WO2023072003A1 - 光发射组件及光通信装置 - Google Patents

光发射组件及光通信装置 Download PDF

Info

Publication number
WO2023072003A1
WO2023072003A1 PCT/CN2022/127128 CN2022127128W WO2023072003A1 WO 2023072003 A1 WO2023072003 A1 WO 2023072003A1 CN 2022127128 W CN2022127128 W CN 2022127128W WO 2023072003 A1 WO2023072003 A1 WO 2023072003A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
polarization
light emitting
lens
Prior art date
Application number
PCT/CN2022/127128
Other languages
English (en)
French (fr)
Inventor
肖小康
覃悦靖
郭蓥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023072003A1 publication Critical patent/WO2023072003A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Definitions

  • the present application relates to the field of optical communication, in particular to an optical emitting component and an optical communication device.
  • the optical isolator is one of the important components of the optical transmission component. It is mainly used to form a unidirectional optical path, so that it can not only ensure that the optical transmission component outputs a low-loss optical signal, but also ensure that the optical transmission component resists reflections in the channel. Optical signal interference.
  • an optical isolator mainly includes a polarizer, an optical rotator and a polarizer, and the three work together to form a unidirectional optical path in the light emitting component.
  • the embodiment of the present application provides an optical emission component and an optical communication device to solve the problem of complex structure and high assembly precision requirements.
  • the technical solution is as follows:
  • a light emitting component in a first aspect, includes a laser, an optical isolator and a polarization maintaining device.
  • the laser is used to emit a first optical signal
  • the polarization maintaining device is used to receive a second optical signal.
  • the optical isolator includes a polarizer and an optical rotator, the polarizer and the optical rotator are located between the laser and the polarization maintaining device, and the laser, the polarizer, the optical rotator and the The polarization maintaining devices are arranged in sequence.
  • the polarization direction of the polarizer is the same as that of the first optical signal, and the optical rotator can deflect the first optical signal into the second optical signal. That is to say, the second optical signal received by the polarization maintaining device is formed by the first optical signal passing through the polarizer and the optical rotator in sequence.
  • the first optical signal After the laser emits the first optical signal, the first optical signal is transmitted to the polarizer. Since the polarization direction of the polarizer is the same as that of the first optical signal, the The first optical signal can pass through the polarizer without loss. After the first optical signal passes through the polarizer, it will be transmitted to the optical rotator, and under the action of the optical rotator, the first optical signal is deflected into the second optical signal, and the first optical signal The two optical signals are transmitted to the polarization-maintaining device to be received by the polarization-maintaining device, thereby completing the entire optical signal transmitting process of the light-emitting component.
  • part of the optical signal will be reflected from the polarization maintaining device, and the polarization direction of the reflected optical signal is the same as that of the second optical signal.
  • the reflected optical signal will be transmitted to the optical rotator, deflected by the action of the optical rotator, and the deflected optical signal will be transmitted to the polarizer. Since the polarization direction of the optical signal is different from that of the polarizer, the polarizer will absorb the optical signal, thereby playing an isolation role and preventing the optical signal from interfering with the laser.
  • the light emitting component provided by the embodiment of the present application can not only ensure the output of low-loss optical signals, but also ensure resistance to interference of reflected optical signals. Moreover, since the optical isolator only has the polarizer and the optical rotator, the structure is simple and the requirements for assembly accuracy are relatively low.
  • the optical isolator provided in the embodiment of the present application only includes the polarizer and the The optical rotator described above, without an analyzer. In this way, the structure of the optical isolator is kept simple, and only the assembly accuracy between the polarizer and the optical rotator needs to be considered during assembly, so that the assembly requirements of the optical isolator are reduced.
  • an included angle between the polarization direction of the first optical signal and the polarization direction of the second optical signal is 40°-50°.
  • the first optical signal After the first optical signal passes through the polarizer, it will be transmitted to the optical rotator, and under the action of the optical rotator, the first optical signal will be deflected by 40°-50°, thereby being converted the second optical signal. That is to say, the optical rotator can deflect the optical signal passing through it by 40°-50°.
  • the reflected optical signal will be transmitted to the optical rotator, and will be deflected by 40°-50° under the action of the optical rotator.
  • the polarization direction of the optical signal reflected by the polarization maintaining device is the same as that of the second optical signal, after being deflected by 40°-50° through the optical rotator, the polarization direction of the optical signal is the same as that of the second optical signal
  • the included angle between the polarization directions of the first optical signal is 80°-100°, so that the polarization direction of the optical signal is approximately perpendicular to the polarization direction of the polarizer, so that the polarizer can be more Good absorption of the optical signal improves the anti-interference effect of the optical isolator.
  • both the polarizer and the optical rotator are sheet-shaped structural members, and one side of the polarizer is bonded to one side of the optical rotator, so that the polarizer and the optical rotator
  • the optical rotators can be coupled to each other.
  • the side of the polarizer facing away from the optical rotator faces the laser, so that the side of the polarizer facing away from the optical rotator can be coupled with the laser to receive the first optical signal emitted by the laser .
  • the side of the optical rotator facing away from the polarizer faces the polarization maintaining device, so that the side of the optical rotator facing away from the polarizer can be coupled with the polarization maintaining device to receive light signal.
  • bonding the polarizer and the optical rotator together can reduce the volume of the optical isolator, making the structure of the light emitting component more compact.
  • the polarization maintaining device after receiving the second optical signal, the polarization maintaining device reflects a part of the optical signal, and this part of the optical signal is a third optical signal, and the third optical signal and The optical rotators are coupled.
  • the third optical signal is transmitted to the optical rotator, under the action of the optical rotator, the third optical signal is deflected into a fourth optical signal, and the polarization direction of the fourth optical signal is the same as The polarization direction of the polarizer is vertical.
  • the polarizer can absorb the fourth optical signal, thereby playing a role of isolation and preventing the first Four optical signals interfere with the laser.
  • the polarization-maintaining device includes a substrate and a plurality of polarization-maintaining optical fibers.
  • One side of the substrate has a plurality of grooves, the plurality of grooves are arranged at intervals in sequence, and the grooves correspond to the polarization-maintaining optical fibers one by one.
  • the polarization-maintaining fiber is inserted into the corresponding groove, and one end of the polarization-maintaining fiber is coupled with the optical isolator.
  • the substrate is used to carry a plurality of the polarization-maintaining optical fibers
  • the grooves on the substrate are used to position the polarization-maintaining optical fibers
  • the polarization-maintaining optical fibers are used to receive the second light signal, and reflect the third optical signal in the same deflection direction as the second optical signal. That is to say, a plurality of the polarization-maintaining optical fibers are arranged at intervals on the substrate, and the first optical signal becomes the second optical signal after being deflected by the optical rotator, and the second optical signal transmitted to and received by each of the polarization-maintaining optical fibers.
  • the third optical signal reflected by each of the polarization-maintaining optical fibers can be transmitted to the optical rotator, and deflected into the fourth optical signal by the action of the optical rotator, and finally transmitted to the polarization sheet, absorbed by the polarizer.
  • the laser includes a base and a plurality of light emitting units.
  • a plurality of the light emitting units are arranged at intervals in sequence and are all connected to the base, the light emitting units correspond to the polarization maintaining optical fibers one by one, and the light emitting units are arranged opposite to the corresponding polarization maintaining optical fibers.
  • the base is used to carry a plurality of the light emitting units, and the light emitting units are used to emit the first optical signal.
  • a plurality of the light-emitting units are arranged at intervals on the base, and the first optical signal emitted by each light-emitting unit will pass through the polarizer and the optical rotator in sequence, and Under the action of the optical rotator, the second optical signal is deflected into the second optical signal, and the second optical signal is transmitted to the corresponding polarization-maintaining optical fiber, so as to complete the optical signal transmitting process of the optical transmitting component.
  • the light emitting component further includes a first lens array, and the first lens array is located between the laser and the optical isolator.
  • the first lens array has a plurality of lens units, the lens units of the first lens array correspond to the light-emitting units one by one, and the lens units of the first lens array are respectively connected to the optical isolator and the corresponding The light emitting units are coupled. Since the lens units of the first lens array correspond to the light emitting units one by one, the first lens array can collimate the first optical signal emitted by each light emitting unit, so that the collimation The subsequent first optical signal can be coupled into the optical isolator with high efficiency, reducing the loss of the first optical signal.
  • the light emitting component further includes a second lens array, and the second lens array is located between the polarization maintaining device and the optical isolator.
  • the second lens array has a plurality of lens units, the lens units of the second lens array correspond to the polarization-maintaining optical fiber one by one, and the lens units of the second lens array correspond to the optical isolator and the optical isolator respectively.
  • the polarization-maintaining fiber is coupled.
  • the first lens array can converge the second optical signal output by the optical isolator, so that after convergence The second optical signal can be accurately coupled into each of the polarization-maintaining optical fibers, reducing the loss of the second optical signal.
  • the polarization maintaining device includes a first optical waveguide, the first optical waveguide extends along the light output direction of the optical isolator, and one end of the first optical waveguide is connected to the The optical isolator described above is coupled.
  • the first optical waveguide since the first optical waveguide extends along the light output direction of the optical isolator, the first optical waveguide can directly receive the second optical signal deflected by the optical isolator, and can also directly transmit the reflected
  • the output third optical signal is coupled to the optical isolator. Since the first optical waveguide has a polarization-maintaining characteristic, the polarization direction of the second optical signal received by the first optical waveguide is the same as the polarization direction of the reflected third optical signal.
  • the light emitting component further includes a first lens
  • the first lens is located between the first optical waveguide and the optical isolator, and the first lens is connected to the optical isolator respectively.
  • the first optical waveguide is coupled to the optical isolator.
  • the first lens can converge the second optical signal deflected by the optical isolator , so as to be more accurately coupled into the first optical waveguide.
  • the first lens is located between the laser and the optical isolator, and the first lens is coupled to the laser and the optical isolator respectively.
  • the first lens since the first lens is respectively coupled to the laser and the optical isolator, the first lens can converge the first optical signal emitted by the laser, and the converged After being deflected by the optical isolator, the first optical signal can be transformed into the converged second optical signal, so as to be more accurately coupled into the first optical waveguide.
  • the polarization maintaining device includes a second optical waveguide and a reflector, and there is an included angle between the second optical waveguide and the light output direction of the optical isolator.
  • the reflection mirror is located in the light output direction of the optical isolator, so as to couple the optical isolator with the second optical waveguide.
  • the second optical signal can be reflected by the mirror to be coupled to the second optical waveguide wherein, the third optical signal can also be reflected by the mirror to be coupled into the optical isolator.
  • the light emitting component further includes a second lens
  • the second lens is located between the reflector and the optical isolator, and the second lens is respectively connected to the reflector mirror and the optical isolator are coupled.
  • the second lens since the second lens is respectively coupled with the mirror and the optical isolator, the second lens can converge the second optical signal deflected by the optical isolator, and After being reflected by the mirror, it is more accurately coupled into the second optical waveguide.
  • the second lens is located between the laser and the optical isolator, and the second lens is coupled to the laser and the optical isolator respectively.
  • the second lens since the second lens is respectively coupled with the laser and the optical isolator, the second lens can converge the first optical signal emitted by the laser, and the converged After the first optical signal is deflected by the optical isolator, it can be transformed into the converged second optical signal, and after being reflected by the mirror, it is more accurately coupled to the second optical waveguide middle.
  • an optical communication device in a second aspect, includes a single board, a receiving port, a sending port, an on-board optical component, and the light emitting component described in the first aspect.
  • the receiving port, the sending port, the onboard optical component and the light emitting component are all connected to the single board, and the receiving port, the sending port and the light emitting component are respectively connected to the board Coupled with the on-board optical components.
  • the design is such that the receiving port, the sending port, the on-board optical component and the light emitting component are all integrated on the single board.
  • the optical transmitting component sends out an unmodulated optical signal, the optical signal is coupled to the onboard optical component, and the optical signal modulated by the onboard optical component is coupled to the Send port to complete the process of optical signal transmission.
  • the receiving port receives the optical signal, and couples the optical signal to the onboard optical component, and undergoes light detection and photoelectric conversion in the onboard optical component to complete the optical signal Receive process.
  • the optical transmitting component is the optical transmitting component described in the first aspect, the optical transmitting component can not only output a low-loss optical signal, but also resist the damage of the reflected optical signal in the channel. interference.
  • FIG. 1 is a schematic structural diagram of a light emitting component provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the optical path of the light emitting component provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural view of the first structural form of the polarization maintaining device provided in the embodiment of the present application;
  • FIG. 4 is a schematic diagram of the optical path of the first structural form of the polarization maintaining device provided in the embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a second structural form of a polarization maintaining device provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the optical path of the second structural form of the polarization maintaining device provided in the embodiment of the present application.
  • FIG. 7 is a schematic structural view of the second structural form of the polarization maintaining device provided in the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the optical path of the second structural form of the polarization maintaining device provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a third structural form of a polarization maintaining device provided in an embodiment of the present application.
  • Fig. 10 is a schematic diagram of the optical path of the third structural form of the polarization maintaining device provided in the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a third structural form of a polarization maintaining device provided in an embodiment of the present application.
  • Fig. 12 is a schematic diagram of the optical path of the third structural form of the polarization maintaining device provided in the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an optical communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an optical communication device provided by an embodiment of the present application.
  • Fig. 15 is a schematic diagram of the layout of the polarization maintaining device provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of the arrangement of the polarization maintaining device provided by the embodiment of the present application.
  • Substrate 311. Groove; 32. Polarization maintaining fiber; 33. First optical waveguide; 34. Second optical waveguide; 35. Mirror;
  • the optical isolator is one of the important components of the optical transmission component. It is mainly used to form a unidirectional optical path, so that it can not only ensure that the optical transmission component outputs a low-loss optical signal, but also ensure that the optical transmission component resists reflections in the channel. Optical signal interference.
  • the optical isolator mainly includes a polarizer, an optical rotator and a polarizer, and the polarizer, the optical rotator and the analyzer are arranged in sequence.
  • the polarizer, the optical rotator and the analyzer are arranged in sequence.
  • For the optical signal emitted from the polarizer to the analyzer its polarization direction is the same as that of the polarizer, and can pass through the polarizer without loss and be transmitted to the optical rotator.
  • the optical rotator can deflect the polarization direction of the optical signal passing through the optical rotator by a certain angle under the action of an external magnetic field, so that the polarization direction of the deflected optical signal is the same as that of the analyzer, so that the polarization direction of the optical signal can be analyzed without loss.
  • optical isolator For the optical signal from the direction of the analyzer to the direction of the polarizer, when the optical signal passes through the analyzer, under the action of the analyzer, only the component with the same polarization angle as the analyzer can pass through Analyzer.
  • the polarization direction of the optical signal component passing through the analyzer is deflected by a certain angle under the action of the optical rotator, and transmitted to the polarizer. Since the polarization direction of the deflected optical signal component is perpendicular to the polarization direction of the polarizer, the polarizer will absorb the optical signal component, that is, be isolated by the optical isolator.
  • the optical isolator can allow the optical signal to pass through from the polarizer to the analyzer without allowing the light to pass through.
  • the signal passes through the optical isolator from the analyzer to the polarizer, so that a unidirectional optical path is formed in the light emitting component through the optical isolator.
  • FIG. 1 is a schematic structural diagram of the light emitting component.
  • the light emitting component includes a laser 1, an optical isolator 2 and a polarization maintaining device 3 .
  • the laser 1 is used to emit a first optical signal a
  • the polarization maintaining device 3 is used to receive a second optical signal b.
  • the optical isolator 2 includes a polarizer 21 and an optical rotator 22.
  • the laser 1, the polarizer 21, the optical rotator 22 and the polarization maintaining device 3 are arranged in sequence.
  • the polarization direction of the polarizer 21 is the same as that of the first optical signal a, and the optical rotation
  • the plate 22 is used to deflect the first optical signal a into the second optical signal b.
  • FIG. 2 is a schematic diagram of the optical path of the light emitting component.
  • the first optical signal a is transmitted to the polarizer 21, because the polarization direction of the polarizer 21 is different from that of the first optical signal a have the same polarization direction, so the first optical signal a can pass through the polarizer 21 without loss.
  • the first optical signal a passes through the polarizer 21, it will be transmitted to the optical rotator 22.
  • the first optical signal a is deflected into a second optical signal b, and the second optical signal b is transmitted to the polarization-maintaining
  • the device 3 is received by the polarization-maintaining device 3, so as to complete the entire optical signal transmission process of the light-emitting component.
  • part of the optical signal will be reflected from the polarization maintaining device 3 , and the polarization direction of the reflected optical signal is the same as that of the second optical signal b.
  • the reflected optical signal will be transmitted to the optical rotator 22 and deflected by the action of the optical rotator 22 , and the deflected optical signal will be transmitted to the polarizer 21 . Since the polarization direction of the optical signal is different from that of the polarizer 21 , the polarizer 21 will absorb the optical signal, thereby playing an isolation role and preventing the optical signal from interfering with the laser 1 .
  • hollow double-headed arrow is only used as a schematic illustration of the polarization direction, so as to facilitate the comparison of the polarization directions among the various components.
  • the light emitting component provided by the embodiment of the present application can not only ensure the output of low-loss optical signals, but also ensure resistance to interference of reflected optical signals. Moreover, since the optical isolator 2 only has the polarizer 21 and the optical rotator 22 , the structure is simple and the requirements for assembly accuracy are relatively low.
  • the optical isolator 2 provided in the embodiment of the present application only includes polarizer 21 and optical rotator 22 , without an analyzer. In this way, the structure of the optical isolator 2 is kept simple, and only the assembly accuracy between the polarizer 21 and the optical rotator 22 needs to be considered during assembly, so that the assembly requirements of the optical isolator 2 are reduced.
  • the first optical signal a is deflected into the second optical signal b under the action of the optical rotator 22, and the gap between the deflection direction of the first optical signal a and the deflection direction of the second optical signal b
  • the angle is 40°-50°.
  • the first optical signal a will be transmitted to the optical rotator 22 after passing through the polarizer 21, and under the action of the optical rotator 22, the first optical signal a will be deflected by 40 °-50°, thus being converted into the second optical signal b. That is to say, the optical rotator 22 can deflect the optical signal passing through itself by 40°-50°.
  • the reflected optical signal will be transmitted to the optical rotator 22 and be deflected by 40°-50° under the action of the optical rotator 22 .
  • the polarization direction of the optical signal reflected by the polarization maintaining device 3 is the same as that of the second optical signal b, after being deflected by 40°-50° by the optical rotator 22, the polarization direction of the optical signal is the same as that of the first light signal b.
  • the angle between the polarization directions of the signal a is 80°-100°, so that the polarization direction of the optical signal is approximately perpendicular to the polarization direction of the polarizer 21, so that the polarizer 21 can better absorb the optical signal , improving the anti-jamming effect of the optical isolator 2.
  • the deflection angle value of the optical rotator 22 for the polarization direction of the optical signal passing through itself firstly determines whether the polarization angle of the second optical signal b is the same as the polarization angle of the polarization maintaining device 3, and secondly determines whether the polarization angle of the polarizer 21 absorbs the absorption effect of the optical signal reflected by the polarization maintaining device 3 , that is, the isolation of the optical isolator 2 .
  • Isolation refers to the ratio of the insertion loss IL1 when an optical signal passes through an interface, component or system in one direction to the insertion loss IL2 when it passes through the interface, component or system in the opposite direction. The loss of energy when a signal passes through an interface, component, or system.
  • the isolation of the optical isolator 2 directly affects the return loss RL of the light emitting component (refers to the ratio of the reflected energy to the incident energy when the optical signal passes through a certain interface, component or system, the unit is dB) , in order to ensure that the return loss of the light emitting component is greater than 20dB, the angle between the polarization direction of the first optical signal a and the polarization direction of the second optical signal b is 42°-48°, that is, the optical rotator 22 can It deflects the optical signal passing through itself by 42°-48°.
  • the included angle between the deflection direction of the first optical signal a and the deflection direction of the second optical signal b is 45°, that is, when the optical rotator 22 can deflect the optical signal passing through itself by 45°
  • the The polarization direction of the optical signal reflected by the polarization-maintaining device 3 is just perpendicular to the polarization direction of the polarizer 21.
  • the polarizer 21 can absorb all the optical signals reflected by the polarization-maintaining device 3, thereby achieving the best isolation Spend.
  • the optical isolator 2 can form a unidirectional conduction optical path in the light emitting component. It can be known from the foregoing that the reason why the optical isolator 2 can form a unidirectional conduction optical path in the light emitting component is that the optical isolator 2 can absorb and isolate the optical signal reflected by the polarization maintaining device 3, and the following further optical isolation The method of absorbing the optical signal reflected by the polarization maintaining device 3 by the device 2 is introduced.
  • the third optical signal c reflected by the polarization maintaining device 3 is coupled with the optical rotator 22, and the optical rotator 22 is used to deflect the third optical signal c into a fourth optical signal d, the fourth The polarization direction of the optical signal d is perpendicular to the polarization direction of the polarizer 21 .
  • the polarization maintaining device 3 After receiving the second optical signal b, the polarization maintaining device 3 will reflect a part of the optical signal, which is the third optical signal c, and the third optical signal c is coupled to the optical rotator 22 .
  • the optical rotator 22 can deflect the optical signal passing through itself by 45°, so after the third optical signal c is transmitted to the optical rotator 22, under the action of the optical rotator 22, the third optical signal c is deflected to The fourth optical signal d.
  • the polarization direction of the fourth optical signal d is perpendicular to the polarization direction of the polarizer 21 .
  • the polarizing plate 21 can absorb the fourth optical signal d, thereby playing the role of isolation and preventing the fourth optical signal d from interfering with the laser 1.
  • the polarization direction of the first optical signal a is the same as that of the polarizer 21, and the polarization direction of the second optical signal b is the same as that of the third optical signal c.
  • the optical rotator 22 can deflect the optical signal passing through itself by 45°, then the angle between the polarization direction of the second optical signal b and the polarization direction of the first optical signal a is 45°, and the polarization direction of the fourth optical signal d
  • the angle between the polarization direction of the third optical signal c and the polarization direction of the third optical signal c is 45°, that is, the angle between the polarization direction of the fourth optical signal d and the polarization direction of the polarizer 21 is 90°.
  • optical isolator 2 The structure of the optical isolator 2 will be introduced below again in conjunction with FIG. 1 .
  • the polarizer 21 is attached to the optical rotator 22 , and the side of the polarizer 21 facing away from the optical rotator 22 faces the laser 1 to be coupled with the laser 1 .
  • the side of the optical rotator 22 facing away from the polarizer 21 faces the polarization maintaining device 3 so as to be coupled with the polarization maintaining device 3 .
  • the polarizer 21 and the optical rotator 22 are both sheet-shaped structural members, and the polarizer 21 and the optical rotator 22 can be bonded together to reduce the volume of the optical isolator 2 and make the structure of the light emitting assembly more compact. for compact.
  • the polarizer 21 is a nano-metal wire absorbing polarizer 21, which uses processes such as glass melting, stretching, and reduction to uniformly mix nano-metals ( Silver, copper, etc.) wire structure and obtained.
  • the optical signal passes through the polarizer 21, the component in the same direction as the metal nanowire is absorbed, and the component perpendicular to the direction of the metal nanowire can pass through without loss.
  • the polarizer 21 has the characteristics of small insertion loss and high polarization extinction ratio.
  • the material of the optical rotator 22 is yttrium iron garnet crystal doped with rare earth elements such as Bi, so that the optical rotator 22 has the characteristics of low insertion loss and high optical rotation coefficient.
  • an external magnetic field magnetic materials can also be mixed into the crystal of the optical rotator 22, so that the optical rotator 22 itself has a magnetic field, so that there is no need to increase the external magnetic field) to form a magnetic chip structure with a special structure, so that the passing light
  • the polarization direction of the signal is deflected in a certain direction.
  • the deflection direction of the polarization direction of the optical signal is related to the structure of the magnetic chip, determined by the crystal structure and magnetic field, and has nothing to do with the propagation direction of the light. Therefore, although the direction in which the first optical signal a passes through the optical rotator 22 is different from the direction in which the third optical signal c passes through the optical rotator 22 , the polarization directions of the first optical signal a and the third optical signal c are deflected in the same direction.
  • the deflection angle is proportional to the thickness of the optical rotator 22, which satisfies the following formula:
  • is the deflection angle of the optical rotator 22
  • v is the optical rotation coefficient
  • the optical rotation coefficient is determined by the material of the optical rotator 22
  • H is the strength of the external magnetic field
  • d is the thickness of the optical rotator 22.
  • the deflection angle ⁇ of the optical rotator 22 is 45°.
  • the return loss of the optical transmitting component is greater than 20dB, and the insertion loss is less than 0.2dB, which can not only ensure the output of low-loss optical signals, but also ensure resistance to interference from reflected optical signals.
  • the analyzer is omitted, the size is reduced by 30%, the cost is reduced by 30%, and the required assembly accuracy is reduced, making the assembly process Efficiency increased by 40%.
  • the glue used to bond the polarizer is also omitted, so the coupling insertion loss is also reduced by 0.1dB.
  • the characteristics of the polarization maintaining device 3 determine that the polarization direction of the third optical signal c is the same as that of the second optical signal b.
  • the embodiment of the present application provides various structural forms of the polarization maintaining device 3 , and correspondingly provides various structural forms of the light emitting component according to different structural forms of the polarization maintaining device 3 , which are respectively introduced below.
  • Fig. 3 is a structural schematic diagram of the first structural form of the polarization maintaining device 3, in conjunction with Fig. 3, the polarization maintaining device 3 includes a substrate 31 and a plurality of polarization maintaining optical fibers 32, and one side of the substrate 31 has a plurality of grooves 311, many The grooves 311 are arranged at intervals in turn, and the grooves 311 correspond to the polarization-maintaining optical fibers 32 one by one, the polarization-maintaining optical fibers 32 are plugged into the corresponding grooves 311, and one end of the polarization-maintaining optical fibers 32 is in phase with the optical isolator 2 coupling.
  • the substrate 31 is used to carry a plurality of polarization-maintaining optical fibers 32, the grooves 311 on the substrate 31 are used to position the polarization-maintaining optical fibers 32, and the polarization-maintaining optical fibers 32 are used to receive the second optical signal b, And reflect the third optical signal c which has the same deflection direction as the second optical signal b.
  • a plurality of polarization-maintaining optical fibers 32 are arranged at intervals on the substrate 31, and the first optical signal a becomes a second optical signal b after being deflected by the optical rotator 22, and the second optical signal b is transmitted to each polarization-maintaining optical fiber.
  • the third optical signal c reflected by each polarization-maintaining optical fiber 32 can be transmitted to the optical rotator 22, and deflected under the action of the optical rotator 22 into a fourth optical signal d, and finally transmitted to the polarizer 21. absorbed.
  • the substrate 31 is a structural member made of glass, metal, ceramics, silicon and other materials, which can effectively and stably support the optical fiber.
  • the polarization maintaining optical fiber 32 is an optical fiber with a special structure inside, which uses asymmetric internal stress to ensure that the polarization direction of the optical signal transmitted therein does not change.
  • the laser 1 includes a base 11 and a plurality of light emitting units 12, the plurality of light emitting units 12 are arranged at intervals in turn, and are all connected to the base 11, and the light emitting unit 12 is connected to a polarization maintaining optical fiber 32 One-to-one correspondence, and the light-emitting unit 12 is arranged opposite to the corresponding polarization-maintaining optical fiber 32 .
  • the light emitting unit 12 is connected to the base 11 by means of bonding or welding, the base 11 is used to carry a plurality of light emitting units 12 , and the light emitting unit 12 is used to emit the first optical signal a. That is to say, a plurality of light-emitting units 12 are arranged at intervals on the base 11, and the first optical signal a emitted by each light-emitting unit 12 will pass through the polarizer 21 and the optical rotator 22 in sequence, and will be deflected under the action of the optical rotator 22 to The second optical signal b is transmitted to the corresponding polarization-maintaining optical fiber 32 to complete the optical signal transmitting process of the optical transmitting component.
  • the light-emitting unit 12 utilizes the stimulated radiation of solid semiconductors combined with a resonant cavity to perform frequency selection, and emits a first optical signal a with a fixed wavelength and a certain polarization direction.
  • the first optical signal a is linearly polarized light
  • the polarization direction is a horizontal direction.
  • the light emitting assembly further includes a first lens array 4, the first lens array 4 is located between the laser 1 and the optical isolator 2, and the lens unit of the first lens array 4 There is a one-to-one correspondence with the light emitting units 12 , and the lens units of the first lens array 4 are respectively coupled with the optical isolator 2 and the corresponding light emitting units 12 .
  • the first lens array 4 can collimate the first light signal a emitted by each light-emitting unit 12, so that the collimated first light
  • the signal a can be coupled into the optical isolator 2 with high efficiency, reducing the loss of the first optical signal a.
  • the first lens array 4 is a structural member with a special surface shape formed by processing silicon, polymer materials, glass or other dielectric materials by injection molding, mechanical grinding, embossing, photolithography, molding and other processes.
  • the surface of the first lens array 4 is coated with an anti-reflection film, thereby reducing its own reflection.
  • the light emitting assembly further includes a second lens array 5, the second lens array 5 is located between the polarization maintaining device 3 and the optical isolator 2, and the second lens array 5
  • the lens units correspond to the polarization maintaining optical fibers 32 one by one, and the lens units of the second lens array 5 are respectively coupled to the optical isolator 2 and the corresponding polarization maintaining optical fibers 32 .
  • the first lens array 4 can converge the second optical signal b output by the optical isolator 2, so that the converged second optical signal b b can be accurately coupled into each polarization maintaining optical fiber 32, reducing the loss of the second optical signal b.
  • the second lens array 5 is a structural member with a special surface shape formed by processing silicon, polymer materials, glass or other dielectric materials by injection molding, mechanical grinding, embossing, photolithography, molding and other processes.
  • the surface of the second lens array 5 is coated with an anti-reflection film, thereby reducing its own reflection.
  • FIG. 4 is a schematic diagram of the optical path of the first structural form of the polarization maintaining device 3 . With reference to FIG. 4 , the optical path of the first structural form of the polarization maintaining device 3 is introduced.
  • the first optical signal a is transmitted to the first lens array 4, and is collimated under the action of the first lens array 4, with high efficiency Coupled to polarizer 21. Since the polarization direction of the polarizer 21 is the same as that of the first optical signal a, the first optical signal a can pass through the polarizer 21 without loss. After the first optical signal a passes through the polarizer 21, the first optical signal a will be transmitted to the optical rotator 22, under the action of the optical rotator 22, the first optical signal a is deflected into a second optical signal b, and further transmitted To the second lens array 5.
  • the second optical signal b After the second optical signal b is transmitted to the second lens array 5, it is converged under the action of the second lens array 5 to be accurately coupled to the polarization-maintaining optical fiber 32 to be received by the polarization-maintaining optical fiber 32, thereby completing light emission The entire optical signal emission process of the component.
  • the third optical signal c is reflected by the polarization-maintaining optical fiber 32 , and transmitted to the optical rotator 22 through the second lens array 5 .
  • the third optical signal c is deflected into a fourth optical signal d by the action of the optical rotator 22 , and the fourth optical signal d is transmitted to the polarizer 21 and absorbed by the polarizer 21 .
  • FIG. 5 is a schematic structural view of the second structural form of the polarization maintaining device 3. With reference to FIG. direction, and one end of the first optical waveguide 33 is coupled to the optical isolator 2 .
  • Fig. 6 is a schematic diagram of the optical path of the second structural form of the polarization maintaining device 3.
  • the first optical waveguide 33 since the first optical waveguide 33 extends along the light-emitting direction of the optical isolator 2, the first optical waveguide 33 can directly receive the light emitted by the optical isolator. 2
  • the deflected second optical signal b can also directly couple the reflected third optical signal c to the optical isolator 2. Since the first optical waveguide 33 has a polarization maintaining property, the polarization direction of the second optical signal b received by the first optical waveguide 33 is the same as the polarization direction of the reflected third optical signal c.
  • FIG. 7 is a schematic structural diagram of the second structural form of the polarization maintaining device 3.
  • the difference between FIG. 7 and FIG. 5 is that the first lens 6 is provided in FIG.
  • the light emitting assembly also includes a first lens 6, the first lens 6 is located between the first optical waveguide 33 and the optical isolator 2, the first lens 6 is coupled with the first optical waveguide 33 and the optical isolator 2 respectively, or the first lens 6 is located between the laser 1 and the optical isolator 2, and the first lens 6 is coupled to the laser 1 and the optical isolator 2 respectively.
  • the first lens 6 When the first lens 6 is located between the first optical waveguide 33 and the optical isolator 2, since the first lens 6 is coupled with the first optical waveguide 33 and the optical isolator 2 respectively, the first lens 6 can deflect the optical isolator 2 The obtained second optical signal b is converged to be coupled into the first optical waveguide 33 more accurately.
  • the first lens 6 When the first lens 6 is located between the laser 1 and the optical isolator 2, since the first lens 6 is respectively coupled with the laser 1 and the optical isolator 2, the first lens 6 can converge the first optical signal a emitted by the laser 1 After being deflected by the optical isolator 2 , the converged first optical signal a can be transformed into a converged second optical signal b, so as to be more accurately coupled into the first optical waveguide 33 .
  • the first lens 6 is located between the first optical waveguide 33 and the optical isolator 2 or between the laser 1 and the optical isolator 2 , it can improve the coupling efficiency of optical signals.
  • FIG. 8 is a schematic diagram of the optical path of the second structural form of the polarization maintaining device 3 .
  • the optical path of the second structural form of the polarization maintaining device 3 is introduced.
  • the first optical signal a is transmitted to the polarizer 21 . Since the polarization direction of the polarizer 21 is the same as that of the first optical signal a, the first optical signal a can pass through the polarizer 21 without loss. After the first optical signal a passes through the polarizer 21, the first optical signal a will be transmitted to the optical rotator 22, under the action of the optical rotator 22, the first optical signal a is deflected into a second optical signal b, and further transmitted to the first lens 6.
  • the second optical signal b After the second optical signal b is transmitted to the first lens 6, it is converged under the action of the first lens 6 to be accurately coupled to the first optical waveguide 33 to be received by the first optical waveguide 33, thereby completing light emission The entire optical signal emission process of the component.
  • the third optical signal c is reflected by the first optical waveguide 33 , passes through the first lens 6 , and is transmitted to the optical rotator 22 .
  • the third optical signal c is deflected into a fourth optical signal d by the action of the optical rotator 22 , and the fourth optical signal d is transmitted to the polarizer 21 and absorbed by the polarizer 21 .
  • FIG. 9 is a schematic structural diagram of a third structure of the polarization maintaining device 3 .
  • the polarization maintaining device 3 includes a second optical waveguide 34 and a reflector 35 . There is an included angle between the second optical waveguide 34 and the light emitting direction of the optical isolator 2 , and the mirror 35 is located on the light emitting direction of the optical isolator 2 to couple the optical isolator 2 with the second optical waveguide 34 .
  • Fig. 10 is a schematic diagram of the optical path of the third structural form of the polarization maintaining device 3.
  • the second optical waveguide 34 cannot directly receive the The second optical signal b deflected by the optical isolator 2 cannot directly couple the reflected third optical signal c to the optical isolator 2 .
  • the mirror 35 is provided between the second optical waveguide 34 and the optical isolator 2, the second optical signal b can be reflected by the mirror 35 to be coupled into the second optical waveguide 34, and the third optical signal c It can also be reflected by the mirror 35 to be coupled into the optical isolator 2 .
  • FIG. 11 is a schematic structural diagram of the third structural form of the polarization maintaining device 3.
  • the difference between FIG. 11 and FIG. 9 is that the second lens 7 is provided in FIG. 11.
  • the light emitting assembly also includes a second lens 7, the second lens 7 is located between the reflector 35 and the optical isolator 2, the second lens 7 is coupled with the reflector 35 and the optical isolator 2 respectively, or the second lens 7 is located in the laser 1 Between and the optical isolator 2, the second lens 7 is coupled with the laser 1 and the optical isolator 2 respectively.
  • the second lens 7 When the second lens 7 is located between the mirror 35 and the optical isolator 2, since the second lens 7 is coupled with the mirror 35 and the optical isolator 2 respectively, the second lens 7 can deflect the second lens obtained by the optical isolator 2.
  • the optical signal b is converged and is more accurately coupled into the second optical waveguide 34 after being reflected by the mirror 35 .
  • the second lens 7 When the second lens 7 is located between the laser 1 and the optical isolator 2, since the second lens 7 is respectively coupled with the laser 1 and the optical isolator 2, the second lens 7 can converge the first optical signal a emitted by the laser 1 After being deflected by the optical isolator 2, the converging first optical signal a can be converted into a converging second optical signal b, and after being reflected by the mirror 35, it is more accurately coupled to the second optical waveguide 34 in.
  • FIG. 12 is a schematic diagram of the optical path of the third structural form of the polarization maintaining device 3 .
  • the optical path of the third structural form of the polarization maintaining device 3 is introduced.
  • the first optical signal a is transmitted to the polarizer 21 . Since the polarization direction of the polarizer 21 is the same as that of the first optical signal a, the first optical signal a can pass through the polarizer 21 without loss. After the first optical signal a passes through the polarizer 21, the first optical signal a will be transmitted to the optical rotator 22, under the action of the optical rotator 22, the first optical signal a is deflected into a second optical signal b, and further transmitted to the second lens 7.
  • the second optical signal b After the second optical signal b is transmitted to the second lens 7, it is converged under the action of the second lens 7, so as to be accurately reflected by the mirror 35, and coupled to the second optical waveguide 34, so as to be received by the second optical waveguide 34 Received, thereby completing the entire optical signal transmission process of the optical transmission component.
  • the third optical signal c is reflected by the second optical waveguide 34 , passes through the second lens 7 , and is transmitted to the optical rotator 22 .
  • the third optical signal c is deflected into a fourth optical signal d by the action of the optical rotator 22 , and the fourth optical signal d is transmitted to the polarizer 21 and absorbed by the polarizer 21 .
  • FIG. 13 is a schematic structural diagram of an optical communication device provided by an embodiment of the present application.
  • the receiving port 200 , the sending port 300 , the onboard optical component 400 and the light emitting component 500 are all connected to the single board 100 , and the receiving port 200 , the sending port 300 and the light emitting component 500 are respectively coupled to the onboard optical component 400 .
  • the receiving port 200 , the sending port 300 , the onboard optical component 400 and the light emitting component 500 are all integrated on the single board 100 .
  • the optical transmitting component 500 sends out an unmodulated optical signal
  • the optical signal is coupled into the onboard optical component 400
  • the optical signal modulated by the onboard optical component 400 is coupled to the sending port 300 for Complete the optical signal transmission process.
  • the receiving port 200 receives the optical signal and couples the optical signal to the onboard optical component 400 , and undergoes light detection and photoelectric conversion in the onboard optical component 400 to complete the optical signal receiving process.
  • the optical transmitting component 500 can not only output a low-loss optical signal, but also be able to resist the reflected optical signal in the channel interference.
  • the onboard optical assembly 400 includes an electrical switching chip 410, a silicon photonics chip 420, and a carrier 430, and the electrical switching chip 410 and the silicon photonics chip 420 are connected on the carrier by bonding or welding.
  • the carrier board 430 is connected to the single board 100 by welding.
  • the light emitting component 500 has the polarization maintaining device 3 of the first structural form described above.
  • the light emitting component 500 is equivalent to a light source pool in an optical communication device.
  • the light emitting component 500 is coupled with the onboard optical component 400 through the polarization maintaining optical fiber 32 .
  • the light emitting component 500 has the polarization maintaining device 3 in the second and third structural forms described above.
  • the light emitting component 500 and the onboard optical component 400 are integrated together, so the light emitting component 500 is not shown in the figure, and the first optical waveguide 33 and the second optical waveguide 34 are located in the silicon photonics chip 420 .
  • the light-emitting component 500 emits light through the edge (corresponding to the polarization maintaining device 3 of the second structure described above, see FIG. 15 ) and vertical light (corresponding to the polarization maintaining device 3 of the third structure described above, see FIG. 16), coupled with the onboard optical component 400.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

一种光发射组件,包括激光器(1)、光隔离器(2)和保偏器件(3)。激光器(1)用于发射第一光信号(a),保偏器件(3)用于接收第二光信号(b)。光隔离器(2)包括偏振片(21)和旋光片(22)。激光器(1)、偏振片(21)、旋光片(22)和保偏器件(3)依次排布。偏振片(21)的偏振方向与第一光信号(a)的偏振方向相同,旋光片(22)用于将第一光信号(a)偏转为第二光信号(b)。由于光隔离器(2)仅具有偏振片(21)和旋光片(22),旋光片(22)和保偏器件(3)之间不具有检偏器,所以结构简单,对于装配精度的要求较低。

Description

光发射组件及光通信装置
本申请要求于2021年10月28日提交的申请号为202111265539.6、发明名称为“光发射组件及光通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及光发射组件及光通信装置。
背景技术
光隔离器是光发射组件的重要组成部分之一,其主要用于形成单向导通的光路,如此既能够保证光发射组件输出低损耗的光信号,又能够保证光发射组件抵抗信道中反射的光信号的干扰。
在相关技术中,光隔离器主要包括起偏器、旋光片和检偏器,三者配合工作,以在光发射组件内形成单向导通的光路。
然而,上述光隔离器结构较为复杂,所以制作成本高,使用效果受限于装配精度。
发明内容
本申请实施例提供了一种光发射组件及光通信装置,以解决结构复杂,装配精度要求高的问题,技术方案如下:
第一方面,提供了一种光发射组件,所述光发射组件包括激光器、光隔离器和保偏器件。所述激光器用于发射第一光信号,所述保偏器件用于接收第二光信号。光隔离器包括偏振片和旋光片,所述偏振片和所述旋光片均位于所述激光器和所述保偏器件之间,且所述激光器、所述偏振片、所述旋光片和所述保偏器件依次排布。其中,所述偏振片的偏振方向与所述第一光信号的偏振方向相同,所述旋光片能够将所述第一光信号偏转为所述第二光信号。也就是说,所述保偏器件接收的所述第二光信号,是由所述第一光信号依次经过所述偏振片和所述旋光片后形成的。
本申请实施例提供的光发射组件,至少具有以下效果:
在所述激光器发射出所述第一光信号后,所述第一光信号传输至所述偏振片,由于所述偏振片的偏振方向与所述第一光信号的偏振方向相同,所以所述第一光信号能够无损的通过所述偏振片。在所述第一光信号通过所述偏振片后,将传输至所述旋光片,在所述旋光片的作用下,所述第一光信号被偏转为所述第二光信号,所述第二光信号传输至所述保偏器件,以被所述保偏器件所接收,从而完成所述光发射组件的整个光信号发射流程。
在所述光信号发射流程中,部分光信号将从所述保偏器件处反射出来,反射出来的光信号的偏振方向与所述第二光信号的偏振方向相同。反射出来的光信号将传输至所述旋光片,在所述旋光片的作用下被偏转,偏转后的光信号传输至所述偏振片。由于该光信号与所述偏振片的偏振方向不同,所以偏振片将会吸收该光信号,从而起到隔离的作用,避免该光信号干扰所述激光器。
由此可见,本申请实施例提供的所述光发射组件,既能够保证输出低损耗的光信号,又能够保证抵抗反射光信号的干扰。并且,由于所述光隔离器仅具有所述偏振片和所述旋光片,所以结构简单,对于装配精度的要求较低。
在本申请的一种实现方式中,所述旋光片和所述保偏器件之间不具有检偏器。也就是说,相较于相关技术中的具有起偏器、旋光片和检偏器的光隔离器来说,本申请实施例中所提供的所述光隔离器仅包括所述偏振片和所述旋光片,而不具有检偏器。如此一来,保证了所述光隔离器的结构简洁,在装配时,只需要考虑所述偏振片和所述旋光片之间的装配精度,使得所述光隔离器的装配要求得到了降低。
在本申请的一种实现方式中,所述第一光信号的偏正方向和所述第二光信号的偏正方向之间的夹角为40°-50°。在所述第一光信号通过所述偏振片后,将传输至所述旋光片,在所述旋光片的作用下,所述第一光信号被偏转40°-50°,从而被转化为所述第二光信号。也就是说,所述旋光片能够将经过自身的光信号偏转40°-50°。在对于由所述保偏器件处反射出来光信号来说,反射出来的光信号将传输至所述旋光片,并在所述旋光片的作用下被偏转40°-50°。由于由所述保偏器件处反射出来的光信号的偏振方向与所述第二光信号的偏振方向相同,所以在经过所述旋光片偏转40°-50°后,该光信号的偏振方向与所述第一光信号的偏振方向之间的夹角为80°-100°,如此一来,该光信号的偏正方向与所述偏振片的偏振方向近似垂直,使得所述偏振片能够更好的吸收该光信号,提高了所述光隔离器的抗干扰效果。
在本申请的一种实现方式中,所述偏振片和所述旋光片均为片状结构件,所述偏振片的一面与所述旋光片的一面相贴合,使得所述偏振片和所述旋光片之间能够相互耦合。所述偏振片背离所述旋光片的一面朝向所述激光器,使得所述偏振片背离所述旋光片的一面能够与所述激光器相耦合,以接收由所述激光器发射的所述第一光信号。所述旋光片背离所述偏振片的一面朝向所述保偏器件,使得所述旋光片背离所述偏振片的一面能够与所述保偏器件相耦合,以接收由所述保偏器件反射出的光信号。并且,将所述偏振片和所述旋光片贴合在一起,能够减小所述光隔离器的体积,使得所述光发射组件的结构更为紧凑。
在本申请的一种实现方式中,所述保偏器件在接收所述第二光信号之后,会反射部分的光信号,这部分的光信号为第三光信号,所述第三光信号与所述旋光片相耦合。在所述第三光信号传输至所述旋光片后,在所述旋光片的作用下,所述第三光信号被偏转为第四光信号,并且,所述第四光信号的偏振方向与所述偏振片的偏振方向垂直。如此一来,由于所述第四光信号的偏振方向与所述偏振片的偏振方向垂直,所以所述偏振片能够将所述第四光信号吸收,从而起到隔离的作用,避免所述第四光信号干扰所述激光器。
在本申请的一种实现方式中,所述保偏器件包括基片和多个保偏光纤。所述基片的一面具有多个凹槽,多个所述凹槽依次间隔排布,且所述凹槽与所述保偏光纤一一对应。所述保偏光纤插接在对应的所述凹槽内,且所述保偏光纤的一端部与所述光隔离器相耦合。如此设计,利用所述基片对多个所述保偏光纤进行承载,利用所述基片上的所述凹槽对所述保偏光 纤进行定位,利用所述保偏光纤接收所述第二光信号,并反射出与所述第二光信号的偏转方向相同的所述第三光信号。也就是说,多个所述保偏光纤在所述基片上间隔排布,所述第一光信号在经过所述旋光片的偏转后,成为所述第二光信号,所述第二光信号被传输至各所述保偏光纤,并被各所述保偏光纤所接收。而各所述保偏光纤反射出的所述第三光信号,则能够传输至所述旋光片,并在所述旋光片的作用下偏转为所述第四光信号,最终传输至所述偏振片,被所述偏振片所吸收。
在本申请的一种实现方式中,所述激光器包括基座和多个发光单元。多个所述发光单元依次间隔排布,且均与所述基座相连,所述发光单元与所述保偏光纤一一对应,且所述发光单元与对应的所述保偏光纤相对布置。如此设计,利用所述基座对多个所述发光单元进行承载,利用所述发光单元发射所述第一光信号。也就是说,多个所述发光单元在所述基座上间隔排布,各所述发光单元发射的所述第一光信号将依次经过所述偏振片和所述旋光片,并在所述旋光片的作用下偏转为所述第二光信号,所述第二光信号传输至对应的所述保偏光纤中,以完成所述光发射组件的光信号发射流程。
在本申请的一种实现方式中,所述光发射组件还包括第一透镜阵列,所述第一透镜阵列位于所述激光器和所述光隔离器之间。所述第一透镜阵列具有多个透镜单元,所述第一透镜阵列的透镜单元与所述发光单元一一对应,且所述第一透镜阵列的透镜单元分别与所述光隔离器和对应的所述发光单元相耦合。由于所述第一透镜阵列的透镜单元与所述发光单元一一对应,所以所述第一透镜阵列能够对各所述发光单元发射出的所述第一光信号进行准直,从而使得准直后的所述第一光信号能够高效率的耦合进所述光隔离器中,降低了所述第一光信号的损耗。
在本申请的一种实现方式中,所述光发射组件还包括第二透镜阵列,所述第二透镜阵列位于所述保偏器件和所述光隔离器之间。所述第二透镜阵列具有多个透镜单元,所述第二透镜阵列的透镜单元与所述保偏光纤一一对应,且所述第二透镜阵列的透镜单元分别与所述光隔离器和对应的所述保偏光纤相耦合。由于所述第二透镜阵列的透镜单元与所述保偏光纤一一对应,所以所述第一透镜阵列能够对由所述光隔离器输出的所述第二光信号进行会聚,从而使得会聚后的所述第二光信号能够准确的耦合进各所述保偏光纤中,降低了所述第二光信号的损耗。
在本申请的一种实现方式中,所述保偏器件包括第一光波导,所述第一光波导沿所述光隔离器的出光方向延伸,且所述第一光波导的一端部与所述光隔离器相耦合。如此设计,由于所述第一光波导沿所述光隔离器的出光方向延伸,所以第一光波导能够直接接收由所述光隔离器偏转得到的所述第二光信号,也能够直接将反射出的所述第三光信号耦合至所述光隔离器。由于所述第一光波导具有保偏特性,所以所述第一光波导接收的所述第二光信号的偏振方向与反射出的所述第三光信号的偏振方向相同。
在本申请的一种实现方式中,所述光发射组件还包括第一透镜,所述第一透镜位于所述 第一光波导和所述光隔离器之间,所述第一透镜分别与所述第一光波导和所述光隔离器相耦合。如此设计,由于所述第一透镜分别与所述第一光波导和所述光隔离器相耦合,所以所述第一透镜能够将由所述光隔离器偏转得到的所述第二光信号进行会聚,以更为准确的耦合至所述第一光波导中。或者,所述第一透镜位于所述激光器和所述光隔离器之间,所述第一透镜分别与所述激光器和所述光隔离器相耦合。如此设计,由于所述第一透镜分别与所述激光器和所述光隔离器相耦合,所以所述第一透镜能够将所述激光器发射的所述第一光信号进行会聚,会聚后的所述第一光信号在经过所述光隔离器偏转后,能够转变为经过会聚的所述第二光信号,以更为准确的耦合至所述第一光波导中。
在本申请的一种实现方式中,所述保偏器件包括第二光波导和反射镜,所述第二光波导与所述光隔离器的出光方向之间具有夹角。所述反射镜位于所述光隔离器的出光方向上,以将所述光隔离器与所述第二光波导相耦合。如此设计,由于所述第二光波导和所述光隔离器的出光方向之间具有夹角,所以所述第二光波导无法直接接收由所述光隔离器偏转得到的所述第二光信号,也无法直接将反射出的所述第三光信号耦合至所述光隔离器。然而,由于在所述第二光波导和所述光隔离器之间设置了所述反射镜,所以所述第二光信号能够经过所述反射镜的反射,以耦合至所述第二光波导中,所述第三光信号也能够经过所述反射镜的反射,以耦合至所述光隔离器中。
在本申请的一种实现方式中,所述光发射组件还包括第二透镜,所述第二透镜位于所述反射镜和所述光隔离器之间,所述第二透镜分别与所述反射镜和所述光隔离器相耦合。如此设计,由于所述第二透镜分别与所述反射镜和所述光隔离器相耦合,所以所述第二透镜能够将由所述光隔离器偏转得到的所述第二光信号进行会聚,并在经过所述反射镜的反射后,更为准确的耦合至所述第二光波导中。或者,所述第二透镜位于所述激光器和所述光隔离器之间,所述第二透镜分别与所述激光器和所述光隔离器相耦合。如此设计,由于所述第二透镜分别与所述激光器和所述光隔离器相耦合,所以所述第二透镜能够将所述激光器发射的所述第一光信号进行会聚,会聚后的所述第一光信号在经过所述光隔离器偏转后,能够转变为经过会聚的所述第二光信号,并在经过所述反射镜的反射后,更为准确的耦合至所述第二光波导中。
第二方面,提供了一种光通信装置,所述光通信装置包括单板、接收端口、发送端口、板载光学组件和第一方面所述的光发射组件。所述接收端口、所述发送端口、所述板载光学组件和所述光发射组件均与所述单板相连,所述接收端口、所述发送端口和所述光发射组件分别与所述板载光学组件相耦合。如此设计,使得所述接收端口、所述发送端口、所述板载光学组件和所述光发射组件均集成在所述单板上。对于光信号发射流程来说,所述光发射组件发出未经调制的光信号,该光信号耦合至所述板载光学组件中,经过所述板载光学组件调制后的光信号耦合至所述发送端口,以完成光信号发射流程。对于光信号接收流程来说,所述接收端口接收光信号,并将该光信号耦合至所述板载光学组件中,经过所述板载光学组件中的光探测和光电转换,以完成光信号接收流程。
本申请实施例提供的光通信装置,至少具有以下效果:
在光通信装置的整个光信号发射流程中,由于光发射组件为第一方面所述的光发射组件,所以光发射组件既能够输出低损耗的光信号,又能够抵抗信道中反射的光信号的干扰。
附图说明
图1为本申请实施例提供的光发射组件的结构示意图;
图2为本申请实施例提供的光发射组件的光路示意图;
图3为本申请实施例提供的保偏器件的第一种结构形式的结构示意图;
图4为本申请实施例提供的保偏器件的第一种结构形式的光路示意图;
图5为本申请实施例提供的保偏器件的第二种结构形式的结构示意图;
图6为本申请实施例提供的保偏器件的第二种结构形式的光路示意图;
图7为本申请实施例提供的保偏器件的第二种结构形式的结构示意图;
图8为本申请实施例提供的保偏器件的第二种结构形式的光路示意图;
图9为本申请实施例提供的保偏器件的第三种结构形式的结构示意图;
图10为本申请实施例提供的保偏器件的第三种结构形式的光路示意图;
图11为本申请实施例提供的保偏器件的第三种结构形式的结构示意图;
图12为本申请实施例提供的保偏器件的第三种结构形式的光路示意图;
图13为本申请实施例提供的光通信装置的结构示意图;
图14为本申请实施例提供的光通信装置的结构示意图;
图15为本申请实施例提供的保偏器件的布置示意图;
图16为本申请实施例提供的保偏器件的布置示意。
图例说明:
1、激光器;
11、基座;12、发光单元;
2、光隔离器;
21、偏振片;22、旋光片;
3、保偏器件;
31、基片;311、凹槽;32、保偏光纤;33、第一光波导;34、第二光波导;35、反射镜;
4、第一透镜阵列;
5、第二透镜阵列;
6、第一透镜;
7、第二透镜;
a、第一光信号;b、第二光信号;c、第三光信号;d、第四光信号;
100、单板;200、接收端口;300、发送端口;400、板载光学组件;410、电交换芯片;420、硅光芯片;430、载板;500、光发射组件。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的实施例进行解释,而非旨在限定本申请。
光隔离器是光发射组件的重要组成部分之一,其主要用于形成单向导通的光路,如此既能够保证光发射组件输出低损耗的光信号,又能够保证光发射组件抵抗信道中反射的光信号的干扰。
在相关技术中,光隔离器主要包括起偏器、旋光片和检偏器,起偏器、旋光片和检偏器依次排布。对于由起偏器射向检偏器方向的光信号来说,其偏振方向与起偏器的偏振方向相同,能够无损耗的经过起偏器,并传输至旋光片。旋光片能够在外部磁场的作用下,将经过旋光片的光信号的偏振方向偏转一定的角度,使偏转后的光信号的偏振方向与检偏器的偏振方向相同,从而无损耗的经过检偏器,也即通过光隔离器。对于由检偏器方向射向起偏器方向的光信号来说,光信号在经过检偏器时,在检偏器的作用下,仅有与检偏器的偏振角度相同的分量才能够通过检偏器。通过检偏器的光信号分量在旋光片的作用下,其偏振方向被偏转一定的角度,并传输至起偏器。由于偏转后的光信号分量的偏振方向与起偏器的偏振方向垂直,所以起偏器将吸收掉该光信号分量,也即被光隔离器隔离。
由此可见,在相关技术中,通过起偏器、旋光片和检偏器三者配合工作,使得光隔离器能够允许光信号从起偏器至检偏器的方向穿过,而不允许光信号从检偏器至起偏器的方向穿过光隔离器,从而通过光隔离器在光发射组件内形成单向导通的光路。
然而,上述光隔离器结构较为复杂,所以制作成本高,使用效果受限于装配精度。
为了解决上述技术问题,本申请实施例提供了一种光发射组件,图1为该光发射组件的结构示意图,参见图1,该光发射组件包括激光器1、光隔离器2和保偏器件3。
激光器1用于发射第一光信号a,保偏器件3用于接收第二光信号b。光隔离器2包括偏振片21和旋光片22,激光器1、偏振片21、旋光片22和保偏器件3依次排布,偏振片21的偏振方向与第一光信号a的偏振方向相同,旋光片22用于将第一光信号a偏转为第二光信号b。
图2为光发射组件的光路示意图,结合图2,在激光器1发射出第一光信号a后,第一光信号a传输至偏振片21,由于偏振片21的偏振方向与第一光信号a的偏振方向相同,所以第一光信号a能够无损的通过偏振片21。在第一光信号a通过偏振片21后,将传输至旋光片22,在旋光片22的作用下,第一光信号a被偏转为第二光信号b,第二光信号b传输至保偏器件3,以被保偏器件3所接收,从而完成光发射组件的整个光信号发射流程。
继续结合图2,在光信号发射流程中,部分光信号将从保偏器件3处反射出来,反射出来的光信号的偏振方向与第二光信号b的偏振方向相同。反射出来的光信号将传输至旋光片22,在旋光片22的作用下被偏转,偏转后的光信号传输至偏振片21。由于该光信号与偏振片21的偏振方向不同,所以偏振片21将会吸收该光信号,从而起到隔离的作用,避免该光信号干扰激光器1。
需要说明的是,空心双向箭头仅作为对于偏振方向的示意,以便于比较各部件之间的偏振方向。
由此可见,本申请实施例提供的光发射组件,既能够保证输出低损耗的光信号,又能够保证抵抗反射光信号的干扰。并且,由于光隔离器2仅具有偏振片21和旋光片22,所以结构简单,对于装配精度的要求较低。
需要再次说明的是,在本实施例中,旋光片22和保偏器件3之间不具有检偏器。也就是说,相较于相关技术中的具有起偏器、旋光片和检偏器的光隔离器来说,本申请实施例中所 提供的光隔离器2仅包括偏振片21和旋光片22,而不具有检偏器。如此一来,保证了光隔离器2的结构简洁,在装配时,只需要考虑偏振片21和旋光片22之间的装配精度,使得光隔离器2的装配要求得到了降低。
在本实施例中,第一光信号a在旋光片22的作用下被偏转为第二光信号b,第一光信号a的偏正方向和第二光信号b的偏正方向之间的夹角为40°-50°。
在第一光信号a经过光隔离器2的整个过程中,第一光信号a通过偏振片21后,将传输至旋光片22,在旋光片22的作用下,第一光信号a被偏转40°-50°,从而被转化为第二光信号b。也就是说,旋光片22能够将经过自身的光信号偏转40°-50°。在对于由保偏器件3处反射出来光信号来说,反射出来的光信号将传输至旋光片22,并在旋光片22的作用下被偏转40°-50°。由于由保偏器件3处反射出来的光信号的偏振方向与第二光信号b的偏振方向相同,所以在经过旋光片22偏转40°-50°后,该光信号的偏振方向与第一光信号a的偏振方向之间的夹角为80°-100°,如此一来,该光信号的偏正方向与偏振片21的偏振方向近似垂直,使得偏振片21能够更好的吸收该光信号,提高了光隔离器2的抗干扰效果。
由此可见,旋光片22对于经过自身的光信号的偏振方向的偏转角度值,一是决定了第二光信号b的偏振角度和保偏器件3的偏振角度是否相同,二是决定了偏振片21吸收由保偏器件3处反射出来的光信号的吸收效果,即光隔离器2的隔离度。隔离度指的是光信号沿一个方向穿过某个界面、部件或系统时,其插入损耗IL1与沿相反方向穿过该界面、部件或系统时插入损耗IL2的比值,插入损耗指的是光信号通过某个界面、部件或系统时能量的损耗。
示例性地,光隔离器2的隔离度直接影响了光发射组件的回波损耗RL(是指光信号通过某个界面、部件或系统时,反射的能量与入射的能量比值,单位为dB),为了保证光发射组件的回波损耗大于20dB,第一光信号a的偏正方向和第二光信号b的偏正方向之间的夹角为42°-48°,也即旋光片22能够将经过自身的光信号偏转42°-48°。当然,在第一光信号a的偏正方向和第二光信号b的偏正方向之间的夹角为45°时,也即旋光片22能够将经过自身的光信号偏转45°时,由保偏器件3处反射出来的光信号的偏振方向与偏振片21的偏振方向刚好垂直,此时偏振片21能够吸收所有的由保偏器件3处反射出来的光信号,从而达到最佳的隔离度。
由前文可知,光隔离器2之所以能够在光发射组件内形成单向导通的光路,是因为光隔离器2能够将保偏器件3反射回来的光信号进行吸收隔离,下面进一步的对光隔离器2吸收保偏器件3反射回来的光信号的方式进行介绍。
继续结合图2,在本实施例中,保偏器件3反射的第三光信号c与旋光片22相耦合,旋光片22用于将第三光信号c偏转为第四光信号d,第四光信号d的偏振方向与偏振片21的偏振方向垂直。
保偏器件3在接收第二光信号b之后,会反射部分的光信号,这部分的光信号为第三光信号c,第三光信号c与旋光片22相耦合。在上述实现方式中,旋光片22能够将经过自身的光信号偏转45°,因此在第三光信号c传输至旋光片22后,在旋光片22的作用下,第三光信号c被偏转为第四光信号d。并且,第四光信号d的偏振方向与偏振片21的偏振方向垂直。如此一来,由于第四光信号d的偏振方向与偏振片21的偏振方向垂直,所以偏振片21能够将第四光信号d吸收,从而起到隔离的作用,避免第四光信号d干扰激光器1。
总结来说,第一光信号a的偏振方向与偏振片21的偏振方向相同,第二光信号b的偏振 方向与第三光信号c的偏振方向相同。假设旋光片22能够将经过自身的光信号偏转45°,那么第二光信号b的偏振方向与第一光信号a的偏振方向之间的夹角为45°,第四光信号d的偏振方向与第三光信号c的偏振方向之间的夹角为45°,也即第四光信号d的偏振方向与偏振片21的偏振方向之间的夹角为90°。
下面再次结合图1,对光隔离器2的结构进行介绍。
在本实施例中,偏振片21与旋光片22相贴合,偏振片21背离旋光片22的一面朝向激光器1,以与激光器1相耦合。旋光片22背离偏振片21的一面朝向保偏器件3,以与保偏器件3相耦合。
在上述实现方式中,偏振片21和旋光片22均为片状结构件,将偏振片21和旋光片22贴合在一起,能够减小光隔离器2的体积,使得光发射组件的结构更为紧凑。
在本实施例的一种实现方式中,偏振片21为纳米金属线吸收型偏振片21,其采用玻璃熔制、拉伸、还原等工艺,在红外玻璃中均匀掺入方向一致的纳米金属(银、铜等)线结构而制作得到。光信号在穿过偏振片21的时候,与纳米金属线方向一致的分量被吸收,与纳米金属线方向垂直的分量可无损穿过。该偏振片21具有插损小、偏振消光比大的特性。
在本实施例的一种实现方式中,旋光片22的材料为掺Bi等稀土元素的钇铁石榴石晶体,使得旋光片22具有插损低、旋光系数高的特性。在配合外部磁场的作用下(也可以在旋光片22的晶体中掺入磁性材料,使得旋光片22本身就具有磁场,从而无需外部增加磁场)形成特殊结构的磁筹结构,从而使经过的光信号的偏振方向向某个方向偏转。需要说明的是,光信号的偏振方向偏转的方向与磁筹的结构相关,由晶体结构和磁场决定,而与光的传播方向无关。因此,虽然第一光信号a经过旋光片22的方向,与第三光信号c经过旋光片22的传播方向不同,但是第一光信号a和第三光信号c的偏振方向偏转的方向相同。
在特定磁场下,偏转的角度与旋光片22的厚度成正比,满足以下公式:
θ=vHd       (1)
其中,θ为旋光片22的偏转的角度,v为旋光系数,旋光系数由旋光片22材料决定,H为外部磁场强度,d为旋光片22的厚度。
在本实施例中,旋光片22的偏转的角度θ为45°。在此情况下,光发射组件的回波损耗大于20dB,插入损耗小于0.2dB,既能够保证输出低损耗的光信号,又能够保证抵抗反射光信号的干扰。相较于具有起偏器、旋光片和检偏器的光隔离器来说,由于省略了检偏器,所以尺寸减小30%,成本下降30%,所需的装配精度下降,使得装配工艺效率提升40%。并且,在省略了检偏器的同时,还省略了用于粘结检偏器的胶水,所以耦合插损也降低了0.1dB。
由前文可知,保偏器件3的特性决定了第三光信号c的偏振方向和第二光信号b的偏振方向相同。本申请实施例提供了保偏器件3的多种结构形式,并根据保偏器件3的不同结构形式,对应的提供了光发射组件的多种结构形式,下面分别进行介绍。
图3为保偏器件3的第一种结构形式的结构示意图,结合图3,保偏器件3包括基片31和多个保偏光纤32,基片31的一面具有多个凹槽311,多个凹槽311依次间隔排布,且凹槽311与保偏光纤32一一对应,保偏光纤32插接在对应的凹槽311内,且保偏光纤32的一端部与光隔离器2相耦合。
在上述实现方式中,利用基片31对多个保偏光纤32进行承载,利用基片31上的凹槽3 11对保偏光纤32进行定位,利用保偏光纤32接收第二光信号b,并反射出与第二光信号b的偏转方向相同的第三光信号c。
也就是说,多个保偏光纤32在基片31上间隔排布,第一光信号a在经过旋光片22的偏转后,成为第二光信号b,第二光信号b被传输至各保偏光纤32,并被各保偏光纤32所接收。而各保偏光纤32反射出的第三光信号c,则能够传输至旋光片22,并在旋光片22的作用下偏转为第四光信号d,最终传输至偏振片21,被偏振片21所吸收。
基片31是一种利用玻璃、金属、陶瓷、硅等材料制作的结构件,能够对光纤进行有效稳固的支撑。
保偏光纤32是一种在内部设有特殊结构的光纤,利用不对称的内应力保证在其中传输的光信号的偏振方向不发生改变。
继续结合图3,在本实施例中,激光器1包括基座11和多个发光单元12,多个发光单元12依次间隔排布,且均与基座11相连,发光单元12与保偏光纤32一一对应,且发光单元12与对应的保偏光纤32相对布置。
在上述实现方式中,发光单元12通过粘结或焊接的工艺手段与基座11相连,利用基座11对多个发光单元12进行承载,利用发光单元12发射第一光信号a。也就是说,多个发光单元12在基座11上间隔排布,各发光单元12发射的第一光信号a将依次经过偏振片21和旋光片22,并在旋光片22的作用下偏转为第二光信号b,第二光信号b传输至对应的保偏光纤32中,以完成光发射组件的光信号发射流程。
在本实施例中,发光单元12利用固体半导体的受激辐射结合谐振腔进行选频,发射出波长和偏振方向一定的第一光信号a。示例性地,第一光信号a为线偏振光,偏振方向为水平方向。
继续结合图3,在本实施例的一种实现方式中,光发射组件还包括第一透镜阵列4,第一透镜阵列4位于激光器1和光隔离器2之间,第一透镜阵列4的透镜单元与发光单元12一一对应,且第一透镜阵列4的透镜单元分别与光隔离器2和对应的发光单元12相耦合。
由于第一透镜阵列4的透镜单元与发光单元12一一对应,所以第一透镜阵列4能够对各发光单元12发射出的第一光信号a进行准直,从而使得准直后的第一光信号a能够高效率的耦合进光隔离器2中,降低了第一光信号a的损耗。
第一透镜阵列4是一种采用注塑、机械研磨、压印、光刻、模压等工艺将硅、高分子材料、玻璃或其他介质材料加工形成的具有特殊面型的结构件。第一透镜阵列4的表面镀有增透膜,从而降低自身的反射。
继续结合图3,在本实施例的一种实现方式中,光发射组件还包括第二透镜阵列5,第二透镜阵列5位于保偏器件3和光隔离器2之间,第二透镜阵列5的透镜单元与保偏光纤32一一对应,且第二透镜阵列5的透镜单元分别与光隔离器2和对应的保偏光纤32相耦合。
由于第二透镜阵列5的透镜单元与保偏光纤32一一对应,所以第一透镜阵列4能够对由光隔离器2输出的第二光信号b进行会聚,从而使得会聚后的第二光信号b能够准确的耦合进各保偏光纤32中,降低了第二光信号b的损耗。
第二透镜阵列5是一种采用注塑、机械研磨、压印、光刻、模压等工艺将硅、高分子材料、玻璃或其他介质材料加工形成的具有特殊面型的结构件。第二透镜阵列5的表面镀有增透膜,从而降低自身的反射。
图4为保偏器件3的第一种结构形式的光路示意图,结合图4,对保偏器件3的第一种结构形式的光路进行介绍。
对于光信号发射流程来说,在激光器1发射出第一光信号a后,第一光信号a传输至第一透镜阵列4,在第一透镜阵列4的作用下被准直,以高效率的耦合至偏振片21。由于偏振片21的偏振方向与第一光信号a的偏振方向相同,所以第一光信号a能够无损的通过偏振片21。在第一光信号a通过偏振片21后,第一光信号a将传输至旋光片22,在旋光片22的作用下,第一光信号a被偏转为第二光信号b,并进一步的传输至第二透镜阵列5。第二光信号b在传输至第二透镜阵列5后,在第二透镜阵列5的作用下被会聚,以准确的耦合至保偏光纤32,以被保偏光纤32所接收,从而完成光发射组件的整个光信号发射流程。
对于光信号反射流程来说,第三光信号c由保偏光纤32反射出来,并经过第二透镜阵列5,传输至旋光片22。第三光信号c在旋光片22的作用下被偏转为第四光信号d,第四光信号d输至偏振片21,并被偏振片21所吸收。
图5为保偏器件3的第二种结构形式的结构示意图,结合图5,在本实施例中,保偏器件3包括第一光波导33,第一光波导33沿光隔离器2的出光方向延伸,且第一光波导33的一端部与光隔离器2相耦合。
图6为保偏器件3的第二种结构形式的光路示意图,结合图6,由于第一光波导33沿光隔离器2的出光方向延伸,所以第一光波导33能够直接接收由光隔离器2偏转得到的第二光信号b,也能够直接将反射出的第三光信号c耦合至光隔离器2。由于第一光波导33具有保偏特性,所以第一光波导33接收的第二光信号b的偏振方向与反射出的第三光信号c的偏振方向相同。
图7为保偏器件3的第二种结构形式的结构示意图,图7与图5的区别在于图7中设置了第一透镜6,结合图7,在本实施例的一种实现方式中,光发射组件还包括第一透镜6,第一透镜6位于第一光波导33和光隔离器2之间,第一透镜6分别与第一光波导33和光隔离器2相耦合,或者,第一透镜6位于激光器1和光隔离器2之间,第一透镜6分别与激光器1和光隔离器2相耦合。
当第一透镜6位于第一光波导33和光隔离器2之间时,由于第一透镜6分别与第一光波导33和光隔离器2相耦合,所以第一透镜6能够将由光隔离器2偏转得到的第二光信号b进行会聚,以更为准确的耦合至第一光波导33中。
当第一透镜6位于激光器1和光隔离器2之间时,由于第一透镜6分别与激光器1和光隔离器2相耦合,所以第一透镜6能够将激光器1发射的第一光信号a进行会聚,会聚后的第一光信号a在经过光隔离器2偏转后,能够转变为经过会聚的第二光信号b,以更为准确的耦合至第一光波导33中。
也就是说,无论第一透镜6是位于第一光波导33和光隔离器2之间,还是位于激光器1和光隔离器2之间,均能够起到提高光信号的耦合效率的作用。
图8为保偏器件3的第二种结构形式的光路示意图,结合图8,对保偏器件3的第二种结构形式的光路进行介绍。
对于光信号发射流程来说,在激光器1发射出第一光信号a后,第一光信号a传输至偏振片21。由于偏振片21的偏振方向与第一光信号a的偏振方向相同,所以第一光信号a能够无损的通过偏振片21。在第一光信号a通过偏振片21后,第一光信号a将传输至旋光片22, 在旋光片22的作用下,第一光信号a被偏转为第二光信号b,并进一步的传输至第一透镜6。第二光信号b在传输至第一透镜6后,在第一透镜6的作用下被会聚,以准确的耦合至第一光波导33,以被第一光波导33所接收,从而完成光发射组件的整个光信号发射流程。
对于光信号反射流程来说,第三光信号c由第一光波导33反射出来,并经过第一透镜6,传输至旋光片22。第三光信号c在旋光片22的作用下被偏转为第四光信号d,第四光信号d输至偏振片21,并被偏振片21所吸收。
图9为保偏器件3的第三种结构形式的结构示意图,结合图9,在本实施例中,保偏器件3包括第二光波导34和反射镜35。第二光波导34与光隔离器2的出光方向之间具有夹角,反射镜35位于光隔离器2的出光方向上,以将光隔离器2与第二光波导34相耦合。
图10为保偏器件3的第三种结构形式的光路示意图,结合图10,由于第二光波导34和光隔离器2的出光方向之间具有夹角,所以第二光波导34无法直接接收由光隔离器2偏转得到的第二光信号b,也无法直接将反射出的第三光信号c耦合至光隔离器2。然而,由于在第二光波导34和光隔离器2之间设置了反射镜35,所以第二光信号b能够经过反射镜35的反射,以耦合至第二光波导34中,第三光信号c也能够经过反射镜35的反射,以耦合至光隔离器2中。
图11为保偏器件3的第三种结构形式的结构示意图,图11与图9的区别在于图11中设置了第二透镜7,结合图11,在本实施例的一种实现方式中,光发射组件还包括第二透镜7,第二透镜7位于反射镜35和光隔离器2之间,第二透镜7分别与反射镜35和光隔离器2相耦合,或者,第二透镜7位于激光器1和光隔离器2之间,第二透镜7分别与激光器1和光隔离器2相耦合。
当第二透镜7位于反射镜35和光隔离器2之间时,由于第二透镜7分别与反射镜35和光隔离器2相耦合,所以第二透镜7能够将由光隔离器2偏转得到的第二光信号b进行会聚,并在经过反射镜35的反射后,更为准确的耦合至第二光波导34中。
当第二透镜7位于激光器1和光隔离器2之间时,由于第二透镜7分别与激光器1和光隔离器2相耦合,所以第二透镜7能够将激光器1发射的第一光信号a进行会聚,会聚后的第一光信号a在经过光隔离器2偏转后,能够转变为经过会聚的第二光信号b,并在经过反射镜35的反射后,更为准确的耦合至第二光波导34中。
也就是说,无论第二透镜7是位于反射镜35和光隔离器2之间,还是位于激光器1和光隔离器2之间,均能够起到提高光信号的耦合效率的作用。
图12为保偏器件3的第三种结构形式的光路示意图,结合图12,对保偏器件3的第三种结构形式的光路进行介绍。
对于光信号发射流程来说,在激光器1发射出第一光信号a后,第一光信号a传输至偏振片21。由于偏振片21的偏振方向与第一光信号a的偏振方向相同,所以第一光信号a能够无损的通过偏振片21。在第一光信号a通过偏振片21后,第一光信号a将传输至旋光片22,在旋光片22的作用下,第一光信号a被偏转为第二光信号b,并进一步的传输至第二透镜7。第二光信号b在传输至第二透镜7后,在第二透镜7的作用下被会聚,以准确经过反射镜35的反射,并耦合至第二光波导34,以被第二光波导34所接收,从而完成光发射组件的整个光信号发射流程。
对于光信号反射流程来说,第三光信号c由第二光波导34反射出来,并经过第二透镜7,传输至旋光片22。第三光信号c在旋光片22的作用下被偏转为第四光信号d,第四光信号d输至偏振片21,并被偏振片21所吸收。
图13为本申请实施例提供的一种光通信装置的结构示意图,结合图13,该光通信装置包括单板100、接收端口200、发送端口300、板载光学组件400和光发射组件500。接收端口200、发送端口300、板载光学组件400和光发射组件500均与单板100相连,接收端口200、发送端口300和光发射组件500分别与板载光学组件400相耦合。
接收端口200、发送端口300、板载光学组件400和光发射组件500均集成在单板100上。对于光信号发射流程来说,光发射组件500发出未经调制的光信号,该光信号耦合至板载光学组件400中,经过板载光学组件400调制后的光信号耦合至发送端口300,以完成光信号发射流程。对于光信号接收流程来说,接收端口200接收光信号,并将该光信号耦合至板载光学组件400中,经过板载光学组件400中的光探测和光电转换,以完成光信号接收流程。
在光通信装置的整个光信号发射流程中,由于光发射组件500为第一方面的光发射组件500,所以光发射组件500既能够输出低损耗的光信号,又能够抵抗信道中反射的光信号的干扰。
在本实施例的一种实现方式中,板载光学组件400包括电交换芯片410、硅光芯片420和载板430,电交换芯片410和硅光芯片420通过粘结或者焊接的方式连接在载板430上,载板430通过焊接的方式连接在单板100上。
在本实施例的一种实现方式中,光发射组件500具有前文所述的第一种结构形式的保偏器件3。在此情况下,光发射组件500相当于光通信装置中的光源池。光发射组件500通过保偏光纤32与板载光学组件400相耦合。
在本实施例的一种实现方式中,参见图14,光发射组件500具有前文所述的第二种结构形式和第三种结构形式的保偏器件3。在此情况下,光发射组件500和板载光学组件400集成在一起,所以图中未示出光发射组件500,第一光波导33和第二光波导34位于硅光芯片420中。光发射组件500通过边缘出光(对应前文所述的第二种结构形式的保偏器件3,参见图15)和垂直出光(对应前文所述的第三种结构形式的保偏器件3,参见图16)的方式,与板载光学组件400相耦合。
以上的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (14)

  1. 一种光发射组件,其特征在于,包括激光器(1)、光隔离器(2)和保偏器件(3);
    所述激光器(1)用于发射第一光信号(a);
    所述保偏器件(3)用于接收第二光信号(b);
    所述光隔离器(2)包括偏振片(21)和旋光片(22),所述激光器(1)、所述偏振片(21)、所述旋光片(22)和所述保偏器件(3)依次排布,所述偏振片(21)的偏振方向与所述第一光信号(a)的偏振方向相同,所述旋光片(22)用于将所述第一光信号(a)偏转为所述第二光信号(b)。
  2. 根据权利要求1所述的光发射组件,其特征在于,所述旋光片(22)和所述保偏器件(3)之间不具有检偏器。
  3. 根据权利要求1或2所述的光发射组件,其特征在于,所述第一光信号(a)的偏正方向和所述第二光信号(b)的偏正方向之间的夹角为40°-50°。
  4. 根据权利要求1-3任一项所述的光发射组件,其特征在于,所述偏振片(21)与所述旋光片(22)相贴合;
    所述偏振片(21)背离所述旋光片(22)的一面朝向所述激光器(1),以与所述激光器(1)相耦合;
    所述旋光片(22)背离所述偏振片(21)的一面朝向所述保偏器件(3),以与所述保偏器件(3)相耦合。
  5. 根据权利要求1-4任一项所述的光发射组件,其特征在于,所述保偏器件(3)反射的第三光信号(c)与所述旋光片(22)相耦合;
    所述旋光片(22)用于将所述第三光信号(c)偏转为第四光信号(d),所述第四光信号(d)的偏振方向与所述偏振片(21)的偏振方向垂直。
  6. 根据权利要求1-5任一项所述的光发射组件,其特征在于,所述保偏器件(3)包括基片(31)和多个保偏光纤(32);
    所述基片(31)的一面具有多个凹槽(311),多个所述凹槽(311)依次间隔排布,且所述凹槽(311)与所述保偏光纤(32)一一对应;
    所述保偏光纤(32)插接在对应的所述凹槽(311)内,且所述保偏光纤(32)的一端部与所述光隔离器(2)相耦合。
  7. 根据权利要求6所述的光发射组件,其特征在于,所述激光器(1)包括基座(11)和多个发光单元(12);
    多个所述发光单元(12)依次间隔排布,且均与所述基座(11)相连,所述发光单元(12) 与所述保偏光纤(32)一一对应,且所述发光单元(12)与对应的所述保偏光纤(32)相对布置。
  8. 根据权利要求7所述的光发射组件,其特征在于,所述光发射组件还包括第一透镜阵列(4);
    所述第一透镜阵列(4)位于所述激光器(1)和所述光隔离器(2)之间,所述第一透镜阵列(4)的透镜单元与所述发光单元(12)一一对应,且所述第一透镜阵列(4)的透镜单元分别与所述光隔离器(2)和对应的所述发光单元(12)相耦合。
  9. 根据权利要求7或8所述的光发射组件,其特征在于,所述光发射组件还包括第二透镜阵列(5);
    所述第二透镜阵列(5)位于所述保偏器件(3)和所述光隔离器(2)之间,所述第二透镜阵列(5)的透镜单元与所述保偏光纤(32)一一对应,且所述第二透镜阵列(5)的透镜单元分别与所述光隔离器(2)和对应的所述保偏光纤(32)相耦合。
  10. 根据权利要求1-5任一项所述的光发射组件,其特征在于,所述保偏器件(3)包括第一光波导(33);
    所述第一光波导(33)沿所述光隔离器(2)的出光方向延伸,且所述第一光波导(33)的一端部与所述光隔离器(2)相耦合。
  11. 根据权利要求10所述的光发射组件,其特征在于,所述光发射组件还包括第一透镜(6);
    所述第一透镜(6)位于所述第一光波导(33)和所述光隔离器(2)之间,所述第一透镜(6)分别与所述第一光波导(33)和所述光隔离器(2)相耦合,或者,所述第一透镜(6)位于所述激光器(1)和所述光隔离器(2)之间,所述第一透镜(6)分别与所述激光器(1)和所述光隔离器(2)相耦合。
  12. 根据权利要求1-5任一项所述的光发射组件,其特征在于,所述保偏器件(3)包括第二光波导(34)和反射镜(35);
    所述第二光波导(34)与所述光隔离器(2)的出光方向之间具有夹角;
    所述反射镜(35)位于所述光隔离器(2)的出光方向上,以将所述光隔离器(2)与所述第二光波导(34)相耦合。
  13. 根据权利要求12所述的光发射组件,其特征在于,所述光发射组件还包括第二透镜(7);
    所述第二透镜(7)位于所述反射镜(35)和所述光隔离器(2)之间,所述第二透镜(7)分别与所述反射镜(35)和所述光隔离器(2)相耦合,或者,所述第二透镜(7)位于所述激光器(1)和所述光隔离器(2)之间,所述第二透镜(7)分别与所述激光器(1)和所述 光隔离器(2)相耦合。
  14. 一种光通信装置,其特征在于,包括单板(100)、接收端口(200)、发送端口(300)、板载光学组件(400)和权利要求1-13任一项所述的光发射组件(500);
    所述接收端口(200)、所述发送端口(300)、所述板载光学组件(400)和所述光发射组件(500)均与所述单板(100)相连,所述接收端口(200)、所述发送端口(300)和所述光发射组件(500)分别与所述板载光学组件(400)相耦合。
PCT/CN2022/127128 2021-10-28 2022-10-24 光发射组件及光通信装置 WO2023072003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111265539.6 2021-10-28
CN202111265539.6A CN116047675A (zh) 2021-10-28 2021-10-28 光发射组件及光通信装置

Publications (1)

Publication Number Publication Date
WO2023072003A1 true WO2023072003A1 (zh) 2023-05-04

Family

ID=86131857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127128 WO2023072003A1 (zh) 2021-10-28 2022-10-24 光发射组件及光通信装置

Country Status (2)

Country Link
CN (1) CN116047675A (zh)
WO (1) WO2023072003A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937753A (zh) * 2011-08-16 2013-02-20 深圳新飞通光电子技术有限公司 一种光隔离器及含有该隔离器的光组件
CN103309059A (zh) * 2012-03-16 2013-09-18 深圳新飞通光电子技术有限公司 一种偏振方向旋转器及其光组件
CN104422989A (zh) * 2013-08-26 2015-03-18 华为技术有限公司 光组件、光隔离器组件和光发射系统
CN205826997U (zh) * 2016-07-21 2016-12-21 河南鑫宇光科技股份有限公司 两片式自由空间隔离器
CN211348709U (zh) * 2020-02-11 2020-08-25 桂林光隆光学科技有限公司 一种保偏光纤阵列隔离器
US20210223477A1 (en) * 2020-01-16 2021-07-22 Ii-Vi Delaware, Inc. Optical isolator with optical fibers arranged on one single side
CN113419363A (zh) * 2021-07-22 2021-09-21 北极光电(深圳)有限公司 一种反射式保偏光隔离器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937753A (zh) * 2011-08-16 2013-02-20 深圳新飞通光电子技术有限公司 一种光隔离器及含有该隔离器的光组件
CN103309059A (zh) * 2012-03-16 2013-09-18 深圳新飞通光电子技术有限公司 一种偏振方向旋转器及其光组件
CN104422989A (zh) * 2013-08-26 2015-03-18 华为技术有限公司 光组件、光隔离器组件和光发射系统
CN205826997U (zh) * 2016-07-21 2016-12-21 河南鑫宇光科技股份有限公司 两片式自由空间隔离器
US20210223477A1 (en) * 2020-01-16 2021-07-22 Ii-Vi Delaware, Inc. Optical isolator with optical fibers arranged on one single side
CN211348709U (zh) * 2020-02-11 2020-08-25 桂林光隆光学科技有限公司 一种保偏光纤阵列隔离器
CN113419363A (zh) * 2021-07-22 2021-09-21 北极光电(深圳)有限公司 一种反射式保偏光隔离器

Also Published As

Publication number Publication date
CN116047675A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
US7031574B2 (en) Plug-in module for providing bi-directional data transmission
US7403676B2 (en) Optical waveguide module
US4375910A (en) Optical isolator
WO1993005429A1 (fr) Dispositif optique
US11698493B2 (en) Single-ended output circulator
CN111505766B (zh) 一种基于硅基集成磁光环行器的光学全双工收发组件
US7039278B1 (en) Single-fiber bi-directional transceiver
WO2022088412A1 (zh) 单光纤双向收发装置及光纤通信系统
JPH04355417A (ja) 光電子装置
CN111290089A (zh) 一种多波长耦合光发射装置
CN215297755U (zh) 一种用于单纤双向通信的四端口环形器及光模块
WO2023065468A1 (zh) 光信号传输系统
WO2023072003A1 (zh) 光发射组件及光通信装置
CN112799185A (zh) 一种用于单纤双向通信的四端口环形器及光模块
CN209086477U (zh) 波分复用模组及光发射装置
US11480735B2 (en) Optical isolator with optical fibers arranged on one single side
CN209343071U (zh) 一种磁光可调光衰减器
CN109581596B (zh) 一种棱镜隔离器及光器件
CN208224531U (zh) 一种极紧凑结构的光纤环形器
WO2021026774A1 (zh) 一种多通道并行双向器件耦合装置
CN221351784U (zh) 双向共用隔离组件、光发射组件及光收发模块
CN218728159U (zh) 一种分光隔离器
CN111694100A (zh) 一种偏振无关小型集成化自由空间隔离器
CN109613724B (zh) 一种磁光可调光衰减器
CN219610994U (zh) 一种光源装置及模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885880

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885880

Country of ref document: EP

Effective date: 20240508

NENP Non-entry into the national phase

Ref country code: DE