JP2023038448A - Space purification system - Google Patents

Space purification system Download PDF

Info

Publication number
JP2023038448A
JP2023038448A JP2021145172A JP2021145172A JP2023038448A JP 2023038448 A JP2023038448 A JP 2023038448A JP 2021145172 A JP2021145172 A JP 2021145172A JP 2021145172 A JP2021145172 A JP 2021145172A JP 2023038448 A JP2023038448 A JP 2023038448A
Authority
JP
Japan
Prior art keywords
water
hypochlorous acid
control
mixing tank
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021145172A
Other languages
Japanese (ja)
Inventor
裕貴 水野
Yuki Mizumo
真司 吉田
Shinji Yoshida
智裕 林
Tomohiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021145172A priority Critical patent/JP2023038448A/en
Priority to PCT/JP2022/020377 priority patent/WO2023026605A1/en
Publication of JP2023038448A publication Critical patent/JP2023038448A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a technique to make it easy to adjust an amount of hypochlorous acid discharged to air.SOLUTION: A space purification system 100 includes: a hypochlorous acid water supply part 36 for supplying hypochlorous acid water to a mixing tank 92; a water supply part 50 for supplying water to the mixing tank 92; a waver level sensor 90 for detecting a water level of the mixing tank 92; an air purification part 11 for atomizing mixture water of hypochlorous acid water and water pooled in the mixing tank 92 and discharging it into air; and an air purification control part 41 for controlling supply processing and mixture water discharge processing. The air purification control part 41 is caused to execute first control to supply hypochlorous acid water by the hypochlorous acid water supply part 36 every predetermined time, and second control to supply water by the water supply part 50 on the basis of information on the water level of the mixing tank 92 from the water level sensor 90. When the first control is executed continuously a predetermined number of times as waste water treatment, the air purification control part is caused to execute third control for discharging the mixture water pooled in the mixing tank 92.SELECTED DRAWING: Figure 1

Description

本発明は、水を微細化し、吸い込んだ空気にその微細化した水を含ませて吹き出すとともに、微細化した水に浄化成分を含ませて放出する空間浄化システムに関するものである。 TECHNICAL FIELD The present invention relates to a space purification system that atomizes water, blows air containing the atomized water into inhaled air, and discharges the atomized water containing a purifying component.

従来の空間浄化装置として、屋内に供給する空気を浄化成分が含まれた気液接触部材部に接触させて放出することで空間を除菌する空気調和システムが知られている(例えば、特許文献1参照)。 As a conventional space purifier, there is known an air conditioning system that sterilizes a space by contacting and releasing the air supplied indoors to a gas-liquid contact member portion containing a purifying component (for example, Patent Document 1).

そして、こうした従来の空間浄化装置では、一般的に、微細化された水の放出に加えて、装置内に貯水された水(浄化成分を含ませた水)は、微細化動作に伴って一部の浄化成分を含ませた水及び浄化成分が気化され、空間に放出される。 In such a conventional space purifying device, in addition to the discharge of the atomized water, the water (water containing the purifying component) stored in the device is generally dispersed along with the atomization operation. The water containing the purifying component in the part and the purifying component are vaporized and released into the space.

特開2009-133521号公報JP 2009-133521 A

しかしながら、従来の空間浄化装置では、屋内空間に要求される加湿量の少ない状況、例えば日本の夏場(特に梅雨時期)に、空調機等で除湿された相対湿度の高い空気(例えば12℃95%)が通風される場合においては、微細化された浄化成分を含む水(次亜塩素酸水)が気化されにくいために、浄化成分(次亜塩素酸)が気化されず、屋内空間に浄化成分が放出されなくにくくなる。一方、要求される加湿量の多い状況、例えば日本の冬場に、温められた相対湿度の低い空気(例えば20℃30%)が通風される場合においては、微細化された浄化成分を含む水が気化されやすいために、屋内空間に浄化成分が多量に放出されてしまう。つまり、従来の空間浄化装置では、屋内空間(空気中)に放出される浄化成分の量を調節することが容易ではないという課題があった。 However, in the conventional space purification device, in a situation where the amount of humidification required for the indoor space is small, for example, in the summer in Japan (especially in the rainy season), air with high relative humidity (for example, 12 ° C. 95%) dehumidified by an air conditioner or the like ) is ventilated, the purification component (hypochlorous acid) is not vaporized because the water (hypochlorous acid water) containing the finely divided purification component is difficult to evaporate, and the purification component enters the indoor space. is less likely to be released. On the other hand, in a situation where a large amount of humidification is required, for example, when warmed air with a low relative humidity (for example, 20 ° C. 30%) is ventilated in winter in Japan, water containing finely divided purification components is used. Because it is easily vaporized, a large amount of the purifying component is released into the indoor space. In other words, the conventional space purifying device has a problem that it is not easy to adjust the amount of the purifying component released into the indoor space (into the air).

そこで本発明は、上記従来の課題を解決するものであり、空気中に放出される浄化成分の量を調節しやすくできる技術を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the above-described conventional problems and to provide a technique that facilitates adjustment of the amount of purifying components released into the air.

そして、この目的を達成するために、本発明に係る空間浄化システムは、次亜塩素酸水を生成する次亜塩素酸水生成部と、次亜塩素酸水生成部から混合槽に次亜塩素酸水を供給する次亜塩素酸水供給部と、混合槽に水を供給する水供給部と、混合槽の水位を検知するための水位センサと、混合槽に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する加湿浄化部と、次亜塩素酸水供給部及び水供給部における供給処理、並びに、混合槽に貯留される混合水の排水処理を制御する制御部とを備える。制御部は、供給処理として、次亜塩素酸水供給部による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサからの混合槽の水位に関する情報に基づいて水供給部による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、第一制御を連続して所定回数実行した場合に、混合槽が貯留する混合水を排水する第三制御を実行させるものであり、これにより所期の目的を達成するものである。 In order to achieve this object, the space purification system according to the present invention includes a hypochlorous acid water generation unit that generates hypochlorous acid water, and hypochlorous acid water from the hypochlorous acid water generation unit to the mixing tank. A hypochlorous acid water supply unit that supplies acid water, a water supply unit that supplies water to the mixing tank, a water level sensor for detecting the water level of the mixing tank, and hypochlorous acid water stored in the mixing tank. Controls the humidifying and purifying unit that atomizes the mixed water of water and water and releases it into the air, the supply processing in the hypochlorous acid water supply unit and the water supply unit, and the drainage processing of the mixed water stored in the mixing tank and a control unit. As supply processing, the control unit performs first control for supplying hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and based on information on the water level of the mixing tank from the water level sensor, the water supply unit and a second control for supplying water by each, and as wastewater treatment, when the first control is continuously performed a predetermined number of times, a third control for draining the mixed water stored in the mixing tank is performed. , which achieves the intended purpose.

本発明に係る空間浄化システムによれば、空気中に放出される浄化成分の量を調節しやすくできる。 According to the space purification system of the present invention, it is possible to easily adjust the amount of purification components released into the air.

図1は、本発明の実施の形態1に係る空間浄化システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a space purification system according to Embodiment 1 of the present invention. 図2は、制御部の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the control unit. 図3は、空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(冬場:第一例)を示す概略図である。FIG. 3 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system (winter: first example). 図4は、空間浄化システムにおける水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第二例)を示す概略図である。FIG. 4 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system (summer: second example).

本発明に係る空間浄化システムは、次亜塩素酸水を生成する次亜塩素酸水生成部と、次亜塩素酸水生成部から混合槽に次亜塩素酸水を供給する次亜塩素酸水供給部と、混合槽に水を供給する水供給部と、混合槽の水位を検知するための水位センサと、混合槽に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する加湿浄化部と、次亜塩素酸水供給部及び水供給部における供給処理、並びに、混合槽に貯留される混合水の排水処理を制御する制御部とを備える。制御部は、供給処理として、次亜塩素酸水供給部による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサからの混合槽の水位に関する情報に基づいて水供給部による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、第一制御を連続して所定回数実行した場合に、混合槽が貯留する混合水を排水する第三制御を実行させる。 A space purification system according to the present invention includes a hypochlorous acid water generating unit that generates hypochlorous acid water, and hypochlorous acid water that supplies hypochlorous acid water from the hypochlorous acid water generating unit to a mixing tank. A supply unit, a water supply unit that supplies water to the mixing tank, a water level sensor for detecting the water level of the mixing tank, and a mixed water of hypochlorous acid water and water stored in the mixing tank is finely divided. It comprises a humidifying and purifying section that discharges into the air, a control section that controls supply processing in the hypochlorous acid water supply section and the water supply section, and drainage processing of the mixed water stored in the mixing tank. As supply processing, the control unit performs first control for supplying hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and based on information on the water level of the mixing tank from the water level sensor, the water supply unit and a second control for supplying water by means of water, and a third control for draining the mixed water stored in the mixing tank when the first control is continuously performed a predetermined number of times as drainage treatment.

このようにすることで、日本の夏場のように、相対湿度の高い空気が通風される場合においては、混合槽に溜められた混合水の消費量が少ないため、混合槽への次亜塩素酸水の供給頻度(第一制御を行う回数)が多くなり、混合槽内における混合水の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出される。この際、第一制御を連続して所定回数実行した場合に第三制御を実行し、混合槽が貯留する混合水を排出し、混合槽内の混合水をリセットすることで、混合槽内の次亜塩素酸濃度の上がりすぎを抑制することができる。この結果、微細化された次亜塩素酸水が気化されにくい状況であっても、所定濃度に高めた次亜塩素酸を空気に含ませて屋内空間に放出させることができる。一方、日本の冬場のように、相対湿度の低い空気が通風される場合においては、混合槽に溜められた混合水の消費量が多いため、混合槽への水の供給頻度(第二制御を行う回数)が多くなり、混合槽内における混合水の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出される。この結果、微細化された次亜塩素酸水が気化されやすい状況であっても、所定濃度に薄まった次亜塩素酸を空気に含ませて屋内空間に放出させることができる。つまり、空間浄化システムでは、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。 By doing so, when air with high relative humidity is ventilated like in summer in Japan, the consumption of mixed water stored in the mixing tank is small, so hypochlorous acid to the mixing tank When the water supply frequency (the number of times the first control is performed) increases and the hypochlorous acid concentration of the mixed water in the mixing tank is high, the mixed water is finely divided and released into the air. At this time, when the first control is continuously executed a predetermined number of times, the third control is executed, the mixed water stored in the mixing tank is discharged, and the mixed water in the mixing tank is reset. Excessive increase in hypochlorous acid concentration can be suppressed. As a result, even in a situation where it is difficult to evaporate the micronized hypochlorous acid water, the hypochlorous acid raised to a predetermined concentration can be contained in the air and released into the indoor space. On the other hand, when air with low relative humidity is ventilated, such as in winter in Japan, the amount of mixed water stored in the mixing tank is large, so the frequency of water supply to the mixing tank (second control The number of repetitions) increases, and in a state where the hypochlorous acid concentration of the mixed water in the mixing tank is low, the mixed water is finely divided and released into the air. As a result, even in a situation where the micronized hypochlorous acid water is likely to evaporate, the hypochlorous acid diluted to a predetermined concentration can be contained in the air and released into the indoor space. That is, in the space purification system, the amount of hypochlorous acid released into the air can be easily adjusted.

また、本発明に係る空間浄化システムでは、制御部は、第一制御を連続して所定回数実行した後における第一制御を実行する直前に、第三制御を実行させることが好ましい。これにより、空間浄化システムでは、第一制御によって混合槽に次亜塩素酸が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。 Moreover, in the space purification system according to the present invention, it is preferable that the control unit causes the third control to be executed immediately before executing the first control after the first control is continuously executed a predetermined number of times. As a result, in the space purification system, the drainage by the third control is not performed immediately after the hypochlorous acid is supplied to the mixing tank by the first control, so the hypochlorous acid water supplied by the first control can be used for as long as possible and waste due to drainage in the tertiary control can be reduced.

また、本発明に係る空間浄化システムでは、制御部は、第三制御における所定回数は、第一制御によって供給される次亜塩素酸水の濃度に基づいて設定されることが好ましい。これにより、例えば、空間浄化システムでは、第一制御によって供給される次亜塩素酸水の濃度が高い時は、第一制御を連続して所定回数実行した場合に混合槽内の次亜塩素酸水の濃度の上昇が早くなるので、所定回数を少なく設定することで混合槽内の次亜塩素酸水の濃度が上がりすぎることをより確実に抑制することができる。 Moreover, in the space purification system according to the present invention, it is preferable that the controller sets the predetermined number of times in the third control based on the concentration of the hypochlorous acid water supplied by the first control. As a result, for example, in the space purification system, when the concentration of hypochlorous acid water supplied by the first control is high, when the first control is continuously executed a predetermined number of times, hypochlorous acid in the mixing tank Since the concentration of water rises quickly, by setting the predetermined number of times to be small, it is possible to more reliably prevent the concentration of hypochlorous acid water in the mixing tank from increasing excessively.

以下、本発明を実施するための形態について添付図面を参照して説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本発明に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. It should be noted that the following embodiment is an example that embodies the present invention, and does not limit the technical scope of the present invention. In addition, throughout the drawings, the same parts are denoted by the same reference numerals, and the description thereof is omitted. Furthermore, in order to avoid duplication of details of each part that is not directly related to the present invention, description for each drawing is omitted.

(実施の形態1)
図1は、本発明の実施の形態1に係る空間浄化システム100の構成を示す図である。空間浄化システム100は、屋内空間18の空気を循環させる際に、屋内空間18からの空気8(RA)に対して必要に応じて冷却処理(除湿処理)または加熱処理を行うとともに、内部を流通する空気8に対して微細化された水とともに空気浄化を行う成分(以下、単に「空気浄化成分」という)を含ませる装置である。空間浄化システム100は、内部を流通した空気9(SA)を屋内空間18に供給することで、屋内空間18の殺菌と消臭を行う。ここでは、空気浄化成分として次亜塩素酸が用いられ、空気浄化成分を含む水は次亜塩素酸水である。
(Embodiment 1)
FIG. 1 is a diagram showing the configuration of a space purification system 100 according to Embodiment 1 of the present invention. When circulating the air in the indoor space 18, the space purification system 100 performs cooling processing (dehumidification processing) or heating processing on the air 8 (RA) from the indoor space 18 as necessary, and circulates the air inside. It is a device that includes an air purifying component (hereinafter simply referred to as an "air purifying component") together with atomized water. The space purification system 100 sterilizes and deodorizes the indoor space 18 by supplying the air 9 (SA) that has circulated inside to the indoor space 18 . Here, hypochlorous acid is used as the air purification component, and the water containing the air purification component is hypochlorous acid water.

空間浄化システム100は、図1に示すように、主として、空間浄化装置10、空気調和装置15、及び次亜塩素酸水生成部30を有して構成される。 The space purification system 100 mainly includes a space purification device 10, an air conditioner 15, and a hypochlorous acid water generator 30, as shown in FIG.

空間浄化装置10は、吹出口3、空気浄化部11、及び空気浄化制御部41を含む。空気調和装置15は、吸込口2、送風機13、冷媒コイル14、及び空気調和制御部42を含む。空間浄化装置10と空気調和装置15のそれぞれは、装置の外枠を構成する筐体を有し、空間浄化装置10と空気調和装置15とは、ダクト24により接続される。また、空気調和装置15の側面に吸込口2が形成され、空間浄化装置10の側面に吹出口3が形成される。 The space purification device 10 includes an air outlet 3 , an air purification section 11 and an air purification control section 41 . The air conditioner 15 includes a suction port 2 , a blower 13 , a refrigerant coil 14 , and an air conditioning controller 42 . Each of the space purification device 10 and the air conditioner 15 has a housing that constitutes the outer frame of the device, and the space purification device 10 and the air conditioner 15 are connected by a duct 24 . In addition, the suction port 2 is formed on the side of the air conditioner 15 and the outlet 3 is formed on the side of the space cleaning device 10 .

吸込口2は、屋内空間18からの空気8を空気調和装置15に取り入れる取入口である。吸込口2は、屋内空間18の天井等に設けられた屋内吸込口16aとの間でダクト16を介して連通されている。これにより、吸込口2は、屋内吸込口16aから空気調和装置15内に屋内空間18の空気を吸い込むことができる。 The intake port 2 is an intake port that takes in the air 8 from the indoor space 18 into the air conditioner 15 . The suction port 2 communicates through a duct 16 with an indoor suction port 16 a provided on the ceiling of an indoor space 18 or the like. As a result, the air inlet 2 can draw air in the indoor space 18 into the air conditioner 15 from the indoor air inlet 16a.

吹出口3は、空間浄化装置10内を流通した空気9(SA)を屋内空間18に吐き出す吐出口である。吹出口3は、屋内空間18の天井等に設けられた屋内吹出口17aとの間でダクト17を介して連通されている。これにより、吹出口3は、屋内吹出口17aから屋内空間18に向けて、空間浄化装置10内を流通した空気9を吹き出すことができる。 The blowout port 3 is a discharge port for discharging the air 9 (SA) that has flowed through the interior of the space purification device 10 into the indoor space 18 . The air outlet 3 communicates through a duct 17 with an indoor air outlet 17 a provided on the ceiling of an indoor space 18 or the like. As a result, the air outlet 3 can blow out the air 9 that has circulated inside the space cleaning device 10 toward the indoor space 18 from the indoor air outlet 17a.

また、空気調和装置15及び空間浄化装置10の内部には、ダクト24を介して吸込口2と吹出口3とを連通する風路(前段風路4、中段風路5、後段風路6)が構成されている。前段風路4は、吸込口2に隣接する風路である。前段風路4には、送風機13及び冷媒コイル14が設けられている。 Further, inside the air conditioner 15 and the space purifier 10, there are air passages (front air passage 4, middle air passage 5, rear air passage 6) communicating the suction port 2 and the air outlet 3 through the duct 24. is configured. The front air passage 4 is an air passage adjacent to the suction port 2 . A blower 13 and a refrigerant coil 14 are provided in the front air passage 4 .

中段風路5は、前段風路4(ダクト24)に隣接した位置において、前段風路4を流通した空気8が流通する風路である。中段風路5には、その風路内に空気浄化部11が設けられている。 The middle air passage 5 is an air passage through which the air 8 that has flowed through the front air passage 4 flows, at a position adjacent to the front air passage 4 (duct 24). The middle air passage 5 is provided with an air purifier 11 in the air passage.

後段風路6は、吹出口3に隣接する風路であり、後段風路6では、中段風路5を流通した空気8が空気浄化部11を流通し微細化された水とともに次亜塩素酸を含んだ空気9となる。 The rear air passage 6 is an air passage adjacent to the outlet 3, and in the rear air passage 6, the air 8 that has flowed through the middle air passage 5 flows through the air purification unit 11 and is purified with hypochlorous acid along with water that has been made finer. becomes air 9 containing

空気調和装置15及び空間浄化装置10では、吸込口2から吸い込まれた空気8は、前段風路4を流通し、中段風路5及び後段風路6を流通し、空気9として吹出口3から吹き出される。 In the air conditioner 15 and the space purifier 10, the air 8 sucked from the suction port 2 circulates through the front air passage 4, flows through the middle air passage 5 and the rear air passage 6, and exits the air outlet 3 as air 9. blown out.

空気調和装置15の送風機13は、屋内空間18の空気8(RA)を吸込口2から空気調和装置15内に搬送するための装置である。送風機13は、前段風路4内において、冷媒コイル14の上流側に設置されている。送風機13では、空気調和制御部42からの送風出力情報に応じて運転動作のオン/オフが制御される。送風機13が運転動作することにより、屋内空間18の空気8は、空気調和装置15に取り込まれて冷媒コイル14に向かう。 The blower 13 of the air conditioner 15 is a device for conveying the air 8 (RA) in the indoor space 18 from the suction port 2 into the air conditioner 15 . The blower 13 is installed upstream of the refrigerant coil 14 in the front air passage 4 . In the blower 13 , on/off of operation is controlled according to the blowing output information from the air conditioning control section 42 . By operating the blower 13 , the air 8 in the indoor space 18 is taken into the air conditioner 15 and directed toward the refrigerant coil 14 .

冷媒コイル14は、前段風路4内において、送風機13の下流側に配置され、導入される空気8を冷却または加熱するための部材である。冷媒コイル14は、空気調和制御部42からの出力信号に応じて出力状態(冷却、加熱またはオフ)を変化させ、導入される空気8に対する冷却能力(冷却量)または加熱能力(加熱量)を調整する。冷媒コイル14では、導入される空気8を冷却すると、導入された空気8の除湿がなされることになるので、空気8に対する冷却能力(冷却量)は、空気8に対する除湿能力(除湿量)ともいえる。 The refrigerant coil 14 is a member arranged downstream of the blower 13 in the front air passage 4 to cool or heat the introduced air 8 . The refrigerant coil 14 changes its output state (cooling, heating, or off) in accordance with the output signal from the air conditioning control unit 42 to change the cooling capacity (cooling amount) or heating capacity (heating amount) for the introduced air 8. adjust. In the refrigerant coil 14, when the introduced air 8 is cooled, the introduced air 8 is dehumidified. I can say.

冷媒コイル14は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルにおいて、吸熱器または放熱器として機能し、室外機20から導入される冷媒が内部を流通する際に吸熱(冷却)または放熱(加熱)するように構成されている。より詳細には、冷媒コイル14は、冷媒が流れる冷媒回路21を介して室外機20と接続されている。室外機20は、屋外空間19に設置される室外ユニットであり、圧縮機20aと、膨張器20bと、屋外熱交換器20cと、送風ファン20dと、四方弁20eとを有する。室外機20には、一般的な構成のものを用いるので、各機器(圧縮機20a、膨張器20b、屋外熱交換器20c、送風ファン20d、及び四方弁20e)の詳細な説明は省略する。 The refrigerant coil 14 functions as a heat absorber or a heat radiator in a refrigeration cycle including a compressor, a radiator, an expander, and a heat absorber. is configured to absorb (cool) or dissipate (heat) heat to More specifically, the refrigerant coil 14 is connected to the outdoor unit 20 via a refrigerant circuit 21 through which refrigerant flows. The outdoor unit 20 is an outdoor unit installed in the outdoor space 19, and has a compressor 20a, an expander 20b, an outdoor heat exchanger 20c, a blower fan 20d, and a four-way valve 20e. Since the outdoor unit 20 has a general configuration, detailed description of each device (compressor 20a, expander 20b, outdoor heat exchanger 20c, blower fan 20d, and four-way valve 20e) is omitted.

冷媒コイル14を含む冷凍サイクルには、四方弁20eが接続されているので、空気調和装置15では、四方弁20eによって第一方向に冷媒が流通して空気(空気8)を冷却して除湿する冷却モード(除湿モード)の状態と、四方弁20eによって第二方向に冷媒が流通して空気(空気8)に対して加熱を行う加熱モードの状態とを切り替え可能である。 Since the four-way valve 20e is connected to the refrigeration cycle including the refrigerant coil 14, in the air conditioner 15, the four-way valve 20e allows the refrigerant to flow in the first direction to cool and dehumidify the air (air 8). It is possible to switch between a cooling mode (dehumidifying mode) and a heating mode in which the four-way valve 20e circulates the refrigerant in the second direction to heat the air (air 8).

ここで、第一方向は、圧縮機20aと屋外熱交換器20cと膨張器20bと冷媒コイル14とをこの順序で冷媒が流通する方向である。また、第二方向は、圧縮機20aと冷媒コイル14と膨張器20bと屋外熱交換器20cとをこの順序で冷媒が流通する方向である。冷媒コイル14では、導入される空気(空気8)に対して冷却または加熱することが可能である。 Here, the first direction is the direction in which the refrigerant flows through the compressor 20a, the outdoor heat exchanger 20c, the expander 20b, and the refrigerant coil 14 in this order. The second direction is the direction in which the refrigerant flows through the compressor 20a, the refrigerant coil 14, the expander 20b, and the outdoor heat exchanger 20c in this order. The refrigerant coil 14 can cool or heat the introduced air (air 8).

空間浄化装置10の空気浄化部11は、内部に取り入れた空気8を加湿するためのユニットであり、加湿の際に、空気に対して微細化された水とともに次亜塩素酸を含ませる。より詳細には、空気浄化部11は、混合槽92、水位センサ90、加湿モータ11a、及び加湿ノズル11bを有している。空気浄化部11は、加湿モータ11aを用いて加湿ノズル11bを回転させ、空気浄化部11の混合槽92に貯留されている次亜塩素酸水を遠心力で吸い上げて周囲(遠心方向)に飛散・衝突・破砕させ、通過する空気に水分を含ませる遠心破砕式の構成をとる。空気浄化部11は、空気浄化制御部41からの出力信号に応じて加湿モータ11aの回転数(以下、回転出力値)を変化させ、加湿能力(加湿量)を調整する。加湿量は、空気に対して次亜塩素酸を付加する付加量ともいえる。なお、空気浄化部11は、請求項の「加湿浄化部」に相当する。 The air purifier 11 of the space purifier 10 is a unit for humidifying the air 8 that is taken into the interior. During humidification, the air is made to contain hypochlorous acid together with micronized water. More specifically, the air purification unit 11 has a mixing tank 92, a water level sensor 90, a humidification motor 11a, and a humidification nozzle 11b. The air purification unit 11 rotates the humidification nozzle 11b using the humidification motor 11a, sucks up the hypochlorous acid water stored in the mixing tank 92 of the air purification unit 11 by centrifugal force, and scatters it around (in the centrifugal direction).・Centrifugal crushing type configuration is adopted in which water is added to the passing air by colliding and crushing. The air purification unit 11 changes the number of rotations (hereinafter referred to as rotation output value) of the humidification motor 11a according to the output signal from the air purification control unit 41 to adjust the humidification capacity (humidification amount). The amount of humidification can also be said to be the amount of addition of hypochlorous acid to the air. The air purifier 11 corresponds to the "humidification purifier" in the claims.

水位センサ90は、混合槽92に貯留される次亜塩素酸水の水位を計測し、計測値を空気浄化制御部41に出力する。より詳細には、水位センサ90は、混合槽92に貯留される次亜塩素酸水の水位として、混合槽92が渇水状態となる水位及び混合槽92が満水状態となる水位をそれぞれ計測し、計測値を水位情報として空気浄化制御部41に出力する。なお、本実施の形態では、混合槽92が渇水状態となる水位は、混合槽92内に次亜塩素酸水が満水状態から約1/3まで次亜塩素酸水量が減少した状態での水位に設定されている。 The water level sensor 90 measures the water level of the hypochlorous acid water stored in the mixing tank 92 and outputs the measured value to the air purification control section 41 . More specifically, the water level sensor 90 measures the water level at which the mixing tank 92 is in a dry state and the water level at which the mixing tank 92 is full, as the water level of the hypochlorous acid water stored in the mixing tank 92, The measured value is output to the air purification control section 41 as water level information. In the present embodiment, the water level at which the mixing tank 92 is in a dry state is the water level when the amount of hypochlorous acid water in the mixing tank 92 has decreased from the full state of the hypochlorous acid water to about 1/3. is set to

混合槽92は、空気浄化部11において次亜塩素酸水を貯留する槽であり、貯水部とも言える。混合槽92では、後述する次亜塩素酸水供給部36から供給される所定濃度の次亜塩素酸水と、後述する水供給部50から供給される水とを槽内で混合し、希釈された次亜塩素酸水からなる混合水として貯留する。なお、混合槽92内に貯留される次亜塩素酸水(混合水)は、空気浄化制御部41からの出力信号に応じて動作する排水部60によって、混合槽92から外部に排出可能になっている。 The mixing tank 92 is a tank for storing the hypochlorous acid water in the air purifying section 11, and can also be said to be a water storage section. In the mixing tank 92, the hypochlorous acid water having a predetermined concentration supplied from the hypochlorous acid water supply unit 36 described later and the water supplied from the water supply unit 50 described later are mixed in the tank and diluted. It is stored as mixed water consisting of hypochlorous acid water. The hypochlorous acid water (mixed water) stored in the mixing tank 92 can be discharged from the mixing tank 92 to the outside by a drainage unit 60 that operates according to an output signal from the air purification control unit 41. ing.

次亜塩素酸水生成部30は、電解槽31、電極32、電磁弁33、塩水タンク34、塩水搬送ポンプ35、水位センサ39、及び次亜塩素酸水供給部36を含む。 The hypochlorous acid water generator 30 includes an electrolytic cell 31 , an electrode 32 , an electromagnetic valve 33 , a salt water tank 34 , a salt water transfer pump 35 , a water level sensor 39 , and a hypochlorous acid water supply unit 36 .

塩水タンク34は、塩水を貯めており、空気浄化制御部41からの出力信号に応じて、塩水搬送ポンプ35を介して電解槽31に塩水を供給する。電解槽31は、塩水タンク34から供給された電気分解対象である塩水を貯める。電解槽31には、空気浄化制御部41からの出力信号に応じて、水道等の給水管から電磁弁33を介して水道水も供給され、供給された水道水と塩水とが混合され、予め定められた濃度の塩水が貯められる。電極32は、電解槽31内に配置され、空気浄化制御部41からの出力信号に応じて通電により塩水の電気分解を所定時間行い、予め定められた濃度の次亜塩素酸水を生成する。つまり、電解槽31は、一対の電極間で、電解質として塩化物水溶液(例えば、塩化ナトリウム水溶液)を電気分解することで次亜塩素酸水を生成する。電解槽31には、一般的な装置が使用されるので、詳細な説明は省略する。ここで、電解質は、次亜塩素酸水を生成可能な電解質であり、少量でも塩化物イオンを含んで入れば特に制限はなく、例えば、溶質として、塩化ナトリウム、塩化カルシウム、又は塩化マグネシウム等を溶解した水溶液が挙げられる。また、塩酸でも問題ない。本実施の形態では、電解質として、水に対して塩化ナトリウムを加えた塩化ナトリウム水溶液(塩水)を使用している。 The salt water tank 34 stores salt water, and supplies the salt water to the electrolytic cell 31 via the salt water transfer pump 35 according to the output signal from the air purification control unit 41 . The electrolytic cell 31 stores salt water to be electrolyzed supplied from the salt water tank 34 . Tap water is also supplied to the electrolytic cell 31 from a water supply pipe such as tap water through an electromagnetic valve 33 in response to an output signal from the air purification control unit 41, and the supplied tap water and salt water are mixed and mixed in advance. Salt water with a defined concentration is stored. The electrode 32 is arranged in the electrolytic bath 31 and electrolyzes salt water for a predetermined time by energization in response to an output signal from the air purification control unit 41 to generate hypochlorous acid water having a predetermined concentration. That is, the electrolytic cell 31 generates hypochlorous acid water by electrolyzing a chloride aqueous solution (for example, a sodium chloride aqueous solution) as an electrolyte between a pair of electrodes. Since a common device is used for the electrolytic cell 31, detailed description is omitted. Here, the electrolyte is an electrolyte that can generate hypochlorous acid water, and is not particularly limited as long as it contains chloride ions even in a small amount. Dissolved aqueous solutions are included. There is no problem with hydrochloric acid. In this embodiment, an aqueous sodium chloride solution (salt water) in which sodium chloride is added to water is used as the electrolyte.

水位センサ39は、電解槽31内の水位を計測し、計測値を空気浄化制御部41に出力する。 The water level sensor 39 measures the water level in the electrolytic cell 31 and outputs the measured value to the air purification control section 41 .

次亜塩素酸水供給部36は、空気浄化制御部41からの出力信号に応じて、電解槽31から空気浄化部11の混合槽92に次亜塩素酸水を供給する。次亜塩素酸水供給部36は、次亜塩素酸水搬送ポンプ37と送水管38とを有する。次亜塩素酸水搬送ポンプ37は、空気浄化制御部41からの出力信号に応じて、電解槽31の次亜塩素酸水を送水管38に送り出す。送水管38は、次亜塩素酸水搬送ポンプ37と混合槽92との間に接続され、次亜塩素酸水を混合槽92に向けて送水する。 The hypochlorous acid water supply unit 36 supplies hypochlorous acid water from the electrolytic cell 31 to the mixing tank 92 of the air purification unit 11 according to the output signal from the air purification control unit 41 . The hypochlorous acid water supply unit 36 has a hypochlorous acid water transport pump 37 and a water pipe 38 . The hypochlorous acid water transfer pump 37 sends out the hypochlorous acid water in the electrolytic cell 31 to the water pipe 38 according to the output signal from the air purification control unit 41 . The water pipe 38 is connected between the hypochlorous acid water conveying pump 37 and the mixing tank 92 and feeds the hypochlorous acid water toward the mixing tank 92 .

水供給部50は、空気浄化制御部41からの出力信号に応じて、混合槽92に水を供給する。水供給部50は、電磁弁51と送水管52とを有する。電磁弁51は、空気浄化制御部41からの出力信号に応じて、空間浄化装置10の外部の水道管から供給される水を送水管52に流すか否か制御する。送水管52は、電磁弁51と混合槽92との間に接続され、水を混合槽92に向けて送水する。 The water supply unit 50 supplies water to the mixing tank 92 according to the output signal from the air purification control unit 41 . The water supply unit 50 has an electromagnetic valve 51 and a water pipe 52 . The electromagnetic valve 51 controls whether or not water supplied from a water pipe outside the space purification device 10 is allowed to flow through the water pipe 52 according to an output signal from the air purification control section 41 . The water pipe 52 is connected between the electromagnetic valve 51 and the mixing tank 92 and feeds water toward the mixing tank 92 .

排水部60は、混合槽92の底部に接続され、空気浄化制御部41からの出力信号に応じて、混合槽92に貯留される混合水を外部に排出する。排水部60は、電磁弁61と送水管62とを有する。電磁弁61は、空気浄化制御部41からの出力信号に応じて、混合槽92に貯留される混合水を外部の排水管に流すか否か制御する。送水管62は、混合槽92と電磁弁61との間に接続され、混合水を外部の排水管に送水する。 The drain section 60 is connected to the bottom of the mixing tank 92 and discharges the mixed water stored in the mixing tank 92 to the outside according to the output signal from the air purification control section 41 . The drain section 60 has an electromagnetic valve 61 and a water pipe 62 . The solenoid valve 61 controls whether or not to flow the mixed water stored in the mixing tank 92 to an external drain pipe according to the output signal from the air purification control section 41 . The water pipe 62 is connected between the mixing tank 92 and the solenoid valve 61, and feeds the mixed water to an external drain pipe.

空気浄化部11では、次亜塩素酸水供給部36からの次亜塩素酸水と、水供給部50からの水とが混合槽92にそれぞれ供給される。そして、空気浄化部11の混合槽92で次亜塩素酸水と水とが混合される。次亜塩素酸水と水との混合水も次亜塩素酸水と呼べる。より詳細には、空気浄化部11の混合槽92では、混合槽92内に残存する次亜塩素酸水に対して、次亜塩素酸水供給部36からの次亜塩素酸水または水供給部50からの水がそれぞれ供給されて混合される。空気浄化部11は、混合槽92に貯められた次亜塩素酸水と水との混合水を遠心破砕することによって、次亜塩素酸水を屋内空間18に対して放出する。微細化された次亜塩素酸水は、液体成分が蒸発した状態で屋内空間18へ放出される。 In the air purification unit 11 , the hypochlorous acid water from the hypochlorous acid water supply unit 36 and the water from the water supply unit 50 are supplied to the mixing tank 92 . Then, the hypochlorous acid water and water are mixed in the mixing tank 92 of the air purifier 11 . Mixed water of hypochlorous acid water and water can also be called hypochlorous acid water. More specifically, in the mixing tank 92 of the air purification unit 11, hypochlorous acid water from the hypochlorous acid water supply unit 36 or the water supply unit is added to the hypochlorous acid water remaining in the mixing tank 92 50 are each fed and mixed. The air purifier 11 discharges the hypochlorous acid water into the indoor space 18 by centrifugally crushing the mixed water of hypochlorous acid water and water stored in the mixing tank 92 . The micronized hypochlorous acid water is discharged into the indoor space 18 with the liquid component evaporated.

屋内空間18の壁面には、操作装置43が設置される。操作装置43は、ユーザが操作可能なユーザインターフェースを備え、ユーザから温度設定値と湿度設定値を受けつける。操作装置43には、温湿度センサ44が含まれており、温湿度センサ44は、屋内空間18の空気の温度及び湿度を計測する。温湿度センサ44における温度及び湿度の計測には公知の技術が使用されればよいので、ここでは説明を省略する。 An operating device 43 is installed on the wall surface of the indoor space 18 . The operating device 43 has a user interface that can be operated by the user, and receives temperature setting values and humidity setting values from the user. The operating device 43 includes a temperature/humidity sensor 44 that measures the temperature and humidity of the air in the indoor space 18 . A well-known technique may be used to measure the temperature and humidity in the temperature/humidity sensor 44, so the explanation is omitted here.

操作装置43は、空気浄化制御部41及び空気調和制御部42に対して有線あるいは無線で接続されており、温度設定値、湿度設定値、温度計測値、及び湿度計測値を空気浄化制御部41及び空気調和制御部42に送信する。これらの情報は、すべてまとめて送信されてもよく、任意の2つ以上をまとめて送信されてもよく、それぞれを送信されてもよい。また、操作装置43が空気浄化制御部41に情報を送信し、空気浄化制御部41が空気調和制御部42に情報を転送してもよい。 The operation device 43 is connected to the air purification control unit 41 and the air conditioning control unit 42 by wire or wirelessly, and transmits the temperature setting value, the humidity setting value, the temperature measurement value, and the humidity measurement value to the air purification control unit 41. and to the air conditioning control unit 42 . All of these pieces of information may be transmitted together, arbitrary two or more may be transmitted together, and each of them may be transmitted. Alternatively, the operation device 43 may transmit information to the air purification control section 41 , and the air purification control section 41 may transfer the information to the air conditioning control section 42 .

空気調和装置15の空気調和制御部42は、温度設定値と温度計測値とを受けつけ、温度計測値が温度設定値に近づくように、冷媒コイル14及び室外機20を制御する。空気調和制御部42は、加熱モードにおいて、温度計測値が温度設定値よりも低い場合に、温度計測値と温度設定値との差異が大きくなるほど、加熱の程度を増加させる。 The air conditioning control unit 42 of the air conditioner 15 receives the temperature setting value and the temperature measurement value, and controls the refrigerant coil 14 and the outdoor unit 20 so that the temperature measurement value approaches the temperature setting value. In the heating mode, when the measured temperature value is lower than the set temperature value, the air conditioning control unit 42 increases the degree of heating as the difference between the measured temperature value and the set temperature value increases.

次に、空間浄化装置10の空気浄化制御部41について説明する。 Next, the air purification control section 41 of the space purification device 10 will be described.

空気浄化制御部41は、次亜塩素酸水生成部30及び空間浄化装置10の処理動作として、電解槽31における電気分解処理に関する動作、空気浄化部11への次亜塩素酸水の供給処理に関する動作、空気浄化部11への水の供給処理に関する動作、空気浄化部11における加湿浄化処理に関する動作、及び空気浄化部11における混合水の排水処理に関する動作をそれぞれ制御する。なお、空気浄化制御部41は、プロセッサ及びメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御部として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。また、空気浄化制御部41は、請求項の「制御部」に相当する。 The air purification control unit 41, as the processing operations of the hypochlorous acid water generating unit 30 and the space purification device 10, relates to operations related to electrolysis processing in the electrolytic cell 31 and processing related to supply of hypochlorous acid water to the air purification unit 11. It controls operations, operations related to water supply processing to the air purification unit 11, operations related to humidification purification processing in the air purification unit 11, and operations related to mixed water drainage processing in the air purification unit 11, respectively. The air purification control unit 41 has a computer system having a processor and memory. The computer system functions as a controller by the processor executing the program stored in the memory. Although the program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. may be provided through Also, the air purification control unit 41 corresponds to the "control unit" in the claims.

具体的には、空気浄化制御部41は、図2に示すように、入力部41a、記憶部41b、計時部41c、処理部41d、及び出力部41eを備える。 Specifically, as shown in FIG. 2, the air purification control section 41 includes an input section 41a, a storage section 41b, a clock section 41c, a processing section 41d, and an output section 41e.

<電解槽における電気分解処理に関する動作>
空気浄化制御部41は、電解槽31における電気分解処理に関する動作として、以下の処理を実行させる。
<Operation related to electrolysis treatment in the electrolytic cell>
The air purification control unit 41 causes the following processes to be executed as operations related to the electrolysis process in the electrolytic cell 31 .

空気浄化制御部41は、電解槽31の電気分解処理のトリガーとして、水位センサ39からの水位情報(渇水信号)及び計時部41cからの時間に関する情報(時刻情報)を受け付け、処理部41dへ出力する。 The air purification control unit 41 receives water level information (dry water signal) from the water level sensor 39 and information on time (time information) from the timing unit 41c as a trigger for electrolysis processing of the electrolytic cell 31, and outputs the information to the processing unit 41d. do.

処理部41dは、水位センサ39からの水位情報と、計時部41cからの時刻情報と、記憶部41bからの設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、次亜塩素酸水生成の開始時刻または終了時刻に関する情報、電解槽31に導入する水道水の供給量に関する情報、塩水搬送ポンプ35における塩化物イオンを含む液体の投入量に関する情報、電極32における電気分解条件(時間、電流値、電圧など)に関する情報、電磁弁33の開閉タイミングに関する情報、及び次亜塩素酸水搬送ポンプ37のオン/オフ動作に関する情報が含まれる。 The processing unit 41d identifies control information based on the water level information from the water level sensor 39, the time information from the clock unit 41c, and the setting information from the storage unit 41b, and outputs the control information to the output unit 41e. Here, the setting information includes information on the start time or end time of hypochlorous acid water generation, information on the supply amount of tap water to be introduced into the electrolytic cell 31, and input of the liquid containing chloride ions in the salt water transfer pump 35. Information on the amount, information on the electrolysis conditions (time, current value, voltage, etc.) in the electrode 32, information on the opening/closing timing of the solenoid valve 33, and information on the on/off operation of the hypochlorous acid water transfer pump 37 are included. .

ここで、電極32における電気分解条件は、電解槽31内の水道水の水量、塩化物イオン濃度、電気分解時間、及び電極32の劣化度合いから決定でき、アルゴリズムを作成して設定され、記憶部41bに記憶される。 Here, the electrolysis conditions in the electrode 32 can be determined from the amount of tap water in the electrolytic cell 31, the chloride ion concentration, the electrolysis time, and the degree of deterioration of the electrode 32, and are set by creating an algorithm. 41b.

そして、出力部41eは、受け付けた制御情報に基づいて、各機器(塩水搬送ポンプ35、電磁弁33、及び次亜塩素酸水搬送ポンプ37)に信号(制御信号)を出力する。 Then, the output unit 41e outputs a signal (control signal) to each device (salt water conveying pump 35, solenoid valve 33, and hypochlorous acid water conveying pump 37) based on the received control information.

より詳細には、まず、塩水搬送ポンプ35は、出力部41eからの信号に基づいて停止した状態を維持し、次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて停止した状態を維持する。 More specifically, first, the salt water conveying pump 35 is kept stopped based on the signal from the output section 41e, and the hypochlorous acid water conveying pump 37 is stopped based on the signal from the output section 41e. maintain state.

そして、電磁弁33は、出力部41eからの信号に基づいて開放される。これにより、電解槽31には、水道管からの水道水の供給が開始される。その後、電磁弁33は、水位センサ39からの水位情報(満水)を受けた出力部41eからの信号に基づいて閉止される。これにより、電解槽31は、水道水が設定された供給量にて給水された状態となる。 Then, the electromagnetic valve 33 is opened based on the signal from the output section 41e. As a result, supply of tap water from the water pipe is started to the electrolytic cell 31 . After that, the electromagnetic valve 33 is closed based on the signal from the output section 41e that receives the water level information (full water) from the water level sensor 39. FIG. As a result, the electrolytic cell 31 is supplied with tap water at the set supply rate.

次に、塩水搬送ポンプ35は、出力部41eからの信号に基づいて動作を開始し、所定量の塩化物イオンを含む液体を電解槽31へ搬送して停止する。これにより、水道水に塩化物イオンが溶解し、電解槽31は、所定量の塩化物イオンを含む水溶液(塩化物水溶液)が生成された状態となる。 Next, the salt water transfer pump 35 starts operating based on the signal from the output part 41e, transfers the liquid containing a predetermined amount of chloride ions to the electrolytic cell 31, and then stops. As a result, the chloride ions are dissolved in the tap water, and the electrolytic cell 31 is in a state where an aqueous solution (chloride aqueous solution) containing a predetermined amount of chloride ions is generated.

そして、電極32は、出力部41eからの信号に基づいて、塩化物水溶液の電解を開始し、設定された条件の次亜塩素酸水を生成して停止する。電極32により生成される次亜塩素酸水は、例えば、次亜塩素酸濃度が100ppm~150ppm(例えば、120ppm)であり、pHが7.0~8.5(例えば、8.0)の状態となる。 Based on the signal from the output part 41e, the electrode 32 starts electrolysis of the chloride aqueous solution, generates hypochlorous acid water under the set conditions, and stops the electrolysis. The hypochlorous acid water generated by the electrode 32 has, for example, a hypochlorous acid concentration of 100 ppm to 150 ppm (eg, 120 ppm) and a pH of 7.0 to 8.5 (eg, 8.0). becomes.

以上のようにして、空気浄化制御部41は、電解槽31において電気分解処理を実行し、予め定められた濃度と量の次亜塩素酸水が生成される。 As described above, the air purification control unit 41 performs electrolysis processing in the electrolytic cell 31 to generate hypochlorous acid water having a predetermined concentration and amount.

<空気浄化部への次亜塩素酸水の供給処理に関する動作>
空気浄化制御部41は、空気浄化部11への次亜塩素酸水の供給処理に関する動作として、以下の処理を実行させる。
<Operation related to supply processing of hypochlorous acid water to the air purifier>
The air purification control unit 41 causes the following processing to be executed as operations related to the hypochlorous acid water supply processing to the air purification unit 11 .

空気浄化制御部41は、空気浄化部11への次亜塩素酸水の供給処理のトリガーとして、加湿モータ11aの稼働時間を計時部41cが測定し、稼働時間が所定時間経過(例えば60分)するごとに次亜塩素酸水生成部30(次亜塩素酸水供給部36)に次亜塩素酸水供給要求を出力する。ここで、所定時間は、次亜塩素酸水中の次亜塩素酸が気化して経時的に減少することを踏まえ、予め実験評価によって見積られた時間である。 In the air purification control unit 41, the timer unit 41c measures the operation time of the humidification motor 11a as a trigger for supplying hypochlorous acid water to the air purification unit 11, and the operation time elapses for a predetermined time (for example, 60 minutes). Each time, a hypochlorous acid water supply request is output to the hypochlorous acid water generating unit 30 (hypochlorous acid water supply unit 36). Here, the predetermined time is a time estimated in advance by experimental evaluation, based on the fact that hypochlorous acid in the hypochlorous acid water evaporates and decreases over time.

具体的には、処理部41dは、計時部41cから時間に関する情報(時刻情報)と、記憶部41bから設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、次亜塩素酸水の供給間隔(例えば60分)に関する情報及び次亜塩素酸水搬送ポンプ37のオン/オフ動作に関する情報が含まれる。 Specifically, the processing unit 41d identifies the control information based on the information about time (time information) from the clock unit 41c and the setting information from the storage unit 41b, and outputs the control information to the output unit 41e. Here, the setting information includes information about the hypochlorous acid water supply interval (for example, 60 minutes) and information about the ON/OFF operation of the hypochlorous acid water transfer pump 37 .

そして、出力部41eは、受け付けた制御情報に基づいて、次亜塩素酸水供給部36の次亜塩素酸水搬送ポンプ37に信号(制御信号)を出力する。 Then, the output unit 41e outputs a signal (control signal) to the hypochlorous acid water transfer pump 37 of the hypochlorous acid water supply unit 36 based on the received control information.

次亜塩素酸水搬送ポンプ37は、出力部41eからの信号に基づいて作動する。これにより、次亜塩素酸水生成部30では、電解槽31から空気浄化部11(混合槽92)への次亜塩素酸水の供給が開始される。なお、電解槽31に貯留される次亜塩素酸水の濃度を担保するため、次亜塩素酸水生成部30から混合槽92に次亜塩素酸水が供給される際、電解槽31で生成された次亜塩素酸水は全量供給される。そのため、次亜塩素酸水を供給した後は、電解槽31は空の状態であり、次亜塩素酸水が電解槽31内に残留した状態から次亜塩素酸水を作成し始めることはない。水位センサ39は、電解槽31内の次亜塩素酸水が全量供給された状態になると、水位情報として渇水信号を出力する。 The hypochlorous acid water transport pump 37 operates based on a signal from the output section 41e. As a result, in the hypochlorous acid water generating unit 30, supply of hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (mixing tank 92) is started. In addition, in order to ensure the concentration of the hypochlorous acid water stored in the electrolytic cell 31, when the hypochlorous acid water is supplied from the hypochlorous acid water generation unit 30 to the mixing tank 92, The hypochlorous acid water produced is supplied in full. Therefore, after the hypochlorous acid water is supplied, the electrolytic cell 31 is in an empty state, and the hypochlorous acid water is not started from the state where the hypochlorous acid water remains in the electrolytic cell 31. . The water level sensor 39 outputs a water shortage signal as water level information when the hypochlorous acid water in the electrolytic cell 31 is completely supplied.

その後、次亜塩素酸水搬送ポンプ37は、計時部41cからの時間に関する情報(規定量を供給するための所要時間)を受けた出力部41eからの信号に基づいて停止する。これにより、次亜塩素酸水生成部30は、電解槽31から空気浄化部11(混合槽92)に対して次亜塩素酸水が設定された供給量にて供給する。 After that, the hypochlorous acid water conveying pump 37 stops based on the signal from the output section 41e that receives the time information (required time for supplying the specified amount) from the clock section 41c. As a result, the hypochlorous acid water generator 30 supplies the hypochlorous acid water from the electrolytic cell 31 to the air purification unit 11 (mixing tank 92) at the set supply amount.

以上のようにして、空気浄化制御部41は、次亜塩素酸水生成部30(電解槽31)から空気浄化部11への次亜塩素酸水の供給処理を実行させる。なお、空気浄化制御部41が次亜塩素酸水供給部36による次亜塩素酸水の供給を所定時間ごとに行う制御を「第一制御」とする。 As described above, the air purification control unit 41 causes the hypochlorous acid water supply process to be executed from the hypochlorous acid water generation unit 30 (the electrolytic cell 31 ) to the air purification unit 11 . The control in which the air purification control unit 41 causes the hypochlorous acid water supply unit 36 to supply the hypochlorous acid water at predetermined time intervals is referred to as "first control".

<空気浄化部への水の供給処理に関する動作>
空気浄化制御部41は、空気浄化部11への水の供給処理に関する動作として、以下の処理を実行させる。
<Operation related to water supply processing to the air purifier>
The air purification control unit 41 causes the following processes to be executed as operations related to water supply processing to the air purification unit 11 .

空気浄化制御部41は、空気浄化部11への水の供給処理のトリガーとして、空間浄化装置10の水位センサ90からの水位情報(渇水信号)を受け付け、水供給部50に水供給要求を出力する。 The air purification control unit 41 receives water level information (dry water signal) from the water level sensor 90 of the space purification device 10 as a trigger for water supply processing to the air purification unit 11, and outputs a water supply request to the water supply unit 50. do.

具体的には、入力部41aは、空間浄化装置10の水位センサ90からの水位情報(渇水信号)を受け付け、処理部41dに出力する。 Specifically, the input unit 41a receives water level information (a water shortage signal) from the water level sensor 90 of the space purification device 10, and outputs the information to the processing unit 41d.

処理部41dは、入力部41aからの水位情報(渇水信号)と、計時部41cから時間に関する情報(時刻情報)と、記憶部41bから設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、水供給部50の電磁弁51のオン/オフ動作に関する情報が含まれる。 The processing unit 41d specifies control information based on the water level information (water shortage signal) from the input unit 41a, the time information (time information) from the clock unit 41c, and the setting information from the storage unit 41b, and outputs the output unit 41e. output to Here, the setting information includes information regarding the ON/OFF operation of the solenoid valve 51 of the water supply section 50 .

そして、出力部41eは、受け付けた制御情報に基づいて、電磁弁51に信号(制御信号)を出力する。 Then, the output unit 41e outputs a signal (control signal) to the solenoid valve 51 based on the received control information.

電磁弁51は、出力部41eからの信号に基づいて作動する。これにより、水供給部50では、送水管52を介して、外部の給水管から空気浄化部11(混合槽92)への水の供給が開始される。 The solenoid valve 51 operates based on the signal from the output section 41e. As a result, in the water supply unit 50 , supply of water from the external water supply pipe to the air cleaning unit 11 (mixing tank 92 ) is started via the water pipe 52 .

その後、電磁弁51は、空間浄化装置10の水位センサ90からの水位情報(満水信号)を受け付けた出力部41eからの信号に基づいて停止する。これにより、水供給部50は、外部の給水管から空気浄化部11(混合槽92)に対して水が設定された量になるまで供給する。 After that, the electromagnetic valve 51 is stopped based on the signal from the output section 41e that has received the water level information (full water signal) from the water level sensor 90 of the space purification device 10 . Thereby, the water supply unit 50 supplies water from the external water supply pipe to the air purification unit 11 (mixing tank 92) until the set amount of water is reached.

以上のようにして、空気浄化制御部41は、水供給部50から空気浄化部11への水の供給処理を実行させる。なお、空気浄化制御部41が水位センサ90からの混合槽92の水位に関する情報(渇水情報)に基づいて水供給部50による水の供給を行う制御を「第二制御」とする。 As described above, the air purification control unit 41 causes the water supply unit 50 to supply water to the air purification unit 11 . The control in which the air purification control unit 41 supplies water by the water supply unit 50 based on the information (water shortage information) about the water level of the mixing tank 92 from the water level sensor 90 is referred to as "second control".

<空気浄化部における加湿浄化処理に関する動作>
次に、空気浄化制御部41の空気浄化部11における加湿浄化処理に関する動作について説明する。
<Operations related to humidification and purification processing in the air purification unit>
Next, the operation of the air purifying section 11 of the air purifying control section 41 regarding the humidifying and purifying process will be described.

入力部41aは、操作装置43からのユーザ入力情報と、温湿度センサ44からの屋内空間18の空気の温湿度情報と、水位センサ90からの混合槽92内の次亜塩素酸水(混合水)の水位情報とを受け付ける。入力部41aは、受け付けた各情報を処理部41dに出力する。 The input unit 41a receives user input information from the operation device 43, temperature and humidity information of the air in the indoor space 18 from the temperature and humidity sensor 44, and hypochlorous acid water (mixed water) in the mixing tank 92 from the water level sensor 90. ) and receive the water level information. The input unit 41a outputs each received information to the processing unit 41d.

ここで、操作装置43は、空間浄化装置10に関するユーザ入力情報(例えば、風量、目標温度、目標湿度、次亜塩素酸の添加の有無、次亜塩素酸の目標供給量レベル、等)を入力する端末であり、無線または有線により空気浄化制御部41と通信可能に接続されている。 Here, the operation device 43 inputs user input information (for example, air volume, target temperature, target humidity, presence or absence of addition of hypochlorous acid, target supply amount level of hypochlorous acid, etc.) regarding the space purification device 10. It is a terminal that communicates with the air purification control unit 41 wirelessly or by wire.

また、温湿度センサ44は、屋内空間18内に設けられ、屋内空間18の空気の温湿度を感知するセンサである。 A temperature and humidity sensor 44 is provided in the indoor space 18 and is a sensor that senses the temperature and humidity of the air in the indoor space 18 .

記憶部41bは、入力部41aが受け付けたユーザ入力情報と、装置内を流通する空気に対する次亜塩素酸の供給動作における供給設定情報とを記憶する。記憶部41bは、記憶した供給設定情報を処理部41dに出力する。なお、次亜塩素酸の供給動作における供給設定情報は、空気浄化部11の加湿浄化動作における加湿設定情報とも言える。 The storage unit 41b stores user input information received by the input unit 41a and supply setting information in the operation of supplying hypochlorous acid to the air circulating in the apparatus. The storage unit 41b outputs the stored supply setting information to the processing unit 41d. The supply setting information in the hypochlorous acid supply operation can also be said to be the humidification setting information in the humidification purification operation of the air purifier 11 .

計時部41cは、現在時刻に関する時刻情報を処理部41dに出力する。 The timer 41c outputs time information regarding the current time to the processor 41d.

処理部41dは、入力部41aからの各種情報(ユーザ入力情報、温湿度情報、水位情報)と、計時部41cからの時刻情報と、記憶部41bからの供給設定情報とを受け付ける。処理部41dは、受け付けたユーザ入力情報、時刻情報、及び供給設定情報を用いて、加湿浄化運転動作に関する制御情報を特定する。 The processing unit 41d receives various types of information (user input information, temperature/humidity information, water level information) from the input unit 41a, time information from the clock unit 41c, and supply setting information from the storage unit 41b. The processing unit 41d uses the received user input information, time information, and supply setting information to identify control information related to the humidification/purification operation.

具体的には、処理部41dは、計時部41cからの時刻情報によって一定時間ごとに、記憶部41bに記憶された目標湿度と、温湿度センサ44からの屋内空間18の空気の温湿度情報の間の湿度差に基づいて、屋内空間18に必要とされる加湿要求量を特定する。そして、処理部41dは、特定した加湿要求量と、記憶部41bに記憶された供給設定情報とに基づいて加湿浄化運転動作に関する制御情報を特定する。そして、処理部41dは、特定した制御情報を出力部41eに出力する。 Specifically, the processing unit 41d detects the target humidity stored in the storage unit 41b and the temperature/humidity information of the air in the indoor space 18 from the temperature/humidity sensor 44 at regular time intervals based on the time information from the clock unit 41c. Identifies the required humidification demand for the indoor space 18 based on the humidity difference between. Then, the processing unit 41d identifies control information related to the humidifying and purifying operation based on the identified humidification request amount and the supply setting information stored in the storage unit 41b. Then, the processing unit 41d outputs the specified control information to the output unit 41e.

また、処理部41dは、水位センサ90からの水位情報に、混合槽92内の次亜塩素酸水(混合水)の渇水を示す水位に関する情報(渇水信号)が含まれる場合には、出力部41eは、水供給部50に対する水供給要求の信号を出力部41eに出力する。さらに、処理部41dは、計時部41cからの時刻情報に基づいて、空気浄化部11(加湿モータ11a)の稼働時間が所定時間(例えば60分)となった場合には、出力部41eは、次亜塩素酸水生成部30に対する次亜塩素酸水供給要求の信号を出力部41eに出力する。なお、本実施の形態では、混合槽92内の次亜塩素酸水(混合水)が渇水を示す水位は、混合槽92内に次亜塩素酸水(混合水)が満水の状態から約1/3まで次亜塩素酸水量が減少した状態での水位に設定されている。 If the water level information from the water level sensor 90 includes water level information (water shortage signal) indicating a water shortage of the hypochlorous acid water (mixed water) in the mixing tank 92, the processing unit 41d outputs the output unit 41e outputs the signal of the water supply request|requirement with respect to the water supply part 50 to the output part 41e. Furthermore, based on the time information from the timer 41c, the processing unit 41d, when the operation time of the air purification unit 11 (humidification motor 11a) reaches a predetermined time (for example, 60 minutes), the output unit 41e A hypochlorous acid water supply request signal to the hypochlorous acid water generating unit 30 is output to the output unit 41e. In the present embodiment, the water level at which the hypochlorous acid water (mixed water) in the mixing tank 92 indicates a water shortage is about 1% from the state where the hypochlorous acid water (mixed water) in the mixing tank 92 is full. The water level is set when the amount of hypochlorous acid water is reduced to /3.

そして、出力部41eは、受け付けた各信号を空気浄化部11、次亜塩素酸水生成部30(次亜塩素酸水供給部36)、及び水供給部50にそれぞれ出力する。 The output unit 41e then outputs the received signals to the air purification unit 11, the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36), and the water supply unit 50, respectively.

そして、空気浄化部11は、出力部41eからの信号を受け付け、受け付けた信号に基づいて運転動作の制御を実行する。この際、次亜塩素酸水生成部30(次亜塩素酸水供給部36)は、出力部41eからの信号(次亜塩素酸水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部11への次亜塩素酸水の供給処理に関する動作(第一制御)を実行する。また、水供給部50は、出力部41eからの信号(水供給要求の信号)を受け付け、受け付けた信号に基づいて、上述した空気浄化部11への水の供給処理に関する動作(第二制御)を実行する。 Then, the air purification unit 11 receives a signal from the output unit 41e, and controls the operation based on the received signal. At this time, the hypochlorous acid water generating unit 30 (hypochlorous acid water supply unit 36) receives a signal (hypochlorous acid water supply request signal) from the output unit 41e, and based on the received signal, An operation (first control) relating to the process of supplying hypochlorous acid water to the air purifier 11 described above is executed. Further, the water supply unit 50 receives a signal (a water supply request signal) from the output unit 41e, and based on the received signal, performs an operation (second control) related to water supply processing to the air purification unit 11 described above. to run.

以上のようにして、空気浄化制御部41は、供給処理として、次亜塩素酸水生成部30(次亜塩素酸水供給部36)による次亜塩素酸水の供給を所定時間ごとに行う第一制御と、水位センサ90からの混合槽92の水位に関する情報(渇水情報)に基づいて水供給部50による水の供給を行う第二制御とをそれぞれ実行させ、混合槽92に混合水を貯留する。そして、空気浄化制御部41は、混合槽92に次亜塩素酸水と水とを供給して混合水を貯留する際に、次亜塩素酸水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせ、空間浄化装置10(空気浄化部11)を流通する空気への加湿浄化処理を実行させる。 As described above, the air purification control unit 41 supplies hypochlorous acid water by the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36) as supply processing at predetermined time intervals. A first control and a second control for supplying water by the water supply unit 50 based on information (water shortage information) about the water level of the mixing tank 92 from the water level sensor 90 are respectively executed, and mixed water is stored in the mixing tank 92. do. Then, when the hypochlorous acid water and water are supplied to the mixing tank 92 and the mixed water is stored, the air purification control unit 41 controls the hypochlorous acid water supply cycle (every predetermined time) and the water The supply cycle (every water shortage detection) is made different, and the air circulating through the space purification device 10 (air purification unit 11) is subjected to humidification purification processing.

<空気浄化部の混合水の排水処理に関する動作>
空気浄化制御部41は、空気浄化部11の混合槽92に貯留される混合水の排水処理に関する動作として、以下の処理を実行させる。
<Operation related to drainage treatment of mixed water in the air purifier>
The air purification control unit 41 causes the following processes to be executed as operations related to the drainage of the mixed water stored in the mixing tank 92 of the air purification unit 11 .

空気浄化制御部41は、混合槽92に貯留される混合水の排水処理のトリガーとして、次亜塩素酸水供給部36における第一制御の実行回数に関する情報及び水供給部50における第二制御の実行回数に関する情報に基づいて排水処理の実施の有無を判定する。なお、各制御の実行回数に関する情報には、各制御を実行した時刻に関する情報も含まれている。 The air purification control unit 41 uses information regarding the number of times the hypochlorous acid water supply unit 36 executes the first control and information on the number of times the second control is executed in the water supply unit 50 as a trigger for the drainage treatment of the mixed water stored in the mixing tank 92. Whether or not to perform wastewater treatment is determined based on the information on the number of executions. The information on the number of executions of each control also includes information on the time when each control was executed.

具体的には、記憶部41bは、次亜塩素酸水供給部36における第一制御の実行回数及び水供給部50による第二制御の実行回数を記憶する。ここで、実行回数は、混合槽92の初期状態(例えば、排水処理後に実行される水の供給及び次亜塩素酸水の供給によって混合槽92が満水となった状態)を起点として、加湿浄化処理動作の開始後(以下、「運転開始後」ともいう)に実行された各制御の回数である。 Specifically, the storage unit 41b stores the number of times the hypochlorous acid water supply unit 36 performs the first control and the number of times the water supply unit 50 performs the second control. Here, the number of times of execution is based on the initial state of the mixing tank 92 (for example, the state where the mixing tank 92 is filled with water and hypochlorous acid water supplied after wastewater treatment). It is the number of times of each control executed after the start of the processing operation (hereinafter also referred to as “after the start of operation”).

そして、処理部41dは、第一制御の実行回数に関する情報及び第二制御の実行回数に関する情報に基づいて第一制御を連続して実行した回数(第一制御の連続実行回数)を特定し、第一制御の連続実行回数が基準回数であるか否かの判定を行う。 Then, the processing unit 41d specifies the number of consecutive executions of the first control (the number of consecutive executions of the first control) based on the information on the number of executions of the first control and the information on the number of executions of the second control, It is determined whether or not the number of consecutive executions of the first control is the reference number of times.

ここで、基準回数は、第一制御による連続した次亜塩素酸水の供給のみによって、混合槽92内の次亜塩素酸水濃度が基準濃度を超えないように、次亜塩素酸水供給部36から供給される次亜塩素酸水の次亜塩素酸濃度に基づいて「5回」に設定している。基準濃度は、屋内空間18に吹き出される空気9(次亜塩素酸を含む空気9)の臭いなどによって、屋内空間18内のユーザが不快とならない程度の次亜塩素酸濃度に設定されている。 Here, the reference number of times is set so that the hypochlorous acid water concentration in the mixing tank 92 does not exceed the reference concentration only by the continuous supply of hypochlorous acid water by the first control. Based on the hypochlorous acid concentration of the hypochlorous acid water supplied from 36, it is set to "5 times". The reference concentration is set to a hypochlorous acid concentration that does not make the user in the indoor space 18 uncomfortable due to the smell of the air 9 (air 9 containing hypochlorous acid) blown into the indoor space 18. .

判定の結果、処理部41dは、第一制御の連続実行回数が基準回数である場合には、計時部41cから時間に関する情報(時刻情報)と、記憶部41bから設定情報とに基づいて制御情報を特定し、出力部41eに出力する。ここで、設定情報には、排水部60の電磁弁61のオン/オフ動作に関する情報が含まれる。 As a result of the determination, if the number of consecutive executions of the first control is the reference number of times, the processing unit 41d outputs the control information based on the information about the time (time information) from the clock unit 41c and the setting information from the storage unit 41b. is specified and output to the output unit 41e. Here, the setting information includes information regarding the ON/OFF operation of the solenoid valve 61 of the drainage section 60 .

そして、出力部41eは、受け付けた制御情報に基づいて、電磁弁61に信号(制御信号)を出力する。 Then, the output unit 41e outputs a signal (control signal) to the solenoid valve 61 based on the received control information.

電磁弁61は、出力部41eからの信号に基づいて作動する。これにより、排水部60では、送水管62を介して、混合槽92から外部の排水管への混合水の排出が開始される。 The solenoid valve 61 operates based on the signal from the output section 41e. As a result, in the drainage section 60 , the mixed water starts to be discharged from the mixing tank 92 to the external drainage pipe via the water pipe 62 .

その後、電磁弁61は、計時部41cからの時刻情報を受け付けた出力部41eからの信号に基づいて所定時間(例えば、1分)の経過後に停止する。これにより、混合槽92は、貯留していた混合水のすべてが排出されて空の状態となる。 After that, the electromagnetic valve 61 stops after a predetermined time (for example, 1 minute) has elapsed based on the signal from the output section 41e that has received the time information from the clock section 41c. As a result, the mixed water stored in the mixing tank 92 is all discharged, and the mixing tank 92 becomes empty.

以上のようにして、空気浄化制御部41は、混合槽92から外部への混合水の排水処理を実行させる。なお、空気浄化制御部41が次亜塩素酸水供給部36における第一制御の連続実行回数に関する情報に基づいて排水部60による混合水の排水を行う制御を「第三制御」とする。 As described above, the air purification control unit 41 causes the mixed water to be drained from the mixing tank 92 to the outside. The control in which the air purification control unit 41 drains the mixed water by the drain unit 60 based on the information about the number of consecutive executions of the first control in the hypochlorous acid water supply unit 36 is referred to as "third control".

ここで、第三制御は、次亜塩素酸水供給部36による第一制御の実行の直前に行うことが好ましい。これにより、例えば、第一制御によって混合槽92に新たな次亜塩素酸水が供給された直後において、第三制御による排水が行われることがなくなるので、混合槽92に貯留される混合水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。なお、以下の実施例においては、除菌の有効成分である次亜塩素酸水の無駄を減らすという観点から第一制御実行の直前に行うものとする。 Here, the third control is preferably performed immediately before the hypochlorous acid water supply unit 36 performs the first control. As a result, for example, immediately after new hypochlorous acid water is supplied to the mixing tank 92 by the first control, the water is not drained by the third control, so the mixed water stored in the mixing tank 92 is It can be used for as long as possible and reduces waste due to drainage in the third control. It should be noted that, in the following examples, from the viewpoint of reducing waste of hypochlorous acid water, which is an effective ingredient for sterilization, it is assumed to be performed immediately before execution of the first control.

次に、図3及び図4を参照して、空間浄化システム100において、空間浄化装置10(空気浄化部11)の混合槽92内における混合水(第一制御または第二制御がなされて混合される混合水)について説明する。図3は、空間浄化システム100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(冬場:第一例)を示す概略図である。より詳細には、図3の(a)は、混合槽92内の次亜塩素酸水(混合水)の水量の経時変化を示す。図3の(b)は、混合槽92内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図3の(c)は、吹出口3の空気に含まれる次亜塩素酸の濃度の経時変化を示す。また、図4は、空間浄化システム100における水量、次亜塩素酸水濃度、及び次亜塩素酸濃度の経時変化(夏場:第二例)を示す概略図である。より詳細には、図4の(a)は、混合槽92内の次亜塩素酸水(混合水)の水量の経時変化を示す。図4の(b)は、混合槽92内の次亜塩素酸水(混合水)の濃度の経緯変化を示す。図4の(c)は、吹出口3の空気に含まれる次亜塩素酸の濃度の経時変化を示す。 Next, referring to FIGS. 3 and 4, in the space purification system 100, mixed water (mixed by first control or second control) in the mixing tank 92 of the space purification device 10 (air purification unit 11) mixed water) will be explained. FIG. 3 is a schematic diagram showing temporal changes in water volume, hypochlorous acid water concentration, and hypochlorous acid concentration in the space purification system 100 (winter: first example). More specifically, (a) of FIG. 3 shows temporal changes in the amount of hypochlorous acid water (mixed water) in the mixing tank 92 . (b) of FIG. 3 shows changes in concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 over time. (c) of FIG. 3 shows changes over time in the concentration of hypochlorous acid contained in the air at the outlet 3 . FIG. 4 is a schematic diagram showing changes over time in the amount of water, the concentration of hypochlorous acid water, and the concentration of hypochlorous acid in the space purification system 100 (summer: second example). More specifically, (a) of FIG. 4 shows changes over time in the amount of hypochlorous acid water (mixed water) in the mixing tank 92 . (b) of FIG. 4 shows changes in concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 over time. (c) of FIG. 4 shows changes over time in the concentration of hypochlorous acid contained in the air at the outlet 3 .

ここで、混合槽92への次亜塩素酸水の供給は、所定時間(1時間)ごとに実行され、混合槽92への水の供給は、水位センサ90によって混合槽92が渇水となる水位を検知するごとに実行される。また、排水処理は、第一制御の実行の直前になされる、第一制御の連続実行回数による判定結果に基づいて実行される。より詳細には、排水処理は、次亜塩素酸水の供給タイミングの直前になされる排水判定において、第一制御の連続実行回数が基準回数(5回)となっているか否かに基づいて実行される。 Here, the supply of hypochlorous acid water to the mixing tank 92 is performed at predetermined time intervals (one hour), and the supply of water to the mixing tank 92 is determined by the water level sensor 90 at the water level at which the mixing tank 92 is dry. is executed each time it detects Moreover, the drainage process is performed based on the determination result of the number of consecutive executions of the first control, which is performed immediately before the first control is performed. More specifically, the wastewater treatment is performed based on whether or not the number of consecutive executions of the first control is the reference number of times (5 times) in the wastewater determination made immediately before the hypochlorous acid water supply timing. be done.

なお、上述した通り、混合槽92の次亜塩素酸水(混合水)が渇水となる水位となっても、混合槽92内には、次亜塩素酸水(混合水)が満水時に対して約1/3残存している。また、説明を簡略化するために、空気浄化部11は、加湿浄化運転時間中、一定の加湿要求量で動作しているとする。また、以下では、混合槽92へ供給する所定量の次亜塩素酸水のことを「次亜塩素酸水原液」ともいう。 In addition, as described above, even if the hypochlorous acid water (mixed water) in the mixing tank 92 reaches a water level at which the water level is low, the hypochlorous acid water (mixed water) in the mixing tank 92 is About 1/3 remains. In order to simplify the explanation, it is assumed that the air purifier 11 operates with a constant required amount of humidification during the humidifying and purifying operation time. Further, the predetermined amount of hypochlorous acid water supplied to the mixing tank 92 is hereinafter also referred to as "hypochlorous acid water undiluted solution".

まず、日本の冬場での動作状況について説明する。なお、日本の冬場では、外気が乾燥しているため空気浄化部11に対する加湿要求量が多く、水の供給は、次亜塩素酸水の供給よりも短い間隔で行われる。つまり、次亜塩素酸水の供給タイミングよりも先に混合槽92内の水位が渇水となる。 First, I will explain the operating conditions in winter in Japan. In winter in Japan, since the outside air is dry, the amount of humidification required for the air purification unit 11 is large, and water is supplied at shorter intervals than hypochlorous acid water is supplied. That is, the water level in the mixing tank 92 becomes dry before the supply timing of the hypochlorous acid water.

そこで、以下では、第一例として、空気浄化部11の運転開始後の稼働時間3時間までの期間に、水の供給(第二制御)が4回実行され、次亜塩素酸水の供給(第一制御)が3回実行される加湿浄化条件での処理について説明する。 Therefore, in the following, as a first example, the supply of water (second control) is performed four times during the period up to 3 hours of operation after the start of operation of the air purification unit 11, and the supply of hypochlorous acid water ( A description will be given of processing under the humidification/purification condition in which the first control) is executed three times.

なお、上記した加湿浄化条件は、空気浄化部11に対する加湿要求量が第一基準値以上である場合に、第一制御を行う回数が第二制御を行う回数よりも少なくなるように空気浄化部11を制御することに基づいて設定される条件である。ここで、第一基準値は、日本の冬場において空気の湿度が低く乾燥している状況と、日本の夏場において空気の湿度が高く湿っている状況とを区分するために設定される値である。 Note that the above-described humidification/purification conditions are such that the number of times the first control is performed is less than the number of times the second control is performed when the required amount of humidification for the air purification section 11 is equal to or greater than the first reference value. 11 is a condition set based on the control. Here, the first reference value is a value set to distinguish between a situation in which the air is dry with low humidity in the winter in Japan and a situation in which the air is humid and humid in the summer in Japan. .

第一例では、図3の(a)に示すように、混合槽92への次亜塩素酸水の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングで実行される。一方、混合槽92への水の供給(第二制御)は、a時間、b時間、c時間、d時間・・・のタイミングで実行される。なお、運転開始となる0時間の時点では、混合槽92に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽92は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。 In the first example, as shown in (a) of FIG. 3, the supply of hypochlorous acid water to the mixing tank 92 (first control) is 1 hour, 2 hours, 3 It is executed at the timing of time. On the other hand, the supply of water to the mixing tank 92 (second control) is executed at times a, b, c, d, and so on. At time 0, when the operation starts, hypochlorous acid water and water are supplied to the mixing tank 92, respectively. ) is filled with water (initial state).

また、3時間目のタイミングでは、次亜塩素酸水の供給(第一制御)と水の供給(第二制御)とが重なるため、第一例は、3時間サイクルによる次亜塩素酸水の供給(第一制御)と水の供給(第二制御)と見なすことができる。但し、このタイミングでの水の供給(第二制御)では、混合槽92内に混合水が満水時に対して約1/3残存していることに加え、次亜塩素酸水の供給量の分量だけ水の供給量が少なくなっているため、混合槽92内の次亜塩素酸水濃度は、0時間の時点での初期状態よりも若干高くなる。 Also, at the timing of the 3rd hour, the supply of hypochlorous acid water (first control) and the supply of water (second control) overlap, so the first example is hypochlorous acid water in a 3-hour cycle. It can be viewed as a supply (first control) and a water supply (second control). However, in the supply of water at this timing (second control), in addition to the mixed water remaining in the mixing tank 92 about 1/3 of the time when it is full, the amount of hypochlorous acid water supplied Since the amount of water supplied is reduced by , the concentration of hypochlorous acid water in the mixing tank 92 is slightly higher than the initial state at the time of 0 hours.

第一例では、空気浄化部11の運転開始後の稼働時間が3時間までの期間(稼働時間が0時間超から3時間以下までの期間)において、水の供給が4回に対して次亜塩素酸水の供給が3回となる。その後は、稼働時間3時間目を初期状態(0時間)と見なして、稼働時間3時間ごとに同じ供給動作が繰り返されることになる。 In the first example, during a period of up to 3 hours of operation after the start of operation of the air purification unit 11 (period of operation from over 0 hours to 3 hours or less), water is supplied four times. The supply of chloric acid water is three times. After that, the third operating time is regarded as the initial state (0 hour), and the same supply operation is repeated every three operating hours.

つまり、第一例は、空気浄化部11に対する加湿要求量が第一基準値以上である場合において、第一制御を行う回数が第二制御を行う回数よりも少なくなるように制御していると言える。 That is, in the first example, the number of times the first control is performed is less than the number of times the second control is performed when the required amount of humidification for the air purifier 11 is equal to or greater than the first reference value. I can say

そして、混合槽92に貯留する混合水の排水判定は、1時間、2時間、3時間・・・のタイミングにおいて第一制御の実行の直前に行われる。なお、日本の冬場においては、空気浄化部11に対する加湿要求量が多く、水の供給(第二制御)が次亜塩素酸水の供給(第一制御)よりも短い間隔で実行される。このため、第一制御を連続して実行することがなく、第三制御による混合水の排水は実行されない。 Then, the judgment of draining the mixed water stored in the mixing tank 92 is performed immediately before the execution of the first control at the timing of 1 hour, 2 hours, 3 hours, and so on. In winter in Japan, the amount of humidification required for the air purifier 11 is large, and the supply of water (second control) is performed at shorter intervals than the supply of hypochlorous acid water (first control). Therefore, the first control is not continuously executed, and the mixed water is not discharged by the third control.

より詳細に説明する。 A more detailed description will be given.

図3の(a)を参照して、混合槽92内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。 Description will be made with reference to (a) of FIG. 3 , focusing on changes over time in the water level of the hypochlorous acid water (mixed water) in the mixing tank 92 .

運転初期(0時間)には、混合槽92内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、運転開始からa時間になったタイミングで渇水を検知し、水供給部50から混合槽92が満水になるまで水が供給される。その後、加湿浄化運転により一定の速度で混合水の水位が減少しながら、次亜塩素酸水の供給タイミングである1時間を迎え、この1時間のタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、第二制御による水の供給後における第一制御による次亜塩素酸水原液の連続供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達していないと判定される。なお、第二制御を含む水の供給または第三制御を含む排水処理が実行されると、第一制御の連続実行回数はリセットされる。 At the beginning of the operation (time 0), the mixing tank 92 is filled with mixed water of hypochlorous acid undiluted solution and water (also hypochlorous acid water). Then, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and the water shortage is detected at the timing of a time from the start of the operation, and water is supplied from the water supply unit 50 until the mixing tank 92 is full. be. After that, while the water level of the mixed water decreases at a constant speed due to the humidifying and purifying operation, one hour, which is the supply timing of the hypochlorous acid water, is approached, and the mixed water drainage judgment is executed at the timing of this one hour. In the humidifying and purifying operation up to this point, the number of times of continuous supply of the hypochlorous acid water undiluted solution by the first control after the supply of water by the second control is 0 times, and the number of times of continuous execution of the first control is the reference number of times (5 times ) is determined to have not been reached. Note that when the water supply including the second control or the drainage treatment including the third control is executed, the number of consecutive executions of the first control is reset.

そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位がわずかに上昇する。そして、第一制御の連続実行回数が1回となる。その後も加湿浄化運転によって混合水の水位が減少していき、運転開始からb時間のタイミングで再び渇水となり、水供給部50から混合槽92が満水になるまで水が供給される。そして、第一制御の連続実行回数は0回にリセットされる。 Then, in response to the determination result, the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36). As a result, the water level in the mixing tank 92 rises slightly. Then, the number of consecutive executions of the first control becomes one. After that, the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and water shortage occurs again at the timing of b hours from the start of operation, and water is supplied from the water supply unit 50 until the mixing tank 92 is full. Then, the number of consecutive executions of the first control is reset to zero.

その後、運転開始後の稼働時間が2時間となるタイミングで、排水判定がなされる。ここまでの加湿浄化運転で、第二制御による水の供給後における第一制御による次亜塩素酸水原液の連続供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達していないと判定される。 After that, when the operating time after the start of operation reaches 2 hours, the water discharge determination is made. In the humidifying and purifying operation up to this point, the number of times of continuous supply of the hypochlorous acid water undiluted solution by the first control after the supply of water by the second control is 0 times, and the number of times of continuous execution of the first control is the reference number of times (5 times ) is determined to have not been reached.

そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位がわずかに上昇する。そして、第一制御の連続実行回数が1回となる。その後も加湿浄化運転によって混合水の水位が減少していき、運転開始からc時間のタイミングで再び渇水となり、水供給部50から混合槽92が満水になるまで水が供給される。そして、第一制御の連続実行回数は0回にリセットされる。 Then, in response to the determination result, the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36). As a result, the water level in the mixing tank 92 rises slightly. Then, the number of consecutive executions of the first control becomes one. After that, the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and water shortage occurs again at the timing of c hours from the start of the operation, and water is supplied from the water supply unit 50 until the mixing tank 92 is full. Then, the number of consecutive executions of the first control is reset to zero.

その後、運転開始後の稼働時間が3時間(d時間)のタイミングで、排水判定がなされる。ここまでの加湿浄化運転で、第二制御による水の供給後における第一制御による次亜塩素酸水原液の連続供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達していないと判定される。 After that, when the operating time is 3 hours (d hours) after the start of operation, the water discharge judgment is made. In the humidifying and purifying operation up to this point, the number of times of continuous supply of the hypochlorous acid water undiluted solution by the first control after the supply of water by the second control is 0 times, and the number of times of continuous execution of the first control is the reference number of times (5 times ) is determined to have not been reached.

そして、このタイミングでは、渇水と次亜塩素酸水原液の供給タイミングが重なっているので、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御と第二制御とがこの順序で実行される。より詳細には、第一制御として、まず次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。その後、第二制御として、水供給部50から混合槽92が満水になるまで水が供給される。これにより、混合槽92内に次亜塩素酸水原液及び水がそれぞれ供給され、混合槽92内の水位は運転初期(0時間)に近い状態となる。なお、水の供給がなされているので、第一制御の連続実行回数は0回にリセットされる。 At this timing, the supply timing of the hypochlorous acid water undiluted solution overlaps with the timing of the supply of the hypochlorous acid water undiluted solution. Two controls are executed in this order. More specifically, as the first control, the hypochlorous acid water undiluted solution is first supplied to the mixing tank 92 from the hypochlorous acid water generating unit 30 (hypochlorous acid water supply unit 36). After that, as the second control, water is supplied from the water supply unit 50 until the mixing tank 92 is filled with water. As a result, the hypochlorous acid water undiluted solution and water are supplied into the mixing tank 92, respectively, and the water level in the mixing tank 92 is brought to a state close to the initial stage of operation (0 hours). Since water is being supplied, the number of consecutive executions of the first control is reset to zero.

その後は、運転開始後の稼働時間が3時間までの期間と同じように、渇水となるタイミングにおいて水が供給され、次亜塩素酸水の供給タイミングにおいて次亜塩素酸水原液が供給されることを繰り返す。 After that, water is supplied at the timing of water shortage, and hypochlorous acid water undiluted solution is supplied at the timing of hypochlorous acid water supply, in the same way as the period of operation up to 3 hours after the start of operation. repeat.

次に、図3の(b)を参照して、混合槽92内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。 Next, with reference to FIG. 3(b), a description will be given focusing on changes over time in the concentration of the hypochlorous acid water (mixed water) in the mixing tank 92. FIG.

運転初期(0時間)には、混合槽92内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽92内の次亜塩素酸水(混合水)の濃度は、運転開始からa時間まで時間の経過とともに減少する。これは、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。なお、次亜塩素酸が気化しなければ、空気浄化部11によって微細化された水とともに、水に含まれる次亜塩素酸が消費されるだけなので、次亜塩素酸水は、加湿量に応じて一定の速度で減少するものの、混合槽92内の次亜塩素酸水の濃度としては変化しない。また、水位センサ90が渇水を検知したタイミングであるa時間でも次亜塩素酸水の濃度がゼロでないのは、上述した通り、渇水が検知される状態となっても混合槽92内に次亜塩素酸水(混合水)が残存しているためである。 At the beginning of the operation (time 0), the hypochlorous acid water undiluted solution and the mixed water of water are mixed in the mixing tank 92 so as to have a predetermined concentration (initial concentration). Then, when the humidifying and purifying operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 decreases with the passage of time from the start of the operation to the time a. This is because hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid is vaporized and given to the air at a certain rate with respect to the concentration of hypochlorous acid water. be. If the hypochlorous acid does not evaporate, the hypochlorous acid contained in the water is simply consumed together with the water that has been pulverized by the air purifier 11. Therefore, the hypochlorous acid water is Although the concentration of the hypochlorous acid water in the mixing tank 92 decreases at a constant speed, the concentration of the hypochlorous acid water in the mixing tank 92 does not change. Also, the concentration of hypochlorous acid water is not zero even at time a when the water level sensor 90 detects a water shortage because, as described above, even if a water shortage is detected, the hypochlorous acid solution in the mixing tank 92 is not zero. This is because chloric acid water (mixed water) remains.

そして、運転開始からa時間(渇水検知)になると、水供給部50からの水の供給に伴って混合槽92内の次亜塩素酸水が水で希釈されるため、混合槽92内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである1時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。 Then, when the time a (water shortage detection) starts from the start of operation, the hypochlorous acid water in the mixing tank 92 is diluted with water as the water is supplied from the water supply unit 50. The concentration of chlorous acid water decreases. After that, the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until one hour is reached, which is the supply timing of the hypochlorous acid water.

そして、運転開始から次亜塩素酸水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、運転初期(0時間)において供給した水よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始からb時間(渇水検知)になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。なお、次亜塩素酸の減少速度が、運転初期よりも速いのは、混合水に含まれる次亜塩素酸の含有量が多い分、次亜塩素酸の気化量も多くなるためである。 Then, when one hour, which is the supply timing of hypochlorous acid water from the start of operation, is reached, the hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36). Along with this, the concentration of the hypochlorous acid water in the mixing tank 92 rises above the initial concentration. This is a predetermined amount of hypochlorous acid supplied at the beginning of operation for mixed water (water containing hypochlorous acid), which is less than the water supplied at the beginning of operation (0 hour). This is because water (hypochlorous acid water undiluted solution) is supplied. After that, the concentration of the hypochlorous acid water (mixed water) decreases due to the vaporization of hypochlorous acid from the start of operation until b time (water shortage detection). The decrease rate of hypochlorous acid is faster than at the initial stage of operation because the content of hypochlorous acid contained in the mixed water is large, and the amount of hypochlorous acid vaporized is also large.

そして、運転開始からb時間(渇水検知)になると、水供給部50からの水の供給に伴って混合槽92内の次亜塩素酸水が水で希釈されるため、混合槽92内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである2時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。 Then, when it is time b (water shortage detection) from the start of operation, the hypochlorous acid water in the mixing tank 92 is diluted with water as the water is supplied from the water supply unit 50. The concentration of chlorous acid water decreases. After that, the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until 2 hours, which is the supply timing of the hypochlorous acid water.

そして、運転開始から次亜塩素酸水の供給タイミングである2時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。その後、運転開始からc時間(渇水検知)になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少する。 Then, when the hypochlorous acid water supply timing reaches 2 hours from the start of operation, the supply of the hypochlorous acid water undiluted solution from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36) Along with this, the concentration of the hypochlorous acid water in the mixing tank 92 rises above the initial concentration. After that, the concentration of hypochlorous acid water (mixed water) decreases due to vaporization of hypochlorous acid from the start of operation until c time (water shortage detection).

そして、運転開始からc時間(渇水検知)になると、水供給部50からの水の供給に伴って混合槽92内の次亜塩素酸水が水で希釈されるため、混合槽92内の次亜塩素酸水の濃度は減少する。その後、次亜塩素酸水の供給タイミングである3時間を迎えるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。 Then, when c time (water shortage is detected) from the start of operation, the hypochlorous acid water in the mixing tank 92 is diluted with water as the water is supplied from the water supply unit 50. The concentration of chlorous acid water decreases. After that, the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of the hypochlorous acid until 3 hours, which is the supply timing of the hypochlorous acid water.

そして、運転開始から水(及び次亜塩素酸水)の供給タイミングである3時間(d時間)になると、混合槽92内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽92内における次亜塩素酸水の濃度は、運転初期(0時間)と近い状態となる。その後は、これまでと同じように次亜塩素酸水(混合水)の濃度変化を繰り返す。 Then, when 3 hours (d time), which is the supply timing of water (and hypochlorous acid water) from the start of operation, water and hypochlorous acid water undiluted solution are supplied into the mixing tank 92, and the inside of the mixing tank 92 The concentration of the hypochlorous acid water at is close to the initial operation (0 hours). After that, the concentration change of the hypochlorous acid water (mixed water) is repeated in the same manner as before.

次に、図3の(c)を参照して、吹出口3の空気9に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。 Next, with reference to FIG. 3(c), a description will be given focusing on changes over time in the concentration of hypochlorous acid contained in the air 9 of the outlet 3. FIG.

吹出口3から放出される空気9に含まれる次亜塩素酸の濃度は、空気浄化部11における加湿量及び混合槽92内の次亜塩素酸水の濃度によって決定されるが、第一例では、加湿量を一定としているので、混合槽92内の次亜塩素酸水の濃度が反映される。そのため、図3の(c)に示すように、吹出口3の空気9に含まれる次亜塩素酸の濃度は、図3の(b)に示した混合槽92の次亜塩素酸水の濃度の増減に対応して増減する。 The concentration of hypochlorous acid contained in the air 9 discharged from the blowout port 3 is determined by the amount of humidification in the air purification unit 11 and the concentration of hypochlorous acid water in the mixing tank 92, but in the first example , the humidification amount is constant, so the concentration of the hypochlorous acid water in the mixing tank 92 is reflected. Therefore, as shown in (c) of FIG. 3, the concentration of hypochlorous acid contained in the air 9 of the outlet 3 is the concentration of hypochlorous acid water in the mixing tank 92 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .

ここで、従来のように、水位センサ90が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)からa時間までの状態を3時間(d時間)のタイミングまで繰り返すことになる。この場合には、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は、例えば、図3の(c)に示す従来平均濃度のようになる。これに対して、第一例では、運転開始(0時間)からa時間までは従来と同じ状態であるものの、a時間から3時間までの期間は従来と状態が異なる。より詳細には、a時間から3時間までの期間では、図3の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間(1時間からb時間までの期間の一部、2時間からc時間までの期間)が、初期濃度よりも小さい期間(a時間から1時間までの期間、b時間から2時間までの期間、c時間から3時間までの期間)よりも短くなっている。このため、運転開始(0時間)から3時間までの期間では、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は従来平均濃度よりも低い平均濃度となる。 Here, as in the conventional case, when the hypochlorous acid water undiluted solution and water are supplied to fill the water every time the water level sensor 90 detects a water shortage, the state from the start of operation (time 0) to time a This will be repeated until the timing of 3 hours (d hours). In this case, the average concentration of hypochlorous acid contained in the air 9 of the outlet 3 is, for example, the conventional average concentration shown in FIG. 3(c). On the other hand, in the first example, the state is the same as the conventional state from the start of operation (0 hour) to the time a, but the state is different from the conventional state during the period from the time a to 3 hours. More specifically, in the period from a to 3 hours, as shown in FIG. part, period 2 hours to c hours) is less than the initial concentration (periods a hours to 1 hour, b hours to 2 hours, c hours to 3 hours) It's getting shorter. Therefore, the average concentration of hypochlorous acid contained in the air 9 from the outlet 3 is lower than the conventional average concentration during the period from the start of operation (0 hour) to 3 hours.

以上、第一例のように、混合槽92に次亜塩素酸水及び水を供給して混合水を貯留する際に、次亜塩素酸水の供給サイクル(所定時間ごと)と、水の供給サイクル(渇水検知ごと)とを異ならせることで、従来の方法で次亜塩散水及び水を混合槽92に供給する場合と比較して、吹出口3の空気9、つまり屋内空間18に吹き出される空気に含まれる次亜塩素酸の濃度を減少させることができる。 As described above, as in the first example, when hypochlorous acid water and water are supplied to the mixing tank 92 and the mixed water is stored, the hypochlorous acid water supply cycle (every predetermined time) and the water supply By making the cycle (every water shortage detection) different, compared to the conventional method of supplying hypochlorite water and water to the mixing tank 92, the air 9 of the outlet 3, that is, the indoor space 18 is blown out. It can reduce the concentration of hypochlorous acid contained in the air.

次に、日本の夏場での動作状況について説明する。なお、日本の夏場では、外気が湿潤してジメジメしているため空気浄化部11に対する加湿要求量が少なく、水の供給は、次亜塩素酸水の供給よりも長い間隔で行われる。つまり、水の供給(第二制御)がなされるまでに、次亜塩素酸水の供給(第一制御)が何回も行われることになる。 Next, the operating conditions in summer in Japan will be described. In summer in Japan, the outside air is moist and humid, so the amount of humidification required for the air purifier 11 is small, and water is supplied at intervals longer than hypochlorous acid water is supplied. That is, the supply of hypochlorous acid water (first control) is performed many times before the supply of water (second control) is performed.

そこで、以下では、第二例として、稼働時間1時間の期間に、次亜塩素酸水原液の供給量に相当する混合水が消費され、その都度、次亜塩素酸水の供給(第一制御)が実行される加湿浄化条件での処理について説明する。つまり、第二例では、次亜塩素酸水の供給(第一制御)が連続して実行され、渇水検知に伴う水の供給(第二制御)は実行されない。 Therefore, in the following, as a second example, mixed water equivalent to the supply amount of hypochlorous acid water undiluted solution is consumed during a period of one hour of operation time, and each time hypochlorous acid water is supplied (first control ) will be described below. That is, in the second example, the supply of hypochlorous acid water (first control) is continuously executed, and the supply of water (second control) associated with water shortage detection is not executed.

第二例では、図4の(a)に示すように、混合槽92への次亜塩素酸水原液の供給(第一制御)は、混合槽92への次亜塩素酸水原液の供給(第一制御)は、運転開始を0時間とすると、1時間、2時間、3時間・・・のタイミングで実行される。一方、混合槽92への水の供給(第二制御)は、加湿浄化に伴う消費量と第一制御によって供給される次亜塩素酸水量と同等であるため、水位センサ90による渇水検知がなされず実行されない。なお、運転開始となる0時間の時点では、混合槽92に対して次亜塩素酸水の供給と水の供給がそれぞれ実行され、混合槽92は、所定濃度の次亜塩素酸水(混合水)によって満水となった状態(初期状態)となっている。 In the second example, as shown in (a) of FIG. 4, the supply of the hypochlorous acid water undiluted solution to the mixing tank 92 (first control) is the supply of the hypochlorous acid water undiluted solution to the mixing tank 92 ( The first control) is executed at timings of 1 hour, 2 hours, 3 hours, . On the other hand, the supply of water to the mixing tank 92 (second control) is equivalent to the amount of hypochlorous acid water supplied by the consumption accompanying humidification purification and the amount of hypochlorous acid water supplied by the first control, so the water level sensor 90 detects a water shortage. not executed. At time 0, when the operation starts, hypochlorous acid water and water are supplied to the mixing tank 92, respectively. ) is filled with water (initial state).

そして、混合槽92に貯留する混合水の排水判定は、1時間、2時間、3時間・・・のタイミングにおいて第一制御の実行の直前に行われる。 Then, the judgment of draining the mixed water stored in the mixing tank 92 is performed immediately before the execution of the first control at the timing of 1 hour, 2 hours, 3 hours, and so on.

具体的には、運管開始後の稼働時間1時間を迎えるタイミングでは、第一制御による次亜塩素酸水原液の供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達してないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽92に次亜塩素酸水原液が供給される。 Specifically, at the timing when the operation time reaches 1 hour after the start of operation, the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 0 times, and the number of times of continuous execution of the first control is the reference number of times (5 times). After receiving the determination result, the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 92 .

次に、運転開始後の稼働時間が2時間を迎えるタイミングで、混合水の排水判定が実行される。ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の供給回数は1回であり、第一制御の実行回数が基準回数(5回)に達していないと判定される。そして、判定結果を受けて、第一制御が実行され、混合槽92に次亜塩素酸水原液が供給される。 Next, at the timing when the operation time reaches two hours after the start of operation, the mixed water drainage determination is executed. In the humidifying and purifying operation up to this point, the number of times the hypochlorous acid water undiluted solution is supplied by the first control is one time, and it is determined that the number of times the first control is executed has not reached the reference number of times (5 times). After receiving the determination result, the first control is executed, and the hypochlorous acid water undiluted solution is supplied to the mixing tank 92 .

その後、運転開始後の稼働時間が5時間までのタイミングまで、同様の制御が実行される。 After that, the same control is executed until the operating time is up to 5 hours after the start of operation.

続いて、運転開始後の稼働時間が6時間を迎えるタイミングで混合水の排水判定が実行される。ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の連続供給回数が5回であり、第一制御の実行回数が基準回数(5回)であると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽92の混合水がすべて排水される。さらに、第三制御の実行後、混合槽92に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽92は、初期状態と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。 Subsequently, when the operating time reaches 6 hours after the start of operation, the mixed water drainage determination is executed. In the humidifying and purifying operation up to this point, it is determined that the number of times of continuous supply of hypochlorous acid water undiluted solution by the first control is five times, and the number of times of execution of the first control is the reference number of times (5 times). Then, in response to the determination result, the third control is executed, and all the mixed water in the mixing tank 92 is drained. Furthermore, after the execution of the third control, the hypochlorous acid water undiluted solution and water are newly supplied to the mixing tank 92, and the mixing tank 92 has the same hypochlorous acid concentration as in the initial state. The tank is filled with acid water (mixed water).

その後は、6時間のタイミングを初期状態(0時間)と見なして、6時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。 After that, the timing of 6 hours is regarded as the initial state (0 hour), and the same supply operation and drain operation are repeated every 6 hours.

より詳細に説明する。 A more detailed description will be given.

まず、図4の(a)を参照して、混合槽92内の次亜塩素酸水(混合水)の水位の経時変化に着目して説明する。 First, with reference to (a) of FIG. 4 , description will be made focusing on changes over time in the water level of the hypochlorous acid water (mixed water) in the mixing tank 92 .

運転初期(0時間)には、混合槽92内は、満水まで次亜塩素酸原液と水の混合水(これも次亜塩素酸水)で満たされている。そして、加湿浄化運転によって一定の速度で混合水の水量が減少し、次亜塩素酸水の供給タイミングである1時間を迎える。そして、この1時間のタイミングで混合水の排水判定が実行される。 At the beginning of the operation (time 0), the mixing tank 92 is filled with mixed water of hypochlorous acid undiluted solution and water (also hypochlorous acid water). Then, the amount of the mixed water decreases at a constant speed due to the humidifying and purifying operation, and one hour, which is the supply timing of the hypochlorous acid water, is approached. Then, at the timing of this one hour, the mixed water drainage determination is executed.

ここまでの加湿浄化運転で、第二制御による水の供給及び第一制御による次亜塩素酸水原液の供給のいずれも実行していないので、第一制御による次亜塩素酸水原液の連続供給回数が0回であり、第一制御の連続実行回数が基準回数(5回)に達していないと判定される。そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位は、満水状態にまで上昇する。その後も加湿浄化運転によって混合水の水位が減少していき、次亜塩素酸水の供給タイミングである2時間を迎える。そして、この2時間のタイミングで混合水の排水判定が実行される。 In the humidifying and purifying operation up to this point, neither the supply of water by the second control nor the supply of the hypochlorous acid water undiluted solution by the first control is executed, so the continuous supply of the hypochlorous acid water undiluted solution by the first control The number of times is 0, and it is determined that the number of consecutive executions of the first control has not reached the reference number of times (5 times). Then, in response to the determination result, the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36). As a result, the water level in the mixing tank 92 rises to the full state. After that, the water level of the mixed water continues to decrease due to the humidifying and purifying operation, and two hours, which is the supply timing of the hypochlorous acid water, is reached. Then, at this timing of 2 hours, the mixed water drainage judgment is executed.

ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の連続供給回数が1回であるので、第一制御の実行回数が基準回数(5回)に達してないと判定される。そして、判定結果を受けて、混合槽92に貯留される混合水の排水を実行することなく第一制御が実行され、次亜塩素酸水原液が次亜塩素酸水生成部30(次亜塩素酸水供給部36)から混合槽92に供給される。これにより、混合槽92内の水位は、満水状態にまで上昇する。このように、第二例では、加湿浄化運転によって一定の速度で混合水の水量が減少していくものの、消費した分量の次亜塩素酸水原液が供給されるので、消費量分減少した状態と満水状態との間で混合水の水量が増減するだけである。 In the humidifying and purifying operation up to this point, the number of times of continuous supply of hypochlorous acid water undiluted solution by the first control is one time, so it is determined that the number of times of execution of the first control has not reached the reference number of times (5 times). . Then, in response to the determination result, the first control is executed without executing the drainage of the mixed water stored in the mixing tank 92, and the hypochlorous acid water undiluted solution is the hypochlorous acid water generation unit 30 (hypochlorous acid water It is supplied to the mixing tank 92 from the acid water supply unit 36). As a result, the water level in the mixing tank 92 rises to the full state. Thus, in the second example, although the amount of mixed water decreases at a constant rate due to the humidifying and purifying operation, since the hypochlorous acid water undiluted solution of the consumed amount is supplied, the amount decreased by the consumed amount. The amount of mixed water only increases or decreases between the full water state and the full water state.

その後、次亜塩素酸水原液の供給タイミングである6時間を迎え、この6時間のタイミングで混合水の排水判定が実行される。 After that, 6 hours, which is the supply timing of the hypochlorous acid water undiluted solution, is reached, and the mixed water drainage determination is executed at the timing of 6 hours.

ここまでの加湿浄化運転で、第一制御による次亜塩素酸水原液の供給回数が5回であるので、第一制御の実行回数が基準回数(5回)に達していると判定される。そして、判定結果を受けて、第三制御が実行され、混合槽92の混合水が排水される。さらに、第三制御による混合水の排水の実行後、混合槽92に対して新たに次亜塩素酸水原液の供給と水の供給がそれぞれ実行され、混合槽92は、初期状態(0時間)と同じ、所定濃度の次亜塩素酸水(混合水)によって満水となった状態となる。ここで、第一制御の連続実行回数はリセットされ、再び第一制御の実行回数の記憶が開始される。 In the humidifying and purifying operation up to this point, the number of times the hypochlorous acid water undiluted solution is supplied by the first control is 5 times, so it is determined that the number of times the first control is executed has reached the reference number of times (5 times). After receiving the determination result, the third control is executed, and the mixed water in the mixing tank 92 is drained. Furthermore, after the mixed water is drained by the third control, the hypochlorous acid water stock solution and water are newly supplied to the mixing tank 92, and the mixing tank 92 is in the initial state (0 hour). Same as , it is filled with hypochlorous acid water (mixed water) of a predetermined concentration. Here, the number of consecutive executions of the first control is reset, and the storage of the number of executions of the first control is started again.

その後は、6時間のタイミングを初期状態(0時間)と見なして、6時間の期間ごとに同じ供給動作及び排水動作が繰り返されることになる。より詳細には、これまでと同じように、次亜塩素酸水の供給タイミングにおいて第一制御によって次亜塩素酸水原液が供給されることを繰り返す。そして、第一制御の実行の直前において第三制御による混合水の排水判定を行い、条件を満たす場合に第三制御を実行する。そして、各動作に対応して混合槽92内の次亜塩素酸水(混合水)の水位が増減する。 After that, the timing of 6 hours is regarded as the initial state (0 hour), and the same supply operation and drain operation are repeated every 6 hours. More specifically, as before, the hypochlorous acid water undiluted solution is repeatedly supplied by the first control at the hypochlorous acid water supply timing. Then, immediately before the execution of the first control, it is determined whether the mixed water is drained by the third control, and when the conditions are satisfied, the third control is executed. Then, the water level of the hypochlorous acid water (mixed water) in the mixing tank 92 increases or decreases corresponding to each operation.

次に、図4の(b)を参照して、混合槽92内の次亜塩素酸水(混合水)の濃度の経時変化に着目して説明する。 Next, with reference to FIG. 4(b), a description will be given focusing on changes over time in the concentration of the hypochlorous acid water (mixed water) in the mixing tank 92. FIG.

運転初期(0時間)には、混合槽92内に次亜塩素酸水原液と水の混合水が所定の濃度(初期濃度)となるように混合されている。そして、加湿浄化運転が開始されると、混合槽92内の次亜塩素酸水(混合水)の濃度は、運転開始から1時間まで時間の経過とともに減少する。これは、上述した通り、次亜塩素酸が水よりも蒸気圧が高いことに起因して、次亜塩素酸水の濃度に対して一定の割合で次亜塩素酸が気化して空気に付与されるためである。 At the beginning of the operation (time 0), the hypochlorous acid water undiluted solution and the mixed water of water are mixed in the mixing tank 92 so as to have a predetermined concentration (initial concentration). Then, when the humidifying and purifying operation is started, the concentration of the hypochlorous acid water (mixed water) in the mixing tank 92 decreases with the lapse of time up to one hour from the start of operation. As described above, hypochlorous acid has a higher vapor pressure than water, so hypochlorous acid vaporizes at a certain rate with respect to the concentration of hypochlorous acid water and is given to the air. This is because

そして、運転開始から次亜塩素酸水の供給タイミングである1時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまで上昇する。これは、上述した通り、運転初期(0時間)において貯留する混合水の水量よりも少ない水量である混合水(次亜塩素酸を含んでいる状態の水)に対して、運転初期において供給した所定量の次亜塩素酸水(次亜塩素酸水原液)を供給しているためである。その後、運転開始から2時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度はわずかに減少する。 Then, when one hour, which is the supply timing of hypochlorous acid water from the start of operation, is reached, the hypochlorous acid water undiluted solution is supplied from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36). Along with this, the concentration of the hypochlorous acid water in the mixing tank 92 rises above the initial concentration. As described above, this is supplied at the beginning of operation to the mixed water (water containing hypochlorous acid), which is less than the amount of mixed water stored at the beginning of operation (0 hours). This is because a predetermined amount of hypochlorous acid water (hypochlorous acid water undiluted solution) is supplied. After that, the concentration of the hypochlorous acid water (mixed water) slightly decreases due to the vaporization of hypochlorous acid until 2 hours after the start of operation.

そして、運転開始から次亜塩素酸水の供給タイミングである2時間を迎えると、次亜塩素酸水生成部30(次亜塩素酸水供給部36)からの次亜塩素酸水原液の供給に伴って混合槽92内の次亜塩素酸水の濃度が初期濃度以上にまでさらに上昇する。その後、運転開始から3時間になるまで、次亜塩素酸の気化によって次亜塩素酸水(混合水)の濃度は減少していく。これ以降の5時間のタイミングまで同様に、次亜塩素酸水(混合水)の濃度変化を繰り返し、徐々に次亜塩素酸水(混合水)の濃度が上昇していく。 Then, when the hypochlorous acid water supply timing reaches 2 hours from the start of operation, the supply of the hypochlorous acid water undiluted solution from the hypochlorous acid water generation unit 30 (hypochlorous acid water supply unit 36) Along with this, the concentration of the hypochlorous acid water in the mixing tank 92 further increases to the initial concentration or higher. After that, the concentration of hypochlorous acid water (mixed water) decreases due to evaporation of hypochlorous acid until 3 hours after the start of operation. Similarly, the concentration change of the hypochlorous acid water (mixed water) is repeated until the next 5 hours, and the concentration of the hypochlorous acid water (mixed water) gradually increases.

そして、運転開始から次亜塩素酸水原液の供給タイミングである6時間を迎えると、排水判定に基づいて排水タイミングとなるので、混合槽92内の次亜塩素酸水(混合水)がすべて排水された後、混合槽92内に水及び次亜塩素酸水原液がそれぞれ供給され、混合槽92内における次亜塩素酸水の濃度は、運転初期(0時間)と同様の状態となる。その後は、これまでと同様に次亜塩素酸水(混合水)の濃度変化を繰り返す。 Then, when the hypochlorous acid water undiluted solution supply timing reaches 6 hours from the start of operation, it is time to drain based on the drainage determination, so all the hypochlorous acid water (mixed water) in the mixing tank 92 is drained. After that, water and the undiluted hypochlorous acid solution are supplied into the mixing tank 92, and the concentration of the hypochlorous acid water in the mixing tank 92 is the same as at the beginning of the operation (0 hour). After that, the concentration change of the hypochlorous acid water (mixed water) is repeated in the same manner as before.

次に、図4の(c)を参照して、吹出口3の空気9に含まれる次亜塩素酸の濃度の経時変化に着目して説明する。 Next, with reference to FIG. 4(c), the change with time of the concentration of hypochlorous acid contained in the air 9 of the outlet 3 will be described.

吹出口3から放出される空気9に含まれる次亜塩素酸の濃度は、日本の冬場と同じく、空気浄化部11における加湿量及び混合槽92内の次亜塩素酸水の濃度によって決定されるので、図4の(c)に示すように、吹出口3の空気9に含まれる次亜塩素酸の濃度は、図4の(b)に示した混合槽92の次亜塩素酸水の濃度の増減に対応して増減する。 The concentration of hypochlorous acid contained in the air 9 discharged from the air outlet 3 is determined by the amount of humidification in the air purifier 11 and the concentration of hypochlorous acid water in the mixing tank 92, as in winter in Japan. Therefore, as shown in (c) of FIG. 4, the concentration of hypochlorous acid contained in the air 9 of the outlet 3 is the concentration of hypochlorous acid water in the mixing tank 92 shown in (b) of FIG. Increases or decreases corresponding to the increase or decrease of .

ここで、従来のように、水位センサ90が渇水を検知するごとに次亜塩素酸水原液及び水を供給して満水にする場合には、運転開始(0時間)から6時間まで次亜塩素酸水の濃度は減少し続けることになる。厳密には、6時間のうち満水状態から渇水を検知するまでの期間において次亜塩素酸水の濃度は減少し続けることになる。この場合には、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は、例えば、図4の(c)に示す従来平均濃度のようになる。 Here, as in the conventional case, when the hypochlorous acid water undiluted solution and water are supplied to fill the water every time the water level sensor 90 detects a water shortage, hypochlorous acid water is supplied from the start of operation (0 hours) to 6 hours. The acid water concentration will continue to decrease. Strictly speaking, the concentration of hypochlorous acid water continues to decrease during the period from full water to detection of water shortage within 6 hours. In this case, the average concentration of hypochlorous acid contained in the air 9 of the outlet 3 is, for example, the conventional average concentration shown in FIG. 4(c).

これに対して、第二例では、運転開始(0時間)から1時間までは従来と同じ状態であるものの、1時間から6時間までの期間は従来と状態が異なる。より詳細には、1時間から6時間までの期間では、図4の(b)に示すように、次亜塩素酸水の濃度が初期濃度よりも高い期間が、初期濃度よりも小さい期間よりもはるかに長くなっている。このため、運転開始(0時間)から12時間までの期間では、吹出口3の空気9に含まれる次亜塩素酸の平均濃度は、従来平均濃度よりも高い平均濃度となる。 On the other hand, in the second example, the state is the same as the conventional state from the start of operation (0 hour) to 1 hour, but the state is different from the conventional state during the period from 1 hour to 6 hours. More specifically, in the period from 1 hour to 6 hours, as shown in FIG. much longer. Therefore, the average concentration of hypochlorous acid contained in the air 9 of the outlet 3 is higher than the conventional average concentration in the period from the start of operation (0 hour) to 12 hours.

そして、6時間以降についても、6時間を1サイクルとして、6時間ごとに混合水の濃度変化を繰り返すことになるので、次亜塩素酸水の濃度が上昇し続けることなく、ある一定濃度以下の範囲で次亜塩素酸水の濃度を調整し続けることが可能である。つまり、加湿浄化運転を続けると混合槽92内の次亜塩素酸水の濃度が上昇しすぎる可能性があるが、第一制御による次亜塩素酸水原液の連続供給回数に合わせた排水判定の制御を設けることで、一定間隔で混合槽92内の次亜塩素酸水の濃度、ひいては吹出口3の空気9に含まれる次亜塩素酸の付加量をリセットすることができ、屋内空間18への次亜塩素酸ガスの供給量をコントロールすることができる。 After 6 hours, the concentration of the mixed water is repeated every 6 hours with 6 hours as one cycle. It is possible to keep adjusting the concentration of hypochlorous acid water within the range. In other words, if the humidifying and purifying operation is continued, the concentration of the hypochlorous acid water in the mixing tank 92 may increase too much, but the wastewater determination is performed according to the number of times of continuous supply of the hypochlorous acid water undiluted solution by the first control. By providing control, the concentration of the hypochlorous acid water in the mixing tank 92 and the addition amount of hypochlorous acid contained in the air 9 of the blowout port 3 can be reset at regular intervals. It is possible to control the supply amount of hypochlorous acid gas.

以上のように、空間浄化システム100では、第一制御として予め設定した時間(例えば、1時間)ごとに混合槽92内に次亜塩素酸水を供給し、第二制御として水位センサ90からの水位情報(渇水信号)に基づいて水を給水する処理を実行するとともに、第三制御として、第一制御の連続実行回数に基づいて、混合槽92の混合水を排水するようにしている。さらに、空間浄化システム100の空気浄化制御部41は、空気浄化部11に要求される加湿要求量(日本の冬場に相当する加湿要求量または日本の夏場に相当する加湿要求量)に基づいて、所定期間内における第一制御を行う回数と、所定期間内における第二制御を行う回数とを異ならせている。これにより、日本の冬場のように加湿要求量が高い状態では、従来の方法と比べて、次亜塩素酸量の含有量が少ない状態の空気9を屋内空間18に放出することができ、日本の夏場のように加湿要求量が低い状態では、従来の方法と比べて、次亜塩素酸量の含有量が多い状態の空気9で屋内空間18に放出することができる。さらに、加湿浄化運転を長時間続けた場合に、屋内空間18に放出する次亜塩素酸濃度の過上昇を抑えることができる。 As described above, in the space purification system 100, hypochlorous acid water is supplied into the mixing tank 92 every preset time (for example, 1 hour) as the first control, and the water from the water level sensor 90 is supplied as the second control. The process of supplying water is executed based on the water level information (water shortage signal), and as the third control, the mixed water in the mixing tank 92 is drained based on the number of consecutive executions of the first control. Furthermore, the air purification control unit 41 of the space purification system 100 is based on the required amount of humidification required for the air purification unit 11 (the required amount of humidification corresponding to winter in Japan or the required amount of humidification corresponding to summer in Japan). The number of times the first control is performed within the predetermined period and the number of times the second control is performed within the predetermined period are made different. As a result, in a state where the demand for humidification is high, such as in winter in Japan, air 9 with a lower hypochlorous acid content can be released into the indoor space 18 compared to the conventional method. In a state where the demand for humidification is low, such as in summer, the air 9 with a high hypochlorous acid content can be discharged into the indoor space 18 as compared with the conventional method. Furthermore, when the humidifying and purifying operation is continued for a long time, it is possible to suppress an excessive increase in the concentration of hypochlorous acid released into the indoor space 18. - 特許庁

つまり、次亜塩素酸水の供給、水の供給、及び混合水の排水をそれぞれ別々のトリガーで作動させることで、簡単な制御(第一制御、第二制御、第三制御)によって混合槽92内の次亜塩素酸水の濃度(屋内空間18に吹き出す空気9に含まれる次亜塩素酸の濃度)を調節することができる。 That is, by operating the supply of hypochlorous acid water, the supply of water, and the drainage of mixed water with separate triggers, the mixing tank 92 can be easily controlled (first control, second control, third control). The concentration of hypochlorous acid water inside (the concentration of hypochlorous acid contained in the air 9 blown into the indoor space 18) can be adjusted.

以上、本実施の形態1に係る空間浄化システム100によれば、以下の効果を享受することができる。 As described above, according to the space purification system 100 according to the first embodiment, the following effects can be obtained.

(1)空間浄化システム100は、次亜塩素酸水を生成する次亜塩素酸水生成部30と、次亜塩素酸水生成部30から混合槽92に次亜塩素酸水を供給する次亜塩素酸水供給部36と、混合槽92に水を供給する水供給部50と、混合槽92の水位を検知するための水位センサ90と、混合槽92に貯められた次亜塩素酸水と水との混合水を微細化して空気中に放出する空気浄化部11と、次亜塩素酸水供給部36及び水供給部50における供給処理、並びに、混合槽92に貯留される混合水の排水処理を制御する空気浄化制御部41とを備える。そして、空気浄化制御部41は、供給処理として、次亜塩素酸水供給部36による次亜塩素酸水の供給を所定時間(例えば60分)ごとに行う第一制御と、水位センサ90からの混合槽92の水位に関する情報(渇水情報)に基づいて水供給部50による水の供給を行う第二制御とをそれぞれ実行させ、排水処理として、第一制御を連続して所定回数実行した場合に混合槽92が貯留する混合水を排水する第三制御を実行させるようにした。 (1) The space purification system 100 includes a hypochlorous acid water generating unit 30 that generates hypochlorous acid water, and a hypochlorous acid water generating unit 30 that supplies the hypochlorous acid water to the mixing tank 92. A chloric acid water supply unit 36, a water supply unit 50 that supplies water to the mixing tank 92, a water level sensor 90 for detecting the water level of the mixing tank 92, and hypochlorous acid water stored in the mixing tank 92. The air purifying unit 11 that refines the mixed water with water and releases it into the air, the supply processing in the hypochlorous acid water supply unit 36 and the water supply unit 50, and the mixed water stored in the mixing tank 92. and an air purification control unit 41 for controlling the processing. Then, as the supply process, the air purification control unit 41 performs first control to supply the hypochlorous acid water by the hypochlorous acid water supply unit 36 every predetermined time (for example, 60 minutes), and A second control for supplying water by the water supply unit 50 is executed based on information on the water level of the mixing tank 92 (water shortage information), and when the first control is continuously executed a predetermined number of times as wastewater treatment The third control for draining the mixed water stored in the mixing tank 92 is executed.

これにより、日本の夏場のように、相対湿度の高い空気が通風される場合においては、混合槽92に溜められた混合水の消費量が少ないため、混合槽92への次亜塩素酸水の供給頻度(第一制御を行う回数)が多くなり、混合槽92内における混合水の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出される。この際、第一制御を連続して所定回数(例えば5回)実行した場合に第三制御を実行し、混合槽92が貯留する混合水を排出し、混合槽92内の混合水をリセットすることで、混合槽92内の次亜塩素酸濃度の上がりすぎを抑制することができる。この結果、微細化された次亜塩素酸水が気化されにくい状況であっても、所定濃度に高めた次亜塩素酸を空気に含ませて屋内空間18に放出させることができる。 As a result, when air with high relative humidity is ventilated like in summer in Japan, the consumption of the mixed water stored in the mixing tank 92 is small, so the hypochlorous acid water to the mixing tank 92 When the supply frequency (the number of times the first control is performed) increases and the hypochlorous acid concentration of the mixed water in the mixing tank 92 is high, the mixed water is finely divided and released into the air. At this time, when the first control is continuously executed a predetermined number of times (for example, five times), the third control is executed, the mixed water stored in the mixing tank 92 is discharged, and the mixed water in the mixing tank 92 is reset. As a result, the hypochlorous acid concentration in the mixing tank 92 can be prevented from increasing too much. As a result, even in a situation where it is difficult to evaporate the micronized hypochlorous acid water, it is possible to make the air contain the hypochlorous acid raised to a predetermined concentration and release it into the indoor space 18.例文帳に追加

一方、日本の冬場のように、相対湿度の低い空気が通風される場合においては、混合槽92に溜められた混合水の消費量が多いため、混合槽92への水の供給頻度(第二制御を行う回数)が多くなり、混合槽92内における混合水の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出される。この結果、微細化された次亜塩素酸水が気化されやすい状況であっても、所定濃度に薄まった次亜塩素酸を空気に含ませて屋内空間18に放出させることができる。 On the other hand, when air with low relative humidity is ventilated, such as in winter in Japan, the amount of mixed water stored in the mixing tank 92 is large, so the frequency of water supply to the mixing tank 92 (second The number of times the control is performed increases, and in a state where the hypochlorous acid concentration of the mixed water in the mixing tank 92 is low, the mixed water is finely divided and released into the air. As a result, even in a situation where the micronized hypochlorous acid water is likely to evaporate, the hypochlorous acid diluted to a predetermined concentration can be contained in the air and released into the indoor space 18.例文帳に追加

つまり、空間浄化システム100では、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。 That is, in the space purification system 100, the amount of hypochlorous acid released into the air can be easily adjusted.

(2)空間浄化システム100では、空気浄化制御部41は、第一制御を連続して所定回数実行した後における第一制御を実行する直前に、第三制御を実行させるようにした。これにより、空間浄化システム100では、第一制御によって混合槽92に次亜塩素酸が供給された直後に第三制御による排水が行われることがなくなるので、第一制御によって供給された次亜塩素酸水を最大限長く使い続け、第三制御での排水による無駄を減らすことができる。 (2) In the space purification system 100, the air purification control unit 41 causes the third control to be executed immediately before the first control is executed after the first control is continuously executed a predetermined number of times. As a result, in the space purification system 100, the drainage by the third control is not performed immediately after the hypochlorous acid is supplied to the mixing tank 92 by the first control. The acid water can be used for as long as possible, and waste due to drainage in the third control can be reduced.

また、空間浄化システム100では、長時間運転(例えば24時間)する場合にも、混合槽92内の次亜塩素酸水濃度が高まりすぎる前に、混合槽92内の状態を運転初期の状態に戻すことができる。つまり、空間浄化システム100は、空気中に放出される次亜塩素酸の量を調節しやすくすることができる。 Also, in the space purification system 100, even when operating for a long time (for example, 24 hours), the state in the mixing tank 92 is returned to the initial state of operation before the hypochlorous acid water concentration in the mixing tank 92 becomes too high. can be returned. That is, the space purification system 100 can facilitate adjustment of the amount of hypochlorous acid released into the air.

(3)空間浄化システム100では、空気浄化制御部41は、供給処理において、空気浄化部11に要求される加湿要求量が第一基準値以上である場合、第一制御を行う回数が第二制御を行う回数よりも少なくなるように制御し、加湿要求量が第一基準値未満である場合、第一制御を行う回数が第二制御を行う回数よりも多くなるようになるように制御するようにした。これにより、空間浄化システム100では、供給処理において、加湿要求量が第一基準値未満である場合に、混合槽92内の次亜塩素酸濃度が高い状態で、混合水を微細化して空気中に放出させることができる。一方、加湿要求量が第一基準値以上である場合に、混合槽92内の次亜塩素酸濃度が低い状態で、混合水を微細化して空気中に放出させることができる。つまり、空間浄化システム100では、加湿要求量に基づいて、屋内空間18の環境に好適な条件で、空気浄化部11から放出される空気9に次亜塩素酸を付与することができる。 (3) In the space purification system 100, the air purification control unit 41 performs the first control the second number of times when the required amount of humidification required of the air purification unit 11 is equal to or greater than the first reference value in the supply process. When the required humidification amount is less than the first reference value, control is performed so that the number of times the first control is performed is greater than the number of times the second control is performed. I made it As a result, in the space purification system 100, in the supply process, when the required humidification amount is less than the first reference value, the mixed water is finely divided in the state where the hypochlorous acid concentration in the mixing tank 92 is high. can be released to On the other hand, when the required amount of humidification is equal to or higher than the first reference value, the mixed water can be finely divided and released into the air while the hypochlorous acid concentration in the mixing tank 92 is low. That is, the space purification system 100 can add hypochlorous acid to the air 9 emitted from the air purification unit 11 under conditions suitable for the environment of the indoor space 18 based on the required amount of humidification.

以上、本発明に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素あるいは各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されているところである。 The present invention has been described above based on the embodiments. Those skilled in the art will understand that these embodiments are merely examples, and that various modifications can be made to combinations of each component or each treatment process, and such modifications are also within the scope of the present invention. I am where I am.

本実施の形態1に係る空間浄化システム100における第一例及び第二例では、空気浄化部11は、加湿浄化運転時間中、一定の加湿要求量で動作しているとして説明したが、実際には、一定時間ごとに、目標湿度と屋内空間18の空気の湿度との間の湿度差に基づいて特定される加湿要求量で動作するようにしている。 In the first and second examples of the space purification system 100 according to the first embodiment, the air purification unit 11 is described as operating with a constant humidification demand amount during the humidification purification operation time. operates at a required humidification amount specified based on the humidity difference between the target humidity and the humidity of the air in the indoor space 18 at regular intervals.

また、本実施の形態に係る空間浄化システム100では、第三制御における所定回数は、第一制御によって供給される次亜塩素酸水の濃度に基づいて設定されることが好ましい。これにより、例えば、空間浄化システム100では、第一制御によって供給される次亜塩素酸水の濃度が高い時は、第一制御を連続して所定回数実行した場合に混合槽92内の次亜塩素酸水の濃度の上昇が早くなるので、所定回数を少なく設定することで混合槽92内の次亜塩素酸水の濃度が上がりすぎることをより確実に抑制することができる。 Moreover, in the space purification system 100 according to the present embodiment, the predetermined number of times in the third control is preferably set based on the concentration of the hypochlorous acid water supplied by the first control. As a result, for example, in the space purification system 100, when the concentration of the hypochlorous acid water supplied by the first control is high, when the first control is continuously executed a predetermined number of times, the hypochlorous acid in the mixing tank 92 Since the concentration of the chloric acid water rises quickly, by setting the predetermined number of times to be small, it is possible to more reliably prevent the concentration of the hypochlorous acid water in the mixing tank 92 from increasing too much.

本発明に係る空間浄化システムは、次亜塩素酸水を微細化して次亜塩素酸を空気中に放出する際に、空気中に放出される次亜塩素酸の量を調節しやすくできるものであり、対象空間の空気を殺菌または消臭するシステムとして有用である。 The space purification system according to the present invention can easily adjust the amount of hypochlorous acid released into the air when the hypochlorous acid water is atomized and the hypochlorous acid is released into the air. It is useful as a system for sterilizing or deodorizing the air in the target space.

2 吸込口
3 吹出口
4 前段風路
5 中段風路
6 後段風路
8 空気
9 空気
10 空間浄化装置
11 空気浄化部
11a 加湿モータ
11b 加湿ノズル
13 送風機
14 冷媒コイル
15 空気調和装置
16 ダクト
16a 屋内吸込口
17 ダクト
17a 屋内吹出口
18 屋内空間
20 室外機
20a 圧縮機
20b 膨張器
20c 屋外熱交換器
20d 送風ファン
20e 四方弁
21 冷媒回路
24 ダクト
30 次亜塩素酸水生成部
31 電解槽
32 電極
33 電磁弁
34 塩水タンク
35 塩水搬送ポンプ
36 次亜塩素酸水供給部
37 次亜塩素酸水搬送ポンプ
38 送水管
39 水位センサ
41 空気浄化制御部
41a 入力部
41b 記憶部
41c 計時部
41d 処理部
41e 出力部
42 空気調和制御部
43 操作装置
44 温湿度センサ
50 水供給部
51 電磁弁
52 送水管
60 排水部
61 電磁弁
62 送水管
90 水位センサ
92 混合槽
100 空間浄化システム
2 Suction port 3 Air outlet 4 Front air passage 5 Intermediate air passage 6 Rear air passage 8 Air 9 Air 10 Spatial purification device 11 Air purification unit 11a Humidification motor 11b Humidification nozzle 13 Blower 14 Refrigerant coil 15 Air conditioner 16 Duct 16a Indoor suction Mouth 17 Duct 17a Indoor outlet 18 Indoor space 20 Outdoor unit 20a Compressor 20b Expander 20c Outdoor heat exchanger 20d Blower fan 20e Four-way valve 21 Refrigerant circuit 24 Duct 30 Hypochlorous acid water generator 31 Electrolyzer 32 Electrode 33 Electromagnetic Valve 34 Salt water tank 35 Salt water transfer pump 36 Hypochlorous acid water supply unit 37 Hypochlorous acid water transfer pump 38 Water pipe 39 Water level sensor 41 Air purification control unit 41a Input unit 41b Storage unit 41c Clock unit 41d Processing unit 41e Output unit 42 air conditioning control section 43 operating device 44 temperature and humidity sensor 50 water supply section 51 solenoid valve 52 water pipe 60 drainage section 61 solenoid valve 62 water pipe 90 water level sensor 92 mixing tank 100 space purification system

Claims (3)

次亜塩素酸水を生成する次亜塩素酸水生成部と、
前記次亜塩素酸水生成部から混合槽に前記次亜塩素酸水を供給する次亜塩素酸水供給部と、
前記混合槽に水を供給する水供給部と、
前記混合槽の水位を検知するための水位センサと、
前記混合槽に貯められた前記次亜塩素酸水と前記水との混合水を微細化して空気中に放出する加湿浄化部と、
前記次亜塩素酸水供給部及び前記水供給部における供給処理、並びに、前記混合槽に貯留される前記混合水の排水処理を制御する制御部と、
を備え、
前記制御部は、前記供給処理として、前記次亜塩素酸水供給部による前記次亜塩素酸水の供給を所定時間ごとに行う第一制御と、前記水位センサからの前記混合槽の水位に関する情報に基づいて前記水供給部による水の供給を行う第二制御とをそれぞれ実行させ、前記排水処理として、前記第一制御を連続して所定回数実行した場合に、前記混合槽が貯留する前記混合水を排水する第三制御を実行させることを特徴とする空間浄化システム。
a hypochlorous acid water generating unit that generates hypochlorous acid water;
a hypochlorous acid water supply unit that supplies the hypochlorous acid water from the hypochlorous acid water generation unit to the mixing tank;
a water supply unit that supplies water to the mixing tank;
a water level sensor for detecting the water level of the mixing tank;
a humidifying and purifying unit that refines the mixed water of the hypochlorous acid water and the water stored in the mixing tank and releases it into the air;
a control unit that controls supply processing in the hypochlorous acid water supply unit and the water supply unit, and drainage processing of the mixed water stored in the mixing tank;
with
The control unit performs, as the supply process, first control to supply the hypochlorous acid water by the hypochlorous acid water supply unit at predetermined time intervals, and information on the water level of the mixing tank from the water level sensor. and a second control for supplying water by the water supply unit based on the above, and when the first control is continuously performed a predetermined number of times as the wastewater treatment, the mixing tank stores the mixing A space purification system characterized by executing a third control for draining water.
前記制御部は、前記第一制御を連続して前記所定回数実行した後における前記第一制御を実行する直前に、前記第三制御を実行させることを特徴とする請求項1に記載の空間浄化システム。 The space purification according to claim 1, wherein the control unit causes the third control to be executed immediately before the first control is executed after the first control is continuously executed the predetermined number of times. system. 前記第三制御における前記所定回数は、前記第一制御によって供給される前記次亜塩素酸水の濃度に基づいて設定されることを特徴とする請求項1または2に記載の空間浄化システム。 3. The space purification system according to claim 1, wherein said predetermined number of times in said third control is set based on the concentration of said hypochlorous acid water supplied by said first control.
JP2021145172A 2021-08-25 2021-09-07 Space purification system Pending JP2023038448A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021145172A JP2023038448A (en) 2021-09-07 2021-09-07 Space purification system
PCT/JP2022/020377 WO2023026605A1 (en) 2021-08-25 2022-05-16 Space purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021145172A JP2023038448A (en) 2021-09-07 2021-09-07 Space purification system

Publications (1)

Publication Number Publication Date
JP2023038448A true JP2023038448A (en) 2023-03-17

Family

ID=85514676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021145172A Pending JP2023038448A (en) 2021-08-25 2021-09-07 Space purification system

Country Status (1)

Country Link
JP (1) JP2023038448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717603A (en) * 2021-01-05 2022-07-08 广东美的制冷设备有限公司 Solution electrolysis control method, device, equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717603A (en) * 2021-01-05 2022-07-08 广东美的制冷设备有限公司 Solution electrolysis control method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP4396688B2 (en) Air conditioner and operation method thereof
US7875108B2 (en) Inactivating device for virus, bacteria, etc. and air conditioner using the same
US20230330296A1 (en) Space cleaning device and space cleaning system using same
WO2022054616A1 (en) Air purification device and air purifying function-equipped heat exchange-type ventilation device using same
JP2023038448A (en) Space purification system
WO2022202071A1 (en) Space cleaning device
WO2023026605A1 (en) Space purification system
JP2023042012A (en) Space clarification system
JP2023031471A (en) Space purification system
WO2022209447A1 (en) Space purification device
US20240123106A1 (en) Space cleaning device
WO2023074165A1 (en) Hypochlorous acid water supply device
WO2023074166A1 (en) Hypochlorous acid water supply device
JP7203299B2 (en) heat exchange ventilator
JP2023012026A (en) space purifier
WO2022239531A1 (en) Space purification device
CN114294770B (en) Mobile air conditioner control method and mobile air conditioner
WO2018078782A1 (en) Humidification device
JP2023043920A (en) Space purification device
JP2022153766A (en) space purifier
JP2023065740A (en) air conditioning system
JP2023137225A (en) Space purifier
JP2022140242A (en) Space purification apparatus and space purification system employing the same
JP2022082919A (en) Air purification device
JP2022083377A (en) Air cleaning system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021