WO2023074051A1 - Method for producing catalyst, catalyst, and method for producing methanol - Google Patents

Method for producing catalyst, catalyst, and method for producing methanol Download PDF

Info

Publication number
WO2023074051A1
WO2023074051A1 PCT/JP2022/025908 JP2022025908W WO2023074051A1 WO 2023074051 A1 WO2023074051 A1 WO 2023074051A1 JP 2022025908 W JP2022025908 W JP 2022025908W WO 2023074051 A1 WO2023074051 A1 WO 2023074051A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
producing
metal element
chelating agent
catalyst according
Prior art date
Application number
PCT/JP2022/025908
Other languages
French (fr)
Japanese (ja)
Inventor
光司 小俣
Original Assignee
国立大学法人島根大学
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人島根大学, 住友化学株式会社 filed Critical 国立大学法人島根大学
Publication of WO2023074051A1 publication Critical patent/WO2023074051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing a catalyst, a catalyst, and a method for producing methanol.
  • catalysts containing metallic copper, zinc oxide and at least one other oxide are known as catalysts used in methanol synthesis.
  • a catalyst precursor containing copper oxide, zinc oxide, at least one oxide of a trivalent metal, and magnesia is converted into metallic copper.
  • a catalyst is disclosed that has been reduced to
  • An object of one aspect of the present invention is to reduce deterioration of catalytic activity over time.
  • a production method is a catalyst production method, comprising a contacting step of contacting a solid containing copper and zinc, at least one metal element, and a chelating agent. and a firing step of firing the solid obtained by the contacting step.
  • deterioration of catalytic activity over time can be reduced.
  • Embodiment 1 is a flow chart showing an example of a method for producing a catalyst according to Embodiment 1 of the present invention.
  • the catalyst production method of the present embodiment is a method for producing a catalyst whose deterioration over time is suppressed by bringing a solid containing copper and zinc into contact with at least one metal element and a chelating agent.
  • the catalyst produced by the method for producing a catalyst according to the present embodiment can be suitably used as a catalyst for methanol production.
  • FIG. 1 is a flow chart showing an example of the manufacturing method according to this embodiment.
  • the catalyst manufacturing method according to the present embodiment includes a contacting step S1 and a calcining step S2.
  • the flowchart shown in FIG. 1 is an example, and is not limited to this. Each step will be described in detail below.
  • the contacting step S1 is a step of contacting (i) a solid containing copper and zinc, (ii) at least one metal element and (iii) a chelating agent.
  • the solid containing copper and zinc is not particularly limited as long as it contains copper and zinc and has a shape suitable for use as a catalyst.
  • the shape of the solid may be, for example, pellets, granules, or powder.
  • a solid comprising copper and zinc may be, for example, a solid that can act as a catalyst in a chemical reaction. More specifically, the solid containing copper and zinc may be a methanol production catalyst (methanol synthesis catalyst) containing copper and zinc.
  • a base catalyst the method for producing a catalyst according to the present embodiment can also be referred to as a method for producing a catalyst in which a base catalyst is modified with at least one metal element in the presence of a chelating agent.
  • a metal element is an element added to copper and zinc to obtain the catalyst according to the present disclosure.
  • the metal element may be, for example, a metal element belonging to groups 2 to 16 in the periodic table of the elements. Since the metal element is an element belonging to Groups 2 to 16, it is possible to obtain a catalyst whose catalytic activity is inhibited from deteriorating over time by the method for producing a catalyst according to the present disclosure.
  • the metal element may be a metal element belonging to groups 2 to 12 in the periodic table of elements. Since the metal element is an element belonging to Groups 2 to 12, it is possible to obtain a catalyst whose catalytic activity is suppressed from deteriorating over time by the method for producing a catalyst according to the present disclosure.
  • the metal element may be an element belonging to groups 2 to 4 in the periodic table of elements. Since the metal element is an element belonging to Groups 2 to 4, it is possible to obtain a catalyst whose catalytic activity is suppressed from deteriorating over time by the method for producing a catalyst according to the present disclosure.
  • the metal elements include, for example, Mg (group 2), Sc (group 3), Y (group 3), Ce (group 3), Pr (group 3), Lu (group 3) Ti (group 4), or Pd (group 10).
  • the metal element used in the method for producing a catalyst according to the present embodiment has a stability constant of 0.85 or more and 1 It may be a metal element that satisfies the range within 0.30.
  • the value of the chelating agent-metal element stability constant to the chelating agent-copper chelate stability constant used is referred to herein as the stability constant ratio.
  • the stability constant K is the product of all these sequential stability constants.
  • the value of the stability constant is usually represented by the common logarithm of the stability constant K (logK).
  • EDTA ethylenediaminetetraacetic acid
  • the chelate stability constant (logK) between copper (Cu 2+ ) and EDTA is 18.80.
  • the metal element has a chelate stability constant (logK) of 15.98 (18.8 ⁇ 0.85 ) to 24.44 (18.8 ⁇ 1.30).
  • a chelating agent is a substance that can form a metal complex or metal chelate by coordinating with metal ions in solution.
  • the chelating agent used in the method for producing a catalyst according to the present embodiment is not particularly limited as long as it can act as a ligand and form a metal complex or metal chelate with a metal.
  • aminocarboxylic acids and/or hydroxycarboxylic acids may be used as chelating agents.
  • a chelating agent may be a compound having from 1 to 4 carboxyl groups.
  • the chelating agent may be at least one compound selected from the group consisting of ethylenediaminetetraacetic acid, citric acid and oxalic acid.
  • the method for producing a catalyst according to the present disclosure provides a catalyst whose catalytic activity is inhibited from deteriorating over time. Obtainable. At least one chelating agent may be added in the contacting step S1. A plurality of chelating agents may be added in the contacting step S1.
  • a solvent containing a metal element and a chelating agent may be brought into contact with the base catalyst.
  • a solvent containing a metal element and a chelating agent may be sprayed onto the primary catalyst.
  • Water for example, can be used as the solvent.
  • a drying process for drying the catalyst may be included after the contacting process S1.
  • the mixed solution of the solvent and the main catalyst used in the contacting step S1 may be heated to evaporate the solvent, or the main catalyst treated with the metal element and the chelating agent to which the solvent adheres. may be dried in a dryer or the like.
  • the calcining step S2 is a step of calcining the base catalyst treated with the metal element and the chelating agent obtained in the contacting step S1.
  • the substance added as a chelating agent is removed as a combusted product, and a catalyst containing copper, zinc and added metal elements can be obtained.
  • the above-mentioned catalyst obtained in the production method according to one embodiment of the present invention may be used as it is as a catalyst in the reaction field, or may be used as a reducing gas (hydrogen, a mixed gas of hydrogen and nitrogen, a gas containing carbon monoxide) etc.) before use.
  • a reducing gas hydrogen, a mixed gas of hydrogen and nitrogen, a gas containing carbon monoxide
  • the catalyst is a copper oxide-zinc oxide catalyst
  • the copper oxide-zinc oxide catalyst is brought into contact with a hydrogen-containing gas to convert it into a reduced metal copper-zinc oxide catalyst, and then the starting materials used in the reaction It may be brought into contact with gas.
  • the catalyst according to this embodiment may be molded into a shape suitable for use after the firing step S2. Moreover, when the catalyst is filled in a reactor or the like, it may be mixed with various diluents inert to the source gas and the reaction product. Diluents include copper granules, alumina balls, zirconia balls, quartz beads, glass beads, silicon carbide and the like.
  • the method for producing a catalyst according to the present embodiment includes a contacting step (S1) of contacting a solid containing copper and zinc, at least one metal element, and a chelating agent, and calcining the solid obtained by the contacting step. and a step (S2).
  • the catalyst produced by the above production method can be a catalyst for methanol production. More specifically, the catalyst produced by the above production method can be used in a methanol production method for producing methanol from a raw material gas containing carbon oxide and hydrogen.
  • the production efficiency of methanol can be improved by using a catalyst whose catalytic activity is suppressed from deteriorating over time, produced by the above production method.
  • the method for producing methanol according to the present disclosure includes a step of contacting a raw material gas containing carbon oxide and hydrogen with a catalyst produced by the method for producing a catalyst according to the present embodiment.
  • the catalyst according to the present disclosure is produced by the production method described in this embodiment. With this configuration, deterioration of catalytic activity over time can be suppressed.
  • the catalyst manufactured by the catalyst manufacturing method according to the present disclosure is specified by being manufactured by a manufacturing method including the contacting step S1 and the calcining step S2.
  • a method for producing a catalyst according to aspect 1 of the present invention includes a contacting step of contacting a solid containing copper and zinc, at least one metal element, and a chelating agent, and calcining the solid obtained by the contacting step. and a firing step.
  • the catalyst is a catalyst for methanol production.
  • the metal element is selected from the group consisting of elements belonging to groups 2 to 16 in the periodic table. , at least one metallic element.
  • the metal element is selected from the group consisting of elements belonging to groups 2 to 12 in the periodic table of elements. , at least one metallic element.
  • the metal element is selected from the group consisting of elements belonging to groups 2 to 4 in the periodic table. , at least one metallic element.
  • the method for producing a catalyst according to Aspect 6 of the present invention is, in any one of Aspects 1 to 5, wherein the metal element is the metal element and the chelate with respect to the chelate stability constant of copper and the chelating agent It is a metal element that satisfies the stability constant with the agent in the range of 0.85 to 1.30.
  • the chelating agent is aminocarboxylic acid and/or hydroxycarboxylic acid.
  • the method for producing a catalyst according to aspect 8 of the present invention is such that the chelating agent is a compound having 1 or more and 4 or less carboxyl groups.
  • a method for producing methanol according to aspect 10 of the present invention includes a step of contacting a raw material gas containing carbon oxide and hydrogen with a catalyst produced by the method for producing a catalyst according to any one of aspects 1 to 9 above.
  • a catalyst according to aspect 11 of the present invention is a catalyst produced by the method for producing a catalyst according to any one of aspects 1 to 9 above.
  • a catalyst (Cat No. 45776) manufactured by Alfa Aestar was used as a solid (primary catalyst) containing copper and zinc for catalyst production.
  • the base catalyst is a catalyst mainly used as a catalyst for methanol production.
  • the base catalyst contains 63.5% by weight of copper (2+) oxide, 25% by weight of zinc oxide, 10% by weight of aluminum oxide, and 1.5% by weight of magnesium oxide.
  • Magnesium nitrate hexahydrate corresponding to 0.01 g of Mg, EDTA (chelating agent) corresponding to 5 times the molar amount of Mg, and 50 ml of distilled water (solvent) were mixed. 1 g of the pulverized primary catalyst was added to this mixed solution and stirred. After stirring, the mixture was allowed to stand for 3 hours. The mixture was then heated to 70-80° C. with stirring to evaporate the water. The resulting dry black powder was placed in a crucible and calcined in a muffle furnace at 300° C. for 4 hours to obtain a catalyst within the scope of the present invention.
  • catalysts within the scope of the present invention were produced in the same manner as in Example 7 by changing the added metal.
  • the added metals are listed in the column of metal elements in Table 1 below.
  • Example 9 was produced in the same manner as in Example 7, except that Ce was used as the metal element and oxalic acid was used as the chelating agent.
  • Example 10 was produced in the same manner as in Example 7, except that Ce was used as the metal element and citric acid was used as the chelating agent.
  • Comparative Example 1 the untreated base catalyst was used as the catalyst to be evaluated. Comparative Example 2 is outside the scope of the present invention because no chelating agent is used in the stirring step.
  • the rate of decrease in activity is the rate of decrease in yield when comparing the yield at 3 hours after the start of the reaction and at 8 hours after the start of a methanol synthesis reaction using a catalyst. , (Y(3h) ⁇ Y(8h))/Y(3h)*100. Y(3h) and Y(8h) are the methanol yields at 3 and 8 hours respectively.
  • a lower rate of decrease in activity means that deterioration of catalytic activity over time is smaller.
  • a stainless steel fixed bed reactor with a quartz glass inner tube was charged with a mixture of 0.1 g of the catalyst of either Example or Comparative Example and 0.25 g of copper granules.
  • a mixed gas adjusted to Ar/CO 2 /H 2 41.2/23.9/71.9 (% by volume) was supplied to the fixed bed reactor at 30 NmL/min. After the inside of the fixed bed reactor was heated from room temperature to 280°C over 60 minutes, the temperature was maintained at 280°C for 120 minutes, and the temperature was lowered to 240°C to reduce the catalyst.
  • Comparative Example 1 The activity decrease rate of Comparative Example 1 was 4.7. That is, the rate of decrease in activity of the primary catalyst was 4.7. Moreover, Comparative Example 2 in which a metal element was added by a manufacturing method outside the scope of the present invention was 3.6.
  • Example 10 By comparing Example 10 and Comparative Example 2, it was found that even when the same metal element was added, the catalyst obtained by the production method within the scope of the present invention was obtained by the production method outside the scope of the present invention. It was demonstrated that the rate of decrease in activity was lower than that of the catalysts used in this study.
  • the metal elements used in Examples 1 to 6 and 8 to 10 have a stability constant ratio of 0.85 or more and 1.30 or less.
  • the results in Table 1 demonstrate that the rate of decrease in activity is significantly reduced when metal elements having a stability constant ratio of 0.85 or more and 1.30 or less are used.
  • the catalyst according to the present invention can be suitably used as a catalyst for industrial methanol production.

Abstract

The present disclosure suppresses deterioration of catalytic activity over time. A method for producing a catalyst according to the present disclosure includes: a contact step (S1) for bringing a copper-and-zinc-containing solid, at least one metal element, and a chelating agent into contact with each other; and, a calcination step (S2) for calcining the solid obtained by the contact step.

Description

触媒の製造方法、触媒およびメタノール製造方法Method for producing catalyst, catalyst and method for producing methanol
 本発明は、触媒の製造方法、触媒およびメタノール製造方法に関する。 The present invention relates to a method for producing a catalyst, a catalyst, and a method for producing methanol.
 従来、メタノール合成に用いられる触媒として、金属銅、酸化亜鉛および少なくとも1種の他の酸化物を含む触媒が知られている。例えば、特許文献1には、(i)酸化銅、酸化亜鉛、三価金属の少なくとも1種の酸化物、およびマグネシアを含む触媒前駆体ならびに(ii)触媒前駆体に含まれる酸化銅を金属銅に還元した触媒が開示されている。 Conventionally, catalysts containing metallic copper, zinc oxide and at least one other oxide are known as catalysts used in methanol synthesis. For example, in Patent Document 1, (i) a catalyst precursor containing copper oxide, zinc oxide, at least one oxide of a trivalent metal, and magnesia, and (ii) the copper oxide contained in the catalyst precursor is converted into metallic copper. A catalyst is disclosed that has been reduced to
日本国特開昭62-53740号公報Japanese Patent Application Laid-Open No. 62-53740
 工業触媒において、触媒活性の経時劣化を抑制することは重要な課題である。本発明の一態様は、触媒活性の経時劣化を低減することを目的とする。 In industrial catalysts, it is an important issue to suppress the deterioration of catalytic activity over time. An object of one aspect of the present invention is to reduce deterioration of catalytic activity over time.
 上記の課題を解決するために、本発明の一態様に係る製造方法は、触媒の製造方法であって、銅および亜鉛を含む固体、少なくとも1種の金属元素、およびキレート剤を接触させる接触工程と、前記接触工程によって得られた固体を焼成する焼成工程と、を含む。 In order to solve the above problems, a production method according to one aspect of the present invention is a catalyst production method, comprising a contacting step of contacting a solid containing copper and zinc, at least one metal element, and a chelating agent. and a firing step of firing the solid obtained by the contacting step.
 本発明の一態様によれば、触媒活性の経時劣化を低減することができる。 According to one aspect of the present invention, deterioration of catalytic activity over time can be reduced.
本発明の実施形態1に係る触媒の製造方法の一例を示すフローチャートである。1 is a flow chart showing an example of a method for producing a catalyst according to Embodiment 1 of the present invention.
 〔実施形態〕
 以下、本発明の一実施形態である触媒の製造方法について、図面を用いて詳細に説明する。
[Embodiment]
Hereinafter, a method for producing a catalyst, which is one embodiment of the present invention, will be described in detail with reference to the drawings.
 本実施形態の触媒の製造方法は、銅および亜鉛を含む固体を、少なくとも一種の金属元素、およびキレート剤に接触させることにより、経時劣化が抑制された触媒を製造する方法である。本実施形態に係る触媒の製造方法によって製造される触媒は、メタノール製造用触媒として好適に用いられ得る。 The catalyst production method of the present embodiment is a method for producing a catalyst whose deterioration over time is suppressed by bringing a solid containing copper and zinc into contact with at least one metal element and a chelating agent. The catalyst produced by the method for producing a catalyst according to the present embodiment can be suitably used as a catalyst for methanol production.
 <触媒の製造方法>
 本実施形態に係る触媒の製造方法について以下に詳細に説明する。図1は、本実施形態に係る製造方法の一例を示すフローチャートである。図1に示すように、本実施形態に係る触媒の製造方法は、接触工程S1と、焼成工程S2と、を含む。なお、図1に示すフローチャートは一例であり、これに限定されない。各工程について、以下に詳述する。
<Method for producing catalyst>
A method for producing a catalyst according to this embodiment will be described in detail below. FIG. 1 is a flow chart showing an example of the manufacturing method according to this embodiment. As shown in FIG. 1, the catalyst manufacturing method according to the present embodiment includes a contacting step S1 and a calcining step S2. In addition, the flowchart shown in FIG. 1 is an example, and is not limited to this. Each step will be described in detail below.
 (接触工程S1)
 接触工程S1は、(i)銅および亜鉛を含む固体、(ii)少なくとも1種の金属元素および(iii)キレート剤を接触させる工程である。
(Contact step S1)
The contacting step S1 is a step of contacting (i) a solid containing copper and zinc, (ii) at least one metal element and (iii) a chelating agent.
 銅および亜鉛を含む固体は、銅および亜鉛を含み、触媒として用いるために好適な形状を有していれば特に限定されない。当該固体の形状は、例えば、ペレット状、顆粒状、粉状であってよい。銅および亜鉛を含む固体は、例えば、化学反応において触媒として作用し得る固体であってよい。より具体的には、銅および亜鉛を含む固体は、銅および亜鉛を含むメタノール製造用触媒(メタノール合成用触媒)であってもよい。銅および亜鉛を含む固体として、触媒として作用し得る固体を用いる場合、本開示に係る触媒の製造方法によって得られる触媒に対し、当該触媒として作用し得る固体を元触媒と称する。すなわち、本実施形態に係る触媒の製造方法は、元触媒をキレート剤の存在下で少なくとも1種の金属元素によって修飾する、触媒の製造方法であると言及することもできる。 The solid containing copper and zinc is not particularly limited as long as it contains copper and zinc and has a shape suitable for use as a catalyst. The shape of the solid may be, for example, pellets, granules, or powder. A solid comprising copper and zinc may be, for example, a solid that can act as a catalyst in a chemical reaction. More specifically, the solid containing copper and zinc may be a methanol production catalyst (methanol synthesis catalyst) containing copper and zinc. When a solid that can act as a catalyst is used as the solid containing copper and zinc, the solid that can act as a catalyst for the catalyst obtained by the method for producing a catalyst according to the present disclosure is called a base catalyst. That is, the method for producing a catalyst according to the present embodiment can also be referred to as a method for producing a catalyst in which a base catalyst is modified with at least one metal element in the presence of a chelating agent.
 金属元素は、本開示に係る触媒を得るために、銅および亜鉛に付加される元素である。金属元素は、例えば、元素周期表において、第2族~第16族に属する金属元素であってもよい。金属元素が、第2族~第16族に属する元素であることにより、本開示に係る触媒の製造方法によって、触媒活性の経時劣化が抑制された触媒を得ることができる。金属元素は、元素周期表において、第2族~第12族に属する金属元素であってもよい。金属元素が、第2族~第12族に属する元素であることにより、本開示に係る触媒の製造方法によって、触媒活性の経時劣化が抑制された触媒を得ることができる。金属元素は、元素周期表において、第2族~第4族に属する元素であってもよい。金属元素が、第2族~第4族に属する元素であることにより、本開示に係る触媒の製造方法によって、触媒活性の経時劣化が抑制された触媒を得ることができる。 A metal element is an element added to copper and zinc to obtain the catalyst according to the present disclosure. The metal element may be, for example, a metal element belonging to groups 2 to 16 in the periodic table of the elements. Since the metal element is an element belonging to Groups 2 to 16, it is possible to obtain a catalyst whose catalytic activity is inhibited from deteriorating over time by the method for producing a catalyst according to the present disclosure. The metal element may be a metal element belonging to groups 2 to 12 in the periodic table of elements. Since the metal element is an element belonging to Groups 2 to 12, it is possible to obtain a catalyst whose catalytic activity is suppressed from deteriorating over time by the method for producing a catalyst according to the present disclosure. The metal element may be an element belonging to groups 2 to 4 in the periodic table of elements. Since the metal element is an element belonging to Groups 2 to 4, it is possible to obtain a catalyst whose catalytic activity is suppressed from deteriorating over time by the method for producing a catalyst according to the present disclosure.
 より具体的には、金属元素は、例えば、Mg(第2族)、Sc(第3族)、Y(第3族)、Ce(第3族)、Pr(第3族)、Lu(第3族)Ti(第4族)、またはPd(第10族)であってよい。 More specifically, the metal elements include, for example, Mg (group 2), Sc (group 3), Y (group 3), Ce (group 3), Pr (group 3), Lu (group 3) Ti (group 4), or Pd (group 10).
 さらに、本実施形態に係る触媒の製造方法において用いられる金属元素は、用いられるキレート剤と銅とのキレート安定度定数に対する、当該キレート剤と金属元素との安定度定数が、0.85以上1.30以内の範囲を満たす金属元素であってもよい。簡単のために、本明細書において、用いられるキレート剤と銅とのキレート安定度定数に対する、当該キレート剤と金属元素との安定度定数の値を、安定度定数の比と称する。 Furthermore, the metal element used in the method for producing a catalyst according to the present embodiment has a stability constant of 0.85 or more and 1 It may be a metal element that satisfies the range within 0.30. For the sake of simplicity, the value of the chelating agent-metal element stability constant to the chelating agent-copper chelate stability constant used is referred to herein as the stability constant ratio.
 金属イオンと配位子(キレート剤)とが錯体を逐次生成する場合の、各段階における平衡定数(逐次安定度定数)をk、k・・・kとする。安定度定数Kは、これらの全ての逐次安定度定数の積である。通常、安定度定数の値は、安定度定数Kの常用対数をとった値(logK)によって表される。 Let k 1 , k 2 . The stability constant K is the product of all these sequential stability constants. The value of the stability constant is usually represented by the common logarithm of the stability constant K (logK).
 一例として、キレート剤としてエチレンジアミン四酢酸(EDTA)を用いる場合について説明する。銅(Cu2+)と、EDTAとのキレート安定度定数(logK)は、18.80である。本実施形態に係る触媒の製造方法においてキレート剤としてEDTAを用いる場合、金属元素は、当該金属元素と、EDTAとのキレート安定度定数(logK)が、15.98(18.8×0.85)以上24.44(18.8×1.30)以下であることが好ましい。 As an example, the case of using ethylenediaminetetraacetic acid (EDTA) as a chelating agent will be described. The chelate stability constant (logK) between copper (Cu 2+ ) and EDTA is 18.80. When EDTA is used as a chelating agent in the method for producing a catalyst according to the present embodiment, the metal element has a chelate stability constant (logK) of 15.98 (18.8 × 0.85 ) to 24.44 (18.8×1.30).
 安定度定数の比が0.85以上1.30以内の範囲を満たす金属元素を用いることにより、本開示に係る触媒の製造方法によって、触媒活性の経時劣化が抑制された触媒を得ることができる。 By using a metal element that satisfies the ratio of stability constants in the range of 0.85 or more and 1.30 or less, it is possible to obtain a catalyst whose catalytic activity is suppressed from deteriorating over time by the method for producing a catalyst according to the present disclosure. .
 キレート剤とは、溶液中で、金属イオンに対して配位結合することにより、金属錯体または金属キレートを形成し得る物質である。本実施形態に係る触媒の製造方法において用いるキレート剤は、配位子として作用し、金属と金属錯体または金属キレートを形成し得るものであれば特に限定されない。例えば、キレート剤として、アミノカルボン酸および/またはヒドロキシカルボン酸を用いてもよい。キレート剤としてアミノカルボン酸および/またはヒドロキシカルボン酸を用いることにより、本開示に係る触媒の製造方法によって、触媒活性の経時劣化が抑制された触媒を得ることができる。キレート剤は、1つ以上4つ以下のカルボキシル基を有する化合物であってもよい。キレート剤として1つ以上4つ以下のカルボキシル基を有する化合物を用いることにより、本開示に係る触媒の製造方法によって、触媒活性の経時劣化が抑制された触媒を得ることができる。より具体的には、キレート剤は、エチレンジアミン四酢酸、クエン酸およびシュウ酸からなる群より選択される少なくとも1種の化合物であってもよい。キレート剤としてエチレンジアミン四酢酸、クエン酸およびシュウ酸からなる群より選択される少なくとも1種の化合物を用いることにより、本開示に係る触媒の製造方法によって、触媒活性の経時劣化が抑制された触媒を得ることができる。接触工程S1において添加されるキレート剤は少なくとも1種類であってよい。接触工程S1において、複数のキレート剤を添加してもよい。 A chelating agent is a substance that can form a metal complex or metal chelate by coordinating with metal ions in solution. The chelating agent used in the method for producing a catalyst according to the present embodiment is not particularly limited as long as it can act as a ligand and form a metal complex or metal chelate with a metal. For example, aminocarboxylic acids and/or hydroxycarboxylic acids may be used as chelating agents. By using an aminocarboxylic acid and/or a hydroxycarboxylic acid as a chelating agent, it is possible to obtain a catalyst whose catalytic activity is inhibited from deteriorating over time according to the method for producing a catalyst according to the present disclosure. A chelating agent may be a compound having from 1 to 4 carboxyl groups. By using a compound having 1 to 4 carboxyl groups as a chelating agent, it is possible to obtain a catalyst whose catalytic activity is inhibited from deteriorating over time by the method for producing a catalyst according to the present disclosure. More specifically, the chelating agent may be at least one compound selected from the group consisting of ethylenediaminetetraacetic acid, citric acid and oxalic acid. By using at least one compound selected from the group consisting of ethylenediaminetetraacetic acid, citric acid and oxalic acid as a chelating agent, the method for producing a catalyst according to the present disclosure provides a catalyst whose catalytic activity is inhibited from deteriorating over time. Obtainable. At least one chelating agent may be added in the contacting step S1. A plurality of chelating agents may be added in the contacting step S1.
 接触工程S1において、例えば、金属元素とキレート剤とを含む溶媒を、元触媒に接触させてもよい。あるいは、元触媒に対して、金属元素とキレート剤とを含む溶媒をスプレー等で吹きかけてもよい。溶媒としては、例えば水を用いることができる。 In the contact step S1, for example, a solvent containing a metal element and a chelating agent may be brought into contact with the base catalyst. Alternatively, a solvent containing a metal element and a chelating agent may be sprayed onto the primary catalyst. Water, for example, can be used as the solvent.
 なお、接触工程S1の後に触媒を乾燥させる乾燥工程を含んでも良い。当該乾燥工程では、接触工程S1で使用された溶媒と元触媒との混合液を加熱し、溶媒を蒸発させてもよい、あるいは、溶媒が付着した、金属元素およびキレート剤で処理された元触媒を乾燥器などで乾燥させてもよい。 A drying process for drying the catalyst may be included after the contacting process S1. In the drying step, the mixed solution of the solvent and the main catalyst used in the contacting step S1 may be heated to evaporate the solvent, or the main catalyst treated with the metal element and the chelating agent to which the solvent adheres. may be dried in a dryer or the like.
 (焼成工程S2)
 焼成工程S2は、接触工程S1において得られる、金属元素およびキレート剤で処理された元触媒を焼成する工程である。焼成工程S2において、キレート剤として添加された物質は燃焼物として除去され、銅、亜鉛および添加された金属元素を含む触媒を得ることができる。
(Baking step S2)
The calcining step S2 is a step of calcining the base catalyst treated with the metal element and the chelating agent obtained in the contacting step S1. In the firing step S2, the substance added as a chelating agent is removed as a combusted product, and a catalyst containing copper, zinc and added metal elements can be obtained.
 <触媒の使用方法>
 本発明の一実施形態に係る製造方法において得られる上述の触媒は、そのまま反応場における触媒として使用してもよいし、還元性ガス(水素、水素と窒素の混合ガス、一酸化炭素を含むガスなど)で還元してから用いてもよい。例えば、触媒が酸化銅-酸化亜鉛触媒である場合には、水素を含むガスに酸化銅-酸化亜鉛触媒を接触させ、還元状態の金属銅-酸化亜鉛触媒に変化させてから、反応に用いる原料ガスと接触させてもよい。
<How to use the catalyst>
The above-mentioned catalyst obtained in the production method according to one embodiment of the present invention may be used as it is as a catalyst in the reaction field, or may be used as a reducing gas (hydrogen, a mixed gas of hydrogen and nitrogen, a gas containing carbon monoxide) etc.) before use. For example, when the catalyst is a copper oxide-zinc oxide catalyst, the copper oxide-zinc oxide catalyst is brought into contact with a hydrogen-containing gas to convert it into a reduced metal copper-zinc oxide catalyst, and then the starting materials used in the reaction It may be brought into contact with gas.
 本実施形態に係る触媒は、焼成工程S2後、使用に適切な形状に成形してもよい。また、触媒を反応器などに充填する際に、原料ガスおよび反応生成物に対して不活性な種々の希釈剤と混合しても良い。希釈剤としては銅顆粒、アルミナボール、ジルコニアボール、石英ビーズ、ガラスビーズ、シリコンカーバイドなどが挙げられる。 The catalyst according to this embodiment may be molded into a shape suitable for use after the firing step S2. Moreover, when the catalyst is filled in a reactor or the like, it may be mixed with various diluents inert to the source gas and the reaction product. Diluents include copper granules, alumina balls, zirconia balls, quartz beads, glass beads, silicon carbide and the like.
 (まとめ)
 本実施形態に係る触媒の製造方法は、銅および亜鉛を含む固体、少なくとも1種の金属元素、およびキレート剤を接触させる接触工程(S1)と、前記接触工程によって得られた固体を焼成する焼成工程(S2)と、を含む。
(summary)
The method for producing a catalyst according to the present embodiment includes a contacting step (S1) of contacting a solid containing copper and zinc, at least one metal element, and a chelating agent, and calcining the solid obtained by the contacting step. and a step (S2).
 当該構成により、上記製造方法によって得られる触媒の、触媒活性の経時劣化を抑制することができる。また、銅および亜鉛を含む固体を元触媒とした場合、上記製造方法により、元触媒と比較して、触媒活性の経時劣化が低減された触媒を製造することができる。これにより、触媒の使用量を削減することが可能となり、持続可能な開発目標(SDGs)の達成に貢献できる。 With this configuration, deterioration of catalytic activity over time of the catalyst obtained by the above production method can be suppressed. In addition, when a solid containing copper and zinc is used as a base catalyst, it is possible to produce a catalyst with reduced degradation over time in catalytic activity compared to the base catalyst by the above production method. This makes it possible to reduce the amount of catalyst used, contributing to the achievement of Sustainable Development Goals (SDGs).
 上記製造方法によって製造される触媒は、メタノール製造用触媒であり得る。より具体的には、上記製造方法によって製造される触媒は、酸化炭素と水素とを含む原料ガスからメタノールを製造するメタノール製造方法において用いられ得る。 The catalyst produced by the above production method can be a catalyst for methanol production. More specifically, the catalyst produced by the above production method can be used in a methanol production method for producing methanol from a raw material gas containing carbon oxide and hydrogen.
 上記製造方法によって製造された、触媒活性の経時劣化が抑制された触媒を用いることにより、メタノールの製造効率を向上させることができる。 The production efficiency of methanol can be improved by using a catalyst whose catalytic activity is suppressed from deteriorating over time, produced by the above production method.
 本開示に係るメタノール製造方法は、酸化炭素および水素を含む原料ガスを、本実施形態に記載の触媒の製造方法によって製造された触媒に接触させる工程を含む。 The method for producing methanol according to the present disclosure includes a step of contacting a raw material gas containing carbon oxide and hydrogen with a catalyst produced by the method for producing a catalyst according to the present embodiment.
 当該構成により、メタノールの製造効率を向上させることができる。 With this configuration, the production efficiency of methanol can be improved.
 本開示に係る触媒は、本実施形態に記載の製造方法によって製造される。当該構成により、触媒活性の経時劣化を抑制することができる。 The catalyst according to the present disclosure is produced by the production method described in this embodiment. With this configuration, deterioration of catalytic activity over time can be suppressed.
 なお、本開示に係る触媒の製造方法によって製造される触媒は、接触工程S1と、焼成工程S2とを含む製造方法により製造されるということにより特定される。当該発明特定事項を備えることにより、得られる触媒の、触媒活性の経時劣化が抑制される。しかしながら、本開示に係る触媒の製造方法に従って得られた触媒の構造または特性を評価する指標を見出すには、著しく多くの試行錯誤を重ねることが必要であり、実際的ではない。 Note that the catalyst manufactured by the catalyst manufacturing method according to the present disclosure is specified by being manufactured by a manufacturing method including the contacting step S1 and the calcining step S2. By providing the matters specifying the invention, deterioration of catalytic activity of the obtained catalyst over time is suppressed. However, finding an index for evaluating the structure or properties of the catalyst obtained according to the method for producing the catalyst according to the present disclosure requires a great deal of trial and error, which is impractical.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 (実施形態まとめ)
 (1)本願発明の態様1に係る触媒の製造方法は、銅および亜鉛を含む固体、少なくとも1種の金属元素、およびキレート剤を接触させる接触工程と、前記接触工程によって得られた固体を焼成する焼成工程と、を含む。
(Summary of embodiments)
(1) A method for producing a catalyst according to aspect 1 of the present invention includes a contacting step of contacting a solid containing copper and zinc, at least one metal element, and a chelating agent, and calcining the solid obtained by the contacting step. and a firing step.
 (2)本願発明の態様2に係る触媒の製造方法は、上記態様1において、前記触媒は、メタノール製造用触媒である。 (2) In the method for producing a catalyst according to aspect 2 of the present invention, in aspect 1 above, the catalyst is a catalyst for methanol production.
 (3)本願発明の態様3に係る触媒の製造方法は、上記態様1または2において、前記金属元素は、元素周期表において、第2族~第16族に属する元素からなる群より選択される、少なくとも1種の金属元素である。 (3) In the method for producing a catalyst according to aspect 3 of the present invention, in aspect 1 or 2, the metal element is selected from the group consisting of elements belonging to groups 2 to 16 in the periodic table. , at least one metallic element.
 (4)本願発明の態様4に係る触媒の製造方法は、上記態様1または2において、前記金属元素は、元素周期表において、第2族~第12族に属する元素からなる群より選択される、少なくとも1種の金属元素である。 (4) In the method for producing a catalyst according to aspect 4 of the present invention, in aspect 1 or 2, the metal element is selected from the group consisting of elements belonging to groups 2 to 12 in the periodic table of elements. , at least one metallic element.
 (5)本願発明の態様5に係る触媒の製造方法は、上記態様1または2において、前記金属元素は、元素周期表において、第2族~第4族に属する元素からなる群より選択される、少なくとも1種の金属元素である。 (5) In the method for producing a catalyst according to aspect 5 of the present invention, in aspect 1 or 2, the metal element is selected from the group consisting of elements belonging to groups 2 to 4 in the periodic table. , at least one metallic element.
 (6)本願発明の態様6に係る触媒の製造方法は、上記態様1から5のいずれかにおいて、前記金属元素は、銅と前記キレート剤とのキレート安定度定数に対する、前記金属元素と前記キレート剤との安定度定数が、0.85以上1.30以内の範囲を満たす金属元素である。 (6) The method for producing a catalyst according to Aspect 6 of the present invention is, in any one of Aspects 1 to 5, wherein the metal element is the metal element and the chelate with respect to the chelate stability constant of copper and the chelating agent It is a metal element that satisfies the stability constant with the agent in the range of 0.85 to 1.30.
 (7)本願発明の態様7に係る触媒の製造方法は、上記態様1から6のいずれかにおいて、前記キレート剤は、アミノカルボン酸および/またはヒドロキシカルボン酸である。 (7) In the method for producing a catalyst according to aspect 7 of the present invention, in any one of aspects 1 to 6 above, the chelating agent is aminocarboxylic acid and/or hydroxycarboxylic acid.
 (8)本願発明の態様8に係る触媒の製造方法は、上記態様1から7のいずれかにおいて、前記キレート剤は、1つ以上4つ以下のカルボキシル基を有する化合物である。 (8) In any one of the above aspects 1 to 7, the method for producing a catalyst according to aspect 8 of the present invention is such that the chelating agent is a compound having 1 or more and 4 or less carboxyl groups.
 (9)本願発明の態様9に係る触媒の製造方法は、上記態様1から8のいずれかにおいて、前記キレート剤は、エチレンジアミン四酢酸、クエン酸およびシュウ酸からなる群より選択される少なくとも1種の化合物である。 (9) A method for producing a catalyst according to Aspect 9 of the present invention, in any one of Aspects 1 to 8, wherein the chelating agent is at least one selected from the group consisting of ethylenediaminetetraacetic acid, citric acid and oxalic acid. is a compound of
 (10)本願発明の態様10に係るメタノール製造方法は、酸化炭素および水素を含む原料ガスを、上記態様1から9のいずれかの触媒の製造方法によって製造された触媒に接触させる工程を含む。 (10) A method for producing methanol according to aspect 10 of the present invention includes a step of contacting a raw material gas containing carbon oxide and hydrogen with a catalyst produced by the method for producing a catalyst according to any one of aspects 1 to 9 above.
 (11)本願発明の態様11に係る触媒は、上記態様1から9のいずれかの触媒の製造方法によって製造される触媒である。 (11) A catalyst according to aspect 11 of the present invention is a catalyst produced by the method for producing a catalyst according to any one of aspects 1 to 9 above.
 以下では、実施例として、本開示に係る例示的な触媒の製造方法、および当該製造方法によって得られた触媒の、触媒活性の経時劣化についての評価について記載する。また、比較例として、本発明の範囲外の製造方法、および当該製造方法によって得られた触媒の、触媒活性の経時劣化についての評価について記載する。 In the following, as an example, an exemplary method for producing a catalyst according to the present disclosure and an evaluation of deterioration of catalytic activity over time of the catalyst obtained by the production method will be described. In addition, as a comparative example, a production method outside the scope of the present invention and an evaluation of deterioration of the catalytic activity over time of the catalyst obtained by the production method will be described.
 下記の実験では、触媒の製造のための銅および亜鉛を含む固体(元触媒)として、Alfa Aestar社製の触媒(Cat No.45776)を用いた。当該元触媒は、主としてメタノール製造用触媒として用いられる触媒である。当該元触媒は、酸化銅(2+)を63.5質量%、酸化亜鉛を25質量%、酸化アルミニウムを10質量%、および酸化マグネシウムを1.5質量%含む。 In the experiments below, a catalyst (Cat No. 45776) manufactured by Alfa Aestar was used as a solid (primary catalyst) containing copper and zinc for catalyst production. The base catalyst is a catalyst mainly used as a catalyst for methanol production. The base catalyst contains 63.5% by weight of copper (2+) oxide, 25% by weight of zinc oxide, 10% by weight of aluminum oxide, and 1.5% by weight of magnesium oxide.
 <触媒の製造>
 まず、実施例の一例として、添加する金属としてMgを用いた場合の触媒の製造方法について説明する(下記表1における実施例7)。
<Production of catalyst>
First, as an example, a method for producing a catalyst using Mg as a metal to be added will be described (Example 7 in Table 1 below).
 Mg0.01gに相当する硝酸マグネシウム六水和物と、Mgのmol量の5倍に相当するEDTA(キレート剤)と、蒸留水(溶媒)50mlとを混合した。この混合溶液に粉砕した元触媒1gを入れ、攪拌した。攪拌後、3時間放置した。その後、攪拌しながら70~80℃の温度で加温し、水を蒸発させた。得られた乾燥状態の黒色の粉末をるつぼに入れ、マッフル炉内で300℃、4時間焼成し、本発明の範囲内の触媒を得た。 Magnesium nitrate hexahydrate corresponding to 0.01 g of Mg, EDTA (chelating agent) corresponding to 5 times the molar amount of Mg, and 50 ml of distilled water (solvent) were mixed. 1 g of the pulverized primary catalyst was added to this mixed solution and stirred. After stirring, the mixture was allowed to stand for 3 hours. The mixture was then heated to 70-80° C. with stirring to evaporate the water. The resulting dry black powder was placed in a crucible and calcined in a muffle furnace at 300° C. for 4 hours to obtain a catalyst within the scope of the present invention.
 実施例1~6については、添加する金属を変更し、実施例7と同様の方法によって本発明の範囲内の触媒を製造した。添加した金属は、下記表1における金属元素の欄に記載している。 For Examples 1 to 6, catalysts within the scope of the present invention were produced in the same manner as in Example 7 by changing the added metal. The added metals are listed in the column of metal elements in Table 1 below.
 実施例9では、金属元素としてCeを用い、キレート剤としてシュウ酸を用いた点以外は、実施例7と同様に製造した。実施例10では、金属元素としてCeを用い、キレート剤としてクエン酸を用いた点以外は、実施例7と同様に製造した。 Example 9 was produced in the same manner as in Example 7, except that Ce was used as the metal element and oxalic acid was used as the chelating agent. Example 10 was produced in the same manner as in Example 7, except that Ce was used as the metal element and citric acid was used as the chelating agent.
 比較例1は、元触媒を、未処理のまま評価対象の触媒として用いた。比較例2は、攪拌工程においてキレート剤を用いていないため、本発明の範囲外である。 In Comparative Example 1, the untreated base catalyst was used as the catalyst to be evaluated. Comparative Example 2 is outside the scope of the present invention because no chelating agent is used in the stirring step.
 <活性評価試験>
 触媒活性の経時劣化を評価する指標として、活性低下率を測定した。本試験において、活性低下率とは、触媒を用いたメタノール合成反応を実施した場合における、反応開始後3時間目と、8時間目の収率とを比較したときの収率の低下率であり、(Y(3h)-Y(8h))/Y(3h)*100で示される。Y(3h)およびY(8h)は、それぞれ3時間目および8時間目におけるメタノール収率である。活性低下率が低いほど、触媒活性の経時劣化が小さいことを意味する。
<Activity evaluation test>
As an index for evaluating deterioration of catalytic activity over time, an activity decrease rate was measured. In this test, the rate of decrease in activity is the rate of decrease in yield when comparing the yield at 3 hours after the start of the reaction and at 8 hours after the start of a methanol synthesis reaction using a catalyst. , (Y(3h)−Y(8h))/Y(3h)*100. Y(3h) and Y(8h) are the methanol yields at 3 and 8 hours respectively. A lower rate of decrease in activity means that deterioration of catalytic activity over time is smaller.
 石英ガラス製の内筒管を有するステンレス製の固定床反応器に、実施例または比較例のいずれかの触媒0.1gと、銅顆粒0.25gとを混合したものを充填した。固定床反応器にAr/CO/H=41.2/23.9/71.9(体積%)に調整した混合ガスを30NmL/minで供給した。固定床反応器内を室温から280℃まで60分かけて昇温した後、280℃で120min保持し、240℃まで降温することにより、触媒を還元した。 A stainless steel fixed bed reactor with a quartz glass inner tube was charged with a mixture of 0.1 g of the catalyst of either Example or Comparative Example and 0.25 g of copper granules. A mixed gas adjusted to Ar/CO 2 /H 2 =41.2/23.9/71.9 (% by volume) was supplied to the fixed bed reactor at 30 NmL/min. After the inside of the fixed bed reactor was heated from room temperature to 280°C over 60 minutes, the temperature was maintained at 280°C for 120 minutes, and the temperature was lowered to 240°C to reduce the catalyst.
 固定床反応器内の温度が240℃において安定した後、固定床反応器内の圧力を、4MPa-Gまで昇圧した。Ar/CO/H=41.2/23.9/71.9(体積%)に調整した混合ガスを30NmL/minで供給、温度240℃(一定)の条件で、メタノール合成反応を開始した。反応開始から3時間時点のメタノール収率、および反応開始から8時間時点のメタノール収率は、固定床反応器出口のガスをGC(ガスクロマトグラフィ)を用いて分析した結果を用いて算出した。表1は、各実施例および比較例の内容と、実験結果とをまとめたものである。 After the temperature in the fixed bed reactor stabilized at 240°C, the pressure in the fixed bed reactor was increased to 4 MPa-G. A mixed gas adjusted to Ar/CO 2 /H 2 = 41.2/23.9/71.9 (% by volume) is supplied at 30 NmL/min, and the temperature is 240°C (constant) to start the methanol synthesis reaction. bottom. The methanol yield at 3 hours from the start of the reaction and the methanol yield at 8 hours after the start of the reaction were calculated using the results of analyzing the gas at the outlet of the fixed bed reactor using GC (gas chromatography). Table 1 summarizes the contents of each example and comparative example and the experimental results.
Figure JPOXMLDOC01-appb-T000001
 比較例1の活性低下率は4.7であった。すなわち、元触媒の活性低下率は4.7であった。また、本発明の範囲外の製造方法により金属元素を添加した比較例2は3.6であった。
Figure JPOXMLDOC01-appb-T000001
The activity decrease rate of Comparative Example 1 was 4.7. That is, the rate of decrease in activity of the primary catalyst was 4.7. Moreover, Comparative Example 2 in which a metal element was added by a manufacturing method outside the scope of the present invention was 3.6.
 実施例1~10と、比較例1とを比較することにより、本発明の範囲内の製造方法によって得られる触媒は、元触媒と比較して、活性低下率が低いことが実証された。 By comparing Examples 1 to 10 with Comparative Example 1, it was demonstrated that the catalyst obtained by the production method within the scope of the present invention has a lower rate of decrease in activity compared to the original catalyst.
 実施例10と、比較例2とを比較することにより、同じ金属元素を添加した場合であっても本発明の範囲内の製造方法によって得られる触媒は、本発明の範囲外の製造方法によって得られる触媒と比較して、活性低下率が低いことが実証された。 By comparing Example 10 and Comparative Example 2, it was found that even when the same metal element was added, the catalyst obtained by the production method within the scope of the present invention was obtained by the production method outside the scope of the present invention. It was demonstrated that the rate of decrease in activity was lower than that of the catalysts used in this study.
 実施例1~6および8~10において用いた金属元素は、安定度定数の比が0.85以上1.30以内である。表1の結果より、安定度定数比が0.85以上1.30以内である金属元素を用いた場合、活性低下率が有意に低減することが実証された。 The metal elements used in Examples 1 to 6 and 8 to 10 have a stability constant ratio of 0.85 or more and 1.30 or less. The results in Table 1 demonstrate that the rate of decrease in activity is significantly reduced when metal elements having a stability constant ratio of 0.85 or more and 1.30 or less are used.
 本発明に係る触媒は、工業用のメタノール製造用触媒として好適に利用可能である。 The catalyst according to the present invention can be suitably used as a catalyst for industrial methanol production.

Claims (11)

  1.  触媒の製造方法であって、
     銅および亜鉛を含む固体、少なくとも1種の金属元素、およびキレート剤を接触させる接触工程と、
     前記接触工程によって得られた固体を焼成する焼成工程と、を含む、触媒の製造方法。
    A method for producing a catalyst,
    a contacting step of contacting a solid containing copper and zinc, at least one metallic element, and a chelating agent;
    and a calcining step of calcining the solid obtained in the contacting step.
  2.  前記触媒は、メタノール製造用触媒である、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein the catalyst is a catalyst for producing methanol.
  3.  前記金属元素は、元素周期表において、第2族~第16族に属する元素からなる群より選択される、少なくとも1種の金属元素である、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein the metal element is at least one metal element selected from the group consisting of elements belonging to groups 2 to 16 in the periodic table.
  4.  前記金属元素は、元素周期表において、第2族~第12族に属する元素からなる群より選択される、少なくとも1種の金属元素である、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein the metal element is at least one metal element selected from the group consisting of elements belonging to Groups 2 to 12 in the periodic table.
  5.  前記金属元素は、元素周期表において、第2族~第4族に属する元素からなる群より選択される、少なくとも1種の金属元素である、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein the metal element is at least one metal element selected from the group consisting of elements belonging to Groups 2 to 4 in the periodic table.
  6.  前記金属元素は、
      銅と前記キレート剤とのキレート安定度定数に対する、前記金属元素と前記キレート剤との安定度定数が、0.85以上1.30以内の範囲を満たす金属元素である、請求項1に記載の触媒の製造方法。
    The metal element is
    2. The metal element according to claim 1, wherein the stability constant of said metal element and said chelating agent with respect to the chelate stability constant of said copper and said chelating agent satisfies the range of 0.85 to 1.30. A method for producing a catalyst.
  7.  前記キレート剤は、アミノカルボン酸および/またはヒドロキシカルボン酸である、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein the chelating agent is aminocarboxylic acid and/or hydroxycarboxylic acid.
  8.  前記キレート剤は、1つ以上4つ以下のカルボキシル基を有する化合物である、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein the chelating agent is a compound having 1 or more and 4 or less carboxyl groups.
  9.  前記キレート剤は、エチレンジアミン四酢酸、クエン酸およびシュウ酸からなる群より選択される少なくとも1種の化合物である、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein the chelating agent is at least one compound selected from the group consisting of ethylenediaminetetraacetic acid, citric acid and oxalic acid.
  10.  酸化炭素および水素を含む原料ガスを、請求項1から9のいずれか1項に記載の触媒の製造方法によって製造された触媒に接触させる工程を含む、メタノール製造方法。 A method for producing methanol, comprising a step of contacting a raw material gas containing carbon oxide and hydrogen with a catalyst produced by the method for producing a catalyst according to any one of claims 1 to 9.
  11.  請求項1から9のいずれか1項に記載の触媒の製造方法によって製造される触媒。 A catalyst produced by the method for producing a catalyst according to any one of claims 1 to 9.
PCT/JP2022/025908 2021-11-01 2022-06-29 Method for producing catalyst, catalyst, and method for producing methanol WO2023074051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021178816 2021-11-01
JP2021-178816 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023074051A1 true WO2023074051A1 (en) 2023-05-04

Family

ID=86159321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025908 WO2023074051A1 (en) 2021-11-01 2022-06-29 Method for producing catalyst, catalyst, and method for producing methanol

Country Status (1)

Country Link
WO (1) WO2023074051A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001122A (en) * 2000-06-27 2002-01-08 Mitsubishi Gas Chem Co Inc Copper-zinc based catalyst precursor composition and method for manufacturing the catalyst
JP2002005918A (en) * 2000-06-23 2002-01-09 Univ Tohoku Catalyst activity evaluation device
JP2007518557A (en) * 2004-01-21 2007-07-12 アーヴァンティウム インターナショナル ベスローテン フェンノートシャップ Non-chromium containing catalyst of Cu metal and at least one second metal
JP2021030117A (en) * 2019-08-20 2021-03-01 国立大学法人島根大学 Agent for improving activity of catalyst for methanol synthesis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005918A (en) * 2000-06-23 2002-01-09 Univ Tohoku Catalyst activity evaluation device
JP2002001122A (en) * 2000-06-27 2002-01-08 Mitsubishi Gas Chem Co Inc Copper-zinc based catalyst precursor composition and method for manufacturing the catalyst
JP2007518557A (en) * 2004-01-21 2007-07-12 アーヴァンティウム インターナショナル ベスローテン フェンノートシャップ Non-chromium containing catalyst of Cu metal and at least one second metal
JP2021030117A (en) * 2019-08-20 2021-03-01 国立大学法人島根大学 Agent for improving activity of catalyst for methanol synthesis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UMEGAKI TETSUO, KOJIMA YOSHIYUKI, OMATA KOHJI: "Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide", MATERIALS, vol. 8, no. 11, pages 7738 - 7744, XP093061655, DOI: 10.3390/ma8115414 *

Similar Documents

Publication Publication Date Title
WO2018030394A1 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
JPWO2018169076A1 (en) Metal carrier, supported metal catalyst, method for producing ammonia, method for producing hydrogen, and method for producing cyanamide compound
JP2007520328A (en) Catalyst for propylene gas phase partial oxidation reaction and production method thereof
JP6961358B2 (en) Oxide catalyst, method for producing oxide catalyst, and method for producing unsaturated aldehyde
TWI605030B (en) Composite oxide and its manufacturing method and use
WO2023074051A1 (en) Method for producing catalyst, catalyst, and method for producing methanol
US20040192545A1 (en) Method for preparing a catalyst for partial oxidation of propylene
JP2018500148A (en) Catalyst for glycerol dehydration reaction, method for producing the same, and method for producing acrolein using the catalyst
KR20150087557A (en) Metal-doped titanium oxide nanowire catalyst, preparing method of the same and method for oxidative coupling reaction of methane using the same
JP2020011228A (en) Catalyst for alcohol synthesis, and method for producing alcohol using the same
JP5258617B2 (en) Method for producing copper catalyst
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
JP7410507B2 (en) Composite, catalyst and method for producing ammonia
JP2017001010A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using the catalyst
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
WO2019156028A1 (en) Composite, method for manufacturing composite, catalyst, and method for manufacturing ammonia
CN107321357B (en) Preparation method and application of acetic acid hydrogenation catalyst
CN112569993A (en) Supported epsilon/epsilon&#39; iron carbide-containing composition, preparation method thereof, catalyst and application thereof, and Fischer-Tropsch synthesis method
KR102531947B1 (en) Catalyst for methane synthesis and preparation method thereof
KR100860538B1 (en) Copper-iron oxide catalyst and decomposition of sulfuric acid using same
Zeng et al. Cr and Co-modified Cu/Al 2 O 3 as an efficient catalyst for the continuous synthesis of bis (2-dimethylaminoethyl) ether
JP2014034023A (en) Catalyst for manufacturing acrylic acid from glycerine and manufacturing method of the catalyst
TWI778890B (en) Catalyst and method for selectively chemically reducing co to form co
WO2021172107A1 (en) Metal-loaded article containing typical element oxide, catalyst for ammonia synthesis and method for synthesizing ammonia
JPH0456015B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886388

Country of ref document: EP

Kind code of ref document: A1