぞれは、装置の外枠を構成する筐体を有し、空間浄化装置10と空気調和装置15とは、ダクト24により接続される。また、空気調和装置15の側面に吸込口2が形成され、空間浄化装置10の側面に吹出口3が形成される。 The space purification device 10 includes an air outlet 3, an air purification section 11, and an air purification control section 41. The air conditioner 15 includes a suction port 2 , a blower 13 , a refrigerant coil 14 , and an air conditioning controller 42 . Each of the space purification device 10 and the air conditioner 15 has a housing that constitutes the outer frame of the device, and the space purification device 10 and the air conditioner 15 are connected by a duct 24 . In addition, the suction port 2 is formed on the side of the air conditioner 15 and the outlet 3 is formed on the side of the space cleaning device 10 .
 吸込口2は、屋内空間18からの空気8を空気調和装置15に取り入れる取入口である。吸込口2は、屋内空間18の天井等に設けられた屋内吸込口16aとの間でダクト16を介して連通されている。これにより、吸込口2は、屋内吸込口16aから空気調和装置15内に屋内空間18の空気を吸い込むことができる。 The intake port 2 is an intake port that takes in the air 8 from the indoor space 18 into the air conditioner 15 . The suction port 2 communicates through a duct 16 with an indoor suction port 16 a provided on the ceiling of an indoor space 18 or the like. As a result, the air inlet 2 can draw air in the indoor space 18 into the air conditioner 15 from the indoor air inlet 16a.
 吹出口3は、空間浄化装置10内を流通した空気9(SA)を屋内空間18に吐き出す吐出口である。吹出口3は、屋内空間18の天井等に設けられた屋内吹出口17aとの間でダクト17を介して連通されている。これにより、吹出口3は、屋内吹出口17aから屋内空間18に向けて、空間浄化装置10内を流通した空気9を吹き出すことができる。 The air outlet 3 is an outlet for discharging the air 9 (SA) that has flowed through the space purification device 10 into the indoor space 18 . The air outlet 3 communicates through a duct 17 with an indoor air outlet 17 a provided on the ceiling of an indoor space 18 or the like. As a result, the air outlet 3 can blow out the air 9 that has circulated inside the space cleaning device 10 toward the indoor space 18 from the indoor air outlet 17a.
 また、空気調和装置15と空間浄化装置10の内部には、ダクト24を介して吸込口2と吹出口3とを連通する風路(前段風路4、中段風路5、後段風路6)が構成されている。前段風路4は、吸込口2に隣接する風路である。前段風路4には、送風機13及び冷媒コイル14が設けられている。 Further, inside the air conditioner 15 and the space purifier 10, there are air passages (front air passage 4, middle air passage 5, rear air passage 6) communicating the suction port 2 and the air outlet 3 through the duct 24. is configured. The front air passage 4 is an air passage adjacent to the suction port 2 . A blower 13 and a refrigerant coil 14 are provided in the front air passage 4 .
 中段風路5は、前段風路4(ダクト24)に隣接した位置において、前段風路4を流通した空気8が流通する風路である。中段風路5には、その風路内に空気浄化部11が設けられている。 The middle air passage 5 is an air passage through which the air 8 that has flowed through the front air passage 4 flows, at a position adjacent to the front air passage 4 (duct 24). The middle air passage 5 is provided with an air purifier 11 in the air passage.
 後段風路6は、吹出口3に隣接する風路であり、後段風路6では、中段風路5を流通した空気8が空気浄化部11を流通し微細化された水とともに次亜塩素酸を含んだ空気9となる。 The rear air passage 6 is an air passage adjacent to the outlet 3, and in the rear air passage 6, the air 8 that has flowed through the middle air passage 5 flows through the air purification unit 11 and is purified with hypochlorous acid along with water that has been made finer. becomes air 9 containing
 空気調和装置15と空間浄化装置10では、吸込口2から吸い込まれた空気8は、前段風路4を流通し、中段風路5及び後段風路6を流通し、空気9として吹出口3から吹き出される。 In the air conditioner 15 and the space purifier 10, the air 8 sucked from the suction port 2 flows through the front air passage 4, the middle air passage 5 and the rear air passage 6, and is released as air 9 from the air outlet 3. blown out.
 空気調和装置15の送風機13は、屋内空間18の空気8(RA)を吸込口2から空気調和装置15内に搬送するための装置である。送風機13は、前段風路4内において、冷媒コイル14の上流側に設置されている。送風機13では、空気調和制御部42からの送風出力情報に応じて運転動作のオン/オフが制御される。送風機13が運転動作することにより、屋内空間18の空気8は、空気調和装置15に取り込まれて冷媒コイル14に向かう。 The blower 13 of the air conditioner 15 is a device for conveying the air 8 (RA) in the indoor space 18 from the suction port 2 into the air conditioner 15 . The blower 13 is installed upstream of the refrigerant coil 14 in the front air passage 4 . In the blower 13 , on/off of operation is controlled according to the blowing output information from the air conditioning control section 42 . By operating the blower 13 , the air 8 in the indoor space 18 is taken into the air conditioner 15 and directed toward the refrigerant coil 14 .
 冷媒コイル14は、前段風路4内において、送風機13の下流側に配置され、導入される空気8を冷却または加熱するための部材である。冷媒コイル14は、空気調和制御部42からの出力信号に応じて出力状態(冷却、加熱またはオフ)を変化させ、導入される空気8に対する冷却能力(冷却量)または加熱能力(加熱量)を調整する。冷媒コイル14では、導入される空気8を冷却すると、導入された空気8の除湿がなされることになるので、空気8に対する冷却能力(冷却量)は、空気8に対する除湿能力(除湿量)ともいえる。 The refrigerant coil 14 is a member arranged downstream of the blower 13 in the front air passage 4 to cool or heat the introduced air 8 . The refrigerant coil 14 changes its output state (cooling, heating, or off) in accordance with the output signal from the air conditioning control unit 42 to change the cooling capacity (cooling amount) or heating capacity (heating amount) for the introduced air 8. adjust. In the refrigerant coil 14, when the introduced air 8 is cooled, the introduced air 8 is dehumidified. I can say.
 冷媒コイル14は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、吸熱器または放熱器として機能し、室外機20から導入される冷媒が内部を流通する際に吸熱(冷却)または放熱(加熱)するように構成されている。より詳細には、冷媒コイル14は、冷媒が流れる冷媒回路21を介して室外機20と接続されている。室外機20は、屋外空間19に設置される室外ユニットであり、圧縮機20aと、膨張器20bと、屋外熱交換器20cと、送風ファン20dと、四方弁20eとを有する。室外機20には、一般的な構成のものを用いるので、各機器(圧縮機20a、膨張器20b、屋外熱交換器20c、送風ファン20d、及び四方弁20e)の詳細な説明は省略する。 The refrigerant coil 14 functions as a heat absorber or a heat radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. is configured to absorb (cool) or dissipate (heat) heat to More specifically, the refrigerant coil 14 is connected to the outdoor unit 20 via a refrigerant circuit 21 through which refrigerant flows. The outdoor unit 20 is an outdoor unit installed in the outdoor space 19, and has a compressor 20a, an expander 20b, an outdoor heat exchanger 20c, a blower fan 20d, and a four-way valve 20e. Since the outdoor unit 20 has a general configuration, detailed description of each device (compressor 20a, expander 20b, outdoor heat exchanger 20c, blower fan 20d, and four-way valve 20e) is omitted.
 冷媒コイル14を含む冷凍サイクルには、四方弁20eが接続されているので、空気調和装置15では、四方弁20eによって第一方向に冷媒が流通して空気(空気8)を冷却して除湿する冷却モード(除湿モード)の状態と、四方弁20eによって第二方向に冷媒が流通して空気(空気8)に対して加熱を行う加熱モードの状態とを切り替え可能である。 Since the four-way valve 20e is connected to the refrigeration cycle including the refrigerant coil 14, in the air conditioner 15, the four-way valve 20e allows the refrigerant to flow in the first direction to cool and dehumidify the air (air 8). It is possible to switch between a cooling mode (dehumidifying mode) and a heating mode in which the four-way valve 20e circulates the refrigerant in the second direction to heat the air (air 8).
 ここで、第一方向は、圧縮機20aと屋外熱交換器20cと膨張器20bと冷媒コイル14とをこの順序で冷媒が流通する方向である。また、第二方向は、圧縮機20aと冷媒コイル14と膨張器20bと屋外熱交換器20cとをこの順序で冷媒が流通する方向である。冷媒コイル14では、導入される空気(空気8)に対して冷却または加熱することが可能である。 Here, the first direction is the direction in which the refrigerant flows through the compressor 20a, the outdoor heat exchanger 20c, the expander 20b, and the refrigerant coil 14 in this order. The second direction is the direction in which the refrigerant flows through the compressor 20a, the refrigerant coil 14, the expander 20b, and the outdoor heat exchanger 20c in this order. The refrigerant coil 14 can cool or heat the introduced air (air 8).
 空間浄化装置10の空気浄化部11は、内部に取り入れた空気8を加湿するためのユニットであり、加湿の際に、空気に対して微細化された水とともに次亜塩素酸を含ませる。より詳細には、空気浄化部11は、水位センサ90、混合槽92、加湿モータ11a、及び加湿ノズル11bを有している。空気浄化部11は、加湿モータ11aを用いて加湿ノズル11bを回転させ、空気浄化部11の混合槽92に貯留されている水(次亜塩素酸水)を遠心力で吸い上げて周囲(遠心方向)に飛散・衝突・破砕させ、通過する空気に水分を含ませる遠心破砕式の構成をとる。空気浄化部11は、空気浄化制御部41からの出力信号に応じて加湿モータ11aの回転速度(以下、回転出力値)を変化させ、加湿能力(加湿量)を調整する。加湿量は、空気に対して次亜塩素酸を付加する付加量ともいえる。 The air purifier 11 of the space purifier 10 is a unit for humidifying the air 8 that is taken inside. During humidification, the air is made to contain hypochlorous acid together with finely divided water. More specifically, the air purification section 11 has a water level sensor 90, a mixing tank 92, a humidification motor 11a, and a humidification nozzle 11b. The air purifying unit 11 rotates the humidifying nozzle 11b using the humidifying motor 11a, sucks up the water (hypochlorous acid water) stored in the mixing tank 92 of the air purifying unit 11 by centrifugal force, and spreads it around (in the centrifugal direction). . The air purification unit 11 changes the rotation speed (hereinafter referred to as rotation output value) of the humidification motor 11a according to the output signal from the air purification control unit 41 to adjust the humidification capacity (humidification amount). The amount of humidification can also be said to be the amount of addition of hypochlorous acid to the air.
 水位センサ90は、混合槽92内の次亜塩素酸水(混合水)の水位を計測し、計測値を空気浄化制御部41に出力する。 The water level sensor 90 measures the water level of hypochlorous acid water (mixed water) in the mixing tank 92 and outputs the measured value to the air purification control section 41 .
 混合槽92は、空気浄化部11において次亜塩素酸水を貯留する槽であり、貯水部とも言える。混合槽92では、後述する次亜塩素酸水供給部36によって次亜塩素酸水生成部30(電解槽31)から供給される所定濃度の次亜塩素酸水と、後述する水供給部50から供給される水とを槽内で混合し、希釈された次亜塩素酸水からなる混合水として貯留する。 The mixing tank 92 is a tank that stores the hypochlorous acid water in the air purifying section 11, and can also be said to be a water storage section. In the mixing tank 92, the hypochlorous acid water of a predetermined concentration supplied from the hypochlorous acid water generating unit 30 (electrolysis tank 31) by the hypochlorous acid water supply unit 36, which will be described later, and the hypochlorous acid water from the water supply unit 50, which will be described later. The supplied water is mixed in the tank and stored as mixed water composed of diluted hypochlorous acid water.
 次亜塩素酸水生成部30は、電解槽31、電極32、電磁弁33、塩水タンク34、塩水搬送ポンプ35、水位センサ39、及び次亜塩素酸水供給部36を含む。なお、次亜塩素酸水生成部30は、請求項の「次亜塩素酸水供給部」に相当し、次亜塩素酸水供給部36は、請求項の「送水部」に相当する。 The hypochlorous acid water generator 30 includes an electrolytic cell 31 , an electrode 32 , an electromagnetic valve 33 , a salt water tank 34 , a salt water transfer pump 35 , a water level sensor 39 , and a hypochlorous acid water supply unit 36 . The hypochlorous acid water generating unit 30 corresponds to the "hypochlorous acid water supply unit" in the claims, and the hypochlorous acid water supply unit 36 corresponds to the "water supply unit" in the claims.
 電磁弁33は、空気浄化制御部41からの出力信号に応じて、水道等の給水管(後述する送水管52)からの水道水を電解槽31に送水するか否か制御する。なお、電磁弁33は、後述する水供給部50を構成する。 The electromagnetic valve 33 controls whether tap water from a water supply pipe (a water pipe 52 described later) such as tap water is sent to the electrolytic cell 31 according to an output signal from the air purification control unit 41 . In addition, the electromagnetic valve 33 constitutes a water supply unit 50 which will be described later.
 塩水タンク34は、塩化物イオンを含む液体(塩水)を貯めている容器である。塩水搬送ポンプ35は、空気浄化制御部41からの出力信号に応じて、塩水タンク34の塩水を電解槽31に供給する。なお、塩水タンク34及び塩水搬送ポンプ35は、請求項の「電解質供給部」に相当する部材を構成する。 The salt water tank 34 is a container that stores a liquid (salt water) containing chloride ions. The salt water transfer pump 35 supplies the salt water in the salt water tank 34 to the electrolytic cell 31 according to the output signal from the air purification control unit 41 . The salt water tank 34 and the salt water transfer pump 35 constitute a member corresponding to an "electrolyte supply section" in the claims.
 電解槽31は、塩水タンク34から供給された電気分解対象である塩水を貯める。電解槽31には、空気浄化制御部41からの出力信号に応じて、水道等の給水管(送水管52)から電磁弁33を介して水道水も供給され、供給された水道水と塩水とが混合され、予め定められた濃度の塩水が貯められる。 The electrolytic cell 31 stores salt water to be electrolyzed supplied from the salt water tank 34 . Tap water is also supplied to the electrolytic cell 31 from a water supply pipe (water pipe 52) of tap water or the like through an electromagnetic valve 33 in response to an output signal from the air purification control unit 41, and the supplied tap water and salt water are mixed. are mixed and a predetermined concentration of brine is pooled.
 電極32は、一対の電極で構成される。電極32は、電解槽31内に配置され、空気浄化制御部41からの出力信号に応じて通電により塩水の電気分解を所定時間行い、予め定められた濃度の次亜塩素酸水を生成する。 The electrode 32 is composed of a pair of electrodes. The electrode 32 is arranged in the electrolytic bath 31 and electrolyzes salt water for a predetermined time by energization in response to an output signal from the air purification control unit 41 to generate hypochlorous acid water having a predetermined concentration.
 つまり、電解槽31は、一対の電極間で、電解質として塩化物水溶液(例えば、塩化ナトリウム水溶液)を電気分解することで次亜塩素酸水を生成する。電解槽31には、一般的な装置が使用されるので、詳細な説明は省略する。ここで、電解質は、次亜塩素酸水を生成可能な電解質であり、少量でも塩化物イオンを含んで入れば特に制限はなく、例えば、溶質として塩化ナトリウム、塩化カルシウム、塩化マグネシウム等を溶解した水溶液が挙げられる。また、塩酸でも問題ない。本実施の形態では、電解質として、水に対して塩化ナトリウムを加えた塩化ナトリウム水溶液(塩水)を使用している。 That is, the electrolytic cell 31 generates hypochlorous acid water by electrolyzing a chloride aqueous solution (for example, a sodium chloride aqueous solution) as an electrolyte between a pair of electrodes. Since a common device is used for the electrolytic cell 31, detailed description is omitted. Here, the electrolyte is an electrolyte that can generate hypochlorous acid water, and is not particularly limited as long as it contains chloride ions even in a small amount. For example, sodium chloride, calcium chloride, magnesium chloride, etc. are dissolved as a solute. Aqueous solutions are mentioned. There is no problem with hydrochloric acid. In this embodiment, an aqueous sodium chloride solution (salt water) in which sodium chloride is added to water is used as the electrolyte.
 水位センサ39は、電解槽31内の水位を計測し、計測値を空気浄化制御部41に出力する。 The water level sensor 39 measures the water level in the electrolytic cell 31 and outputs the measured value to the air purification control section 41 .
 次亜塩素酸水供給部36は、空気浄化制御部41からの出力信号に応じて、電解槽31から空気浄化部11の混合槽92に次亜塩素酸水を供給する。次亜塩素酸水供給部36は、次亜塩素酸水搬送ポンプ37と送水管38とを有する。次亜塩素酸水搬送ポンプ37は、空気浄化制御部41からの出力信号に応じて、電解槽31の次亜塩素酸水を送水管38に送り出す。送水管38は、次亜塩素酸水搬送ポンプ37と混合槽92との間に接続され、次亜塩素酸水を混合槽92に向けて送水する。 The hypochlorous acid water supply unit 36 supplies hypochlorous acid water from the electrolytic cell 31 to the mixing tank 92 of the air purification unit 11 according to the output signal from the air purification control unit 41 . The hypochlorous acid water supply unit 36 has a hypochlorous acid water transport pump 37 and a water pipe 38 . The hypochlorous acid water transfer pump 37 sends out the hypochlorous acid water in the electrolytic cell 31 to the water pipe 38 according to the output signal from the air purification control unit 41 . The water pipe 38 is connected between the hypochlorous acid water conveying pump 37 and the mixing tank 92 and feeds the hypochlorous acid water toward the mixing tank 92 .
 水供給部50は、空気浄化制御部41からの出力信号に応じて、混合槽92に水を供給する。水供給部50は、電磁弁51と送水管52とを有する。また、水供給部50には、上述した電磁弁33も含まれる。電磁弁51は、空気浄化制御部41からの出力信号に応じて、空間浄化装置10の外部の水道管から供給される水を送水管52に流すか否か制御する。送水管52は、電磁弁51と混合槽92との間に接続され、水を混合槽92に向けて送水する。なお、水供給部50は、上述した電磁弁33を含むので、請求項の「水供給部」に相当すると言える。 The water supply unit 50 supplies water to the mixing tank 92 according to the output signal from the air purification control unit 41 . The water supply unit 50 has an electromagnetic valve 51 and a water pipe 52 . The water supply unit 50 also includes the electromagnetic valve 33 described above. The electromagnetic valve 51 controls whether or not water supplied from a water pipe outside the space purification device 10 is allowed to flow through the water pipe 52 according to an output signal from the air purification control section 41 . The water pipe 52 is connected between the electromagnetic valve 51 and the mixing tank 92 and feeds water toward the mixing tank 92 . Since the water supply unit 50 includes the electromagnetic valve 33 described above, it can be said that it corresponds to the "water supply unit" in the claims.
 空気浄化部11では、次亜塩素酸水供給部36からの次亜塩素酸水と、水供給部50からの水とが混合槽92にそれぞれ供給される。そして、空気浄化部11の混合槽92内で次亜塩素酸水と水とが混合される。つまり、次亜塩素酸水は、混合槽92内において水供給部50からの水により混合希釈される。次亜塩素酸水と水との混合水も次亜塩素酸水と呼べる。より詳細には、空気浄化部11の混合槽92では、混合槽92内に残存する次亜塩素酸水に対して、次亜塩素酸水供給部36からの次亜塩素酸水または水供給部50からの水が供給されて混合される。空気浄化部11は、混合槽92に貯められた次亜塩素酸水と水との混合水を遠心破砕することによって、次亜塩素酸水を含む空気を屋内空間18に対して放出する。微細化された次亜塩素酸水は、液体成分が蒸発した状態で屋内空間18へ放出される。 In the air purifier 11 , hypochlorous acid water from the hypochlorous acid water supply unit 36 and water from the water supply unit 50 are supplied to the mixing tank 92 . Then, the hypochlorous acid water and water are mixed in the mixing tank 92 of the air purifier 11 . That is, the hypochlorous acid water is mixed and diluted with water from the water supply unit 50 in the mixing tank 92 . Mixed water of hypochlorous acid water and water can also be called hypochlorous acid water. More specifically, in the mixing tank 92 of the air purification unit 11, hypochlorous acid water from the hypochlorous acid water supply unit 36 or the water supply unit is added to the hypochlorous acid water remaining in the mixing tank 92 Water from 50 is fed and mixed. The air purifier 11 discharges air containing hypochlorous acid water to the indoor space 18 by centrifugally crushing the mixed water of hypochlorous acid water and water stored in the mixing tank 92 . The micronized hypochlorous acid water is discharged into the indoor space 18 with the liquid component evaporated.
 屋内空間18の壁面には、操作装置43が設置される。操作装置43は、ユーザが操作可能なユーザインターフェースを備え、ユーザから温度設定値、湿度設定値、及び加湿浄化運転の動作に関する情報を受けつける。操作装置43には、温湿度センサ44が含まれており、温湿度センサ44は、屋内空間18の空気の温度及び湿度を計測する。温湿度センサ44における温度及び湿度の計測には公知の技術が使用されればよいので、ここでは説明を省略する。 An operation device 43 is installed on the wall surface of the indoor space 18 . The operation device 43 has a user interface that can be operated by the user, and receives information from the user regarding the temperature setting value, the humidity setting value, and the operation of the humidification/purification operation. The operating device 43 includes a temperature/humidity sensor 44 that measures the temperature and humidity of the air in the indoor space 18 . A well-known technique may be used to measure the temperature and humidity in the temperature/humidity sensor 44, so the explanation is omitted here.
 操作装置43は、空気浄化制御部41及び空気調和制御部42に対して有線あるいは無線で接続されており、温度設定値、湿度設定値、温度計測値、及び湿度計測値に関する情報に加え、加湿浄化運転の動作に関する情報を空気浄化制御部41及び空気調和制御部42に送信する。これらの情報は、すべてまとめて送信されてもよく、任意の2つ以上をまとめて送信されてもよく、それぞれを送信されてもよい。また、操作装置43が空気浄化制御部41に情報を送信し、空気浄化制御部41が空気調和制御部42に情報を転送してもよい。 The operation device 43 is connected to the air purification control unit 41 and the air conditioning control unit 42 by wire or wirelessly, and in addition to information on the temperature setting value, the humidity setting value, the temperature measurement value, and the humidity measurement value, the humidification Information about the operation of the purification operation is transmitted to the air purification control section 41 and the air conditioning control section 42 . All of these pieces of information may be transmitted together, arbitrary two or more may be transmitted together, and each of them may be transmitted. Alternatively, the operation device 43 may transmit information to the air purification control section 41 , and the air purification control section 41 may transfer the information to the air conditioning control section 42 .
 空気調和装置15の空気調和制御部42は、温度設定値及び温度計測値を受けつけ、温度計測値が温度設定値に近づくように、冷媒コイル14及び室外機20を制御する。空気調和制御部42は、加熱モードにおいて、温度計測値が温度設定値よりも低い場合に、温度計測値と温度設定値との差異が大きくなるほど、加熱の程度を増加させる。 The air conditioning control unit 42 of the air conditioner 15 receives the temperature setting value and the temperature measurement value, and controls the refrigerant coil 14 and the outdoor unit 20 so that the temperature measurement value approaches the temperature setting value. In the heating mode, when the measured temperature value is lower than the set temperature value, the air conditioning control unit 42 increases the degree of heating as the difference between the measured temperature value and the set temperature value increases.
 次に、空間浄化装置10の空気浄化制御部41について説明する。 Next, the air purification control section 41 of the space purification device 10 will be described.
 空気浄化制御部41は、次亜塩素酸水生成部30及び空間浄化装置10の処理動作として、電解槽31における電気分解処理に関する動作、空気浄化部11への次亜塩素酸水の供給処理に関する動作、空気浄化部11への水の供給処理に関する動作、空気浄化部11における加湿浄化処理に関する動作、及び電解槽31の洗浄処理に関する動作をそれぞれ制御する。なお、空気浄化制御部41は、プロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムがコントローラとして機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。 The air purification control unit 41, as the processing operations of the hypochlorous acid water generating unit 30 and the space purification device 10, relates to operations related to electrolysis processing in the electrolytic cell 31 and processing related to supply of hypochlorous acid water to the air purification unit 11. It controls the operation, the operation related to water supply processing to the air purification unit 11, the operation related to the humidification purification processing in the air purification unit 11, and the operation related to the cleaning processing of the electrolytic cell 31, respectively. The air purification control unit 41 has a computer system having a processor and memory. The computer system functions as a controller by the processor executing the program stored in the memory. Although the program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. may be provided through
 図2は、空気浄化制御部41の構成を示すブロック図である。具体的には、空気浄化制御部41は、図2に示すように、入力部41a、記憶部41b、計時部41c、処理部41d、及び出力部41eを備える。 FIG. 2 is a block diagram showing the configuration of the air purification control section 41. As shown in FIG. Specifically, as shown in FIG. 2, the air purification control section 41 includes an input section 41a, a storage section 41b, a clock section 41c, a processing section 41d, and an output section 41e.
 <電解槽における電気分解処理に関する動作>
 空気浄化制御部41は、電解槽31における電気分解処理に関する動作として、以下の処理を実行させる。
<Operation related to electrolysis treatment in the electrolytic cell>
The air purification control unit 41 causes the following processes to be executed as operations related to the electrolysis process in the electrolytic cell 31 .
 空気浄化制御部41は、電解槽31の電気分解処理のトリガーとして、水位センサ39からの水位情報(渇水信号)及び計時部41cからの時間に関する情報(時刻情報)を受け付け、処理部41dへ出力する。 The air purification control unit 41 receives water level information (dry water signal) from the water level sensor 39 and information on time (time information) from the timing unit 41c as a trigger for electrolysis processing of the electrolytic cell 31, and outputs the information to the processing unit 41d. do.
 処理部41dは、水位センサ39からの水位情報と、計時部41cからの時刻情報と、記憶部41bからの設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、次亜塩素酸水生成の開始時刻または終了時刻に関する情報、電解槽31に導入する水道水の供給量に関する情報、塩水搬送ポンプ35における塩水の投入量に関する情報、電極32における電気分解条件(時間、電流値、電圧など)に関する情報、電磁弁33の開閉タイミングに関する情報、次亜塩素酸水搬送ポンプ37のオン/オフ動作に関する情報が含まれる。 The processing unit 41d identifies control information based on the water level information from the water level sensor 39, the time information from the clock unit 41c, and the setting information from the storage unit 41b, and outputs it to the output unit 41e. Here, the setting information includes information on the start time or end time of hypochlorous acid water generation, information on the supply amount of tap water to be introduced into the electrolytic cell 31, information on the amount of salt water supplied by the salt water transfer pump 35, and electrode Information on the electrolysis conditions (time, current value, voltage, etc.) in 32, information on the opening/closing timing of the electromagnetic valve 33, and information on the on/off operation of the hypochlorous acid water transfer pump 37 are included.
 ここで、電極32における電気分解条件は、電解槽31内の水道水の水量、塩化物イオン濃度、電気分解時間、電極32の劣化度合いから決定でき、アルゴリズムを作成して設定され、記憶部41bに記憶される。 Here, the electrolysis conditions for the electrode 32 can be determined from the amount of tap water in the electrolytic cell 31, the chloride ion concentration, the electrolysis time, and the degree of deterioration of the electrode 32, and are set by creating an algorithm. stored in
 そして、出力部41eは、受け付けた制御情報に基づいて、各機器(塩水搬送ポンプ35、電磁弁33、次亜塩素酸水搬送ポンプ37)に信号(制御信号)をそれぞれ出力する。 Then, based on the received control information, the output unit 41e outputs a signal (control signal) to each device (salt water conveying pump 35, solenoid valve 33, hypochlorous acid water conveying pump 37).
 より詳細には、まず、塩水搬送ポンプ35は、出力部41eからの信号に基づいて停止した状態を維持し、次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて停止した状態を維持する。 More specifically, first, the salt water conveying pump 35 is kept stopped based on the signal from the output section 41e, and the hypochlorous acid water conveying pump 37 is stopped based on the signal from the output section 41e. maintain state.
 そして、塩水搬送ポンプ35は、出力部41eからの信号に基づいて動作を開始し、所定量の塩水を電解槽31へ搬送して停止する。これにより、電解槽31は、所定量の塩化物イオンが供給された状態となる。 Then, the salt water conveying pump 35 starts operating based on a signal from the output section 41e, conveys a predetermined amount of salt water to the electrolytic cell 31, and then stops. As a result, the electrolytic bath 31 is supplied with a predetermined amount of chloride ions.
 次に、電磁弁33は、出力部41eからの信号に基づいて開放される。これにより、電解槽31には、水道管からの水道水の供給が開始される。その後、電磁弁33は、水位センサ39からの水位情報(満水)を受けた出力部41eからの信号に基づいて閉止される。これにより、電解槽31内には、水道水によって塩化物イオンが希釈され、所定量の塩化物イオンを含む水溶液(塩化物水溶液)が生成された状態となる。 Next, the electromagnetic valve 33 is opened based on the signal from the output section 41e. As a result, supply of tap water from the water pipe is started to the electrolytic cell 31 . After that, the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the water level information (full water) from the water level sensor 39. FIG. As a result, the chloride ions are diluted with the tap water in the electrolytic cell 31, and an aqueous solution containing a predetermined amount of chloride ions (aqueous chloride solution) is generated.
 そして、電極32は、出力部41eからの信号に基づいて、塩化物水溶液の電気分解を開始し、設定された条件の次亜塩素酸水を生成して停止する。電極32により生成される次亜塩素酸水は、例えば、次亜塩素酸濃度が100ppm~150ppm(例えば、120ppm)であり、pHが7.0~8.5(例えば、8.0)の状態となる。 Then, the electrode 32 starts electrolyzing the chloride aqueous solution based on the signal from the output unit 41e, generates hypochlorous acid water under the set conditions, and stops the electrolysis. The hypochlorous acid water generated by the electrode 32 has, for example, a hypochlorous acid concentration of 100 ppm to 150 ppm (eg, 120 ppm) and a pH of 7.0 to 8.5 (eg, 8.0). becomes.
 以上のようにして、空気浄化制御部41は、電解槽31において電気分解処理を実行し、予め定められた濃度と量の次亜塩素酸水が生成される。 As described above, the air purification control unit 41 performs electrolysis processing in the electrolytic cell 31 to generate hypochlorous acid water with a predetermined concentration and amount.
 <空気浄化部への次亜塩素酸水の供給処理に関する動作>
 空気浄化制御部41は、空気浄化部11への次亜塩素酸水の供給処理に関する動作として、以下の処理を実行させる。
<Operation related to supply processing of hypochlorous acid water to the air purifier>
The air purification control unit 41 causes the following processing to be executed as operations related to the hypochlorous acid water supply processing to the air purification unit 11 .
 空気浄化制御部41は、空気浄化部11への次亜塩素酸水の供給処理のトリガーとして、加湿モータ11aの稼働時間を計時部41cが測定し、稼働時間が所定時間経過(例えば60分)するごとに次亜塩素酸水生成部30(次亜塩素酸水供給部36)に次亜塩素酸水供給要求を出力する。ここで、所定時間は、次亜塩素酸水中の次亜塩素酸が気化して経時的に減少することを踏まえ、予め実験評価によって見積られた時間である。 In the air purification control unit 41, the timer unit 41c measures the operation time of the humidification motor 11a as a trigger for supplying hypochlorous acid water to the air purification unit 11, and the operation time elapses for a predetermined time (for example, 60 minutes). Each time, a hypochlorous acid water supply request is output to the hypochlorous acid water generating unit 30 (hypochlorous acid water supply unit 36). Here, the predetermined time is a time estimated in advance by experimental evaluation, based on the fact that hypochlorous acid in the hypochlorous acid water evaporates and decreases over time.
 具体的には、処理部41dは、計時部41cからの時間に関する情報(時刻情報)と、記憶部41bからの設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、次亜塩素酸水の供給間隔(例えば60分)に関する情報、次亜塩素酸水搬送ポンプ37のオン/オフ動作に関する情報が含まれる。 Specifically, the processing unit 41d identifies the control information based on the time information (time information) from the clock unit 41c and the setting information from the storage unit 41b, and outputs the control information to the output unit 41e. Here, the setting information includes information about the hypochlorous acid water supply interval (for example, 60 minutes) and information about the ON/OFF operation of the hypochlorous acid water transfer pump 37 .
 そして、出力部41eは、受け付けた制御情報に基づいて、次亜塩素酸水供給部36の次亜塩素酸水搬送ポンプ37に信号(制御信号)を出力する。 Then, the output unit 41e outputs a signal (control signal) to the hypochlorous acid water transport pump 37 of the hypochlorous acid water supply unit 36 based on the received control information.
 次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて作動する。これにより、次亜塩素酸水生成部30では、電解槽31から空気浄化部11(混合槽92)への次亜塩素酸水の供給が開始される。なお、電解槽31に貯留される次亜塩素酸水の濃度を担保するため、次亜塩素酸水生成部30から混合槽92に次亜塩素酸水が供給される際、電解槽31で生成された次亜塩素酸水は全量供給される。そのため、次亜塩素酸水を供給した後は、電解槽31は空の状態であり、次亜塩素酸水が電解槽31内に残留した状態から次亜塩素酸水を作成し始めることはない。水位センサ39は、電解槽31内の次亜塩素酸水が全量供給された状態になると、水位情報として渇水信号を出力する。 The hypochlorous acid water transport pump 37 operates based on the signal from the output section 41e. As a result, in the hypochlorous acid water generating unit 30, supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (mixing tank 92) is started. In addition, in order to ensure the concentration of the hypochlorous acid water stored in the electrolytic cell 31, when the hypochlorous acid water is supplied from the hypochlorous acid water generation unit 30 to the mixing tank 92, The hypochlorous acid water produced is supplied in full. Therefore, after the hypochlorous acid water is supplied, the electrolytic cell 31 is in an empty state, and the hypochlorous acid water is not started from the state where the hypochlorous acid water remains in the electrolytic cell 31. . The water level sensor 39 outputs a water shortage signal as water level information when the hypochlorous acid water in the electrolytic cell 31 is completely supplied.
 その後、次亜塩素酸水搬送ポンプ37は、計時部41cからの時間に関する情報(規定量を供給するための所要時間)を受けた出力部41eからの信号に基づいて停止する。これにより、次亜塩素酸水生成部30は、電解槽31から空気浄化部11(混合槽92)に対して次亜塩素酸水が設定された供給量にて供給する。 After that, the hypochlorous acid water conveying pump 37 stops based on the signal from the output section 41e that receives the time information (required time for supplying the specified amount) from the clock section 41c. As a result, the hypochlorous acid water generator 30 supplies the hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (mixing tank 92) at the set supply amount.
 以上のようにして、空気浄化制御部41は、次亜塩素酸水生成部30(電解槽31)から空気浄化部11への次亜塩素酸水の供給処理を実行させる。なお、空気浄化制御部41が次亜塩素酸水供給部36による次亜塩素酸水の供給を所定時間ごとに行う制御を「第一制御」とする。 As described above, the air purification control unit 41 causes the hypochlorous acid water supply process from the hypochlorous acid water generation unit 30 (the electrolytic cell 31) to the air purification unit 11 to be executed. The control in which the air purification control unit 41 causes the hypochlorous acid water supply unit 36 to supply the hypochlorous acid water at predetermined time intervals is referred to as "first control".
 <空気浄化部への水の供給処理に関する動作>
 空気浄化制御部41は、空気浄化部11への水の供給処理に関する動作として、以下の処理を実行させる。
<Operation related to water supply processing to the air purifier>
The air purification control unit 41 causes the following processes to be executed as operations related to water supply processing to the air purification unit 11 .
 空気浄化制御部41は、空気浄化部11への水の供給処理のトリガーとして、空間浄化装置10の水位センサ90からの水位情報(渇水信号)を受け付け、水供給部50に水供給要求を出力する。 The air purification control unit 41 receives water level information (dry water signal) from the water level sensor 90 of the space purification device 10 as a trigger for water supply processing to the air purification unit 11, and outputs a water supply request to the water supply unit 50. do.
 具体的には、入力部41aは、空間浄化装置10の水位センサ90からの水位情報(渇水信号)を受け付け、処理部41dに出力する。 Specifically, the input unit 41a receives water level information (a water shortage signal) from the water level sensor 90 of the space purification device 10 and outputs it to the processing unit 41d.
 処理部41dは、入力部41aからの水位情報(渇水信号)と、計時部41cからの時間に関する情報(時刻情報)と、記憶部41bからの設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、水供給部50の電磁弁51のオン/オフ動作に関する情報が含まれる。 The processing unit 41d identifies and outputs control information based on the water level information (water shortage signal) from the input unit 41a, the time information (time information) from the clock unit 41c, and the setting information from the storage unit 41b. Output to the unit 41e. Here, the setting information includes information regarding the ON/OFF operation of the solenoid valve 51 of the water supply section 50 .
 そして、出力部41eは、受け付けた制御情報に基づいて、電磁弁51に信号(制御信号)を出力する。 Then, the output unit 41e outputs a signal (control signal) to the electromagnetic valve 51 based on the received control information.
 電磁弁51は、出力部41eからの信号に基づいて作動する。これにより、水供給部50では、送水管52を介して、外部の給水管から空気浄化部11(混合槽92)への水の供給が開始される。 The solenoid valve 51 operates based on the signal from the output section 41e. As a result, in the water supply unit 50 , supply of water from the external water supply pipe to the air cleaning unit 11 (mixing tank 92 ) is started via the water pipe 52 .
 その後、電磁弁51は、空間浄化装置10の水位センサ90からの水位情報(満水信号)を受け付けた出力部41eからの信号に基づいて停止する。これにより、水供給部50は、外部の給水管から空気浄化部11(混合槽92)に対して水が設定された量になるまで供給する。 After that, the solenoid valve 51 stops based on the signal from the output section 41e that receives the water level information (full water signal) from the water level sensor 90 of the space purification device 10. Thereby, the water supply unit 50 supplies water from the external water supply pipe to the air purification unit 11 (mixing tank 92) until the set amount of water is reached.
 以上のようにして、空気浄化制御部41は、水供給部50から空気浄化部11への水の供給処理を実行させる。なお、空気浄化制御部41が水位センサ90からの混合槽92の水位に関する情報(渇水情報)に基づいて水供給部50による水の供給を行う制御を「第二制御」とする。 As described above, the air purification control unit 41 causes the water supply unit 50 to supply water to the air purification unit 11 . The control in which the air purification control unit 41 supplies water by the water supply unit 50 based on the information (water shortage information) about the water level of the mixing tank 92 from the water level sensor 90 is referred to as "second control".
 <空気浄化部における加湿浄化処理に関する動作>
 次に、空気浄化制御部41の空気浄化部11における加湿浄化処理に関する動作について説明する。
<Operations related to humidification and purification processing in the air purification section>
Next, the operation of the air purifying section 11 of the air purifying control section 41 regarding the humidifying and purifying process will be described.
 入力部41aは、操作装置43からのユーザ入力情報と、温湿度センサ44からの屋内空間18の空気の温湿度情報と、水位センサ90からの混合槽92内の次亜塩素酸水(混合水)の水位情報とを受け付ける。入力部41aは、受け付けた各情報を処理部41dに出力する。 The input unit 41a receives user input information from the operation device 43, temperature and humidity information of the air in the indoor space 18 from the temperature and humidity sensor 44, and hypochlorous acid water (mixed water) in the mixing tank 92 from the water level sensor 90. ) and receive the water level information. The input unit 41a outputs each received information to the processing unit 41d.
 ここで、操作装置43は、空間浄化装置10に関するユーザ入力情報(例えば、風量、目標温度、目標湿度、次亜塩素酸の添加の有無、次亜塩素酸の目標供給量レベル、等)を入力する端末であり、無線または有線により空気浄化制御部41と通信可能に接続されている。 Here, the operation device 43 inputs user input information (for example, air volume, target temperature, target humidity, presence or absence of addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.) regarding the space purification device 10. It is a terminal that communicates with the air purification control unit 41 wirelessly or by wire.
 また、温湿度センサ44は、屋内空間18内に設けられ、屋内空間18の空気の温湿度を感知するセンサである。 Also, the temperature/humidity sensor 44 is a sensor that is provided in the indoor space 18 and senses the temperature/humidity of the air in the indoor space 18 .
 記憶部41bは、入力部41aが受け付けたユーザ入力情報と、装置内を流通する空気に対する次亜塩素酸の供給動作における供給設定情報とを記憶する。記憶部41bは、記憶した供給設定情報を処理部41dに出力する。なお、次亜塩素酸の供給動作における供給設定情報は、空気浄化部11の加湿浄化動作における加湿設定情報とも言える。 The storage unit 41b stores user input information received by the input unit 41a and supply setting information in the operation of supplying hypochlorous acid to the air circulating in the device. The storage unit 41b outputs the stored supply setting information to the processing unit 41d. The supply setting information in the hypochlorous acid supply operation can also be said to be the humidification setting information in the humidification purification operation of the air purifier 11 .
 計時部41cは、現在時刻に関する時刻情報を処理部41dに出力する。 The clocking unit 41c outputs time information regarding the current time to the processing unit 41d.
 処理部41dは、入力部41aからの各種情報(ユーザ入力情報、温湿度情報、水位情報)と、計時部41cからの時刻情報と、記憶部41bからの供給設定情報とを受け付ける。処理部41dは、受け付けたユーザ入力情報、時刻情報、及び供給設定情報を用いて、加湿浄化運転動作に関する制御情報を特定する。 The processing unit 41d receives various information (user input information, temperature/humidity information, water level information) from the input unit 41a, time information from the clock unit 41c, and supply setting information from the storage unit 41b. The processing unit 41d uses the received user input information, time information, and supply setting information to identify control information related to the humidification/purification operation.
 具体的には、処理部41dは、計時部41cからの時刻情報によって一定時間ごとに、記憶部41bに記憶された目標湿度と、温湿度センサ44からの屋内空間18の空気の温湿度情報の間の湿度差に基づいて、屋内空間18に必要とされる加湿要求量を特定する。そして、処理部41dは、特定した加湿要求量と、記憶部41bに記憶された供給設定情報とに基づいて加湿浄化運転動作に関する制御情報を特定する。そして、処理部41dは、特定した制御情報を出力部41eに出力する。 Specifically, the processing unit 41d detects the target humidity stored in the storage unit 41b and the temperature/humidity information of the air in the indoor space 18 from the temperature/humidity sensor 44 at regular time intervals based on the time information from the clock unit 41c. Identifies the required humidification demand for the indoor space 18 based on the humidity difference between. Then, the processing unit 41d identifies control information related to the humidifying and purifying operation based on the identified humidification request amount and the supply setting information stored in the storage unit 41b. Then, the processing unit 41d outputs the specified control information to the output unit 41e.
 また、処理部41dは、水位センサ90からの水位情報に、混合槽92内の次亜塩素酸水(混合水)の渇水を示す水位に関する情報(渇水信号)が含まれる場合には、出力部41eは、水供給部50に対する水供給要求の信号を出力部41eに出力する。さらに、処理部41dは、計時部41cからの時刻情報に基づいて、空気浄化部11(加湿モータ11a)の稼働時間が所定時間(例えば60分)となった場合には、出力部41eは、次亜塩素酸水生成部30に対する次亜塩素酸水供給要求の信号を出力部41eに出力する。なお、本実施の形態では、混合槽92内の次亜塩素酸水(混合水)が渇水を示す水位は、混合槽92内に次亜塩素酸水(混合水)が満水の状態から約1/3まで次亜塩素酸水量が減少した状態での水位に設定されている。 If the water level information from the water level sensor 90 includes water level information (water shortage signal) indicating a water shortage of the hypochlorous acid water (mixed water) in the mixing tank 92, the processing unit 41d outputs the output unit 41e outputs the signal of the water supply request|requirement with respect to the water supply part 50 to the output part 41e. Furthermore, based on the time information from the timer 41c, the processing unit 41d, when the operation time of the air purification unit 11 (humidification motor 11a) reaches a predetermined time (for example, 60 minutes), the output unit 41e A hypochlorous acid water supply request signal to the hypochlorous acid water generating unit 30 is output to the output unit 41e. In the present embodiment, the water level at which the hypochlorous acid water (mixed water) in the mixing tank 92 indicates a water shortage is about 1% from the state where the hypochlorous acid water (mixed water) in the mixing tank 92 is full. The water level is set when the amount of hypochlorous acid water is reduced to /3.
 そして、出力部41eは、受け付けた各信号を空気浄化部11、次亜塩素酸水生成部30(次亜塩素酸水供給部36)、及び水供給部50にそれぞれ出力する。 Then, the output unit 41e outputs the received signals to the air purification unit 11, the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36), and the water supply unit 50, respectively.
 そして、空気浄化部11は、出力部41eからの信号を受け付け、受け付けた信号に基づいて運転動作の制御を実行する。この際、次亜塩素酸水生成部30(次亜塩素酸水供給部36)は、出力部41eからの信号(次亜塩素酸水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部11への次亜塩素酸水の供給処理に関する動作(第一制御)を実行する。また、水供給部50は、出力部41eからの信号(水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部11への水の供給処理に関する動作(第二制御)を実行する。 Then, the air purifying unit 11 receives a signal from the output unit 41e, and controls the driving operation based on the received signal. At this time, the hypochlorous acid water generating unit 30 (hypochlorous acid water supply unit 36) receives a signal (hypochlorous acid water supply request signal) from the output unit 41e, and based on the received signal, An operation (first control) relating to the process of supplying hypochlorous acid water to the air purifier 11 described above is executed. Further, the water supply unit 50 receives a signal (a water supply request signal) from the output unit 41e, and based on the received signal, performs an operation (second control) related to water supply processing to the air purification unit 11 described above. to run.
 以上のようにして、空気浄化制御部41は、次亜塩素酸水生成部30(次亜塩素酸水供給部36)による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサ90からの混合槽92の水位に関する情報(渇水情報)に基づいて水供給部50による水の供給を行う第二制御とをそれぞれ実行させ、混合槽92に混合水を貯留する。そして、空気浄化制御部41は、混合槽92に次亜塩素酸水と水とを供給して混合水を貯留する際に、次亜塩素酸水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせ、空間浄化装置10(空気浄化部11)を流通する空気への加湿浄化処理を実行させる。 As described above, the air purification control unit 41 performs first control to supply hypochlorous acid water by the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36) at predetermined time intervals; A second control for supplying water by the water supply unit 50 is executed based on information (shortage information) on the water level of the mixing tank 92 from the water level sensor 90 , and mixed water is stored in the mixing tank 92 . Then, when the hypochlorous acid water and water are supplied to the mixing tank 92 and the mixed water is stored, the air purification control unit 41 controls the hypochlorous acid water supply cycle (every predetermined time) and the water The supply cycle (every water shortage detection) is made different, and the air circulating through the space purification device 10 (air purification unit 11) is subjected to humidification purification processing.
 <電解槽の洗浄処理に関する動作>
 洗浄処理は、水供給部50から供給される水に含まれるカルシウム及びマグネシウム等のスケール成分が電解槽31内に堆積し、電解槽31内でスケール残渣となったものを除去する処理である。より詳細には、洗浄処理は、加湿浄化運転動作において電解槽31から空気浄化部11(次亜塩素酸水供給装置外)への次亜塩素酸水の送水が完了した場合に、水供給部50による電解槽31への水の供給と、電解槽31への水の供給が完了してから所定時間(例えば1分)以内に開始する次亜塩素酸水供給部36による電解槽31の排水とを行う一連の処理である。これにより、電解槽31内のスケール残渣を水供給部50による水の給水に伴う水勢で散乱させて装置外に排水する。電解槽31の洗浄処理に関する動作の詳細を説明する。なお、電解槽31の洗浄処理は、空気浄化部11の加湿浄化処理の動作停止タイミング、あるいは、混合槽92内の混合水の排水タイミングに合わせて実行される。なお、上述の洗浄処理を、以下では「第一洗浄処理」とも言う。
<Operation related to the cleaning process of the electrolytic cell>
The cleaning process is a process for removing scale components such as calcium and magnesium contained in the water supplied from the water supply unit 50 that accumulate in the electrolytic bath 31 and become scale residue in the electrolytic bath 31 . More specifically, the cleaning process is performed when the supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (outside the hypochlorous acid water supply device) is completed in the humidifying and purifying operation. Water supply to the electrolytic cell 31 by 50 and drainage of the electrolytic cell 31 by the hypochlorous acid water supply unit 36 starting within a predetermined time (for example, 1 minute) after the completion of water supply to the electrolytic cell 31 It is a series of processing that performs As a result, the scale residue in the electrolytic cell 31 is scattered by the force of the water supplied by the water supply unit 50 and drained out of the apparatus. The details of the operation related to the cleaning process of the electrolytic cell 31 will be described. The cleaning process of the electrolytic cell 31 is executed in accordance with the operation stop timing of the humidification purification process of the air purifier 11 or the timing of draining the mixed water in the mixing tank 92 . The cleaning process described above is hereinafter also referred to as "first cleaning process".
 空気浄化制御部41は、電解槽31における洗浄処理に関する動作として、以下の処理を実行させる。空気浄化制御部41は、第一洗浄処理のトリガーとして、第一制御によって次亜塩素酸水供給部36による空気浄化部11への次亜塩素酸水の供給が所定回数(例えば5回)行われたことを確認すると、洗浄処理を開始する。 The air purification control unit 41 causes the following processes to be executed as operations related to the cleaning process in the electrolytic cell 31. As a trigger for the first cleaning process, the air purification control unit 41 causes the hypochlorous acid water supply unit 36 to supply hypochlorous acid water to the air purification unit 11 by the first control a predetermined number of times (for example, 5 times). After confirming that the
 第一洗浄処理が開始されると、空気浄化制御部41は、水位センサ39からの水位情報(渇水信号)及び計時部41cからの時間に関する情報(時刻情報)を受け付け、処理部41dへ出力する。 When the first cleaning process is started, the air purification control unit 41 receives water level information (dry water signal) from the water level sensor 39 and time information (time information) from the clock unit 41c, and outputs them to the processing unit 41d. .
 処理部41dは、水位センサ39からの水位情報と、計時部41cからの時刻情報と、記憶部41bからの設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、電解槽31に導入する水道水の供給量に関する情報、電磁弁33の開閉タイミングに関する情報、次亜塩素酸水搬送ポンプ37のオン/オフ動作に関する情報が含まれる。 The processing unit 41d identifies control information based on the water level information from the water level sensor 39, the time information from the clock unit 41c, and the setting information from the storage unit 41b, and outputs it to the output unit 41e. Here, the setting information includes information on the amount of tap water supplied to the electrolytic cell 31, information on the opening/closing timing of the solenoid valve 33, and information on the on/off operation of the hypochlorous acid water transport pump 37.
 そして、出力部41eは、受け付けた制御情報に基づいて、各機器(電磁弁33、次亜塩素酸水搬送ポンプ37)に信号(制御信号)をそれぞれ出力する。 Then, the output unit 41e outputs a signal (control signal) to each device (solenoid valve 33, hypochlorous acid water conveying pump 37) based on the received control information.
 より詳細には、まず、電磁弁33は、出力部41eからの信号に基づいて閉止状態を維持し、次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて停止した状態を維持する。 More specifically, first, the solenoid valve 33 maintains the closed state based on the signal from the output section 41e, and the hypochlorous acid water transfer pump 37 stops based on the signal from the output section 41e. maintain.
 そして、電磁弁33は、出力部41eからの信号に基づいて開放される。これにより、電解槽31には、送水管52からの水道水の供給が開始される。その後、電磁弁33は、水位センサ39からの水位情報(満水)を受けた出力部41eからの信号に基づいて閉止される。これにより、電解槽31は、水道水で満たされ、その水中には水供給部50による水の給水時の水勢により電解槽31内に蓄積されているスケール残渣が散乱した状態となる。 Then, the solenoid valve 33 is opened based on the signal from the output section 41e. As a result, supply of tap water from the water pipe 52 is started to the electrolytic cell 31 . After that, the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the water level information (full water) from the water level sensor 39. FIG. As a result, the electrolytic cell 31 is filled with tap water, and scale residues accumulated in the electrolytic cell 31 are scattered in the water due to the water pressure when water is supplied by the water supply unit 50 .
 次に、次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて所定時間(例えば1分)が経過すると作動し、次亜塩素酸水生成部30では、電解槽31から空気浄化部11(混合槽92)への排水が開始される。なお、所定時間は、上述した通り、水供給部により供給される水によって電解槽内で散乱するスケール残渣が電解槽に沈殿するまでの時間に設定される。 Next, the hypochlorous acid water conveying pump 37 operates after a predetermined time (for example, 1 minute) has elapsed based on the signal from the output unit 41e, and the hypochlorous acid water generating unit 30 sends air Drainage to the purification unit 11 (mixing tank 92) is started. In addition, as described above, the predetermined time is set to the time until the scale residue scattered in the electrolytic cell by the water supplied from the water supply unit settles in the electrolytic cell.
 これにより、電解槽31内の水中に散乱するスケール残渣は、水と共に空気浄化部11(混合槽92)に排出される。そして、次亜塩素酸水搬送ポンプ37は、計時部41cからの時間に関する情報(規定量を排水するための所要時間)を受けた出力部41eからの信号に基づいて停止する。このとき、次亜塩素酸水搬送ポンプ37の規定量を排水するための所要時間は、電解槽31内の水を全量排水できるように十分長く設定されており、第一洗浄処理後は、電解槽31内の水は全量排水された状態となる。 As a result, the scale residue scattered in the water in the electrolytic bath 31 is discharged to the air purifier 11 (mixing bath 92) together with the water. Then, the hypochlorous acid water conveying pump 37 stops based on the signal from the output section 41e that receives the time information (required time for discharging the specified amount) from the clock section 41c. At this time, the time required for draining the prescribed amount of the hypochlorous acid water conveying pump 37 is set sufficiently long so that the entire amount of water in the electrolytic cell 31 can be drained. All the water in the tank 31 is discharged.
 以上のようにして、空気浄化制御部41は、洗浄処理として、電解槽31から空気浄化部11への次亜塩素酸水の送水が完了した場合に、水供給部50(電磁弁33)による電解槽31への水の供給と、電解槽31への水の供給が完了してから所定時間以内に開始する次亜塩素酸水供給部36(次亜塩素酸水搬送ポンプ37)による電解槽31の排水とを行う一連の処理(第一洗浄処理)を実行させる。なお、空気浄化制御部41は、上述した第一洗浄処理を複数回(例えば3回)連続して繰り返して実行させてもよい。 As described above, the air purification control unit 41 controls the water supply unit 50 (solenoid valve 33) to operate the water supply unit 50 (solenoid valve 33) when the supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 is completed as the cleaning process. The supply of water to the electrolytic cell 31 and the electrolytic cell by the hypochlorous acid water supply unit 36 (hypochlorous acid water conveying pump 37) that starts within a predetermined time after the supply of water to the electrolytic cell 31 is completed. 31 and a series of processes (first cleaning process) are executed. Note that the air purification control unit 41 may repeat the above-described first cleaning process a plurality of times (for example, three times) in succession.
 以上、本実施の形態1に係る次亜塩素酸水供給装置(次亜塩素酸水生成部30)によれば、以下の効果を享受することができる。 As described above, according to the hypochlorous acid water supply apparatus (hypochlorous acid water generation unit 30) according to Embodiment 1, the following effects can be obtained.
 (1)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、電解質(塩化ナトリウム)と水とを混合した電解液(塩化ナトリウム水溶液)を電気分解して次亜塩素酸水を生成する電解槽31と、電解槽31に電解質を供給する電解質供給部(塩水タンク34及び塩水搬送ポンプ35)と、電解槽31に水を供給する水供給部50と、電解槽31で生成された次亜塩素酸水を外部(空気浄化部11の混合槽92)へ送水する送水部(次亜塩素酸水供給部36)を備える。電解槽31から外部への次亜塩素酸水の送水が完了した場合、電解槽31の洗浄処理(第一洗浄処理)として、水供給部50による電解槽31への水の供給が開始され、電解槽31への水の供給が完了してから所定時間(例えば1分)以内に送水部による電解槽31の排水が行われる。 (1) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), an electrolytic solution (sodium chloride aqueous solution) in which an electrolyte (sodium chloride) and water are mixed is electrolyzed to produce hypochlorous acid water. generated by the electrolytic cell 31, an electrolyte supply unit (salt water tank 34 and salt water conveying pump 35) that supplies the electrolyte to the electrolytic cell 31, a water supply unit 50 that supplies water to the electrolytic cell 31, and the electrolytic cell 31 A water supply unit (hypochlorous acid water supply unit 36) that supplies the hypochlorous acid water thus obtained to the outside (mixing tank 92 of air purification unit 11) is provided. When the supply of hypochlorous acid water from the electrolytic cell 31 to the outside is completed, the supply of water to the electrolytic cell 31 by the water supply unit 50 is started as a cleaning process (first cleaning process) of the electrolytic cell 31, Within a predetermined time (for example, 1 minute) after the water supply to the electrolytic cell 31 is completed, the electrolytic cell 31 is drained by the water supply unit.
 こうした構成によれば、第一洗浄処理において、水供給部50による給水によってスケール残渣を散乱させ、給水の完了後の所定時間以内での排水によって水中にスケール残渣が散乱した状態でスケール残渣を含む水を電解槽31から排出させる。このため、電解槽31にスケール残渣が蓄積することが抑制される。この結果、電解槽31に蓄積されたスケールを除去する洗浄メンテナンスの頻度を低減し、次亜塩素酸水供給装置(次亜塩素酸水生成部30)のメンテナンス性を向上させることができる。 According to this configuration, in the first cleaning process, the water supply from the water supply unit 50 scatters the scale residue, and the water is discharged within a predetermined time after the completion of the water supply, and the water contains the scale residue in a state in which the scale residue is scattered. Water is drained from the electrolytic cell 31 . Therefore, accumulation of scale residues in the electrolytic bath 31 is suppressed. As a result, the frequency of cleaning maintenance for removing scale accumulated in the electrolytic cell 31 can be reduced, and the maintainability of the hypochlorous acid water supply device (hypochlorous acid water generation unit 30) can be improved.
 (2)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、所定時間は、水供給部50から供給される水によって電解槽31内で散乱するスケール残渣が電解槽31に沈殿するまでの時間以内に設定されている。 (2) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), for a predetermined time, the water supplied from the water supply unit 50 causes the scale residue scattered in the electrolytic cell 31 to flow into the electrolytic cell 31. It is set within the time until it settles.
 このようにすることで、洗浄処理において、水供給部50による給水によって電解槽31内で散乱したスケール残渣が電解槽31に沈殿する前に、スケール残渣が排水と共に装置外に排出される。このため、より多くのスケール残渣を除去することができる。 By doing so, in the cleaning process, before the scale residue scattered in the electrolytic cell 31 by the water supply from the water supply unit 50 settles in the electrolytic cell 31, the scale residue is discharged outside the apparatus together with the waste water. Therefore, more scale residue can be removed.
 (3)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、第一洗浄処理は複数回繰り返される。 (3) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), the first cleaning process is repeated multiple times.
 これにより、第一洗浄処理により電解槽31のスケール残渣を繰り返し散乱させて排出させる。このため、電解槽31内からより多くのスケール残渣を除去することができる。 As a result, the scale residue in the electrolytic bath 31 is repeatedly scattered and discharged by the first cleaning treatment. Therefore, more scale residue can be removed from inside the electrolytic bath 31 .
 (4)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、送水部(次亜塩素酸水供給部36)は、外部の空間浄化装置10と接続されており、送水部による排水は、空間浄化装置10を流通させて行われる。 (4) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), the water supply unit (hypochlorous acid water supply unit 36) is connected to the external space purification device 10, and the water supply unit Drainage is carried out by circulating the space purification device 10 .
 このようにすることで、次亜塩素酸水供給装置(次亜塩素酸水供給部36)と空間浄化装置10とを接続して用いる場合に、別途排水経路を設けることなく、洗浄処理を行うことができる。 By doing so, when the hypochlorous acid water supply device (hypochlorous acid water supply unit 36) and the space purification device 10 are connected and used, the cleaning process is performed without providing a separate drainage path. be able to.
 (実施の形態2)
 本実施の形態2に係る次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、空気浄化制御部41が制御する洗浄処理として、電解槽31から空気浄化部11への次亜塩素酸水の送水が完了した場合に、水供給部50による電解槽31への水の供給を行いながら、次亜塩素酸水供給部36による電解槽31の排水を行う点で実施の形態1と異なる。これ以外の次亜塩素酸水供給装置(次亜塩素酸水生成部30)を含む空間浄化システム100の構成は、実施の形態1に係る空間浄化システム100と同様である。なお、上述の洗浄処理を、以下では「第二洗浄処理」とも言う。
(Embodiment 2)
In the hypochlorous acid water supply apparatus (hypochlorous acid water generation unit 30 ) according to the second embodiment, as the cleaning process controlled by the air purification control unit 41 , hypochlorous acid is supplied from the electrolytic cell 31 to the air purification unit 11 . The first embodiment is characterized in that the hypochlorous acid water supply unit 36 drains the water from the electrolytic cell 31 while the water supply unit 50 supplies water to the electrolytic cell 31 when the supply of chloric acid water is completed. different from Other configurations of the space purification system 100 including the hypochlorous acid water supply device (hypochlorous acid water generation unit 30) are the same as those of the space purification system 100 according to the first embodiment. The cleaning process described above is hereinafter also referred to as "second cleaning process".
 以下、実施の形態1で説明済みの内容は再度の説明を適宜省略し、実施の形態1と異なる点である、図1及び図2を参照して、本実施の形態2に係る次亜塩素酸水供給装置(次亜塩素酸水生成部30)の電解槽31の洗浄処理に関する動作について説明する。 Hereinafter, the contents already explained in Embodiment 1 will be omitted as appropriate, and with reference to FIGS. 1 and 2, which are different from Embodiment 1, hypochlorous acid The operation of the acid water supply device (hypochlorous acid water generation unit 30) for cleaning the electrolytic cell 31 will be described.
 <電解槽の洗浄処理に関する動作>
 空気浄化制御部41は、電解槽31における洗浄処理に関する動作として、以下の処理を実行させる。空気浄化制御部41は、第二洗浄処理のトリガーとして、第一制御によって次亜塩素酸水供給部36による空気浄化部11への次亜塩素酸水の供給が所定回数(例えば5回)行われたことを確認すると、洗浄処理を開始する。
<Operation related to the cleaning process of the electrolytic cell>
The air purification control unit 41 causes the following processes to be executed as operations related to the cleaning process in the electrolytic cell 31 . The air purification control unit 41 causes the hypochlorous acid water supply unit 36 to supply hypochlorous acid water to the air purification unit 11 by the first control as a trigger for the second cleaning process a predetermined number of times (for example, 5 times). After confirming that the
 第二洗浄処理が開始されると、空気浄化制御部41は、水位センサ39からの水位情報(渇水信号)及び計時部41cからの時間に関する情報(時刻情報)を受け付け、処理部41dへ出力する。 When the second cleaning process is started, the air purification control unit 41 receives water level information (dry water signal) from the water level sensor 39 and time information (time information) from the clock unit 41c, and outputs the information to the processing unit 41d. .
 処理部41dは、水位センサ39からの水位情報と、計時部41cからの時刻情報と、記憶部41bからの設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、電解槽31に導入する水道水の供給量に関する情報、電磁弁33の開閉タイミングに関する情報、次亜塩素酸水搬送ポンプ37のオン/オフ動作に関する情報が含まれる。 The processing unit 41d identifies control information based on the water level information from the water level sensor 39, the time information from the clock unit 41c, and the setting information from the storage unit 41b, and outputs it to the output unit 41e. Here, the setting information includes information on the amount of tap water supplied to the electrolytic cell 31, information on the opening/closing timing of the solenoid valve 33, and information on the on/off operation of the hypochlorous acid water transport pump 37.
 そして、出力部41eは、受け付けた制御情報に基づいて、各機器(電磁弁33、次亜塩素酸水搬送ポンプ37)に信号(制御信号)をそれぞれ出力する。 Then, the output unit 41e outputs a signal (control signal) to each device (solenoid valve 33, hypochlorous acid water conveying pump 37) based on the received control information.
 より詳細には、まず、電磁弁33は、出力部41eからの信号に基づいて閉止状態を維持し、次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて停止した状態を維持する。 More specifically, first, the solenoid valve 33 maintains the closed state based on the signal from the output section 41e, and the hypochlorous acid water transfer pump 37 stops based on the signal from the output section 41e. maintain.
 そして、電磁弁33は、出力部41eからの信号に基づいて開放される。これにより、電解槽31には、送水管52からの水道水の供給が開始され、電解槽31内のスケール残渣は、その水勢により水中に散乱する。次に、電磁弁33の開放に合わせて次亜塩素酸水搬送ポンプ37が出力部41eからの信号に基づいて作動し、次亜塩素酸水生成部30では、電解槽31から空気浄化部11(混合槽92)への排水も同時に開始される。これにより、電解槽31内の水中に散乱するスケール残渣は、水と共に空気浄化部11(混合槽92)に排出される。 Then, the solenoid valve 33 is opened based on the signal from the output section 41e. As a result, supply of tap water from the water pipe 52 is started to the electrolytic cell 31, and scale residues in the electrolytic cell 31 are scattered in the water by the force of the water. Next, in accordance with the opening of the solenoid valve 33, the hypochlorous acid water conveying pump 37 operates based on the signal from the output section 41e, and in the hypochlorous acid water generation section 30, the electrolytic cell 31 to the air purification section 11 Drainage to (mixing tank 92) is also started at the same time. As a result, the scale residue scattered in the water in the electrolytic bath 31 is discharged to the air purifier 11 (mixing bath 92) together with the water.
 その後、電磁弁33は、計時部41cからの時間に関する情報(規定量を供給するための所要時間)を受けた出力部41eからの信号に基づいて閉止される。そして、次亜塩素酸水搬送ポンプ37は、計時部41cからの時間に関する情報(規定量を排水するための所要時間)を受けた出力部41eからの信号に基づいて停止する。このとき、次亜塩素酸水搬送ポンプ37の規定量を排水するための所要時間は、電解槽31内の水を全量排水できるように十分長く設定されており、第二洗浄処理後は、電解槽31内の水は全量排水された状態となる。 After that, the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the time information (required time for supplying the specified amount) from the clock section 41c. Then, the hypochlorous acid water conveying pump 37 stops based on the signal from the output section 41e that receives the time information (required time for discharging the specified amount) from the clock section 41c. At this time, the time required for draining the prescribed amount of the hypochlorous acid water conveying pump 37 is set sufficiently long so that the entire amount of water in the electrolytic cell 31 can be drained. All the water in the tank 31 is discharged.
 ここで、水供給部50(電磁弁33)による給水流量が次亜塩素酸水供給部36(次亜塩素酸水搬送ポンプ37)による排水流量よりも大きい場合、電磁弁33の規定量を供給するための所要時間は、電解槽31に保持される水量が電解槽31の容量を超えないように設定する必要がある。例えば、水位センサ39が満水状態を検知した場合に、電磁弁33が閉止される。一方、水供給部50による給水流量が次亜塩素酸水供給部36による排水流量よりも小さい場合は、水供給部50から供給された水が直ちに排水されることになるため、電解槽31に保持される水量が電解槽31の容量を超えることはなく、電磁弁33の規定量を供給するための所要時間は上限無く設定できる。電磁弁33の規定量を供給するための所要時間は、上記制限の範囲内で十分なスケール洗浄効果が得られるように設定される。所要時間は、例えば3分に設定される。 Here, when the water supply flow rate by the water supply unit 50 (solenoid valve 33) is larger than the drainage flow rate by the hypochlorous acid water supply unit 36 (hypochlorous acid water transfer pump 37), the specified amount of the solenoid valve 33 is supplied. It is necessary to set the time required for this process so that the amount of water held in the electrolytic cell 31 does not exceed the capacity of the electrolytic cell 31 . For example, the solenoid valve 33 is closed when the water level sensor 39 detects the full water level. On the other hand, when the water supply flow rate from the water supply unit 50 is smaller than the drainage flow rate from the hypochlorous acid water supply unit 36, the water supplied from the water supply unit 50 is immediately drained. The amount of water to be held does not exceed the capacity of the electrolytic cell 31, and the required time for supplying the specified amount of the solenoid valve 33 can be set without an upper limit. The required time for supplying the specified amount of the solenoid valve 33 is set so as to obtain a sufficient scale washing effect within the range of the above limit. The required time is set to 3 minutes, for example.
 以上のようにして、空気浄化制御部41は、洗浄処理として、電解槽31から空気浄化部11への次亜塩素酸水の送水が完了した場合に、水供給部50(電磁弁33)による電解槽31への水の供給を行いながら、次亜塩素酸水供給部36(次亜塩素酸水搬送ポンプ37)による電解槽31の排水を行う処理(第二洗浄処理)を実行させる。なお、空気浄化制御部41は、上述した第二洗浄処理を複数回(例えば3回)繰り返して実行させてもよい。 As described above, the air purification control unit 41 controls the water supply unit 50 (solenoid valve 33) to operate the water supply unit 50 (solenoid valve 33) when the supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 is completed as the cleaning process. While water is being supplied to the electrolytic cell 31, the hypochlorous acid water supply unit 36 (hypochlorous acid water conveying pump 37) drains the electrolytic cell 31 (second cleaning process). Note that the air purification control unit 41 may repeat the above-described second cleaning process a plurality of times (for example, three times).
 以上、本実施の形態2に係る次亜塩素酸水供給装置(次亜塩素酸水生成部30)によれば、以下の効果を享受することができる。 As described above, according to the hypochlorous acid water supply device (hypochlorous acid water generation unit 30) according to Embodiment 2, the following effects can be obtained.
 (5)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、電解質(塩化ナトリウム)と水とを混合した電解液(塩化ナトリウム水溶液)を電気分解して次亜塩素酸水を生成する電解槽31と、電解槽31に電解質を供給する電解質供給部(塩水タンク34及び塩水搬送ポンプ35)と、電解槽31に水を供給する水供給部50と、電解槽31で生成された次亜塩素酸水を外部(空気浄化部11の混合槽92)へ送水する送水部(次亜塩素酸水供給部36)とを備える。電解槽31から外部への次亜塩素酸水の送水が完了した場合、電解槽31の洗浄処理(第二洗浄処理)として、水供給部50による電解槽31への水の供給が行われながら、送水部による電解槽31の排水が行われる。 (5) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), an electrolytic solution (sodium chloride aqueous solution) in which an electrolyte (sodium chloride) and water are mixed is electrolyzed to produce hypochlorous acid water. generated by the electrolytic cell 31, an electrolyte supply unit (salt water tank 34 and salt water conveying pump 35) that supplies the electrolyte to the electrolytic cell 31, a water supply unit 50 that supplies water to the electrolytic cell 31, and the electrolytic cell 31 and a water supply unit (hypochlorous acid water supply unit 36) that supplies the hypochlorous acid water thus obtained to the outside (mixing tank 92 of air purification unit 11). When the supply of hypochlorous acid water from the electrolytic cell 31 to the outside is completed, as the cleaning process (second cleaning process) of the electrolytic cell 31, water is supplied to the electrolytic cell 31 by the water supply unit 50. , the electrolytic cell 31 is drained by the water supply unit.
 こうした構成によれば、第二洗浄処理において、水供給部50による給水によってスケール残渣を散乱させながら排水し、水中にスケール残渣が散乱した状態でスケール残渣を含む水を電解槽31から排出させることができる。このため、電解槽31にスケール残渣が蓄積することが抑制される。この結果、電解槽31に蓄積されたスケールを除去する洗浄メンテナンスの頻度を低減し、次亜塩素酸水供給装置(次亜塩素酸水生成部30)のメンテナンス性を向上させることができる。 According to this configuration, in the second cleaning process, water is discharged while the scale residue is dispersed by the water supply from the water supply unit 50, and the water containing the scale residue is discharged from the electrolytic cell 31 in a state in which the scale residue is scattered in the water. can be done. Therefore, accumulation of scale residues in the electrolytic bath 31 is suppressed. As a result, the frequency of cleaning maintenance for removing scale accumulated in the electrolytic cell 31 can be reduced, and the maintainability of the hypochlorous acid water supply device (hypochlorous acid water generation unit 30) can be improved.
 (6)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、第二洗浄処理は所定時間(例えば3分)行われる。 (6) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), the second cleaning process is performed for a predetermined time (for example, 3 minutes).
 このようにすることで、第二洗浄処理によって一定のスケール除去効果を得ることができる。 By doing so, a certain scale removal effect can be obtained by the second cleaning treatment.
 (7)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、第二洗浄処理は複数回繰り返される。 (7) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), the second cleaning process is repeated multiple times.
 これにより、第二洗浄処理により電解槽31のスケール残渣を繰り返し散乱させながら排出させる。このため、電解槽31内からより多くのスケール残渣を除去することができる。 As a result, the scale residue in the electrolytic cell 31 is repeatedly scattered and discharged by the second cleaning process. Therefore, more scale residue can be removed from inside the electrolytic bath 31 .
 (8)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、送水部(次亜塩素酸水供給部36)は、外部の空間浄化装置10と接続されており、送水部による排水は、空間浄化装置10を流通させて行われる。 (8) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), the water supply unit (hypochlorous acid water supply unit 36) is connected to the external space purification device 10, and the water supply unit Drainage is carried out by circulating the space purification device 10 .
 このようにすることで、次亜塩素酸水供給装置(次亜塩素酸水供給部36)と空間浄化装置10とを接続して用いる場合に、別途排水経路を設けることなく、洗浄処理を行うことができる。 By doing so, when the hypochlorous acid water supply device (hypochlorous acid water supply unit 36) and the space purification device 10 are connected and used, the cleaning process is performed without providing a separate drainage path. be able to.
 (9)次亜塩素酸水供給装置(次亜塩素酸水生成部30)では、空気浄化制御部41は、水供給部50(電磁弁33)による給水流量を次亜塩素酸水供給部36(次亜塩素酸水搬送ポンプ37)による排水流量よりも大きくなるように制御し、水位センサ39からの水位情報(満水)を受けた出力部41eからの信号に基づいて電磁弁33を閉止するようにしてもよい。 (9) In the hypochlorous acid water supply device (hypochlorous acid water generation unit 30), the air purification control unit 41 adjusts the flow rate of water supply from the water supply unit 50 (solenoid valve 33) to the hypochlorous acid water supply unit 36 The flow rate is controlled to be greater than the drainage flow rate by the hypochlorous acid water conveying pump 37, and the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the water level information (full water) from the water level sensor 39. You may do so.
 このようにすることで、水供給部50による電解槽31への水の供給を行いながら行う次亜塩素酸水供給部36により電解槽31の排水時間を最大化でき、第二洗浄処理1回当りのスケール除去効果を高めることができる。 By doing so, it is possible to maximize the drainage time of the electrolytic cell 31 by the hypochlorous acid water supply unit 36, which is performed while water is being supplied to the electrolytic cell 31 by the water supply unit 50, and the second cleaning process is performed once. The descaling effect per hit can be enhanced.
 以上、本開示に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素あるいは各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されているところである。 The present disclosure has been described above based on the embodiment. Those skilled in the art will understand that these embodiments are illustrative, and that various modifications can be made to combinations of each component or each treatment process, and such modifications are also within the scope of the present disclosure. I am where I am.
 本実施の形態1に係る次亜塩素酸水供給装置(次亜塩素酸水供給部36)では、空気浄化制御部41は、第一洗浄処理において、水位センサ39からの水位情報(満水)を受けた出力部41eからの信号に基づいて電磁弁33を閉止するように制御したが、これに限られない。例えば、空気浄化制御部41は、第一洗浄処理において、電解槽31が満水となる前に電磁弁33を閉止するように制御してもよい。つまり、空気浄化制御部41は、電磁弁33を開放してから一定時間(例えば30秒)が経過した後に閉止させる。このようにすることで、電解槽31を満水にせずに第一洗浄処理を実施するため電解槽31へのより少量の給水でスケール残渣を除去するための処理を行うことができる。 In the hypochlorous acid water supply apparatus (hypochlorous acid water supply unit 36) according to Embodiment 1, the air purification control unit 41 receives the water level information (full water) from the water level sensor 39 in the first cleaning process. Although the electromagnetic valve 33 is controlled to be closed based on the received signal from the output portion 41e, the present invention is not limited to this. For example, the air purification control unit 41 may control the solenoid valve 33 to close before the electrolytic cell 31 becomes full in the first cleaning process. In other words, the air purification control unit 41 closes the electromagnetic valve 33 after a certain period of time (for example, 30 seconds) has passed since the electromagnetic valve 33 was opened. By doing so, since the first cleaning process is performed without filling the electrolytic cell 31 with water, the scale residue can be removed by supplying a smaller amount of water to the electrolytic cell 31 .
 また、本実施の形態1、2に係る次亜塩素酸水供給装置(次亜塩素酸水供給部36)では、各洗浄処理(第一洗浄処理または第二洗浄処理)において、水供給部50により電解槽31に水道水を供給したが、これに限られない。例えば、電解槽31に別系統の供給配管(電磁弁を含む供給配管)を接続し、供給配管を介して、例えば、塩酸またはクエン酸などの酸性成分を含む液体を供給するようにしてもよい。このようにすることで、スケール残渣の液体への溶解率及び溶解速度を高めることができ、各洗浄処理時に、液体の給水によってスケール残渣を散乱させるだけでなく、液体によってスケール残渣を溶解させることができるため、電解槽31内からより多くのスケール残渣を除去することができる。 Further, in the hypochlorous acid water supply apparatus (hypochlorous acid water supply unit 36) according to Embodiments 1 and 2, in each cleaning process (first cleaning process or second cleaning process), the water supply unit 50 Although tap water was supplied to the electrolytic cell 31 by , it is not limited to this. For example, a separate system of supply piping (supply piping including an electromagnetic valve) may be connected to the electrolytic cell 31, and a liquid containing an acidic component such as hydrochloric acid or citric acid may be supplied through the supply piping. . By doing so, the dissolution rate and dissolution rate of the scale residue in the liquid can be increased, and during each cleaning process, the scale residue is not only scattered by the water supply of the liquid, but also dissolved by the liquid. Therefore, more scale residues can be removed from the inside of the electrolytic bath 31 .
 また、本実施の形態1、2に係る次亜塩素酸水供給装置(次亜塩素酸水供給部36)では、各洗浄処理(第一洗浄処理または第二洗浄処理)における次亜塩素酸水供給部36による電解槽31の排水を、空間浄化装置10を流通させて行うようにしたが、これに限られない。例えば、電解槽31に別系統の排水配管(電磁弁を含む排水配管)を接続し、排水配管を介して電解槽31内から装置外に排水するようにしてもよい。このようにすることで、空間浄化装置10の加湿浄化運転の動作状況によらず、電解槽31の洗浄処理を実行させることができる。 Further, in the hypochlorous acid water supply apparatus (hypochlorous acid water supply unit 36) according to Embodiments 1 and 2, hypochlorous acid water in each cleaning process (first cleaning process or second cleaning process) Drainage of the electrolytic cell 31 by the supply unit 36 is performed by circulating the space cleaning device 10, but it is not limited to this. For example, a drain pipe (a drain pipe including an electromagnetic valve) of another system may be connected to the electrolytic cell 31, and water may be drained from the inside of the electrolytic cell 31 to the outside of the apparatus through the drain pipe. By doing so, the cleaning process of the electrolytic cell 31 can be executed regardless of the operation status of the humidification/purification operation of the space purification device 10 .
 また、本実施の形態1、2に係る次亜塩素酸水供給装置(次亜塩素酸水供給部36)では、各洗浄処理第一洗浄処理または第二洗浄処理)のトリガーとして、第一制御による空気浄化部11への次亜塩素酸水の供給が所定回数(例えば5回)行われた場合に開始するようにしたが、これに限られない。例えば、別系統の排水配管を有する場合には、第一制御による空気浄化部11への次亜塩素酸水の供給ごとに実行するようにしてもよい。このようにすることで、次亜塩素酸水に含まれるスケール成分が電解槽31内で乾燥する前に洗浄処理がなされるので、電解槽31内に発生するスケール残渣の蓄積を低減することができる。 Further, in the hypochlorous acid water supply device (hypochlorous acid water supply unit 36) according to Embodiments 1 and 2, as a trigger for each cleaning process (first cleaning process or second cleaning process), the first control Although the supply of hypochlorous acid water to the air purifier 11 by is performed a predetermined number of times (for example, 5 times), it is not limited to this. For example, if a separate system of drainage piping is provided, it may be executed each time hypochlorous acid water is supplied to the air purifier 11 by the first control. By doing so, the cleaning process is performed before the scale components contained in the hypochlorous acid water are dried in the electrolytic cell 31, so that the accumulation of scale residue generated in the electrolytic cell 31 can be reduced. can.
 本開示に係る次亜塩素酸水供給装置は、電気分解によって次亜塩素酸を生成して送水する装置のメンテナンス性を向上させるものであり、対象空間の空気などを除菌または消臭する装置またはこれを用いたシステムとして有用である。 A hypochlorous acid water supply device according to the present disclosure improves the maintainability of a device that generates hypochlorous acid by electrolysis and feeds water, and is a device that disinfects or deodorizes the air in a target space. Or it is useful as a system using this.
 2  吸込口
 3  吹出口
 4  前段風路
 5  中段風路
 6  後段風路
 8  空気
 9  空気
 10  空間浄化装置
 11  空気浄化部
 11a  加湿モータ
 11b  加湿ノズル
 13  送風機
 14  冷媒コイル
 15  空気調和装置
 16  ダクト
 16a  屋内吸込口
 17  ダクト
 17a  屋内吹出口
 18  屋内空間
 20  室外機
 20a  圧縮機
 20b  膨張器
 20c  屋外熱交換器
 20d  送風ファン
 20e  四方弁
 21  冷媒回路
 24  ダクト
 30  次亜塩素酸水生成部
 31  電解槽
 32  電極
 33  電磁弁
 34  塩水タンク
 35  塩水搬送ポンプ
 36  次亜塩素酸水供給部
 37  次亜塩素酸水搬送ポンプ
 38  送水管
 39  水位センサ
 41  空気浄化制御部
 41a  入力部
 41b  記憶部
 41c  計時部
 41d  処理部
 41e  出力部
 42  空気調和制御部
 43  操作装置
 44  温湿度センサ
 50  水供給部
 51  電磁弁
 52  送水管
 90  水位センサ
 92  混合槽
 100  空間浄化システム
2 Suction port 3 Air outlet 4 Front air passage 5 Intermediate air passage 6 Rear air passage 8 Air 9 Air 10 Spatial purification device 11 Air purification unit 11a Humidification motor 11b Humidification nozzle 13 Blower 14 Refrigerant coil 15 Air conditioner 16 Duct 16a Indoor suction Mouth 17 Duct 17a Indoor outlet 18 Indoor space 20 Outdoor unit 20a Compressor 20b Expander 20c Outdoor heat exchanger 20d Blower fan 20e Four-way valve 21 Refrigerant circuit 24 Duct 30 Hypochlorous acid water generator 31 Electrolyzer 32 Electrode 33 Electromagnetic Valve 34 Salt water tank 35 Salt water transfer pump 36 Hypochlorous acid water supply unit 37 Hypochlorous acid water transfer pump 38 Water pipe 39 Water level sensor 41 Air purification control unit 41a Input unit 41b Storage unit 41c Clock unit 41d Processing unit 41e Output unit 42 air conditioning control unit 43 operating device 44 temperature and humidity sensor 50 water supply unit 51 electromagnetic valve 52 water pipe 90 water level sensor 92 mixing tank 100 space purification system

Claims (7)

  1.  電解質と水とを混合した電解液を電気分解して次亜塩素酸水を生成する電解槽と、
     前記電解槽に前記電解質を供給する電解質供給部と、
     前記電解槽に前記水を供給する水供給部と、
     前記電解槽で生成された前記次亜塩素酸水を外部へ送水する送水部と、を備え、
     前記電解槽から外部への前記次亜塩素酸水の送水が完了した場合、前記電解槽の洗浄処理として、前記水供給部による前記電解槽への前記水の供給が開始され、前記電解槽への水の供給が完了してから所定時間以内に前記送水部による前記電解槽の排水が行われる、
     次亜塩素酸水供給装置。
    an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water;
    an electrolyte supply unit that supplies the electrolyte to the electrolytic cell;
    a water supply unit that supplies the water to the electrolytic cell;
    a water feeding unit for feeding the hypochlorous acid water generated in the electrolytic cell to the outside,
    When the supply of the hypochlorous acid water from the electrolytic cell to the outside is completed, the supply of the water to the electrolytic cell by the water supply unit is started as a cleaning process of the electrolytic cell, and the water is supplied to the electrolytic cell. Drainage of the electrolytic cell by the water supply unit is performed within a predetermined time after the supply of the water is completed.
    Hypochlorous acid water supply device.
  2.  前記所定時間は、前記水供給部から供給される水によって前記電解槽内で散乱するスケール残渣が前記電解槽に沈殿するまでの時間以内に設定される、
     請求項1に記載の次亜塩素酸水供給装置。
    The predetermined time is set within the time until the scale residue scattered in the electrolytic cell by the water supplied from the water supply unit settles in the electrolytic cell.
    The hypochlorous acid water supply device according to claim 1.
  3.  前記洗浄処理は、複数回繰り返される、
     請求項1または2に記載の次亜塩素酸水供給装置。
    The washing treatment is repeated multiple times.
    The hypochlorous acid water supply device according to claim 1 or 2.
  4.  電解質と水とを混合した電解液を電気分解して次亜塩素酸水を生成する電解槽と、
     前記電解槽に前記電解質を供給する電解質供給部と、
     前記電解槽に前記水を供給する水供給部と、
     前記電解槽で生成された前記次亜塩素酸水を外部へ送水する送水部と、を備え、
     前記電解槽から外部への前記次亜塩素酸水の送水が完了した場合、前記電解槽の洗浄処理として、前記水供給部による前記電解槽への前記水の供給が行われながら、前記送水部による前記電解槽の排水が行われる、
     次亜塩素酸水供給装置。
    an electrolytic cell that electrolyzes an electrolytic solution in which an electrolyte and water are mixed to generate hypochlorous acid water;
    an electrolyte supply unit that supplies the electrolyte to the electrolytic cell;
    a water supply unit that supplies the water to the electrolytic cell;
    a water feeding unit for feeding the hypochlorous acid water generated in the electrolytic cell to the outside,
    When the supply of the hypochlorous acid water from the electrolytic cell to the outside is completed, as the cleaning process of the electrolytic cell, the water supply unit supplies the water to the electrolytic cell while the water supply unit Drainage of the electrolytic cell is performed by
    Hypochlorous acid water supply device.
  5.  前記洗浄処理は、所定時間行われる、
     請求項4に記載の次亜塩素酸水供給装置。
    The cleaning process is performed for a predetermined time,
    The hypochlorous acid water supply device according to claim 4.
  6.  前記洗浄処理は、複数回繰り返される、
     請求項4または5に記載の次亜塩素酸水供給装置。
    The washing treatment is repeated multiple times.
    The hypochlorous acid water supply device according to claim 4 or 5.
  7.  前記送水部は、外部の空間浄化装置と接続されており、
     前記送水部による排水は、前記空間浄化装置を流通させて行われる、
     請求項1~6のいずれか一項に記載の次亜塩素酸水供給装置。
    The water supply unit is connected to an external space purification device,
    Drainage by the water supply unit is performed by circulating the space purification device,
    The hypochlorous acid water supply device according to any one of claims 1 to 6.
PCT/JP2022/034360 2021-10-28 2022-09-14 Hypochlorous acid water supply device WO2023074166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-176050 2021-10-28
JP2021176050A JP2023065739A (en) 2021-10-28 2021-10-28 Hypochlorous acid water supply device

Publications (1)

Publication Number Publication Date
WO2023074166A1 true WO2023074166A1 (en) 2023-05-04

Family

ID=86157826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034360 WO2023074166A1 (en) 2021-10-28 2022-09-14 Hypochlorous acid water supply device

Country Status (2)

Country Link
JP (1) JP2023065739A (en)
WO (1) WO2023074166A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186098U (en) * 1984-05-21 1985-12-10 株式会社明電舎 electric water treatment equipment
JPH06339691A (en) * 1993-05-31 1994-12-13 Corona Kogyo Kk Sterile water preparation device
JPH10156362A (en) * 1996-11-28 1998-06-16 Hoshizaki Electric Co Ltd Electrolytic water generating device
JP2002018442A (en) * 2000-07-06 2002-01-22 Sanyo Electric Co Ltd Water treatment apparatus
JP2012066179A (en) * 2010-09-22 2012-04-05 Toto Ltd Sterilizer, and sanitary washing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186098U (en) * 1984-05-21 1985-12-10 株式会社明電舎 electric water treatment equipment
JPH06339691A (en) * 1993-05-31 1994-12-13 Corona Kogyo Kk Sterile water preparation device
JPH10156362A (en) * 1996-11-28 1998-06-16 Hoshizaki Electric Co Ltd Electrolytic water generating device
JP2002018442A (en) * 2000-07-06 2002-01-22 Sanyo Electric Co Ltd Water treatment apparatus
JP2012066179A (en) * 2010-09-22 2012-04-05 Toto Ltd Sterilizer, and sanitary washing device

Also Published As

Publication number Publication date
JP2023065739A (en) 2023-05-15

Similar Documents

Publication Publication Date Title
US7875108B2 (en) Inactivating device for virus, bacteria, etc. and air conditioner using the same
JP2008057937A (en) Cleaning device for heat exchanger
WO2023074166A1 (en) Hypochlorous acid water supply device
JP7266223B2 (en) space purifier
JP2023038448A (en) Space purification system
JP6990825B2 (en) Space sterilizer
KR20100073206A (en) Washing apparatus of air conditioner and method for controlling the same
WO2022209447A1 (en) Space purification device
WO2023074165A1 (en) Hypochlorous acid water supply device
KR101510183B1 (en) washing apparatus of air conditioner and method for controlling the same
US20240123106A1 (en) Space cleaning device
JP2023042012A (en) Space clarification system
WO2023026605A1 (en) Space purification system
JP2023031471A (en) Space purification system
JP2006212532A (en) Deodorization apparatus
WO2022239531A1 (en) Space purification device
WO2023037784A1 (en) Space purification device
WO2023021853A1 (en) Space purification device
JP2023141382A (en) Space purifier
JP2023012026A (en) space purifier
JP2023137225A (en) Space purifier
JP2023065740A (en) air conditioning system
JP2023043920A (en) Space purification device
JP2023089994A (en) Electrolytic water generator
JP2023089995A (en) Mixed water generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886500

Country of ref document: EP

Kind code of ref document: A1