WO2023074137A1 - トランスチップ、信号伝達装置 - Google Patents

トランスチップ、信号伝達装置 Download PDF

Info

Publication number
WO2023074137A1
WO2023074137A1 PCT/JP2022/033692 JP2022033692W WO2023074137A1 WO 2023074137 A1 WO2023074137 A1 WO 2023074137A1 JP 2022033692 W JP2022033692 W JP 2022033692W WO 2023074137 A1 WO2023074137 A1 WO 2023074137A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
coil
transformer
chip
wiring
Prior art date
Application number
PCT/JP2022/033692
Other languages
English (en)
French (fr)
Inventor
友嗣 北田
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN202280063884.8A priority Critical patent/CN118020158A/zh
Publication of WO2023074137A1 publication Critical patent/WO2023074137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Definitions

  • the invention disclosed in this specification relates to a transformer chip and a signal transmission device.
  • Patent Document 1 by the applicant of the present application can be cited.
  • the invention disclosed in the present specification provides a signal transmission device that is less susceptible to common mode noise and a transformer chip used therein in view of the above problems found by the inventors of the present application. intended to
  • the transformer chip disclosed in this specification includes, for example, a first wiring layer, a second wiring layer different from the first wiring layer, a primary winding formed on the first wiring layer, and the a secondary winding formed on the second wiring layer so as to be magnetically coupled with the primary winding; a pad connected to the signal end of the secondary winding; A substrate having a potential and a shield electrode interposed between the substrate and the pad are provided.
  • FIG. 1 is a diagram showing the basic configuration of a signal transmission device.
  • FIG. 2 is a diagram showing how potential fluctuations occur between GND1 and GND2.
  • FIG. 3 is a diagram showing an example of malfunction due to common mode noise.
  • FIG. 4 is a diagram showing the principle of occurrence of abnormal signal transmission (ideal transformer, normal signal input).
  • FIG. 5 is a diagram showing the principle of occurrence of signal transmission abnormality (ideal transformer, when CM noise is input).
  • FIG. 6 is a diagram showing the principle of occurrence of signal transmission abnormality (actual transformer, when a normal signal is input).
  • FIG. 7 is a diagram showing the principle of occurrence of signal transmission abnormality (actual transformer, when CM noise is input).
  • FIG. 8 is a diagram showing an introduction example of a noise canceller.
  • FIG. 1 is a diagram showing the basic configuration of a signal transmission device.
  • FIG. 2 is a diagram showing how potential fluctuations occur between GND1 and GND2.
  • FIG. 3 is a diagram
  • FIG. 9 is a diagram showing an example of noise cancellation operation.
  • FIG. 10 is a diagram showing the basic structure of a transformer chip.
  • FIG. 11 is a perspective view of a semiconductor device used as a two-channel transformer chip.
  • 12 is a plan view of the semiconductor device shown in FIG. 11.
  • FIG. 13 is a plan view showing a layer in which a low potential coil is formed in the semiconductor device of FIG. 11.
  • FIG. 14 is a plan view showing a layer in which a high potential coil is formed in the semiconductor device of FIG. 11.
  • FIG. 15 is a cross-sectional view taken along line VIII-VIII shown in FIG. 14.
  • FIG. 16 is a cross-sectional view taken along line IX-IX shown in FIG. 14.
  • FIG. 17 is an enlarged view of the area X shown in FIG. 14.
  • FIG. FIG. 18 is an enlarged view of area XI shown in FIG.
  • FIG. 19 is an enlarged view of region XII shown in FIG.
  • FIG. 20 is an enlarged view of the region XIII shown in FIG. 15 showing the isolation structure.
  • FIG. 21 is a diagram schematically showing a layout example of a transformer chip.
  • FIG. 22 is a diagram showing an introduction example of a shield electrode.
  • FIG. 23 is a diagram showing the vertical structure of a transformer chip with shield electrodes.
  • FIG. 24 is a diagram showing the noise reduction effect by introducing the shield electrode.
  • FIG. 25 is a diagram (solid over one side) showing the relationship between the layout of the shield electrode and the signal transmission capability.
  • FIG. 26 is a diagram (O type) showing the relationship between the layout of the shield electrode and the signal transmission capability.
  • FIG. 27 is a diagram (C type) showing the relationship between the layout of the shield electrodes and the signal transmission capability.
  • FIG. 28 is a diagram showing a first planar layout example (C type) of the shield electrode.
  • FIG. 29 is a diagram showing a second planar layout example (size change of C type) of the shield electrode.
  • FIG. 30 is a diagram showing a third planar layout example (O-type) of the shield electrode.
  • FIG. 31 is a diagram showing a fourth plane layout example (single-stroke type) of the shield electrode.
  • FIG. 32 is a diagram showing a first cross-sectional structure example of a primary winding, a secondary winding, and a shield electrode.
  • FIG. 33 is a diagram showing a second cross-sectional structural example of the primary winding, the secondary winding, and the shield electrode.
  • FIG. 34 is a diagram showing a third cross-sectional structure example of the primary winding, the secondary winding, and the shield electrode.
  • FIG. 35 is a diagram showing a fourth cross-sectional structural example of the primary winding, the secondary winding, and the shield electrode.
  • FIG. 36 is a diagram showing a fifth cross-sectional structure example of the primary winding, the secondary winding, and the shield electrode.
  • FIG. 37 is a diagram showing the relationship between the presence/absence and shape of the shield electrode and the inter-coil capacitance.
  • FIG. 38 is a diagram showing a planar layout of pads and coils.
  • FIG. 39 is a diagram showing a first planar layout of shield electrodes overlapping the coils of FIG. 38.
  • FIG. FIG. 40 is a diagram in which FIGS. 38 and 39 are superimposed.
  • 41 is a diagram showing a second planar layout of shield electrodes overlapping the coils of FIG. 38.
  • FIG. FIG. 42 is a diagram in which FIGS. 38 and 41 are superimposed.
  • FIG. 43 is a diagram showing the presence of substrate-to-pad capacitance.
  • FIG. 44 is a diagram showing how the substrate-to-pad capacitance is unshielded.
  • FIG. 45 is a diagram showing a first planar layout of the shield electrode in the region overlapping the pad.
  • FIG. 46 is a diagram showing a cross-sectional structure of primary windings, secondary windings, pads, and shield electrodes.
  • FIG. 47 is a diagram showing how the substrate-to-pad capacitance is shielded.
  • FIG. 48 is a diagram showing a second planar layout of the shield electrode in the region overlapping the pad.
  • FIG. 1 is a diagram showing the basic configuration of a signal transmission device.
  • the signal transmission device 200 of this configuration isolates between the primary circuit system 200p (VCC1-GND1 system) and the secondary circuit system 200s (VCC2-GND2 system), and the secondary circuit system 200s from the primary circuit system 200p
  • a semiconductor integrated circuit device (a so-called insulated gate driver IC) that transmits a pulse signal to the secondary circuit system 200s and drives the gate of a switch element (not shown) provided in the secondary circuit system 200s.
  • the signal transmission device 200 is formed by sealing a controller chip 210, a driver chip 220, and a transformer chip 230 in a single package.
  • the controller chip 210 is a semiconductor chip that operates by being supplied with a power supply voltage VCC1 (for example, a maximum of 7 V based on GND1).
  • VCC1 for example, a maximum of 7 V based on GND1.
  • a pulse transmission circuit 211 and buffers 212 and 213 are integrated in the controller chip 210 .
  • the pulse transmission circuit 211 is a pulse generator that generates transmission pulse signals S11 and S21 according to the input pulse signal IN. More specifically, when the pulse transmission circuit 211 notifies that the input pulse signal IN is at a high level, the transmission pulse signal S11 is pulse-driven (single-shot or multiple-shot transmission pulse output) and the input pulse signal S11 is output. When notifying that the signal IN is at low level, the transmission pulse signal S21 is pulse-driven. That is, the pulse transmission circuit 211 pulse-drives one of the transmission pulse signals S11 and S21 according to the logic level of the input pulse signal IN.
  • the buffer 212 receives the input of the transmission pulse signal S11 from the pulse transmission circuit 211 and pulse-drives the transformer chip 230 (specifically, the transformer 231).
  • the buffer 213 receives the input of the transmission pulse signal S21 from the pulse transmission circuit 211 and pulse-drives the transformer chip 230 (specifically, the transformer 232).
  • the driver chip 220 is a semiconductor chip that operates by being supplied with a power supply voltage VCC2 (for example, 30 V maximum based on GND2). Buffers 221 and 222, a pulse receiving circuit 223, and a driver 224 are integrated in the driver chip 220, for example.
  • VCC2 power supply voltage
  • Buffers 221 and 222, a pulse receiving circuit 223, and a driver 224 are integrated in the driver chip 220, for example.
  • the buffer 221 waveform-shapes the received pulse signal S12 induced in the transformer chip 230 (specifically, the transformer 231 ) and outputs it to the pulse receiving circuit 223 .
  • the buffer 222 waveform-shapes the received pulse signal S22 induced in the transformer chip 230 (specifically, the transformer 232) and outputs it to the pulse receiving circuit 223.
  • the pulse receiving circuit 223 generates the output pulse signal OUT by driving the driver 224 according to the received pulse signals S12 and S22 input via the buffers 221 and 222. More specifically, the pulse receiving circuit 223 raises the output pulse signal OUT to a high level in response to the pulse drive of the reception pulse signal S12, and raises the output pulse signal OUT in response to the pulse drive of the reception pulse signal S22. Driver 224 is driven to fall to low level. That is, the pulse receiving circuit 223 switches the logic level of the output pulse signal OUT according to the logic level of the input pulse signal IN. As the pulse receiving circuit 223, for example, an RS flip-flop can be preferably used.
  • the driver 224 generates the output pulse signal OUT based on the driving control of the pulse receiving circuit 223.
  • the transformer chip 230 uses transformers 231 and 232 to provide DC isolation between the controller chip 210 and the driver chip 220, while transforming the transmission pulse signals S11 and S21 input from the pulse transmission circuit 211 into the reception pulse signal S12. and output to the pulse receiving circuit 223 as S22.
  • the phrase "directly insulate" means that objects to be insulated are not connected by a conductor.
  • the transformer 231 outputs the reception pulse signal S12 from the secondary coil 231s in response to the transmission pulse signal S11 input to the primary coil 231p.
  • the transformer 232 outputs a reception pulse signal S22 from the secondary coil 232s according to the transmission pulse signal S21 input to the primary coil 232p.
  • the signal transmission device 200 of this configuration example independently has a transformer chip 230 on which only the transformers 231 and 232 are mounted separately from the controller chip 210 and the driver chip 220, and these three chips are integrated into a single chip. It is sealed in a package.
  • both the controller chip 210 and the driver chip 220 can be formed by a general low-to-medium-voltage process (withstand voltage of several V to several tens of V). It is no longer necessary to use a high withstand voltage process (several kV withstand voltage), making it possible to reduce manufacturing costs.
  • the signal transmission device 200 can be suitably used, for example, as a power supply device or a motor drive device for in-vehicle equipment mounted in a vehicle.
  • the above vehicles include electric vehicles (BEV [battery electric vehicle], HEV [hybrid electric vehicle], PHEV / PHV (plug-in hybrid electric vehicle / plug-in hybrid vehicle), or FCEV / FCV (xEV such as fuel cell electric vehicle/fuel cell vehicle) is also included.
  • both the controller chip 210 and the driver chip 220 can be produced by existing proven processes, and there is no need to conduct a new reliability test, which shortens the development period and reduces the development cost. can contribute to reduction.
  • the controller chip 210 and the driver chip 220 can be It eliminates the need for redevelopment, which contributes to shortening the development period and reducing the development cost.
  • FIG. 2 is a diagram showing how potential fluctuations occur between GND1 and GND2. As shown in the figure, when a potential change ⁇ V/ ⁇ t (that is, noise) occurs between the ground potential GND1 of the primary circuit system 200p and the ground potential GND2 of the secondary circuit system 200s, the secondary side of the transformer chip 230 Noise may appear and interfere with signal transmission.
  • ⁇ V/ ⁇ t that is, noise
  • FIG. 3 is a diagram showing an example of malfunction due to common mode noise, depicting the input pulse signal IN, the received pulse signals S12 and S22, and the output pulse signal OUT in order from the top.
  • the normal pulse signal transmission operation will be briefly explained.
  • the transformer 231 is pulse-driven, so a normal pulse rises in the received pulse signal S12.
  • the output pulse signal OUT rises to high level.
  • the transformer 232 is pulse-driven, so a normal pulse rises in the received pulse signal S22.
  • the output pulse signal OUT falls to low level.
  • 4 to 7 are diagrams showing the principle of occurrence of abnormal signal transmission due to the common mode noise.
  • the signal transmission device 200 is required to have high common mode transient immunity (so-called CMTI [common mode transient immunity]).
  • FIG. 8 is a diagram showing an introduction example of a noise canceller (noise mask circuit) in the signal transmission device 200. As shown in FIG. In the signal transmission device 200 of this configuration example, a noise canceller 225 is introduced in the front stage of the pulse receiving circuit 223 in the driver chip 220 .
  • the noise canceller 225 of this configuration example includes buffers BUF1 to BUF4, delay units DLY1 to DLY4, and AND gates AND1 and AND2.
  • the buffer BUF1 raises the output signal to a high level when the received pulse signal S12 becomes higher than the threshold voltage Vth1, and raises the output signal to a low level when the received pulse signal S12 becomes lower than the threshold voltage Vth. Lower.
  • the buffer BUF2 raises the output signal to a high level when the received pulse signal S12 becomes higher than the threshold voltage Vth2 ( ⁇ Vth1), and raises the output signal when the received pulse signal S12 becomes lower than the threshold voltage Vth2. Drop to low level.
  • the buffer BUF3 raises the output signal to a high level when the received pulse signal S22 becomes higher than the threshold voltage Vth1, and raises the output signal to a low level when the received pulse signal S22 becomes lower than the threshold voltage Vth. Lower.
  • the buffer BUF4 raises the output signal to a high level when the received pulse signal S22 becomes higher than the threshold voltage Vth2 ( ⁇ Vth1), and raises the output signal when the received pulse signal S22 becomes lower than the threshold voltage Vth2. Drop to low level.
  • the delay unit DLY1 generates the main signal A1 by giving a predetermined delay to the output signal of the buffer BUF1.
  • the delay unit DLY2 generates a mask signal B2 by giving a predetermined delay to the output signal of the buffer BUF2. For example, the mask signal B2 falls to a low level without delay when the output signal of the buffer BUF2 rises to a high level, and rises to a high level when a predetermined mask period elapses.
  • the delay unit DLY3 generates the main signal B1 by giving a predetermined delay to the output signal of the buffer BUF3.
  • the delay unit DLY4 generates a mask signal A2 by giving a predetermined delay to the output signal of the buffer BUF4. For example, the mask signal A2 falls to a low level without delay when the output signal of the buffer BUF4 rises to a high level, and rises to a high level when a predetermined mask period elapses.
  • the pulse receiving circuit 223 sets the output pulse signal OUT to high level when the set signal A rises to high level, and resets the output pulse signal OUT to low level when the reset signal B rises to high level. do.
  • FIG. 9 is a diagram showing an example of noise canceling operation. From the top, the input pulse signal IN, the received pulse signal S12, the main signal A1, the mask signal A2, the set signal A, the received pulse signal S22, the main signal B1, A mask signal B2, a reset signal B, and an output pulse signal OUT are depicted.
  • the mask signal A2 falls to low level, so the set signal A is fixed to low level.
  • the set signal A should originally be maintained at a low level, so no mismatch occurs.
  • noise pulses rise in both the received pulse signals S12 and S22, and when they exceed the threshold voltages Vth1 and Vth2 of the buffers BUF1 to BUF4, respectively, pulses are generated in the main signals A1 and B1 and the mask signals A2 and B2. be.
  • the set signal A is fixed at low level regardless of the logic level of the main signal A1.
  • the reset signal B is fixed at low level regardless of the logic level of the main signal B1. Therefore, the common mode noise superimposed on both the received pulse signals S12 and S22 can be properly removed, so that malfunction of the output pulse signal OUT can be suppressed.
  • FIG. 10 is a diagram showing the basic structure of the transformer chip 230.
  • the transformer 231 includes a primary side coil 231p and a secondary side coil 231s facing each other in the vertical direction.
  • the transformer 232 includes a primary side coil 232p and a secondary side coil 232s facing each other in the vertical direction.
  • Both the primary side coils 231p and 232p are formed on the first wiring layer (lower layer) 230a of the transformer chip 230 .
  • the secondary coils 231 s and 232 s are both formed on the second wiring layer (upper layer in this figure) 230 b of the transformer chip 230 .
  • the secondary coil 231s is arranged directly above the primary coil 231p and faces the primary coil 231p.
  • the secondary coil 232s is arranged directly above the primary coil 232p and faces the primary coil 232p.
  • the primary coil 231p is spirally laid so as to surround the internal terminal X21 in a clockwise direction, starting from the first end connected to the internal terminal X21, and the second end corresponding to the end point is the internal terminal X21. It is connected to the terminal X22.
  • the primary coil 232p is spirally laid so as to surround the internal terminal X23 in a counterclockwise direction, starting from the first end connected to the internal terminal X23, and the second coil 232p corresponds to the end point.
  • the end is connected to the internal terminal X22.
  • the internal terminals X21, X22 and X23 are linearly arranged in the order shown.
  • the internal terminal X21 is connected to the external terminal T21 of the second layer 230b via the conductive wiring Y21 and via Z21.
  • the internal terminal X22 is connected to the external terminal T22 of the second layer 230b through a conductive wiring Y22 and via Z22.
  • the internal terminal X23 is connected to the external terminal T23 of the second layer 230b through the conductive wiring Y23 and via Z23.
  • the external terminals T21 to T23 are linearly arranged and used for wire bonding with the controller chip 210.
  • the secondary coil 231s is spirally laid so as to surround the external terminal T24 in a counterclockwise direction, starting from a first end connected to the external terminal T24, and a second end corresponding to the end point of the secondary coil 231s. is connected to the external terminal T25.
  • the secondary coil 232s is spirally laid so as to surround the periphery of the external terminal T26 in a clockwise direction, starting from the first end connected to the external terminal T26. The end is connected to the external terminal T25.
  • the external terminals T24, T25 and T26 are linearly arranged in the order shown in the figure and used for wire bonding with the driver chip 220.
  • the secondary coils 231s and 232s are AC-connected to the primary coils 231p and 232p by magnetic coupling, respectively, and are DC-insulated from the primary coils 231p and 232p. That is, the driver chip 220 is AC-connected to the controller chip 210 via the transformer chip 230 and DC-insulated from the controller chip 210 by the transformer chip 230 .
  • FIG. 11 is a perspective view showing a semiconductor device 5 used as a two-channel transformer chip.
  • 12 is a plan view of the semiconductor device 5 shown in FIG. 11.
  • FIG. 13 is a plan view showing a layer in which the low potential coil 22 (corresponding to the primary side coil of the transformer) is formed in the semiconductor device 5 shown in FIG.
  • 15 is a cross-sectional view taken along line VIII-VIII shown in FIG. 14.
  • FIG. 16 is a cross-sectional view taken along line IX-IX shown in FIG. 14.
  • FIG. 17 is an enlarged view of the area X shown in FIG. 14.
  • FIG. FIG. 18 is an enlarged view of area XI shown in FIG.
  • FIG. 19 is an enlarged view of region XII shown in FIG.
  • FIG. 20 is an enlarged view of region XIII shown in FIG. 15 showing isolation structure 130 .
  • semiconductor device 5 includes a semiconductor chip 41 having a rectangular parallelepiped shape.
  • Semiconductor chip 41 includes at least one of silicon, a wide bandgap semiconductor, and a compound semiconductor.
  • a wide bandgap semiconductor consists of a semiconductor that exceeds the bandgap of silicon (approximately 1.12 eV).
  • the bandgap of the wide bandgap semiconductor is preferably 2.0 eV or more.
  • the wide bandgap semiconductor may be SiC (silicon carbide).
  • the compound semiconductor may be a III-V compound semiconductor.
  • the compound semiconductor may contain at least one of AlN (aluminum nitride), InN (indium nitride), GaN (gallium nitride) and GaAs (gallium arsenide).
  • the semiconductor chip 41 includes a semiconductor substrate made of silicon in this form.
  • the semiconductor chip 41 may be an epitaxial substrate having a laminated structure including a semiconductor substrate made of silicon and an epitaxial layer made of silicon.
  • the conductivity type of the semiconductor substrate may be n-type or p-type.
  • the epitaxial layer may be n-type or p-type.
  • the semiconductor chip 41 has a first main surface 42 on one side, a second main surface 43 on the other side, and chip side walls 44A to 44D connecting the first main surface 42 and the second main surface 43.
  • the first main surface 42 and the second main surface 43 are formed in a quadrangular shape (rectangular shape in this embodiment) in plan view (hereinafter simply referred to as "plan view") as seen from their normal direction Z. .
  • the chip sidewalls 44A-44D include a first chip sidewall 44A, a second chip sidewall 44B, a third chip sidewall 44C and a fourth chip sidewall 44D.
  • the first chip side wall 44A and the second chip side wall 44B form long sides of the semiconductor chip 41 .
  • the first chip sidewall 44A and the second chip sidewall 44B extend along the first direction X and face the second direction Y.
  • the third chip side wall 44C and the fourth chip side wall 44D form short sides of the semiconductor chip 41 .
  • the third chip side wall 44C and the fourth chip side wall 44D extend in the second direction Y and face the first direction X.
  • Chip side walls 44A-44D are ground surfaces.
  • the semiconductor device 5 further includes an insulating layer 51 formed on the first main surface 42 of the semiconductor chip 41 .
  • the insulating layer 51 has an insulating main surface 52 and insulating side walls 53A-53D.
  • the insulating main surface 52 is formed in a quadrangular shape (rectangular shape in this embodiment) matching the first main surface 42 in plan view.
  • the insulating main surface 52 extends parallel to the first main surface 42 .
  • the insulating sidewalls 53A-53D include a first insulating sidewall 53A, a second insulating sidewall 53B, a third insulating sidewall 53C and a fourth insulating sidewall 53D.
  • the insulating side walls 53A to 53D extend from the peripheral edge of the insulating main surface 52 toward the semiconductor chip 41 and connect to the chip side walls 44A to 44D. Specifically, the insulating sidewalls 53A-53D are formed flush with the chip sidewalls 44A-44D.
  • the insulating sidewalls 53A-53D form ground surfaces flush with the chip sidewalls 44A-44D.
  • the insulating layer 51 has a multi-layer insulating laminate structure including a bottom insulating layer 55 , a top insulating layer 56 and a plurality of (eleven layers in this embodiment) interlayer insulating layers 57 .
  • the bottom insulating layer 55 is an insulating layer that directly covers the first major surface 42 .
  • the top insulating layer 56 is an insulating layer that forms the insulating main surface 52 .
  • a plurality of interlayer insulating layers 57 are insulating layers interposed between the bottom insulating layer 55 and the top insulating layer 56 .
  • the bottom insulating layer 55 has a single layer structure containing silicon oxide in this embodiment.
  • the top insulating layer 56 has a single layer structure containing silicon oxide in this form.
  • the thickness of the bottom insulating layer 55 and the thickness of the top insulating layer 56 may each be 1 ⁇ m or more and 3 ⁇ m or less (for example, about 2 ⁇ m).
  • the plurality of interlayer insulating layers 57 each have a laminated structure including a first insulating layer 58 on the bottom insulating layer 55 side and a second insulating layer 59 on the top insulating layer 56 side.
  • the first insulating layer 58 may contain silicon nitride.
  • the first insulating layer 58 is formed as an etching stopper layer for the second insulating layer 59 .
  • the thickness of the first insulating layer 58 may be 0.1 ⁇ m or more and 1 ⁇ m or less (for example, about 0.3 ⁇ m).
  • a second insulating layer 59 is formed on the first insulating layer 58 . It contains an insulating material different from the first insulating layer 58 .
  • the second insulating layer 59 may contain silicon oxide.
  • the thickness of the second insulating layer 59 may be 1 ⁇ m or more and 3 ⁇ m or less (for example, about 2 ⁇ m). The thickness of the second insulating layer 59 preferably exceeds the thickness of the first insulating layer 58 .
  • the total thickness DT of the insulating layer 51 may be 5 ⁇ m or more and 50 ⁇ m or less.
  • the total thickness DT of the insulating layers 51 and the number of layers of the interlayer insulating layers 57 are arbitrary, and are adjusted according to the dielectric breakdown voltage (dielectric breakdown tolerance) to be achieved.
  • Insulating materials for the lowermost insulating layer 55, the uppermost insulating layer 56, and the interlayer insulating layer 57 are arbitrary, and are not limited to specific insulating materials.
  • the semiconductor device 5 includes a first functional device 45 formed in an insulating layer 51.
  • the first functional device 45 includes one or more (in this form, more than one) transformers 21 (corresponding to the previously mentioned transformers).
  • the semiconductor device 5 is a multi-channel device including multiple transformers 21 .
  • a plurality of transformers 21 are formed in the inner portion of the insulating layer 51 spaced apart from the insulating sidewalls 53A-53D.
  • a plurality of transformers 21 are formed at intervals in the first direction X. As shown in FIG.
  • the plurality of transformers 21 are, in plan view, a first transformer 21A, a second transformer 21B, a third transformer 21C, and a first transformer 21A, a second transformer 21B, and a A fourth transformer 21D is included.
  • a plurality of transformers 21A-21D each have a similar structure.
  • the structure of the first transformer 21A will be described below as an example. Descriptions of the structures of the second transformer 21B, the third transformer 21C, and the fourth transformer 21D are omitted because the description of the structure of the first transformer 21A applies mutatis mutandis.
  • the first transformer 21A includes a low potential coil 22 and a high potential coil 23.
  • the low potential coil 22 is formed within the insulating layer 51 .
  • the high-potential coil 23 is formed in the insulating layer 51 so as to face the low-potential coil 22 in the normal direction Z. As shown in FIG.
  • the low-potential coil 22 and the high-potential coil 23 are formed in a region sandwiched between the bottom insulating layer 55 and the top insulating layer 56 (that is, the plurality of interlayer insulating layers 57) in this embodiment.
  • the low potential coil 22 is formed on the lowermost insulating layer 55 (semiconductor chip 41 ) side within the insulating layer 51
  • the high potential coil 23 is formed on the uppermost insulating layer 56 with respect to the low potential coil 22 within the insulating layer 51 . It is formed on the (insulating main surface 52) side. That is, the high potential coil 23 faces the semiconductor chip 41 with the low potential coil 22 interposed therebetween.
  • the low-potential coil 22 and the high-potential coil 23 can be arranged at any position. Also, the high-potential coil 23 may face the low-potential coil 22 with one or more interlayer insulating layers 57 interposed therebetween.
  • the distance between the low-potential coil 22 and the high-potential coil 23 (that is, the number of layers of the interlayer insulation layers 57) is appropriately adjusted according to the withstand voltage and electric field strength between the low-potential coil 22 and the high-potential coil 23.
  • the low-potential coil 22 is formed on the third interlayer insulating layer 57 counted from the bottom insulating layer 55 side.
  • the high-potential coil 23 is formed on the first interlayer insulating layer 57 counted from the uppermost insulating layer 56 side.
  • the low-potential coil 22 is embedded through the first insulating layer 58 and the second insulating layer 59 in the interlayer insulating layer 57 .
  • the low potential coil 22 includes a first inner end 24 , a first outer end 25 and a first helix 26 helically routed between the first inner end 24 and the first outer end 25 .
  • the first spiral portion 26 is wound in a spiral shape extending in an elliptical shape (oval shape) in plan view. A portion forming the innermost peripheral edge of the first spiral portion 26 defines an elliptical first inner region 66 in plan view.
  • the number of turns of the first spiral portion 26 may be 5 or more and 30 or less.
  • the width of the first spiral portion 26 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the first spiral portion 26 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the first spiral portion 26 is defined by the width in the direction orthogonal to the spiral direction.
  • the first winding pitch of the first spiral portion 26 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the first winding pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the first winding pitch is defined by the distance between two adjacent portions of the first helical portion 26 in a direction orthogonal to the helical direction.
  • the winding shape of the first spiral portion 26 and the planar shape of the first inner region 66 are arbitrary, and are not limited to the shapes shown in FIG. 13 and the like.
  • the first spiral portion 26 may be wound in a polygonal shape such as a triangular shape, a square shape, or a circular shape in a plan view.
  • the first inner region 66 may be divided into a polygonal shape such as a triangular shape, a quadrangular shape, or a circular shape in plan view according to the winding shape of the first spiral portion 26 .
  • the low potential coil 22 may contain at least one of titanium, titanium nitride, copper, aluminum and tungsten.
  • the low potential coil 22 may have a laminated structure including barrier layers and body layers.
  • the barrier layer defines a recess space within the interlayer insulating layer 57 .
  • a body layer is embedded in the recessed space defined by the barrier layer.
  • the barrier layer may include at least one of titanium and titanium nitride.
  • the body layer may include at least one of copper, aluminum and tungsten.
  • the high-potential coil 23 is embedded through the first insulating layer 58 and the second insulating layer 59 in the interlayer insulating layer 57 .
  • the high potential coil 23 includes a second inner end 27 , a second outer end 28 and a second helix 29 helically routed between the second inner end 27 and the second outer end 28 .
  • the second spiral portion 29 is wound in a spiral shape extending in an elliptical shape (oval shape) in plan view.
  • the portion forming the innermost peripheral edge of the second spiral portion 29 defines an elliptical second inner region 67 in plan view.
  • the second inner region 67 of the second spiral portion 29 faces the first inner region 66 of the first spiral portion 26 in the normal direction Z. As shown in FIG.
  • the number of turns of the second spiral portion 29 may be 5 or more and 30 or less.
  • the number of turns of the second spiral portion 29 relative to the number of turns of the first spiral portion 26 is adjusted according to the voltage value to be boosted.
  • the number of turns of the second spiral portion 29 preferably exceeds the number of turns of the first spiral portion 26 .
  • the number of turns of the second spiral portion 29 may be less than the number of turns of the first spiral portion 26 or may be equal to the number of turns of the first spiral portion 26 .
  • the width of the second spiral portion 29 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the second spiral portion 29 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the second spiral portion 29 is defined by the width in the direction orthogonal to the spiral direction.
  • the width of the second spiral portion 29 is preferably equal to the width of the first spiral portion 26 .
  • the second winding pitch of the second spiral portion 29 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the second winding pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the second winding pitch is defined by the distance between two adjacent portions of the second helical portion 29 in a direction orthogonal to the helical direction.
  • the second winding pitch is preferably equal to the first winding pitch of the first helix 26 .
  • the winding shape of the second spiral portion 29 and the planar shape of the second inner region 67 are arbitrary, and are not limited to the shapes shown in FIG. 14 and the like.
  • the second spiral portion 29 may be wound in a polygonal shape such as a triangular shape, a square shape, or a circular shape in a plan view.
  • the second inner region 67 may be divided into a polygonal shape such as a triangular shape, a square shape, or a circular shape in plan view according to the winding shape of the second spiral portion 29 .
  • the high-potential coil 23 is preferably made of the same conductive material as the low-potential coil 22. That is, the high-potential coil 23 preferably includes barrier layers and body layers, similar to the low-potential coil 22 .
  • semiconductor device 5 includes a plurality of (12 in this drawing) low potential terminals 11 and a plurality of (12 in this drawing) high potential terminals 12 .
  • a plurality of low potential terminals 11 are electrically connected to low potential coils 22 of corresponding transformers 21A to 21D, respectively.
  • a plurality of high potential terminals 12 are electrically connected to high potential coils 23 of corresponding transformers 21A to 21D, respectively.
  • a plurality of low-potential terminals 11 are formed on the insulating main surface 52 of the insulating layer 51 . Specifically, the plurality of low-potential terminals 11 are formed in a region on the side of the insulating sidewall 53B at intervals in the second direction Y from the plurality of transformers 21A to 21D, and are arranged at intervals in the first direction X. It is
  • the plurality of low potential terminals 11 includes a first low potential terminal 11A, a second low potential terminal 11B, a third low potential terminal 11C, a fourth low potential terminal 11D, a fifth low potential terminal 11E and a sixth low potential terminal 11F. include.
  • Each of the plurality of low potential terminals 11A to 11F is formed two by two in this embodiment.
  • the number of the plurality of low potential terminals 11A-11F is arbitrary.
  • the first low potential terminal 11A faces the first transformer 21A in the second direction Y in plan view.
  • the second low potential terminal 11B faces the second transformer 21B in the second direction Y in plan view.
  • the third low potential terminal 11C faces the third transformer 21C in the second direction Y in plan view.
  • the fourth low potential terminal 11D faces the fourth transformer 21D in the second direction Y in plan view.
  • the fifth low potential terminal 11E is formed in a region between the first low potential terminal 11A and the second low potential terminal 11B in plan view.
  • the sixth low potential terminal 11F is formed in a region between the third low potential terminal 11C and the fourth low potential terminal 11D in plan view.
  • the first low potential terminal 11A is electrically connected to the first inner end 24 of the first transformer 21A (low potential coil 22).
  • the second low potential terminal 11B is electrically connected to the first inner end 24 of the second transformer 21B (low potential coil 22).
  • the third low potential terminal 11C is electrically connected to the first inner end 24 of the third transformer 21C (low potential coil 22).
  • the fourth low potential terminal 11D is electrically connected to the first inner end 24 of the fourth transformer 21D (low potential coil 22).
  • the fifth low potential terminal 11E is electrically connected to the first outer terminal 25 of the first transformer 21A (low potential coil 22) and the first outer terminal 25 of the second transformer 21B (low potential coil 22).
  • the sixth low potential terminal 11F is electrically connected to the first outer terminal 25 of the third transformer 21C (low potential coil 22) and the first outer terminal 25 of the fourth transformer 21D (low potential coil 22).
  • the plurality of high-potential terminals 12 are formed on the insulating main surface 52 of the insulating layer 51 at intervals from the plurality of low-potential terminals 11 . Specifically, the plurality of high-potential terminals 12 are formed in a region on the side of the insulating sidewall 53A spaced apart from the plurality of low-potential terminals 11 in the second direction Y, and are arranged in the first direction X at intervals. ing.
  • a plurality of high-potential terminals 12 are formed in regions adjacent to the corresponding transformers 21A to 21D in plan view.
  • the high potential terminal 12 being close to the transformers 21A to 21D means that the distance between the high potential terminal 12 and the transformer 21 in plan view is less than the distance between the low potential terminal 11 and the high potential terminal 12. means.
  • the plurality of high-potential terminals 12 are formed at intervals along the first direction X so as to face the plurality of transformers 21A to 21D along the first direction X in plan view. . More specifically, the plurality of high potential terminals 12 are arranged along the first direction X so as to be located in the second inner region 67 of the high potential coil 23 and the region between the adjacent high potential coils 23 in plan view. formed with a gap. As a result, the plurality of high-potential terminals 12 are arranged in line with the plurality of transformers 21A to 21D in the first direction X in plan view.
  • the plurality of high potential terminals 12 includes a first high potential terminal 12A, a second high potential terminal 12B, a third high potential terminal 12C, a fourth high potential terminal 12D, a fifth high potential terminal 12E and a sixth high potential terminal 12F. include.
  • Each of the plurality of high-potential terminals 12A to 12F is formed two by two in this embodiment.
  • the number of high potential terminals 12A to 12F is arbitrary.
  • the first high potential terminal 12A is formed in the second inner region 67 of the first transformer 21A (high potential coil 23) in plan view.
  • the second high potential terminal 12B is formed in the second inner region 67 of the second transformer 21B (high potential coil 23) in plan view.
  • the third high potential terminal 12C is formed in the second inner region 67 of the third transformer 21C (high potential coil 23) in plan view.
  • the fourth high potential terminal 12D is formed in the second inner region 67 of the fourth transformer 21D (high potential coil 23) in plan view.
  • the fifth high potential terminal 12E is formed in a region between the first transformer 21A and the second transformer 21B in plan view.
  • the sixth high potential terminal 12F is formed in a region between the third transformer 21C and the fourth transformer 21D in plan view.
  • the first high potential terminal 12A is electrically connected to the second inner end 27 of the first transformer 21A (high potential coil 23).
  • the second high potential terminal 12B is electrically connected to the second inner end 27 of the second transformer 21B (high potential coil 23).
  • the third high potential terminal 12C is electrically connected to the second inner end 27 of the third transformer 21C (high potential coil 23).
  • the fourth high potential terminal 12D is electrically connected to the second inner end 27 of the fourth transformer 21D (high potential coil 23).
  • the fifth high potential terminal 12E is electrically connected to the second outer end 28 of the first transformer 21A (high potential coil 23) and the second outer end 28 of the second transformer 21B (high potential coil 23).
  • the sixth high potential terminal 12F is electrically connected to the second outer end 28 of the third transformer 21C (high potential coil 23) and the second outer end 28 of the fourth transformer 21D (high potential coil 23).
  • semiconductor device 5 includes first low-potential wiring 31, second low-potential wiring 32, first high-potential wiring 33 and second high-potential wiring formed in insulating layer 51, respectively. 34.
  • a plurality of first low potential wirings 31, a plurality of second low potential wirings 32, a plurality of first high potential wirings 33 and a plurality of second high potential wirings 34 are formed.
  • the first low potential wiring 31 and the second low potential wiring 32 fix the low potential coil 22 of the first transformer 21A and the low potential coil 22 of the second transformer 21B to the same potential.
  • the first low potential wiring 31 and the second low potential wiring 32 fix the low potential coil 22 of the third transformer 21C and the low potential coil 22 of the fourth transformer 21D to the same potential.
  • the first low potential wiring 31 and the second low potential wiring 32 fix all the low potential coils 22 of the transformers 21A to 21D to the same potential.
  • the first high-potential wiring 33 and the second high-potential wiring 34 fix the high-potential coil 23 of the first transformer 21A and the high-potential coil 23 of the second transformer 21B to the same potential. Also, the first high-potential wiring 33 and the second high-potential wiring 34 fix the high-potential coil 23 of the third transformer 21C and the high-potential coil 23 of the fourth transformer 21D to the same potential. The first high-potential wiring 33 and the second high-potential wiring 34 fix all the high-potential coils 23 of the transformers 21A to 21D at the same potential in this form.
  • the plurality of first low potential wirings 31 are electrically connected to the corresponding low potential terminals 11A-11D and the first inner ends 24 of the corresponding transformers 21A-21D (low potential coils 22), respectively.
  • the multiple first low-potential wirings 31 have the same structure.
  • the structure of the first low-potential wiring 31 connected to the first low-potential terminal 11A and the first transformer 21A will be described below as an example.
  • the description of the structure of the other first low potential wiring 31 is omitted because the description of the structure of the first low potential wiring 31 connected to the first transformer 21A applies mutatis mutandis.
  • the first low-potential wiring 31 includes a through-wiring 71, a low-potential connection wiring 72, a lead-out wiring 73, a first connection plug electrode 74, a second connection plug electrode 75, and one or more (in this embodiment, more than one) pad plug electrodes. 76 , and one or more (in this form, more than one) substrate plug electrodes 77 .
  • the through wiring 71, the low potential connection wiring 72, the lead wiring 73, the first connection plug electrode 74, the second connection plug electrode 75, the pad plug electrode 76, and the substrate plug electrode 77 are made of the same conductive material as the low potential coil 22 and the like. It is preferable that they are formed respectively. That is, the through wiring 71, the low potential connection wiring 72, the lead wiring 73, the first connection plug electrode 74, the second connection plug electrode 75, the pad plug electrode 76, and the substrate plug electrode 77 are similar to the low potential coil 22 and the like. It preferably includes a barrier layer and a body layer, respectively.
  • the through wiring 71 penetrates the plurality of interlayer insulating layers 57 in the insulating layer 51 and extends in a columnar shape extending along the normal direction Z. As shown in FIG. Through wire 71 is formed in a region between lowermost insulating layer 55 and uppermost insulating layer 56 in insulating layer 51 in this embodiment.
  • the through wire 71 has an upper end portion on the uppermost insulating layer 56 side and a lower end portion on the lowermost insulating layer 55 side.
  • the upper end of the through wire 71 is formed in the same interlayer insulating layer 57 as the high potential coil 23 and covered with the uppermost insulating layer 56 .
  • the lower end of the through wire 71 is formed on the same interlayer insulating layer 57 as the low potential coil 22 .
  • the through wiring 71 includes a first electrode layer 78, a second electrode layer 79, and a plurality of wiring plug electrodes 80 in this embodiment.
  • the first electrode layer 78, the second electrode layer 79, and the wire plug electrode 80 are made of the same conductive material as the low potential coil 22 and the like. That is, the first electrode layer 78, the second electrode layer 79, and the wiring plug electrode 80 each include a barrier layer and a body layer, like the low-potential coil 22 and the like.
  • the first electrode layer 78 forms the upper end of the through wire 71 .
  • the second electrode layer 79 forms the lower end of the through wire 71 .
  • the first electrode layer 78 is formed in an island shape and faces the low potential terminal 11 (first low potential terminal 11A) in the normal direction Z.
  • the second electrode layer 79 is formed in an island shape and faces the first electrode layer 78 in the normal direction Z. As shown in FIG.
  • a plurality of wiring plug electrodes 80 are embedded in a plurality of interlayer insulating layers 57 positioned between the first electrode layer 78 and the second electrode layer 79, respectively.
  • a plurality of wiring plug electrodes 80 are laminated from the bottom insulating layer 55 toward the top insulating layer 56 so as to be electrically connected to each other, and electrically connect the first electrode layer 78 and the second electrode layer 79 to each other. Connected.
  • the plurality of wiring plug electrodes 80 each have a planar area less than the planar area of the first electrode layer 78 and the planar area of the second electrode layer 79 .
  • the number of lamination of the plurality of wiring plug electrodes 80 matches the number of lamination of the plurality of interlayer insulating layers 57 .
  • the number of wiring plug electrodes 80 embedded in each interlayer insulating layer 57 is arbitrary.
  • one or more wiring plug electrodes 80 may be formed penetrating the plurality of interlayer insulating layers 57 .
  • the low-potential connection wiring 72 is formed in the first inner region 66 of the first transformer 21A (low-potential coil 22) in the same interlayer insulating layer 57 as the low-potential coil 22.
  • the low-potential connection wiring 72 is formed in an island shape and faces the high-potential terminal 12 (first high-potential terminal 12A) in the normal direction Z. As shown in FIG.
  • the low-potential connection wiring 72 preferably has a plane area larger than that of the wiring plug electrode 80 .
  • a low potential connecting wire 72 is electrically connected to the first inner end 24 of the low potential coil 22 .
  • the lead wiring 73 is formed in a region between the semiconductor chip 41 and the through wiring 71 within the interlayer insulating layer 57 .
  • the lead-out wiring 73 is formed in the first interlayer insulating layer 57 counted from the lowermost insulating layer 55 in this embodiment.
  • Lead wiring 73 includes a first end on one side, a second end on the other side, and a wiring portion connecting the first end and the second end.
  • a first end of lead-out wiring 73 is located in a region between semiconductor chip 41 and the lower end of through-wiring 71 .
  • a second end of the lead wire 73 is located in a region between the semiconductor chip 41 and the low potential connection wire 72 .
  • the wiring portion extends along the first main surface 42 of the semiconductor chip 41 and extends in a strip shape in a region between the first end portion and the second end portion.
  • the first connection plug electrode 74 is formed in a region between the through wire 71 and the lead wire 73 within the interlayer insulating layer 57 and is electrically connected to first ends of the through wire 71 and the lead wire 73 .
  • the second connection plug electrode 75 is formed in a region between the low-potential connection wiring 72 and the lead-out wiring 73 within the interlayer insulating layer 57 and is electrically connected to the second ends of the low-potential connection wiring 72 and the lead-out wiring 73 . It is
  • a plurality of pad plug electrodes 76 are formed in a region between the low potential terminal 11 (first low potential terminal 11A) and the through wire 71 in the uppermost insulating layer 56, and are formed at the upper ends of the low potential terminal 11 and the through wire 71. They are electrically connected to each other.
  • a plurality of substrate plug electrodes 77 are formed in a region between the semiconductor chip 41 and the lead wiring 73 within the lowermost insulating layer 55 . In this embodiment, the substrate plug electrode 77 is formed in a region between the semiconductor chip 41 and the first ends of the lead wires 73 and electrically connected to the semiconductor chip 41 and the first ends of the lead wires 73, respectively.
  • a plurality of second low potential wires 32 are electrically connected to corresponding low potential terminals 11E, 11F and first outer ends 25 of low potential coils 22 of corresponding transformers 21A-21D, respectively. It is The multiple second low-potential wirings 32 each have a similar structure.
  • the structure of the second low-potential wiring 32 connected to the fifth low-potential terminal 11E and the first transformer 21A (second transformer 21B) will be described below as an example.
  • the description of the structure of the second low-potential wiring 32 is omitted because the description of the structure of the second low-potential wiring 32 connected to the first transformer 21A (second transformer 21B) applies mutatis mutandis. .
  • the second low potential wiring 32 includes a through wiring 71, a low potential connection wiring 72, a lead wiring 73, a first connection plug electrode 74, a second connection plug electrode 75, a pad plug electrode 76 and a A substrate plug electrode 77 is included.
  • the second low potential wiring 32 has a low potential connecting wiring 72 connected to the first outer end 25 of the first transformer 21A (low potential coil 22) and the first outer end 25 of the second transformer 21B (low potential coil 22). It has the same structure as the first low-potential wiring 31 except that it is electrically connected.
  • the low-potential connection wiring 72 of the second low-potential wiring 32 is formed around the low-potential coil 22 in the same interlayer insulating layer 57 as the low-potential coil 22 . Specifically, the low-potential connection wiring 72 is formed in a region between two adjacent low-potential coils 22 in plan view.
  • the pad plug electrode 76 is formed in a region between the low potential terminal 11 (fifth low potential terminal 11E) and the low potential connection wiring 72 in the uppermost insulating layer 56, and electrically connects the low potential terminal 11 and the low potential connection wiring 72. properly connected.
  • a plurality of first high potential wires 33 are electrically connected to corresponding high potential terminals 12A-12D and second inner ends 27 of corresponding transformers 21A-21D (high potential coils 23), respectively. It is connected.
  • the multiple first high-potential wirings 33 each have a similar structure.
  • the structure of the first high-potential wiring 33 connected to the first high-potential terminal 12A and the first transformer 21A will be described below as an example.
  • the description of the structure of the other first high-potential wiring 33 is omitted because the description of the structure of the first high-potential wiring 33 connected to the first transformer 21A applies mutatis mutandis.
  • the first high-potential wiring 33 includes a high-potential connection wiring 81 and one or more (in this embodiment, more than one) pad plug electrodes 82 .
  • the high potential connection wiring 81 and the pad plug electrode 82 are preferably made of the same conductive material as the low potential coil 22 and the like. That is, the high potential connection wiring 81 and the pad plug electrode 82 preferably include a barrier layer and a body layer like the low potential coil 22 and the like.
  • the high-potential connection wiring 81 is formed in the second inner region 67 of the high-potential coil 23 in the same interlayer insulating layer 57 as the high-potential coil 23 .
  • the high-potential connection wiring 81 is formed in an island shape and faces the high-potential terminal 12 (first high-potential terminal 12A) in the normal direction Z.
  • a high potential connecting wire 81 is electrically connected to the second inner end 27 of the high potential coil 23 .
  • the high-potential connection wiring 81 is spaced from the low-potential connection wiring 72 in plan view, and does not face the low-potential connection wiring 72 in the normal direction Z. As shown in FIG. As a result, the insulation distance between the low-potential connection wiring 72 and the high-potential connection wiring 81 is increased, and the withstand voltage of the insulation layer 51 is increased.
  • a plurality of pad plug electrodes 82 are formed in a region between the high potential terminal 12 (first high potential terminal 12A) and the high potential connection wiring 81 in the uppermost insulating layer 56, are electrically connected to each other.
  • Each of the plurality of pad plug electrodes 82 has a plane area smaller than the plane area of the high-potential connection wiring 81 in plan view.
  • a plurality of second high potential wires 34 are electrically connected to corresponding high potential terminals 12E, 12F and second outer ends 28 of corresponding transformers 21A-21D (high potential coils 23), respectively. It is connected.
  • the multiple second high-potential wirings 34 each have a similar structure.
  • the structure of the second high potential wiring 34 connected to the fifth high potential terminal 12E and the first transformer 21A (second transformer 21B) will be described below as an example.
  • the description of the structure of the other second high potential wiring 34 shall apply mutatis mutandis, and is omitted. .
  • the second high-potential wiring 34 includes a high-potential connection wiring 81 and a pad plug electrode 82 like the first high-potential wiring 33 .
  • the second high potential wiring 34 has a high potential connecting wiring 81 to the second outer end 28 of the first transformer 21A (high potential coil 23) and the second outer end 28 of the second transformer 21B (high potential coil 23). It has the same structure as the first high-potential wiring 33 except that it is electrically connected.
  • the high-potential connection wiring 81 of the second high-potential wiring 34 is formed around the high-potential coil 23 in the same interlayer insulating layer 57 as the high-potential coil 23 .
  • the high-potential connection wiring 81 is formed in a region between two adjacent high-potential coils 23 in plan view, and faces the high-potential terminal 12 (fifth high-potential terminal 12E) in the normal direction Z.
  • the high-potential connection wiring 81 is spaced from the low-potential connection wiring 72 in plan view, and does not face the low-potential connection wiring 72 in the normal direction Z. As shown in FIG.
  • a plurality of pad plug electrodes 82 are formed in a region between the high potential terminal 12 (fifth high potential terminal 12E) and the high potential connection wiring 81 in the uppermost insulating layer 56 . are electrically connected to each other.
  • the distance D1 between the low potential terminal 11 and the high potential terminal 12 preferably exceeds the distance D2 between the low potential coil 22 and the high potential coil 23 (D2 ⁇ D1).
  • the distance D1 preferably exceeds the total thickness DT of the plurality of interlayer insulating layers 57 (DT ⁇ D1).
  • a ratio D2/D1 of the distance D2 to the distance D1 may be 0.01 or more and 0.1 or less.
  • the distance D1 is preferably 100 ⁇ m or more and 500 ⁇ m or less.
  • the distance D2 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the distance D2 is preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the values of the distance D1 and the distance D2 are arbitrary, and are appropriately adjusted according to the dielectric breakdown voltage to be achieved.
  • semiconductor device 5 includes dummy patterns 85 embedded in insulating layer 51 so as to be positioned around transformers 21A to 21D in plan view. 17 to 19, dummy patterns 85 are indicated by hatching. Dummy pattern 85 includes a conductor. The dummy pattern 85 is preferably made of the same conductive material as the low potential coil 22 and the like. That is, the dummy pattern 85 preferably includes a barrier layer and a main body layer, like the low-potential coil 22 and the like.
  • the dummy pattern 85 is formed in a pattern (discontinuous pattern) different from that of the high-potential coil 23 and the low-potential coil 22, and is independent of the transformers 21A-21D. In other words, the dummy pattern 85 does not function as the transformers 21A-21D.
  • the dummy pattern 85 is formed as a shield conductor layer that shields the electric field between the low-potential coil 22 and the high-potential coil 23 in the transformers 21A-21D and suppresses electric field concentration on the high-potential coil 23.
  • the dummy pattern 85 is routed in a dense line shape so as to partially cover and partially expose the area around one or more high-potential coils 23 in plan view.
  • the dummy pattern 85 is routed with a line density equal to the line density of the high-potential coil 23 per unit area.
  • the fact that the line density of the dummy patterns 85 is equal to the line density of the high-potential coil 23 means that the line density of the dummy patterns 85 is within ⁇ 20% of the line density of the high-potential coil 23 .
  • the dummy pattern 85 is preferably formed in a region close to the high potential coil 23 with respect to the low potential terminal 11 in plan view. That the dummy pattern 85 is close to the high potential coil 23 in plan view means that the distance between the dummy pattern 85 and the high potential coil 23 is less than the distance between the dummy pattern 85 and the low potential terminal 11 . .
  • the depth position of the dummy pattern 85 inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field strength to be alleviated.
  • the dummy pattern 85 is preferably formed in a region closer to the high-potential coil 23 than the low-potential coil 22 with respect to the normal direction Z. As shown in FIG.
  • the dummy pattern 85 being close to the high-potential coil 23 in the normal direction Z means that the distance between the dummy pattern 85 and the high-potential coil 23 in the normal direction Z is equal to the distance between the dummy pattern 85 and the low-potential coil 22 in the normal direction Z. means less than the distance of
  • electric field concentration on the high-potential coil 23 can be appropriately suppressed.
  • the electric field concentration on the high-potential coil 23 can be suppressed.
  • Dummy pattern 85 is preferably formed in the same interlayer insulating layer 57 as high-potential coil 23 . In this case, electric field concentration on the high-potential coil 23 can be suppressed more appropriately.
  • the dummy pattern 85 is preferably formed around the multiple high potential coils 23 so as to be interposed between the multiple high potential coils 23 adjacent to each other in plan view.
  • the area between the adjacent high-potential coils 23 can be used to suppress unwanted electric field concentration on the high-potential coils 23 .
  • the dummy pattern 85 is preferably interposed in a region between the low potential terminal 11 and the high potential coil 23 in plan view. In this case, unwanted conduction between the low potential terminal 11 and the high potential coil 23 due to electric field concentration in the high potential coil 23 can be suppressed. Dummy pattern 85 is preferably interposed in a region between low potential terminal 11 and high potential terminal 12 in plan view. In this case, unwanted conduction between the low potential terminal 11 and the high potential terminal 12 due to electric field concentration of the high potential coil 23 can be suppressed.
  • the dummy pattern 85 is formed along the multiple high-potential coils 23 in a plan view, and intervenes in regions between the multiple adjacent high-potential coils 23 . Moreover, the dummy pattern 85 collectively surrounds a region including the plurality of high-potential coils 23 and the plurality of high-potential terminals 12 in plan view. Also, the dummy pattern 85 is interposed in a region between the plurality of low potential terminals 11A to 11F and the plurality of high potential coils 23 in plan view. Also, the dummy pattern 85 is interposed in a region between the plurality of low potential terminals 11A to 11F and the plurality of high potential terminals 12A to 12F in plan view.
  • dummy pattern 85 includes a plurality of dummy patterns having different electrical states.
  • Dummy patterns 85 include high potential dummy patterns 86 .
  • the high-potential dummy pattern 86 is formed in the insulating layer 51 so as to be positioned around the transformers 21A to 21D in plan view.
  • the high-potential dummy pattern 86 is formed in a pattern (discontinuous pattern) different from that of the high-potential coil 23 and the low-potential coil 22, and is independent of the transformers 21A-21D. In other words, the high potential dummy pattern 86 does not function as the transformers 21A-21D.
  • the high-potential dummy pattern 86 is routed in a dense line shape so as to partially cover and partially expose the area around the high-potential coil 23 in plan view.
  • the high potential dummy pattern 86 is routed with a line density equal to the line density of the high potential coil 23 per unit area.
  • the line density of the high-potential dummy pattern 86 being equal to the line density of the high-potential coil 23 means that the line density of the high-potential dummy pattern 86 is within ⁇ 20% of the line density of the high-potential coil 23. .
  • the high-potential dummy pattern 86 shields the electric field between the low-potential coil 22 and the high-potential coil 23 in the transformers 21A-21D, and suppresses electric field concentration on the high-potential coil 23. Specifically, the high-potential dummy pattern 86 shields the electric field between the low-potential coil 22 and the high-potential coil 23 , thereby keeping the electric field leaking to the upper side of the high-potential coil 23 away from the high-potential coil 23 . As a result, electric field concentration in the high potential coil 23 caused by the electric field leaking to the upper side of the high potential coil 23 is suppressed.
  • a voltage exceeding the voltage applied to the low potential coil 22 is applied to the high potential dummy pattern 86 .
  • the voltage applied to the high potential coil 23 is preferably applied to the high potential dummy pattern 86 . That is, the high potential dummy pattern 86 is preferably fixed at the same potential as the high potential coil 23 .
  • the voltage drop between the high-potential coil 23 and the high-potential dummy pattern 86 can be reliably suppressed, so that the electric field concentration on the high-potential coil 23 can be appropriately suppressed.
  • the depth position of the high-potential dummy pattern 86 inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field strength to be alleviated.
  • the high-potential dummy pattern 86 is preferably formed in a region closer to the high-potential coil 23 than the low-potential coil 22 with respect to the normal direction Z. As shown in FIG.
  • the high-potential dummy pattern 86 being close to the high-potential coil 23 in the normal direction Z means that the distance between the high-potential dummy pattern 86 and the high-potential coil 23 in the normal direction Z is equal to the high-potential dummy pattern 86 and the low-potential coil 23 . It means less than the distance between the coils 22 .
  • electric field concentration on the high-potential coil 23 can be appropriately suppressed.
  • the electric field concentration on the high-potential coil 23 can be suppressed.
  • the high potential dummy pattern 86 is preferably formed in the same interlayer insulating layer 57 as the high potential coil 23 . In this case, electric field concentration on the high-potential coil 23 can be suppressed more appropriately.
  • the high-potential dummy pattern 86 is preferably formed in a region close to the high-potential coil 23 with respect to the low-potential terminal 11 in plan view.
  • the high-potential dummy pattern 86 being close to the high-potential coil 23 in plan view means that the distance between the high-potential dummy pattern 86 and the high-potential coil 23 is less than the distance between the high-potential dummy pattern 86 and the low-potential terminal 11 . It means that there is
  • the high-potential dummy pattern 86 is preferably formed around the high-potential coils 23 so as to be interposed between the high-potential coils 23 adjacent to each other in plan view.
  • the area between the adjacent high-potential coils 23 can be used to suppress unwanted electric field concentration on the high-potential coils 23 .
  • the high potential dummy pattern 86 is preferably interposed in a region between the low potential terminal 11 and the high potential coil 23 in plan view. In this case, unwanted conduction between the low potential terminal 11 and the high potential coil 23 due to electric field concentration in the high potential coil 23 can be suppressed.
  • High potential dummy pattern 86 is preferably interposed in a region between low potential terminal 11 and high potential terminal 12 in plan view. In this case, unwanted conduction between the low potential terminal 11 and the high potential terminal 12 due to electric field concentration of the high potential coil 23 can be suppressed.
  • the high potential dummy pattern 86 is formed along the plurality of high potential coils 23 in plan view, and intervenes in regions between the plurality of adjacent high potential coils 23 . Also, the high potential dummy pattern 86 collectively surrounds a region including the plurality of high potential coils 23 and the plurality of high potential terminals 12 in plan view. Also, the high potential dummy pattern 86 is interposed in a region between the plurality of low potential terminals 11A to 11F and the plurality of high potential coils 23 in plan view. Also, the high potential dummy pattern 86 is interposed in a region between the plurality of low potential terminals 11A to 11F and the plurality of high potential terminals 12A to 12F in plan view.
  • the high-potential dummy pattern 86 is drawn around the high-potential terminals 12E and 12F so as to expose regions immediately below the high-potential terminals 12E and 12F in regions between the plurality of high-potential coils 23 that are adjacent in plan view. being turned. A portion of the high potential dummy pattern 86 may face the high potential terminals 12A to 12F in the normal direction Z. FIG. In this case, the high potential terminals 12 ⁇ /b>E and 12 ⁇ /b>F, like the high potential dummy pattern 86 , suppress the electric field leaking to the upper side of the high potential coil 23 by shielding the electric field. That is, the high-potential terminals 12E and 12F are formed as shield conductor layers for suppressing electric field concentration on the high-potential coil 23 together with the high-potential dummy pattern 86 .
  • the high-potential dummy pattern 86 is preferably formed to have ends. In this case, formation of a current loop circuit (closed circuit) in the high-potential dummy pattern 86 can be suppressed. Thereby, noise caused by the current flowing through the high-potential dummy pattern 86 is suppressed. As a result, it is possible to suppress unwanted electric field concentration caused by noise, and at the same time, it is possible to suppress variations in the electrical characteristics of the transformers 21A to 21D.
  • the high potential dummy pattern 86 specifically includes a first high potential dummy pattern 87 and a second high potential dummy pattern 88 .
  • the first high-potential dummy pattern 87 is formed in a region between the plurality of transformers 21A to 21D (the plurality of high-potential coils 23) adjacent to each other in plan view.
  • the second high-potential dummy pattern 88 is formed in an area outside the area between the plurality of transformers 21A to 21D (the plurality of high-potential coils 23) adjacent to each other in plan view.
  • a region between the adjacent first transformer 21A (high potential coil 23) and second transformer 21B (high potential coil 23) is hereinafter referred to as a first region 89.
  • a region between the second transformer 21B (high potential coil 23) and the third transformer 21C (high potential coil 23) is called a second region 90.
  • FIG. A region between the third transformer 21C (high potential coil 23) and the fourth transformer 21D (high potential coil 23) is called a third region 91.
  • the first high-potential dummy pattern 87 is electrically connected to the high-potential terminal 12 (fifth high-potential terminal 12E) through the first high-potential wiring 33 in this embodiment.
  • the first high-potential dummy pattern 87 specifically includes a first connection portion 92 connected to the first high-potential wiring 33 .
  • the position of the first connecting portion 92 is arbitrary. Thereby, the first high-potential dummy pattern 87 is fixed to the same potential as the plurality of high-potential coils 23 .
  • the first high-potential dummy pattern 87 is a first pattern 93 formed in the first region 89, a second pattern 94 formed in the second region 90, and a third pattern 94 formed in the third region 91.
  • a third pattern 95 is included.
  • the first high-potential dummy pattern 87 suppresses the electric field leaking to the upper side of the high-potential coil 23 in the first region 89, the second region 90, and the third region 91, and prevents the adjacent high-potential coils 23 from leaking out. Suppress electric field concentration for
  • the first pattern 93, the second pattern 94 and the third pattern 95 are integrally formed and fixed at the same potential.
  • the first pattern 93, the second pattern 94 and the third pattern 95 may be separated as long as they are fixed at the same potential.
  • the first pattern 93 is connected to the first high-potential wiring 33 via the first connecting portion 92.
  • the first pattern 93 is drawn in a dense line shape so as to partially cover the first region 89 in plan view.
  • the first pattern 93 is formed in the first region 89 spaced apart from the high potential terminal 12 (fifth high potential terminal 12E) in plan view, and does not face the high potential terminal 12 in the normal direction Z.
  • the first pattern 93 is formed spaced apart from the low-potential connection wiring 72 in plan view, and does not face the low-potential connection wiring 72 in the normal direction Z.
  • the insulation distance between the first pattern 93 and the low-potential connection wiring 72 is increased, and the withstand voltage of the insulation layer 51 is increased.
  • the first pattern 93 includes a first perimeter line 96 , a second perimeter line 97 and a plurality of first intermediate lines 98 .
  • the first outer peripheral line 96 extends in a strip shape along the periphery of the high-potential coil 23 of the first transformer 21A.
  • the first outer peripheral line 96 is formed in a ring shape having an open end in the first region 89 in plan view.
  • the width of the open end of the first peripheral line 96 is less than the width along the second direction Y of the high-potential coil 23 .
  • the width of the first peripheral line 96 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the first peripheral line 96 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the first perimeter line 96 is defined by the width in the direction perpendicular to the direction in which the first perimeter line 96 extends.
  • the width of the first peripheral line 96 is preferably equal to the width of the high potential coil 23 . That the width of the first outer peripheral line 96 is equal to the width of the high potential coil 23 means that the width of the first outer peripheral line 96 is within ⁇ 20% of the width of the high potential coil 23 .
  • the first pitch between the first outer peripheral line 96 and the high-potential coil 23 (first transformer 21A) may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the first pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the first pitch is preferably equal to the second winding pitch of the high potential coil 23 . That the first pitch is equal to the first winding pitch means that the first pitch falls within ⁇ 20% of the first winding pitch.
  • the second outer circumference line 97 extends in a belt shape along the circumference of the high-potential coil 23 of the second transformer 21B.
  • the second outer peripheral line 97 is formed in a ring shape having an open end in the first region 89 in plan view.
  • the width of the open end of the second outer peripheral line 97 is less than the width along the second direction Y of the high potential coil 23 .
  • the open end of the second outer peripheral line 97 faces the open end of the first outer peripheral line 96 along the first direction X. As shown in FIG.
  • the width of the second peripheral line 97 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the second peripheral line 97 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the second peripheral line 97 is defined by the width in the direction orthogonal to the direction in which the second peripheral line 97 extends.
  • the width of the second peripheral line 97 is preferably equal to the width of the high potential coil 23 . That the width of the second peripheral line 97 is equal to the width of the high-potential coil 23 means that the width of the second peripheral line 97 is within ⁇ 20% of the width of the high-potential coil 23 .
  • the second pitch between the second outer peripheral line 97 and the high potential coil 23 (second transformer 21B) may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the second pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the second pitch is preferably equal to the second winding pitch of the high potential coil 23 . That the second pitch is equal to the second winding pitch means that the second pitch falls within ⁇ 20% of the second winding pitch.
  • a plurality of first intermediate lines 98 extend in a strip shape in the first region 89 between the first outer peripheral line 96 and the second outer peripheral line 97 .
  • the plurality of first intermediate lines 98 includes at least one (one in this embodiment) first connection line 99 electrically connecting the first peripheral line 96 and the second peripheral line 97 .
  • the plurality of first intermediate lines 98 include only one first connection line 99 .
  • the position of the first connection line 99 is arbitrary.
  • At least one of the plurality of first intermediate lines 98 is formed with a slit 100 that cuts off a current loop circuit.
  • the positions of the slits 100 are appropriately adjusted by designing the plurality of first intermediate lines 98 .
  • the plurality of first intermediate lines 98 are preferably formed in strips extending along the facing direction of the plurality of high-potential coils 23 .
  • the plurality of first intermediate lines 98 are each formed in a band shape extending in the first direction X and are formed in the second direction Y at intervals.
  • the plurality of first intermediate lines 98 are formed in stripes extending in the first direction X as a whole when viewed from above.
  • the plurality of first intermediate lines 98 specifically includes a plurality of first lead-out portions 101 and a plurality of second lead-out portions 102 .
  • the plurality of first lead-out portions 101 are led out in stripes from the first outer peripheral line 96 toward the second outer peripheral line 97 .
  • the distal end portions of the plurality of first drawn portions 101 are spaced from the first outer peripheral line 96 toward the second outer peripheral line 97 side.
  • the plurality of second lead-out portions 102 are led out in stripes from the second outer peripheral line 97 toward the first outer peripheral line 96 .
  • the distal end portions of the plurality of second lead-out portions 102 are spaced from the second outer peripheral line 97 toward the first outer peripheral line 96 side.
  • the plurality of second lead-out portions 102 are alternately spaced apart from the plurality of first lead-out portions 101 in the second direction Y so as to sandwich one first lead-out portion 101 therebetween.
  • the plurality of second drawer portions 102 may sandwich the plurality of first drawer portions 101 . Also, the group including the plurality of second lead-out portions 102 may be formed so as to be adjacent to the group including the plurality of first lead-out portions 101 .
  • the slits 100 , the plurality of first lead portions 101 and the plurality of second lead portions 102 suppress the formation of current loop circuits in the first pattern 93 .
  • the width of the first intermediate line 98 in the second direction Y may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the first intermediate line 98 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the first intermediate line 98 is preferably equal to the width of the high potential coil 23 . That the width of the first intermediate line 98 is equal to the width of the high potential coil 23 means that the width of the first intermediate line 98 is within ⁇ 20% of the width of the high potential coil 23 .
  • the third pitch between two adjacent first intermediate lines 98 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the third pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • a third pitch is defined by the distance between adjacent first intermediate lines 98 with respect to the second direction Y. As shown in FIG.
  • the third pitches are preferably equal to each other. That the third pitches are equal to each other means that the third pitches fall within ⁇ 20% of the third pitch.
  • the third pitch is preferably equal to the second winding pitch of the high potential coil 23 . That the third pitch is equal to the second winding pitch means that the third pitch falls within ⁇ 20% of the second winding pitch.
  • the second pattern 94 is electrically connected to the high potential terminal 12 via the first high potential wiring 33. As shown in FIG. The second pattern 94 is electrically connected to the first high-potential wiring 33 (fifth high-potential terminal 12E) via the second outer peripheral line 97 of the first pattern 93 in this embodiment. The second pattern 94 is drawn in a dense line shape so as to cover the second region 90 .
  • the second pattern 94 includes the aforementioned second peripheral line 97 , third peripheral line 103 and a plurality of second intermediate lines 104 .
  • the third outer circumference line 103 extends in a belt shape along the circumference of the high potential coil 23 of the third transformer 21C.
  • the third outer peripheral line 103 is formed in a ring shape having an open end in the third region 91 in plan view.
  • the width of the open end of the third outer peripheral line 103 is less than the width along the second direction Y of the high potential coil 23 of the third transformer 21C.
  • the width of the third outer peripheral line 103 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the third outer peripheral line 103 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the third perimeter line 103 is defined by the width in the direction orthogonal to the direction in which the third perimeter line 103 extends.
  • the width of the third peripheral line 103 is preferably equal to the width of the high potential coil 23 . That the width of the third outer peripheral line 103 is equal to the width of the high potential coil 23 means that the width of the third outer peripheral line 103 is within ⁇ 20% of the width of the high potential coil 23 .
  • the fourth pitch between the third outer peripheral line 103 and the high potential coil 23 (third transformer 21C) may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the fourth pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the fourth pitch is preferably equal to the second winding pitch of the high potential coil 23 . That the fourth pitch is equal to the second winding pitch means that the fourth pitch falls within ⁇ 20% of the second winding pitch.
  • a plurality of second intermediate lines 104 extend in a strip shape in the second region 90 between the second outer peripheral line 97 and the third outer peripheral line 103 .
  • the plurality of second intermediate lines 104 includes at least one (one in this embodiment) second connection line 105 electrically connecting the second peripheral line 97 and the third peripheral line 103 .
  • the plurality of second intermediate lines 104 include only one second connection line 105 .
  • the second connecting line 105 may have a width exceeding that of the other second intermediate lines 104 .
  • the position of the second connection line 105 is arbitrary.
  • At least one of the plurality of second intermediate lines 104 is formed with a slit 106 that cuts off a current loop circuit. The positions of the slits 106 are appropriately adjusted by designing the plurality of second intermediate lines 104 .
  • the plurality of second intermediate lines 104 are preferably formed in strips extending along the facing direction of the plurality of high-potential coils 23 .
  • the plurality of second intermediate lines 104 are each formed in a band shape extending in the first direction X and are formed in the second direction Y at intervals.
  • the plurality of second intermediate lines 104 are formed in a stripe shape extending in the first direction X as a whole in plan view.
  • the plurality of second intermediate lines 104 specifically includes a plurality of third lead portions 107 and a plurality of fourth lead portions 108 .
  • a plurality of third lead portions 107 are led out in stripes from the second outer peripheral line 97 toward the third outer peripheral line 103 .
  • the distal end portions of the plurality of third drawn portions 107 are spaced from the third outer peripheral line 103 toward the second outer peripheral line 97 side.
  • the plurality of fourth lead-out portions 108 are led out in stripes from the third outer peripheral line 103 toward the second outer peripheral line 97 .
  • the distal end portions of the plurality of fourth drawn portions 108 are spaced apart from the second outer peripheral line 97 toward the third outer peripheral line 103 .
  • the plurality of fourth lead-out portions 108 are alternately spaced apart from the plurality of third lead-out portions 107 in the second direction Y so as to sandwich one third lead-out portion 107 therebetween.
  • the plurality of fourth drawer portions 108 may sandwich the plurality of third drawer portions 107 . Also, a group including a plurality of fourth lead portions 108 may be formed so as to be adjacent to a group including a plurality of third lead portions 107 .
  • the slits 106 , the plurality of third lead portions 107 and the plurality of fourth lead portions 108 suppress the formation of current loop circuits in the second pattern 94 .
  • the width of the second intermediate line 104 in the second direction Y may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the second intermediate line 104 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the second intermediate line 104 is preferably equal to the width of the high potential coil 23 . That the width of the second intermediate line 104 is equal to the width of the high potential coil 23 means that the width of the second intermediate line 104 is within ⁇ 20% of the width of the high potential coil 23 .
  • the fifth pitch between two adjacent second intermediate lines 104 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the fifth pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • a fifth pitch is defined by the distance between adjacent second intermediate lines 104 with respect to the second direction Y. As shown in FIG.
  • the fifth pitches are preferably equal to each other. That the fifth pitches are equal to each other means that the fifth pitches fall within a range of ⁇ 20% of the fifth pitch.
  • the fifth pitch is preferably equal to the second winding pitch of the high potential coil 23 . That the fifth pitch is equal to the second winding pitch means that the fifth pitch falls within ⁇ 20% of the second winding pitch.
  • the third pattern 95 is electrically connected to the first high-potential wiring 33. As shown in FIG. The third pattern 95 is electrically connected to the first high-potential wiring 33 via the second pattern 94 and the first pattern 93 in this embodiment.
  • the third pattern 95 is drawn in a dense line shape so as to cover a part of the third region 91 .
  • the third pattern 95 is formed in the third region 91 spaced apart from the high potential terminal 12 (sixth high potential terminal 12F) in plan view, and does not face the high potential terminal 12 in the normal direction Z.
  • the third pattern 95 is spaced apart from the low-potential connection wiring 72 in plan view, and does not face the low-potential connection wiring 72 in the normal direction Z. As a result, the insulation distance between the third pattern 95 and the low-potential connection wiring 72 is increased in the normal direction Z, and the withstand voltage of the insulation layer 51 is increased.
  • the third pattern 95 includes the aforementioned third peripheral line 103 , fourth peripheral line 109 and a plurality of third intermediate lines 110 .
  • the fourth outer circumference line 109 extends in a belt shape along the circumference of the high potential coil 23 of the fourth transformer 21D.
  • the fourth outer peripheral line 109 is formed in a ring shape having an open end in the third region 91 in plan view.
  • the width of the open end of the fourth outer peripheral line 109 is less than the width along the second direction Y of the high potential coil 23 of the fourth transformer 21D.
  • the open end of the fourth perimeter line 109 faces the open end of the third perimeter line 103 along the first direction X. As shown in FIG.
  • the width of the fourth outer peripheral line 109 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the fourth outer peripheral line 109 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the fourth perimeter line 109 is defined by the width in the direction orthogonal to the direction in which the fourth perimeter line 109 extends.
  • the width of the fourth peripheral line 109 is preferably equal to the width of the high potential coil 23 . That the width of the fourth outer peripheral line 109 is equal to the width of the high potential coil 23 means that the width of the fourth outer peripheral line 109 is within ⁇ 20% of the width of the high potential coil 23 .
  • the sixth pitch between the fourth outer peripheral line 109 and the high potential coil 23 (fourth transformer 21D) may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the sixth pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the sixth pitch means equal to the second winding pitch of the high potential coil 23 . That the sixth pitch is equal to the second winding pitch means that the sixth pitch falls within ⁇ 20% of the second winding pitch.
  • a plurality of third intermediate lines 110 extend in a strip shape in the third region 91 between the third outer peripheral line 103 and the fourth outer peripheral line 109 .
  • the plurality of third intermediate lines 110 includes at least one (one in this embodiment) third connection line 111 electrically connecting the third peripheral line 103 and the fourth peripheral line 109 .
  • the plurality of third intermediate lines 110 include only one third connection line 111 .
  • the position of the third connection line 111 is arbitrary.
  • At least one of the plurality of third intermediate lines 110 is formed with a slit 112 that cuts off a current loop circuit.
  • the positions of the slits 112 are appropriately adjusted by designing the plurality of third intermediate lines 110 .
  • the plurality of third intermediate lines 110 are preferably formed in strips extending along the facing direction of the plurality of high-potential coils 23 .
  • the plurality of third intermediate lines 110 are each formed in a band shape extending in the first direction X and are formed in the second direction Y at intervals.
  • the plurality of third intermediate lines 110 are formed in a stripe shape as a whole in plan view.
  • the plurality of third intermediate lines 110 includes a plurality of fifth lead portions 113 and a plurality of sixth lead portions 114 in this embodiment.
  • a plurality of fifth lead portions 113 are led out in stripes from the third outer peripheral line 103 toward the fourth outer peripheral line 109 .
  • the distal end portions of the plurality of fifth drawn portions 113 are spaced from the fourth outer peripheral line 109 toward the third outer peripheral line 103 side.
  • the plurality of sixth lead-out portions 114 are led out in stripes from the fourth outer peripheral line 109 toward the third outer peripheral line 103 .
  • the distal end portions of the plurality of sixth drawn portions 114 are spaced from the third outer peripheral line 103 toward the fourth outer peripheral line 109 side.
  • the plurality of sixth drawn portions 114 are formed alternately with the plurality of fifth drawn portions 113 in the second direction Y so as to sandwich one fifth drawn portion 113 .
  • the plurality of sixth drawn portions 114 may sandwich the plurality of fifth drawn portions 113 . Also, the group including the plurality of sixth drawn portions 114 may be formed adjacent to the group including the plurality of fifth drawn portions 113 .
  • the slits 112 , the plurality of fifth lead portions 113 and the plurality of sixth lead portions 114 suppress the formation of current loop circuits in the third pattern 95 .
  • the width of the third intermediate line 110 in the second direction Y may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the third intermediate line 110 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the third intermediate line 110 is preferably equal to the width of the high potential coil 23 . That the width of the third intermediate line 110 is equal to the width of the high potential coil 23 means that the width of the third intermediate line 110 is within ⁇ 20% of the width of the high potential coil 23 .
  • the seventh pitch between two adjacent third intermediate lines 110 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the seventh pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • a seventh pitch is defined by the distance between adjacent third intermediate lines 110 with respect to the second direction Y. As shown in FIG.
  • the seventh pitches are preferably equal to each other. That the seventh pitches are equal to each other means that the seventh pitches fall within a range of ⁇ 20% of the seventh pitch.
  • the seventh pitch is preferably equal to the second winding pitch of the high potential coil 23 . That the seventh pitch is equal to the second winding pitch means that the seventh pitch falls within ⁇ 20% of the second winding pitch.
  • the second high potential dummy pattern 88 is electrically connected to the high potential terminal 12 via the first high potential dummy pattern 87 in this embodiment.
  • the second high potential dummy pattern 88 specifically includes a second connection portion 115 connected to the first high potential dummy pattern 87 .
  • the position of the second connecting portion 115 is arbitrary. Thereby, the second high-potential dummy pattern 88 is fixed at the same potential as the plurality of high-potential coils 23 .
  • the second high-potential dummy pattern 88 suppresses the electric field leaking to the upper side of the high-potential coils 23 in regions other than the first region 89 , the second region 90 and the third region 91 , and suppresses the electric field to the plurality of high-potential coils 23 . curb concentration.
  • the second high-potential dummy pattern 88 collectively surrounds a region including the plurality of high-potential coils 23 and the plurality of high-potential terminals 12A to 12F in plan view.
  • the second high-potential dummy pattern 88 is formed in an oval ring shape (elliptical ring shape) in plan view.
  • the second high potential dummy pattern 88 is interposed in the region between the plurality of low potential terminals 11A to 11F and the plurality of high potential coils 23 in plan view. Also, the second high potential dummy pattern 88 is interposed in a region between the plurality of low potential terminals 11A to 11F and the plurality of high potential terminals 12A to 12F in plan view.
  • the second high potential dummy pattern 88 includes a plurality (six in this embodiment) of high potential lines 116A, 116B, 116C, 116D, 116E and 116F.
  • the number of high potential lines is adjusted according to the electric field to be relieved.
  • the plurality of high potential lines 116A to 116F are spaced apart in this order in the direction away from the plurality of high potential coils 23. As shown in FIG.
  • the plurality of high potential lines 116A to 116F collectively surround the plurality of high potential coils 23 in plan view. Specifically, the plurality of high potential lines 116A to 116F collectively surrounds a region including the plurality of high potential coils 23 and the plurality of high potential terminals 12A to 12F in plan view.
  • the plurality of high-potential lines 116A to 116F are formed in an oval ring shape (elliptical ring shape) in plan view in this embodiment.
  • a plurality of high potential lines 116A to 116F each include a slit 117 that cuts off a current loop circuit.
  • the positions of the slits 117 are appropriately adjusted according to the design of the plurality of high potential lines 116A-116F.
  • the width of the high potential lines 116A to 116F may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the high potential lines 116A to 116F is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the high potential lines 116A-116F is defined by the width in the direction orthogonal to the direction in which the high potential lines 116A-116F extend.
  • the width of the high potential lines 116A-116F is preferably equal to the width of the high potential coil 23.
  • FIG. That the width of the high potential lines 116A to 116F is equal to the width of the high potential coil 23 means that the width of the high potential lines 116A to 116F is within ⁇ 20% of the width of the high potential coil 23.
  • the eighth pitch between two adjacent high potential lines 116A to 116F may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the eighth pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the eighth pitches are preferably equal to each other. That the eighth pitches are equal to each other means that the eighth pitches fall within ⁇ 20% of the eighth pitches.
  • the ninth pitch between the adjacent first high-potential dummy pattern 87 and second high-potential dummy pattern 88 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the ninth pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the ninth pitch is preferably equal to the second winding pitch of the high potential coil 23 .
  • the ninth pitch being equal to the second winding pitch means that the ninth pitch falls within ⁇ 20% of the second winding pitch.
  • the number, width, pitch, etc. of the plurality of high potential lines 116A to 116F are arbitrary and adjusted according to the electric field to be relieved.
  • dummy pattern 85 includes floating dummy pattern 121 formed in an electrically floating state within insulating layer 51 so as to be positioned around transformers 21A to 21D in plan view. .
  • the floating dummy pattern 121 is formed in a pattern (discontinuous pattern) different from that of the high-potential coil 23 and the low-potential coil 22, and is independent of the transformers 21A-21D. In other words, the floating dummy pattern 121 does not function as the transformers 21A-21D.
  • the floating dummy pattern 121 is drawn in a dense line shape so as to partially cover and partially expose the area around the high-potential coil 23 in plan view.
  • the floating dummy pattern 121 may be formed in a shape with an end, or may be formed in a shape without an end.
  • the floating dummy pattern 121 is routed with a line density equal to the line density of the high-potential coil 23 per unit area. That the line density of the floating dummy patterns 121 is equal to the line density of the high-potential coil 23 means that the line density of the floating dummy patterns 121 is within ⁇ 20% of the line density of the high-potential coil 23 .
  • the floating dummy pattern 121 is routed with a line density equal to the line density of the high-potential dummy pattern 86 per unit area.
  • the line density of the floating dummy pattern 121 being equal to the line density of the high potential dummy pattern 86 means that the line density of the floating dummy pattern 121 is within ⁇ 20% of the line density of the high potential dummy pattern 86. .
  • the floating dummy pattern 121 shields the electric field between the low-potential coil 22 and the high-potential coil 23 in the transformers 21A-21D and suppresses electric field concentration on the high-potential coil 23. Specifically, the floating dummy pattern 121 disperses the electric field leaking to the upper side of the high-potential coil 23 in the direction away from the high-potential coil 23 . As a result, electric field concentration on the high-potential coil 23 can be suppressed.
  • the floating dummy pattern 121 disperses the electric field leaking to the upper side of the high-potential dummy pattern 86 around the high-potential dummy pattern 86 in the direction away from the high-potential coil 23 and the high-potential dummy pattern 86 .
  • electric field concentration on the high-potential dummy pattern 86 can be suppressed, and electric field concentration on the high-potential coil 23 can be appropriately suppressed.
  • the depth position of the floating dummy pattern 121 inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field strength to be relaxed.
  • the floating dummy pattern 121 is preferably formed in a region closer to the high potential coil 23 with respect to the normal direction Z than the low potential coil 22 .
  • the fact that the floating dummy pattern 121 is close to the high potential coil 23 in the normal direction Z means that the distance between the floating dummy pattern 121 and the high potential coil 23 in the normal direction Z is equal to that of the floating dummy pattern 121 and the low potential coil 22. means less than the distance between
  • electric field concentration on the high-potential coil 23 can be appropriately suppressed.
  • electric field concentration on the high-potential coil 23 can be suppressed.
  • the floating dummy pattern 121 is preferably formed in the same interlayer insulating layer 57 as the high-potential coil 23 . In this case, electric field concentration on the high-potential coil 23 can be suppressed more appropriately.
  • the floating dummy pattern 121 is preferably interposed in a region between the low potential terminal 11 and the high potential coil 23 in plan view. In this case, unwanted conduction between the low potential terminal 11 and the high potential coil 23 due to electric field concentration in the high potential coil 23 can be suppressed.
  • Floating dummy pattern 121 is preferably interposed in a region between low potential terminal 11 and high potential terminal 12 in plan view. In this case, unwanted conduction between the low potential terminal 11 and the high potential terminal 12 due to electric field concentration of the high potential coil 23 can be suppressed.
  • the floating dummy pattern 121 is formed along the multiple high-potential coils 23 in plan view. Specifically, the floating dummy pattern 121 collectively surrounds a region including the plurality of high-potential coils 23 and the plurality of high-potential terminals 12 in plan view. In this form, the floating dummy pattern 121 collectively covers a region including the plurality of high potential coils 23 and the plurality of high potential terminals 12 with the high potential dummy pattern 86 (second high potential dummy pattern 88) sandwiched therebetween in plan view. Surrounding.
  • the floating dummy pattern 121 is interposed in the region between the plurality of low potential terminals 11A to 11F and the plurality of high potential coils 23 in plan view. Further, the floating dummy pattern 121 is interposed in a region between the plurality of low potential terminals 11A to 11F and the plurality of high potential terminals 12A to 12F in plan view.
  • the number of floating lines is arbitrary and adjusted according to the electric field to be relaxed.
  • the floating dummy pattern 121 in this form includes a plurality of (six in this figure) floating lines 122A, 122B, 122C, 122D, 122E, and 122F.
  • the plurality of floating lines 122A to 122F are spaced apart in this order in the direction away from the plurality of high-potential coils 23. As shown in FIG.
  • the multiple floating lines 122A to 122F collectively surround the multiple high-potential coils 23 in plan view. Specifically, the plurality of floating lines 122A to 122F collectively surrounds a region including the plurality of high potential coils 23 and the plurality of high potential terminals 12A to 12F with the high potential dummy pattern 86 interposed therebetween in plan view. . In this form, the plurality of floating lines 122A to 122F are formed in an oval ring shape (elliptic ring shape) in plan view.
  • the width of the floating lines 122A to 122F may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the floating lines 122A-122F is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the floating lines 122A-122F is defined by the width in the direction orthogonal to the direction in which the floating lines 122A-122F extend.
  • a tenth pitch between two adjacent floating lines 122A to 122F may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the tenth pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of floating lines 122A-122F is preferably equal to the width of high potential coil . That the width of the floating lines 122A to 122F is equal to the width of the high potential coil 23 means that the width of the floating lines 122A to 122F is within ⁇ 20% of the width of the high potential coil .
  • the eleventh pitch between the floating dummy pattern 121 and the high potential dummy pattern 86 (second high potential dummy pattern 88) may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the eleventh pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the eleventh pitches are preferably equal to each other. That the 11th pitches are equal to each other means that the 11th pitches fall within ⁇ 20% of the 11th pitch.
  • the eleventh pitch is preferably equal to the second winding pitch of the high potential coil 23.
  • the eleventh pitch between the floating lines 122A-122F being equal to the second winding pitch means that the eleventh pitch is within ⁇ 20% of the second winding pitch. 12 to 14 show examples in which the eleventh pitch exceeds the second winding pitch for clarity.
  • the twelfth pitch between the floating dummy pattern 121 and the high potential dummy pattern 86 is preferably equal to the second winding pitch.
  • the twelfth pitch being equal to the second winding pitch means that the twelfth pitch is within ⁇ 20% of the second winding pitch.
  • the number, width, pitch, etc. of the plurality of floating lines 122A-122F are adjusted according to the electric field to be relieved, and are not limited to specific values.
  • the semiconductor device 5 includes a second functional device 60 formed on the first main surface 42 of the semiconductor chip 41 in the device region 62.
  • the second functional device 60 is formed using the surface layer portion of the first main surface 42 of the semiconductor chip 41 and/or the region above the first main surface 42 of the semiconductor chip 41, and includes the insulating layer 51 (lowermost It is covered by an insulating layer 55).
  • the second functional device 60 is simply indicated by the dashed line on the surface layer of the first main surface 42. As shown in FIG.
  • the second functional device 60 is electrically connected to the low potential terminal 11 via the low potential wiring and electrically connected to the high potential terminal 12 via the high potential wiring.
  • the low potential wiring has the same structure as the first low potential wiring 31 (second low potential wiring 32) except that it is routed in the insulating layer 51 so as to be connected to the second functional device 60. have.
  • the high-potential wiring has the same structure as the first high-potential wiring 33 (second high-potential wiring 34) except that it is routed in the insulating layer 51 so as to be connected to the second functional device 60. have.
  • a detailed description of the low-potential wiring and high-potential wiring related to the second functional device 60 is omitted.
  • the second functional device 60 may include at least one of a passive device, a semiconductor rectifying device and a semiconductor switching device.
  • the passive device, the second functional device 60 may include a network in which any two or more of passive devices, semiconductor rectifying devices and semiconductor switching devices are selectively combined.
  • the circuitry may form part or all of an integrated circuit.
  • Passive devices may include semiconductor passive devices. Passive devices may include either or both resistors and capacitors.
  • the semiconductor rectifier device may include at least one of a pn junction diode, a PIN diode, a Zener diode, a Schottky barrier diode and a fast recovery diode.
  • the semiconductor switching device may include at least one of BJT [Bipolar Junction Transistor], MISFET [Metal Insulator Field Effect Transistor], IGBT [Insulated Gate Bipolar Junction Transistor] and JFET [Junction Field Effect Transistor].
  • the semiconductor device 5 further includes a seal conductor 61 embedded within the insulating layer 51.
  • the seal conductor 61 is embedded in the insulating layer 51 in a wall shape with a gap from the insulating side walls 53A to 53D in plan view, and partitions the insulating layer 51 into a device region 62 and an outer region 63 .
  • the seal conductor 61 suppresses entry of moisture and cracks from the outer region 63 into the device region 62 .
  • the device region 62 includes a first functional device 45 (plurality of transformers 21), a second functional device 60, a plurality of low potential terminals 11, a plurality of high potential terminals 12, a first low potential wiring 31, and a second low potential wiring. 32 , first high potential wiring 33 , second high potential wiring 34 and dummy pattern 85 .
  • the outer area 63 is an area outside the device area 62 .
  • the seal conductor 61 is electrically separated from the device region 62 .
  • the seal conductor 61 includes the first functional device 45 (the plurality of transformers 21), the second functional device 60, the plurality of low potential terminals 11, the plurality of high potential terminals 12, the first low potential wiring 31, It is electrically separated from the second low potential wiring 32 , the first high potential wiring 33 , the second high potential wiring 34 and the dummy pattern 85 . More specifically, the seal conductor 61 is fixed in an electrically floating state. Seal conductor 61 does not form a current path leading to device region 62 .
  • the seal conductor 61 is formed in a strip shape along the insulating side walls 53 to 53D in plan view.
  • the seal conductor 61 is formed in a quadrangular ring shape (specifically, a rectangular ring shape) in plan view.
  • the seal conductor 61 defines a quadrangular (specifically rectangular) device region 62 in plan view.
  • the seal conductor 61 defines an outer region 63 of a quadrangular ring shape (specifically, a rectangular ring shape) surrounding the device region 62 in plan view.
  • the seal conductor 61 has an upper end portion on the insulating main surface 52 side, a lower end portion on the semiconductor chip 41 side, and a wall portion extending like a wall between the upper end portion and the lower end portion.
  • the upper end of the seal conductor 61 is spaced from the insulating main surface 52 toward the semiconductor chip 41 and positioned within the insulating layer 51 .
  • the upper end of the seal conductor 61 is covered with the top insulating layer 56 in this embodiment.
  • the upper ends of the seal conductors 61 may be covered by one or more interlayer insulation layers 57 .
  • the top end of the seal conductor 61 may be exposed from the top insulating layer 56 .
  • the bottom end of the seal conductor 61 is spaced from the semiconductor chip 41 toward the top end.
  • the seal conductor 61 is embedded in the insulating layer 51 so as to be located on the semiconductor chip 41 side with respect to the plurality of low potential terminals 11 and the plurality of high potential terminals 12 .
  • the seal conductor 61 includes the first functional device 45 (the plurality of transformers 21), the first low-potential wiring 31, the second low-potential wiring 32, the first high-potential wiring 33, and the second high-potential wiring within the insulating layer 51. It faces the wiring 34 and the dummy pattern 85 in a direction parallel to the insulating main surface 52 .
  • the seal conductor 61 may face a portion of the second functional device 60 in the insulating layer 51 in a direction parallel to the insulating main surface 52 .
  • the seal conductor 61 includes a plurality of seal plug conductors 64 and one or more (in this embodiment, more than one) seal via conductors 65 .
  • the number of seal via conductors 65 is arbitrary.
  • An uppermost seal plug conductor 64 of the plurality of seal plug conductors 64 forms the upper end of the seal conductor 61 .
  • a plurality of seal via conductors 65 form the lower ends of the seal conductors 61 respectively.
  • Seal plug conductor 64 and seal via conductor 65 are preferably made of the same conductive material as low potential coil 22 . That is, the seal plug conductor 64 and the seal via conductor 65 preferably include a barrier layer and a body layer like the low potential coil 22 and the like.
  • the plurality of seal plug conductors 64 are respectively embedded in the plurality of interlayer insulating layers 57 and formed in a quadrangular ring shape (specifically, a rectangular ring shape) surrounding the device region 62 in plan view.
  • a plurality of seal plug conductors 64 are stacked from the bottom insulating layer 55 toward the top insulating layer 56 so as to be connected to each other.
  • the number of laminated seal plug conductors 64 matches the number of laminated interlayer insulating layers 57 .
  • one or more seal plug conductors 64 may be formed to penetrate the multiple interlayer insulating layers 57 .
  • an assembly of a plurality of seal plug conductors 64 forms one annular seal conductor 61, it is not necessary for all of the plurality of seal plug conductors 64 to be annular.
  • at least one of the plurality of seal plug conductors 64 may be formed with ends.
  • at least one of the plurality of seal plug conductors 64 may be divided into a plurality of band-like portions with ends.
  • the plurality of seal plug conductors 64 be endless (annular).
  • a plurality of seal via conductors 65 are formed in regions between the semiconductor chip 41 and the seal plug conductors 64 in the bottom insulating layer 55 .
  • a plurality of seal via conductors 65 are formed spaced apart from the semiconductor chip 41 and connected to the seal plug conductors 64 .
  • the plurality of seal via conductors 65 have plane areas less than the plane area of the seal plug conductors 64 .
  • the single seal via conductor 65 may have a planar area equal to or larger than the planar area of the seal plug conductor 64 .
  • the width of the seal conductor 61 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the width of the seal conductor 61 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the seal conductor 61 is defined by the width in the direction orthogonal to the extending direction of the seal conductor 61 .
  • semiconductor device 5 further includes isolation structure 130 interposed between semiconductor chip 41 and seal conductor 61 for electrically isolating seal conductor 61 from semiconductor chip 41 .
  • Isolation structure 130 preferably includes an insulator.
  • the isolation structure 130 consists of the field insulating film 131 formed in the 1st main surface 42 of the semiconductor chip 41 in this form.
  • the field insulating film 131 includes at least one of an oxide film (silicon oxide film) and a nitride film (silicon nitride film).
  • the field insulating film 131 is preferably made of a LOCOS (local oxidation of silicon) film, which is an example of an oxide film formed by oxidizing the first main surface 42 of the semiconductor chip 41 .
  • the thickness of the field insulating film 131 is arbitrary as long as the semiconductor chip 41 and the seal conductor 61 can be insulated.
  • Field insulating film 131 may have a thickness of 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the isolation structure 130 is formed on the first main surface 42 of the semiconductor chip 41 and extends in a strip shape along the seal conductor 61 in plan view.
  • the separation structure 130 is formed in a quadrangular ring shape (specifically, a rectangular ring shape) in plan view.
  • the separation structure 130 has a connection portion 132 to which the lower end portion (seal via conductor 65) of the seal conductor 61 is connected.
  • the connection portion 132 may form an anchor portion in which the lower end portion (seal via conductor 65 ) of the seal conductor 61 bites toward the semiconductor chip 41 side.
  • the connecting portion 132 may be formed flush with the main surface of the isolation structure 130 .
  • the isolation structure 130 includes an inner end portion 130A on the device region 62 side, an outer end portion 130B on the outer region 63 side, and a body portion 130C between the inner end portion 130A and the outer end portion 130B.
  • the inner end portion 130A defines a region in which the second functional device 60 is formed (that is, the device region 62) in plan view.
  • the inner end portion 130A may be formed integrally with an insulating film (not shown) formed on the first main surface 42 of the semiconductor chip 41 .
  • the outer end portion 130B is exposed from the chip side walls 44A to 44D of the semiconductor chip 41 and continues to the chip side walls 44A to 44D of the semiconductor chip 41. As shown in FIG. More specifically, the outer end portion 130B is formed flush with the chip sidewalls 44A to 44D of the semiconductor chip 41. As shown in FIG. The outer end portion 130B forms a flush ground surface between the chip side walls 44A to 44D of the semiconductor chip 41 and the insulating side walls 53A to 53D of the insulating layer 51. As shown in FIG. Of course, in another form, the outer end 130B may be formed in the first major surface 42 spaced apart from the chip sidewalls 44A-44D.
  • the main body portion 130C has a flat surface extending substantially parallel to the first main surface 42 of the semiconductor chip 41 .
  • the body portion 130C has a connecting portion 132 to which the lower end portion (seal via conductor 65) of the seal conductor 61 is connected.
  • the connecting portion 132 is formed at a portion of the body portion 130C spaced apart from the inner end portion 130A and the outer end portion 130B.
  • the isolation structure 130 can take various forms other than the field insulating film 131 .
  • semiconductor device 5 further includes inorganic insulating layer 140 formed on insulating main surface 52 of insulating layer 51 so as to cover seal conductor 61 .
  • Inorganic insulating layer 140 may be referred to as a passivation layer. The inorganic insulating layer 140 protects the insulating layer 51 and the semiconductor chip 41 from above the insulating main surface 52 .
  • the inorganic insulating layer 140 has a laminated structure including a first inorganic insulating layer 141 and a second inorganic insulating layer 142 in this form.
  • the first inorganic insulating layer 141 may contain silicon oxide.
  • the first inorganic insulating layer 141 preferably contains USG (undoped silicate glass), which is silicon oxide with no impurity added.
  • the thickness of the first inorganic insulating layer 141 may be 50 nm or more and 5000 nm or less.
  • the second inorganic insulating layer 142 may contain silicon nitride.
  • the thickness of the second inorganic insulating layer 142 may be 500 nm or more and 5000 nm or less.
  • the breakdown voltage (V/cm) of USG exceeds the breakdown voltage (V/cm) of silicon nitride. Therefore, when the inorganic insulating layer 140 is thickened, it is preferable to form the first inorganic insulating layer 141 thicker than the second inorganic insulating layer 142 .
  • the first inorganic insulating layer 141 may contain at least one of BPSG (boron doped phosphor silicate glass) and PSG (phosphorus silicate glass) as an example of silicon oxide. However, in this case, since silicon oxide contains impurities (boron or phosphorus), it is particularly preferable to form the first inorganic insulating layer 141 made of USG in order to increase the withstand voltage on the high-potential coil 23 . .
  • the inorganic insulating layer 140 may have a single layer structure consisting of either the first inorganic insulating layer 141 or the second inorganic insulating layer 142 .
  • the inorganic insulating layer 140 covers the entire area of the seal conductor 61 and has a plurality of low potential pad openings 143 and a plurality of high potential pad openings 144 formed outside the seal conductor 61 .
  • a plurality of low potential pad openings 143 expose a plurality of low potential terminals 11 respectively.
  • a plurality of high potential pad openings 144 respectively expose a plurality of high potential terminals 12 .
  • the inorganic insulating layer 140 may have an overlapping portion that runs over the peripheral portion of the low potential terminal 11 .
  • the inorganic insulating layer 140 may have an overlapping portion overlying the peripheral portion of the high potential terminal 12 .
  • the semiconductor device 5 further includes an organic insulating layer 145 formed on the inorganic insulating layer 140 .
  • the organic insulating layer 145 may contain a photosensitive resin.
  • Organic insulating layer 145 may include at least one of polyimide, polyamide, and polybenzoxazole.
  • Organic insulating layer 145 comprises polyimide in this form.
  • the thickness of the organic insulating layer 145 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the organic insulating layer 145 preferably exceeds the total thickness of the inorganic insulating layer 140 . Furthermore, the total thickness of inorganic insulating layer 140 and organic insulating layer 145 is preferably equal to or greater than distance D2 between low potential coil 22 and high potential coil 23 . In this case, the total thickness of the inorganic insulating layer 140 is preferably 2 ⁇ m or more and 10 ⁇ m or less. Also, the thickness of the organic insulating layer 145 is preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the laminated film of the inorganic insulating layer 140 and the organic insulating layer 145 appropriately increases the withstand voltage of the high-potential coil 23. be able to.
  • the organic insulating layer 145 includes a first portion 146 covering the low potential side region and a second portion 147 covering the high potential side region.
  • the first portion 146 covers the seal conductor 61 with the inorganic insulating layer 140 interposed therebetween.
  • the first portion 146 has a plurality of low potential terminal openings 148 exposing the plurality of low potential terminals 11 (low potential pad openings 143 ) respectively in a region outside the seal conductor 61 .
  • the first portion 146 may have an overlap portion that runs over the periphery (overlap portion) of the low potential pad opening 143 .
  • the second portion 147 is spaced apart from the first portion 146 and exposes the inorganic insulating layer 140 between the first portion 146 and the second portion 147 .
  • the second portion 147 has a plurality of high potential terminal openings 149 that respectively expose a plurality of high potential terminals 12 (high potential pad openings 144).
  • the second portion 147 may have an overlapping portion that runs over the periphery (overlap portion) of the high potential pad opening 144 .
  • the second portion 147 collectively covers the transformers 21A to 21D and the dummy pattern 85. Specifically, the second portion 147 collectively covers the plurality of high-potential coils 23, the plurality of high-potential terminals 12, the first high-potential dummy pattern 87, the second high-potential dummy pattern 88, and the floating dummy pattern 121. are doing.
  • the plurality of high potential coils 23, the plurality of high potential terminals 12, the seal conductor 61, and the first high potential dummy pattern are caused by the filler contained in the package body (mold resin).
  • the second high potential dummy pattern 88 and the floating dummy pattern 121 may be damaged. This kind of damage is called a filler attack.
  • the organic insulating layer 145 includes a plurality of high-potential coils 23, a plurality of high-potential terminals 12, a seal conductor 61, a first high-potential dummy pattern 87, a second high-potential dummy pattern, and a filler contained in a package body (mold resin). 88 and the floating dummy pattern 121 are protected. A slit between the first portion 146 and the second portion 147 functions as an anchor portion for the package body (mold resin).
  • a portion of the package body (mold resin) enters the slit between the first portion 146 and the second portion 147 and is connected to the inorganic insulating layer 140 .
  • the adhesion of the package body (mold resin) to the semiconductor device 5 is enhanced.
  • the first portion 146 and the second portion 147 may be integrally formed.
  • the organic insulating layer 145 may include only one of the first portion 146 and the second portion 147 . However, in this case, it is necessary to pay attention to filler attacks.
  • Embodiments of the present invention can be implemented in other forms.
  • an example in which the first functional device 45 and the second functional device 60 are formed has been described.
  • a form having only the second functional device 60 without having the first functional device 45 may be employed.
  • dummy pattern 85 may be removed.
  • the second functional device 60 can achieve the same effects as those described in the first embodiment (excluding the effects related to the dummy pattern 85).
  • the second functional device 60 is formed.
  • the second functional device 60 is not necessarily required and may be removed.
  • the dummy pattern 85 is formed.
  • the dummy pattern 85 is not necessarily required and may be removed.
  • the first functional device 45 is of a multi-channel type including a plurality of transformers 21 .
  • a single-channel first functional device 45 including a single transformer 21 may be employed.
  • FIG. 21 is a plan view (top view) schematically showing an example of a transformer arrangement in a two-channel type transformer chip 300 (corresponding to the semiconductor device 5 described above).
  • the transformer chip 300 in this figure includes a first transformer 301, a second transformer 302, a third transformer 303, a fourth transformer 304, a first guard ring 305, a second guard ring 306, and pads a1 to a8. , pads b1 to b8, pads c1 to c4, and pads d1 to d4.
  • pads a1 and b1 are connected to one end of the secondary coil L1s forming the first transformer 301, and pads c1 and d1 are connected to the other end of the secondary coil L1s. ing.
  • Pads a2 and b2 are connected to one end of the secondary coil L2s forming the second transformer 302, and pads c1 and d1 are connected to the other end of the secondary coil L2s.
  • Pads a3 and b3 are connected to one end of the secondary coil L3s forming the third transformer 303, and pads c2 and d2 are connected to the other end of the secondary coil L3s.
  • Pads a4 and b4 are connected to one end of the secondary coil L4s forming the fourth transformer 304, and pads c2 and d2 are connected to the other end of the secondary coil L4s.
  • the primary coils L1p to L4p basically have the same configuration as the secondary coils L1s to L4s, respectively. It is arranged directly under each of L1s to L4s.
  • the pads a5 and b5 are connected to one end of the primary coil L1p forming the first transformer 301, and the pads c3 and d3 are connected to the other end of the primary coil L1p.
  • Pads a6 and b6 are connected to one end of the primary coil L2p forming the second transformer 302, and pads c3 and d3 are connected to the other end of the primary coil L2p.
  • Pads a7 and b7 are connected to one end of the primary coil L3p forming the third transformer 303, and pads c4 and d4 are connected to the other end of the primary coil L3p.
  • Pads a8 and b8 are connected to one end of the primary coil L4p forming the fourth transformer 304, and pads c4 and d4 are connected to the other end of the primary coil L4p.
  • pads a5 to a8, pads b5 to b8, pads c3 and c4, and pads d3 and d4 are pulled out from the inside of the transformer chip 300 to the surface via vias (not shown).
  • pads a1 to a8 respectively correspond to first current supply pads
  • pads b1 to b8 respectively correspond to first voltage measurement pads
  • Pads c1 to c4 respectively correspond to second current supply pads
  • pads d1 to d4 respectively correspond to second voltage measurement pads.
  • the series resistance component of each coil can be accurately measured during the defective product inspection. Therefore, in addition to rejecting defective products in which each coil is disconnected, it is also necessary to appropriately reject defective products in which the resistance value of each coil is abnormal (for example, a short circuit between coils). is possible, and by extension, it becomes possible to prevent the outflow of defective products to the market.
  • the plurality of pads may be used as connection means with the primary side chip and the secondary side chip (for example, the controller chip 210 and the driver chip 220 described above). .
  • pads a1 and b1, pads a2 and b2, pads a3 and b3, and pads a4 and b4 may be connected to the signal input end or signal output end of the secondary chip, respectively.
  • Pads c1 and d1, and pads c2 and d2 may be connected to the common voltage application terminal (GND2) of the secondary chip, respectively.
  • pads a5 and b5, pads a6 and b6, pads a7 and b7, and pads a8 and b8 may be connected to the signal input end or signal output end of the primary chip, respectively.
  • Pads c3 and d3, and pads c4 and d4 may be connected to the common voltage application terminal (GND1) of the primary chip, respectively.
  • the first to fourth transformers 301 to 304 are coupled and arranged for each signal transmission direction.
  • a first transformer 301 and a second transformer 302 that transmit signals from the primary chip to the secondary chip are formed into a first pair by a first guard ring 305 .
  • a third transformer 303 and a fourth transformer 304 that transmit signals from the secondary chip to the primary chip are formed into a second pair by a second guard ring 306 .
  • the reason for such coupling is that when the primary side coils and secondary side coils forming the first to fourth transformers 301 to 304 are laminated in the vertical direction of the substrate of the transformer chip 300, This is to ensure a withstand voltage between the primary coil and the secondary coil.
  • the first guard ring 305 and the second guard ring 306 are not necessarily essential components.
  • first guard ring 305 and the second guard ring 306 may be connected to low-impedance wiring such as ground terminals via pads e1 and e2, respectively.
  • the pads c1 and d1 are shared between the secondary coil L1s and the secondary coil L2s.
  • the pads c2 and d2 are shared between the secondary coil L3s and the secondary coil L4s.
  • the pads c3 and d3 are shared between the primary coil L1p and the primary coil L2p.
  • the pads c4 and d4 are shared between the primary coil L3p and the primary coil L4p.
  • the primary coils and secondary coils forming the first to fourth transformers 301 to 304 are rectangular (or tracks with rounded corners) in plan view of the transformer chip 300 . shape). With such a configuration, the area of the portion where the primary side coil and the secondary side coil overlap becomes large, and it is possible to improve the transmission efficiency of the transformer.
  • transformer arrangement in this figure is only an example, and the number, shape, and arrangement of coils and the arrangement of pads are arbitrary. Also, the chip structure and transformer arrangement described so far can be applied to general semiconductor devices in which coils are integrated on a semiconductor chip.
  • FIG. 22 is a diagram showing an example of introducing a shield electrode in the transformer chip 230.
  • FIG. For comparison, the left side of the figure shows a transformer chip 230 having a conventional structure in which no shield electrode is introduced.
  • the right side of the drawing shows a transformer chip 230 with a novel structure in which shield electrodes SLD1 and SLD2 are introduced. Only one of the shield electrodes SLD1 and SLD2 may be introduced.
  • the primary coils 231p and 232p and the secondary coils 231s and 232s may be referred to as primary windings 231p and 232p and secondary windings 231s and 232s, respectively. .
  • the transformer chip 230 has six external terminals T21 to T26.
  • the external terminal T21 is connected to the first end of the primary winding 231p.
  • the external terminal T22 is connected to the second end of the primary winding 231p and the second end of the primary winding 232p.
  • the external terminal T23 is connected to the second end of the primary winding 232p.
  • the external terminal T24 is connected to the first end of the secondary winding 231s.
  • the external terminal T25 is connected to the second end of the secondary winding 231s and the second end of the secondary winding 232s.
  • the external terminal T26 is connected to the second end of the secondary winding 232s.
  • inter-coil capacitances C1 and C1 are provided between the primary winding 231p and the secondary winding 231s and between the primary winding 232p and the secondary winding 232s, respectively.
  • C2 is attached.
  • Shield electrodes SLD1 and SLD2 interposed between the primary windings 231p and 232p and the secondary windings 231s and 232s are introduced into the transformer chip 230 of the new structure (on the right side of the figure). ing.
  • FIG. 23 is a diagram showing a vertical structure of a transformer chip 230 having shield electrodes SLD1 and SLD2.
  • the transformer chip 230 with a new structure is formed by stacking metal layers (wiring layers) 1MT, 2MT and 3MT in order from the bottom.
  • the metal layer 1MT and the metal layer 2MT are electrically connected via a single via 1VIA.
  • the metal layer 2MT and the metal layer 3MT are electrically connected through three stages of vias 2VIA.
  • the outermost surface of the transformer chip 230 is covered with a passivation layer PSV except for the exposed portions of the pads.
  • the primary winding 231p is formed in the intermediate metal layer 2MT.
  • the secondary winding 231s is formed on the uppermost metal layer 3MT so as to be magnetically coupled with the primary winding 231p.
  • the shield electrodes SLD1 and SLD2 are both interposed between the primary winding 231p and the secondary winding 231s (or between the primary winding 232p and the secondary winding 232s). and the metal layer 3MT.
  • the shield electrodes SLD1 and SLD2 are formed to extend in the left-to-right direction of the drawing, directly above the primary winding 231p and directly below the secondary winding 231s, and At their right ends, they are connected to ground ends ⁇ and ⁇ .
  • the ground terminal ⁇ is electrically connected to the pad TMT (corresponding to the external terminal T25) via the via TVIA.
  • the ground terminal ⁇ is connected to an external terminal T22 (not shown) through metal layers 1MT to 3MT and vias 1VIA and 2VIA.
  • the noise canceller 225 (FIG. 8) is introduced, if a noise pulse is superimposed on the regular pulse at the same timing, the regular pulse may be erroneously masked, resulting in a delay of one pulse (FIG. 9). (see time t26 in ). Moreover, since the noise canceller 225 includes the delay units DLY1 to DLY4, there is also the problem that the band is limited.
  • the current flowing through the inter-coil capacitances C1 and C2 when common mode noise is superimposed flows through the shield electrodes SLD1 and SLD2 to the ground terminal ⁇ and ⁇ . That is, since the common mode noise itself transmitted via the inter-coil capacitances C1 and C2 can be effectively reduced, malfunction can be suppressed without depending on the noise canceller 225 .
  • FIG. 24 is a diagram showing the noise reduction effect due to the introduction of the shield electrodes SLD1 and SLD2. Similar to FIG. OUT is depicted.
  • ⁇ Shield electrode layout and signal transmission capability> 25 to 27 are diagrams showing the relationship between the layout of the shield electrodes SLD (corresponding to the shield electrodes SLD1 and SLD2 described above) and the signal transmission capability.
  • a solid line arrow indicates a current
  • a broken line arrow indicates a magnetic field.
  • the shield electrode SLD is formed in a solid pattern so as to be interposed between the primary winding 231p and the secondary winding 231s (or between the primary winding 232p and the secondary winding 232s). ing. If such a layout is adopted, it is considered that a large number of eddy currents are generated on the shield electrode SLD, so that the demagnetizing field greatly hinders transmission.
  • the shield electrode SLD is concentric or circular in plan view so as to be interposed between the primary winding 231p and the secondary winding 231s (or between the primary winding 232p and the secondary winding 232s).
  • a plurality of concentric rings are formed. If such a layout is employed, it is possible to suppress the generation of eddy currents as compared with the above-described one-sided solid pattern (FIG. 25), so it is considered that the transmission inhibition due to the demagnetizing field is reduced.
  • an eddy current is generated in the loop of the shield electrode SLD, it is difficult to completely eliminate the transmission inhibition due to the demagnetizing field.
  • the shield electrode SLD is interposed between the primary winding 231p and the secondary winding 231s (or between the primary winding 232p and the secondary winding 232s) as in FIG. 2, a plurality of concentric rings or concentric rings (comb teeth in cross section) are formed in a plan view, and are formed in an open ring form in a plan view. That is, since the shield electrode SLD does not have a loop that serves as an eddy current path, it is possible to minimize transmission inhibition due to the demagnetizing field.
  • FIG. 28 is a diagram showing a first planar layout example of the shield electrode SLD.
  • a plurality of shield electrodes SLD in this figure are formed concentrically or concentrically and openly in a plan view.
  • This planar layout corresponds to FIG. 27 (C-shaped pattern) previously described.
  • FIG. 29 is a diagram showing a second planar layout example of the shield electrode SLD.
  • the shield electrode SLD in this figure is similar to that in FIG. The fact that it can be changed is clearly indicated by a white arrow.
  • FIG. 30 is a diagram showing a third planar layout example of the shield electrode SLD.
  • a plurality of shield electrodes SLD in this figure are formed concentrically or concentrically in a plan view.
  • This planar layout corresponds to FIG. 26 (O-type pattern) previously described.
  • the shield electrode SLD may have the same shape as the primary and secondary windings.
  • FIG. 31 is a diagram showing a fourth planar layout example of the shield electrode SLD.
  • the shield electrode SLD in this figure has a planar layout similar to that of FIG. 28 (C-shaped pattern), but is formed as a series of single-stroke patterns. Even if such a pattern is employed, it is possible to suppress the generation of eddy currents (and, by extension, the inhibition of transmission due to the demagnetizing field).
  • FIG. 32 is a diagram showing a first cross-sectional structure example of the primary winding 231p and the secondary winding 231s (or the primary winding 232p and the secondary winding 232s) and the shield electrodes SLD1 and SLD2.
  • the shield electrodes SLD1 and SLD2 in this figure are formed to extend outside the outermost circumferences of the primary winding 231p and the secondary winding 231s, respectively, and extend to the outermost circumferences of the primary winding 231p and the secondary winding 231s, respectively. It is formed to the inner side of the inner circumference.
  • the shield electrodes SLD1 and SLD2 are designed to have the same line width/line spacing ratio as the primary winding 231p and the secondary winding 231s, respectively.
  • FIG. 33 is a diagram showing a second cross-sectional structural example of the primary winding 231p and the secondary winding 231s (or the primary winding 232p and the secondary winding 232s) and the shield electrodes SLD1 and SLD2.
  • the shield electrodes SLD1 and SLD2 in this figure are formed up to the same positions as the outermost circumferences of the primary winding 231p and the secondary winding 231s, respectively, and also extend to the outermost circumferences of the primary winding 231p and the secondary winding 231s. It is formed up to the same position as the inner circumference.
  • FIG. 34 is a diagram showing a third cross-sectional structure example of the primary winding 231p and the secondary winding 231s (or the primary winding 232p and the secondary winding 232s) and the shield electrodes SLD1 and SLD2.
  • the shield electrodes SLD1 and SLD2 in this figure are formed to extend outside the outermost circumferences of the primary winding 231p and the secondary winding 231s, respectively, and extend to the outermost circumferences of the primary winding 231p and the secondary winding 231s, respectively. It is formed up to the same position as the inner circumference.
  • FIG. 35 is a diagram showing a fourth cross-sectional structure example of the primary winding 231p and the secondary winding 231s (or the primary winding 232p and the secondary winding 232s) and the shield electrodes SLD1 and SLD2.
  • the shield electrodes SLD1 and SLD2 in this figure are formed only to the inner side of the outermost circumferences of the primary winding 231p and the secondary winding 231s, respectively, and the primary winding 231p and the secondary winding 231s, respectively. is formed only up to the outer side of the innermost circumference.
  • FIG. 36 is a diagram showing a fifth cross-sectional structural example of the primary winding 231p and the secondary winding 231s (or the primary winding 232p and the secondary winding 232s) and the shield electrodes SLD1 and SLD2.
  • the shield electrodes SLD1 and SLD2 in this figure are formed outside the outermost circumferences of the primary winding 231p and the secondary winding 231s, respectively, as in the first cross-sectional structure example (FIG. 33). It is formed inside the innermost circumferences of the winding 231p and the secondary winding 231s.
  • the shield electrodes SLD1 and SLD2 are designed to have a smaller line width/line spacing ratio than the primary winding 231p and the secondary winding 231s, respectively.
  • the sizes and line width/line spacing ratios of the primary winding 231p and the secondary winding 231s and the shield electrodes SLD1 and SLD2 can be arbitrarily adjusted.
  • the upper structure secondary winding 231s and shield electrode SLD2
  • the lower structure may be shifted from the upper structure to the upper structure. It is also optional to gradually increase the size toward .
  • FIG. 37 is a diagram showing the relationship between the presence/absence and shape of the shield electrode and the inter-coil capacitance. As shown in this figure, by introducing the shield electrode, it is possible to reduce the inter-coil capacitance of the transformer chip.
  • the shield electrode is desirably designed to have the same line width/line spacing ratio (same diameter) as the primary and secondary windings.
  • FIG. 38 is a diagram showing a planar layout of pads and coils formed on a transformer chip.
  • pads 401 and 402 and a coil 403 formed on a transformer chip 400 are depicted.
  • the pad 401 corresponds to, for example, the external terminal T25 (GND pad of the secondary circuit system 200s), and the pad 402 corresponds to, for example, the external terminal T24 or T26 (of the secondary circuit system 200s). signal pad).
  • the coil 403 corresponds to, for example, the secondary winding 231s or 232s.
  • FIG. 39 is a diagram showing a first planar layout of the shield electrode 404 that overlaps the coil 403 of FIG. Also, FIG. 40 is a diagram in which FIG. 38 and FIG. 39 are superimposed.
  • the shield electrode 404 corresponds to the shield electrode SLD1 or SLD2 in FIG. 23 or the shield electrode SLD in FIG. 27 or 28, for example.
  • the shield electrode 404 is formed in a wiring layer different from that of the coil 403 (for example, a wiring layer one layer below the wiring layer in which the coil 403 is formed).
  • the shield electrode 404 is laid in such a manner as to trace the coil 403 so as to overlap the coil 403 partially or entirely (mostly 80% or more in this figure) in a plan view of the transformer chip 400 .
  • Such a layout pattern makes it possible to enhance the effect of reducing common mode noise.
  • the shield electrode 404 is basically laid in the same shape (spiral shape) as the coil 403, but has an open end 404x so as to inhibit the generation of eddy current. have. That is, in the shield electrode 404, the series of spiral shapes is interrupted at the portion where the open end 404x is provided. Therefore, since the shield electrode 404 does not have a loop that serves as a path for the eddy current, it is possible to minimize transmission inhibition due to the demagnetizing field. This point is as described in FIG. 27 above.
  • Each part of the shield electrode 404 is electrically connected to the pad 401 through the connecting part 404y. Therefore, the effect of reducing common mode noise is not hindered. Although this point is also self-evident from the previous FIG. 28, it will be specified again here.
  • FIG. 41 is a diagram showing a second planar layout of the shield electrode 405 overlapping the coil 403 of FIG.
  • FIG. 42 is a diagram in which FIG. 38 and FIG. 41 are superimposed.
  • the shield electrode 405 is laid in such a manner as to trace the coil 403 so as to overlap the coil 403 partially or entirely (almost 100% in this figure) in a plan view of the transformer chip 400, like the shield electrode 404 described above.
  • the shield electrode 405 has an open end 405x at its terminal end, not in the middle of the series of spiral shapes. According to such a layout pattern, it is possible to increase the overlapping portion of the coil 403 and the shield electrode 405, so that it is possible to further enhance the effect of reducing common mode noise.
  • a plurality of concentric rings may be formed, or a spiral shape may be formed when the transformer chip is viewed from above.
  • the relationship between the secondary winding and the shield electrode is mainly given as an example, but the relationship between the primary winding and the shield electrode is the same as above.
  • FIG. 43 is a diagram showing the existence of a substrate-to-pad capacitance in the transformer chip 230.
  • a pad PAD includes a metal electrode P1, an internal wiring P2, and a plurality of vias P3.
  • the metal electrode P1 corresponds to the high-potential terminal 12 (12A) described above, and at least a portion thereof is exposed outside from the uppermost insulating layer as a wire bonding region.
  • the internal wiring P2 corresponds to the high-potential connection wiring 81 described above, and is formed in an island shape facing the metal electrode P1 in the wiring layer common to the second winding 231s.
  • a plurality of vias P3 correspond to the previously described pad plug electrodes 82, and electrically connect between the metal electrodes P1 and the internal wirings P2.
  • the shield electrodes SLD1 and SLD2 described above are interposed between the primary winding 231p and the secondary winding 231s. Therefore, although the common mode noise through the aforementioned inter-coil capacitance C can be reduced, it must be said that the shielding effect of the substrate-to-pad capacitance CP is poor.
  • FIG. 44 is a diagram showing how the substrate-to-pad capacitance CP is unshielded.
  • a substrate-to-pad capacitance CP1 associated with the transformer 231 and a substrate-to-pad capacitance CP2 associated with the transformer 232 are depicted.
  • the shield electrodes SLD1 and SLD2 are introduced, the substrate-to-pad capacitance CP that accompanies between the substrate SUB and the pad PAD cannot be adequately shielded. Therefore, it can be said that there is room for further improvement in terms of the common mode noise reduction effect.
  • FIG. 45 is a diagram showing the first planar layout of the shield electrode SLD in the region overlapping with the pad PAD.
  • a plurality of shield electrodes SLD may be formed concentrically or concentrically at positions overlapping the pads PAD in plan view.
  • the shield electrode SLD preferably has an open end SLDx so as to inhibit the generation of eddy currents. That is, the series of loops of the shield electrode SLD formed concentrically or concentrically is interrupted at the portion where the open end SLDx is provided. Therefore, since the shield electrode SLD does not have a loop that serves as a path for eddy currents, it is possible to minimize transmission inhibition due to the demagnetizing field. This point is as described in FIG. 27 above.
  • FIG. 46 is a diagram showing cross-sectional structures of the primary winding 231p, the secondary winding 231s, the pad PAD, and the shield electrodes SLD1 and SLD2. This figure is based on the previous FIG. 43 and is a vertical cross-sectional view clearly showing the shield electrodes SLD1 and SLD2 formed so as to be interposed between the substrate SUB and the pad PAD.
  • the SLD2, the secondary winding 231s, and the internal wiring P2 of the pad PAD are laminated in this order.
  • the aforementioned shield electrodes SLD1 and SLD2 formed so as to be interposed between the primary winding 231p and the secondary winding 231s are extended to the area immediately below the pad PAD.
  • a substrate-to-pad shield electrode may be introduced by forming a Also, the shield electrode between the coils and the shield electrode between the substrate and the pad may be formed separately.
  • FIG. 47 is a diagram showing how the substrate-to-pad capacitances CP1 and CP2 are shielded. As shown in FIG. 46, by providing the shield electrodes SLD1 and SLD2 between the substrate SUB and the pad PAD, not only the common mode noise passing through the inter-coil capacitance C but also the substrate-pad capacitance CP It is also possible to appropriately shield common mode noise that passes through.
  • FIG. 48 is a diagram showing the second plane layout of the shield electrode SLD in the region overlapping with the pad PAD.
  • the shield electrode SLD formed in the region immediately below the pad PAD may be formed in a spiral shape.
  • the end portion of the shield electrode SLD becomes the open end SLDx. Since eddy currents do not flow even with such a layout pattern, it is possible to minimize transmission hindrance due to the demagnetizing field.
  • the transformer chip disclosed in this specification includes, for example, a first wiring layer, a second wiring layer different from the first wiring layer, a primary winding formed on the first wiring layer, and the a secondary winding formed on the second wiring layer so as to be magnetically coupled with the primary winding; and a shield electrode formed to be interposed between the primary winding and the secondary winding. (first configuration).
  • the shield electrode is connected to the first ground terminal of the primary winding and the second ground terminal of the secondary winding. and a second shield electrode (second configuration).
  • the shield electrodes are formed in a plurality of concentric circles or concentric rings in a plan view, or formed in a spiral shape in a plan view (the first shield electrode). 3).
  • the shield electrode may be configured to have an open annular shape in plan view (fourth configuration).
  • the shield electrode is designed to have the same line width/line spacing ratio as the primary winding or the secondary winding (fifth configuration). ).
  • the shield electrode is formed outside the outermost circumference of the primary winding or the secondary winding (sixth configuration). configuration).
  • the shield electrode is formed inside the innermost circumference of the primary winding or the secondary winding (seventh configuration). configuration).
  • the shield electrode is arranged such that the shield electrode partially or entirely overlaps the primary winding or the secondary winding in a plan view.
  • a configuration (eighth configuration) in which the secondary winding is laid in a traced manner may be employed.
  • the shield electrode may have a configuration (ninth configuration) having an open end configured to inhibit the generation of eddy current.
  • the transformer chip disclosed in this specification includes, for example, a first wiring layer, a second wiring layer different from the first wiring layer, and a first transformer formed on the first wiring layer.
  • the primary winding and the primary winding of the second transformer are formed on the second wiring layer so as to be magnetically coupled to the primary winding of the first transformer and the primary winding of the second transformer, respectively.
  • a configuration (tenth configuration) is provided in which shield electrodes are formed so as to be interposed between the primary winding and the secondary winding of the second transformer.
  • the transformer chip according to the tenth configuration has a first terminal to which a first end of the primary winding of the first transformer is connected, a second end of the primary winding of the first transformer and the first terminal. a second terminal to which the first end of the primary winding of two transformers is connected; a third terminal to which the second end of the primary winding of the second transformer is connected; and the secondary of the first transformer.
  • a configuration (eleventh configuration) having a terminal and a sixth terminal to which the second end of the secondary winding of the second transformer is connected may be employed.
  • the signal transmission device disclosed in this specification includes, for example, a controller chip, a driver chip, and the first to eleventh configurations, and provides insulation between the controller chip and the driver chip. and a transformer chip that transmits the pulse signal while transmitting the pulse signal (a twelfth configuration).
  • the transformer chip disclosed in this specification includes, for example, a first wiring layer, a second wiring layer different from the first wiring layer, and a primary winding formed on the first wiring layer. a secondary winding formed on the second wiring layer so as to be magnetically coupled with the primary winding; a pad to which a signal terminal of the secondary winding is connected; and a first ground terminal of the primary winding. and a shield electrode interposed between the substrate and the pad (a thirteenth configuration).
  • the shield electrodes are formed in a plurality of concentric circles or concentric rings at positions overlapping the pads in plan view, or formed in a spiral shape ( 14th configuration).
  • the shield electrode may have a configuration (fifteenth configuration) having an open end configured to inhibit the generation of an eddy current.
  • the secondary winding may be laid in a spiral shape surrounding the pad (sixteenth configuration).
  • the shield electrode is also formed to be interposed between the primary winding and the secondary winding (a seventeenth configuration). ).
  • the shield electrode is laid so as to trace the primary winding or the secondary winding at a position overlapping the primary winding or the secondary winding in a plan view. (18th configuration) may be used.
  • the pad may include an electrode at least partially exposed, an island-like internal wiring facing the electrode, and an internal wiring between the electrode and the internal wiring. and a plurality of vias for electrically connecting between them (nineteenth configuration).
  • the shield electrode includes a first shield electrode connected to the first ground terminal of the primary winding and a second ground terminal of the secondary winding. and a second shield electrode connected to (a twentieth configuration).
  • the primary winding, the secondary winding, the first shield electrode, and the second shield electrode are, when viewed from the substrate side, the primary winding, the first The shield electrode, the second shield electrode and the secondary winding may be stacked in this order (21st configuration).
  • the signal transmission device disclosed in this specification includes, for example, a controller chip, a driver chip, and the thirteenth to twenty-first configurations, and provides insulation between the controller chip and the driver chip. and a transformer chip that transmits the pulse signal while transmitting the pulse signal (22nd configuration).
  • the invention disclosed in this specification can be applied to general applications that require signal transmission while isolating input and output (for example, isolated gate drivers, motor drivers, isolators, or other ICs that handle high voltage). etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

信号伝達装置を形成するトランスチップは、例えば、第1配線層に形成された一次巻線231pと、一次巻線231pと磁気結合するように第2配線層に形成された二次巻線231sと、二次巻線231sの信号端が接続されたパッドPADと、一次巻線231pの接地端GND1と同電位になる基板SUBと、基板SUBとパッドPADとの間に介在するように形成されたシールド電極SLD1及びSLD2と、を有する。

Description

トランスチップ、信号伝達装置
 本明細書中に開示されている発明は、トランスチップ及び信号伝達装置に関する。
 従来、入出力間を絶縁しつつパルス信号を伝達する信号伝達装置は、様々なアプリケーション(電源装置またはモータ駆動装置など)に用いられている。
 なお、上記に関連する従来技術の一例としては、本願出願人による特許文献1を挙げることができる。
特開2018-011108号公報
 しかしながら、従来の信号伝達装置では、二次側のパルス受信回路に並列入力される受信パルス信号にそれぞれ重畳する瞬時過渡同相ノイズ(いわゆるコモンモードノイズ)の低減処理について、更なる改善の余地があった。
 本明細書中に開示されている発明は、本願の発明者らにより見出された上記の課題に鑑み、コモンモードノイズの影響を受けにくい信号伝達装置、及び、これに用いられるトランスチップを提供することを目的とする。
 本明細書中に開示されているトランスチップは、例えば、第1配線層と、前記第1配線層とは異なる第2配線層と、前記第1配線層に形成された一次巻線と、前記一次巻線と磁気結合するように前記第2配線層に形成された二次巻線と、前記二次巻線の信号端が接続されたパッドと、前記一次巻線の第1接地端と同電位になる基板と、前記基板と前記パッドとの間に介在するように形成されたシールド電極と、を有する。
 なお、その他の特徴、要素、ステップ、利点、及び、特性については、以下に続く発明を実施するための形態及びこれに関する添付の図面によって、さらに明らかとなる。
 本明細書中に開示されている発明によれば、コモンモードノイズの影響を受けにくい信号伝達装置を提供することが可能となる。
図1は、信号伝達装置の基本構成を示す図である。 図2は、GND1-GND2間に電位変動が生じる様子を示す図である。 図3は、コモンモードノイズによる誤動作の一例を示す図である。 図4は、信号伝達異常の発生原理を示す図(理想的なトランス、正規信号入力時)である。 図5は、信号伝達異常の発生原理を示す図(理想的なトランス、CMノイズ入力時)である。 図6は、信号伝達異常の発生原理を示す図(実際のトランス、正規信号入力時)である。 図7は、信号伝達異常の発生原理を示す図(実際のトランス、CMノイズ入力時)である。 図8は、ノイズキャンセラの導入例を示す図である。 図9は、ノイズキャンセル動作の一例を示す図である。 図10は、トランスチップの基本構造を示す図である。 図11は、2チャンネル型のトランスチップとして用いられる半導体装置の斜視図である。 図12は、図11に示す半導体装置の平面図である。 図13は、図11の半導体装置において低電位コイルが形成された層を示す平面図である。 図14は、図11の半導体装置において高電位コイルが形成された層を示す平面図である。 図15は、図14に示すVIII-VIII線に沿う断面図である。 図16は、図14に示すIX-IX線に沿う断面図である。 図17は、図14に示す領域Xの拡大図である。 図18は、図14に示す領域XIの拡大図である。 図19は、図14に示す領域XIIの拡大図である。 図20は、図15に示す領域XIIIの拡大図であって分離構造を示す図である。 図21は、トランスチップのレイアウト例を模式的に示す図である。 図22は、シールド電極の導入例を示す図である。 図23は、シールド電極を備えたトランスチップの縦構造を示す図である。 図24は、シールド電極の導入によるノイズ低減効果を示す図である。 図25は、シールド電極のレイアウトと信号伝達能力との関係を示す図(一面ベタ)である。 図26は、シールド電極のレイアウトと信号伝達能力との関係を示す図(O型)である。 図27は、シールド電極のレイアウトと信号伝達能力との関係を示す図(C型)である。 図28は、シールド電極の第1平面レイアウト例(C型)を示す図である。 図29は、シールド電極の第2平面レイアウト例(C型のサイズ変更)を示す図である。 図30は、シールド電極の第3平面レイアウト例(O型)を示す図である。 図31は、シールド電極の第4平面レイアウト例(一筆型)を示す図である。 図32は、一次巻線及び二次巻線とシールド電極の第1断面構造例を示す図である。 図33は、一次巻線及び二次巻線とシールド電極の第2断面構造例を示す図である。 図34は、一次巻線及び二次巻線とシールド電極の第3断面構造例を示す図である。 図35は、一次巻線及び二次巻線とシールド電極の第4断面構造例を示す図である。 図36は、一次巻線及び二次巻線とシールド電極の第5断面構造例を示す図である。 図37は、シールド電極の有無及び形状とコイル間容量との関係を示す図である。 図38は、パッドとコイルの平面レイアウトを示す図である。 図39は、図38のコイルと重なり合うシールド電極の第1平面レイアウトを示す図である。 図40は、図38と図39を重ね合わせた図である。 図41は、図38のコイルと重なり合うシールド電極の第2平面レイアウトを示す図である。 図42は、図38と図41を重ね合わせた図である。 図43は、基板-パッド間容量の存在を示す図である。 図44は、基板-パッド間容量が未シールドである様子を示す図である。 図45は、パッドと重なり合う領域におけるシールド電極の第1平面レイアウトを示す図である。 図46は、一次巻線、二次巻線、パッド、及び、シールド電極の断面構造を示す図である。 図47は、基板-パッド間容量がシールド済である様子を示す図である。 図48は、パッドと重なり合う領域におけるシールド電極の第2平面レイアウトを示す図である。
<信号伝達装置(基本構成)>
 図1は、信号伝達装置の基本構成を示す図である。本構成例の信号伝達装置200は、一次回路系200p(VCC1-GND1系)と二次回路系200s(VCC2-GND2系)との間を絶縁しつつ、一次回路系200pから二次回路系200sにパルス信号を伝達し、二次回路系200sに設けられたスイッチ素子(不図示)のゲートを駆動する半導体集積回路装置(いわゆる絶縁ゲートドライバIC)である。例えば、信号伝達装置200は、コントローラチップ210と、ドライバチップ220と、トランスチップ230と、を単一のパッケージに封止して成る。
 コントローラチップ210は、電源電圧VCC1(例えばGND1基準で最大7V)の供給を受けて動作する半導体チップである。コントローラチップ210には、例えば、パルス送信回路211と、バッファ212及び213が集積されている。
 パルス送信回路211は、入力パルス信号INに応じて送信パルス信号S11及びS21を生成するパルスジェネレータである。より具体的に述べると、パルス送信回路211は、入力パルス信号INがハイレベルである旨を通知するときには、送信パルス信号S11のパルス駆動(単発または複数発の送信パルス出力)を行い、入力パルス信号INがローレベルである旨を通知するときには、送信パルス信号S21のパルス駆動を行う。すなわち、パルス送信回路211は、入力パルス信号INの論理レベルに応じて、送信パルス信号S11及びS21のいずれか一方をパルス駆動する。
 バッファ212は、パルス送信回路211から送信パルス信号S11の入力を受けて、トランスチップ230(具体的にはトランス231)をパルス駆動する。
 バッファ213は、パルス送信回路211から送信パルス信号S21の入力を受けて、トランスチップ230(具体的にはトランス232)をパルス駆動する。
 ドライバチップ220は、電源電圧VCC2(例えばGND2基準で最大30V)の供給を受けて動作する半導体チップである。ドライバチップ220には、例えば、バッファ221及び222と、パルス受信回路223と、ドライバ224が集積されている。
 バッファ221は、トランスチップ230(具体的にはトランス231)に誘起される受信パルス信号S12を波形整形してパルス受信回路223に出力する。
 バッファ222は、トランスチップ230(具体的にはトランス232)に誘起される受信パルス信号S22を波形整形してパルス受信回路223に出力する。
 パルス受信回路223は、バッファ221及び222を介して入力される受信パルス信号S12及びS22に応じてドライバ224を駆動することにより出力パルス信号OUTを生成する。より具体的に述べると、パルス受信回路223は、受信パルス信号S12のパルス駆動を受けて出力パルス信号OUTをハイレベルに立ち上げる一方、受信パルス信号S22のパルス駆動を受けて出力パルス信号OUTをローレベルに立ち下げるようにドライバ224を駆動する。すなわち、パルス受信回路223は、入力パルス信号INの論理レベルに応じて出力パルス信号OUTの論理レベルを切り替える。なお、パルス受信回路223としては、例えば、RSフリップフロップを好適に用いることができる。
 ドライバ224は、パルス受信回路223の駆動制御に基づいて出力パルス信号OUTを生成する。
 トランスチップ230は、トランス231及び232を用いてコントローラチップ210とドライバチップ220との間を直流的に絶縁しつつ、パルス送信回路211から入力される送信パルス信号S11及びS21をそれぞれ受信パルス信号S12及びS22としてパルス受信回路223に出力する。なお、本明細書中において、「直流的に絶縁する」とは、絶縁すべき対象物が導体では接続されていないということである。
 より具体的に述べると、トランス231は、一次側コイル231pに入力される送信パルス信号S11に応じて、二次側コイル231sから受信パルス信号S12を出力する。一方、トランス232は、一次側コイル232pに入力される送信パルス信号S21に応じて、二次側コイル232sから受信パルス信号S22を出力する。
 このように、絶縁間通信に用いられるスパイラルコイルの特性上、入力パルス信号INは、2本の送信パルス信号S11及びS21(=ライズ信号及びフォール信号に相当)に分離された後、2つのトランス231及び232を介して一次回路系200pから二次回路系200sに伝達される。
 なお、本構成例の信号伝達装置200は、コントローラチップ210及びドライバチップ220とは別に、トランス231及び232のみを搭載するトランスチップ230を独立に有しており、これら3つのチップを単一のパッケージに封止して成る。
 このような構成とすることにより、コントローラチップ210、及び、ドライバチップ220については、いずれも一般の低耐圧~中耐圧プロセス(数V~数十V耐圧)で形成することができるので、専用の高耐圧プロセス(数kV耐圧)を用いる必要がなくなり、製造コストを低減することが可能となる。
 なお、信号伝達装置200は、例えば、車両に搭載される車載機器の電源装置またはモータ駆動装置などで好適に利用することができる。上記の車両には、エンジン車のほか、電動車(BEV[battery electric vehicle]、HEV[hybrid electric vehicle」、PHEV/PHV(plug-in hybrid electric vehicle/plug-in hybrid vehicle]、又は、FCEV/FCV(fuel cell electric vehicle/fuel cell vehicle]などのxEV)も含まれる。
 また、コントローラチップ210、及び、ドライバチップ220については、いずれも実績のある既存プロセスで作成することが可能であり、新たに信頼性試験を行う必要がないので、開発期間の短縮及び開発コストの低減に貢献することができる。
 また、トランス以外の直流絶縁素子(例えばフォトカプラ)を用いる場合であっても、トランスチップ230のみを載せ換えることにより、容易に対応することが可能となるので、コントローラチップ210及びドライバチップ220を開発し直す必要がなくなり、開発期間の短縮及び開発コストの低減に貢献することができる。
<コモンモードノイズに関する考察>
 図2は、GND1-GND2間に電位変動が生じる様子を示す図である。本図で示すように、一次回路系200pの接地電位GND1と二次回路系200sの接地電位GND2との間に電位変動ΔV/Δt(すなわちノイズ)が生じると、トランスチップ230の二次側にノイズが表れて信号伝達に支障を生じるおそれがある。
 図3は、コモンモードノイズによる誤動作の一例を示す図であり、上から順に、入力パルス信号IN、受信パルス信号S12並びにS22、及び、出力パルス信号OUTが描写されている。
 まず、正規のパルス信号伝達動作について簡単に説明する。時刻t11において、入力パルス信号INがハイレベルに立ち上がると、トランス231がパルス駆動されるので、受信パルス信号S12に正規パルスが立ち上がる。その結果、出力パルス信号OUTがハイレベルに立ち上がる。また、時刻t12において、入力パルス信号INがローレベルに立ち下がると、トランス232がパルス駆動されるので、受信パルス信号S22に正規パルスが立ち上がる。その結果、出力パルス信号OUTがローレベルに立ち下がる。
 一方、コモンモードノイズによる誤信号は、トランス231及び232の双方で同時に発生する。このような誤信号が生じると、出力パルス信号OUTが意図しない論理レベルに切り替わってしまう。本図では、入力パルス信号INがローレベルに維持されているにも関わらず、出力パルス信号OUTがハイレベルに立ち上がっている。
 図4~図7は、それぞれ、上記コモンモードノイズによる信号伝達異常の発生原理を示す図である。
 まず、図4及び図5を参照しながら、理想的なトランス(=一次巻線と二次巻線との間にコイル間容量が存在しないトランス)を用いた信号伝達について考える。図4で示したように、トランスの一次巻線(=一次側コイルに相当)に正規の送信パルス信号(励磁電圧VL1)が入力されると、二次巻線(=二次側コイルに相当)に誘起電圧VL2が生じる。この誘起電圧VL2がバッファの閾値電圧Vthを上回っていれば、正規の受信パルス信号(出力電圧Vout)が生成される。一方、図5で示すように、一次回路系と二次回路系との間にコモンモードノイズVCMが生じても、二次回路系に誤信号が伝達されることはない。
 次に、図6及び図7を参照しながら、実際のトランス(=一次巻線と二次巻線との間にコイル間容量Cが存在するトランス)を用いた信号伝達について考える。図6で示すように、実際のトランスを用いた場合でも、トランスの一次巻線に正規の送信パルス信号(励磁電圧VL1)が入力されると、二次巻線に誘起電圧VL2が生じる。この誘起電圧VL2がバッファの閾値電圧Vthを上回っていれば、正規の受信パルス信号(出力電圧Vout)が生成される。すなわち、正規信号の伝達動作については、理想的なトランスを用いた場合と特段変わるところはない。一方、図7で示したように、一次回路系と二次回路系との間にコモンモードノイズVCMが生じると、理想的なトランスを用いた場合と異なり、コイル間容量Cを介して二次回路系に誤信号を伝達してしまう。
 なお、コモンモードノイズによる信号伝達異常が生じると、アプリケーションの誤動作又は故障に繋がるおそれがある。そのため、信号伝達装置200には、高いコモンモード過渡耐性(いわゆるCMTI[common mode transient immunity])が求められている。
<一般的なノイズ対策(ノイズキャンセラの導入)>
 図8は、信号伝達装置200におけるノイズキャンセラ(ノイズマスク回路)の導入例を示す図である。本構成例の信号伝達装置200では、ドライバチップ220において、パルス受信回路223の前段にノイズキャンセラ225が導入されている。
 本構成例のノイズキャンセラ225は、バッファBUF1~BUF4と、遅延部DLY1~DLY4と、論理積ゲートAND1及びAND2と、を含む。
 バッファBUF1は、受信パルス信号S12が閾値電圧Vth1よりも高くなったときに出力信号をハイレベルに立ち上げ、受信パルス信号S12が閾値電圧Vthよりも低くなったときに出力信号をローレベルに立ち下げる。
 バッファBUF2は、受信パルス信号S12が閾値電圧Vth2(<Vth1)よりも高くなったときに出力信号をハイレベルに立ち上げ、受信パルス信号S12が閾値電圧Vth2よりも低くなったときに出力信号をローレベルに立ち下げる。
 バッファBUF3は、受信パルス信号S22が閾値電圧Vth1よりも高くなったときに出力信号をハイレベルに立ち上げ、受信パルス信号S22が閾値電圧Vthよりも低くなったときに出力信号をローレベルに立ち下げる。
 バッファBUF4は、受信パルス信号S22が閾値電圧Vth2(<Vth1)よりも高くなったときに出力信号をハイレベルに立ち上げ、受信パルス信号S22が閾値電圧Vth2よりも低くなったときに出力信号をローレベルに立ち下げる。
 遅延部DLY1は、バッファBUF1の出力信号に対して所定の遅延を与えることにより本信号A1を生成する。
 遅延部DLY2は、バッファBUF2の出力信号に対して所定の遅延を与えることによりマスク信号B2を生成する。例えば、マスク信号B2は、バッファBUF2の出力信号がハイレベルに立ち上がった時点で遅滞なくローレベルに立ち下がり、所定のマスク期間が経過した時点でハイレベルに立ち上がる。
 遅延部DLY3は、バッファBUF3の出力信号に対して所定の遅延を与えることにより本信号B1を生成する。
 遅延部DLY4は、バッファBUF4の出力信号に対して所定の遅延を与えることによりマスク信号A2を生成する。例えば、マスク信号A2は、バッファBUF4の出力信号がハイレベルに立ち上がった時点で遅滞なくローレベルに立ち下がり、所定のマスク期間が経過した時点でハイレベルに立ち上がる。
 論理積ゲートAND1は、本信号A1とマスク信号A2との論理積演算により、パルス受信回路223(例えばRSフリップフロップ)のセット信号Aを生成する。従って、A2=L(マスク時の論理レベル)であればA=L(固定値)となり、A2=H(マスク解除時の論理レベル)であればA=A1となる。
 論理積ゲートAND2は、本信号B1とマスク信号B2との論理積演算により、パルス受信回路223(例えばRSフリップフロップ)のリセット信号Bを生成する。従って、B2=L(マスク時の論理レベル)であればB=L(固定値)となり、B2=H(マスク解除時の論理レベル)であればB=B1となる。
 パルス受信回路223は、例えば、セット信号Aがハイレベルに立ち上がったときに出力パルス信号OUTをハイレベルにセットし、リセット信号Bがハイレベルに立ち上がったときに出力パルス信号OUTをローレベルにリセットする。
 図9は、ノイズキャンセル動作の一例を示す図であり、上から順に、入力パルス信号IN、受信パルス信号S12、本信号A1、マスク信号A2、セット信号A、受信パルス信号S22、本信号B1、マスク信号B2、リセット信号B、及び、出力パルス信号OUTが描写されている。
 まず、入力パルス信号INの立上り時について考える。時刻t21において、入力パルス信号INがハイレベルに立ち上がると、受信パルス信号S12に正規パルスが生成されるので、続く時刻t22において、本信号A1にパルスが生成される。一方、入力パルス信号INがハイレベルに立ち上がっても受信パルス信号S22にはパルスが生成されないので、マスク信号A2はハイレベルのままとなる。その結果、本信号A1がセット信号Aとしてスルー出力されるので、出力パルス信号OUTがハイレベルにセットされる。
 なお、時刻t21において、受信パルス信号S12に正規パルスが生成されると、マスク信号B2がローレベルに立ち下がるので、リセット信号Bがローレベルに固定される。ただし、入力パルス信号INの立上り時においては、リセット信号Bが元々ローレベルに維持されているべきなので、何ら不整合は生じない。
 次に、入力パルス信号INの立下り時について考える。時刻t23において、入力パルス信号INがローレベルに立ち下がると、受信パルス信号S22に正規パルスが生成されるので、続く時刻t24において、本信号B1にパルスが生成される。一方、入力パルス信号INがローレベルに立ち下がっても受信パルス信号S12にはパルスが生成されないので、マスク信号B2はハイレベルのままとなる。その結果、本信号B1がリセット信号Bとしてスルー出力されるので、出力パルス信号OUTがローレベルにリセットされる。
 なお、時刻t23において、受信パルス信号S22に正規パルスが生成されると、マスク信号A2がローレベルに立ち下がるので、セット信号Aがローレベルに固定される。ただし、入力パルス信号INの立下り時においては、セット信号Aが元々ローレベルに維持されているべきなので、何ら不整合は生じない。
 続いて、受信パルス信号S12及びS22双方にコモンモードノイズが重畳した場合を考える。時刻t25において、受信パルス信号S12及びS22の双方にノイズパルスが立ち上がり、バッファBUF1~BUF4それぞれの閾値電圧Vth1及びVth2を上回ると、本信号A1及びB1とマスク信号A2及びB2それぞれにパルスが生成される。
 ここで、マスク信号A2がローレベルであるときには、本信号A1の論理レベルに依らずセット信号Aがローレベルに固定される。同様に、マスク信号B2がローレベルであるときには、本信号B1の論理レベルに依らずリセット信号Bがローレベルに固定される。従って、受信パルス信号S12及びS22の双方に重畳したコモンモードノイズを適切に除去することができるので、出力パルス信号OUTの誤動作を抑えることが可能となる。
 ただし、時刻t26で示すように、例えば、受信パルス信号S12のパルス駆動中(=正規パルスの受信中)にコモンモードノイズが重畳すると、本信号A1の正規パルスをマスク信号A2でマスクしてしまい、出力パルス信号OUTを正しくハイレベルに立ち上げられないおそれがある。
 また、改めて図示はしないが、受信パルス信号S22のパルス駆動中にコモンモードノイズが重畳すると、本信号B1の正規パルスをマスク信号B2でマスクしてしまい、出力パルス信号OUTを正しくローレベルに立ち下げられないおそれがある。
 以下では、ノイズキャンセラ225に頼ることなく、コモンモードノイズの発生自体を効果的に抑制することのできるトランスチップ230の新規構造について提案する。
<トランスチップ(基本構造)>
 まず、トランスチップ230の基本構造について説明する。図10は、トランスチップ230の基本構造を示す図である。本図のトランスチップ230において、トランス231は、上下方向に対向する一次側コイル231pと二次側コイル231sを含む。トランス232は、上下方向に対向する一次側コイル232pと二次側コイル232sを含む。
 一次側コイル231p及び232pは、いずれも、トランスチップ230の第1配線層(下層)230aに形成されている。二次側コイル231s及び232sは、いずれも、トランスチップ230の第2配線層(本図では上層)230bに形成されている。なお、二次側コイル231sは、一次側コイル231pの直上に配置され、一次側コイル231pに対向している。また、二次側コイル232sは、一次側コイル232pの直上に配置され、一次側コイル232pに対向している。
 一次側コイル231pは、内部端子X21に接続された第1端を始点として、内部端子X21の周囲を時計回りで取り囲むように螺旋状に敷設されており、その終点に相当する第2端が内部端子X22に接続されている。一方、一次側コイル232pは、内部端子X23に接続された第1端を始点として、内部端子X23の周囲を反時計回りで取り囲むように螺旋状に敷設されており、その終点に相当する第2端が内部端子X22に接続されている。なお、内部端子X21、X22及びX23は、図示の順で直線的に並べて配置されている。
 内部端子X21は、導電性の配線Y21及びビアZ21を介して、第2層230bの外部端子T21に接続されている。内部端子X22は、導電性の配線Y22及びビアZ22を介して、第2層230bの外部端子T22に接続されている。内部端子X23は、導電性の配線Y23及びビアZ23を介して、第2層230bの外部端子T23に接続されている。なお、外部端子T21~T23は、直線的に並べて配置されており、コントローラチップ210とのワイヤボンディングに用いられる。
 二次側コイル231sは、外部端子T24に接続された第1端を始点として、外部端子T24の周囲を反時計回りで取り囲むように螺旋状に敷設されており、その終点に相当する第2端が外部端子T25に接続されている。一方、二次側コイル232sは、外部端子T26に接続された第1端を始点として、外部端子T26の周囲を時計回りで取り囲むように螺旋状に敷設されており、その終点に相当する第2端が外部端子T25に接続されている。なお、外部端子T24、T25及びT26は、図示の順で直線的に並べて配置されており、ドライバチップ220とのワイヤボンディングに用いられる。
 二次側コイル231s及び232sは、それぞれ、磁気結合によって一次側コイル231p及び232pに交流接続されると共に、一次側コイル231p及び232pから直流絶縁されている。すなわち、ドライバチップ220は、トランスチップ230を介してコントローラチップ210に交流接続されると共に、トランスチップ230によりコントローラチップ210から直流絶縁されている。
<トランスチップ(2チャンネル型)>
 図11は、2チャンネル型のトランスチップとして用いられる半導体装置5を示す斜視図である。図12は、図11に示す半導体装置5の平面図である。図13は、図11に示す半導体装置5において低電位コイル22(=トランスの一次側コイルに相当)が形成された層を示す平面図である。図14は、図11に示す半導体装置5において高電位コイル23(=トランスの二次側コイルに相当)が形成された層を示す平面図である。図15は、図14に示すVIII-VIII線に沿う断面図である。図16は、図14に示すIX-IX線に沿う断面図である。図17は、図14に示す領域Xの拡大図である。図18は、図14に示す領域XIの拡大図である。図19は、図14に示す領域XIIの拡大図である。図20は、図15に示す領域XIIIの拡大図であって、分離構造130を示す図である。
 図11~図15を参照して、半導体装置5は、直方体形状の半導体チップ41を含む。半導体チップ41は、シリコン、ワイドバンドギャップ半導体および化合物半導体のうちの少なくとも1つを含む。
 ワイドバンドギャップ半導体は、シリコンのバンドギャップ(約1.12eV)を超える半導体からなる。ワイドバンドギャップ半導体のバンドギャップは、2.0eV以上であることが好ましい。ワイドバンドギャップ半導体は、SiC(炭化シリコン)であってもよい。化合物半導体は、III-V族化合物半導体であってもよい。化合物半導体は、AlN(窒化アルミニウム)、InN(窒化インジウム)、GaN(窒化ガリウム)およびGaAs(ヒ化ガリウム)のうちの少なくとも1つを含んでいてもよい。
 半導体チップ41は、この形態では、シリコン製の半導体基板を含む。半導体チップ41は、シリコン製の半導体基板およびシリコン製のエピタキシャル層を含む積層構造を有するエピタキシャル基板であってもよい。半導体基板の導電型は、n型またはp型であってもよい。エピタキシャル層は、n型またはp型であってもよい。
 半導体チップ41は、一方側の第1主面42、他方側の第2主面43、並びに、第1主面42及び第2主面43を接続するチップ側壁44A~44Dを有している。第1主面42及び第2主面43は、それらの法線方向Zから見た平面視(以下、単に「平面視」という)において、四角形状(この形態では長方形状)に形成されている。
 チップ側壁44A~44Dは、第1チップ側壁44A、第2チップ側壁44B、第3チップ側壁44Cおよび第4チップ側壁44Dを含む。第1チップ側壁44Aおよび第2チップ側壁44Bは、半導体チップ41の長辺を形成している。第1チップ側壁44Aおよび第2チップ側壁44Bは、第1方向Xに沿って延び、第2方向Yに対向している。第3チップ側壁44Cおよび第4チップ側壁44Dは、半導体チップ41の短辺を形成している。第3チップ側壁44Cおよび第4チップ側壁44Dは、第2方向Yに延び、第1方向Xに対向している。チップ側壁44A~44Dは、研削面からなる。
 半導体装置5は、半導体チップ41の第1主面42の上に形成された絶縁層51をさらに含む。絶縁層51は、絶縁主面52および絶縁側壁53A~53Dを有している。絶縁主面52は、平面視において第1主面42に整合する四角形状(この形態では長方形状)に形成されている。絶縁主面52は、第1主面42に対して平行に延びている。
 絶縁側壁53A~53Dは、第1絶縁側壁53A、第2絶縁側壁53B、第3絶縁側壁53Cおよび第4絶縁側壁53Dを含む。絶縁側壁53A~53Dは、絶縁主面52の周縁から半導体チップ41に向けて延び、チップ側壁44A~44Dに連なっている。絶縁側壁53A~53Dは、具体的には、チップ側壁44A~44Dに対して面一に形成されている。絶縁側壁53A~53Dは、チップ側壁44A~44Dに面一な研削面を形成している。
 絶縁層51は、最下絶縁層55、最上絶縁層56および複数(この形態では11層)の層間絶縁層57を含む多層絶縁積層構造からなる。最下絶縁層55は、第1主面42を直接被覆する絶縁層である。最上絶縁層56は、絶縁主面52を形成する絶縁層である。複数の層間絶縁層57は、最下絶縁層55および最上絶縁層56の間に介在する絶縁層である。最下絶縁層55は、この形態では、酸化シリコンを含む単層構造を有している。最上絶縁層56は、この形態では、酸化シリコンを含む単層構造を有している。最下絶縁層55の厚さおよび最上絶縁層56の厚さは、それぞれ1μm以上3μm以下(たとえば2μm程度)であってもよい。
 複数の層間絶縁層57は、最下絶縁層55側の第1絶縁層58および最上絶縁層56側の第2絶縁層59を含む積層構造をそれぞれ有している。第1絶縁層58は、窒化シリコンを含んでいてもよい。第1絶縁層58は、第2絶縁層59に対するエッチングストッパ層として形成されている。第1絶縁層58の厚さは、0.1μm以上1μm以下(たとえば0.3μm程度)であってもよい。
 第2絶縁層59は、第1絶縁層58の上に形成されている。第1絶縁層58とは異なる絶縁材料を含む。第2絶縁層59は、酸化シリコンを含んでいてもよい。第2絶縁層59の厚さは、1μm以上3μm以下(たとえば2μm程度)であってもよい。第2絶縁層59の厚さは、第1絶縁層58の厚さを超えていることが好ましい。
 絶縁層51の総厚さDTは、5μm以上50μm以下であってもよい。絶縁層51の総厚さDT及び層間絶縁層57の積層数は任意であって、実現すべき絶縁耐圧(絶縁破壊耐量)に応じて調整される。また、最下絶縁層55、最上絶縁層56および層間絶縁層57の絶縁材料は任意であり、特定の絶縁材料に限定されない。
 半導体装置5は、絶縁層51に形成された第1機能デバイス45を含む。第1機能デバイス45は、1つ又は複数(この形態では複数)の変圧器21(先出のトランスに相当)を含む。つまり、半導体装置5は、複数の変圧器21を含むマルチチャネル型デバイスである。複数の変圧器21は、絶縁側壁53A~53Dから間隔を空けて絶縁層51の内方部に形成されている。複数の変圧器21は、第1方向Xに間隔を空けて形成されている。
 複数の変圧器21は、具体的には、平面視において絶縁側壁53C側から絶縁側壁53D側に向けてこの順に形成された第1変圧器21A、第2変圧器21B、第3変圧器21Cおよび第4変圧器21Dを含む。複数の変圧器21A~21Dは、同様の構造をそれぞれ有している。以下では、第1変圧器21Aの構造を例にとって説明する。第2変圧器21B、第3変圧器21Cおよび第4変圧器21Dの構造の説明については、第1変圧器21Aの構造の説明が準用されるものとし、省略する。
 図13~図16を参照して、第1変圧器21Aは、低電位コイル22および高電位コイル23を含む。低電位コイル22は、絶縁層51内に形成されている。高電位コイル23は、法線方向Zに低電位コイル22と対向するように絶縁層51内に成されている。低電位コイル22および高電位コイル23は、この形態では、最下絶縁層55および最上絶縁層56に挟まれた領域(つまり複数の層間絶縁層57)に形成されている。
 低電位コイル22は、絶縁層51内において最下絶縁層55(半導体チップ41)側に形成されており、高電位コイル23は、絶縁層51内において低電位コイル22に対して最上絶縁層56(絶縁主面52)側に形成されている。つまり、高電位コイル23は、低電位コイル22を挟んで半導体チップ41に対向している。低電位コイル22および高電位コイル23の配置箇所は任意である。また、高電位コイル23は、1層以上の層間絶縁層57を挟んで低電位コイル22に対向していればよい。
 低電位コイル22及び高電位コイル23の間の距離(つまり層間絶縁層57の積層数)は、低電位コイル22及び高電位コイル23の間の絶縁耐圧及び電界強度に応じて適宜調整される。低電位コイル22は、この形態では、最下絶縁層55側から数えて3層目の層間絶縁層57に形成されている。高電位コイル23は、この形態では、最上絶縁層56側から数えて1層目の層間絶縁層57に形成されている。
 低電位コイル22は、層間絶縁層57において第1絶縁層58及び第2絶縁層59を貫通して埋め込まれている。低電位コイル22は、第1内側末端24、第1外側末端25、ならびに、第1内側末端24および第1外側末端25の間を螺旋状に引き回された第1螺旋部26を含む。第1螺旋部26は、平面視において楕円形状(長円形状)に延びる螺旋状に引き回されている。第1螺旋部26の最内周縁を形成する部分は、平面視において楕円形状の第1内側領域66を区画している。
 第1螺旋部26の巻回数は、5以上30以下であってもよい。第1螺旋部26の幅は、0.1μm以上5μm以下であってもよい。第1螺旋部26の幅は、1μm以上3μm以下であることが好ましい。第1螺旋部26の幅は、螺旋方向に直交する方向の幅によって定義される。第1螺旋部26の第1巻回ピッチは、0.1μm以上5μm以下であってもよい。第1巻回ピッチは、1μm以上3μm以下であることが好ましい。第1巻回ピッチは、第1螺旋部26において螺旋方向に直交する方向に隣り合う2つの部分の間の距離によって定義される。
 第1螺旋部26の巻回形状及び第1内側領域66の平面形状は任意であり、図13等に示される形態に限定されない。第1螺旋部26は、平面視において三角形状、四角形状等の多角形状、または、円形状に巻回されていてもよい。第1内側領域66は、第1螺旋部26の巻回形状に応じて、平面視において三角形状、四角形状等の多角形状、または、円形状に区画されていてもよい。
 低電位コイル22は、チタン、窒化チタン、銅、アルミニウム及びタングステンのうちの少なくとも1つを含んでいてもよい。低電位コイル22は、バリア層および本体層を含む積層構造を有していてもよい。バリア層は、層間絶縁層57内においてリセス空間を区画する。本体層は、バリア層によって区画されたリセス空間に埋設される。バリア層は、チタンおよび窒化チタンのうちの少なくとも1つを含んでいてもよい。本体層は、銅、アルミニウムおよびタングステンのうちの少なくとも1つを含んでいてもよい。
 高電位コイル23は、層間絶縁層57において第1絶縁層58及び第2絶縁層59を貫通して埋め込まれている。高電位コイル23は、第2内側末端27、第2外側末端28、ならびに、第2内側末端27および第2外側末端28の間を螺旋状に引き回された第2螺旋部29を含む。第2螺旋部29は、平面視において楕円形状(長円形状)に延びる螺旋状に引き回されている。第2螺旋部29の最内周縁を形成する部分は、この形態では、平面視において楕円形状の第2内側領域67を区画している。第2螺旋部29の第2内側領域67は、法線方向Zに第1螺旋部26の第1内側領域66に対向している。
 第2螺旋部29の巻回数は、5以上30以下であってもよい。第1螺旋部26の巻回数に対する第2螺旋部29の巻回数は、昇圧すべき電圧値に応じて調整される。第2螺旋部29の巻回数は、第1螺旋部26の巻回数を超えていることが好ましい。むろん、第2螺旋部29の巻回数は、第1螺旋部26の巻回数未満であってもよいし、第1螺旋部26の巻回数と等しくてもよい。
 第2螺旋部29の幅は、0.1μm以上5μm以下であってもよい。第2螺旋部29の幅は、1μm以上3μm以下であることが好ましい。第2螺旋部29の幅は、螺旋方向に直交する方向の幅によって定義される。第2螺旋部29の幅は、第1螺旋部26の幅と等しいことが好ましい。
 第2螺旋部29の第2巻回ピッチは、0.1μm以上5μm以下であってもよい。第2巻回ピッチは、1μm以上3μm以下であることが好ましい。第2巻回ピッチは、第2螺旋部29において螺旋方向に直交する方向に隣り合う2つの部分の間の距離によって定義される。第2巻回ピッチは、第1螺旋部26の第1巻回ピッチと等しいことが好ましい。
 第2螺旋部29の巻回形状及び第2内側領域67の平面形状は任意であり、図14等に示される形態に限定されない。第2螺旋部29は、平面視において三角形状、四角形状等の多角形状、または、円形状に巻回されていてもよい。第2内側領域67は、第2螺旋部29の巻回形状に応じて、平面視において三角形状、四角形状等の多角形状、または、円形状に区画されていてもよい。
 高電位コイル23は、低電位コイル22と同一の導電材料によって形成されていることが好ましい。つまり、高電位コイル23は、低電位コイル22と同様に、バリア層および本体層を含むことが好ましい。
 図12を参照して、半導体装置5は、複数(本図では12個)の低電位端子11、及び、複数(本図では12個)の高電位端子12を含む。複数の低電位端子11は、対応する変圧器21A~21Dの低電位コイル22にそれぞれ電気的に接続されている。複数の高電位端子12は、対応する変圧器21A~21Dの高電位コイル23にそれぞれ電気的に接続されている。
 複数の低電位端子11は、絶縁層51の絶縁主面52の上に形成されている。複数の低電位端子11は、具体的には、複数の変圧器21A~21Dから第2方向Yに間隔を空けて絶縁側壁53B側の領域に形成され、第1方向Xに間隔を空けて配列されている。
 複数の低電位端子11は、第1低電位端子11A、第2低電位端子11B、第3低電位端子11C、第4低電位端子11D、第5低電位端子11Eおよび第6低電位端子11Fを含む。複数の低電位端子11A~11Fは、この形態では、2個ずつそれぞれ形成されている。複数の低電位端子11A~11Fの個数は任意である。
 第1低電位端子11Aは、平面視において第2方向Yに第1変圧器21Aに対向している。第2低電位端子11Bは、平面視において第2方向Yに第2変圧器21Bに対向している。第3低電位端子11Cは、平面視において第2方向Yに第3変圧器21Cに対向している。第4低電位端子11Dは、平面視において第2方向Yに第4変圧器21Dに対向している。第5低電位端子11Eは、平面視において第1低電位端子11Aおよび第2低電位端子11Bの間の領域に形成されている。第6低電位端子11Fは、平面視において第3低電位端子11Cおよび第4低電位端子11Dの間の領域に形成されている。
 第1低電位端子11Aは、第1変圧器21A(低電位コイル22)の第1内側末端24に電気的に接続されている。第2低電位端子11Bは、第2変圧器21B(低電位コイル22)の第1内側末端24に電気的に接続されている。第3低電位端子11Cは、第3変圧器21C(低電位コイル22)の第1内側末端24に電気的に接続されている。第4低電位端子11Dは、第4変圧器21D(低電位コイル22)の第1内側末端24に電気的に接続されている。
 第5低電位端子11Eは、第1変圧器21A(低電位コイル22)の第1外側末端25および第2変圧器21B(低電位コイル22)の第1外側末端25に電気的に接続されている。第6低電位端子11Fは、第3変圧器21C(低電位コイル22)の第1外側末端25および第4変圧器21D(低電位コイル22)の第1外側末端25に電気的に接続されている。
 複数の高電位端子12は、複数の低電位端子11から間隔を空けて絶縁層51の絶縁主面52の上に形成されている。複数の高電位端子12は、具体的には、複数の低電位端子11から第2方向Yに間隔を空けて絶縁側壁53A側の領域に形成され、第1方向Xに間隔を空けて配列されている。
 複数の高電位端子12は、平面視において対応する変圧器21A~21Dに近接する領域にそれぞれ形成されている。高電位端子12が変圧器21A~21Dに近接するとは、平面視において高電位端子12および変圧器21の間の距離が、低電位端子11および高電位端子12の間の距離未満であることを意味する。
 複数の高電位端子12は、具体的には、平面視において第1方向Xに沿って複数の変圧器21A~21Dと対向するように第1方向Xに沿って間隔を空けて形成されている。複数の高電位端子12は、さらに具体的には、平面視において高電位コイル23の第2内側領域67および隣り合う高電位コイル23の間の領域に位置するように第1方向Xに沿って間隔を空けて形成されている。これにより、複数の高電位端子12は、平面視において第1方向Xに複数の変圧器21A~21Dと一列に並んで配列されている。
 複数の高電位端子12は、第1高電位端子12A、第2高電位端子12B、第3高電位端子12C、第4高電位端子12D、第5高電位端子12Eおよび第6高電位端子12Fを含む。複数の高電位端子12A~12Fは、この形態では、2個ずつそれぞれ形成されている。複数の高電位端子12A~12Fの個数は任意である。
 第1高電位端子12Aは、平面視において第1変圧器21A(高電位コイル23)の第2内側領域67に形成されている。第2高電位端子12Bは、平面視において第2変圧器21B(高電位コイル23)の第2内側領域67に形成されている。第3高電位端子12Cは、平面視において第3変圧器21C(高電位コイル23)の第2内側領域67に形成されている。第4高電位端子12Dは、平面視において第4変圧器21D(高電位コイル23)の第2内側領域67に形成されている。第5高電位端子12Eは、平面視において第1変圧器21Aおよび第2変圧器21Bの間の領域に形成されている。第6高電位端子12Fは、平面視において第3変圧器21Cおよび第4変圧器21Dの間の領域に形成されている。
 第1高電位端子12Aは、第1変圧器21A(高電位コイル23)の第2内側末端27に電気的に接続されている。第2高電位端子12Bは、第2変圧器21B(高電位コイル23)の第2内側末端27に電気的に接続されている。第3高電位端子12Cは、第3変圧器21C(高電位コイル23)の第2内側末端27に電気的に接続されている。第4高電位端子12Dは、第4変圧器21D(高電位コイル23)の第2内側末端27に電気的に接続されている。
 第5高電位端子12Eは、第1変圧器21A(高電位コイル23)の第2外側末端28および第2変圧器21B(高電位コイル23)の第2外側末端28に電気的に接続されている。第6高電位端子12Fは、第3変圧器21C(高電位コイル23)の第2外側末端28および第4変圧器21D(高電位コイル23)の第2外側末端28に電気的に接続されている。
 図13~図16を参照して、半導体装置5は、絶縁層51内にそれぞれ形成された第1低電位配線31、第2低電位配線32、第1高電位配線33及び第2高電位配線34を含む。この形態では、複数の第1低電位配線31、複数の第2低電位配線32、複数の第1高電位配線33および複数の第2高電位配線34が形成されている。
 第1低電位配線31および第2低電位配線32は、第1変圧器21Aの低電位コイル22および第2変圧器21Bの低電位コイル22を同電位に固定している。また、第1低電位配線31および第2低電位配線32は、第3変圧器21Cの低電位コイル22および第4変圧器21Dの低電位コイル22を同電位に固定している。第1低電位配線31および第2低電位配線32は、この形態では、変圧器21A~21Dの全ての低電位コイル22を同電位に固定している。
 第1高電位配線33および第2高電位配線34は、第1変圧器21Aの高電位コイル23および第2変圧器21Bの高電位コイル23を同電位に固定している。また、第1高電位配線33および第2高電位配線34は、第3変圧器21Cの高電位コイル23および第4変圧器21Dの高電位コイル23を同電位に固定している。第1高電位配線33および第2高電位配線34は、この形態では、変圧器21A~21Dの全ての高電位コイル23を同電位に固定している。
 複数の第1低電位配線31は、対応する低電位端子11A~11Dおよび対応する変圧器21A~21D(低電位コイル22)の第1内側末端24にそれぞれ電気的に接続されている。複数の第1低電位配線31は、同様の構造を有している。以下では、第1低電位端子11Aおよび第1変圧器21Aに接続された第1低電位配線31の構造を例にとって説明する。他の第1低電位配線31の構造の説明については、第1変圧器21Aに接続された第1低電位配線31の構造の説明が準用されるものとし、省略する。
 第1低電位配線31は、貫通配線71、低電位接続配線72、引き出し配線73、第1接続プラグ電極74、第2接続プラグ電極75、1つまたは複数(この形態では複数)のパッドプラグ電極76、および、1つまたは複数(この形態では複数)の基板プラグ電極77を含む。
 貫通配線71、低電位接続配線72、引き出し配線73、第1接続プラグ電極74、第2接続プラグ電極75、パッドプラグ電極76および基板プラグ電極77は、低電位コイル22等と同一の導電材料によってそれぞれ形成されていることが好ましい。つまり、貫通配線71、低電位接続配線72、引き出し配線73、第1接続プラグ電極74、第2接続プラグ電極75、パッドプラグ電極76および基板プラグ電極77は、低電位コイル22等と同様に、バリア層および本体層をそれぞれ含むことが好ましい。
 貫通配線71は、絶縁層51において複数の層間絶縁層57を貫通し、法線方向Zに沿って延びる柱状に延びている。貫通配線71は、この形態では、絶縁層51において最下絶縁層55および最上絶縁層56の間の領域に形成されている。貫通配線71は、最上絶縁層56側の上端部、および、最下絶縁層55側の下端部を有している。貫通配線71の上端部は、高電位コイル23と同一の層間絶縁層57に形成され、最上絶縁層56によって被覆されている。貫通配線71の下端部は、低電位コイル22と同一の層間絶縁層57に形成されている。
 貫通配線71は、この形態では、第1電極層78、第2電極層79、および、複数の配線プラグ電極80を含む。貫通配線71では、第1電極層78、第2電極層79および配線プラグ電極80が低電位コイル22等と同一の導電材料によってそれぞれ形成されている。つまり、第1電極層78、第2電極層79および配線プラグ電極80は、低電位コイル22等と同様に、バリア層および本体層をそれぞれ含む。
 第1電極層78は、貫通配線71の上端部を形成している。第2電極層79は、貫通配線71の下端部を形成している。第1電極層78は、アイランド状に形成され、法線方向Zに低電位端子11(第1低電位端子11A)に対向している。第2電極層79は、アイランド状に形成され、法線方向Zに第1電極層78に対向している。
 複数の配線プラグ電極80は、第1電極層78および第2電極層79の間の領域に位置する複数の層間絶縁層57にそれぞれ埋設されている。複数の配線プラグ電極80は、互いに電気的に接続されるように最下絶縁層55から最上絶縁層56に向けて積層され、かつ、第1電極層78および第2電極層79を電気的に接続している。複数の配線プラグ電極80は、第1電極層78の平面積および第2電極層79の平面積未満の平面積をそれぞれ有している。
 なお、複数の配線プラグ電極80の積層数は、複数の層間絶縁層57の積層数に一致している。この形態では、6個の配線プラグ電極80が各層間絶縁層57内に埋設されているが、各層間絶縁層57内に埋設される配線プラグ電極80の個数は任意である。もちろん、複数の層間絶縁層57を貫通する1つまたは複数の配線プラグ電極80が形成されていてもよい。
 低電位接続配線72は、低電位コイル22と同一の層間絶縁層57内において第1変圧器21A(低電位コイル22)の第1内側領域66に形成されている。低電位接続配線72は、アイランド状に形成され、法線方向Zに高電位端子12(第1高電位端子12A)に対向している。低電位接続配線72は、配線プラグ電極80の平面積を超える平面積を有していることが好ましい。低電位接続配線72は、低電位コイル22の第1内側末端24に電気的に接続されている。
 引き出し配線73は、層間絶縁層57内において半導体チップ41および貫通配線71の間の領域に形成されている。引き出し配線73は、この形態では、最下絶縁層55から数えて1層目の層間絶縁層57内に形成されている。引き出し配線73は、一方側の第1端部、他方側の第2端部、ならびに、第1端部および第2端部を接続する配線部を含む。引き出し配線73の第1端部は、半導体チップ41および貫通配線71の下端部の間の領域に位置している。引き出し配線73の第2端部は、半導体チップ41および低電位接続配線72の間の領域に位置している。配線部は、半導体チップ41の第1主面42に沿って延び、第1端部および第2端部の間の領域を帯状に延びている。
 第1接続プラグ電極74は、層間絶縁層57内において貫通配線71および引き出し配線73の間の領域に形成され、貫通配線71および引き出し配線73の第1端部に電気的に接続されている。第2接続プラグ電極75は、層間絶縁層57内において低電位接続配線72および引き出し配線73の間の領域に形成され、低電位接続配線72および引き出し配線73の第2端部に電気的に接続されている。
 複数のパッドプラグ電極76は、最上絶縁層56内において低電位端子11(第1低電位端子11A)および貫通配線71の間の領域に形成され、低電位端子11および貫通配線71の上端部にそれぞれ電気的に接続されている。複数の基板プラグ電極77は、最下絶縁層55内において半導体チップ41および引き出し配線73の間の領域に形成されている。基板プラグ電極77は、この形態では、半導体チップ41および引き出し配線73の第1端部の間の領域に形成され、半導体チップ41および引き出し配線73の第1端部にそれぞれ電気的に接続されている。
 図16を参照して、複数の第2低電位配線32は、対応する低電位端子11E、11F及び対応する変圧器21A~21Dの低電位コイル22の第1外側末端25にそれぞれ電気的に接続されている。複数の第2低電位配線32は、同様の構造をそれぞれ有している。以下では、第5低電位端子11Eおよび第1変圧器21A(第2変圧器21B)に接続された第2低電位配線32の構造を例にとって説明する。他の第2低電位配線32の構造の説明については、第1変圧器21A(第2変圧器21B)に接続された第2低電位配線32の構造の説明が準用されるものとし、省略する。
 第2低電位配線32は、第1低電位配線31と同様、貫通配線71、低電位接続配線72、引き出し配線73、第1接続プラグ電極74、第2接続プラグ電極75、パッドプラグ電極76および基板プラグ電極77を含む。第2低電位配線32は、低電位接続配線72が第1変圧器21A(低電位コイル22)の第1外側末端25および第2変圧器21B(低電位コイル22)の第1外側末端25に電気的に接続されている点を除いて、第1低電位配線31と同様の構造を有している。
 第2低電位配線32の低電位接続配線72は、低電位コイル22と同一の層間絶縁層57内において低電位コイル22の周囲に形成されている。低電位接続配線72は、具体的には、平面視において隣り合う2つの低電位コイル22の間の領域に形成されている。パッドプラグ電極76は、最上絶縁層56内において低電位端子11(第5低電位端子11E)および低電位接続配線72の間の領域に形成され、低電位端子11および低電位接続配線72に電気的に接続されている。
 図15を参照して、複数の第1高電位配線33は、対応する高電位端子12A~12Dおよび対応する変圧器21A~21D(高電位コイル23)の第2内側末端27にそれぞれ電気的に接続されている。複数の第1高電位配線33は、同様の構造をそれぞれ有している。以下では、第1高電位端子12A及び第1変圧器21Aに接続された第1高電位配線33の構造を例にとって説明する。他の第1高電位配線33の構造の説明については、第1変圧器21Aに接続された第1高電位配線33の構造の説明が準用されるものとし、省略する。
 第1高電位配線33は、高電位接続配線81、および、1つまたは複数(この形態では複数)のパッドプラグ電極82を含む。高電位接続配線81およびパッドプラグ電極82は、低電位コイル22等と同一の導電材料によって形成されていることが好ましい。つまり、高電位接続配線81およびパッドプラグ電極82は、低電位コイル22等と同様に、バリア層および本体層を含むことが好ましい。
 高電位接続配線81は、高電位コイル23と同一の層間絶縁層57内において高電位コイル23の第2内側領域67に形成されている。高電位接続配線81は、アイランド状に形成され、法線方向Zに高電位端子12(第1高電位端子12A)に対向している。高電位接続配線81は、高電位コイル23の第2内側末端27に電気的に接続されている。高電位接続配線81は、平面視において低電位接続配線72から間隔を空けて形成され、法線方向Zに低電位接続配線72には対向していない。これにより、低電位接続配線72と高電位接続配線81の間の絶縁距離が増加し、絶縁層51の絶縁耐圧が高められている。
 複数のパッドプラグ電極82は、最上絶縁層56内において高電位端子12(第1高電位端子12A)および高電位接続配線81の間の領域に形成され、高電位端子12及び高電位接続配線81にそれぞれ電気的に接続されている。複数のパッドプラグ電極82は、平面視において高電位接続配線81の平面積未満の平面積をそれぞれ有している。
 図16を参照して、複数の第2高電位配線34は、対応する高電位端子12E、12Fおよび対応する変圧器21A~21D(高電位コイル23)の第2外側末端28にそれぞれ電気的に接続されている。複数の第2高電位配線34は、同様の構造をそれぞれ有している。以下では、第5高電位端子12Eおよび第1変圧器21A(第2変圧器21B)に接続された第2高電位配線34の構造を例にとって説明する。他の第2高電位配線34の構造の説明については、第1変圧器21A(第2変圧器21B)に接続された第2高電位配線34の構造の説明が準用されるものとし、省略する。
 第2高電位配線34は、第1高電位配線33と同様、高電位接続配線81およびパッドプラグ電極82を含む。第2高電位配線34は、高電位接続配線81が第1変圧器21A(高電位コイル23)の第2外側末端28および第2変圧器21B(高電位コイル23)の第2外側末端28に電気的に接続されている点を除いて、第1高電位配線33と同様の構造を有している。
 第2高電位配線34の高電位接続配線81は、高電位コイル23と同一の層間絶縁層57内において高電位コイル23の周囲に形成されている。高電位接続配線81は、平面視において隣り合う2つの高電位コイル23の間の領域に形成され、法線方向Zに高電位端子12(第5高電位端子12E)に対向している。高電位接続配線81は、平面視において低電位接続配線72から間隔を空けて形成され、法線方向Zに低電位接続配線72には対向していない。
 複数のパッドプラグ電極82は、最上絶縁層56内において高電位端子12(第5高電位端子12E)および高電位接続配線81の間の領域に形成され、高電位端子12および高電位接続配線81にそれぞれ電気的に接続されている。
 図15及び図16を参照して、低電位端子11および高電位端子12の間の距離D1は、低電位コイル22および高電位コイル23の間の距離D2を超えていることが好ましい(D2<D1)。距離D1は、複数の層間絶縁層57の総厚さDTを超えていることが好ましい(DT<D1)。距離D1に対する距離D2の比D2/D1は、0.01以上0.1以下であってもよい。距離D1は、100μm以上500μm以下であることが好ましい。距離D2は、1μm以上50μm以下であってもよい。距離D2は、5μm以上25μm以下であることが好ましい。距離D1および距離D2の値は任意であり、実現すべき絶縁耐圧に応じて適宜調整される。
 図14~図19を参照して、半導体装置5は、平面視において変圧器21A~21Dの周囲に位置するように絶縁層51内に埋設されたダミーパターン85を含む。図17~図19では、ダミーパターン85がハッチングによって示されている。ダミーパターン85は、導電体を含む。ダミーパターン85は、低電位コイル22等と同一の導電材料によって形成されていることが好ましい。つまり、ダミーパターン85は、低電位コイル22等と同様に、バリア層および本体層を含むことが好ましい。
 ダミーパターン85は、高電位コイル23および低電位コイル22とは異なるパターン(不連続なパターン)で形成されており、変圧器21A~21Dから独立している。つまり、ダミーパターン85は、変圧器21A~21Dとしては機能しない。ダミーパターン85は、変圧器21A~21Dにおいて低電位コイル22および高電位コイル23の間の電界を遮蔽し、高電位コイル23に対する電界集中を抑制するシールド導体層として形成されている。
 ダミーパターン85は、この形態では、平面視において1つまたは複数の高電位コイル23の周囲の領域を部分的に被覆し、かつ、部分的に露出させるように密なライン状に引き回されている。ダミーパターン85は、この形態では、単位面積当たりにおいて高電位コイル23のライン密度と等しいライン密度で引き回されている。ダミーパターン85のライン密度が高電位コイル23のライン密度と等しいとは、ダミーパターン85のライン密度が高電位コイル23のライン密度の±20%の範囲内に収まることを意味する。
 ダミーパターン85は、平面視において低電位端子11に対して高電位コイル23に近接する領域に形成されていることが好ましい。平面視においてダミーパターン85が高電位コイル23に近接するとは、ダミーパターン85と高電位コイル23との間の距離が、ダミーパターン85および低電位端子11の間の距離未満であることを意味する。
 絶縁層51の内部におけるダミーパターン85の深さ位置は任意であり、緩和すべき電界強度に応じて調整される。ダミーパターン85は、法線方向Zに関して低電位コイル22に対して高電位コイル23に近接する領域に形成されていることが好ましい。なお、法線方向Zに関してダミーパターン85が高電位コイル23に近接するとは、法線方向Zに関して、ダミーパターン85および高電位コイル23の間の距離が、ダミーパターン85および低電位コイル22の間の距離未満であることを意味する。
 この場合、高電位コイル23に対する電界集中を適切に抑制できる。法線方向Zに関して、ダミーパターン85および高電位コイル23の間の距離を小さくするほど、高電位コイル23に対する電界集中を抑制できる。ダミーパターン85は、高電位コイル23と同一の層間絶縁層57内に形成されていることが好ましい。この場合、高電位コイル23に対する電界集中をさらに適切に抑制できる。
 ダミーパターン85は、平面視において隣り合う複数の高電位コイル23の間の領域に介在するように複数の高電位コイル23の周囲に形成されていることが好ましい。この場合、隣り合う複数の高電位コイル23の間の領域を利用して、複数の高電位コイル23に対する不所望な電界集中を抑制できる。
 ダミーパターン85は、平面視において低電位端子11および高電位コイル23の間の領域に介在していることが好ましい。この場合、高電位コイル23の電界集中に起因する低電位端子11および高電位コイル23の間の不所望な導通を抑制できる。ダミーパターン85は、平面視において低電位端子11および高電位端子12の間の領域に介在していることが好ましい。この場合、高電位コイル23の電界集中に起因する低電位端子11および高電位端子12の間の不所望な導通を抑制できる。
 ダミーパターン85は、この形態では、平面視において複数の高電位コイル23に沿って形成され、隣り合う複数の高電位コイル23の間の領域に介在している。また、ダミーパターン85は、平面視において複数の高電位コイル23および複数の高電位端子12を含む領域を一括して取り囲んでいる。また、ダミーパターン85は、平面視において複数の低電位端子11A~11Fおよび複数の高電位コイル23の間の領域に介在している。また、ダミーパターン85は、平面視において複数の低電位端子11A~11Fおよび複数の高電位端子12A~12Fの間の領域に介在している。
 図14~図19を参照して、ダミーパターン85は、電気的状態が異なる複数のダミーパターンを含む。ダミーパターン85は、高電位ダミーパターン86を含む。高電位ダミーパターン86は、平面視において変圧器21A~21Dの周囲に位置するように絶縁層51内に形成されている。高電位ダミーパターン86は、高電位コイル23および低電位コイル22とは異なるパターン(不連続なパターン)で形成されており、変圧器21A~21Dから独立している。つまり、高電位ダミーパターン86は、変圧器21A~21Dとしては機能しない。
 高電位ダミーパターン86は、この形態では、平面視において高電位コイル23の周囲の領域を部分的に被覆し、かつ、部分的に露出させるように密なライン状に引き回されている。高電位ダミーパターン86は、この形態では、単位面積当たりで高電位コイル23のライン密度と等しいライン密度で引き回されている。高電位ダミーパターン86のライン密度が高電位コイル23のライン密度と等しいとは、高電位ダミーパターン86のライン密度が高電位コイル23のライン密度の±20%の範囲内に収まることを意味する。
 高電位ダミーパターン86は、変圧器21A~21Dにおいて低電位コイル22および高電位コイル23の間の電界を遮蔽し、高電位コイル23に対する電界集中を抑制する。高電位ダミーパターン86は、具体的には、低電位コイル22および高電位コイル23の間の電界を遮蔽することによって、高電位コイル23の上側に漏れ出す電界を高電位コイル23から遠ざける。これにより、高電位コイル23の上側に漏れ出す電界を起因とする高電位コイル23の電界集中が、抑制される。
 高電位ダミーパターン86には、低電位コイル22に印加される電圧を超える電圧が印加される。これにより、高電位コイル23および高電位ダミーパターン86の間の電圧降下を抑制できるから、高電位コイル23に対する電界集中を抑制できる。高電位ダミーパターン86には、高電位コイル23に印加される電圧が印加されることが好ましい。つまり、高電位ダミーパターン86は、高電位コイル23と同電位に固定されていることが好ましい。これにより、高電位コイル23および高電位ダミーパターン86の間の電圧降下を確実に抑制できるから、高電位コイル23に対する電界集中を適切に抑制できる。
 絶縁層51の内部における高電位ダミーパターン86の深さ位置は任意であり、緩和すべき電界強度に応じて調整される。高電位ダミーパターン86は、法線方向Zに関して低電位コイル22に対して高電位コイル23に近接する領域に形成されていることが好ましい。法線方向Zに関して高電位ダミーパターン86が高電位コイル23に近接するとは、法線方向Zに関して、高電位ダミーパターン86および高電位コイル23の間の距離が、高電位ダミーパターン86及び低電位コイル22の間の距離未満であることを意味する。
 この場合、高電位コイル23に対する電界集中を適切に抑制できる。法線方向Zに関して、高電位ダミーパターン86および高電位コイル23の間の距離を小さくするほど、高電位コイル23に対する電界集中を抑制できる。高電位ダミーパターン86は、高電位コイル23と同一の層間絶縁層57内に形成されていることが好ましい。この場合、高電位コイル23に対する電界集中をさらに適切に抑制できる。
 高電位ダミーパターン86は、平面視において低電位端子11に対して高電位コイル23に近接する領域に形成されていることが好ましい。平面視において高電位ダミーパターン86が高電位コイル23に近接するとは、高電位ダミーパターン86および高電位コイル23の間の距離が、高電位ダミーパターン86および低電位端子11の間の距離未満であることを意味する。
 高電位ダミーパターン86は、平面視において隣り合う複数の高電位コイル23の間の領域に介在するように複数の高電位コイル23の周囲に形成されていることが好ましい。この場合、隣り合う複数の高電位コイル23の間の領域を利用して、複数の高電位コイル23に対する不所望な電界集中を抑制できる。
 高電位ダミーパターン86は、平面視において低電位端子11および高電位コイル23の間の領域に介在していることが好ましい。この場合、高電位コイル23の電界集中に起因する低電位端子11および高電位コイル23の間の不所望な導通を抑制できる。高電位ダミーパターン86は、平面視において低電位端子11および高電位端子12の間の領域に介在していることが好ましい。この場合、高電位コイル23の電界集中に起因する低電位端子11および高電位端子12の間の不所望な導通を抑制できる。
 高電位ダミーパターン86は、この形態では、平面視において複数の高電位コイル23に沿って形成され、隣り合う複数の高電位コイル23の間の領域に介在している。また、高電位ダミーパターン86は、平面視において複数の高電位コイル23および複数の高電位端子12を含む領域を一括して取り囲んでいる。また、高電位ダミーパターン86は、平面視において複数の低電位端子11A~11Fおよび複数の高電位コイル23の間の領域に介在している。また、高電位ダミーパターン86は、平面視において複数の低電位端子11A~11Fおよび複数の高電位端子12A~12Fの間の領域に介在している。
 高電位ダミーパターン86は、平面視において隣り合う複数の高電位コイル23の間の領域において、高電位端子12E、12Fの直下の領域を露出させるように、高電位端子12E、12Fの周囲に引き回されている。高電位ダミーパターン86の一部は、法線方向Zに高電位端子12A~12Fに対向していてもよい。この場合、高電位端子12E、12Fは、高電位ダミーパターン86と同様に、電界を遮蔽することによって、高電位コイル23の上側に漏れ出す電界を抑制する。つまり、高電位端子12E、12Fは、高電位ダミーパターン86と共に高電位コイル23に対する電界集中を抑制するシールド導体層として形成されている。
 高電位ダミーパターン86は、有端状に形成されていることが好ましい。この場合、電流のループ回路(閉回路)が高電位ダミーパターン86に形成されることを抑制できる。これにより、高電位ダミーパターン86を流れる電流に起因するノイズが抑制される。その結果、ノイズに起因する不所望な電界集中を抑制できると同時に、変圧器21A~21Dの電気的特性の変動を抑制できる。
 高電位ダミーパターン86は、具体的には、第1高電位ダミーパターン87および第2高電位ダミーパターン88を含む。第1高電位ダミーパターン87は、平面視において隣り合う複数の変圧器21A~21D(複数の高電位コイル23)の間の領域に形成されている。第2高電位ダミーパターン88は、平面視において隣り合う複数の変圧器21A~21D(複数の高電位コイル23)の間の領域外の領域に形成されている。
 以下では、隣り合う第1変圧器21A(高電位コイル23)および第2変圧器21B(高電位コイル23)の間の領域が、第1領域89と称される。また、第2変圧器21B(高電位コイル23)および第3変圧器21C(高電位コイル23)の間の領域が、第2領域90と称される。また、第3変圧器21C(高電位コイル23)および第4変圧器21D(高電位コイル23)の間の領域が、第3領域91と称される。
 第1高電位ダミーパターン87は、この形態では、第1高電位配線33を介して高電位端子12(第5高電位端子12E)に電気的に接続されている。第1高電位ダミーパターン87は、具体的には、第1高電位配線33に接続された第1接続部92を含む。第1接続部92の位置は任意である。これにより、第1高電位ダミーパターン87は、複数の高電位コイル23と同電位に固定される。
 第1高電位ダミーパターン87は、具体的には、第1領域89に形成された第1パターン93、第2領域90に形成された第2パターン94、および、第3領域91に形成された第3パターン95を含む。これにより、第1高電位ダミーパターン87は、第1領域89、第2領域90および第3領域91において、高電位コイル23の上側に漏れ出す電界を抑制し、隣り合う複数の高電位コイル23に対する電界集中を抑制する。
 第1パターン93、第2パターン94および第3パターン95は、この形態では、一体的に形成され、同電位に固定されている。第1パターン93、第2パターン94および第3パターン95は、同電位に固定されているのであれば分離されていてもよい。
 図14および図17を参照して、第1パターン93は、第1接続部92を介して第1高電位配線33に接続されている。第1パターン93は、平面視において第1領域89の一部の領域を覆い隠すように密なライン状に引き回されている。第1パターン93は、平面視において高電位端子12(第5高電位端子12E)から間隔を空けて第1領域89に形成され、法線方向Zに高電位端子12に対向していない。また、第1パターン93は、平面視において低電位接続配線72から間隔を空けて形成され、法線方向Zに低電位接続配線72に対向していない。これにより、第1パターン93および低電位接続配線72の間の絶縁距離が増加し、絶縁層51の絶縁耐圧が高められている。
 第1パターン93は、第1外周ライン96、第2外周ライン97および複数の第1中間ライン98を含む。第1外周ライン96は、第1変圧器21Aの高電位コイル23の周囲に沿って帯状に延びている。第1外周ライン96は、この形態では、平面視において第1領域89に開放端を有するリング形状に形成されている。第1外周ライン96の開放端の幅は、高電位コイル23の第2方向Yに沿う幅未満である。
 第1外周ライン96の幅は、0.1μm以上5μm以下でもよい。第1外周ライン96の幅は、1μm以上3μm以下であることが好ましい。第1外周ライン96の幅は、第1外周ライン96が延びる方向に直交する方向の幅によって定義される。第1外周ライン96の幅は、高電位コイル23の幅と等しいことが好ましい。第1外周ライン96の幅が高電位コイル23の幅と等しいとは、第1外周ライン96の幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 第1外周ライン96及び高電位コイル23(第1変圧器21A)の間の第1ピッチは、0.1μm以上5μm以下であってもよい。第1ピッチは、1μm以上3μm以下であることが好ましい。第1ピッチは、高電位コイル23の第2巻回ピッチと等しいことが好ましい。第1ピッチが第1巻回ピッチと等しいとは、第1ピッチが第1巻回ピッチの±20%以内の範囲に収まることを意味する。
 第2外周ライン97は、第2変圧器21Bの高電位コイル23の周囲に沿って帯状に延びている。第2外周ライン97は、この形態では、平面視において第1領域89に開放端を有するリング形状に形成されている。第2外周ライン97の開放端の幅は、高電位コイル23の第2方向Yに沿う幅未満である。第2外周ライン97の開放端は、第1方向Xに沿って第1外周ライン96の開放端と対向している。
 第2外周ライン97の幅は、0.1μm以上5μm以下でもよい。第2外周ライン97の幅は、1μm以上3μm以下であることが好ましい。第2外周ライン97の幅は、第2外周ライン97が延びる方向に直交する方向の幅によって定義される。第2外周ライン97の幅は、高電位コイル23の幅と等しいことが好ましい。第2外周ライン97の幅が高電位コイル23の幅と等しいとは、第2外周ライン97の幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 第2外周ライン97及び高電位コイル23(第2変圧器21B)の間の第2ピッチは、0.1μm以上5μm以下であってもよい。第2ピッチは、1μm以上3μm以下であることが好ましい。第2ピッチは、高電位コイル23の第2巻回ピッチと等しいことが好ましい。第2ピッチが第2巻回ピッチと等しいとは、第2ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味する。
 複数の第1中間ライン98は、第1領域89において第1外周ライン96および第2外周ライン97の間の領域を帯状に延びている。複数の第1中間ライン98は、第1外周ライン96および第2外周ライン97を電気的に接続する少なくとも1つ(この形態では1つ)の第1接続ライン99を含む。
 電流のループ回路の形成を防止する観点から、複数の第1中間ライン98は、第1接続ライン99を1つだけ含むことが好ましい。第1接続ライン99の位置は任意である。複数の第1中間ライン98のうちの少なくとも1つには、電流のループ回路を遮断するスリット100が形成されている。スリット100の位置は、複数の第1中間ライン98のデザインによって適宜調整される。
 複数の第1中間ライン98は、複数の高電位コイル23の対向方向に沿って延びる帯状に形成されていることが好ましい。複数の第1中間ライン98は、この形態では、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて形成されている。複数の第1中間ライン98は、平面視において全体として第1方向Xに延びるストライプ状に形成されている。
 複数の第1中間ライン98は、具体的には、複数の第1引き出し部101および複数の第2引き出し部102を含む。複数の第1引き出し部101は、第1外周ライン96から第2外周ライン97に向けてストライプ状に引き出されている。複数の第1引き出し部101の先端部は、第1外周ライン96から第2外周ライン97側に間隔を空けて形成されている。
 複数の第2引き出し部102は、第2外周ライン97から第1外周ライン96に向けてストライプ状に引き出されている。複数の第2引き出し部102の先端部は、第2外周ライン97から第1外周ライン96側に間隔を空けて形成されている。複数の第2引き出し部102は、この形態では、1つの第1引き出し部101を挟み込む態様で、第2方向Yに複数の第1引き出し部101と交互に間隔を空けて形成されている。
 なお、複数の第2引き出し部102は、複数の第1引き出し部101を挟み込んでいてもよい。また、複数の第2引き出し部102を含む群が、複数の第1引き出し部101を含む群と隣り合うように形成されていてもよい。スリット100、複数の第1引き出し部101および複数の第2引き出し部102は、第1パターン93における電流のループ回路の形成を抑制する。
 第2方向Yに関して第1中間ライン98の幅は、0.1μm以上5μm以下であってもよい。第1中間ライン98の幅は、1μm以上3μm以下であることが好ましい。第1中間ライン98の幅は、高電位コイル23の幅と等しいことが好ましい。第1中間ライン98の幅が高電位コイル23の幅と等しいとは、第1中間ライン98の幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 隣り合う2つの第1中間ライン98の第3ピッチは、0.1μm以上5μm以下でもよい。第3ピッチは、1μm以上3μm以下であることが好ましい。第3ピッチは、第2方向Yに関して、隣り合う複数の第1中間ライン98の間の距離によって定義される。第3ピッチは、互いに等しいことが好ましい。第3ピッチが互いに等しいとは、第3ピッチが当該第3ピッチの±20%以内の範囲に収まることを意味する。第3ピッチは、高電位コイル23の第2巻回ピッチと等しいことが好ましい。第3ピッチが第2巻回ピッチと等しいとは、第3ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味する。
 図14および図18を参照して、第2パターン94は、第1高電位配線33を介して高電位端子12に電気的に接続されている。第2パターン94は、この形態では、第1パターン93の第2外周ライン97を介して第1高電位配線33(第5高電位端子12E)に電気的に接続されている。第2パターン94は、第2領域90を覆い隠すように密なライン状に引き回されている。
 第2パターン94は、前述の第2外周ライン97、第3外周ライン103および複数の第2中間ライン104を含む。第3外周ライン103は、第3変圧器21Cの高電位コイル23の周囲に沿って帯状に延びている。第3外周ライン103は、この形態では、平面視において第3領域91に開放端を有するリング形状に形成されている。第3外周ライン103の開放端の幅は、第3変圧器21Cの高電位コイル23の第2方向Yに沿う幅未満である。
 第3外周ライン103の幅は、0.1μm以上5μm以下であってもよい。第3外周ライン103の幅は、1μm以上3μm以下であることが好ましい。第3外周ライン103の幅は、第3外周ライン103が延びる方向に直交する方向の幅によって定義される。第3外周ライン103の幅は、高電位コイル23の幅と等しいことが好ましい。第3外周ライン103の幅が高電位コイル23の幅と等しいとは、第3外周ライン103の幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 第3外周ライン103および高電位コイル23(第3変圧器21C)の間の第4ピッチは、0.1μm以上5μm以下であってもよい。第4ピッチは、1μm以上3μm以下であることが好ましい。第4ピッチは、高電位コイル23の第2巻回ピッチと等しいことが好ましい。第4ピッチが第2巻回ピッチと等しいとは、第4ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味する。
 複数の第2中間ライン104は、第2領域90において第2外周ライン97および第3外周ライン103の間の領域を帯状に延びている。複数の第2中間ライン104は、第2外周ライン97および第3外周ライン103を電気的に接続する少なくとも1つ(この形態では1つ)の第2接続ライン105を含む。
 電流のループ回路の形成を防止する観点から、複数の第2中間ライン104は、第2接続ライン105を1つだけ含むことが好ましい。第2接続ライン105は、他の第2中間ライン104の幅を超える幅を有していてもよい。第2接続ライン105の位置は任意である。複数の第2中間ライン104のうちの少なくとも1つには、電流のループ回路を遮断するスリット106が形成されている。スリット106の位置は、複数の第2中間ライン104のデザインによって適宜調整される。
 複数の第2中間ライン104は、複数の高電位コイル23の対向方向に沿って延びる帯状に形成されていることが好ましい。複数の第2中間ライン104は、この形態では、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて形成されている。複数の第2中間ライン104は、平面視において全体として第1方向Xに延びるストライプ状に形成されている。
 複数の第2中間ライン104は、具体的には、複数の第3引き出し部107および複数の第4引き出し部108を含む。複数の第3引き出し部107は、第2外周ライン97から第3外周ライン103に向けてストライプ状に引き出されている。複数の第3引き出し部107の先端部は、第3外周ライン103から第2外周ライン97側に間隔を空けて形成されている。
 複数の第4引き出し部108は、第3外周ライン103から第2外周ライン97に向けてストライプ状に引き出されている。複数の第4引き出し部108の先端部は、第2外周ライン97から第3外周ライン103側に間隔を空けて形成されている。複数の第4引き出し部108は、この形態では、1つの第3引き出し部107を挟み込む態様で、第2方向Yに複数の第3引き出し部107と交互に間隔を空けて形成されている。
 なお、複数の第4引き出し部108は、複数の第3引き出し部107を挟み込んでいてもよい。また、複数の第4引き出し部108を含む群が、複数の第3引き出し部107を含む群と隣り合うように形成されていてもよい。スリット106、複数の第3引き出し部107および複数の第4引き出し部108は、第2パターン94における電流のループ回路の形成を抑制する。
 第2方向Yに関して第2中間ライン104の幅は、0.1μm以上5μm以下であってもよい。第2中間ライン104の幅は、1μm以上3μm以下であることが好ましい。第2中間ライン104の幅は、高電位コイル23の幅と等しいことが好ましい。第2中間ライン104の幅が高電位コイル23の幅と等しいとは、第2中間ライン104の幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 隣り合う2つの第2中間ライン104の第5ピッチは、0.1μm以上5μm以下でもよい。第5ピッチは、1μm以上3μm以下であることが好ましい。第5ピッチは、第2方向Yに関して、隣り合う複数の第2中間ライン104の間の距離により定義される。第5ピッチは、互いに等しいことが好ましい。第5ピッチが互いに等しいとは、第5ピッチが当該第5ピッチの±20%以内の範囲に収まることを意味する。第5ピッチは、高電位コイル23の第2巻回ピッチと等しいことが好ましい。第5ピッチが第2巻回ピッチと等しいとは、第5ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味する。
 図14および図19を参照して、第3パターン95は、第1高電位配線33に電気的に接続されている。第3パターン95は、この形態では、第2パターン94および第1パターン93を介して第1高電位配線33に電気的に接続されている。第3パターン95は、第3領域91の一部の領域を覆い隠すように密なライン状に引き回されている。第3パターン95は、平面視において高電位端子12(第6高電位端子12F)から間隔を空けて第3領域91に形成され、法線方向Zに高電位端子12に対向していない。
 第3パターン95は、平面視において低電位接続配線72から間隔を空けて形成され、法線方向Zに低電位接続配線72に対向していない。これにより、法線方向Zに関して、第3パターン95および低電位接続配線72の間の絶縁距離が増加し、絶縁層51の絶縁耐圧が高められている。
 第3パターン95は、前述の第3外周ライン103、第4外周ライン109および複数の第3中間ライン110を含む。第4外周ライン109は、第4変圧器21Dの高電位コイル23の周囲に沿って帯状に延びている。第4外周ライン109は、この形態では、平面視において第3領域91に開放端を有するリング形状に形成されている。第4外周ライン109の開放端の幅は、第4変圧器21Dの高電位コイル23の第2方向Yに沿う幅未満である。第4外周ライン109の開放端は、第1方向Xに沿って第3外周ライン103の開放端と対向している。
 第4外周ライン109の幅は、0.1μm以上5μm以下であってもよい。第4外周ライン109の幅は、1μm以上3μm以下であることが好ましい。第4外周ライン109の幅は、第4外周ライン109が延びる方向に直交する方向の幅によって定義される。第4外周ライン109の幅は、高電位コイル23の幅と等しいことが好ましい。第4外周ライン109の幅が高電位コイル23の幅と等しいとは、第4外周ライン109の幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 第4外周ライン109および高電位コイル23(第4変圧器21D)の間の第6ピッチは、0.1μm以上5μm以下であってもよい。第6ピッチは、1μm以上3μm以下であることが好ましい。第6ピッチは、高電位コイル23の第2巻回ピッチと等しいことを意味する。第6ピッチが第2巻回ピッチと等しいとは、第6ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味する。
 複数の第3中間ライン110は、第3領域91において第3外周ライン103および第4外周ライン109の間の領域を帯状に延びている。複数の第3中間ライン110は、第3外周ライン103および第4外周ライン109を電気的に接続する少なくとも1つ(この形態では1つ)の第3接続ライン111を含む。
 電流のループ回路の形成を防止する観点から、複数の第3中間ライン110は、第3接続ライン111を1つだけ含むことが好ましい。第3接続ライン111の位置は任意である。複数の第3中間ライン110のうちの少なくとも1つには、電流のループ回路を遮断するスリット112が形成されている。スリット112の位置は、複数の第3中間ライン110のデザインによって適宜調整される。
 複数の第3中間ライン110は、複数の高電位コイル23の対向方向に沿って延びる帯状に形成されていることが好ましい。複数の第3中間ライン110は、この形態では、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて形成されている。複数の第3中間ライン110は、平面視にて全体としてストライプ状に形成されている。
 複数の第3中間ライン110は、この形態では、複数の第5引き出し部113および複数の第6引き出し部114を含む。複数の第5引き出し部113は、第3外周ライン103から第4外周ライン109に向けてストライプ状に引き出されている。複数の第5引き出し部113の先端部は、第4外周ライン109から第3外周ライン103側に間隔を空けて形成されている。
 複数の第6引き出し部114は、第4外周ライン109から第3外周ライン103に向けてストライプ状に引き出されている。複数の第6引き出し部114の先端部は、第3外周ライン103から第4外周ライン109側に間隔を空けて形成されている。複数の第6引き出し部114は、この形態では、1つの第5引き出し部113を挟み込む態様で、第2方向Yに複数の第5引き出し部113と交互に間隔を空けて形成されている。
 なお、複数の第6引き出し部114は、複数の第5引き出し部113を挟み込んでいてもよい。また、複数の第6引き出し部114を含む群が、複数の第5引き出し部113を含む群と隣り合うように形成されていてもよい。スリット112、複数の第5引き出し部113および複数の第6引き出し部114は、第3パターン95における電流のループ回路の形成を抑制する。
 第2方向Yに関して第3中間ライン110の幅は、0.1μm以上5μm以下であってもよい。第3中間ライン110の幅は、1μm以上3μm以下であることが好ましい。第3中間ライン110の幅は、高電位コイル23の幅と等しいことが好ましい。第3中間ライン110の幅が高電位コイル23の幅と等しいとは、第3中間ライン110の幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 隣り合う2つの第3中間ライン110の第7ピッチは、0.1μm以上5μm以下でもよい。第7ピッチは、1μm以上3μm以下であることが好ましい。第7ピッチは、第2方向Yに関して、隣り合う複数の第3中間ライン110の間の距離により定義される。第7ピッチは、互いに等しいことが好ましい。第7ピッチが互いに等しいとは、第7ピッチが当該第7ピッチの±20%以内の範囲に収まることを意味する。第7ピッチは、高電位コイル23の第2巻回ピッチと等しいことが好ましい。第7ピッチが第2巻回ピッチと等しいとは、第7ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味する。
 図14~図19を参照して、第2高電位ダミーパターン88は、この形態では、第1高電位ダミーパターン87を介して高電位端子12に電気的に接続されている。第2高電位ダミーパターン88は、具体的には、第1高電位ダミーパターン87に接続された第2接続部115を含む。第2接続部115の位置は任意である。これにより、第2高電位ダミーパターン88は、複数の高電位コイル23と同電位に固定されている。
 第2高電位ダミーパターン88は、第1領域89、第2領域90および第3領域91外の領域において、高電位コイル23の上側に漏れ出す電界を抑制し、複数の高電位コイル23に対する電界集中を抑制する。第2高電位ダミーパターン88は、この形態では、平面視において複数の高電位コイル23および複数の高電位端子12A~12Fを含む領域を一括して取り囲んでいる。第2高電位ダミーパターン88は、この形態では、平面視において長円環状(楕円環状)に形成されている。
 これにより、第2高電位ダミーパターン88は、平面視において複数の低電位端子11A~11Fおよび複数の高電位コイル23の間の領域に介在している。また、第2高電位ダミーパターン88は、平面視において複数の低電位端子11A~11Fおよび複数の高電位端子12A~12Fの間の領域に介在している。
 なお、第2高電位ダミーパターン88は、複数(この形態では6個)の高電位ライン116A、116B、116C、116D、116E、116Fを含む。高電位ラインの個数は、緩和すべき電界に応じて調整される。複数の高電位ライン116A~116Fは、複数の高電位コイル23から離れる方向にこの順に間隔を空けて形成されている。
 複数の高電位ライン116A~116Fは、平面視において複数の高電位コイル23を一括して取り囲んでいる。複数の高電位ライン116A~116Fは、具体的には、平面視において複数の高電位コイル23および複数の高電位端子12A~12Fを含む領域を一括して取り囲んでいる。複数の高電位ライン116A~116Fは、この形態では、平面視において長円環状(楕円環状)に形成されている。
 複数の高電位ライン116A~116Fは、電流のループ回路を遮断するスリット117をそれぞれ含む。スリット117の位置は、複数の高電位ライン116A~116Fのデザインによって適宜調整される。
 高電位ライン116A~116Fの幅は、0.1μm以上5μm以下であってもよい。高電位ライン116A~116Fの幅は、1μm以上3μm以下であることが好ましい。高電位ライン116A~116Fの幅は、高電位ライン116A~116Fが延びる方向に直交する方向の幅によって定義される。高電位ライン116A~116Fの幅は、高電位コイル23の幅と等しいことが好ましい。高電位ライン116A~116Fの幅が高電位コイル23の幅と等しいとは、高電位ライン116A~116Fの幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 隣り合う2つの高電位ライン116A~116Fの第8ピッチは、0.1μm以上5μm以下であってもよい。第8ピッチは、1μm以上3μm以下であることが好ましい。第8ピッチは、互いに等しいことが好ましい。第8ピッチが互いに等しいとは、第8ピッチが当該第8ピッチの±20%以内の範囲に収まることを意味する。
 隣り合う第1高電位ダミーパターン87および第2高電位ダミーパターン88の間の第9ピッチは、0.1μm以上5μm以下であってもよい。第9ピッチは、1μm以上3μm以下であることが好ましい。第9ピッチは、高電位コイル23の第2巻回ピッチと等しいことが好ましい。第9ピッチが第2巻回ピッチと等しいとは、第9ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味する。複数の高電位ライン116A~116Fの個数、幅、ピッチ等は任意であり、緩和すべき電界に応じて調整される。
 図14~図19を参照して、ダミーパターン85は、平面視において変圧器21A~21Dの周囲に位置するように絶縁層51内に電気的に浮遊状態に形成された浮遊ダミーパターン121を含む。浮遊ダミーパターン121は、高電位コイル23および低電位コイル22とは異なるパターン(不連続なパターン)で形成されており、変圧器21A~21Dから独立している。つまり、浮遊ダミーパターン121は、変圧器21A~21Dとしては機能しない。
 浮遊ダミーパターン121は、この形態では、平面視において高電位コイル23の周囲の領域を部分的に被覆し、かつ、部分的に露出させるように密なライン状に引き回されている。浮遊ダミーパターン121は、有端状に形成されていてもよいし、無端状に形成されていてもよい。
 浮遊ダミーパターン121は、単位面積当たりにおいて高電位コイル23のライン密度と等しいライン密度で引き回されている。浮遊ダミーパターン121のライン密度が高電位コイル23のライン密度と等しいとは、浮遊ダミーパターン121のライン密度が高電位コイル23のライン密度の±20%の範囲内に収まることを意味する。
 また、浮遊ダミーパターン121は、単位面積当たりにおいて高電位ダミーパターン86のライン密度と等しいライン密度で引き回されている。浮遊ダミーパターン121のライン密度が高電位ダミーパターン86のライン密度と等しいとは、浮遊ダミーパターン121のライン密度が高電位ダミーパターン86のライン密度の±20%の範囲内に収まることを意味する。
 浮遊ダミーパターン121は、変圧器21A~21Dにおいて低電位コイル22および高電位コイル23の間の電界を遮蔽し、高電位コイル23に対する電界集中を抑制する。浮遊ダミーパターン121は、具体的には、高電位コイル23の上側に漏れ出す電界を高電位コイル23から離れる方向に分散させる。これにより、高電位コイル23に対する電界集中を抑制できる。
 また、浮遊ダミーパターン121は、高電位ダミーパターン86の周囲において高電位ダミーパターン86の上側に漏れ出す電界を高電位コイル23および高電位ダミーパターン86から離れる方向に分散させる。これにより、高電位ダミーパターン86に対する電界集中を抑制できると同時に、高電位コイル23に対する電界集中を適切に抑制できる。
 絶縁層51の内部における浮遊ダミーパターン121の深さ位置は任意であり、緩和すべき電界強度に応じて調整される。浮遊ダミーパターン121は、法線方向Zに関して低電位コイル22に対して高電位コイル23に近接する領域に形成されていることが好ましい。法線方向Zに関して浮遊ダミーパターン121が高電位コイル23に近接するとは、法線方向Zに関して、浮遊ダミーパターン121および高電位コイル23の間の距離が、浮遊ダミーパターン121及び低電位コイル22の間の距離未満であることを意味する。
 この場合、高電位コイル23に対する電界集中を適切に抑制できる。法線方向Zに関して、浮遊ダミーパターン121および高電位コイル23の間の距離を小さくするほど、高電位コイル23に対する電界集中を抑制できる。浮遊ダミーパターン121は、高電位コイル23と同一の層間絶縁層57内に形成されていることが好ましい。この場合、高電位コイル23に対する電界集中をさらに適切に抑制できる。
 浮遊ダミーパターン121は、平面視において低電位端子11および高電位コイル23の間の領域に介在していることが好ましい。この場合、高電位コイル23の電界集中に起因する低電位端子11および高電位コイル23の間の不所望な導通を抑制できる。浮遊ダミーパターン121は、平面視において低電位端子11および高電位端子12の間の領域に介在していることが好ましい。この場合、高電位コイル23の電界集中に起因する低電位端子11および高電位端子12の間の不所望な導通を抑制できる。
 浮遊ダミーパターン121は、この形態では、平面視において複数の高電位コイル23に沿って形成されている。浮遊ダミーパターン121は、具体的には、平面視において複数の高電位コイル23及び複数の高電位端子12を含む領域を一括して取り囲んでいる。浮遊ダミーパターン121は、この形態では、平面視において高電位ダミーパターン86(第2高電位ダミーパターン88)を挟んで複数の高電位コイル23および複数の高電位端子12を含む領域を一括して取り囲んでいる。
 これにより、浮遊ダミーパターン121は、平面視において複数の低電位端子11A~11Fおよび複数の高電位コイル23の間の領域に介在している。また、浮遊ダミーパターン121は、平面視において複数の低電位端子11A~11Fおよび複数の高電位端子12A~12Fの間の領域に介在している。
 浮遊ラインの個数は任意であり、緩和すべき電界に応じて調整される。浮遊ダミーパターン121は、この形態では、複数(本図では6個)の浮遊ライン122A、122B、122C、122D、122E、122Fを含む。複数の浮遊ライン122A~122Fは、複数の高電位コイル23から離れる方向にこの順に間隔を空けて形成されている。
 複数の浮遊ライン122A~122Fは、平面視において複数の高電位コイル23を一括して取り囲んでいる。複数の浮遊ライン122A~122Fは、具体的には、平面視において高電位ダミーパターン86を挟んで複数の高電位コイル23および複数の高電位端子12A~12Fを含む領域を一括して取り囲んでいる。複数の浮遊ライン122A~122Fは、この形態では、平面視において長円環状(楕円環状)に形成されている。
 浮遊ライン122A~122Fの幅は、0.1μm以上5μm以下であってもよい。浮遊ライン122A~122Fの幅は、1μm以上3μm以下であることが好ましい。浮遊ライン122A~122Fの幅は、浮遊ライン122A~122Fが延びる方向に直交する方向の幅によって定義される。
 隣り合う2つの浮遊ライン122A~122Fの間の第10ピッチは、0.1μm以上5μm以下であってもよい。第10ピッチは、1μm以上3μm以下であることが好ましい。浮遊ライン122A~122Fの幅は、高電位コイル23の幅と等しいことが好ましい。浮遊ライン122A~122Fの幅が高電位コイル23の幅と等しいとは、浮遊ライン122A~122Fの幅が高電位コイル23の幅の±20%以内の範囲に収まることを意味する。
 浮遊ダミーパターン121および高電位ダミーパターン86(第2高電位ダミーパターン88)の間の第11ピッチは、0.1μm以上5μm以下であってもよい。第11ピッチは、1μm以上3μm以下であることが好ましい。第11ピッチは、互いに等しいことが好ましい。第11ピッチが互いに等しいとは、第11ピッチが当該第11ピッチの±20%以内の範囲に収まることを意味する。
 第11ピッチは、高電位コイル23の第2巻回ピッチと等しいことが好ましい。浮遊ライン122A~122Fの間の第11ピッチが第2巻回ピッチと等しいとは、第11ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味している。なお、図12~図14では、明瞭化のため、第11ピッチが第2巻回ピッチを超えている例が示されている。
 浮遊ダミーパターン121および高電位ダミーパターン86の間の第12ピッチは、第2巻回ピッチと等しいことが好ましい。第12ピッチが第2巻回ピッチと等しいとは、第12ピッチが第2巻回ピッチの±20%以内の範囲に収まることを意味する。複数の浮遊ライン122A~122Fの個数、幅、ピッチ等は、緩和すべき電界に応じて調整されるものであり、特定の値に限定されない。
 図15及び図16を参照して、半導体装置5は、デバイス領域62において半導体チップ41の第1主面42に形成された第2機能デバイス60を含む。第2機能デバイス60は、半導体チップ41の第1主面42の表層部、および/または、半導体チップ41の第1主面42の上の領域を利用して形成され、絶縁層51(最下絶縁層55)によって被覆されている。図11では、第2機能デバイス60が第1主面42の表層部に示された破線によって簡略化して示されている。
 第2機能デバイス60は、低電位配線を介して低電位端子11に電気的に接続され、高電位配線を介して高電位端子12に電気的に接続されている。低電位配線は、第2機能デバイス60に接続されるように絶縁層51内に引き回されている点を除いて、第1低電位配線31(第2低電位配線32)と同様の構造を有している。高電位配線は、第2機能デバイス60に接続されるように絶縁層51内に引き回されている点を除いて、第1高電位配線33(第2高電位配線34)と同様の構造を有している。第2機能デバイス60に係る低電位配線および高電位配線の具体的な説明は省略される。
 第2機能デバイス60は、受動デバイス、半導体整流デバイスおよび半導体スイッチングデバイスのうちの少なくとも1つを含んでいてもよい。受動デバイスは、第2機能デバイス60は、受動デバイス、半導体整流デバイスおよび半導体スイッチングデバイスのうちの任意の2種以上のデバイスが選択的に組み合わされた回路網を含んでいてもよい。回路網は、集積回路の一部または全部を形成していてもよい。
 受動デバイスは、半導体受動デバイスを含んでいてもよい。受動デバイスは、抵抗及びコンデンサのいずれか一方または双方を含んでいてもよい。半導体整流デバイスは、pn接合ダイオード、PINダイオード、ツェナーダイオード、ショットキーバリアダイオードおよびファーストリカバリーダイオードのうちの少なくとも1つを含んでいてもよい。半導体スイッチングデバイスは、BJT[Bipolar Junction Transistor]、MISFET[Metal Insulator Field Effect Transistor]、IGBT[Insulated Gate Bipolar Junction Transistor]およびJFET[Junction Field Effect Transistor]のうちの少なくとも1つを含んでいてもよい。
 図15および図16を参照して、半導体装置5は、絶縁層51内に埋設されたシール導体61をさらに含む。シール導体61は、平面視において絶縁側壁53A~53Dから間隔を空けて絶縁層51内に壁状に埋設され、絶縁層51をデバイス領域62および外側領域63に区画している。シール導体61は、外側領域63からデバイス領域62への水分の進入及びクラックの進入を抑制する。
 デバイス領域62は、第1機能デバイス45(複数の変圧器21)、第2機能デバイス60、複数の低電位端子11、複数の高電位端子12、第1低電位配線31、第2低電位配線32、第1高電位配線33、第2高電位配線34およびダミーパターン85を含む領域である。外側領域63は、デバイス領域62外の領域である。
 シール導体61は、デバイス領域62から電気的に切り離されている。シール導体61は、具体的には、第1機能デバイス45(複数の変圧器21)、第2機能デバイス60、複数の低電位端子11、複数の高電位端子12、第1低電位配線31、第2低電位配線32、第1高電位配線33、第2高電位配線34およびダミーパターン85から電気的に切り離されている。シール導体61は、さらに具体的には、電気的に浮遊状態に固定されている。シール導体61は、デバイス領域62に繋がる電流経路を形成しない。
 シール導体61は、平面視において、絶縁側壁53~53Dに沿う帯状に形成されている。シール導体61は、この形態では、平面視において、四角環状(具体的には長方形環状)に形成されている。これにより、シール導体61は、平面視において四角形状(具体的には長方形状)のデバイス領域62を区画している。また、シール導体61は、平面視においてデバイス領域62を取り囲む四角環状(具体的には長方形環状)の外側領域63を区画している。
 シール導体61は、具体的には、絶縁主面52側の上端部、半導体チップ41側の下端部、ならびに、上端部および下端部の間を壁状に延びる壁部を有している。シール導体61の上端部は、この形態では、絶縁主面52から半導体チップ41側に間隔を空けて形成され、絶縁層51内に位置している。シール導体61の上端部は、この形態では、最上絶縁層56によって被覆されている。シール導体61の上端部は、1つまたは複数の層間絶縁層57によって被覆されていてもよい。シール導体61の上端部は、最上絶縁層56から露出していてもよい。シール導体61の下端部は、半導体チップ41から上端部側に間隔を空けて形成されている。
 このように、シール導体61は、この形態では、複数の低電位端子11および複数の高電位端子12に対して半導体チップ41側に位置するように絶縁層51内に埋設されている。また、シール導体61は、絶縁層51内において第1機能デバイス45(複数の変圧器21)、第1低電位配線31、第2低電位配線32、第1高電位配線33、第2高電位配線34およびダミーパターン85に絶縁主面52に平行な方向に対向している。シール導体61は、絶縁層51内において、第2機能デバイス60の一部に絶縁主面52に平行な方向に対向していてもよい。
 シール導体61は、複数のシールプラグ導体64、および、1つまたは複数(この形態では複数)のシールビア導体65を含む。シールビア導体65の個数は任意である。複数のシールプラグ導体64のうちの最上のシールプラグ導体64は、シール導体61の上端部を形成している。複数のシールビア導体65は、シール導体61の下端部をそれぞれ形成している。シールプラグ導体64およびシールビア導体65は、低電位コイル22と同一の導電材料によって形成されていることが好ましい。つまり、シールプラグ導体64およびシールビア導体65は、低電位コイル22等と同様に、バリア層および本体層を含むことが好ましい。
 複数のシールプラグ導体64は、複数の層間絶縁層57にそれぞれ埋め込まれ、平面視においてデバイス領域62を取り囲む四角環状(具体的には長方形環状)にそれぞれ形成されている。複数のシールプラグ導体64は、互いに接続されるように最下絶縁層55から最上絶縁層56に向かって積層されている。複数のシールプラグ導体64の積層数は、複数の層間絶縁層57の積層数に一致している。むろん、複数の層間絶縁層57を貫通する1つまたは複数のシールプラグ導体64が形成されていてもよい。
 複数のシールプラグ導体64の集合体によって1つの環状のシール導体61が形成されるのであれば、複数のシールプラグ導体64の全てが環状に形成される必要はない。たとえば、複数のシールプラグ導体64の少なくとも1つが有端状に形成されていてもよい。また、複数のシールプラグ導体64の少なくとも1つが複数の有端帯状部分に分割されていてもよい。ただしデバイス領域62への水分及びクラックの進入のリスクを鑑みると、複数のシールプラグ導体64は、無端状(環状)に形成されていることが好ましい。
 複数のシールビア導体65は、最下絶縁層55において半導体チップ41およびシールプラグ導体64の間の領域にそれぞれ形成されている。複数のシールビア導体65は、半導体チップ41から間隔を空けて形成され、シールプラグ導体64に接続されている。複数のシールビア導体65は、シールプラグ導体64の平面積未満の平面積を有している。単一のシールビア導体65が形成されている場合、単一のシールビア導体65は、シールプラグ導体64の平面積以上の平面積を有していてもよい。
 シール導体61の幅は、0.1μm以上10μm以下であってもよい。シール導体61の幅は、1μm以上5μm以下であることが好ましい。シール導体61の幅は、シール導体61が延びる方向に直交する方向の幅によって定義される。
 図15、図16および図20を参照して、半導体装置5は、半導体チップ41およびシール導体61の間に介在し、シール導体61を半導体チップ41から電気的に切り離す分離構造130をさらに含む。分離構造130は、絶縁体を含むことが好ましい。分離構造130は、この形態では、半導体チップ41の第1主面42に形成されたフィールド絶縁膜131からなる。
 フィールド絶縁膜131は、酸化膜(酸化シリコン膜)及び窒化膜(窒化シリコン膜)のうちの少なくとも一方を含む。フィールド絶縁膜131は、半導体チップ41の第1主面42の酸化によって形成された酸化膜の一例としてのLOCOS(local oxidation of silicon)膜からなることが好ましい。フィールド絶縁膜131の厚さは、半導体チップ41およびシール導体61を絶縁できる限り任意である。フィールド絶縁膜131の厚さは、0.1μm以上5μm以下であってもよい。
 分離構造130は、半導体チップ41の第1主面42に形成され、平面視においてシール導体61に沿う帯状に延びている。分離構造130は、この形態では、平面視において四角環状(具体的には長方形環状)に形成されている。分離構造130は、シール導体61の下端部(シールビア導体65)が接続された接続部132を有している。接続部132は、シール導体61の下端部(シールビア導体65)が半導体チップ41側に向けて食い込んだアンカー部を形成していてもよい。むろん、接続部132は、分離構造130の主面に対して面一に形成されていてもよい。
 分離構造130は、デバイス領域62側の内端部130A、外側領域63側の外端部130B、ならびに、内端部130Aおよび外端部130Bの間の本体部130Cを含む。内端部130Aは、平面視において第2機能デバイス60が形成された領域(つまり、デバイス領域62)を区画している。内端部130Aは、半導体チップ41の第1主面42に形成された絶縁膜(図示せず)と一体的に形成されていてもよい。
 外端部130Bは、半導体チップ41のチップ側壁44A~44Dから露出し、半導体チップ41のチップ側壁44A~44Dに連なっている。外端部130Bは、より具体的には、半導体チップ41のチップ側壁44A~44Dに対して面一に形成されている。外端部130Bは、半導体チップ41のチップ側壁44A~44Dおよび絶縁層51の絶縁側壁53A~53Dとの間で面一な研削面を形成している。むろん、他の形態において、外端部130Bは、チップ側壁44A~44Dから間隔を空けて第1主面42内に形成されていてもよい。
 本体部130Cは、半導体チップ41の第1主面42に対してほぼ平行に延びる平坦面を有している。本体部130Cは、シール導体61の下端部(シールビア導体65)が接続された接続部132を有している。接続部132は、本体部130Cにおいて内端部130A及び外端部130Bから間隔を空けた部分に形成されている。分離構造130は、フィールド絶縁膜131の他、種々の形態を採り得る。
 図15および図16を参照して、半導体装置5は、シール導体61を被覆するように絶縁層51の絶縁主面52の上に形成された無機絶縁層140をさらに含む。無機絶縁層140は、パッシベーション層と称されてもよい。無機絶縁層140は、絶縁主面52の上から絶縁層51及び半導体チップ41を保護する。
 無機絶縁層140は、この形態では、第1無機絶縁層141及び第2無機絶縁層142を含む積層構造を有する。第1無機絶縁層141は、酸化シリコンを含んでいてもよい。第1無機絶縁層141は、不純物無添加の酸化シリコンであるUSG(undoped silicate glass)を含むことが好ましい。第1無機絶縁層141の厚さは、50nm以上5000nm以下であってもよい。第2無機絶縁層142は、窒化シリコンを含んでいてもよい。第2無機絶縁層142の厚さは、500nm以上5000nm以下であってもよい。無機絶縁層140の総厚さを大きくすることにより、高電位コイル23上の絶縁耐圧を高めることができる。
 第1無機絶縁層141がUSGからなり、第2無機絶縁層142が窒化シリコンからなる場合、USGの絶縁破壊電圧(V/cm)は窒化シリコンの絶縁破壊電圧(V/cm)を超える。したがって、無機絶縁層140を厚化する場合、第2無機絶縁層142よりも厚い第1無機絶縁層141が形成されることが好ましい。
 第1無機絶縁層141は、酸化シリコンの一例としてのBPSG(boron doped phosphor silicate glass)およびPSG(phosphorus silicate glass)のうちの少なくとも一方を含んでいてもよい。ただし、この場合、酸化シリコン内に不純物(ホウ素又はリン)が含まれるため、高電位コイル23上の絶縁耐圧を高める上では、USGからなる第1無機絶縁層141が形成されることが特に好ましい。むろん、無機絶縁層140は、第1無機絶縁層141および第2無機絶縁層142のいずれか一方からなる単層構造を有していてもよい。
 無機絶縁層140は、シール導体61の全域を被覆し、シール導体61外の領域に形成された複数の低電位パッド開口143及び複数の高電位パッド開口144を有している。複数の低電位パッド開口143は、複数の低電位端子11をそれぞれ露出させている。複数の高電位パッド開口144は、複数の高電位端子12をそれぞれ露出させている。無機絶縁層140は、低電位端子11の周縁部に乗り上げたオーバラップ部を有していてもよい。無機絶縁層140は、高電位端子12の周縁部に乗り上げたオーバラップ部を有していてもよい。
 半導体装置5は、無機絶縁層140の上に形成された有機絶縁層145を更に含む。有機絶縁層145は、感光性樹脂を含んでいてもよい。有機絶縁層145は、ポリイミド、ポリアミドおよびポリベンゾオキサゾールのうちの少なくとも1つを含んでいてもよい。有機絶縁層145は、この形態では、ポリイミドを含む。有機絶縁層145の厚さは、1μm以上50μm以下であってもよい。
 有機絶縁層145の厚さは、無機絶縁層140の総厚さを超えていることが好ましい。さらに、無機絶縁層140および有機絶縁層145の総厚さは、低電位コイル22及び高電位コイル23の間の距離D2以上であることが好ましい。この場合、無機絶縁層140の総厚さは2μm以上10μm以下であることが好ましい。また、有機絶縁層145の厚さは5μm以上50μm以下であることが好ましい。これらの構造によれば、無機絶縁層140及び有機絶縁層145の厚化を抑制できると同時に、無機絶縁層140及び有機絶縁層145の積層膜により高電位コイル23上の絶縁耐圧を適切に高めることができる。
 有機絶縁層145は、低電位側の領域を被覆する第1部分146及び高電位側の領域を被覆する第2部分147を含む。第1部分146は、無機絶縁層140を挟んでシール導体61を被覆している。第1部分146は、シール導体61外の領域において複数の低電位端子11(低電位パッド開口143)をそれぞれ露出させる複数の低電位端子開口148を有している。第1部分146は、低電位パッド開口143の周縁(オーバラップ部)に乗り上がったオーバラップ部を有していてもよい。
 第2部分147は、第1部分146から間隔を空けて形成されており、第1部分146との間から無機絶縁層140を露出させている。第2部分147は、複数の高電位端子12(高電位パッド開口144)をそれぞれ露出させる複数の高電位端子開口149を有している。第2部分147は、高電位パッド開口144の周縁(オーバラップ部)に乗り上がったオーバラップ部を有していてもよい。
 第2部分147は、変圧器21A~21Dおよびダミーパターン85を一括して被覆している。第2部分147は、具体的には、複数の高電位コイル23、複数の高電位端子12、第1高電位ダミーパターン87、第2高電位ダミーパターン88および浮遊ダミーパターン121を一括して被覆している。
 有機絶縁層145が形成されていない場合、パッケージ本体(モールド樹脂)に含有されるフィラーに起因して複数の高電位コイル23、複数の高電位端子12、シール導体61、第1高電位ダミーパターン87、第2高電位ダミーパターン88および浮遊ダミーパターン121にダメージが生じる場合がある。この種のダメージはフィラーアタックと称される。
 有機絶縁層145は、パッケージ本体(モールド樹脂)に含有されるフィラーから複数の高電位コイル23、複数の高電位端子12、シール導体61、第1高電位ダミーパターン87、第2高電位ダミーパターン88および浮遊ダミーパターン121を保護する。第1部分146および第2部分147の間のスリットは、パッケージ本体(モールド樹脂)に対するアンカー部として機能する。
 パッケージ本体(モールド樹脂)の一部は、第1部分146および第2部分147の間のスリットに入り込み、無機絶縁層140に接続される。これにより、半導体装置5に対するパッケージ本体(モールド樹脂)の密着力が高められる。むろん、第1部分146および第2部分147は一体的に形成されていてもよい。また、有機絶縁層145は、第1部分146および第2部分147のいずれか一方だけを含んでいてもよい。ただし、この場合には、フィラーアタックに留意する必要がある。
 本発明の実施形態は、さらに他の形態で実施できる。前述の実施形態では、第1機能デバイス45および第2機能デバイス60が形成された例について説明した。しかし、第1機能デバイス45を有さずに、第2機能デバイス60だけを有する形態が採用されてもよい。この場合、ダミーパターン85は取り除かれてもよい。この構造によれば、第2機能デバイス60について、第1実施形態において述べた効果(ダミーパターン85に係る効果を除く)と同様の効果を奏することができる。
 つまり、低電位端子11および高電位端子12を介して第2機能デバイス60に電圧が印加された場合において、高電位端子12およびシール導体61の間の不所望な導通を抑制できる。また、低電位端子11および高電位端子12を介して第2機能デバイス60に電圧が印加された場合において、低電位端子11およびシール導体61の間の不所望な導通を抑制できる。
 また、前述の実施形態では、第2機能デバイス60が形成された例について説明した。しかし、第2機能デバイス60は必ずしも必要ではなく、取り除かれてもよい。
 また、前述の実施形態では、ダミーパターン85が形成された例について説明した。しかし、ダミーパターン85は必ずしも必要ではなく、取り除かれてもよい。
 また、前述の実施形態では、第1機能デバイス45が、複数の変圧器21を含むマルチチャネル型からなる例について説明した。しかし、単一の変圧器21を含むシングルチャネル型からなる第1機能デバイス45が採用されてもよい。
<トランス配列>
 図21は、2チャンネル型のトランスチップ300(先出の半導体装置5に相当)におけるトランス配列の一例を模式的に示す平面図(上面図)である。本図のトランスチップ300は、第1トランス301と、第2トランス302と、第3トランス303と、第4トランス304と、第1ガードリング305と、第2ガードリング306と、パッドa1~a8と、パッドb1~b8と、パッドc1~c4と、パッドd1~d4と、を有する。
 トランスチップ300において、第1トランス301を形成する二次側コイルL1sの一端には、パッドa1及びb1が接続されており、二次側コイルL1sの他端には、パッドc1及びd1が接続されている。第2トランス302を形成する二次側コイルL2sの一端には、パッドa2及びb2が接続されており、二次側コイルL2sの他端には、パッドc1及びd1が接続されている。
 また、第3トランス303を形成する二次側コイルL3sの一端には、パッドa3及びb3が接続されており、二次側コイルL3sの他端には、パッドc2及びd2が接続されている。第4トランス304を形成する二次側コイルL4sの一端には、パッドa4及びb4が接続されており、二次側コイルL4sの他端には、パッドc2及びd2が接続されている。
 なお、第1トランス301を形成する一次側コイルL1p、第2トランス302を形成する一次側コイルL2p、第3トランス303を形成する一次側コイルL3p、及び、第4トランス304を形成する一次側コイルL4pは、いずれも本図に明示されていない。ただし、一次側コイルL1p~L4pは、それぞれ、基本的に二次側コイルL1s~L4sと同様の構成を有しており、二次側コイルL1s~L4sとそれぞれ対向する形で、二次側コイルL1s~L4sそれぞれの直下に配置されている。
 すなわち、第1トランス301を形成する一次側コイルL1pの一端には、パッドa5及びb5が接続されており、一次側コイルL1pの他端には、パッドc3及びd3が接続されている。また、第2トランス302を形成する一次側コイルL2pの一端には、パッドa6及びb6が接続されており、一次側コイルL2pの他端には、パッドc3及びd3が接続されている。
 また、第3トランス303を形成する一次側コイルL3pの一端には、パッドa7及びb7が接続されており、一次側コイルL3pの他端には、パッドc4及びd4が接続されている。また、第4トランス304を形成する一次側コイルL4pの一端には、パッドa8及びb8が接続されており、一次側コイルL4pの他端には、パッドc4及びd4が接続されている。
 ただし、上記のパッドa5~a8、パッドb5~b8、パッドc3並びにc4、及び、パッドd3並びにd4については、不図示のビアを介してトランスチップ300の内部から表面まで引き出されている。
 上記複数のパッドのうち、パッドa1~a8は、それぞれ、第1の電流供給用パッドに相当し、パッドb1~b8は、それぞれ、第1の電圧測定用パッドに相当する。また、パッドc1~c4は、それぞれ、第2の電流供給用パッドに相当し、パッドd1~d4は、それぞれ、第2の電圧測定用パッドに相当する。
 従って、本構成例のトランスチップ300であれば、その不良品検査時に各コイルの直列抵抗成分を正確に測定することができる。従って、各コイルの断線が生じている不良品をリジェクトすることはもちろん、各コイルの抵抗値異常(例えば、コイル同士の中途短絡)が生じている不良品についても、これを適切にリジェクトすることが可能となり、延いては、不良品の市場流出を未然に防止することが可能となる。
 なお、上記の不良品検査を通過したトランスチップ300については、上記複数のパッドを一次側チップ及び二次側チップ(例えば先出のコントローラチップ210及びドライバチップ220)との接続手段として用いればよい。
 具体的に述べると、パッドa1並びにb1、パッドa2並びにb2、パッドa3並びにb3、及び、パッドa4及びb4は、それぞれ、二次側チップの信号入力端または信号出力端に接続すればよい。また、パッドc1並びにd1、及び、パッドc2及びd2は、それぞれ、二次側チップのコモン電圧印加端(GND2)に接続すればよい。
 一方、パッドa5並びにb5、パッドa6並びにb6、パッドa7並びにb7、及び、パッドa8及びb8は、それぞれ、一次側チップの信号入力端または信号出力端に接続すればよい。また、パッドc3並びにd3、及び、パッドc4及びd4は、それぞれ、一次側チップのコモン電圧印加端(GND1)に接続すればよい。
 ここで、第1トランス301~第4トランス304は、図13に示すように、それぞれの信号伝達方向毎にカップリングして並べられている。本図に即して述べると、例えば一次側チップから二次側チップに向けて信号を伝達する第1トランス301と第2トランス302が第1ガードリング305によって第1のペアとされている。また、例えば二次側チップから一次側チップに向けて信号を伝達する第3トランス303と第4トランス304が第2ガードリング306によって第2のペアとされている。
 このようなカップリングを行った理由は、第1トランス301~第4トランス304をそれぞれ形成する一次側コイルと二次側コイルをトランスチップ300の基板上下方向に積み重ねる形で積層形成した場合において、一次側コイルと二次側コイルとの間で耐圧を確保するためである。ただし、第1ガードリング305、及び、第2ガードリング306については、必ずしも必須の構成要素ではない。
 なお、第1ガードリング305及び第2ガードリング306は、それぞれ、パッドe1及びe2を介して、接地端などの低インピーダンス配線に接続すればよい。
 また、トランスチップ300において、パッドc1及びd1は、二次側コイルL1sと二次側コイルL2sとの間で共有されている。また、パッドc2及びd2は、二次側コイルL3sと二次側コイルL4sとの間で共有されている。また、パッドc3及びd3は、一次側コイルL1pと一次側コイルL2pとの間で共有されている。また、パッドc4及びd4は、一次側コイルL3pと一次側コイルL4pとの間で共有されている。このような構成とすることにより、パッド数を削減して、トランスチップ300の小型化を図ることが可能となる。
 また、図21に示したように、第1トランス301~第4トランス304をそれぞれ形成する一次側コイルと二次側コイルは、トランスチップ300の平面視において、長方形状(または角を丸めたトラック状)となるように巻き回すことが望ましい。このような構成とすることにより、一次側コイルと二次側コイルが互いに重複する部分の面積が大きくなり、トランスの伝達効率を高めることが可能となる。
 もちろん、本図のトランス配列はあくまでも一例であり、コイルの個数、形状、配置、及び、パッドの配置は任意である。また、これまでに説明してきたチップ構造及びトランス配列などについては、半導体チップ上にコイルを集積化した半導体装置全般に適用することが可能である。
<シールド電極の導入>
 次に、ノイズキャンセラ225(図8)に頼ることなく、コモンモードノイズの発生自体を効果的に抑制することのできるトランスチップ230の新規構造について説明する。
 図22は、トランスチップ230におけるシールド電極の導入例を示す図である。本図の左側には、シールド電極が導入されていない従来構造のトランスチップ230を比較のために示している。一方、本図の右側には、シールド電極SLD1及びSLD2が導入された新規構造のトランスチップ230を示している。なお、シールド電極SLD1及びSLD2は、いずれか一方のみを導入しても良い。
 また、以下の説明では、一次側コイル231p並びに232p、及び、二次側コイル231s並びに232sのことを、それぞれ、一次巻線231p並びに232p、及び、二次巻線231s並びに232sと呼ぶ場合がある。
 先出の図10でも示したように、トランスチップ230は、6つの外部端子T21~T26を有している。外部端子T21は、一次巻線231pの第1端に接続されている。外部端子T22は、一次巻線231pの第2端と一次巻線232pの第2端に接続されている。外部端子T23は、一次巻線232pの第2端に接続されている。一方、外部端子T24は、二次巻線231sの第1端に接続されている。外部端子T25は、二次巻線231sの第2端と二次巻線232sの第2端に接続されている。外部端子T26は、二次巻線232sの第2端に接続されている。
 また、トランス231及び232には、その構造上、一次巻線231pと二次巻線231sとの間、並びに、一次巻線232pと二次巻線232sとの間に、それぞれコイル間容量C1及びC2が付随している。
 ここで、新規構造(本図右側)のトランスチップ230には、一次巻線231p及び232pと二次巻線231s及び232sとの間に介在するように形成されたシールド電極SLD1及びSLD2が導入されている。
 図23は、シールド電極SLD1及びSLD2を備えたトランスチップ230の縦構造を示す図である。本図で示したように、新規構造のトランスチップ230は、下層から順に、メタル層(配線層)1MT、2MT及び3MTを積層形成して成る。メタル層1MTとメタル層2MTとの間は、1段のビア1VIAを介して電気的に接続されている。メタル層2MTとメタル層3MTとの間は、3段のビア2VIAを介して電気的に接続されている。また、トランスチップ230の最表面は、パッドの露出部分を除き、パッシベーション層PSVで被覆されている。
 一次巻線231pは、中間層のメタル層2MTに形成されている。一方、二次巻線231sは、一次巻線231pと磁気結合するように、最上層のメタル層3MTに形成されている。図示されていない一次巻線232p及び二次巻線232sについても同様である。
 ここで、シールド電極SLD1及びSLD2は、いずれも一次巻線231pと二次巻線231sとの間(ないしは一次巻線232pと二次巻線232sとの間)に介在するように、メタル層2MTとメタル層3MTに挟まれた領域に形成されている。
 なお、図22及び図23で示したように、シールド電極SLD1は、一次巻線231p及び232pそれぞれの接地端α(=一次回路系200pの接地電位GND1が印加される外部端子T22)に接続されている。一方、シールド電極SLD2は、二次巻線231s及び232sそれぞれの接地端β(=二次回路系200sの接地電位GND2が印加される外部端子T25)に接続されている。
 例えば、図23に即して述べると、シールド電極SLD1及びSLD2は、それぞれ、紙面左右方向に伸びる形で、一次巻線231pの直上及び二次巻線231sの直下に形成されており、かつ、それぞれの右端で接地端α及びβに接続されている。なお、接地端βは、ビアTVIAを介してパッドTMT(外部端子T25に相当)に導通されている。一方、接地端αは、メタル層1MT~3MTとビア1VIA及び2VIAを介して、不図示の外部端子T22に接続されている。
 図22に戻り、従来構造と新規構造との対比を続ける。従来構造(本図左側)のトランスチップ230では、コモンモードノイズの重畳時にコイル間容量C1及びC2を介して位相がずれた信号を伝達してしまう。そのため、ドライバチップ220でノイズ対策(ノイズキャンセラ225の導入など)を行う必要となる。
 しかし、ノイズキャンセラ225(図8)を導入しても、正規パルスに重なるタイミングでノイズパルスが重畳すると、正規パルスを誤ってマスクしてしまい、1パルス分の遅延を発生するおそれがある(図9の時刻t26を参照)。また、ノイズキャンセラ225は、遅延部DLY1~DLY4を含むので、帯域が制限されるという問題もある。
 これに対して、新規構造(本図右側)のトランスチップ230であれば、コモンモードノイズの重畳時にコイル間容量C1及びC2を介して流れる電流は、シールド電極SLD1及びSLD2を介して接地端α及びβに逃がされる。すなわち、コイル間容量C1及びC2を介して伝達されるコモンモードノイズ自体を効果的に低減することができるので、ノイズキャンセラ225に頼らなくても誤動作を抑制することが可能となる。
 図24は、シールド電極SLD1及びSLD2の導入によるノイズ低減効果を示す図であり、先出の図3と同じく、上から順に、入力パルス信号IN、受信パルス信号S12並びにS22、及び、出力パルス信号OUTが描写されている。
 まず、正規のパルス信号伝達動作について簡単に説明する。時刻t31において、入力パルス信号INがハイレベルに立ち上がると、トランス231がパルス駆動されるので、受信パルス信号S12に正規パルスが立ち上がる。その結果、出力パルス信号OUTがハイレベルに立ち上がる。また、時刻t32において、入力パルス信号INがローレベルに立ち下がると、トランス232がパルス駆動されるので、受信パルス信号S22に正規パルスが立ち上がる。その結果、出力パルス信号OUTがローレベルに立ち下がる。この点については、従前と何ら変わるところはない。
 一方、コモンモードノイズによる誤信号は、トランス231及び232の双方で同時に発生する。ただし、シールド電極SLD1及びSLD2の働きにより、受信パルス信号S12及びS22に重畳するコモンモードノイズ自体が大幅に低減される。その結果、バッファ221及び222の閾値電圧Vthを上回り難くなるので、出力パルス信号OUTの誤動作を抑制することが可能となる。
<シールド電極のレイアウトと信号伝達能力>
 図25~図27は、それぞれ、シールド電極SLD(先出のシールド電極SLD1及びSLD2に相当)のレイアウトと信号伝達能力との関係を示す図である。なお、各図中の実線矢印は電流を示しており、破線矢印は磁界を示している。
 図25において、シールド電極SLDは、一次巻線231pと二次巻線231sとの間(または一次巻線232pと二次巻線232sとの間)に介在するように、一面ベタパターンで形成されている。このようなレイアウトを採用した場合には、シールド電極SLD上に無数の渦電流が生じるので、反磁界による伝達阻害が大きいと考えられる。
 図26において、シールド電極SLDは、一次巻線231pと二次巻線231sとの間(または一次巻線232pと二次巻線232sとの間)に介在するように、平面視で同心円状又は同心環状(断面視で櫛歯状)に複数形成されている。このようなレイアウトを採用した場合には、先出の一面ベタパターン(図25)と比べて渦電流の発生を抑制することができるので、反磁界による伝達阻害が小さくなると考えられる。ただし、シールド電極SLDのループ内には渦電流が生じるので、反磁界による伝達阻害を完全に無くすことは難しい。
 図27において、シールド電極SLDは、先出の図26と同じく、一次巻線231pと二次巻線231sとの間(または一次巻線232pと二次巻線232sとの間)に介在するように、平面視で同心円状又は同心環状(断面視で櫛歯状)に複数形成されており、かつ、平面視で開放環状に形成されている。すなわち、シールド電極SLDには、渦電流の経路となるループがないので、反磁界による伝達阻害を最小限に抑えることが可能となる。
 このように、シールド電極SLDのレイアウトを工夫することにより、信号伝達能力の低下を抑制することができる。
<シールド電極の平面レイアウト>
 図28は、シールド電極SLDの第1平面レイアウト例を示す図である。本図のシールド電極SLDは、平面視で同心円状または同心環状かつ開放環状に複数形成されている。この平面レイアウトは、先出の図27(C型パターン)に相当する。
 図29は、シールド電極SLDの第2平面レイアウト例を示す図である。本図のシールド電極SLDは、先出の図27(C型パターン)と同様であるが、そのサイズ(半径)及び線幅/線間隔比(L/S[line/space])などを任意に変更し得る旨が白抜きの矢印で明示されている。
 図30は、シールド電極SLDの第3平面レイアウト例を示す図である。本図のシールド電極SLDは、平面視で同心円状又は同心環状に複数形成されている。この平面レイアウトは、先出の図26(O型パターン)に相当する。なお、O型パターンに類似する平面レイアウトとして、シールド電極SLDを一次巻線及び二次巻線と全く同様の形状にしてもよい。
 図31は、シールド電極SLDの第4平面レイアウト例を示す図である。本図のシールド電極SLDは、先出の図28(C型パターン)に類似する平面レイアウトであるが、一連の一筆書きパターンとして形成されている。このようなパターンを採用しても、渦電流の発生(延いては反磁界による伝達阻害)を抑制することが可能である。
<シールド電極の断面構造>
 図32は、一次巻線231p及び二次巻線231s(または一次巻線232p及び二次巻線232s)とシールド電極SLD1及びSLD2の第1断面構造例を示す図である。本図のシールド電極SLD1及びSLD2は、それぞれ、一次巻線231p及び二次巻線231sそれぞれの最外周よりも外側まで形成されており、かつ、一次巻線231p及び二次巻線231sそれぞれの最内周よりも内側まで形成されている。また、シールド電極SLD1及びSLD2は、それぞれ、一次巻線231p及び二次巻線231sと同一の線幅/線間隔比に設計されている。
 図33は、一次巻線231p及び二次巻線231s(または一次巻線232p及び二次巻線232s)とシールド電極SLD1及びSLD2の第2断面構造例を示す図である。本図のシールド電極SLD1及びSLD2は、それぞれ、一次巻線231p及び二次巻線231sそれぞれの最外周と同じ位置まで形成されており、かつ、一次巻線231p及び二次巻線231sそれぞれの最内周と同じ位置まで形成されている。
 図34は、一次巻線231p及び二次巻線231s(または一次巻線232p及び二次巻線232s)とシールド電極SLD1及びSLD2の第3断面構造例を示す図である。本図のシールド電極SLD1及びSLD2は、それぞれ、一次巻線231p及び二次巻線231sそれぞれの最外周よりも外側まで形成されており、かつ、一次巻線231p及び二次巻線231sそれぞれの最内周と同じ位置まで形成されている。
 図35は、一次巻線231p及び二次巻線231s(または一次巻線232p及び二次巻線232s)とシールド電極SLD1及びSLD2の第4断面構造例を示す図である。本図のシールド電極SLD1及びSLD2は、それぞれ、一次巻線231p及び二次巻線231sそれぞれの最外周よりも内側までしか形成されておらず、かつ、一次巻線231p及び二次巻線231sそれぞれの最内周よりも外側までしか形成されていない。
 図36は、一次巻線231p及び二次巻線231s(または一次巻線232p及び二次巻線232s)とシールド電極SLD1及びSLD2の第5断面構造例を示す図である。本図のシールド電極SLD1及びSLD2は、第1断面構造例(図33)と同じく、それぞれ、一次巻線231p及び二次巻線231sそれぞれの最外周よりも外側まで形成されており、かつ、一次巻線231p及び二次巻線231sそれぞれの最内周よりも内側まで形成されている。ただし、シールド電極SLD1及びSLD2は、それぞれ、一次巻線231p及び二次巻線231sよりも小さい線幅/線間隔比に設計されている。
 このように、一次巻線231p及び二次巻線231sと、シールド電極SLD1及びSLD2それぞれのサイズ及び線幅/線間隔比については、任意に調整することが可能である。例えば、本図では例示していないが、上側構造(二次巻線231s及びシールド電極SLD2)を下側構造(一次巻線231p及びシールド電極SLD1)よりも大きくしたり、下側構造から上側構造に向けて徐々にサイズを大きくしたりすることも任意である。
<シールド電極の導入効果>
 図37は、シールド電極の有無及び形状とコイル間容量との関係を示す図である。本図で示したように、シールド電極を導入することにより、トランスチップのコイル間容量を低減することが可能となる。
 また、本図から分かるように、シールド電極の平面レイアウトについては、一面ベタパターン(図25)を採用した場合であっても、C型パターン(図27)を採用した場合であっても、コイル間容量の低減効果に顕著な差がない。これを鑑みると、シールド電極の平面レイアウトとしては、一面ベタパターンよりも反磁界による伝達阻害が小さいC型パターンを採用することが望ましいと言える。
 また、シールド電極の線幅/線間隔比については、小さいほど信号伝達を阻害し難くなると考えられるが、背反としてコイル間容量の低減効果が損なわれるので、双方のバランスを考慮して適切に設計すると良い。本図に即して述べれば、シールド電極は、一次巻線及び二次巻線と同一の線幅/線間隔比(同径)に設計することが望ましいと言える。
<コイル及びシールド電極の平面レイアウト>
 図38は、トランスチップに形成されるパッドとコイルの平面レイアウトを示す図である。なお、本図では、トランスチップ400(=先のトランスチップ230などに相当)に形成されたパッド401及び402とコイル403が描写されている。
 先出の図10と対比すると、パッド401は、例えば、外部端子T25(二次回路系200sのGNDパッド)に相当し、パッド402は、例えば、外部端子T24又はT26(二次回路系200sの信号パッド)に相当する。また、コイル403は、例えば、二次巻線231s又は232sに相当する。
 コイル403は、パッド402を取り囲むような渦巻き形状に敷設されている。本図に即して具体的に述べると、コイル403は、トランスチップ400の平面視において、パッド402の周囲に角丸長方形(=陸上トラックのような平面形状)を描きつつ、周回に伴って中心から遠ざかる軌跡(逆に見れば、周回に伴って中心に近付く軌跡)を辿るように敷設されている。このような平面レイアウトは、先出の図10及び図13などでも明示されている通りである。
 図39は、図38のコイル403と重なり合うシールド電極404の第1平面レイアウトを示す図である。また、図40は、図38と図39を重ね合わせた図である。
 シールド電極404は、例えば、図23のシールド電極SLD1若しくはSLD2、又は、図27又は図28のシールド電極SLDに相当する。なお、シールド電極404は、コイル403とは異なる配線層(例えばコイル403が形成される配線層から見て一つ下の配線層)に形成されている。
 また、シールド電極404は、トランスチップ400の平面視において、コイル403と一部または全部(本図では80%以上の大部分)が重なり合うようにコイル403をなぞる形で敷設されている。このようなレイアウトパターンによれば、コモンモードノイズの低減効果を高めることが可能となる。
 本図に即して具体的に述べると、シールド電極404は、基本的にコイル403と同一の形状(渦巻き形状)に敷設されているが、渦電流の発生を阻害するように開放端404xを持っている。すなわち、シールド電極404は、開放端404xを設けた部分で一連の渦巻き形状が途切れている。従って、シールド電極404には、渦電流の経路となるループがないので、反磁界による伝達阻害を最小限に抑えることが可能となる。この点については、先出の図27で述べた通りである。
 なお、シールド電極404の各部は、いずれも連結部404yを介してパッド401と電気的に導通されている。従って、コモンモードノイズの低減効果に支障を来すことはない。この点についても、先出の図28から自明であるが、ここで改めて明記しておく。
 図41は、図38のコイル403と重なり合うシールド電極405の第2平面レイアウトを示す図である。また、図42は、図38と図41を重ね合わせた図である。
 シールド電極405は、先出のシールド電極404と同じく、トランスチップ400の平面視において、コイル403と一部または全部(本図ではほぼ100%)が重なり合うようにコイル403をなぞる形で敷設されている。
 ただし、シールド電極405は、先出のシールド電極404と異なり、一連の渦巻き形状の途中ではなく、その終端部分が開放端405xとされている。このようなレイアウトパターンによれば、コイル403とシールド電極405が重なり合う部分を増やすことができるので、コモンモードノイズの低減効果をさらに高めることが可能となる。
<シールド電極の平面レイアウト(まとめ)>
 これまでの説明からも明らかなように、コモンモードノイズの低減手段として、コイル間(=一次巻線と二次巻線との間)に設けられるシールド電極は、トランスチップの平面視で同心円状又は同心環状に複数形成してもよいし、トランスチップの平面視で渦巻き形状に形成してもよい。
 いずれのレイアウトパターンを採用するにせよ、トランスチップの平面視でコイルと重なり合う部分を増やすことがコモンモードノイズの低減効果を高める上で重要となる。
 また、図38~図41では、主に二次巻線とシールド電極との関係を例に挙げたが、一次巻線とシールド電極との関係についても上記と同様である。
<基板-パッド間容量>
 図43は、トランスチップ230における基板-パッド間容量の存在を示す図である。なお、本図は、先出の図32を基本としつつ、二次巻線231sの内部に配置されて二次巻線231sの信号端が接続されるパッドPAD(=図10の外部端子T24に相当)を明示した縦断面図である。
 パッドPADは、メタル電極P1と、内部配線P2と、複数のビアP3と、を含む。メタル電極P1は、先出の高電位端子12(12A)に相当し、少なくとも一部がワイヤボンディング領域として最上絶縁層から外部に露出する。内部配線P2は、先出の高電位接続配線81に相当し、第2巻線231sと共通の配線層において、メタル電極P1と対向するアイランド状に形成されている。複数のビアP3は、先出のパッドプラグ電極82に相当し、メタル電極P1と内部配線P2との間を電気的に接続する。
 ところで、基板SUBとパッドPAD(特に内部配線P2)との間には、図示の基板-パッド間容量CPが付随する。基板SUBには、一次回路系200pの接地電位GND1が印加されるので、一次巻線231pの接地端(=図23の接地端α)と同電位になる。従って、基板-パッド間容量CPは、一次巻線231pの接地端と二次巻線231sの信号端との間に付随する形となる。
 なお、先出のシールド電極SLD1及びSLD2は、一次巻線231pと二次巻線231sとの間に介在する。従って、先出のコイル間容量Cを介するコモンモードノイズを低減し得るが、基板-パッド間容量CPのシールド効果は乏しいと言わざるを得ない。
 図44は、基板-パッド間容量CPが未シールドである様子を示す図である。なお、本図中には、トランス231に付随する基板-パッド間容量CP1と、トランス232に付随する基板-パッド間容量CP2が描写されている。先にも述べたように、先出のシールド電極SLD1及びSLD2を導入しても、基板SUBとパッドPADとの間に付随する基板-パッド間容量CPを適切にシールドすることができていない。そのため、コモンモードノイズの低減効果については、さらなる改善の余地があると言える。
<パッド直下におけるシールド電極の導入>
 図45は、パッドPADと重なり合う領域におけるシールド電極SLDの第1平面レイアウトを示す図である。なお、本図では、図示の便宜上、パッドPADとシールド電極SLDを紙面の上下に並べて描写しているが、実際には、トランスチップ230の平面視において、パッドPADとシールド電極SLDが互いに重なり合うように形成される。すなわち、シールド電極SLDは、トランスチップ230の平面視において、パッドPADの直下領域(=基板SUBとパッドPADとの間に介在する領域)に形成される。
 また、本図では、パッドPADとシールド電極SLDとの関係のみを描写しているが、シールド電極SLDは、先にも述べたように、コイル間に介在する領域にも形成される。すなわち、シールド電極SLDは、これまでに説明してきたコイル間に介在する領域と、基板-パッド間に介在する領域の双方に形成される。なお、シールド電極SLDには、接地電位GND(=一次回路系200pの接地電位GND1、または、二次回路系200sの接地電位GND2)を印加するとよい。
 次に、レイアウトパターンに関して述べると、シールド電極SLDは、本図で示すように、平面視でパッドPADと重なり合う位置において、同心円状または同心環状に複数形成してもよい。このとき、シールド電極SLDは、渦電流の発生を阻害するように開放端SLDxを持つとよい。つまり、同心円状または同心環状に形成されたシールド電極SLDは、開放端SLDxを設けた部分で一連のループが途切れている。従って、シールド電極SLDには、渦電流の経路となるループがないので、反磁界による伝達阻害を最小限に抑えることが可能となる。この点については、先出の図27で述べた通りである。
 図46は、一次巻線231p、二次巻線231s、パッドPAD、及び、シールド電極SLD1及びSLD2の断面構造を示す図である。なお、本図は、先出の図43を基本としつつ、基板SUBとパッドPADとの間に介在するように形成されたシールド電極SLD1及びSLD2を明示した縦断面図である。
 本図で示したように、一次巻線231p、二次巻線231s、シールド電極SLD1及びSLD2は、基板SUBの側(=下層側)から見て、一次巻線231p、シールド電極SLD1、シールド電極SLD2、及び、二次巻線231s並びにパッドPADの内部配線P2の順に、それぞれ積層形成されている。
 なお、シールド電極SLD1は、一次巻線231pの接地端α(=GND1)に接続すればよい。また、シールド電極SLD2は、二次巻線231sの接地端β(=GND2)に接続すればよい。
 このような構造のトランスチップ230において、例えば、一次巻線231pと二次巻線231sとの間に介在するように形成された先出のシールド電極SLD1及びSLD2を、パッドPADの直下領域まで拡張して形成することにより、基板-パッド間のシールド電極を導入してもよい。また、コイル間のシールド電極と基板-パッド間のシールド電極を完全に分離して形成してもよい。
 図47は、基板-パッド間容量CP1及びCP2がシールド済である様子を示す図である。先出の図46で示したように、基板SUBとパッドPADとの間にシールド電極SLD1及びSLD2を設けることにより、コイル間容量Cを介するコモンモードノイズだけでなく、基板-パッド間容量CPを介するコモンモードノイズについても、これを適切にシールドすることが可能となる。
 図48は、パッドPADと重なり合う領域におけるシールド電極SLDの第2平面レイアウトを示す図である。本図で示すように、パッドPADの直下領域に形成されるシールド電極SLDは、渦巻き形状に形成してもよい。この場合、シールド電極SLDの終端部分が開放端SLDxとなる。このようなレイアウトパターンでも渦電流が流れないので、反磁界による伝達阻害を最小限に抑えることが可能となる。
<総括>
 以下では、これまでに説明してきた種々の実施形態について総括的に述べる。
 本明細書中に開示されているトランスチップは、例えば、第1配線層と、前記第1配線層とは異なる第2配線層と、前記第1配線層に形成された一次巻線と、前記一次巻線と磁気結合するように前記第2配線層に形成された二次巻線と、前記一次巻線と前記二次巻線との間に介在するように形成されたシールド電極と、を有する構成(第1の構成)とされている。
 なお、上記第1の構成によるトランスチップにおいて、前記シールド電極は、前記一次巻線の第1接地端に接続された第1シールド電極と、前記二次巻線の第2接地端に接続された第2シールド電極と、を含む構成(第2の構成)にしてもよい。
 また、上記第1又は第2の構成によるトランスチップにおいて、前記シールド電極は、平面視で同心円状若しくは同心環状に複数形成されている、または、平面視で渦巻き形状に形成されている構成(第3の構成)にしてもよい。
 また、上記第3の構成によるトランスチップにおいて、前記シールド電極は、平面視で開放環状に形成されている構成(第4の構成)にしてもよい。
 また、上記第3又は第4の構成によるトランスチップにおいて、前記シールド電極は、前記一次巻線または前記二次巻線と同一の線幅/線間隔比に設計されている構成(第5の構成)にしてもよい。
 また、上記した第1~第5いずれかの構成から成るトランスチップにおいて、前記シールド電極は、前記一次巻線または前記二次巻線の最外周よりも外側まで形成されている構成(第6の構成)にしてもよい。
 また、上記した第1~第6いずれかの構成によるトランスチップにおいて、前記シールド電極は、前記一次巻線または前記二次巻線の最内周よりも内側まで形成されている構成(第7の構成)にしてもよい。
 また、上記第1~第7いずれかの構成によるトランスチップにおいて、前記シールド電極は、平面視で前記一次巻線または前記二次巻線と一部または全部が重なり合うように前記一次巻線または前記二次巻線をなぞる形で敷設されている構成(第8の構成)にしてもよい。
 また、上記第8の構成によるトランスチップにおいて、前記シールド電極は、渦電流の発生を阻害するように構成された開放端を持つ構成(第9の構成)にしてもよい。
 また、本明細書中に開示されているトランスチップは、例えば、第1配線層と、前記第1配線層とは異なる第2配線層と、前記第1配線層に形成された第1トランスの一次巻線及び第2トランスの一次巻線と、前記第1トランスの前記一次巻線及び前記第2トランスの前記一次巻線とそれぞれ磁気結合するように前記第2配線層に形成された前記第1トランスの二次巻線及び前記第2トランスの二次巻線と、前記第1トランスの前記一次巻線と前記第1トランスの前記二次巻線との間、及び、前記第2トランスの前記一次巻線と前記第2トランスの前記二次巻線との間にそれぞれ介在するように形成されたシールド電極とを有する構成(第10の構成)とされている。
 なお、上記第10の構成によるトランスチップは、前記第1トランスの前記一次巻線の第1端が接続された第1端子と、前記第1トランスの前記一次巻線の第2端と前記第2トランスの前記一次巻線の第1端が接続された第2端子と、前記第2トランスの前記一次巻線の第2端が接続された第3端子と、前記第1トランスの前記二次巻線の第1端が接続された第4端子と、前記第1トランスの前記二次巻線の第2端と前記第2トランスの前記二次巻線の第1端が接続された第5端子と、前記第2トランスの前記二次巻線の第2端が接続された第6端子と、を有する構成(第11の構成)にしてもよい。
 また、本明細書中に開示されている信号伝達装置は、例えば、コントローラチップと、ドライバチップと、上記第1~第11の構成を備えており前記コントローラチップと前記ドライバチップとの間を絶縁しつつパルス信号を伝達するトランスチップと、を有する構成(第12の構成)とされている。
 また、本明細書中に開示されているトランスチップは、例えば、第1配線層と、前記第1配線層とは異なる第2配線層と、前記第1配線層に形成された一次巻線と、前記一次巻線と磁気結合するように前記第2配線層に形成された二次巻線と、前記二次巻線の信号端が接続されたパッドと、前記一次巻線の第1接地端と同電位になる基板と、前記基板と前記パッドとの間に介在するように形成されたシールド電極と、を有する構成(第13の構成)とされている。
 なお、上記第13の構成によるトランスチップにおいて、前記シールド電極は、平面視で前記パッドと重なり合う位置において、同心円状若しくは同心環状に複数形成されている、または、渦巻き形状に形成されている構成(第14の構成)にしてもよい。
 また、上記第14の構成によるトランスチップにおいて、前記シールド電極は、渦電流の発生を阻害するように構成された開放端を持つ構成(第15の構成)にしてもよい。
 また、上記第13~15いずれかの構成によるトランスチップにおいて、前記二次巻線は、前記パッドを取り囲むような渦巻き形状に敷設されている構成(第16の構成)にしてもよい。
 また、上記第13~第16いずれかの構成によるトランスチップにおいて、前記シールド電極は、前記一次巻線と前記二次巻線との間にも介在するように形成される構成(第17の構成)にしてもよい。
 また、上記第17の構成によるトランスチップにおいて、前記シールド電極は、平面視で前記一次巻線または前記二次巻線と重なり合う位置において、前記一次巻線または前記二次巻線をなぞる形で敷設されている構成(第18の構成)にしてもよい。
 また、上記第13~第18いずれかの構成によるトランスチップにおいて、前記パッドは、少なくとも一部が露出する電極と、前記電極と対向するアイランド状の内部配線と、前記電極と前記内部配線との間を電気的に接続する複数のビアと、を含む構成(第19の構成)にしてもよい。
 上記第13~第19いずれかの構成によるトランスチップにおいて、前記シールド電極は、前記一次巻線の前記第1接地端に接続された第1シールド電極と、前記二次巻線の第2接地端に接続された第2シールド電極と、を含む構成(第20の構成)にしてもよい。
 上記第20の構成によるトランスチップにおいて、前記一次巻線、前記二次巻線、前記第1シールド電極及び前記第2シールド電極は、前記基板の側から見て、前記一次巻線、前記第1シールド電極、前記第2シールド電極及び前記二次巻線の順に積層形成されている構成(第21の構成)にしてもよい。
 また、本明細書中に開示されている信号伝達装置は、例えば、コントローラチップと、ドライバチップと、上記第13~第21の構成を備えており前記コントローラチップと前記ドライバチップとの間を絶縁しつつパルス信号を伝達するトランスチップと、を有する構成(第22の構成)とされている。
<その他の変形例>
 また、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。例えば、バイポーラトランジスタとMOS電界効果トランジスタとの相互置換、又は、各種信号の論理レベル反転は任意である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、特許請求の範囲により規定されるものであって、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 本明細書中に開示されている発明は、例えば、入出力間を絶縁しながら信号伝達を行う必要のあるアプリケーション全般(例えば、高電圧を取り扱う絶縁ゲートドライバ、モータドライバ、アイソレータ、または、その他ICなど)に利用することが可能である。
   5  半導体装置
   11、11A~11F  低電位端子
   12、12A~12F  高電位端子
   21、21A~21D  変圧器(トランス)
   22  低電位コイル(一次側コイル)
   23  高電位コイル(二次側コイル)
   24  第1内側末端
   25  第1外側末端
   26  第1螺旋部
   27  第2内側末端
   28  第2外側末端
   29  第2螺旋部
   31  第1低電位配線
   32  第2低電位配線
   33  第1高電位配線
   34  第2高電位配線
   41  半導体チップ
   42  第1主面
   43  第2主面
   44A~44D  チップ側壁
   45  第1機能デバイス
   51  絶縁層
   52  絶縁主面
   53A~53D  絶縁側壁
   55  最下絶縁層
   56  最上絶縁層
   57  層間絶縁層
   58  第1絶縁層
   59  第2絶縁層
   60  第2機能デバイス
   61  シール導体
   62  デバイス領域
   63  外側領域
   64  シールプラグ導体
   65  シールビア導体
   66  第1内側領域
   67  第2内側領域
   71  貫通配線
   72  低電位接続配線
   73  引き出し配線
   74  第1接続プラグ電極
   75  第2接続プラグ電極
   76  パッドプラグ電極
   77  基板プラグ電極
   78  第1電極層
   79  第2電極層
   80  配線プラグ電極
   81  高電位接続配線
   82  パッドプラグ電極
   85  ダミーパターン
   86  高電位ダミーパターン
   87  第1高電位ダミーパターン
   88  第2高電位ダミーパターン
   89  第1領域
   90  第2領域
   91  第3領域
   92  第1接続部
   93  第1パターン
   94  第2パターン
   95  第3パターン
   96  第1外周ライン
   97  第2外周ライン
   98  第1中間ライン
   99  第1接続ライン
   100  スリット
   101  第1引き出し部
   102  第2引き出し部
   103  第3外周ライン
   104  第2中間ライン
   105  第2接続ライン
   106  スリット
   107  第3引き出し部
   108  第4引き出し部
   109  第4外周ライン
   110  第3中間ライン
   111  第3接続ライン
   112  スリット
   113  第5引き出し部
   114  第6引き出し部
   115  第2接続部
   116A~116F  高電位ライン
   117  スリット
   121  浮遊ダミーパターン
   122A~122F  浮遊ライン
   130  分離構造
   130A  内端部
   130B  外端部
   130C  本体部
   131  フィールド絶縁膜
   132  接続部
   140  無機絶縁層
   141  第1無機絶縁層
   142  第2無機絶縁層
   143  低電位パッド開口
   144  高電位パッド開口
   145  有機絶縁層
   146  第1部分
   147  第2部分
   148  低電位端子開口
   149  高電位端子開口
   200  信号伝達装置
   200p  一次回路系
   200s  二次回路系
   210  コントローラチップ(第1チップ)
   211  パルス送信回路(パルスジェネレータ)
   212、213 バッファ
   220  ドライバチップ(第2チップ)
   221、222  バッファ
   223  パルス受信回路(RSフリップフロップ)
   224  ドライバ
   225  ノイズキャンセラ
   230  トランスチップ(第3チップ)
   230a  第1配線層(下層)
   230b  第2配線層(上層)
   231、232  トランス
   231p、232p  一次側コイル(一次巻線)
   231s、232s  二次側コイル(二次巻線)
   300  トランスチップ
   301  第1トランス
   302  第2トランス
   303  第3トランス
   304  第4トランス
   305  第1ガードリング
   306  第2ガードリング
   400  トランスチップ
   401、402  パッド
   403  コイル
   404、405  シールド電極
   404x、405x  開放端
   404y  連結部
   a1~a8  パッド(第1の電流供給用パッドに相当)
   b1~b8  パッド(第1の電圧測定用パッドに相当)
   c1~c4  パッド(第2の電流供給用パッドに相当)
   d1~d4  パッド(第2の電圧測定用パッドに相当)
   e1、e2  パッド
   AND1、AND2  論理積ゲート
   BUF1~BUF4  バッファ
   C、C1、C2  コイル間容量
   CP、CP1、CP2  基板-パッド間容量
   DLY1~DLY4  遅延部
   L1p、L2p、L3p、L4p  一次側コイル
   L1s、L2s、L3s、L4s  二次側コイル
   1MT、2MT、3MT  メタル層(配線層)
   P1  内部配線
   P2  メタル電極
   P3  ビア
   PAD  パッド
   PSV  パッシベーション層
   SLD、SLD1、SLD2  シールド電極
   SLDx  開放端
   SUB  基板
   T21、T22、T23、T24、T25、T26  外部端子
   TMT  パッド
   1VIA、2VIA、TVIA  ビア
   X  第1方向
   X21、X22、X23  内部端子
   Y  第2方向
   Y21、Y22、Y23  配線
   Z  法線方向
   Z21、Z22、Z23  ビア
   α、β  接地端

Claims (10)

  1.  第1配線層と、
     前記第1配線層とは異なる第2配線層と、
     前記第1配線層に形成された一次巻線と、
     前記一次巻線と磁気結合するように前記第2配線層に形成された二次巻線と、
     前記二次巻線の信号端が接続されたパッドと、
     前記一次巻線の第1接地端と同電位になる基板と、
     前記基板と前記パッドとの間に介在するように形成されたシールド電極と、
     を有する、トランスチップ。
  2.  前記シールド電極は、平面視で前記パッドと重なり合う位置において、同心円状若しくは同心環状に複数形成されている、または、渦巻き形状に形成されている、請求項1に記載のトランスチップ。
  3.  前記シールド電極は、渦電流の発生を阻害するように構成された開放端を持つ、請求項2に記載のトランスチップ。
  4.  前記二次巻線は、前記パッドを取り囲むような渦巻き形状に敷設されている、請求項1~3のいずれか一項に記載のトランスチップ。
  5.  前記シールド電極は、前記一次巻線と前記二次巻線との間にも介在するように形成されている、請求項1~4のいずれか一項に記載のトランスチップ。
  6.  前記シールド電極は、平面視で前記一次巻線または前記二次巻線と重なり合う位置において、前記一次巻線または前記二次巻線をなぞる形で敷設されている、請求項5に記載のトランスチップ。
  7.  前記パッドは、
     少なくとも一部が露出する電極と、
     前記電極と対向するアイランド状の内部配線と、
     前記電極と前記内部配線との間を電気的に接続する複数のビアと、
     を含む、請求項1~6のいずれか一項に記載のトランスチップ。
  8.  前記シールド電極は、
     前記一次巻線の前記第1接地端に接続された第1シールド電極と、
     前記二次巻線の第2接地端に接続された第2シールド電極と、
     を含む、請求項1~7のいずれか一項に記載のトランスチップ。
  9.  前記一次巻線、前記二次巻線、前記第1シールド電極及び前記第2シールド電極は、前記基板の側から見て、前記一次巻線、前記第1シールド電極、前記第2シールド電極及び前記二次巻線の順に積層形成されている、請求項8に記載のトランスチップ。
  10.  コントローラチップと、
     ドライバチップと、
     前記コントローラチップと前記ドライバチップとの間を絶縁しつつパルス信号を伝達する請求項1~9のいずれか一項に記載のトランスチップと、
     を有する、信号伝達装置。
PCT/JP2022/033692 2021-10-25 2022-09-08 トランスチップ、信号伝達装置 WO2023074137A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063884.8A CN118020158A (zh) 2021-10-25 2022-09-08 变压器芯片和信号传输装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021173793 2021-10-25
JP2021-173793 2021-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/610,509 Continuation US20240221992A1 (en) 2021-10-25 2024-03-20 Transformer chip and signal transmission device

Publications (1)

Publication Number Publication Date
WO2023074137A1 true WO2023074137A1 (ja) 2023-05-04

Family

ID=86157686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033692 WO2023074137A1 (ja) 2021-10-25 2022-09-08 トランスチップ、信号伝達装置

Country Status (2)

Country Link
CN (1) CN118020158A (ja)
WO (1) WO2023074137A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150802A (ja) * 1998-11-18 2000-05-30 Nec Corp アナログ信号パッドのシールド法、および半導体集積回路
JP2014053365A (ja) * 2012-09-05 2014-03-20 Renesas Electronics Corp 半導体装置
JP2017220607A (ja) * 2016-06-09 2017-12-14 ルネサスエレクトロニクス株式会社 半導体装置、及び通信回路
WO2019074130A1 (ja) * 2017-10-13 2019-04-18 ローム株式会社 電子部品および電子部品モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150802A (ja) * 1998-11-18 2000-05-30 Nec Corp アナログ信号パッドのシールド法、および半導体集積回路
JP2014053365A (ja) * 2012-09-05 2014-03-20 Renesas Electronics Corp 半導体装置
JP2017220607A (ja) * 2016-06-09 2017-12-14 ルネサスエレクトロニクス株式会社 半導体装置、及び通信回路
WO2019074130A1 (ja) * 2017-10-13 2019-04-18 ローム株式会社 電子部品および電子部品モジュール

Also Published As

Publication number Publication date
CN118020158A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
JP7429672B2 (ja) 絶縁通信部品およびモジュール
WO2021106363A1 (ja) 半導体装置
WO2022163347A1 (ja) トランスチップ、信号伝達装置
US20230421050A1 (en) Isolated gate driver, traction inverter, and electric vehicle
WO2023074137A1 (ja) トランスチップ、信号伝達装置
US20230155470A1 (en) Pulse receiving circuit and signal transmission device
WO2023032430A1 (ja) ゲートドライバ
US20240221992A1 (en) Transformer chip and signal transmission device
US20230411281A1 (en) Semiconductor device, semiconductor module, motor drive device, and vehicle
WO2023189206A1 (ja) パルス駆動回路、信号伝達装置
CN116547804A (zh) 变压器芯片和信号传输装置
WO2023248622A1 (ja) 受信回路、信号伝達装置
WO2023112492A1 (ja) 信号伝達装置、電子機器
WO2023162537A1 (ja) パルス受信回路、信号伝達装置、電子機器、車両
WO2022196092A1 (ja) 絶縁ゲートドライバ、トラクションインバータ、電動車
US20230421348A1 (en) Signal transmission device
WO2023105943A1 (ja) 信号伝達装置、電子機器、車両
WO2023162536A1 (ja) パルス送信回路、信号伝達装置、電子機器、車両
JP2024083790A (ja) 信号伝達装置、産業機器、車両
WO2022070944A1 (ja) 信号伝達装置、電子機器、車両
JP2024051586A (ja) 信号伝達装置
WO2022065150A1 (ja) 信号伝達装置、電子機器、車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556164

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE