WO2023071945A1 - Light guide panel assembly, luminous glass system and vehicle - Google Patents

Light guide panel assembly, luminous glass system and vehicle Download PDF

Info

Publication number
WO2023071945A1
WO2023071945A1 PCT/CN2022/126758 CN2022126758W WO2023071945A1 WO 2023071945 A1 WO2023071945 A1 WO 2023071945A1 CN 2022126758 W CN2022126758 W CN 2022126758W WO 2023071945 A1 WO2023071945 A1 WO 2023071945A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
layer
light
panel assembly
guide layer
Prior art date
Application number
PCT/CN2022/126758
Other languages
French (fr)
Inventor
Jun Tan
Li Zhao
Xiaoyu Zhao
Jun Ma
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2023071945A1 publication Critical patent/WO2023071945A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/20Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors for lighting specific fittings of passenger or driving compartments; mounted on specific fittings of passenger or driving compartments
    • B60Q3/208Sun roofs; Windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J7/00Non-fixed roofs; Roofs with movable panels, e.g. rotary sunroofs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/60Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects
    • B60Q3/62Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects using light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/60Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects
    • B60Q3/62Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects using light guides
    • B60Q3/66Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects using light guides for distributing light among several lighting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/70Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose
    • B60Q3/74Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose for overall compartment lighting; for overall compartment lighting in combination with specific lighting, e.g. room lamps with reading lamps

Definitions

  • Embodiments of the present disclosure relate to a luminous glass system, and more particularly, to a light guide panel assembly for a luminous glass system.
  • Light Emitting Diode (LED) is used as ambient lights.
  • the LED can be configured in different colors and patterns as needed to create the desired effects.
  • some high-end cars also commonly use LED ambient lights, such as the steering wheel, central control, footlights, cup holders, roof, welcome lights, welcome pedals, doors, trunks, lights and other positions of the car.
  • a good ambient light will give people a sense of warmth and comfort, while will also give people a sense of technology and luxury.
  • the LED light strip has very soft texture and therefore can be hidden and installed irregularly in many positions as mentioned above.
  • the LED light strip is not suitable for the glass of the vehicle.
  • vehicle glass especially the sunroof, creates luminous effects by light guiding of the glass layer. This method is less effective. Since the vehicle glass is usually a sandwich glass composed of multiple glass sheets, ink layers are generally provided at the edges between the respective laminated glass sheets thereof. The ink layer is generally black, which absorbs the light transmitted in the glass, so that the illumination or pattern provided by the luminous glass system cannot reach the predetermined brightness, thus affecting the user experience.
  • the object of the present invention is to improve the existing luminous glass to increase the luminous brightness.
  • a light guide panel assembly comprising: a light guide layer, comprising opposing bottom surface and top surface, and configured to receive light incident from at least one side surface of the light guide layer and to cause the light to propagate laterally inside the light guide layer and escape in an escape area of the bottom and/or top surfaces; and a first reflective layer arranged at least at a non-total reflection area adjacent to the side surface on at least one of the bottom surface and the top surface, and configured to reflect the light so as to prevent the light from escaping the light guide layer from the non-total reflection area.
  • the light can only escape in the required escape area and prevent it from escaping from other areas other than the non-escaping area, so that the light intensity at the escape area can be effectively enhanced, thereby improving the user experience.
  • the light guide layer is at least one of a plurality of laminated transparent sheets.
  • the light guide panel assembly further comprises a second reflective layer arranged on at least a part of at least one side surface of the light guide layer that does not receive light.
  • the first reflective layer or the second reflective layer comprises at least one of a silver layer, an aluminum layer, and a white ink layer.
  • the light guide panel assembly further comprises an ink layer formed on an edge area of the top and/or bottom surfaces of the light guide layer.
  • the first reflective layer is arranged between the ink layer and the light guide layer.
  • a light guide panel assembly comprises: a light guide layer, comprising opposing bottom surface and top surface, and further comprising a through hole, wherein the light guide layer is configured to receive light incident from an interior side surface of the through hole and to cause the light to propagate laterally inside the light guide layer and escape in an escape area of the bottom and/or top surfaces; and a third reflective layer arranged at least at a non-total reflection area adjacent to the through hole on at least one surface of the bottom surface and the top surface.
  • the light guide layer is at least one of a plurality of laminated transparent sheets.
  • the light guide panel assembly further comprises a second reflective layer arranged at least on at least a part of at least one side surface of the light guide layer.
  • the second reflective layer or the third reflective layer comprises at least one of a silver layer, an aluminum layer, and a white ink layer.
  • a luminous glass system which comprises the above-mentioned light guide panel assembly and a light source, wherein the light source is arranged close to at least one side surface of the light guide layer.
  • a luminous glass system which comprises the light guide panel assembly previously described and a light source.
  • the light guide layer has a through hole, and the light source is arranged within the through hole.
  • a glass panel for a vehicle includes either of the two luminous glass systems previously described, wherein the light guide layer of the light guide panel assembly is configured to be the innermost layer.
  • this illumination method does not additionally occupy the limited space inside the vehicle, so that the interior of the vehicle can be more concise. Further, this illumination method can be combined with other ambient lights inside the vehicle to create a more diverse interior atmosphere, thereby improving the user experience.
  • Figure 1 illustrates a simplified top view schematic of a light guide panel assembly in a conventional solution
  • Figure 2 illustrates a simplified side view schematic of a light guide panel assembly in a conventional solution
  • Figures 3A and 3B illustrate simplified side view schematics of light guide layers in a light guide panel assembly in a conventional solution
  • Figures 4-7 illustrate simplified side view schematics of light guide panel assemblies used in accordance with a plurality of embodiments of the present disclosure.
  • Figure 8 illustrates a simplified top view schematic of a light guide panel assembly used in accordance with an embodiment of the present disclosure.
  • the term “including” and variations thereof are to be read as open-ended terms meaning “including, but not limited to” .
  • the term “based on” is to be read as “based at least in part” .
  • the terms “one embodiment” and “an embodiment” should be understood to mean “at least one embodiment” .
  • the term “another embodiment” should be understood to mean “at least one other embodiment” .
  • Other explicit and implicit definitions may be included below.
  • the term “lateral” is a direction substantially in line with the plane of the panel, which, in the context of the present disclosure, may be in line with the horizontal direction of the page or perpendicular to the direction of the page. Definitions of terms are consistent throughout the description unless the context clearly dictates otherwise.
  • FIG 1 illustrates a conventional light guide panel assembly 100 used to provide illumination and pattern display.
  • the light guide panel assembly 100 may be a transparent material, which may include a plurality of laminated transparent sheets.
  • the transparent plate can be made of any suitable transparent or translucent material such as glass, polycarbonate (PC) or polymethylmethacrylate (PMMA) .
  • PC polycarbonate
  • PMMA polymethylmethacrylate
  • Figure 2 illustrates a cross-sectional view of the light guide panel assembly 100 of Figure 1, the light guide panel assembly 100 including three laminated glass layers, wherein the light guide layer 101 is one of three laminated glass sheets.
  • the light guide layer 101 is plate-shaped and has a thickness, whereby the light guide layer 101 has opposing bottom surface 1011 and top surface 1012, and has multiple side surfaces, with reference to Figure 3.
  • the situation shown in Figure 2 is only illustrative, and is not intended to limit the protection scope of the present disclosure. Any other suitable situation is similar.
  • the light guide panel assembly 100 may further include more laminated glass sheets, and one or more of the glass sheets thereof may serve as the light guide layer 101.
  • the inventive concept of the present disclosure will be mainly described by taking the situation shown in Figure 2 as an example, and it should be understood that other situations are also similar, which will not be described separately hereinafter.
  • the light source 201 is arranged close to one side surface of the light guide layer 101, such as a plurality of LED light sources 201 arranged along one side surface of the light guide layer 101 shown in Figure 1.
  • Figure 3A illustrates the propagation of light entering the light guide layer 101 from the side surface of the light guide layer 101.
  • the light guide layer 101 has a through hole 1013, with reference to Figures 1 and 2.
  • the light source 201 may be arranged in one or more through holes 1013 of the light guide layer 101.
  • the light emitted by the light source will enter into the light guide layer 101 from the interior side surface 1014 of the through hole 1013 and propagate laterally inside the light guide layer 101, as shown in Figure 3B.
  • the LED light source providing incident light is only illustrative, and are not intended to limit the protection scope of the present disclosure. Any other suitable light source is also possible.
  • the light source may also be an organic light emitting diode (OLED) light source.
  • OLED organic light emitting diode
  • Figures 1 and 2 only schematically show an embodiment in which light is incident inside the light guide layer 101 from one surface. In some alternative embodiments, the light may also be incident into the light guide layer from multiple side surfaces of the light guide layer 101.
  • inventive concept of the present disclosure will be described mainly with the embodiments shown in Figures 1 and 2. It should be understood that other situations are also similar, which will not be described separately hereinafter.
  • only the light guide layer of the light guide panel assembly 100 may be a transparent material.
  • the light guide panel assembly 100 when applied to an automobile as automotive glass, the light guide panel assembly 100 typically requires a polyurethane (PU) sealant and sealant strip to be secured to the vehicle body.
  • the sealant and sealant strip are generally sensitive to light such as ultraviolet light, and are prone to failure under prolonged exposure to sunlight, etc.
  • an ink layer 105 is usually provided at the area where the sealant is usually provided at the edge of the light guide panel assembly 100, as shown in Figures 1 and 2.
  • the ink layer 105 is usually dark in color, such as black or dark gray, which can effectively block the deterioration effect of light on the sealant and the sealant strip.
  • the ink layer 105 is usually arranged at the ink area of the lower surface of the first layer of glass plate, the lower surface of the second layer of glass plate and the lower surface of the third layer of glass plate (i.e., the light guide layer 101) .
  • the ink layer 105 also has the function of increasing the adhesion between the PU sealant and the vehicle body.
  • Figure 3A illustrates a schematic diagram of lateral propagation in the light guide layer 101 when the light is incident from the side surface of the light guide layer 101.
  • Figure 3B illustrates a schematic diagram of lateral propagation in the light guide layer 101 when the light is incident from the interior side surface 1014 of the through hole 1013.
  • the light source is arranged at the side edge of the light guide layer 101, if the light source is arranged at a part of the length of the incident edge, the light will propagate laterally in a substantially fan-shaped area when viewed from a top view, due to factors such as the incident angle of the light, as shown in Figure 1.
  • the light After the light is laterally incident into the light guide layer 101 at a predetermined incident angle, it will propagate inside the light guide layer 101. In some areas, a part of the light is reflected from the bottom surface 1011 and the top surface 1012 back into the light guide layer 101, while another part is refracted and enters a medium adjacent to the light guide layer 101, such as air. In other areas, the light will be totally reflected from the bottom surface 1011 and the top surface 1012 back to the inside of the light guide layer 101.
  • Total reflection refers to the phenomenon that when light travels from an optically dense medium (such as the light guide layer 101) to an optically sparser medium (such as air or an intermediate layer between glass plates) , and if the incident angle exceeds the critical angle, the refracted light completely disappears, leaving only the reflecting light, which is called total reflection.
  • Different media adjacent to the optical guide layer 101 have different critical angles for total reflection.
  • the critical angle for total reflection of light is about 41.47°
  • the critical angle for total light reflection is about 75.56°.
  • the above-mentioned angle about the critical angle is only an example in the description to illustrate that the critical angle of adjacent media may also be different, and its specific size may also be other values depending on different media.
  • the light may be continuously reflected between the bottom surface 1011 and the top surface 1012 and propagate laterally.
  • the interface refractive index of the parts of the top surface or the bottom surface covered by the light escape portion 106 will change, so that total reflection does not occur, not even reflection. In this way, when the light travels to these positions, it will escape from the light guide layer 101, so that these positions of the light guide layer 101 emit light.
  • the bottom surface 1011 and the top surface 1012 of the light guide layer 101 can accordingly be divided into a non-total reflection area and a total reflection area, wherein at least one escape area is distributed in the total reflection area.
  • the escape area is actually the area covered by the light escape portion 106.
  • the escape area refers to an area where the light propagating laterally in the light guide layer 101 can escape in a direction substantially perpendicular to the light guide layer 101, as shown in Figures 3A and 3B.
  • the escape area is luminous, thereby providing illumination or pattern display or the like.
  • the above functions may be achieved by arranging the light escape portion 106 such as any suitable microstructures or coatings in the escape area.
  • the light escape portion 106 may be formed on at least one surface of the oppositely arranged surfaces of the light guide layer 101, and may have an appropriate shape, pattern or text to enable display of the shape, pattern or text.
  • the light escape portion 106 may be translucent or transparent, and may be configured in any suitable shape, size and/or pattern depending on the particular application.
  • the non-total reflection area is adjacent to the incident position of the light, that is, the side surface of the light guide layer 101.
  • the non-total reflection area is adjacent to the through hole 1013, that is, around the through hole 1013.
  • the light exiting at non-total reflection will be absorbed by the dark ink layer 105.
  • the undesired escape of light in the non-total reflection area 202 reduces the light reaching the escape area, thereby reducing the light level emitted by the light guide panel assembly 100 in the escape area, resulting in poor illumination or pattern display effect.
  • light escape may also occur on other side surfaces of the light guide layer 101 in the lateral propagation direction of the light (i.e., the side surface not receiving the light) , as shown in Figures 1 and 3B.
  • the light propagating laterally in the light guide layer 101 it is possible for the light propagating laterally in the light guide layer 101 to escape from all side surfaces of the light guide layer 101. All of these may result in a reduction in the amount of light escaping from the escape area, thereby deteriorating the illumination or pattern display effect of the light guide panel assembly 100. This also results in poor user experience when the light guide panel assembly is applied to vehicle glass for use as an ambient light.
  • Embodiments of the present disclosure provide a light guide panel assembly 100 that enables reduced light escape in non-escape areas and thus more light escape in escape areas to address, or at least partially address, the above and other potential problems of the conventional light guide panel assembly 100 to thereby increase light intensity in the escape area.
  • the light guide panel assembly 100 may be applied in vehicle glass so that the vehicle glass is used as a kind of ambient light, thereby improving user experience.
  • Figure 4 illustrates a schematic side view of the light guide panel assembly 100 according to an embodiment of the present disclosure, showing the situation where the light source 201 is set near the side surface of the light guide panel assembly 100.
  • the light guide panel assembly 100 includes a light guide layer 101 and a reflective layer.
  • Figure 4 illustrates the light guide layer 101 as one of a plurality of laminated glass sheets.
  • the situation shown in Figure 4 is only illustrative, and is not intended to limit the protection scope of the present disclosure. Any other suitable situation is similar, for example, in some alternative embodiments, the light guide panel assembly 100 may comprise two, four or more laminated glass sheets, and the light guide layer 101 may serve as one or more glass sheets thereof. When applied to applications such as vehicles, the light guide layer 101 is the innermost layer of the light guide panel assembly 100.
  • the light guide layer 101 of the light guide panel assembly 100 can receive the light incident from the side surface and propagate the light laterally therein until most of the light escapes in the escape area, thereby providing functions such as illumination or pattern display, as shown in Figures 4-6.
  • the light may be provided by a predetermined light source 201 (e.g., an LED light source 201 or an OLED light source, etc. ) .
  • the light guide layer 101 includes two oppositely arranged surfaces, that is, a bottom surface 1011 and a top surface 1012, as shown in Figure 4.
  • a reflective layer is provided at the non-total reflection area 202 adjacent to the incident edge of at least one surface of the bottom surface 1011 and the top surface 1012 (for convenience of description, hereinafter referred to as the first reflective layer 102) to reflect light so as to prevent the light from escaping in the non-total reflection area 202.
  • part of the light that may escape from the non-total reflection area 202 in the conventional solution can return to the interior of the light guide layer 101 and continue to propagate laterally therein until it escapes in the escape area, thereby increasing the amount of escaped light in the escape area, and effectively improving the illumination and pattern display effect, thereby improving the user experience.
  • the first reflection layer 102 may be arranged on the non-total reflection area 202 in any manner.
  • Figures 4 to 6 illustrate a number of different situations.
  • the first reflective layer 102 may be arranged on the bottom surface 1011 and between the ink layer 105 and the light guide layer 101, thereby effectively preventing the ink layer 105 from absorption of light escaping in the non-total reflection area 202.
  • the first reflective layer 102 may also be arranged on both the bottom surface 1011 and the top surface 1012, and the ink layer 105 is not provided on the bottom surface 1011 where the first reflective layer 102 is provided. That is, in some embodiments, after the non-total reflection area 202 of at least one surface of the bottom surface 1011 and the top surface 1012 is provided with the first reflective layer 102, no additional ink layer 105 may be provided on the corresponding area of the opposite surface. This is because the first reflective layer 102 can partially replace the ink layer 105 to achieve its proper function.
  • the ink layer 105 may be additionally arranged, as shown in Figure 6, thereby improving the adhesion of the ink layer 105 and protecting the first reflective layer 102, thereby improving the durability further. This can also meet customer requirements for light guide panel assemblies that require dark edges to improve user experience.
  • the first reflective layer 102 may only be arranged on the non-total reflection area 202 of the top surface 1012, and the first reflective layer 102 may be arranged between the ink layer 105 and the light guide layer 101, and only the ink layer 105 may be provided on the bottom surface 1011.
  • the coverage area of the first reflective layer 102 is substantially the same as the non-total reflection area.
  • the width W in a substantially lateral direction may be approximately equal to the width of the non-total reflection area 202, thereby effectively reducing undesired escape of light.
  • the width of the non-total reflection area 202 is related to at least one of the incident angle of light, the thickness and the critical angle of the light guide layer 101. That is, in some embodiments, the width of the first reflective layer 102 may also be related to at least one of the incident angle of the light, the thickness and the critical angle of the light guide layer 101.
  • the lateral width of the first reflective layer 102 has a certain relationship with the above factors, but also related to the length of the light source 201 that provides incident light.
  • the length of the first reflective layer 102 extending along the edge of the light guide layer may be set to be slightly larger than the length of the light source 201 and the position corresponds to the position of the light source 201.
  • the extent to which the length of the first reflective layer 102 is greater than the length of the light source 201 may be related to the incident angle of the light in the extending direction of the light guide plate.
  • the first reflective layer 102 may also be arranged at all non-reflective areas of the bottom surface 1011 and/or the top surface 1012 adjacent to the side surfaces where light is incident, so as to more effectively prevent undesired escape of light.
  • the light guide panel assembly 100 may further include a second reflective layer 103, as shown in Figures 4 to 8.
  • the second reflective layer 103 is arranged on at least a part of the other side surface of the light guide layer 101 that does not receive light.
  • the light that does not escape in the escape area but continues to propagate in the lateral propagation direction will be reflected by the second reflective layer 103, so as to return to the inside of the light guide layer 101 and continue to propagate until it escapes in the escape area, thereby further increasing the amount of light escaping from the escape area for improved illumination and pattern display effect.
  • the light source can also be arranged in the through hole 1013 of the light guide layer 101, as shown in Figure 7.
  • the light enters the light guide layer 101 through the interior side surface 1014 of the through hole 1013.
  • the through hole 1013 may be a through hole 1013 vertically penetrating the entire light guide panel assembly 100, or may only be a through hole 1013 formed in the light guide layer 101 to achieve certain specific functions. Due to the existence of the through hole 1013, the change of the medium occurs at the edge of the through hole 1013, that is, the change from the medium of the light guide layer 101 to the hollow medium (e.g., air) in the through hole 1013.
  • the hollow medium e.g., air
  • Figure 8 illustrates that the through holes 1013 may have circular and rectangular shapes.
  • the above embodiments in which the through holes are described by using circular through holes and rectangular through holes are not exhaustive, and there may be through holes of various shapes other than circular through holes or rectangular through holes.
  • the light emitted by the light source will enter the interior of the light guide layer 101 through the interior side surface 1014 of the through hole 1013 and propagate laterally therein, and the areas of the bottom surface 1011 and the top surface 1012 of the light guide layer 101 adjacent to the through hole 1013 will have the non-total reflection area 202, as shown in Figure 3B.
  • the light guide panel assembly 100 may further include a third reflective layer 104.
  • the third reflective layer 104 is arranged at least at the non-total reflection area 202 adjacent to the through hole 1013 of at least one surface of the bottom surface 1011 and the top surface 1012.
  • the third reflective layer 104 may surround the entire through hole, that is, cover the non-total reflection area 202 of the entire edge 1014, thereby further effectively improving the illumination or pattern display effect of the light guide panel assembly 100.
  • the second reflective layer 103 may be arranged on all side surfaces of the light guide layer 101, or a part thereof.
  • the width in the lateral direction of the third reflective layer 104 is also related to at least one of the incident angle of the light, the thickness of the light guide layer 101 and the critical angle at which the light is totally reflected in the light guide layer 101.
  • the light guide panel assembly 100 may exist in both of the above situations.
  • the light guide panel assembly 100 may include a plurality of light guide layers 101.
  • the light sources 201 are arranged close to one or more side surfaces of the light guide layers 101.
  • these light guide layers 101 have through holes 1013 and the light sources 201 are arranged in the through holes 1013.
  • the aforementioned first reflective layer 102, second reflective layer 103 or third reflective layer 104 may be made of any suitable material that enables specular reflection of light.
  • the first reflective layer 102, the second reflective layer 103, or the third reflective layer 104 may be at least one of a silver coating (i.e., a silver layer) , an aluminum layer, or a white coating such as a white ink layer 105.
  • the first reflective layer 102, the second reflective layer 103 or the third reflective layer 104 may also use a dedicated reflective film.
  • the first reflective layer 102, the second reflective layer 103 or the third reflective layer 104 may be arranged on the aforementioned corresponding areas in any suitable manner.
  • the reflective layer may be formed on the corresponding area by a silver mirror reaction.
  • the silver mirror reaction is a chemical reaction in which a solution of a monovalent silver compound is reduced to metallic silver. Since the generated metallic silver is attached to a smooth surface and is as bright as a mirror, it is called a silver mirror reaction.
  • the reflective layer can also be arranged on the corresponding area by means of coating, painting or bonding.
  • a luminous glass system includes the aforementioned light guide panel assembly 100 and a light source.
  • the light source 201 may be arranged close to at least one side surface of the light guide layer 101. In other embodiments, the light source 201 may be arranged inside the through hole 1013.
  • the light source 201 can be set so that the incident angle of the light emitted by it is within a predetermined threshold range, so that the undesired escape of the light can be more effectively reduced, thereby improving the illumination or pattern display effect of the luminous glass system.
  • a vehicle includes the luminous glass system described above, wherein the light guide layer is configured to be the innermost layer.
  • the term “innermost” refers to the position closest to the interior space of the vehicle.

Abstract

A light guide panel assembly and a luminescent glass system are provided. The light guide panel assembly includes a light guide layer (101) including oppositely disposed bottom (1011) and top (1012) surfaces and configured to receive laterally incident light rays and cause the light rays to propagate laterally inside the light guide layer (101) and escape in an escape region of the light guide layer (101); and a first reflective layer (102) disposed at least at a non-total reflection region of at least one of the bottom surface (1011) and the top surface (1012) adjacent to where the light is incident, to reflect the light to prevent the light from escaping the light guide layer (101) from the non-total reflection region. In this way, the intensity of the light escaping the light guide panel assembly at the escape area may be increased, thereby improving the user experience.

Description

LIGHT GUIDE PANEL ASSEMBLY, LUMINOUS GLASS SYSTEM AND VEHICLE FIELD
Embodiments of the present disclosure relate to a luminous glass system, and more particularly, to a light guide panel assembly for a luminous glass system.
BACKGROUND
Ambient lights play a decorative role and are usually used to enhance the atmosphere and create effects. Generally, Light Emitting Diode (LED) is used as ambient lights. The LED can be configured in different colors and patterns as needed to create the desired effects. At present, some high-end cars also commonly use LED ambient lights, such as the steering wheel, central control, footlights, cup holders, roof, welcome lights, welcome pedals, doors, trunks, lights and other positions of the car. A good ambient light will give people a sense of warmth and comfort, while will also give people a sense of technology and luxury.
The LED light strip has very soft texture and therefore can be hidden and installed irregularly in many positions as mentioned above. However, the LED light strip is not suitable for the glass of the vehicle.
At present, vehicle glass, especially the sunroof, creates luminous effects by light guiding of the glass layer. This method is less effective. Since the vehicle glass is usually a sandwich glass composed of multiple glass sheets, ink layers are generally provided at the edges between the respective laminated glass sheets thereof. The ink layer is generally black, which absorbs the light transmitted in the glass, so that the illumination or pattern provided by the luminous glass system cannot reach the predetermined brightness, thus affecting the user experience.
SUMMARY
The object of the present invention is to improve the existing luminous glass to increase the luminous brightness.
In a first aspect of the present disclosure, a light guide panel assembly is provided.  The light guide panel assembly comprises: a light guide layer, comprising opposing bottom surface and top surface, and configured to receive light incident from at least one side surface of the light guide layer and to cause the light to propagate laterally inside the light guide layer and escape in an escape area of the bottom and/or top surfaces; and a first reflective layer arranged at least at a non-total reflection area adjacent to the side surface on at least one of the bottom surface and the top surface, and configured to reflect the light so as to prevent the light from escaping the light guide layer from the non-total reflection area.
By arranging the reflective layer, the light can only escape in the required escape area and prevent it from escaping from other areas other than the non-escaping area, so that the light intensity at the escape area can be effectively enhanced, thereby improving the user experience.
In some embodiments, the light guide layer is at least one of a plurality of laminated transparent sheets.
In some embodiments, the light guide panel assembly further comprises a second reflective layer arranged on at least a part of at least one side surface of the light guide layer that does not receive light.
In some embodiments, the first reflective layer or the second reflective layer comprises at least one of a silver layer, an aluminum layer, and a white ink layer.
In some embodiments, the light guide panel assembly further comprises an ink layer formed on an edge area of the top and/or bottom surfaces of the light guide layer.
In some embodiments, the first reflective layer is arranged between the ink layer and the light guide layer.
In a second aspect of the present disclosure, a light guide panel assembly is provided. The light guide panel assembly comprises: a light guide layer, comprising opposing bottom surface and top surface, and further comprising a through hole, wherein the light guide layer is configured to receive light incident from an interior side surface of the through hole and to cause the light to propagate laterally inside the light guide layer and escape in an escape area of the bottom and/or top surfaces; and a third reflective layer arranged at least at a non-total reflection area adjacent to the through hole on at least one surface of the bottom surface and the top surface.
In some embodiments, the light guide layer is at least one of a plurality of laminated transparent sheets.
In some embodiments, the light guide panel assembly further comprises a second reflective layer arranged at least on at least a part of at least one side surface of the light guide layer.
In some embodiments, the second reflective layer or the third reflective layer comprises at least one of a silver layer, an aluminum layer, and a white ink layer.
In a third aspect of the present disclosure, a luminous glass system is provided, which comprises the above-mentioned light guide panel assembly and a light source, wherein the light source is arranged close to at least one side surface of the light guide layer.
In a fourth aspect of the present disclosure, a luminous glass system is provided, which comprises the light guide panel assembly previously described and a light source. The light guide layer has a through hole, and the light source is arranged within the through hole.
In a fifth aspect of the present disclosure, there is provided a glass panel for a vehicle. The glass panel includes either of the two luminous glass systems previously described, wherein the light guide layer of the light guide panel assembly is configured to be the innermost layer.
It should be understood that this summary is not intended to determine key or essential features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will become readily understood from the following description.
Optionally, in addition to the advantages of large light source area and soft light, this illumination method does not additionally occupy the limited space inside the vehicle, so that the interior of the vehicle can be more concise. Further, this illumination method can be combined with other ambient lights inside the vehicle to create a more diverse interior atmosphere, thereby improving the user experience.
BRIEF DESCRIPTION OF THE DRAWINGS
The above objects and other objects, features and advantages of the present  disclosure will become more apparent by describing the exemplary embodiments of the present disclosure in more detail in conjunction with the drawings, wherein the same reference numerals usually mean the same components in the exemplary embodiments of the present disclosure.
Figure 1 illustrates a simplified top view schematic of a light guide panel assembly in a conventional solution;
Figure 2 illustrates a simplified side view schematic of a light guide panel assembly in a conventional solution;
Figures 3A and 3B illustrate simplified side view schematics of light guide layers in a light guide panel assembly in a conventional solution;
Figures 4-7 illustrate simplified side view schematics of light guide panel assemblies used in accordance with a plurality of embodiments of the present disclosure; and
Figure 8 illustrates a simplified top view schematic of a light guide panel assembly used in accordance with an embodiment of the present disclosure.
Throughout the drawings, the same or similar reference numbers are used to refer to the same or similar elements.
DETAILED DESCRIPTION
The present disclosure will now be described with reference to several example embodiments. It should be understood that these embodiments are only described for the purpose of enabling those skilled in the art to better understand and thereby implement the present disclosure, rather than for the purpose of providing any limitation to the scope of the technical solutions of the present disclosure.
As used herein, the term “including” and variations thereof are to be read as open-ended terms meaning “including, but not limited to” . The term “based on” is to be read as “based at least in part” . The terms “one embodiment” and “an embodiment” should be understood to mean “at least one embodiment” . The term “another embodiment” should be understood to mean “at least one other embodiment” . Other explicit and implicit definitions may be included below. The term “lateral” is a direction substantially in line with the plane of the panel, which, in the context of the present disclosure, may be in  line with the horizontal direction of the page or perpendicular to the direction of the page. Definitions of terms are consistent throughout the description unless the context clearly dictates otherwise.
Figure 1 illustrates a conventional light guide panel assembly 100 used to provide illumination and pattern display. The light guide panel assembly 100 may be a transparent material, which may include a plurality of laminated transparent sheets. The transparent plate can be made of any suitable transparent or translucent material such as glass, polycarbonate (PC) or polymethylmethacrylate (PMMA) . Hereinafter, the inventive concept of the present disclosure will be described mainly by taking glass, especially vehicle glass, as an example of the light guide panel assembly 100. It should be understood that other situations are also similar, which will not be described separately hereinafter.
Further, Figure 2 illustrates a cross-sectional view of the light guide panel assembly 100 of Figure 1, the light guide panel assembly 100 including three laminated glass layers, wherein the light guide layer 101 is one of three laminated glass sheets. The light guide layer 101 is plate-shaped and has a thickness, whereby the light guide layer 101 has opposing bottom surface 1011 and top surface 1012, and has multiple side surfaces, with reference to Figure 3.
The situation shown in Figure 2 is only illustrative, and is not intended to limit the protection scope of the present disclosure. Any other suitable situation is similar. For example, the light guide panel assembly 100 may further include more laminated glass sheets, and one or more of the glass sheets thereof may serve as the light guide layer 101. Hereinafter, the inventive concept of the present disclosure will be mainly described by taking the situation shown in Figure 2 as an example, and it should be understood that other situations are also similar, which will not be described separately hereinafter.
In the example shown in Figures 1-2, the light source 201 is arranged close to one side surface of the light guide layer 101, such as a plurality of LED light sources 201 arranged along one side surface of the light guide layer 101 shown in Figure 1. Figure 3A illustrates the propagation of light entering the light guide layer 101 from the side surface of the light guide layer 101.
In another example, the light guide layer 101 has a through hole 1013, with reference to Figures 1 and 2. In this case, the light source 201 may be arranged in one or  more through holes 1013 of the light guide layer 101. In this case, the light emitted by the light source will enter into the light guide layer 101 from the interior side surface 1014 of the through hole 1013 and propagate laterally inside the light guide layer 101, as shown in Figure 3B.
Further, it should also be understood that the above-mentioned embodiments about the LED light source providing incident light are only illustrative, and are not intended to limit the protection scope of the present disclosure. Any other suitable light source is also possible. For example, in some alternative embodiments, the light source may also be an organic light emitting diode (OLED) light source.
Figures 1 and 2 only schematically show an embodiment in which light is incident inside the light guide layer 101 from one surface. In some alternative embodiments, the light may also be incident into the light guide layer from multiple side surfaces of the light guide layer 101. Hereinafter, the inventive concept of the present disclosure will be described mainly with the embodiments shown in Figures 1 and 2. It should be understood that other situations are also similar, which will not be described separately hereinafter.
In other embodiments, only the light guide layer of the light guide panel assembly 100 may be a transparent material.
With reference to Figures 1 and 2, when applied to an automobile as automotive glass, the light guide panel assembly 100 typically requires a polyurethane (PU) sealant and sealant strip to be secured to the vehicle body. The sealant and sealant strip are generally sensitive to light such as ultraviolet light, and are prone to failure under prolonged exposure to sunlight, etc. In order to prevent the sealant and the sealant strip from failing, an ink layer 105 is usually provided at the area where the sealant is usually provided at the edge of the light guide panel assembly 100, as shown in Figures 1 and 2. The ink layer 105 is usually dark in color, such as black or dark gray, which can effectively block the deterioration effect of light on the sealant and the sealant strip. For the three-layer glass plate shown in Figure 2, the ink layer 105 is usually arranged at the ink area of the lower surface of the first layer of glass plate, the lower surface of the second layer of glass plate and the lower surface of the third layer of glass plate (i.e., the light guide layer 101) . In addition to the function of preventing the sealant from failing, the ink layer 105 also has the function of increasing the adhesion between the PU sealant and the vehicle body.
Figure 3A illustrates a schematic diagram of lateral propagation in the light guide layer 101 when the light is incident from the side surface of the light guide layer 101. Figure 3B illustrates a schematic diagram of lateral propagation in the light guide layer 101 when the light is incident from the interior side surface 1014 of the through hole 1013. In the case where the light source is arranged at the side edge of the light guide layer 101, if the light source is arranged at a part of the length of the incident edge, the light will propagate laterally in a substantially fan-shaped area when viewed from a top view, due to factors such as the incident angle of the light, as shown in Figure 1.
After the light is laterally incident into the light guide layer 101 at a predetermined incident angle, it will propagate inside the light guide layer 101. In some areas, a part of the light is reflected from the bottom surface 1011 and the top surface 1012 back into the light guide layer 101, while another part is refracted and enters a medium adjacent to the light guide layer 101, such as air. In other areas, the light will be totally reflected from the bottom surface 1011 and the top surface 1012 back to the inside of the light guide layer 101. Total reflection refers to the phenomenon that when light travels from an optically dense medium (such as the light guide layer 101) to an optically sparser medium (such as air or an intermediate layer between glass plates) , and if the incident angle exceeds the critical angle, the refracted light completely disappears, leaving only the reflecting light, which is called total reflection. Different media adjacent to the optical guide layer 101 have different critical angles for total reflection. For example, for ordinary glass, for the surface corresponding to the light guide layer 101 adjacent to the air, the critical angle for total reflection of light is about 41.47°, and for the surface corresponding to the light guide layer 101 adjacent to the intermediate layer, the critical angle for total light reflection is about 75.56°. Of course, it should be understood that the above-mentioned angle about the critical angle is only an example in the description to illustrate that the critical angle of adjacent media may also be different, and its specific size may also be other values depending on different media.
With reference to Figures 3A and 3B, the light may be continuously reflected between the bottom surface 1011 and the top surface 1012 and propagate laterally. When some parts of the bottom surface 1011 or the top surface 1012 of the light guide layer 101 are provided with a light escape portion 106, the interface refractive index of the parts of the top surface or the bottom surface covered by the light escape portion 106 will change, so that total reflection does not occur, not even reflection. In this way, when the light  travels to these positions, it will escape from the light guide layer 101, so that these positions of the light guide layer 101 emit light.
The bottom surface 1011 and the top surface 1012 of the light guide layer 101 can accordingly be divided into a non-total reflection area and a total reflection area, wherein at least one escape area is distributed in the total reflection area. The escape area is actually the area covered by the light escape portion 106. Specifically, the escape area refers to an area where the light propagating laterally in the light guide layer 101 can escape in a direction substantially perpendicular to the light guide layer 101, as shown in Figures 3A and 3B. Thus, when the light guide layer 101 is viewed from a direction substantially perpendicular to the light guide layer 101, it can be observed that the escape area is luminous, thereby providing illumination or pattern display or the like. The above functions may be achieved by arranging the light escape portion 106 such as any suitable microstructures or coatings in the escape area. The light escape portion 106 may be formed on at least one surface of the oppositely arranged surfaces of the light guide layer 101, and may have an appropriate shape, pattern or text to enable display of the shape, pattern or text. The light escape portion 106 may be translucent or transparent, and may be configured in any suitable shape, size and/or pattern depending on the particular application.
With reference to Figure 3A, due to factors such as the incident angle of the light, and the thickness and the size of the critical angle of the light guide layer 101, the non-total reflection area is adjacent to the incident position of the light, that is, the side surface of the light guide layer 101. With reference to Figure 3B, the non-total reflection area is adjacent to the through hole 1013, that is, around the through hole 1013. For vehicle glass, the light exiting at non-total reflection will be absorbed by the dark ink layer 105. The undesired escape of light in the non-total reflection area 202 reduces the light reaching the escape area, thereby reducing the light level emitted by the light guide panel assembly 100 in the escape area, resulting in poor illumination or pattern display effect.
Further, in addition to the incident edge, light escape may also occur on other side surfaces of the light guide layer 101 in the lateral propagation direction of the light (i.e., the side surface not receiving the light) , as shown in Figures 1 and 3B. For the case of providing the light source 201 in the through hole 1013, it is possible for the light propagating laterally in the light guide layer 101 to escape from all side surfaces of the light guide layer 101. All of these may result in a reduction in the amount of light escaping  from the escape area, thereby deteriorating the illumination or pattern display effect of the light guide panel assembly 100. This also results in poor user experience when the light guide panel assembly is applied to vehicle glass for use as an ambient light.
Embodiments of the present disclosure provide a light guide panel assembly 100 that enables reduced light escape in non-escape areas and thus more light escape in escape areas to address, or at least partially address, the above and other potential problems of the conventional light guide panel assembly 100 to thereby increase light intensity in the escape area. In this way, the light guide panel assembly 100 according to an embodiment of the present disclosure may be applied in vehicle glass so that the vehicle glass is used as a kind of ambient light, thereby improving user experience.
Figure 4 illustrates a schematic side view of the light guide panel assembly 100 according to an embodiment of the present disclosure, showing the situation where the light source 201 is set near the side surface of the light guide panel assembly 100. As shown in Figure 4, generally, the light guide panel assembly 100 according to an embodiment of the present disclosure includes a light guide layer 101 and a reflective layer. Figure 4 illustrates the light guide layer 101 as one of a plurality of laminated glass sheets. Of course, it should be understood that the situation shown in Figure 4 is only illustrative, and is not intended to limit the protection scope of the present disclosure. Any other suitable situation is similar, for example, in some alternative embodiments, the light guide panel assembly 100 may comprise two, four or more laminated glass sheets, and the light guide layer 101 may serve as one or more glass sheets thereof. When applied to applications such as vehicles, the light guide layer 101 is the innermost layer of the light guide panel assembly 100.
In some embodiments, the light guide layer 101 of the light guide panel assembly 100 can receive the light incident from the side surface and propagate the light laterally therein until most of the light escapes in the escape area, thereby providing functions such as illumination or pattern display, as shown in Figures 4-6. As mentioned above, the light may be provided by a predetermined light source 201 (e.g., an LED light source 201 or an OLED light source, etc. ) .
The light guide layer 101 includes two oppositely arranged surfaces, that is, a bottom surface 1011 and a top surface 1012, as shown in Figure 4. In order to prevent light from escaping from the non-total reflection area 202 adjacent to the incident edge, a  reflective layer is provided at the non-total reflection area 202 adjacent to the incident edge of at least one surface of the bottom surface 1011 and the top surface 1012 (for convenience of description, hereinafter referred to as the first reflective layer 102) to reflect light so as to prevent the light from escaping in the non-total reflection area 202. In this way, part of the light that may escape from the non-total reflection area 202 in the conventional solution can return to the interior of the light guide layer 101 and continue to propagate laterally therein until it escapes in the escape area, thereby increasing the amount of escaped light in the escape area, and effectively improving the illumination and pattern display effect, thereby improving the user experience.
The first reflection layer 102 may be arranged on the non-total reflection area 202 in any manner. Figures 4 to 6 illustrate a number of different situations.
In some embodiments, as shown in Figure 4, the first reflective layer 102 may be arranged on the bottom surface 1011 and between the ink layer 105 and the light guide layer 101, thereby effectively preventing the ink layer 105 from absorption of light escaping in the non-total reflection area 202.
In some embodiments, as shown in Figure 5, the first reflective layer 102 may also be arranged on both the bottom surface 1011 and the top surface 1012, and the ink layer 105 is not provided on the bottom surface 1011 where the first reflective layer 102 is provided. That is, in some embodiments, after the non-total reflection area 202 of at least one surface of the bottom surface 1011 and the top surface 1012 is provided with the first reflective layer 102, no additional ink layer 105 may be provided on the corresponding area of the opposite surface. This is because the first reflective layer 102 can partially replace the ink layer 105 to achieve its proper function.
In some embodiments, while the first reflective layer 102 is arranged on the bottom surface 1011 and the top surface 1012, the ink layer 105 may be additionally arranged, as shown in Figure 6, thereby improving the adhesion of the ink layer 105 and protecting the first reflective layer 102, thereby improving the durability further. This can also meet customer requirements for light guide panel assemblies that require dark edges to improve user experience.
In some embodiments, the first reflective layer 102 may only be arranged on the non-total reflection area 202 of the top surface 1012, and the first reflective layer 102 may be arranged between the ink layer 105 and the light guide layer 101, and only the ink layer  105 may be provided on the bottom surface 1011.
In some embodiments, the coverage area of the first reflective layer 102 is substantially the same as the non-total reflection area. For example, the width W in a substantially lateral direction may be approximately equal to the width of the non-total reflection area 202, thereby effectively reducing undesired escape of light. As mentioned above, the width of the non-total reflection area 202 is related to at least one of the incident angle of light, the thickness and the critical angle of the light guide layer 101. That is, in some embodiments, the width of the first reflective layer 102 may also be related to at least one of the incident angle of the light, the thickness and the critical angle of the light guide layer 101.
Similarly, the lateral width of the first reflective layer 102 has a certain relationship with the above factors, but also related to the length of the light source 201 that provides incident light. The length of the first reflective layer 102 extending along the edge of the light guide layer may be set to be slightly larger than the length of the light source 201 and the position corresponds to the position of the light source 201. The extent to which the length of the first reflective layer 102 is greater than the length of the light source 201 may be related to the incident angle of the light in the extending direction of the light guide plate. In some embodiments, the first reflective layer 102 may also be arranged at all non-reflective areas of the bottom surface 1011 and/or the top surface 1012 adjacent to the side surfaces where light is incident, so as to more effectively prevent undesired escape of light.
As mentioned above, some of the light propagating laterally in the light guide layer 101 will continue to propagate laterally after passing through the escape area to escape on other side surfaces, as shown in Figures 1, 3A and 3B. Considering this situation, in order to further improve the illumination and pattern display effects, in some embodiments, the light guide panel assembly 100 may further include a second reflective layer 103, as shown in Figures 4 to 8. The second reflective layer 103 is arranged on at least a part of the other side surface of the light guide layer 101 that does not receive light. In this way, the light that does not escape in the escape area but continues to propagate in the lateral propagation direction will be reflected by the second reflective layer 103, so as to return to the inside of the light guide layer 101 and continue to propagate until it escapes in the escape area, thereby further increasing the amount of light escaping from the escape area for improved illumination and pattern display effect.
In another embodiment, as mentioned above, the light source can also be arranged in the through hole 1013 of the light guide layer 101, as shown in Figure 7. In this case, the light enters the light guide layer 101 through the interior side surface 1014 of the through hole 1013. The through hole 1013 may be a through hole 1013 vertically penetrating the entire light guide panel assembly 100, or may only be a through hole 1013 formed in the light guide layer 101 to achieve certain specific functions. Due to the existence of the through hole 1013, the change of the medium occurs at the edge of the through hole 1013, that is, the change from the medium of the light guide layer 101 to the hollow medium (e.g., air) in the through hole 1013. As shown in Figure 3B, when light is incident on the interior side surface 1014 of the through hole 1013, the areas of the bottom surface 1011 and the top surface 1012 adjacent to the through hole 1013 are the non-total reflection areas 202.
Figure 8 illustrates that the through holes 1013 may have circular and rectangular shapes. Of course, it should be understood that the above embodiments in which the through holes are described by using circular through holes and rectangular through holes are not exhaustive, and there may be through holes of various shapes other than circular through holes or rectangular through holes. In this case, as mentioned above, as long as the light source is arranged inside the through hole 1013, as shown in Figures 7 and 8, the light emitted by the light source will enter the interior of the light guide layer 101 through the interior side surface 1014 of the through hole 1013 and propagate laterally therein, and the areas of the bottom surface 1011 and the top surface 1012 of the light guide layer 101 adjacent to the through hole 1013 will have the non-total reflection area 202, as shown in Figure 3B.
In order to prevent light from escaping from the non-total reflection area 202 near the through hole 1013, in some embodiments, the light guide panel assembly 100 may further include a third reflective layer 104. As shown in Figures 7 and 8, the third reflective layer 104 is arranged at least at the non-total reflection area 202 adjacent to the through hole 1013 of at least one surface of the bottom surface 1011 and the top surface 1012. For example, in some embodiments, as shown in Figure 8 , the third reflective layer 104 may surround the entire through hole, that is, cover the non-total reflection area 202 of the entire edge 1014, thereby further effectively improving the illumination or pattern display effect of the light guide panel assembly 100.
In this embodiment, the second reflective layer 103 may be arranged on all side  surfaces of the light guide layer 101, or a part thereof.
Similar to the width of the first reflective layer 102, the width in the lateral direction of the third reflective layer 104 is also related to at least one of the incident angle of the light, the thickness of the light guide layer 101 and the critical angle at which the light is totally reflected in the light guide layer 101. By setting the width reasonably, the illumination or pattern display effect of the light guide panel assembly 100 can be improved in a cost-effective manner.
In the foregoing, the situations where the light is incident from the side surface of the light guide layer 101 or the interior side surface 1014 of the through hole 1013 are respectively described with reference to the drawings. In some embodiments, the light guide panel assembly 100 may exist in both of the above situations. For example, in some embodiments, the light guide panel assembly 100 may include a plurality of light guide layers 101. For a part of these light guide layers 101, the light sources 201 are arranged close to one or more side surfaces of the light guide layers 101. For the other light guide layers, these light guide layers 101 have through holes 1013 and the light sources 201 are arranged in the through holes 1013.
In some embodiments, the aforementioned first reflective layer 102, second reflective layer 103 or third reflective layer 104 may be made of any suitable material that enables specular reflection of light. For example, in some embodiments, the first reflective layer 102, the second reflective layer 103, or the third reflective layer 104 may be at least one of a silver coating (i.e., a silver layer) , an aluminum layer, or a white coating such as a white ink layer 105. Further, in some embodiments, the first reflective layer 102, the second reflective layer 103 or the third reflective layer 104 may also use a dedicated reflective film.
The first reflective layer 102, the second reflective layer 103 or the third reflective layer 104 may be arranged on the aforementioned corresponding areas in any suitable manner. For example, the reflective layer may be formed on the corresponding area by a silver mirror reaction. The silver mirror reaction is a chemical reaction in which a solution of a monovalent silver compound is reduced to metallic silver. Since the generated metallic silver is attached to a smooth surface and is as bright as a mirror, it is called a silver mirror reaction. In some alternative embodiments, the reflective layer can also be arranged on the corresponding area by means of coating, painting or bonding.
According to further embodiments of the present disclosure, a luminous glass system includes the aforementioned light guide panel assembly 100 and a light source. In some embodiments, the light source 201 may be arranged close to at least one side surface of the light guide layer 101. In other embodiments, the light source 201 may be arranged inside the through hole 1013.
The light source 201 can be set so that the incident angle of the light emitted by it is within a predetermined threshold range, so that the undesired escape of the light can be more effectively reduced, thereby improving the illumination or pattern display effect of the luminous glass system.
According to a further embodiment of the present disclosure, a vehicle includes the luminous glass system described above, wherein the light guide layer is configured to be the innermost layer. The term “innermost” refers to the position closest to the interior space of the vehicle.
It should be understood that the above-detailed embodiments of the present disclosure are provided for the purpose of illustrating or explaining the principles of the present disclosure only, and not for the purpose of limiting the present disclosure. Therefore, any modifications, equivalent substitutions, and improvements made within the spirit and principles of the present disclosure should be included within the protection scope of the present disclosure. In the meantime, the claims appended to the present disclosure are intended to cover all changes and modifications that fall within the scope and purview of the equivalents of the claims.

Claims (13)

  1. A light guide panel assembly comprising:
    a light guide layer (101) , comprising opposing bottom surface (1011) and top surface (1012) , and configured to receive light incident from at least one side surface of the light guide layer (101) and to cause the light to propagate laterally inside the light guide layer (101) and escape in an escape area of the bottom and/or top surfaces; and
    a first reflective layer (102) arranged at least at a non-total reflection area adjacent to the side surface on at least one of the bottom surface (1011) and the top surface (1012) , and configured to reflect the light so as to prevent the light from escaping the light guide layer (101) from the non-total reflection area.
  2. The light guide panel assembly of claim 1, wherein the light guide layer (101) is one of a plurality of laminated transparent sheets.
  3. The light guide panel assembly of claim 1, further comprising:
    a second reflective layer (103) arranged on at least a part of at least one side surface of the light guide layer (101) that does not receive light.
  4. The light guide panel assembly of claim 3, wherein the first reflective layer (102) or the second reflective layer (103) comprises at least one of a silver layer, an aluminum layer, and a white ink layer.
  5. The light guide panel assembly of claim 1, further comprising:
    an ink layer (105) formed on an edge area of the top and/or bottom surfaces of the light guide layer.
  6. The light guide panel assembly of claim 5, characterized in the first reflective layer (102) is arranged between the ink layer (105) and the light guide layer (101) .
  7. A light guide panel assembly comprising:
    a light guide layer (101) , comprising opposing bottom surface (1011) and top surface (1012) , and further comprising a through hole (1013) , wherein the light guide layer (101) is configured to receive light incident from an interior side surface (1014) of the through hole (1013) and to cause the light to propagate laterally inside the light guide layer  (101) and escape in an escape area of the bottom and/or top surfaces; and
    a third reflective layer (104) arranged at least at a non-total reflection area adjacent to the through hole (1013) on at least one surface of the bottom surface (1011) and the top surface (1012) .
  8. The light guide panel assembly of claim 7, wherein the light guide layer (101) is at least one of a plurality of laminated transparent sheets.
  9. The light guide panel assembly of claim 7, further comprising:
    a second reflective layer (103) arranged at least on at least a part of at least one side surface of the light guide layer (101) .
  10. The light guide panel assembly of claim 9, wherein the second reflective layer (103) or the third reflective layer (104) comprises at least one of a silver layer, an aluminum layer, and a white ink layer.
  11. A luminous glass system, characterized in that the luminous glass system comprises:
    the light guide panel assembly of any of claims 1-6; and
    a light source arranged close to at least one side surface of the light guide layer.
  12. A luminous glass system, comprising:
    the light guide panel assembly of any of claims 7-10; and
    a light source (201) arranged within the through hole of the light guide layer.
  13. A vehicle comprising the luminous glass system of claim 11 or 12, wherein the light guide layer is configured to be the innermost layer.
PCT/CN2022/126758 2021-10-29 2022-10-21 Light guide panel assembly, luminous glass system and vehicle WO2023071945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111274037.X 2021-10-29
CN202111274037.XA CN115366783A (en) 2021-10-29 2021-10-29 Light guide panel assembly, light emitting glass system and vehicle

Publications (1)

Publication Number Publication Date
WO2023071945A1 true WO2023071945A1 (en) 2023-05-04

Family

ID=84060734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126758 WO2023071945A1 (en) 2021-10-29 2022-10-21 Light guide panel assembly, luminous glass system and vehicle

Country Status (2)

Country Link
CN (1) CN115366783A (en)
WO (1) WO2023071945A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713701A (en) * 2009-12-16 2012-10-03 法国圣-戈班玻璃公司 Light-emitting diode panel
CN105501032A (en) * 2015-12-03 2016-04-20 福耀玻璃工业集团股份有限公司 Laminated glass capable of emitting light
US20190025500A1 (en) * 2016-01-05 2019-01-24 Corning Incorporated Laminated light diffusing optical fiber
CN212108063U (en) * 2020-06-16 2020-12-08 华域视觉科技(上海)有限公司 Light guide structure, light emitting component, vehicle control panel and vehicle
CN113401047A (en) * 2020-03-17 2021-09-17 英纳法天窗系统集团有限公司 Assembly of a panel and at least one light device and open roof construction provided therewith
CN113525042A (en) * 2020-09-28 2021-10-22 法国圣戈班玻璃公司 Functional glass, method for controlling functional glass, vehicle window assembly and vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713701A (en) * 2009-12-16 2012-10-03 法国圣-戈班玻璃公司 Light-emitting diode panel
CN105501032A (en) * 2015-12-03 2016-04-20 福耀玻璃工业集团股份有限公司 Laminated glass capable of emitting light
US20190025500A1 (en) * 2016-01-05 2019-01-24 Corning Incorporated Laminated light diffusing optical fiber
CN113401047A (en) * 2020-03-17 2021-09-17 英纳法天窗系统集团有限公司 Assembly of a panel and at least one light device and open roof construction provided therewith
CN212108063U (en) * 2020-06-16 2020-12-08 华域视觉科技(上海)有限公司 Light guide structure, light emitting component, vehicle control panel and vehicle
CN113525042A (en) * 2020-09-28 2021-10-22 法国圣戈班玻璃公司 Functional glass, method for controlling functional glass, vehicle window assembly and vehicle

Also Published As

Publication number Publication date
CN115366783A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
US7556412B2 (en) Fiber optic auxiliary lighting system
US20070098969A1 (en) Light-guiding assembly and automotive vehicle roof
US20230400619A1 (en) Light guide layer for vehicle glass, vehicle glass and vehicle interior lighting system
US20230324598A1 (en) Glazing
US10272831B2 (en) Interior lighting assemblies and units that produce natural and courtesy light patterns
CN105774684A (en) Application structure for motor vehicles
JP6809863B2 (en) Mounting structure of linear light guide and lighting device using it
US20150291089A1 (en) Illuminated glass panel
US20080190071A1 (en) Translucent Wall Element and Motor Vehicle Comprising Such an Element
WO2023071945A1 (en) Light guide panel assembly, luminous glass system and vehicle
KR20060063961A (en) Daylight emitting pannel
JP2017112039A (en) Window rear lamp
CN112622753A (en) Vehicle window and automobile
CN214420324U (en) Atmosphere window and vehicle
US6717732B2 (en) Vehicle rear-view mirror and method of making same
CN115923456A (en) Glass component and window body assembly
JP7052537B2 (en) Display device
WO2020121655A1 (en) Vehicle body display device
CN219606854U (en) Lighting unit, glass assembly and window assembly
WO2023193697A1 (en) Glass assembly and window assembly
CN219800423U (en) Automobile dynamic luminous LOGO lamp
CN216034071U (en) Light-emitting glass window unit and vehicle
JP2017174726A (en) Window panel with vehicular lighting fixture and rear panel for vehicle
JP7153450B2 (en) Interior lighting system for vehicles
CN107963015B (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885822

Country of ref document: EP

Kind code of ref document: A1