WO2023071826A1 - 湿法蚀刻设备及湿法蚀刻方法 - Google Patents

湿法蚀刻设备及湿法蚀刻方法 Download PDF

Info

Publication number
WO2023071826A1
WO2023071826A1 PCT/CN2022/125313 CN2022125313W WO2023071826A1 WO 2023071826 A1 WO2023071826 A1 WO 2023071826A1 CN 2022125313 W CN2022125313 W CN 2022125313W WO 2023071826 A1 WO2023071826 A1 WO 2023071826A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
silicon
adsorbent
wet etching
solution
Prior art date
Application number
PCT/CN2022/125313
Other languages
English (en)
French (fr)
Inventor
吴祥
李卫民
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Publication of WO2023071826A1 publication Critical patent/WO2023071826A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means

Definitions

  • the invention relates to the technical field of semiconductor manufacturing, in particular to wet etching technology, in particular to a wet etching device and a wet etching method.
  • Integrated circuits are the foundation of the information industry, and integrated circuit manufacturing is an important part of the integrated circuit industry.
  • wet etching is a commonly used process for removing dielectric materials such as silicon, silicon oxide or silicon nitride compounds on substrates.
  • the corrosion mechanism of silicon and/or its inorganic compound materials on the substrate in the etching solution is quite different, so the service life of the etching solution is affected by many factors. Among them, the rise of the concentration of etching products in the etching solution is one of the most important factors affecting the service life of the etching solution. How to remove the etching products in the etching solution, prolong the service life of the etching solution, reduce costs, save resources and improve production efficiency are important issues.
  • One of the etching products of silicon on the substrate and/or its inorganic compound material in the etching solution is a silicon-containing compound, hereinafter referred to as a silicon compound.
  • the silicon compound of the etching product is adsorbed on the adsorbing substance through the interaction between the adsorption substance and the silicon compound of the etching product, so as to achieve the purpose of removing the silicon compound of the etching product, effectively prolong the service life of the etching solution to reduce the cost, and reduce the replacement of the etching solution operations to increase production efficiency.
  • the wet etching of silicon nitride is usually carried out by etching solution containing phosphoric acid.
  • the chemical reaction equation is as follows:
  • phosphoric acid mainly plays a catalytic role and consumes less, and the main material component reacting with silicon nitride is water.
  • the silicon nitride etching reaction proceeds, the content of silicon compound Si(OH) 4 , the etching product of silicon nitride in the phosphoric acid etching solution, increases.
  • the concentration of Si(OH) 4 rises above a certain solubility, it may cause silicon nitride
  • the etching reaction gradually stops and problems such as silicon oxide particles appear on the substrate, which has a significant adverse effect on the yield of the product.
  • the commonly used etching solution is dilute hydrofluoric acid solution (DHF) or buffered oxide etching solution (BOE).
  • DHF dilute hydrofluoric acid solution
  • BOE buffered oxide etching solution
  • the isotropic wet etching of silicon is a mixed solution of nitric acid, hydrofluoric acid and water.
  • the basic chemical release equation is as follows:
  • Si+HNO 3 +6HF H 2 SiF 6 +HNO 2 +H 2 O+H 2 ⁇
  • the anisotropic wet etching of silicon uses alkaline substances, such as KOH, where the basic chemical reaction equation is as follows:
  • Si+4H 2 O Si(OH) 4 +2H 2 ⁇
  • the above etching products all contain silicon compounds, and all enter into the etching solution as the etching reaction proceeds.
  • the content of silicon compounds in the etching solution gradually increases. When it reaches a certain concentration, silicon compound precipitation may occur, affecting the etching effect.
  • the present invention utilizes the adsorption module for adsorption, and the efficiency is significantly improved.
  • the object of the present invention is to provide a kind of wet etching equipment and wet etching method, be used to solve the prior art, in carrying out silicon and/or its inorganic compound material on the substrate
  • the etching solution that is, silicon compounds
  • the present invention provides a wet etching equipment, the wet etching equipment includes an etching chamber and an adsorption module, one end of the adsorption module is connected to the liquid outlet of the etching chamber and/or the adsorption module is arranged in the etching chamber; the etching chamber accommodates the substrate to be processed and the etching solution, and the etching solution contacts the substrate to etch the material on the substrate, and Etching product silicon compound is produced, wherein, the material on the substrate includes any one of silicon, silicon oxide and silicon nitride; The adsorption module, the etching product silicon compound is removed by the adsorbent in the adsorption module.
  • the adsorbent includes any one or more of ion exchange resins, alumina, zirconia, titania, silicon oxide and organosilicon compounds, or the surface of any one or more of the above adsorbents Substances after group modification, wherein group modification refers to the use of fluorine group, sulfonic acid group, carboxyl group, cyclohexyl group, trimethylaminopropyl group, benzenesulfonic acid propyl group, ethylenediamine-N-propyl group One or more of the groups and the surface groups of the above-mentioned adsorbents are modified.
  • the adsorbent includes silicon, silicon carbide, silicic acid polymers, polymers containing hydroxyl groups, polymers containing carboxyl groups, and fluorine-based modification of any one or more of the above adsorbents Material.
  • the adsorption module further includes a filter unit, through which the adsorbent is prevented from flowing out of the adsorption module.
  • the wet etching equipment further includes a monitoring module for detecting the concentration of the silicon compound.
  • the wet etching equipment further includes an adsorbent regeneration module.
  • the wet etching equipment further includes one or more of a circulation pipeline, a pump, a filter, a heater, a heat exchanger, a liquid replenishment module, and an automatic control module.
  • the present invention also provides a wet etching method, comprising the following steps:
  • Step S1 Exposing one or a combination of silicon, silicon oxide or silicon nitride materials on the substrate to an etching solution to perform an etching process to generate an etching product silicon compound;
  • Step S2 using an adsorbent to adsorb the silicon compound, and separating the adsorbent from the etching solution to achieve recycling of the etching solution.
  • the etching solution includes one or more of a solution containing phosphoric acid, a solution containing hydrofluoric acid, a solution containing tetramethylammonium hydroxide, a solution containing potassium hydroxide, and a solution containing sodium hydroxide.
  • the adsorbent includes any one or more of ion exchange resins, alumina, zirconia, titania, silicon oxide and organosilicon compounds, or the surface of any one or more of the above adsorbents Substances after group modification, wherein group modification refers to the use of sulfonic acid group, carboxyl group, cyclohexyl group, trimethylaminopropyl group, benzenesulfonic acid propyl group, ethylenediamine-N-propyl group and the above-mentioned One or more of the surface groups of the adsorbent are modified.
  • the adsorbent includes silicon, silicon carbide, silicic acid polymers, polymers containing hydroxyl groups, polymers containing carboxyl groups, and any one or more of the above adsorbents for surface modification with fluorine Material.
  • the method for separating the adsorbent from the etching solution includes one or more of filtering, cooling and precipitation.
  • it includes adjusting the adsorption of the silicon compound on the surface of the adsorbent to adjust the concentration of the silicon compound in the etching solution, wherein the adjustment method includes adjusting the temperature of the etching solution, adjusting the temperature of the etching solution One or a combination of the concentration and adjusting the temperature of the adsorbent.
  • step S2 also includes adding an adsorption accelerator, and the adsorption accelerator includes one or a combination of water, hydrofluoric acid, ammonium fluoride, and ammonium bifluoride.
  • the adsorption accelerator includes one or a combination of water, hydrofluoric acid, ammonium fluoride, and ammonium bifluoride.
  • the wet etching equipment and wet etching method provided by the present invention have the following beneficial effects: in the wet etching equipment and method of the present invention, an adsorption module capable of adsorbing silicon compounds is arranged on the circulation path of the etching solution, which can effectively Reduce the concentration of etching product silicon compounds in the etching solution, prolong the service life of the etching solution, reduce the cost of use and reduce the environmental pollution caused by the waste liquid discharge of the etching solution, and reduce the frequency of replacing the etching solution, which helps to improve Productivity.
  • the wet etching method provided by the invention helps to improve etching efficiency and reduce etching cost.
  • 1 to 3 show exemplary structural diagrams of different embodiments of wet etching equipment provided by the present invention.
  • FIG. 4 shows a schematic structural view of a monolithic etching chamber provided by the present invention.
  • FIG. 5 schematically shows a process flow chart of the wet etching method of the present invention.
  • Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification.
  • the present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
  • the cross-sectional view showing the device structure will not be partially enlarged according to the general scale, and the schematic diagram is only an example, which should not limit the protection scope of the present invention.
  • the three-dimensional space dimensions of length, width and depth should be included in actual production.
  • spatial relation terms such as “below”, “below”, “below”, “below”, “above”, “on” etc. may be used herein to describe an element or element shown in the drawings.
  • a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • structures described as having a first feature "on top of" a second feature may include embodiments where the first and second features are formed in direct contact, as well as additional features formed between the first and second features. Embodiments between the second feature such that the first and second features may not be in direct contact.
  • the present invention provides a wet etching equipment, the etching equipment includes an etching chamber and an adsorption module, one end of the adsorption module communicates with the liquid outlet of the etching chamber and/or the adsorption module is arranged on the In the etching chamber; the etching chamber accommodates the substrate to be processed and the etching solution, and the etching solution is in contact with the substrate to etch the material on the substrate, and produces an etching product silicon compound, wherein the The material on the substrate includes any one or combination of silicon, silicon oxide, and silicon nitride; the adsorption module is provided with an adsorbent, and the etchant in the etching chamber enters the adsorption module, and the etching product silicon compound removed by the sorbent in the sorption module.
  • the materials to be etched, silicon, silicon oxide and silicon nitride may refer to silicon, silicon oxide and silicon nitride in a general sense, or may refer to the above materials doped with certain elements.
  • the etching product silicon compound is generally a compound dissolved in the etching solution. If it is a silicon compound that is not dissolved in the etching solution, for example, if the concentration of the silicon compound exceeds the solubility in the etching solution to form an insoluble matter, it can be removed by a filter, and the etching product in a dissolved form can be removed by an adsorption module. Therefore, the etching products in the present invention can be removed by the adsorption module in two forms, dissolved or insoluble in the etching solution.
  • the present invention provides a wet etching device, which includes an etching chamber 20 and an adsorption module 12 , one end of the adsorption module 12 is connected to the etching chamber 20 The drain port is connected.
  • the adsorption module 12 is located outside the etching chamber 20.
  • the adsorption module 12 can also be located in the etching chamber 20, or part of the adsorption module 12 is located in the etching chamber.
  • the etching chamber 20 is partially located outside the etching chamber 20.
  • the etching chamber 20 is used for wet etching of silicon nitride materials on the substrate, and the adsorption module 12, or silicon removal module, is provided with a device for adsorbing silicon nitride etching product silicon compounds. Adsorbed substance, the silicon nitride etching solution flowing out from the etching chamber 20 during etching or after etching flows through the adsorption module 12, and the silicon compound, the etching product of the silicon nitride material, is removed by the adsorption module 12 .
  • the etching chamber 20 is used to accommodate the etching solution containing phosphoric acid and the substrate containing silicon nitride to be etched, so as to etch the silicon nitride material.
  • the etching chamber 20 includes an etchant liquid outlet and an etchant liquid inlet, and the adsorption module 12 is used for adsorbing silicon nitride etching product silicon oxide, that is, using an adsorbent, including but not limited to a solid adsorbent, nitrogen
  • the etching solution after silicon nitride etching flows through the adsorption module 12 , where the etching solution refers to the etching solution containing phosphoric acid, and the silicon compound, which is an etching product of silicon nitride, is removed by the adsorption module 12 .
  • the other end of the adsorption module 12 is in communication with the liquid inlet of the etching chamber 20, so that the phosphoric acid solution from which the silicon compound has been removed by the adsorption module 12 is transported back to the etching chamber
  • the chamber 20 can realize on-line processing, which helps to further simplify the equipment structure, improve production efficiency and reduce production cost.
  • the wet etching equipment may also include several of a circulation pipeline 11, a pump 13, a filter 14, a heater 15, a liquid replenishment module 17 and an automatic control module, for example, the above-mentioned structures may be provided, Or set up parts as needed, not too restrictive here.
  • one end of the circulation pipeline 11 is connected to the liquid outlet of the etching chamber 20, or the adsorption module 12 is connected to the drainage port of the etching chamber 20 through the circulation pipeline 11.
  • the liquid port is connected, and the other end can be connected with the liquid inlet of the etching chamber 20.
  • the adsorption module 12, pump 13, filter 14 and heater 15 are all arranged on the circulation pipeline 11, and In communication with the circulation pipeline 11, the pump 13 is used to provide power to promote the flow of the etching solution, for example, to promote the flow of the etching solution throughout the circulation pipeline 11, wherein the entire More than one pump 13 can be set on the circulation pipeline 11, and multiple pumps 13 can be set at different positions, for example, the pump 13 can be set between the drain port and the adsorption module 12, or can be set Located between the adsorption module 12 and the filter 14; the heater 15 is arranged between the filter 14 and the liquid inlet of the etching chamber 20, for finally delivering to the etching
  • the phosphoric acid etching solution in the chamber 20 is heated, and the water content and temperature of the phosphoric acid etching solution are adjusted to the required water content and temperature of the etching process through the replenishment module 17 such as the water replenishment module and the heater 15, so that the final entering The water content and temperature of the phosphoric acid etching solution in
  • the adsorption module 12 is provided with an adsorbent for adsorbing silicon nitride etching product silicon compounds (also referred to as adsorption substances, or silicon removal substances), and the etching liquid flow containing silicon nitride etching product silicon compounds
  • silicon compounds When passing through the adsorption module 12, silicon compounds can be adsorbed on the adsorbent to reduce the concentration of silicon compounds in the phosphoric acid etching solution, and the adsorbent can include solid, liquid or gel-like adsorbents, wherein the adsorption
  • the agent can include any one or more of ion exchange resins, alumina, zirconia, titanium oxide, silicon oxide, and organosilicon compounds, or any one or more of the above-mentioned adsorbents modified by surface groups Substances, wherein group modification refers to the use of fluorine group, sulfonic acid group, carboxyl group, cyclohexyl group, trimethyl
  • the adsorbent may include silicon, silicon carbide, silicic acid polymers, polymers containing hydroxyl groups, polymers containing carboxyl groups, and fluorine-modified compositions of any one or more of the above adsorbents. sexual material.
  • the adsorbent can be solid or liquid at normal temperature, such as 25°C.
  • the form of the solid adsorbent for example, can be surface-modified, porous, crystalline, or other forms.
  • the adsorbent is a solid adsorbent, it may include various shapes, such as a sheet.
  • the adsorbent material can be used to partially or completely wrap the non-adsorbent material.
  • the adsorbent may be loaded in the adsorption module 12 as follows.
  • the adsorbent is placed in the adsorption module 12, and filter devices of different shapes are arranged in the adsorption module 12 to prevent the adsorbent from moving out of the adsorption module 12;
  • the adsorbent is processed into an integrated filter structure, the integrated filter is placed in the adsorption module 12 .
  • the sorbent may be supplied to the sorption module by a sorbent supply module, which is connected to the sorption module, not shown here.
  • the working modes of the adsorption module 12 include continuous type and batch type, which are respectively used for continuous and batch removal of etching product silicon compounds in the etching solution.
  • this embodiment illustrates a diagram in which the adsorption module 12 is applicable to batch-type work, wherein, when the adsorption module 12 is working, by adjusting the valve 16, such as a three-way valve, which can make the section A of the pipe section in the closed state.
  • the valve 16 such as a three-way valve
  • the section B of the pipe section In the closed state, to suspend the adsorption process of the adsorption module 12, and to avoid the stagnation of the entire etching equipment, when the adsorption module 12 is ready to work, the valve 16 can be adjusted again to make the pipe section B section It is in the enabled state, and the specific settings can be selected according to the needs.
  • the selected adsorption module 12 can also be in a continuous working mode.
  • the pipe section A can be removed by referring to FIG. 3 .
  • a filter unit (not shown) is also provided in the adsorption module 20 to filter the adsorbent through the filter unit and remove the adsorbent from the Separation from the etching solution, wherein the method of separating the adsorbent from the etching solution may include methods such as filtration, cooling, precipitation, etc., and preferably the particle size of the adsorbent is greater than the filtration accuracy of the filtration unit, To prevent the adsorbent from entering the circulation pipeline.
  • the phosphoric acid etching solution after preliminary treatment is transported to the filter 14 with the help of the pump 13
  • the liquid replenishment module 17 and the heater 15 are used to replenish the liquid, such as replenishing water, to adjust the water content of the phosphoric acid etching solution, and after heating to reach the preset process temperature, it is finally transported back to the etching chamber.
  • the liquid replenishment module 17 can also directly replenish water into the etching chamber 20 . Because silicon compounds are removed, the workload of etching the filter on the equipment can be reduced, helping to extend the service life of the filter.
  • the circulation pipeline 11 may directly communicate with the etching chamber 20 .
  • the etching chamber 20 may include a multi-wafer type etching chamber or a monolithic type etching chamber.
  • the etching chamber 20 is a multi-chip etching chamber, such as a trough type, to perform etching operations on multiple substrates at the same time, and the etching chamber 20 and the adsorption module
  • An outer tank for collecting the discharged etching solution is arranged between 12, and the etching chamber 20 may also include an inner tank and an outer tank at the same time, the inner tank is for example used for silicon nitride etching, and the outer tank is used for collecting the circulating overflow Phosphoric acid etching solution, the phosphoric acid etching solution in use overflows from the inner tank, is collected by the outer tank and transported to the circulation pipeline 11, and then transported back to the inner tank after treatment.
  • the etching chamber 20 can also be a monolithic etching chamber, as shown in FIG. 4 , so as to meet the requirements of monolithic processing.
  • the etching chamber 20 is a circulation overflow tank
  • the outer tank is located outside the inner tank, and the phosphoric acid etching solution overflowing from the inner tank after etching silicon nitride is discharged into the outer tank, Afterwards, it is transported to the circulation pipeline 11, and the treated etching solution enters the inner tank to etch the silicon nitride substrate.
  • the outer tank can also be arranged at the bottom of the inner tank, or the inner tank and the outer tank can also be placed in completely different places, which is not strictly limited.
  • the adsorption module 12 can be single or multiple. When there are multiple adsorption modules 12, all of them can be connected in series or all in parallel. The adsorption modules 12 can also be partially connected in series and partially connected in parallel. Not strictly limited.
  • the wet etching equipment can also be provided with the adsorbent regeneration module (not shown), the regeneration module is connected to the adsorption module 12, such as the regeneration module includes a flushing pipeline, when the adsorption module 12 needs to be When cleaning, the control valves at both ends of the adsorption module 12 are closed, the flushing pipeline is started to clean the adsorption module 12, and the waste liquid after cleaning is directly discharged.
  • the regeneration module can be cleaned when needed, and the adsorption module 12 can be activated and regenerated by introducing special liquid when needed.
  • the wet etching equipment further includes a temperature adjustment module (not shown) for adjusting the temperature of the phosphoric acid etching solution.
  • the temperature regulation module can be connected with the adsorption module 12, and/or be arranged on the circulation pipeline 11 between the outer tank and the adsorption module 12 (that is, the temperature regulation module can be single or more than two).
  • the temperature adjustment module can be a heat exchanger, and the heat exchanger can be arranged on the circulation pipeline 11 between the liquid outlet of the etching chamber 20 and the adsorption module 12, so as to control the The temperature of the phosphoric acid etching solution in the circulation line 11 is controlled.
  • the temperature adjustment module can also directly act on the adsorption module 12 , such as using a heating unit or a cooling unit in the temperature control module to control the temperature of the adsorbent in the adsorption module 12 .
  • the wet etching equipment also includes a monitoring module, which is arranged on the circulation pipeline 11 or the adsorption module 12 to monitor The phosphoric acid etching solution in the circulation line 11 is sampled and analyzed.
  • the monitoring module may include, but not limited to, an inductively coupled plasma emission spectrometer and an infrared spectrum, which are used to detect the concentration of silicon compounds in the phosphoric acid etching solution.
  • the monitoring module can be single or multiple, such as at least two, one is arranged on the circulation pipeline 11 between the adsorption module 12 and the outer tank, and one is arranged on the adsorption module 12 and the outer tank.
  • the circulation pipeline 11 between the filters 14 is used to analyze the etchant before and after adsorption by the adsorption module 12 , such as phosphoric acid etchant.
  • a sampling pipeline can also be provided separately, the two ends of the sampling pipeline are connected to the circulation pipeline 11, and the diameter of the sampling pipeline is much smaller than that of the circulation pipeline 11 diameter (for example, less than a quarter of the pipe diameter of the circulation pipeline 11), the monitoring module is arranged on the sampling pipeline, and the front and rear ends of the monitoring module can also be provided with sampling valves .
  • the advantage of setting up the sampling pipeline is that firstly, it avoids the influence of sampling on the liquid flow in the circulation pipeline 11, and secondly, the sampling pipeline with small flow rate is more convenient for sampling and analysis.
  • the extracted etching solution sample is mixed with a certain amount of ultrapure water for quantitative dilution through the sample processing unit in the analysis module, and then enters the analysis instrument for detection.
  • the wet etching equipment can also include a flow control module (not shown), which can be arranged on the circulation pipeline 11 between the adsorption module 12 and the outer tank, so as to monitor the flow rate of the circulation pipeline in real time.
  • Liquid flow in path 11. There may be multiple flow control modules, and another flow control module may also be arranged on the circulation pipeline 11 between the heater 15 and the inner tank.
  • the circulation pipeline 11 may also include a temperature detection module (not shown), and the temperature detection module may be arranged in the circulation pipe between the adsorption module 12 and the outer tank (ie, the liquid outlet of the etching chamber). on the road 11 to detect the temperature of the phosphoric acid etching solution in real time; or the temperature detection module and the flow control module can be integrated into the same module and arranged on the circulation pipeline 11 between the outer tank and the adsorption module 12 .
  • the filter 14 can be a high-efficiency filter, and its quantity can be single or multiple.
  • the multiple filters 14 can be connected in series, or in parallel, or partly in parallel and partly in series.
  • multiple filters 14 are arranged in parallel as at least two pipelines, so that when the filter 14 on one of the flow paths fails, another flow path can be activated in time to improve the stability of the wet etching equipment .
  • the wet etching equipment further includes an automatic control module, such as a controller, to realize automatic control of the wet etching equipment.
  • the controller can be electrically connected to the aforementioned modules with detection functions such as monitoring modules and heaters, so as to control the operation of each module according to the corresponding detection results.
  • the wet etching equipment is a silicon oxide etching equipment, and the etching chamber 20 is used to accommodate a silicon oxide etching solution and a silicon oxide-containing substrate to be etched to perform silicon oxide etching.
  • the silicon oxide etching equipment also includes one or more of a circulation pipeline 11, a pump 13, a filter 14 and a monitoring module, preferably all comprising the aforementioned structures, one end of the circulation pipeline 11 is connected to the etching chamber The liquid outlet of the chamber 20 is connected, the other end is connected with the liquid inlet of the etching chamber 20, and the adsorption module 12, the pump 13, the filter 14 and the monitoring module are connected with the circulation pipeline.
  • the pump 13, the adsorption module 12 and the filter 14 are sequentially arranged in a direction away from the liquid outlet, and There are two monitoring modules, one is arranged on the circulation pipeline 11 between the pump 13 and the adsorption module 12, and the other is arranged on the circulation pipeline 11 between the adsorption module 12 and the filter 14 , so the concentration of the silicon compound before and after the silicon oxide etching solution discharged from the etching chamber 20 flows through the adsorption module 12 can be detected.
  • the function of each module please refer to the previous introduction, and will not go into details for the purpose of brevity.
  • the silicon oxide etching equipment can also be equipped with an automatic control module such as a controller, and the controller is connected to the aforementioned monitoring module and other modules with detection functions, so as to control the operations of other modules according to the detection results of each module and improve the automation of the equipment. level.
  • an automatic control module such as a controller
  • the wet etching equipment is a silicon etching equipment, and the etching chamber 20 is used to accommodate a silicon etching solution and a silicon substrate to be etched for silicon oxide etching, and the silicon
  • the etching equipment also includes one or more of a circulation pipeline 11, a pump 13, a filter 14, a heating module 15 and a monitoring module, preferably all comprising the aforementioned structures, one end of the circulation pipeline and the etching chamber 20 The liquid outlet is connected, and the other end is connected with the liquid inlet of the etching chamber 20, and the adsorption module 12, the pump 13, the filter 14, the heater module 15 and the monitoring module are connected with the circulation pipeline .
  • the pump 13, the adsorption module 12, the filter 14 and the heater are sequentially arranged in a direction away from the liquid outlet.
  • the silicon etching equipment can also be equipped with a controller, which is connected to the aforementioned monitoring module and other modules with detection functions, so as to control the operation of other modules according to the detection results of each module and improve the automation level of the equipment.
  • the wet etching equipment can be a multi-chip processing equipment, such as a tank type, that is, it can etch dozens of substrates at the same time.
  • This etching equipment has the advantages of high etching efficiency.
  • Chip wet etching equipment requires frequent replacement of new etching solution, but the wet etching equipment provided by the present invention can effectively reduce the amount of etching solution due to the efficient and fast processing of the etching solution.
  • the wet etching equipment can also be a single-chip processing equipment, as shown in Figure 4, in this case, the etching chamber is usually also provided with a carrier for placing the substrate, and the treated etching solution is sprayed through the nozzle into the etch chamber.
  • the wet etching equipment of the present invention is applicable to these two etching methods at the same time, and can effectively remove the silicon compound of the etching product in the etching solution, which helps to improve the etching efficiency and yield, and through the recycling of the etching solution, it helps Reduce etching costs and increase equipment yield.
  • the present invention also provides a wet etching method, which can be carried out according to the wet etching equipment described in any of the above schemes, but is not limited thereto.
  • a wet etching method which can be carried out according to the wet etching equipment described in any of the above schemes, but is not limited thereto.
  • wet etching equipment please refer to With reference to the aforementioned content, details are omitted for the sake of brevity.
  • the wet etching method may comprise the steps of:
  • Step S1 Exposing one or a combination of silicon, silicon oxide or silicon nitride materials on the substrate to an etching solution to perform an etching process to generate an etching product silicon compound;
  • Step S2 using an adsorbent to adsorb the silicon compound, and separating the adsorbent from the etching solution to achieve recycling of the etching solution.
  • the process flow of the wet etching method can refer to FIG. 5, wherein the wet etching method can be any one of a silicon wet etching method, a silicon nitride wet etching method and a silicon oxide wet etching method. species or combinations.
  • the silicon compound in the etching solution is adsorbed by the adsorbent, it is generally necessary to separate the adsorbent from the etching solution. If not, the adsorbent will come into contact with the substrate being processed, which will affect the quality of the substrate surface, such as solid Adsorbent. In special cases, there is no need to separate the adsorbent and the etching solution. For example, when the adsorbent is a liquid adsorbent and forms a homogeneous system with the etching solution, no separation is required.
  • the etching solution may include one or more of a solution containing phosphoric acid, a solution containing hydrofluoric acid, a solution containing tetramethylammonium hydroxide, a solution containing potassium hydroxide, and a solution containing sodium hydroxide.
  • the adsorbent may include any one or more of ion exchange resins, alumina, zirconia, titania, silicon oxide, and organosilicon compounds, or any one or more of the surface group modifications of any of the above adsorbents.
  • group modification refers to the use of sulfonic acid group, carboxyl group, cyclohexyl group, trimethylaminopropyl group, benzenesulfonic acid propyl group, ethylenediamine-N-propyl group and the above-mentioned adsorbents
  • the adsorbent may include silicon, silicon carbide, silicic acid polymers, polymers containing hydroxyl groups, polymers containing carboxyl groups, and any one or more fluorine-based modified materials of the above adsorbents.
  • the method for separating the adsorbent from the etching solution may include one or more of filtration, cooling and precipitation.
  • the silicon nitride material etched in a phosphoric acid solution produces a silicon oxide compound
  • the silicon oxide material etched in a hydrofluoric acid solution produces a fluorosilicon oxide compound
  • the silicon material is etched in an acidic etching solution, such as hydrofluoric acid and Fluorosilicic acid compounds are produced in the mixed solution of nitric acid
  • silicon materials are etched in alkaline etching solutions, such as sodium hydroxide solution, and silicon oxide compounds are produced as etching products.
  • etching product silicon compounds use different groups on the surface of the adsorbent, such as hydroxyl, carboxyl, fluorine, cyclohexyl, etc., to form hydrogen bonds, van der Waals forces or chemical bonds with the etching product silicon compound groups in the etching solution
  • the silicon compound is adsorbed from the etching solution and remains on the surface of the adsorbent substance to remove the etching product silicon compound in the etching solution.
  • the silicon oxide compound produced by silicon nitride in phosphoric acid solution and the silicon oxide compound produced by silicon in alkaline etching solution form Silicon-oxygen-silicon or carbon-oxygen-silicon bonds, thus adsorbing on the surface of the adsorbent.
  • the adjustment method may include adjusting the temperature of the etching solution, adjusting the concentration of the etching solution, and One or a combination of the temperatures of the adsorbents are adjusted.
  • an adsorption accelerator such as one or a combination of water, hydrofluoric acid, ammonium fluoride, and ammonium bifluoride, can be provided to accelerate the adsorption of silicon compounds on the surface of the adsorbent, so as to Accelerates the removal of the silicon compound and improves efficiency.
  • the wet etching method is carried out by using the aforementioned wet etching equipment, and the silicon-containing film is completed in the etching chamber, such as after the etching of the silicon nitride film is completed, the used etching solution, or the etching of the silicon nitride material is in progress
  • the etching solution such as phosphoric acid-containing etching solution, flows through the adsorption module, and the silicon compound contained in the silicon nitride wet etching product contained therein is removed by the adsorption module.
  • the concentration and temperature can also be adjusted to realize the treatment of phosphoric acid etching solution and can be directly used for etching silicon nitride films, which can not only improve the etching efficiency, but also effectively reduce the phosphoric acid etching solution.
  • the amount of etching solution used and the frequency of replacing the etching solution can be reduced, which can effectively reduce the etching cost.
  • the present invention provides a wet etching device and a wet etching method.
  • the invention provides a kind of wet etching equipment, the wet etching equipment includes an etching chamber and an adsorption module, the wet etching equipment of the present invention is provided with an adsorption module capable of absorbing silicon compounds on the recovery path of the etching liquid, which can effectively
  • the service life of the etching solution is extended, the use cost is reduced, the environmental pollution caused by the waste liquid discharge of the etching solution is reduced, the frequency of replacing the etching solution can be reduced, and the production efficiency is improved. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Weting (AREA)

Abstract

本发明提供一种湿法蚀刻设备及湿法蚀刻方法,湿法蚀刻设备包括蚀刻腔室及吸附模块,吸附模块的一端与蚀刻腔室的排液口相连通和/或吸附模块设置于蚀刻腔室内,蚀刻腔室用于基板上氧化硅、硅或氮化硅的湿法蚀刻,吸附模块设置有用于吸附蚀刻产物硅化合物的吸附物质,蚀刻腔室中的氧化硅、硅或氮化硅材料蚀刻过程中的蚀刻液流经吸附模块,蚀刻产物硅化合物被吸附模块吸附去除,从而实现蚀刻液的再生。本发明的湿法蚀刻设备,在蚀刻液的循环路径上设置可吸附硅化合物的吸附模块,可以有效延长蚀刻液的使用寿命,降低使用成本及减少因蚀刻液的废液排放带来的环境污染,且可降低更换蚀刻液的频率,有助于提高生产效率。

Description

湿法蚀刻设备及湿法蚀刻方法 技术领域
本发明涉及半导体制造技术领域,具体涉及湿刻技术,特别是涉及一种湿法蚀刻设备及湿法蚀刻方法。
背景技术
集成电路是信息产业的基础,而集成电路制造是集成电路产业的重要一环。在半导体制造中,湿法蚀刻是常用的去除基板上硅、氧化硅或氮化硅化合物等介电材料的制程。基板上的硅和/或其无机化合物材料在蚀刻液中腐蚀的机理差异较大,因此蚀刻液的使用寿命受众多因素影响。其中,蚀刻液中的蚀刻产物浓度的上升是影响蚀刻液使用寿命的最重要因素之一。如何去除蚀刻液中蚀刻产物,延长蚀刻液使用寿命,降低成本,节约资源和提高生产效率是重要课题。衬底上的硅和/或其无机化合物材料在蚀刻液中的蚀刻产物之一均为含硅元素化合物,下面简称硅化合物。本发明通过吸附物质与蚀刻产物硅化合物发生作用,将蚀刻产物硅化合物吸附于吸附物质上,以达到去除蚀刻产物硅化合物的目的,可有效延长蚀刻液使用寿命以降低成本,以及减少更换蚀刻液的操作以提高生产效率。
以氮化硅材料的湿法蚀刻为例,氮化硅的湿法蚀刻常用含磷酸的蚀刻液进行腐蚀,发生的化学反应方程式如下:
3Si 3N 4+4H 3PO 4+36H 2O=4(NH 4) 3PO 4+9Si(OH) 4
其中,磷酸主要起催化的作用,消耗量较少,与氮化硅反应的主要的物质成分为水。随着氮化硅蚀刻反应的进行,磷酸蚀刻液中氮化硅的蚀刻产物硅化合物Si(OH) 4含量上升,当Si(OH) 4浓度上升至超过一定溶解度时,可能会导致氮化硅蚀刻反应逐渐停止并在基板上出现氧化硅颗粒等问题,对产品的良率造成重大不良影响。
以氧化硅薄膜的湿法蚀刻为例,常用的蚀刻液为稀释的氢氟酸溶液(DHF)或者为缓冲氧化物蚀刻液(BOE),其中基本的化学反应方程式如下:
SiO 2+6HF=H 2SiF 6+3H 2O
以硅的湿法蚀刻为例,硅的各向同性湿法蚀刻是用硝酸、氢氟酸与水的混合溶液,基本的化学放方程式如下:
Si+HNO 3+6HF=H 2SiF 6+HNO 2+H 2O+H 2
硅的各向异性湿法蚀刻使用的是碱类物质,比如KOH,其中基本化学反应方程式如下:
Si+4H 2O=Si(OH) 4+2H 2
上述蚀刻产物都含有硅化合物,均随着蚀刻反应的进行进入蚀刻液中。随着硅和/或其无机化合物材料在蚀刻液中的腐蚀工艺的进行,蚀刻液中的硅化合物含量逐渐上升,当上升至一定浓度时,可能会出现硅化合物沉淀,影响蚀刻效果。
针对上述问题,目前还没有有效的解决的方法,只能部分或全部更换新鲜的蚀刻液以降低蚀刻液中硅化合物的浓度,之后才能继续处理下一批基板。这样导致蚀刻液使用寿命短、用量大、资源浪费、成本高及生产效率低下,且大量的废液排放造成环境污染等问题。
虽然业界一直致力于去除蚀刻液中的蚀刻产物,即硅化合物,以最大程度地发挥蚀刻液的使用寿命,但是硅化合物在蚀刻液中的存在状态复杂,通过加热蚀刻液和加入液体与其反应的处理方法,效率低下,无法有效去除硅化合物。本发明利用吸附模块进行吸附,效率提升明显。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种湿法蚀刻设备及湿法蚀刻方法,用于解决现有技术中,在进行基板上的硅和/或其无机化合物材料的湿法蚀刻工艺时,通过加水、加热液体等方法难以有效去除蚀刻液中的蚀刻产物,即硅化合物,无法实现蚀刻液的循环利用而只能频繁更换蚀刻液,导致蚀刻液使用寿命短、用量大,造成生产成本增加、生产效率低下以及带来环境污染等问题。
为实现上述目的及其他相关目的,本发明提供一种湿法蚀刻设备,所述湿法蚀刻设备包括蚀刻腔室及吸附模块,所述吸附模块的一端与所述蚀刻腔室的排液口相连通和/或所述吸附模块设置于所述蚀刻腔室内;所述蚀刻腔室收容待处理的基板和蚀刻液,且所述蚀刻液与所述基板接触以蚀刻所述基板上的材料,并产生蚀刻产物硅化合物,其中,所述基板上的所述材料包括硅、氧化硅和氮化硅中的任一种;所述吸附模块设置有吸附剂所述蚀刻腔室中的蚀刻液进入所述吸附模块,蚀刻产物硅化合物被所述吸附模块中的所述吸附剂所去除。
可选地,所述吸附剂包括离子交换树脂、氧化铝、氧化锆、氧化钛、氧化硅及有机硅化合物中的任意一种或多种,或上述吸附剂的任意一种或多种的表面基团改性后的物质,其中,基团改性是指采用包括氟基、磺酸基、羧基、环己基、三甲基氨丙基、苯磺酸丙基、乙二胺-N-丙基及上述吸附剂的表面基团中的一种或多种进行改性。
可选地,所述吸附剂包括硅、碳化硅、硅酸聚合物、含羟基基团的聚合物,含羧基基团的聚合物及上述吸附剂的任意一种或多种的氟基改性材料。
可选地,所述吸附模块还包括过滤单元,通过所述过滤单元防止所述吸附剂流出所述吸附模块。
可选地,所述湿法蚀刻设备还包括对所述硅化合物的浓度进行检测的监测模块。
可选地,所述湿法蚀刻设备还包括吸附剂的再生模块。
可选地,所述湿法蚀刻设备还包括循环管路、泵、过滤器、加热器、换热器、补液模块及自动控制模块中的一种或多种。
本发明还提供一种湿法蚀刻方法,包括以下步骤:
步骤S1:将基板上的硅、氧化硅或氮化硅材料中的一种或组合暴露于蚀刻液中进行蚀刻工艺,生成蚀刻产物硅化合物;
步骤S2:使用吸附剂吸附硅化合物,将所述吸附剂从所述蚀刻液中分离实现所述蚀刻液循环利用。
可选地,所述蚀刻液包括含磷酸溶液、含氢氟酸溶液、含四甲基氢氧化铵溶液、含氢氧化钾溶液及含氢氧化钠溶液中的一种或多种。
可选地,所述吸附剂包括离子交换树脂、氧化铝、氧化锆、氧化钛、氧化硅及有机硅化合物中的任意一种或多种,或上述吸附剂的任意一种或多种的表面基团改性后的物质,其中,基团改性是指采用包括磺酸基、羧基、环己基、三甲基氨丙基、苯磺酸丙基、乙二胺-N-丙基及上述吸附剂的表面基团中的一种或多种进行改性。
可选地,所述吸附剂包括硅、碳化硅、硅酸聚合物、含羟基基团的聚合物,含羧基基团的聚合物及上述吸附剂的任意一种或多种的氟表面改性材料。
可选地,所述吸附剂与所述蚀刻液分离的方法包括过滤、降温及沉淀中的一种或多种。
可选地,包括调节所述硅化合物在所述吸附剂表面的吸附以调节所述蚀刻液中所述硅化合物的浓度,其中,调节方法包括调整所述蚀刻液的温度、调整所述蚀刻液的浓度及调整所述吸附剂的温度中的一种或组合。
可选地,步骤S2中还包括加入吸附加速剂,所述吸附加速剂包括水、氢氟酸、氟化铵及氟化氢铵中的一种或组合。
如上所述,本发明提供的湿法蚀刻设备及湿法蚀刻方法,具有以下有益效果:本发明的湿法蚀刻设备及方法在蚀刻液的循环路径上设置可吸附硅化合物的吸附模块,可以有效降低蚀刻液中的蚀刻产物硅化合物的浓度,延长蚀刻液的使用寿命,降低使用成本及减少因蚀刻液的废液排放带来的环境污染,且可降低更换蚀刻液的频率,有助于提高生产效率。本发明提供的湿法蚀刻方法,有助于提高蚀刻效率和降低蚀刻成本。
附图说明
图1至3显示为本发明提供的湿法蚀刻设备于不同实施例中的例示性结构示意图。
图4显示为本发明提供的单片式蚀刻腔室的结构示意图。
图5示意了本发明湿法蚀刻方法的工艺流程图。
元件标号说明
11                             循环管路
12                             吸附模块
13                             泵
14                             过滤器
15                             加热器
16                             阀门
17                             补液模块
20                             蚀刻腔室
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。为使图示尽量简洁,各附图中并未对所有的结构全部标示。
本发明提供一种湿法蚀刻设备,所述蚀刻设备包括蚀刻腔室及吸附模块,所述吸附模块的一端与所述蚀刻腔室的排液口相连通和/或所述吸附模块设置于所述蚀刻腔室内;所述蚀刻腔室收容待处理的基板和蚀刻液,且所述蚀刻液与所述基板相接触以蚀刻所述基板上的材料,并产生蚀刻产物硅化合物,其中,所述基板上的所述材料包括硅、氧化硅和氮化硅中的任一种或组合;所述吸附模块设置有吸附剂所述蚀刻腔室中的蚀刻液进入所述吸附模块,蚀刻产物硅化合物被所述吸附模块中的所述吸附剂所去除。
需要说明的是,待蚀刻材料硅、氧化硅及氮化硅,可指一般意义上的硅、氧化硅及氮化硅,亦可指掺杂某些元素的上述材料。
需要说明的是,刻蚀产物硅化合物一般为溶解于蚀刻液中的化合物。若为非溶解于蚀刻液中的硅化合物,比如说硅化合物的浓度超过在蚀刻液中的溶解度后形成不溶物,则可通过过滤器去除,而为溶解形态的蚀刻产物可通过吸附模块去除。因此,本发明中的蚀刻产物,溶解或非溶解于蚀刻液中的两种形态,均可通过吸附模块去除。
接下来,本说明书中将重点以氮化硅蚀刻设备和方法为例对本发明的湿法蚀刻设备进行说明,但所述湿法蚀刻设备和方法的种类及应用并非局限于此。
具体地,如图1所示,本发明提供一种湿法蚀刻设备,所述湿法蚀刻设备包括蚀刻腔室20及吸附模块12,所述吸附模块12的一端与所述蚀刻腔室20的排液口相连通。本实施例中,所述吸附模块12位于所述蚀刻腔室20的外部,在其他示例中,所述吸附模块12也可以位于所述蚀刻腔室20内,或者部分所述吸附模块12位于所述蚀刻腔室20内,部分位于所述蚀刻腔室20外。本实施例中示意了所述蚀刻腔室20用于基板上氮化硅材料的湿法蚀刻,所述吸附模块12,或称除硅模块,其中设置有用于吸附氮化硅蚀刻产物硅化合物的吸附物质,自所述蚀刻腔室20中流出的蚀刻中或蚀刻后的氮化硅蚀刻液流经所述吸附模块12,其中的氮化硅材料的蚀刻产物硅化合物被所述吸附模块12去除。
基于所述湿法蚀刻设备为氮化硅湿法蚀刻设备,故而所述蚀刻腔室20用于容纳含磷酸的蚀刻液及待蚀刻含氮化硅的基板,以进行氮化硅材料的蚀刻。所述蚀刻腔室20包括蚀刻液排液口与蚀刻液进液口,所述吸附模块12用于吸附氮化硅蚀刻产物硅氧化合物,即使用吸附剂,包括但不限于固体吸附剂,氮化硅蚀刻后的蚀刻液液流经所述吸附模块12,这里的 蚀刻液是指含有磷酸的蚀刻液,其中的氮化硅蚀刻产物硅化合物被所述吸附模块12去除。在进一步的示例中,所述吸附模块12的另一端与所述蚀刻腔室20的进液口相连通,因而经所述吸附模块12去除了硅化合物的磷酸液被重新输送回所述蚀刻腔室20,可实现在线处理,有助于进一步简化设备结构,提高生产效率和降低生产成本。
在进一步的示例中,所述湿法蚀刻设备还可以包括循环管路11、泵13、过滤器14、加热器15、补液模块17及自动控制模块中的若干个,比如可以均设置上述结构,或根据需要设置部分,此处不作过分限制。
本实施例中,所述循环管路11的一端与所述蚀刻腔室20的排液口相连通,或者说所述吸附模块12经所述循环管路11与所述蚀刻腔室20的排液口相连通,另一端可与所述蚀刻腔室20的进液口相连通,所述吸附模块12、泵13、过滤器14及加热器15均设置在所述循环管路11上,并与所述循环管路11相连通,所述泵13用于提供动力,以促进所述蚀刻液流动,例如促进所述蚀刻液在整个所述循环管路11中的流动,其中,整个所述循环管路11上可以设置不止一个所述泵13,多个所述泵13可以设置在不同的位置,比如所述泵13可设置在排液口和所述吸附模块12之间,还可以设置位于所述吸附模块12和所述过滤器14之间;所述加热器15设置在所述过滤器14与所述蚀刻腔室20的进液口之间,用于向最终输送至所述蚀刻腔室20中的磷酸蚀刻液加热,通过所述补液模块17如补水模块及所述加热器15将磷酸蚀刻液的含水量和温度调至蚀刻工艺所需的含水量和温度,以使最终进入所述蚀刻腔室20内的磷酸蚀刻液的含水量和温度维持在一定范围,目的是使处理后的蚀刻液可直接用于氮化硅的蚀刻,当然根据需要也可不设置所述补液模块17,而直接向所述蚀刻腔室20内补水,此处不作过分限制。
所述吸附模块12中设置有用于吸附氮化硅蚀刻产物硅化合物的吸附剂(也可以称之为吸附物质、或称之为除硅物质),含有氮化硅蚀刻产物硅化合物的蚀刻液流过所述吸附模块12时,硅化合物可吸附于所述吸附剂以降低磷酸蚀刻液中的硅化合物浓度,所述吸附剂可包括固体、液体或凝胶状的吸附剂,其中,所述吸附剂可包括离子交换树脂、氧化铝、氧化锆、氧化钛、氧化硅及有机硅化合物中的任意一种或多种,或上述吸附剂的任意一种或多种的表面基团改性后的物质,其中,基团改性是指采用包括氟基、磺酸基、羧基、环己基、三甲基氨丙基、苯磺酸丙基、乙二胺-N-丙基及上述吸附剂的表面基团中的一种或多种进行改性。
作为示例,所述吸附剂可包括硅、碳化硅、硅酸聚合物、含羟基基团的聚合物,含羧基基团的聚合物及上述吸附剂的任意一种或多种材料的氟基改性材料。
具体的,所述吸附剂在常温下,比如25℃,可为固体或液体。当所述吸附剂采用固体吸 附剂时,固体吸附剂的形态,比如,可为表面改性的、有孔的、为晶态的,或为其他形态。当所述吸附剂采用固体吸附剂时,可包括各种形状,比如片状。当所述吸附剂采用固体吸附剂时,可使用吸附剂材料部分或全部包裹非吸附剂材料构成。作为示例,所述吸附剂可以以如下方式装载于所述吸附模块12中。一,吸附剂放置于所述吸附模块12中,通过在所述吸附模块12中设置不同形状的过滤装置以阻止吸附剂移出所述吸附模块12;二,吸附剂经加工成为不同形状的一体式过滤器结构,该一体式过滤器放置在所述吸附模块12中。
作为示例,所述吸附剂可由吸附剂供应模块提供给所述吸附模块,所述吸附剂供应模块与所述吸附模块相连接,在此并未示出。
作为示例,所述吸附模块12的工作模式包括连续型与批次型,以分别用于连续和批次去除蚀刻液中的蚀刻产物硅化合物。具体的,如图1及图2所示,本实施例中示意了一种所述吸附模块12可适用于批次型工作的图示,其中,所述吸附模块12在工作时,通过调节阀门16,如三通阀,可使得管段A段处于关闭状态,当需要对所述吸附模块12进行更换如清洁等操作时,可通过所述阀门16使得管段A段处于打开状态所述管段B段处于关闭状态,以暂停所述吸附模块12的吸附处理过程,且可避免整个蚀刻设备的停滞,待所述吸附模块12可工作时,可再次调节所述阀门16,以使所述管段B段处于开启状态,具体设置可根据需要进行选择。当然所选用的所述吸附模块12也可为连续型工作模式,此时,可参阅图3以去除所述管段A。
为避免所述吸附剂从所述吸附模块12中流出,优选所述吸附模块20中还设置过滤单元(未图示),以通过所述过滤单元过滤所述吸附剂,将所述吸附剂从所述蚀刻液中分离,其中将所述吸附剂从所述蚀刻液中分离的方法可包括过滤、降温、沉淀等方法,且优选所述吸附剂的粒径大于所述过滤单元的过滤精度,以防止所述吸附剂进入循环管路。
所述蚀刻腔室20的排液口排出的蚀刻液在所述吸附模块12中进行了硅化合物的去除后,初步处理后的磷酸蚀刻液经所述泵13的助力输送至所述过滤器14中进行进一步的过滤处理,之后经所述补液模块17和加热器15进行补液,如补水,以调整磷酸蚀刻液含水量,并经加热处理达到预设的工艺温度,最后输送回蚀刻腔室。补液模块17也可直接向所述蚀刻腔室20内补充水。因为对硅化合物进行了去除,可以减少蚀刻设备上过滤器的工作量,有助于延长过滤器的使用寿命。
在一示例中,所述循环管路11可以直接与所述蚀刻腔室20相连通。
作为示例,所述蚀刻腔室20可包括多片式蚀刻腔室或单片式型蚀刻腔室。
具体的,如图1~图3中,所述蚀刻腔室20为多片式蚀刻腔室,如槽式,以同时对多个 基板进行蚀刻操作,所述蚀刻腔室20和所述吸附模块12之间设置用于收集排放的蚀刻液的外槽,所述蚀刻腔室20也可以同时包括内槽和外槽,内槽例如用于进行氮化硅蚀刻,外槽用于收集循环溢流出的磷酸蚀刻液,使用中的磷酸蚀刻液从内槽中溢流出,被外槽收集后输送至所述循环管路11,经处理后再输送回内槽中。当然根据需要,所述蚀刻腔室20也可采用单片式型蚀刻腔室,如图4所示,以适用于单片处理的需求。
本实施例中,所述蚀刻腔室20为循环溢流槽,外槽位于内槽的外侧,所述内槽中溢流出的蚀刻氮化硅后的磷酸蚀刻液排放至所述外槽中,之后输送至所述循环管路11上,处理后的蚀刻液进入内槽蚀刻氮化硅基板。当然,在其他示例中,也可以将外槽设置于内槽的底部,或者所述内槽和外槽也可以放置于完全不同的地方,对此不做严格限制。
作为示例,所述吸附模块12可以为单个或多个,当为多个时,多个所述吸附模块12可以全部串联或全部并联,所述吸附模块12还可以部分串联,部分并联,对此不做严格限制。所述湿法蚀刻设备还可以设置所述吸附剂再生模块(未示出),所述再生模块与所述吸附模块12相连接,比如再生模块包括冲洗管路,当需要对所述吸附模块12进行清洗时,关闭所述吸附模块12两端的控制阀,启动冲洗管路对所述吸附模块12进行清洗,清洗后的废液直接排放。再生模块既可以在需要时进行清洗,也可以在需要时通过引入特殊液体对所述吸附模块12进行活化与再生。
在一示例中,如图1所示,所述湿法蚀刻设备还包括用以调节磷酸蚀刻液温度的温度调节模块(未图示),通过温度调节,可调整所述吸附模块12的吸附效果。所述温度调节模块可与所述吸附模块12相连接,和/或设置于外槽与所述吸附模块12之间的循环管路11上(即温度调节模块可以为单个或两个以上)。所述温度调节模块可以为换热器,所述换热器可设置于所述蚀刻腔室20的排液口和所述吸附模块12之间的所述循环管路11上,以对所述循环管路11中的磷酸蚀刻液进行控温。当然,在其他示例中,所述温度调节模块也可以直接作用于所述吸附模块12,比如利用控温模块中的加热单元或冷却单元以对所述吸附模块12中的吸附剂进行控温。
为精确控制处理后的磷酸蚀刻液的组分配比,提高处理效果,作为示例,所述湿法蚀刻设备还包括监测模块,设置于所述循环管路11或所述吸附模块12上,以对所述循环管路11中的磷酸蚀刻液进行取样分析。所述监测模块可以包括但不限于电感耦合等离子体发射光谱仪及红外光谱,用于检测磷酸蚀刻液中硅化合物的浓度。所述监测模块可以为单个或多个,比如至少为两个,一个设置于所述吸附模块12与外槽之间的所述循环管路11上,一个设置在所述吸附模块12和所述过滤器14之间的所述循环管路11上,以对所述吸附模块12吸附 前后的蚀刻液,例如磷酸蚀刻液进行分析。当然,在其他示例中,也可以单独设置取样管路,所述取样管路的两端与所述循环管路11相连接,且所述取样管路的管径远小于所述循环管路11的管径(比如为所述循环管路11管径的四分之一以下),所述监测模块设置于所述取样管路上,且所述监测模块的前后两端也可以设置取样用的阀门。设置取样管路的好处在于,一是避免因取样影响所述循环管路11中的液体流动,二是小流量的取样管路更便于取样分析。抽取的蚀刻液样品,经过分析模块中的样品处理单元,比如与一定的超纯水混合进行定量稀释,进入分析仪器检测。
作为示例,所述湿法蚀刻设备还可以包括流量控制模块(未图示),可以设置于所述吸附模块12和外槽之间的所述循环管路11上,以实时监测所述循环管路11中的液体流量。所述流量控制模块可以为多个,另外的所述流量控制模块还可以设置在所述加热器15和内槽之间的所述循环管路11上。所述循环管路11还可以包括温度检测模块(未图示),所述温度检测模块可以设置于所述吸附模块12与外槽(即蚀刻腔室排液口)之间的所述循环管路11上,以实时检测磷酸蚀刻液的温度;或者所述温度检测模块和流量控制模块可以集成为同一个模块而设置于外槽和所述吸附模块12之间的所述循环管路11上。
所述过滤器14可为高效过滤器,其数量可以为单个或多个。当所述过滤器14为多个时,多个所述过滤器14可以为串联,或者为并联,或者部分并联,部分串联。优选将多个所述过滤器14并联设置为至少两条管路,以在其中一个流路上的所述过滤器14出现故障时,可及时启用另外一条流路,提高湿法蚀刻设备的稳定性。
作为示例,所述湿法蚀刻设备还包括自动控制模块,如控制器,以实现对所述湿法蚀刻设备的自动化控制。所述控制器可与前述的诸如监测模块、加热器等带检测功能的模块电连接,以根据相应的检测结果控制各模块的作业。
在另一示例中,如图2所示,所述湿法蚀刻设备为氧化硅蚀刻设备,所述蚀刻腔室20用于容纳氧化硅蚀刻液及待蚀刻的含氧化硅的基板以进行氧化硅蚀刻,所述氧化硅蚀刻设备还包括循环管路11、泵13、过滤器14和监测模块中的一个或多个,优选均包括前述各结构,所述循环管路11一端与所述蚀刻腔室20的排液口相连通,另一端与所述蚀刻腔室20的进液口相连通,所述吸附模块12、泵13、过滤器14和监测模块与所述循环管路相连通。更具体地,在所述蚀刻腔室20的排液口和进液口之间的循环管路上,朝远离排液口的方向依次设置有所述泵13、吸附模块12和过滤器14,而监测模块为两个,一个设置于所述泵13和吸附模块12之间的所述循环管路11上,一个设置于所述吸附模块12和过滤器14之间的所述循环管路11上,因而可以检测自所述蚀刻腔室20中排放的氧化硅蚀刻后的蚀刻液在流经所述吸 附模块12前后的硅化合物的浓度。各模块的功能作用参考前述介绍,出于简洁的目的不赘述。所述氧化硅蚀刻设备同样可以设置自动控制模块如控制器,控制器与前述的监测模块等带有检测功能的模块相连接,以根据各模块的检测结果控制其他模块的作业,提高设备的自动化水平。
在另一示例中,如图3所示,所述湿法蚀刻设备为硅蚀刻设备,所述蚀刻腔室20用于容纳硅蚀刻液及待蚀刻的硅基板以进行氧化硅蚀刻,所述硅蚀刻设备还包括循环管路11、泵13、过滤器14、加热模块15和监测模块中的一个或多个,优选均包括前述各结构,所述循环管路一端与所述蚀刻腔室20的排液口相连通,另一端与所述蚀刻腔室20的进液口相连通,所述吸附模块12、泵13、过滤器14、加热器模块15和监测模块与所述循环管路相连通。更具体地,在所述蚀刻腔室20的排液口和进液口之间的循环管路上,朝远离排液口的方向依次设置有所述泵13、吸附模块12、过滤器14和加热器模块15,而监测模块为两个,一个设置于所述泵13和除硅模块12之间的循环管路上,一个设置于所述除硅模块12和过滤器14之间的循环管路上,因而可以检测自所述蚀刻腔室中排放的硅蚀刻后的蚀刻液在流经所述吸附模块12前后的硅化合物的浓度。各模块的功能作用参考前述介绍,出于简洁的目的不赘述。所述硅蚀刻设备同样可以设置控制器,控制器与前述的监测模块等带有检测功能的模块相连接,以根据各模块的检测结果控制其他模块的作业,提高设备的自动化水平。
如图1~图3,所述湿法蚀刻设备可以为多片式处理设备,比如槽式,即同时可以对数十片基板进行蚀刻处理,这种蚀刻设备具有蚀刻效率高等优点,传统的多片式湿法蚀刻设备需频繁更换新的蚀刻液,但本发明提供的湿法蚀刻设备因对蚀刻液实现了高效快速的处理,可以有效降低蚀刻液的用量。当然,所述湿法蚀刻设备也可以为单片式处理设备,如图4所示,此种情况下,蚀刻腔室内通常还设置有用于放置基板的载台,处理后的蚀刻液经喷嘴喷洒到所述蚀刻腔室内。本发明的湿法蚀刻设备同时适用于这两种蚀刻方式,都能有效去除蚀刻液中的蚀刻产物硅化合物,有助于提高蚀刻效率和良率,且通过蚀刻液的循环再生利用,有助于降低蚀刻成本、提高设备产出率。
本发明还提供一种湿法蚀刻方法,所述湿法蚀刻方法可依上述任一方案中所述的湿法蚀刻设备进行,但并非局限于此,对所述湿法蚀刻设备的介绍还请参考前述内容,出于简洁的目的不赘述。
所述湿法蚀刻方法可包括步骤:
步骤S1:将基板上的硅、氧化硅或氮化硅材料中的一种或组合暴露于蚀刻液中进行蚀刻工艺,生成蚀刻产物硅化合物;
步骤S2:使用吸附剂吸附硅化合物,将所述吸附剂从所述蚀刻液中分离实现所述蚀刻液循环利用。
具体的,所述湿法蚀刻方法的流程可参阅图5,其中,所述湿法蚀刻方法可以为硅湿法蚀刻方法、氮化硅湿法蚀刻方法和氧化硅湿法蚀刻方法中的任意一种或组合。
需要特别说明的是,蚀刻液中的硅化合物被吸附剂吸附后,一般需要将吸附剂与蚀刻液分离,若不分离,吸附剂会与处理中的基板接触,影响基板表面的品质,比如固体吸附剂。在特殊情况下,可无需分离吸附剂及蚀刻液,比如吸附剂为液体吸附剂,并且与蚀刻液构成均相体系时,可无需分离。
当进行所述湿法蚀刻时,所述蚀刻液可包括含磷酸溶液、含氢氟酸溶液、含四甲基氢氧化铵溶液、含氢氧化钾溶液及含氢氧化钠溶液中的一种或多种。所述吸附剂可包括离子交换树脂、氧化铝、氧化锆、氧化钛、氧化硅及有机硅化合物中的任意一种或多种,或上述吸附剂的任意一种或多种的表面基团改性后的物质,其中,基团改性是指采用包括磺酸基、羧基、环己基、三甲基氨丙基、苯磺酸丙基、乙二胺-N-丙基及上述吸附剂的表面基团中的一种或多种进行改性。如所述吸附剂可包括硅、碳化硅、硅酸聚合物、含羟基基团的聚合物,含羧基基团的聚合物及上述吸附剂的任意一种或多种的氟基改性材料。所述吸附剂与所述蚀刻液分离的方法可包括过滤、降温及沉淀中的一种或多种。
不同的待蚀刻材料在不同的蚀刻液中产生的蚀刻产物硅化合物有区别。比如,氮化硅材料在磷酸溶液中蚀刻产生的产物为硅氧化合物,氧化硅材料在氢氟酸溶液中蚀刻产生的产物为氟硅氧化合物,硅材料在酸性蚀刻液,比如氢氟酸与硝酸的混合溶液中产生的为氟硅酸化合物,而硅材料在碱性蚀刻液中,比如氢氧化钠溶液,产生的蚀刻产物为硅氧化合物。针对不同的蚀刻产物硅化合物,利用吸附剂的表面的不同基团,比如羟基、羧基、氟基、环己基等,与蚀刻液中的蚀刻产物硅化合物基团形成氢键、范德华力或化学键作用力,将硅化合物从蚀刻液中吸附出来而存留于吸附剂物质的表面,以去除蚀刻液中的蚀刻产物硅化合物。例如,氮化硅在磷酸溶液中产生的硅氧化合物及硅在碱性蚀刻液中产生的硅氧化合物,上述硅氧化合物的基团与吸附剂表面的基团,比如硅羟基和羧基,形成硅氧硅或碳氧硅键,从而吸附于吸附剂表面。
其中,通过调节所述硅化合物在所述吸附剂表面的吸附以调节所述蚀刻液中所述硅化合物的浓度,调节方法可包括调整所述蚀刻液的温度、调整所述蚀刻液的浓度及调整所述吸附剂的温度中的一种或组合。
进一步的,在使用吸附剂吸附硅化合物时,还可提供吸附加速剂,如水、氢氟酸、氟化 铵及氟化氢铵中的一种或组合,加快硅化合物吸附于吸附剂表面的速度,以加速去除所述硅化合物,提高效率。
所述湿法蚀刻方法由于采用前述的湿法蚀刻设备进行,在蚀刻腔室中完成含硅薄膜,比如完成氮化硅薄膜的蚀刻后,使用后的蚀刻液,或氮化硅材料蚀刻进行中的蚀刻液,例如含磷酸的蚀刻液流经吸附模块,其中含有的氮化硅湿法蚀刻产物硅化合物被吸附模块去除。在设置有补水模块与加热器模块的情况下,还可以经浓度和温度调节以实现磷酸蚀刻液的处理并可直接用于氮化硅薄膜的蚀刻,不仅可以提高蚀刻效率,还可以有效降低磷酸蚀刻液的使用量,减少蚀刻液更换频率,可以有效降低蚀刻成本。
综上所述,本发明提供一种湿法蚀刻设备及湿法蚀刻方法。本发明提供一种湿法蚀刻设备,所述湿法蚀刻设备包括蚀刻腔室及吸附模块,本发明的湿法蚀刻设备,在蚀刻液的回收路径上设置可吸收硅化合物的吸附模块,可以有效延长蚀刻液的使用寿命,降低使用成本及减少因蚀刻液的废液排放带来的环境污染,且可降低更换蚀刻液的频率,有助于提高生产效率。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (14)

  1. 一种湿法蚀刻设备,其特征在于,所述蚀刻设备包括蚀刻腔室及吸附模块,所述吸附模块的一端与所述蚀刻腔室的排液口相连通和/或所述吸附模块设置于所述蚀刻腔室内;所述蚀刻腔室收容待处理的基板和蚀刻液,且所述蚀刻液与所述基板相接触以蚀刻所述基板上的材料,并产生蚀刻产物硅化合物,其中,所述基板上的所述材料包括硅、氧化硅和氮化硅中的任一种或组合;所述吸附模块设置有吸附剂,所述蚀刻腔室中的蚀刻液进入所述吸附模块,蚀刻产物硅化合物被所述吸附模块中的所述吸附剂所去除。
  2. 根据权利要求1所述的湿法蚀刻设备,其特征在于,所述吸附剂包括离子交换树脂、氧化铝、氧化锆、氧化钛、氧化硅及有机硅化合物中的任意一种或多种,或上述吸附剂的任意一种或多种的表面基团改性后的物质,其中,基团改性是指采用包括氟基、磺酸基、羧基、环己基、三甲基氨丙基、苯磺酸丙基、乙二胺-N-丙基及上述吸附剂的表面基团中的一种或多种进行改性。
  3. 根据权利要求1所述的湿法蚀刻设备,其特征在于,所述吸附剂包括硅、硅酸聚合物、碳化硅、含羟基基团的聚合物,含羧基基团的聚合物及上述吸附剂的任意一种或多种的氟基改性材料。
  4. 根据权利要求1所述的湿法蚀刻设备,其特征在于,所述吸附模块还包括过滤单元,通过所述过滤单元防止所述吸附剂流出所述吸附模块。
  5. 根据权利要求1所述的湿法蚀刻设备,其特征在于,所述湿法蚀刻设备还包括对所述硅化合物的浓度进行检测的监测模块。
  6. 根据权利要求1所述的湿法蚀刻设备,其特征在于,所述湿法蚀刻设备还包括吸附剂的再生模块。
  7. 根据权利要求1-6中任一所述的湿法蚀刻设备,其特征在于,所述湿法蚀刻设备还包括循环管路、泵、过滤器、加热器、换热器、补液模块及自动控制模块中的一种或多种。
  8. 一种湿法蚀刻方法,其特征在于,包括以下步骤:
    步骤S1:将基板上的硅、氧化硅或氮化硅材料中的一种或组合暴露于蚀刻液中进行蚀刻工艺,生成蚀刻产物硅化合物;
    步骤S2:使用吸附剂吸附硅化合物,将所述吸附剂从所述蚀刻液中分离实现所述蚀刻液循环利用。
  9. 根据权利要求8所述的湿法蚀刻方法,其特征在于,所述蚀刻液包括含磷酸溶液、含氢氟酸溶液、含四甲基氢氧化铵溶液、含氢氧化钾溶液及含氢氧化钠溶液中的一种或 多种。
  10. 根据权利要求8所述的湿法蚀刻方法,其特征在于,所述吸附剂包括离子交换树脂、氧化铝、氧化锆、氧化钛、氧化硅及有机硅化合物中的任意一种或多种,或上述吸附剂的任意一种或多种的表面基团改性后的物质,其中,基团改性是指采用包括磺酸基、羧基、环己基、三甲基氨丙基、苯磺酸丙基、乙二胺-N-丙基及上述吸附剂的表面基团中的一种或多种进行改性。
  11. 根据权利要求8所述的湿法蚀刻方法,其特征在于,所述吸附剂包括硅、碳化硅、硅酸聚合物、含羟基基团的聚合物,含羧基基团的聚合物及上述吸附剂的任意一种或多种的氟基改性材料。
  12. 根据权利要求8所述的湿法蚀刻方法,其特征在于,所述吸附剂与所述蚀刻液分离的方法包括过滤、降温及沉淀中的一种或多种。
  13. 根据权利要求8所述的湿法蚀刻方法,其特征在于,通过调节所述硅化合物在所述吸附剂表面的吸附以调节所述蚀刻液中所述硅化合物的浓度,其中,调节方法包括调整所述蚀刻液的温度、调整所述蚀刻液的浓度及调整所述吸附剂的温度中的一种或组合。
  14. 根据权利要求8所述的湿法蚀刻方法,其特征在于,步骤S2中还包括加入吸附加速剂,所述吸附加速剂包括水、氢氟酸、氟化铵及氟化氢铵中的一种或组合。
PCT/CN2022/125313 2021-10-27 2022-10-14 湿法蚀刻设备及湿法蚀刻方法 WO2023071826A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111254995.0 2021-10-27
CN202111254995 2021-10-27
CN202210938351.1A CN115148643A (zh) 2021-10-27 2022-08-05 湿法蚀刻设备及湿法蚀刻方法
CN202210938351.1 2022-08-05

Publications (1)

Publication Number Publication Date
WO2023071826A1 true WO2023071826A1 (zh) 2023-05-04

Family

ID=83413608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125313 WO2023071826A1 (zh) 2021-10-27 2022-10-14 湿法蚀刻设备及湿法蚀刻方法

Country Status (3)

Country Link
CN (1) CN115148643A (zh)
TW (1) TW202329240A (zh)
WO (1) WO2023071826A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148643A (zh) * 2021-10-27 2022-10-04 中国科学院上海微系统与信息技术研究所 湿法蚀刻设备及湿法蚀刻方法
CN116837466B (zh) * 2023-08-31 2023-12-08 合肥晶合集成电路股份有限公司 磷酸蚀刻液回收方法及蚀刻方法
CN117976585B (zh) * 2024-04-01 2024-06-18 新美光(苏州)半导体科技有限公司 湿法蚀刻装置及温度调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207068B1 (en) * 1998-11-18 2001-03-27 Advanced Micro Devices, Inc. Silicon nitride etch bath system
CN1495865A (zh) * 2002-09-17 2004-05-12 m.FSI��ʽ���� 蚀刻液的再生方法、蚀刻方法和蚀刻系统
CN1713359A (zh) * 2004-06-22 2005-12-28 茂德科技股份有限公司 蚀刻系统及其蚀刻液处理方法
WO2020172454A1 (en) * 2019-02-20 2020-08-27 Weimin Li Need for si3n4 selective removal by wet chemistry
CN115148643A (zh) * 2021-10-27 2022-10-04 中国科学院上海微系统与信息技术研究所 湿法蚀刻设备及湿法蚀刻方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207068B1 (en) * 1998-11-18 2001-03-27 Advanced Micro Devices, Inc. Silicon nitride etch bath system
CN1495865A (zh) * 2002-09-17 2004-05-12 m.FSI��ʽ���� 蚀刻液的再生方法、蚀刻方法和蚀刻系统
CN1713359A (zh) * 2004-06-22 2005-12-28 茂德科技股份有限公司 蚀刻系统及其蚀刻液处理方法
WO2020172454A1 (en) * 2019-02-20 2020-08-27 Weimin Li Need for si3n4 selective removal by wet chemistry
CN115148643A (zh) * 2021-10-27 2022-10-04 中国科学院上海微系统与信息技术研究所 湿法蚀刻设备及湿法蚀刻方法

Also Published As

Publication number Publication date
TW202329240A (zh) 2023-07-16
CN115148643A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2023071826A1 (zh) 湿法蚀刻设备及湿法蚀刻方法
JP2012521075A (ja) 基板処理装置および基板処理方法
KR101052704B1 (ko) 규소 표면 및 층을 위한 에칭 페이스트
CN101379597B (zh) 半导体装置的制造方法以及半导体表面的微粗糙度减低方法
CN101652837A (zh) 从电极组件上清洁表面金属污染物的方法
CN1914710A (zh) 在基片处理过程中选择性蚀刻氮化硅的系统和方法
US10510527B2 (en) Single wafer cleaning tool with H2SO4 recycling
CN1804153A (zh) 用气态介质处理半导体晶片的方法以及由该方法处理的半导体晶片
CN103189965A (zh) 半导体衬底用碱性处理液的精制方法及精制装置
WO2023082462A1 (zh) 氮化物薄膜刻蚀液的再生方法和氮化物薄膜的刻蚀方法
CN101752209A (zh) 减少球状缺陷的方法及其装置
CN107706089A (zh) 铝线干法刻蚀后湿法清洗方法
EP0618612A2 (en) Method of cleaning semiconductor device and equipment for cleaning semiconductor device
JP2003133381A (ja) シリコンウェーハのエッチング方法とその装置及び不純物分析方法
CN1713359A (zh) 蚀刻系统及其蚀刻液处理方法
WO2023060792A1 (zh) 组合型刻蚀液、刻蚀系统及刻蚀方法
CN101393852A (zh) 一种半导体硅片的清洗方法
CN102122615B (zh) 对用于湿法刻蚀的溶液进行预处理的方法
CN1292822C (zh) 应用在清洗液循环系统中可延长过滤器寿命的清洗装置
US20190099694A1 (en) Etching solution recycling system and method for wafer etching apparatus
CN201611648U (zh) 湿法腐蚀设备
CN1868615A (zh) 一种针对低介电常数材料的去胶工艺方法
CN117344309B (zh) 一种金属刻蚀液回收控制系统及控制方法
JP2002100555A (ja) レジスト剥離装置およびそれを用いたデバイスの製造方法
KR101799282B1 (ko) 반도체 웨이퍼 및 디스플레이 패널 세정용 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE