WO2023071723A1 - 位置信息上报方法、接收方法、终端、卫星和存储介质 - Google Patents

位置信息上报方法、接收方法、终端、卫星和存储介质 Download PDF

Info

Publication number
WO2023071723A1
WO2023071723A1 PCT/CN2022/123815 CN2022123815W WO2023071723A1 WO 2023071723 A1 WO2023071723 A1 WO 2023071723A1 CN 2022123815 W CN2022123815 W CN 2022123815W WO 2023071723 A1 WO2023071723 A1 WO 2023071723A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
satellite
area
preamble
terminal
Prior art date
Application number
PCT/CN2022/123815
Other languages
English (en)
French (fr)
Inventor
侯利明
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023071723A1 publication Critical patent/WO2023071723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a location information reporting method, a receiving method, a terminal, a satellite, and a storage medium.
  • terminals need to report location information to the network side. For example, terminals report location information to base stations or satellites. Additional messages need to be used to report location information, resulting in high terminal overhead.
  • Embodiments of the present disclosure provide a location information reporting method, a receiving method, a terminal, a satellite, and a storage medium, so as to solve the problem of high terminal overhead.
  • An embodiment of the present disclosure provides a method for reporting location information, which includes:
  • the terminal determines location information, and determines a target sub-area where the terminal is located according to the location information, where the target sub-area is a sub-area within satellite coverage;
  • the terminal sends a preamble to a random beam of a satellite, the preamble being associated with the target sub-area.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • the method also includes:
  • the terminal divides the satellite coverage into sub-areas to obtain multiple sub-areas.
  • the satellite coverage area is divided into multiple sub-areas based on the size of the service beam;
  • the satellite coverage area is divided into multiple sub-areas based on ⁇ s /n, where ⁇ s is an angle between service beams, and n is an integer greater than 1.
  • the plurality of sub-areas are arranged as a rectangular coverage area, covering the satellite coverage area; or
  • the plurality of sub-areas are arranged as a cellular coverage area, covering the satellite coverage area.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • the determination of location information by the terminal includes:
  • the terminal determines the position information of the terminal relative to the satellite according to the ephemeris information and the positioning information.
  • the method also includes:
  • the terminal receives system information from the random beam of the satellite, and the system information includes at least one of the following:
  • the method also includes:
  • the terminal receives response information from the random beam, where the response information includes information of a service beam;
  • the terminal performs network access on the service beam according to the response information.
  • An embodiment of the present disclosure provides a method for receiving location information, including:
  • the satellite receives the preamble sent by the terminal through the random beam
  • the satellite determines a target sub-area associated with the preamble within the coverage of the satellite according to the preamble, and the target sub-area is a sub-area where the terminal is located.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • the method also includes:
  • the satellite divides the coverage area of the satellite into sub-regions to obtain multiple sub-regions.
  • the satellite coverage area is divided into multiple sub-areas based on the size of the service beam;
  • the satellite coverage area is divided into multiple sub-areas based on ⁇ s /n, where ⁇ s is an angle between service beams, and n is an integer greater than 1.
  • the plurality of sub-areas are arranged as a rectangular coverage area, covering the satellite coverage area; or
  • the plurality of sub-areas are arranged as a cellular coverage area, covering the satellite coverage area.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • the method also includes:
  • the satellite performs legality verification on the preamble
  • the verification is passed;
  • the verification fails.
  • the method also includes:
  • the satellite sends system information to the terminal through the random beam, and the system information includes at least one of the following:
  • the method also includes:
  • the satellite sends response information to the terminal through the random beam, and the response information includes service beam information;
  • the satellite invokes the service beam to cover the target sub-area.
  • An embodiment of the present disclosure provides a terminal, including: a memory, a transceiver, and a processor, wherein:
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • a preamble is transmitted to a random beam of a satellite, the preamble associated with the target sub-region.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • the processor is also used for:
  • the satellite coverage area is divided into sub-regions to obtain multiple sub-regions.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • the processor is also used for:
  • the response information including information of a service beam
  • An embodiment of the present disclosure provides a satellite, including: a memory, a transceiver, and a processor, wherein:
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • a target sub-area associated with the preamble is determined within the coverage of the satellite, and the target sub-area is a sub-area where the terminal is located.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • the satellite also includes:
  • the satellite divides the coverage area of the satellite into sub-regions to obtain multiple sub-regions.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the processor is also used for:
  • the verification is passed;
  • the verification fails.
  • the processor is also used for:
  • response information to the terminal through the random beam, where the response information includes service beam information
  • An embodiment of the present disclosure provides a terminal, including:
  • a determining unit configured to determine position information, and determine a target sub-area where the terminal is located according to the position information, where the target sub-area is a sub-area within satellite coverage;
  • a sending unit configured to send a preamble to a random beam of a satellite, where the preamble is associated with the target sub-area.
  • the terminal also includes:
  • a first receiving unit configured to receive response information from the random beam, where the response information includes information about a service beam
  • An executing unit configured to execute network access on the service beam according to the response information.
  • An embodiment of the present disclosure provides a satellite, including:
  • a receiving unit configured to receive the preamble sent by the terminal through random beams
  • the determining unit is configured to determine a target sub-area associated with the preamble within the coverage of the satellite according to the preamble, where the target sub-area is a sub-area where the terminal is located.
  • the satellite also includes:
  • a first sending unit configured to send response information to the terminal through the random beam, where the response information includes service beam information
  • a calling unit configured to call the service beam to cover the target sub-area.
  • An embodiment of the present disclosure provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the location information reporting method provided by the embodiment of the present disclosure, Alternatively, the computer program is used to enable the processor to execute the location information receiving method provided by the embodiments of the present disclosure.
  • the terminal determines the position information, and determines the target sub-area where the terminal is located according to the position information, and the target sub-area is a sub-area within the coverage of the satellite; the random encounter of the terminal to the satellite
  • the beam transmits a preamble associated with the target sub-area. In this way, the reporting of the location information can be realized through the preamble, so that the terminal does not need to introduce an additional message to report the location information, so as to save the overhead of the terminal.
  • FIG. 1 is a schematic structural diagram of an applicable network architecture implemented in the present disclosure
  • FIG. 2 is a schematic diagram of satellite beam coverage provided by an embodiment of the present disclosure
  • Fig. 3 is a flow chart of a method for reporting location information provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of sub-area division provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of another sub-region division provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of area division for preamble multiplexing provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another area division of preamble multiplexing provided by an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a location information receiving method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a location information receiving method provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a location information reporting method provided by an embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Fig. 12 is a structural diagram of a satellite provided by an embodiment of the present disclosure.
  • FIG. 13 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • Fig. 14 is a structural diagram of another satellite provided by an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a location information reporting method, a receiving method, a terminal, a satellite, and a storage medium, so as to solve the problem of high terminal overhead.
  • the method and the device are conceived based on the same application. Since the method and the device have similar problem-solving principles, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, fifth generation mobile communication (5th generation -Generation, 5G) New Radio (NR) system, 6G system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • FIG. 1 is a schematic structural diagram of a network architecture applicable to the implementation of the present disclosure, as shown in FIG. 1 , including terminals and satellites.
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal device can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal device such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the satellite involved in the embodiments of the present disclosure may be a satellite-borne base station (such as a regenerative satellite).
  • the satellite may also be a satellite + base station (such as a transparent forwarding satellite, or a satellite base station), that is, the satellite has simultaneous Network functions of satellites and base stations.
  • the base station may include multiple cells providing services for the terminal.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the satellite can be used to interchange received over-the-air frames with Internet Protocol (IP) packets, acting as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi User MIMO (Multiple User MIMO).
  • User MIMO, MU-MIMO Multi Input Multi Output
  • MIMO transmission can be two-dimensional MIMO (2Dimension MIMO, 2D-MIMO), three-dimensional MIMO (3Dimension MIMO, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO, FD-MIMO) or ultra-large Scale MIMO (massive-MIMO) can also be diversity transmission, precoding transmission or beamforming transmission, etc.
  • the beam of the satellite can be time-division hopped within the coverage of the satellite in a certain way, and the spatial orientation pointed to by each satellite beam hop will change (the area served by each hop is called a wave position) , the single dwell time of the beam on each hopping azimuth is called the dwell time (the beam hopping access wave positions can be either periodic or aperiodic). For example: as shown in Fig. 1, the beam jumps in different directions at time i, time m and time n respectively.
  • the hopping beams are divided into random beams and service beams.
  • the random beams mainly complete the auxiliary access of random terminals with unknown locations on the network side; the service beams are mainly used for known locations on the network side.
  • the initial access of the terminal and the service transmission of the terminal accessing the network.
  • a random terminal can initiate an access application after the downlink synchronization of the random beam is obtained. After the application is successful, the network side will schedule the service beam to cover the terminal and complete the access.
  • FIG. 3 is a flowchart of a location information reporting method provided by an embodiment of the present disclosure. As shown in FIG. 3, it includes the following steps:
  • Step 301 the terminal determines the location information, and determines the target sub-area where the terminal is located according to the location information, and the target sub-area is a sub-area within the satellite coverage;
  • Step 302 the terminal sends a preamble to a satellite random beam, and the preamble is associated with the target sub-area.
  • the location information determined by the terminal may be based on the location information determined by the Global Navigation Satellite System (Global Navigation Satellite System, GNSS), or may be based on ultrasonic positioning technology, laser positioning technology, wireless fidelity (Wireless Fidelity, WIFI) positioning technology, Bluetooth positioning location information obtained by technology and ultra-wideband positioning technology.
  • Global Navigation Satellite System Global Navigation Satellite System, GNSS
  • ultrasonic positioning technology laser positioning technology
  • wireless fidelity Wireless Fidelity, WIFI
  • Bluetooth positioning location information obtained by technology and ultra-wideband positioning technology may be based on the location information determined by the Global Navigation Satellite System (Global Navigation Satellite System, GNSS), or may be based on ultrasonic positioning technology, laser positioning technology, wireless fidelity (Wireless Fidelity, WIFI) positioning technology, Bluetooth positioning location information obtained by technology and ultra-wideband positioning technology.
  • WIFI Wireless Fidelity
  • the above-mentioned satellite coverage includes multiple sub-divisions, wherein the above-mentioned satellite coverage and the sub-area of the satellite coverage can be predetermined before performing step 201, for example: the terminal obtains the satellite coverage from the network side in advance, and the Relevant information of the sub-area of the satellite coverage, or, the terminal calculates the sub-area of the satellite coverage according to a predefined rule.
  • the association between the above-mentioned preamble and the target sub-area may be that both the terminal and the satellite obtain the association relationship between the preamble and the sub-area before performing step 202, so that after the terminal determines the above-mentioned target sub-area, it can determine the corresponding preamble , so as to report the position information through the preamble, and the satellite can determine the sub-area where the terminal is currently located after receiving the preamble.
  • the above steps can be used to report the location information of the terminal through the preamble, so that the terminal does not need to introduce additional messages to report the location information, so as to save the cost of the terminal.
  • this can take into account the protection of the location privacy of the terminal from being leaked in an explicit form during initial access.
  • the foregoing satellite coverage includes multiple subareas, and each subarea corresponds to one or more preambles.
  • each sub-area corresponds to one or more preambles
  • These relationships may be that the network pre-configures the mapping rules or mapping results to the terminal, or indicates to the terminal through the broadcast information of the random beam.
  • the plurality of sub-areas included in the above-mentioned satellite coverage area may be that the network side divides the satellite coverage area according to predetermined rules, and notifies the terminal of the division result.
  • An embodiment, the above method also includes:
  • the terminal divides the satellite coverage into sub-areas to obtain multiple sub-areas.
  • the sub-area division rule of the satellite coverage area by the terminal is the same as the sub-area division rule of the satellite coverage area by the network side, so as to obtain the same multiple sub-areas.
  • the above division rules may be pre-configured, or obtained by the terminal through system information, for example, the division rules may be acquired through a master information block (Master Information Block, MIB) or a system information block (System Information Block, SIB).
  • MIB Master Information Block
  • SIB System Information Block
  • the above-mentioned dividing rules may include information such as rules for corresponding preambles and sub-regions, sub-region sizes, and satellite ephemeris.
  • the terminal may perform the following steps after obtaining the above division rules:
  • the terminal receives the random beam downlink broadcast and obtains the ephemeris information, and the terminal combines the GNSS position information to calculate the position of the terminal relative to the current satellite;
  • the terminal obtains satellite coverage size information, sub-region size information, and division rules from the downlink system information, and combines the ephemeris information to determine the satellite movement direction and determine the coordinate system for sub-region division;
  • the terminal divides the satellite coverage into sub-regions according to the obtained information and the coordinate system, and obtains the target sub-region where the current position of the terminal is located;
  • the terminal selects the corresponding preamble to access the random beam according to the corresponding relationship between the sub-area and the preamble in the system information.
  • the network side transmits the sub-area division scheme of the current satellite and the corresponding scheme between the sub-area and the preamble to the terminal in the MIB or SIB information of the random beam.
  • the method also includes:
  • the terminal receives system information from the random beam of the satellite, and the system information includes at least one of the following:
  • the above system information may be MIB or SIB.
  • At least one of the foregoing items may also be pre-configured for the terminal.
  • the terminal may also be pre-configured for the terminal.
  • the satellite coverage area is divided into multiple sub-areas based on the size of the service beam;
  • the satellite coverage area is divided into multiple sub-areas based on ⁇ s /n, where ⁇ s is an angle between service beams, and n is an integer greater than 1.
  • the satellite coverage can refer to the cone angle range of the satellite to the ground, which is generally expressed by ⁇ .
  • the size of the service beam is generally expressed by the beam angle (3dB angle).
  • the beam angle of 3° or 5° refers to the angle of the service beam
  • the size can also be denoted by ⁇ s . In this way, multiple sub-areas whose size is the size of the service beam can be obtained by dividing.
  • the above-mentioned division into multiple sub-areas based on ⁇ s /n can be divided into multiple sub-areas with ⁇ s /n as the size of the sub-area, which can improve the accuracy of the relative position and increase the success rate of one-time coverage of the service beam.
  • the plurality of sub-areas are arranged as a rectangular coverage area, covering the satellite coverage area; or
  • the plurality of sub-areas are arranged as a cellular coverage area, covering the satellite coverage area.
  • the above-mentioned multiple sub-areas are arranged into a rectangular coverage area, and the satellite coverage area may be covered by arranging the sub-areas in rows and columns within the area within the satellite coverage area, based on the size of the sub-areas to form a rectangular area.
  • the large dark circle in Figure 4 is the satellite coverage area
  • the small circle represents the size of the sub-area.
  • the satellite coverage area can be divided into 36 sub-areas.
  • the satellite coverage ⁇ ⁇ range The number of subregions that can be divided on the diameter of the inner substellar point is:
  • represents the satellite coverage
  • Nsubcell represents the number of sub-regions.
  • the above-mentioned multiple sub-areas are arranged into a cellular coverage area, and the coverage of the satellite coverage area may be divided by the center of the cellular coverage area to form a cellular coverage area.
  • center position 1 sub-area; first circle: 6 sub-areas; second circle: 12 sub-areas; ...; nth circle: (n-1) ⁇ 6, for example: as shown in FIG. 5 .
  • the number of sub-regions required under the honeycomb arrangement can be calculated by the following formula:
  • Ncell represents the total number of sub-regions
  • Nsubcell represents the number of sub-regions on the diameter of the sub-satellite point passing the satellite.
  • FIG. 4 and FIG. 5 it is only illustrated by taking an example where there is an edge overlapping area in the division result of the sub-area.
  • quadratic programming can be performed on the sub-regions with overlapping edges, and the boundaries of the sub-regions can be strictly distinguished so that there is no overlap between the sub-regions, and each sub-region corresponds to an independent preamble.
  • the terminal determines the target sub-area in the following manner:
  • the terminal selects the sub-area in the opposite position to the direction of satellite movement among the three sub-areas as the target sub-area where the terminal is located; if among the three sub-areas, the dividing line between the two sub-areas The direction of satellite movement is the same, and the two sub-areas are located at the opposite positions of the satellite movement, then select the sub-area in the overlapping area of the two sub-areas that is farthest from the edge of the terminal as the target sub-area where the terminal is located; in the above cases, if If the terminal is on the dividing line between the two sub-areas, the terminal randomly selects one of the two sub-areas as the sub-area where the terminal is located.
  • the above two methods can select suitable target sub-regions and preambles for terminals in overlapping regions.
  • the above two methods can also select the appropriate target sub-area and preamble for the terminal in the overlapping area.
  • the coverage area is much smaller, and one service beam can cover many sub-areas. Therefore, a terminal in a sub-area overlapping coverage position can also randomly select one of the overlapping sub-areas as the target sub-area where the terminal is located.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the aforementioned multiplexing of preambles in sub-regions in different directions of random beams may be to multiplex the same preambles in different directions of random beams, so as to realize space division multiplexing of preambles.
  • the orientation of the random beam can be identified by using the directionality of the hopping random beam.
  • the terminal may determine the receiving direction of the random beam, and then query the preamble corresponding to the target sub-area in the azimuth mapping table. Since the preamble can be space-division multiplexed, preamble resources are saved.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • the foregoing multiple areas may be coverage areas covered by random beams in multiple directions.
  • a group of preambles can be implemented corresponding to multiple regions, so as to save preamble resources.
  • the satellite sub-satellite point can be used as the center to carry out "one", “ten” or “meter” or other forms, etc.
  • Divide which is equivalent to mapping the satellite coverage area on a circle on a plane, and perform N equal divisions, where N takes a positive integer of 1, 2, 3... to form multiple fan-shaped areas, as shown in Figure 6.
  • the coverage area is divided into N areas, and multiple sets of preamble sequences are multiplexed in these N areas.
  • the same set of preambles is applied in different directions to avoid mutual interference.
  • the preamble of can uniquely indicate a certain sub-area on this azimuth.
  • circles with different radii may be divided with the sub-satellite point as the center to form multiple ring-shaped areas, as shown in FIG. 7 .
  • different preambles are configured in adjacent ring-shaped areas, and the preambles in the ring-shaped areas correspond to sub-areas.
  • the determination of the location information by the terminal includes:
  • the terminal determines the position information of the terminal relative to the satellite according to the ephemeris information and the positioning information.
  • the above positioning information may be positioning information obtained through GNSS positioning technology, ultrasonic positioning technology, laser positioning technology, WIFI positioning technology, Bluetooth positioning technology, and ultra-wideband positioning technology.
  • the above-mentioned determination of the position information of the terminal relative to the satellite according to the ephemeris information and the positioning information may be to query the position information of the positioning information relative to the satellite according to the ephemeris information.
  • the location information is the location information of the terminal relative to the satellite
  • the location information reported to the satellite can be used more conveniently by the satellite, so as to reduce complexity.
  • the position information of the terminal relative to the satellite is not limited, for example: the satellite coverage can be converted into GNSS position information, so that the target sub-area where the terminal is located can be directly determined according to the GNSS position information .
  • the method also includes:
  • the terminal receives response information from the random beam, where the response information includes information of a service beam;
  • the terminal performs network access on the service beam according to the response information.
  • the above response message may be a random access response (random access response, RAR), and the above service beam information may be indication information for indicating beam services.
  • RAR random access response
  • the terminal can initiate a preamble to the random beam and access the network on the service beam, so as to improve the reliability of the terminal accessing the network.
  • the size of the service beam is smaller than the size of the random beam.
  • the target sub-area where the terminal is located is determined through the preamble, so that the network side calls the service beam to serve the terminal in the target sub-area, so that the terminal can access the network.
  • the satellite coverage area is divided into multiple sub-areas, and a preamble (one or a group) is mapped for each sub-area.
  • a random terminal accesses a random beam, it selects the corresponding preamble to send according to the sub-area it is in.
  • the satellite After receiving the preamble, find the location of the satellite sub-area corresponding to the preamble, and then schedule the service beam to cover the corresponding sub-area to provide services for users.
  • the terminal determines the position information, and determines the target sub-area where the terminal is located according to the position information, and the target sub-area is a sub-area within the coverage of the satellite; the random encounter of the terminal to the satellite
  • the beam transmits a preamble associated with the target sub-area. In this way, the reporting of the location information can be realized through the preamble, so that the terminal does not need to report the location information through an additional message, so as to save the overhead of the terminal.
  • FIG. 8 is a flow chart of a location information receiving method provided by an embodiment of the present disclosure. As shown in FIG. 8, it includes the following steps:
  • Step 801 the satellite receives the preamble sent by the terminal through the random beam
  • Step 802 the satellite determines a target sub-area associated with the preamble within the coverage of the satellite according to the preamble, and the target sub-area is a sub-area where the terminal is located.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • the method also includes:
  • the satellite divides the coverage area of the satellite into sub-regions to obtain multiple sub-regions.
  • the satellite coverage area is divided into multiple sub-areas based on the size of the service beam;
  • the satellite coverage area is divided into multiple sub-areas based on ⁇ s /n, where ⁇ s is an angle between service beams, and n is an integer greater than 1.
  • the plurality of sub-areas are arranged as a rectangular coverage area, covering the satellite coverage area; or
  • the plurality of sub-areas are arranged as a cellular coverage area, covering the satellite coverage area.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • the method also includes:
  • the satellite performs legality verification on the preamble
  • the verification is passed;
  • the verification fails.
  • the satellite can use the location information of the terminal, such as calling the service beam to serve the terminal; if the verification fails, the terminal can discard the location information of the terminal, such as not calling the service beam to serve the terminal.
  • the method also includes:
  • the satellite sends system information to the terminal through the random beam, and the system information includes at least one of the following:
  • the method also includes:
  • the satellite sends response information to the terminal through the random beam, and the response information includes service beam information;
  • the satellite invokes the service beam to cover the target sub-area.
  • this embodiment is an implementation manner of a satellite corresponding to the embodiment shown in FIG.
  • the example will not be repeated, and the same beneficial effect can also be achieved.
  • This embodiment is illustrated by taking the network side (i.e., the satellite side) as an example, as shown in Figure 9, including the following steps:
  • the network side divides the satellite coverage area according to the agreed size specification (such as the size of the service beam) to form multiple sub-areas, and then maps the preamble sequence and the sub-areas according to the agreed space division multiplexing rules;
  • the agreed size specification such as the size of the service beam
  • the network side notifies the terminal of the service ephemeris and other information, beam information, mapping rules, sub-area division rules or division results, etc., through MIB or SIB in random beams;
  • the network side After receiving the preamble received by the uplink random beam, the network side judges the sub-area where the preamble is sent (for a preamble received in a certain direction, if the preamble does not exist in the agreed direction, the network side can judge the preamble based on this code to detect false alarms, avoid scheduling service beams, and waste resources);
  • the network side dispatches service beams to cover this sub-area.
  • the terminal obtains satellite ephemeris, sub-area division rules or schemes, sub-area and preamble correspondence rules and other information from the random beam, and combines the GNSS position information of the terminal to estimate which sub-area of the current satellite the terminal belongs to;
  • the terminal selects the corresponding preamble and sends it on the random beam;
  • the terminal waits to receive the RAR (including the information of the service beam) fed back by the random beam;
  • the terminal waits to receive the service beam downlink according to the information in the RAR, and completes the final access in the service beam.
  • each sub-area is mapped with a preamble
  • sub-areas with different azimuths can reuse the same group of preambles
  • a random user initiates a preamble reception on a random beam.
  • the network side judges the area to which the preamble belongs according to the receiving direction of the random beam, estimates the location of the corresponding sub-area according to the detection result of the preamble, and then schedules the sub-area corresponding to the coverage of the service beam to provide services for the user.
  • the additional overhead and delay caused by the incidental beam reporting terminal location information can be adapted to the random beam and service beam systems with different sizes and configurations.
  • FIG. 11 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 11, it includes a memory 1120, a transceiver 1100, and a processor 1110:
  • the memory 1120 is used to store computer programs; the transceiver 1100 is used to send and receive data under the control of the processor 1110; the processor 1110 is used to read the computer programs in the memory 1120 and perform the following operations:
  • a preamble is transmitted to a random beam of a satellite, the preamble associated with the target sub-region.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1110 and various circuits of the memory represented by the memory 1120 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1100 may be a plurality of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 1130 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1110 is responsible for managing the bus architecture and general processing, and the memory 1120 can store data used by the processor 1110 when performing operations.
  • the processor 1110 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field-programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field-programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor is used to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • processor 1110 is also used for:
  • the satellite coverage area is divided into sub-regions to obtain multiple sub-regions.
  • the satellite coverage area is divided into multiple sub-areas based on the size of the service beam;
  • the satellite coverage area is divided into multiple sub-areas based on ⁇ s /n, where ⁇ s is an angle between service beams, and n is an integer greater than 1.
  • the plurality of sub-areas are arranged as a rectangular coverage area, covering the satellite coverage area; or
  • the plurality of sub-areas are arranged as a cellular coverage area, covering the satellite coverage area.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • the determining location information includes:
  • processor 1110 is also used for:
  • system information from a random beam of the satellite, the system information including at least one of the following:
  • processor 1110 is also used for:
  • the response information including information of a service beam
  • FIG. 12 is a structural diagram of a satellite provided by an embodiment of the present disclosure. As shown in FIG. 12, it includes a memory 1220, a transceiver 1200 and a processor 1210:
  • the memory 1220 is used to store computer programs; the transceiver 1200 is used to send and receive data under the control of the processor 1210; the processor 1210 is used to read the computer programs in the memory 1220 and perform the following operations:
  • a target sub-area associated with the preamble is determined within the coverage of the satellite, and the target sub-area is a sub-area where the terminal is located.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1210 and various circuits of the memory represented by the memory 1220 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1200 may be a plurality of elements, including transmitters and receivers, providing means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 1230 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1210 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data used by the processor 1210 when performing operations.
  • the processor 1210 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field-programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field-programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor is used to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • processor 1210 is also used for:
  • the satellite coverage area is divided into sub-regions to obtain multiple sub-regions.
  • the satellite coverage area is divided into multiple sub-areas based on the size of the service beam;
  • the satellite coverage area is divided into multiple sub-areas based on ⁇ s /n, where ⁇ s is an angle between service beams, and n is an integer greater than 1.
  • the plurality of sub-areas are arranged as a rectangular coverage area, covering the satellite coverage area; or
  • the plurality of sub-areas are arranged as a cellular coverage area, covering the satellite coverage area.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • processor 1210 is also used for:
  • the verification is passed;
  • the verification fails.
  • processor 1210 is also used for:
  • the system information includes at least one of the following:
  • the method also includes:
  • the satellite sends response information to the terminal through the random beam, and the response information includes service beam information;
  • the satellite invokes the service beam to cover the target sub-area.
  • FIG. 13 is a structural diagram of another terminal provided by an embodiment of the present disclosure. As shown in FIG. 13, a terminal 1300 includes:
  • the determining unit 1301 is configured to determine position information, and determine a target sub-area where the terminal is located according to the position information, where the target sub-area is a sub-area within satellite coverage;
  • the sending unit 1302 is configured to send a preamble to a random beam of a satellite, where the preamble is associated with the target sub-area.
  • the terminal also includes:
  • a first receiving unit configured to receive response information from the random beam, where the response information includes information about a service beam
  • An executing unit configured to execute network access on the service beam according to the response information.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • the terminal also includes:
  • a division unit configured to divide the satellite coverage into sub-regions to obtain multiple sub-regions.
  • the satellite coverage area is divided into multiple sub-areas based on the size of the service beam;
  • the satellite coverage area is divided into multiple sub-areas based on ⁇ s /n, where ⁇ s is an angle between service beams, and n is an integer greater than 1.
  • the plurality of sub-areas are arranged as a rectangular coverage area, covering the satellite coverage area; or
  • the plurality of sub-areas are arranged as a cellular coverage area, covering the satellite coverage area.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • the determining unit 1301 is configured to determine the position information of the terminal relative to the satellite according to the ephemeris information and the positioning information.
  • the terminal also includes:
  • the second receiving unit is configured to receive system information from random beams of the satellite, and the system information includes at least one of the following:
  • FIG. 14 is a structural diagram of another satellite provided by an embodiment of the present disclosure.
  • a satellite 1400 includes:
  • the receiving unit 1401 is configured to receive the preamble sent by the terminal through random beams
  • the determining unit 1402 is configured to determine a target sub-area associated with the preamble within the coverage of the satellite according to the preamble, where the target sub-area is the sub-area where the terminal is located.
  • the satellite also includes:
  • a first sending unit configured to send response information to the terminal through the random beam, where the response information includes service beam information
  • a calling unit configured to call the service beam to cover the target sub-area.
  • the satellite coverage includes multiple sub-areas, and each sub-area corresponds to one or more preambles.
  • the satellite also includes:
  • a division unit configured to divide the satellite coverage into sub-regions to obtain multiple sub-regions.
  • the satellite coverage area is divided into multiple sub-areas based on the size of the service beam;
  • the satellite coverage area is divided into multiple sub-areas based on ⁇ s /n, where ⁇ s is an angle between service beams, and n is an integer greater than 1.
  • the plurality of sub-areas are arranged as a rectangular coverage area, covering the satellite coverage area; or
  • the plurality of sub-areas are arranged as a cellular coverage area, covering the satellite coverage area.
  • the preamble is: a multiplexed preamble for sub-areas in different directions of the random beam.
  • the random beam corresponds to multiple directions, and multiple areas corresponding to the multiple directions correspond to the same group of preambles, and in any area of the multiple areas, within the same group of preambles Different preambles are associated with different sub-regions.
  • the satellite also includes:
  • a verification unit configured to verify the validity of the preamble
  • the verification is passed;
  • the verification fails.
  • the satellite also includes:
  • the second sending unit is configured to send system information to the terminal through the random beam, and the system information includes at least one of the following:
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the essence of the technical solution of the present disclosure or the part that contributes to the related technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • An embodiment of the present disclosure provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the location information reporting method provided by the embodiment of the present disclosure, Alternatively, the computer program is used to enable the processor to execute the location information receiving method provided by the embodiments of the present disclosure.
  • the processor-readable storage medium may be any available medium or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (Magneto-Optical Disk, MO) etc.) , optical storage (such as compact disc (Compact Disk, CD), digital video disc (Digital Versatile Disc, DVD), Blu-ray Disc (Blu-ray Disc, BD), high-definition universal disc (High-Definition Versatile Disc, HVD), etc.), And semiconductor memory (such as read-only memory (Read-Only Memory, ROM), erasable programmable read-only memory (Erasable Programmable ROM, EPROM), charged erasable programmable read-only memory (Electrically EPROM, EEPROM), nonvolatile Non-volatile memory (NAND FLASH), solid state hard disk (Solid State Disk or Solid State Drive, SSD)), etc.
  • magnetic storage such as floppy disk, hard disk,
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.
  • the division of the above modules is only a division of logical functions, and may be fully or partially integrated into a physical entity or physically separated during actual implementation.
  • these modules can all be implemented in the form of calling software through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in the form of hardware.
  • the determining module may be a separate processing element, or may be integrated in a chip of the above-mentioned device.
  • it may be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device may Call and execute the functions of the modules identified above.
  • each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, subunit or submodule may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种位置信息上报方法、接收方法、终端、卫星和存储介质,该位置信息上报方法包括:终端确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;所述终端向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。

Description

位置信息上报方法、接收方法、终端、卫星和存储介质
相关申请的交叉引用
本公开主张在2021年10月29日在中国提交的中国专利申请No.202111270181.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种位置信息上报方法、接收方法、终端、卫星和存储介质。
背景技术
在很多通信场景中终端需要向网络侧上报位置信息,例如:终端向基站或者卫星上报位置信息,但目前终端上报位置信息方式往往是通过专用消息以显式的方式进行上报,也就是说,终端需要通过额外的消息来上报位置信息,从而导致终端开销较大。
发明内容
本公开实施例提供一种位置信息上报方法、接收方法、终端、卫星和存储介质,以解决终端开销较大的问题。
本公开实施例提供一种位置信息上报方法,其中,包括:
终端确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
所述终端向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,所述方法还包括:
所述终端对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域; 或者
所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
可选地,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
可选地,所述终端确定位置信息,包括:
所述终端根据星历信息和定位信息,确定所述终端相对于卫星的位置信息。
可选地,所述方法还包括:
所述终端从所述卫星的随遇波束接收系统信息,所述系统信息包括如下至少一项:
前导码与子区域的对应关系;
星历信息;
子区域划分规则信息;
子区域大小信息;
卫星覆盖范围大小信息;
子区域划分结果。
可选地,所述方法还包括:
所述终端从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
所述终端根据所述响应信息在所述业务波束执行网络接入。
本公开实施例提供一种位置信息接收方法,包括:
卫星通过随遇波束接收终端发送的前导码;
所述卫星根据所述前导码,在卫星覆盖范围内确定所述前导码关联的目标子区域,所述目标子区域为终端所处的子区域。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,所述方法还包括:
卫星对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域;或者
所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
可选地,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
可选地,所述方法还包括:
所述卫星对所述前导码进行合法性验证;
其中,在所述随遇波束的当前发送方向对应的前导码组包括所述前导码的情况下,验证通过;
在所述随遇波束的当前发送方向对应的前导码组不包括所述前导码的情况下,验证不通过。
可选地,所述方法还包括:
所述卫星通过所述随遇波束向终端发送系统信息,所述系统信息包括如下至少一项:
前导码与子区域的对应关系;
星历信息;
子区域划分规则信息;
子区域大小信息;
卫星覆盖范围大小信息;
子区域划分结果。
可选地,所述方法还包括:
所述卫星通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
所述卫星调用所述业务波束覆盖所述目标子区域。
本公开实施例提供一种终端,包括:存储器、收发机和处理器,其中:
所述存储器,用于存储计算机程序;所述收发机,用于在所述处理器的控制下收发数据;所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,所述处理器还用于:
对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
可选地,所述处理器还用于:
从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
根据所述响应信息在所述业务波束执行网络接入。
本公开实施例提供一种卫星,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收 发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
通过随遇波束接收终端发送的前导码;
根据所述前导码,在卫星覆盖范围内确定所述前导码关联的目标子区域,所述目标子区域为终端所处的子区域。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,所述卫星还包括:
卫星对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述处理器还用于:
对所述前导码进行合法性验证;
其中,在所述随遇波束的当前发送方向对应的前导码组包括所述前导码的情况下,验证通过;
在所述随遇波束的当前发送方向对应的前导码组不包括所述前导码的情况下,验证不通过。
可选地,所述处理器还用于:
通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
调用所述业务波束覆盖所述目标子区域。
本公开实施例提供一种终端,包括:
确定单元,用于确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
发送单元,用于向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。
可选地,所述终端还包括:
第一接收单元,用于从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
执行单元,用于根据所述响应信息在所述业务波束执行网络接入。
本公开实施例提供一种卫星,包括:
接收单元,用于通过随遇波束接收终端发送的前导码;
确定单元,用于根据所述前导码,在卫星覆盖范围内确定所述前导码关联的目标子区域,所述目标子区域为终端所处的子区域。
可选地,所述卫星还包括:
第一发送单元,用于通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
调用单元,用于调用所述业务波束覆盖所述目标子区域。
本公开实施例提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开实施例提供的位置信息上报方法,或者,所述计算机程序用于使所述处理器执行本公开实施例提供的位置信息接收方法。
本公开实施例中,终端确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;所述终端向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。这样可以通过前导码来实现位置信息的上报,从而不需要终端引入额外的消息上报位置信息,以节约终端的开销。
附图说明
图1是本公开实施可应用的网络构架的结构示意图;
图2是本公开实施例提供的一种卫星波束覆盖的示意图;
图3是本公开实施例提供的一种位置信息上报方法的流程图;
图4是本公开实施例提供的一种子区域划分的示意图;
图5是本公开实施例提供的另一种子区域划分的示意图;
图6是本公开实施例提供的一种前导码复用的区域划分的示意图;
图7是本公开实施例提供的另一种前导码复用的区域划分的示意图;
图8是本公开实施例提供的一种位置信息接收方法的流程图;
图9是本公开实施例提供的一种位置信息接收方法的示意图;
图10是本公开实施例提供的一种位置信息上报方法的示意图;
图11是本公开实施例提供的一种终端的结构图;
图12是本公开实施例提供的一种卫星的结构图;
图13是本公开实施例提供的另一种终端的结构图;
图14是本公开实施例提供的另一种卫星的结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种位置信息上报方法、接收方法、终端、卫星和存储介质,以解决终端开销较大的问题。
其中,方法和设备是基于同一申请构思的,由于方法和设备解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是第六代移动通信(6th-Generation,6G)系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统 (universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、第五代移动通信(5th-Generation,5G)新空口(New Radio,NR)系统、6G系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
请参见图1,图1是本公开实施可应用的网络构架的结构示意图,如图1所示,包括终端和卫星。
其中,本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、降低能力(Reduced Capability,Redcap)终端、智能家居终端、车载终端、机器人等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的卫星可以是星载基站(例如:再生卫星),当然,在一些实施方式中,卫星也可以是卫星+基站(例如:透明转发卫星,或者卫星基站),即卫星具备同时卫星和基站的网络功能。其中,基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或 者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。卫星可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。
卫星与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(2Dimension MIMO,2D-MIMO)、三维MIMO(3Dimension MIMO,3D-MIMO)、全维度MIMO(Full Dimension MIMO,FD-MIMO)或超大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
本公开实施例中,卫星的波束可以按照一定的方式在卫星覆盖范围内分时跳变,每次卫星波束跳变指向的空间方位会发生变化(每次跳变服务的区域称为波位),波束在每个跳变方位上的单次停留时间称为驻留时间(波束跳变访问波位可以采用周期方式也可以是非周期方式)。例如:如图1所示,波束在时刻i、时间m和时间n分别跳变在不同的方位。
如图2所示,本公开实施例中,跳波束分为随遇波束和业务波束,随遇波束主要完成网络侧未知位置的随机终端的辅助接入;业务波束主要用于网络侧已知位置的终端的初始接入及接入网络终端的业务传输。一般情况下,随机终端在随遇波束获得下行同步后,可以发起接入申请,申请成功后,网络侧会调度业务波束覆盖该终端,完成接入。
请参见图3,图3是本公开实施例提供的一种位置信息上报方法的流程图,如图3所示,包括以下步骤:
步骤301、终端确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
步骤302、所述终端向卫星的随遇波束发送前导码(preamble),所述前导码与所述目标子区域关联。
终端确定位置信息可以是基于全球导航卫星系统(Global Navigation Satellite System,GNSS)确定的位置信息,或者可以是基于超声波定位技术、 激光定位技术、无线保真(Wireless Fidelity,WIFI)定位技术、蓝牙定位技术、超宽带定位技术得到的位置信息。
上述卫星覆盖范围内包括多个子区别,其中,上述卫星覆盖范围,以及该卫星覆盖范围的子区域可以在执行步骤201之前预先确定的,例如:终端预先从网络侧获取到卫星覆盖范围,以及该卫星覆盖范围的子区域的相关信息,或者,终端依据预先定义的规则计算卫星覆盖范围的子区域。
上述前导码与所述目标子区域关联可以是,在执行步骤202之前终端与卫星都获取有前导码与子区域的关联关系,从而终端在确定上述目标子区域后,就可以确定对应的前导码,以通过该前导码上报位置信息,而卫星接收到上述前导码后可以确定终端当前所处的子区域。
本公开实施例中,通过上述步骤可以实现通过前导码上报终端的位置信息,从而不需要终端引入额外的消息上报位置信息,以节约终端的开销。另外,由于通过前导码上报终端的位置信息,这样可以兼顾保护终端的位置隐私不在初始接入时以显性形式泄露。
作为一种可选的实施方式,上述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
上述每个子区域对应一个或者多个前导码可以理解为,子区域与前导码为一对一的映射,或者一对多映射,例如:一组前导码对应一个子区域。这些关系可以是网络则将映射规则或者映射结果预先配置给终端,或者通过随遇波束的广播信息指示给终端。
一种实施方式中,上述卫星覆盖范围包括的多个子区域可以是网络侧按照预定的规则对卫星的覆盖区域进行划分,并将划分的结果通知给终端。
一种实施方式,上述方法还包括:
所述终端对所述卫星覆盖范围进行子区域划分,得到多个子区域。
其中,终端对卫星覆盖范围进行子区域划分的划分规则与网络侧对卫星覆盖范围进行子区域划分的划分规则相同,从而得到相同的多个子区域。
上述划分规则可以是预先配置的,或者终端通过系统信息获取的,例如:通过主信息块(Master Information Block,MIB)或者系统信息块(System Information Block,SIB)获取划分规则。其中,上述划分规则可以包括前导 码与子区域对应规则、子区域尺寸、卫星星历等信息。
在一种实施方式中,终端在获取上述划分规则后可以执行如下步骤:
终端收到随遇波束下行广播,得到星历信息,终端结合GNSS位置信息,计算终端相对于当前卫星的位置;
终端从下行系统信息中获得卫星覆盖范围大小信息、子区域大小信息、划分规则,结合星历信息能够确定卫星运动方向,确定子区域划分的坐标系;
终端根据所得的信息和坐标系对卫星覆盖范围进行子区域划分,获得终端当前位置所处的目标子区域;
终端根据系统信息中关于子区域与前导码的对应关系,选择对应的前导码在随遇波束进行接入。
在另一种实施方式,网络侧在随遇波束的MIB或SIB信息中将当前卫星的子区域划分方案以及子区域与前导码的对应方案传递给终端。
作为一种可选的实施方式,所述方法还包括:
所述终端从所述卫星的随遇波束接收系统信息,所述系统信息包括如下至少一项:
前导码与子区域的对应关系;
星历信息;
子区域划分规则信息;
子区域大小信息;
卫星覆盖范围大小信息;
子区域划分结果。
上述系统信息可以是MIB或者SIB。
需要说明的是,本公开实施例中,上述至少一项也可以是预先配置给终端。例如:
作为一种可选的实施方式,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域;或者
所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
卫星覆盖范围可以是指卫星对地面的圆锥角范围,一般用±θ来表示, 业务波束的大小一般用波束夹角表示(3dB角),如波束角3°或5°指业务波束的夹角大小,也可以用θ s表示。这样可以划分得到多个大小为业务波束大小的子区域。
上述以θ s/n基准划分成多个子区域可以是,以θ s/n为子区域大小划分得到多个子区域,这样可以提高相对位置的精度,使得业务波束一次覆盖成功率提高。
作为一种可选的实施方式,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
上述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围可以是,在卫星覆盖范围内的区域内,以子区域大小为基准,将子区域按照行列排列,形成矩形区。例如:如图4所示,图4中深色大圆形为卫星覆盖范围,小圆表示子区域的大小,按照图4的矩形排列方式,卫星覆盖区可换分36个子区域。以6边形为基本单元,6边形对角对应的波束夹角为θ c,6边形对边对应的波束夹角为θ L=√3/2×θ,则卫星覆盖范围±θ范围内星下点的直径上可划分的子区域数目为:
Figure PCTCN2022123815-appb-000001
其中,θ表示卫星覆盖范围,Nsubcell表示子区域数目。
上述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围可以是,以蜂窝形覆盖区域中心进行划分,形成蜂窝形覆盖区域。例如:中心位置:1个子区域;第一圈:6个子区域;第二圈:12个子区域;……;第n圈:(n-1)×6,例如:如图5所示。其中,蜂窝排列下所需的子区域数目可由下式计算:
Figure PCTCN2022123815-appb-000002
其中,Ncell表示子区域总数,Nsubcell表示过卫星的星下点直径上的子区域数目。
需要说明的是,图4和图5所示,仅是以子区域在划分结果中存在边缘重叠区域进行举例说明。本公开实施例中,在一些实施方式中,各子区域可以不存在重叠区域。例如:可以对存在边缘重叠区域的子区域进行二次规划 处理,严格区分子区域的边界,使得子区域间不存在重叠,每个子区域对应独立的前志码。
可选地,在终端处于多个子区域重叠的情况下,终端通过如下方式确定目标子区域:
对于处在两个子区域重叠覆盖区域的情况,选择两个子区域中处于与卫星运动方向相反位置的子区域作为终端的所处目标子区域;如果两个子区域的分割线与卫星运动方向一致,则选取重叠区域内边缘距离终端最远的子区域作为终端所处的目标子区域;在上述情况下,如果终端处于两个子区域分割线上,则终端随机选取两个子区域中一个作为终端所处的目标子区域。
对于处在三个子区域重叠覆盖区域的情况,选择三个子区域中处于与卫星运动方向相反位置的子区域作为终端的所处的目标子区域;如果三个子区域中,两个子区域的分割线与卫星运动方向一致,且这两个子区域均位于卫星运动相反位置,则选取这两个子区域的重叠区内边缘距离终端最远的子区域作为终端所处的目标子区域;在上述情况下,如果终端处于两个子区域分割线上,则终端随机选取两个子区域中一个作为终端所处的子区域。
对于按照业务波束尺寸划分子区域方式,上述两种方式能够为处于重叠区域的终端选择合适的目标子区域和前导码。对于以远小于业务波束尺寸划分子区域的方式,上述两种方式也能够为处于重叠区域的终端选择合适的目标子区域和前导码,另外,在这种情况下,由于子区域相比业务波束覆盖范围小很多,一个业务波束能够覆盖很多个子区域,因此,处于子区域重叠覆盖位置的终端也可以在重叠覆盖的子区域中可以随机选择一个作为终端所处的目标子区域。
作为一种可选的实施方式,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
上述在所述随遇波束的不同方向的子区域的复用前导码可以是,在随遇波束的不同方位复用相同的前导码,以实现前导码的空分复用。其中,随遇波束的方位可以利用跳变随遇波束的方向性识别。
该实施方式中,终端可以是判断随遇波束的接收方向,然后在该方位映射的表中查询目标子区域对应的前导码。由于前导码可以空分复用,从而节 约前导码资源。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
上述多个区域可以是随遇波束的多个方向覆盖的覆盖区域。
该实施方式中,可以实现一组前导码对应多个区域,以节约前导码资源。
在一种实施方式中,在多个子区域矩形排列划分的基础上,可以以卫星星下点为中心,进行“一”字型、“十”字型或“米”字型或其他形式的等分,相当于把卫星覆盖范围映射在平面上的圆,进行N次等分,N取1,2,3……的正整数,形成多个扇形区域,具体可以如图6所示。
这样,以卫星星下点为中心,将覆盖区域划分成N个区域,将多组前导码序列在这个N个区域内复用,同一组前导码应用在不同方位,避免相互干扰,该组内的前导码可唯一指示该方位上的某个子区域。
在另一种实施方式中,可以以卫星星下点为中心,划分出不同半径的圆,形成多个环状区域,具体可以如图7所示。其中,相邻的环状区域配置不同的前导码,环状区域内前导码与子区域相对应。
作为一种可选的实施方式,所述终端确定位置信息,包括:
所述终端根据星历信息和定位信息,确定所述终端相对于卫星的位置信息。
其中,上述定位信息可以是通过GNSS定位技术、超声波定位技术、激光定位技术、WIFI定位技术、蓝牙定位技术、超宽带定位技术得到的定位信息。上述根据星历信息和定位信息,确定所述终端相对于卫星的位置信息可以是,根据星历信息查询上述定位信息相对于卫星的位置信息。
该实施方式中,由于位置信息为终端相对于卫星的位置信息,这样可以使得向卫星上报的位置信息更加方便卫星使用,以降低复杂度。
需要说明的是,本公开实施例中,并不限定终端相对于卫星的位置信息,例如:可以将卫星覆盖范围转换为GNSS位置信息,从而根据GNSS位置信息可以直接确定终端所处的目标子区域。
作为一种可选的实施方式,所述方法还包括:
所述终端从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
所述终端根据所述响应信息在所述业务波束执行网络接入。
上述响应消息可以是随机接入响应(random access response,RAR),上述业务波束的信息可以是用于指示波束业务的指示信息。
该实施方式中,可以实现终端向随遇波束发起前导码,在业务波束接入网络,以提高终端接入网络的可靠性。例如:在一些场景中,业务波束尺寸小于随遇波束尺寸,这样通过前导码确定终端所处的目标子区域,从而网络侧调用业务波束在该目标子区域服务终端,以使得终端接入网络。具体可以实现:将卫星覆盖区域划分成多个子区域,为每个子区域映射前导码(一个或一组),随机终端在随遇波束接入时,根据所处子区域选择对应的前导码发送,卫星收到前导码后查找该前导码对应的卫星子区域位置,然后调度业务波束覆盖对应的子区域为用户提供服务。
本公开实施例中,终端确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;所述终端向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。这样可以通过前导码来实现位置信息的上报,从而不需要终端通过额外的消息上报位置信息,以节约终端的开销。
请参见图8,图8是本公开实施例提供的一种位置信息接收方法的流程图,如图8所示,包括以下步骤:
步骤801、卫星通过随遇波束接收终端发送的前导码;
步骤802、所述卫星根据所述前导码,在卫星覆盖范围内确定所述前导码关联的目标子区域,所述目标子区域为终端所处的子区域。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,所述方法还包括:
卫星对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域;或者
所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
可选地,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
可选地,所述方法还包括:
所述卫星对所述前导码进行合法性验证;
其中,在所述随遇波束的当前发送方向对应的前导码组包括所述前导码的情况下,验证通过;
在所述随遇波束的当前发送方向对应的前导码组不包括所述前导码的情况下,验证不通过。
其中,验证通过则卫星可以使用终端的位置信息,如调用业务波束服务该终端,如果验证不通过,则终端可以丢弃终端的位置信息,如不调用业务波束服务该终端。
可选地,所述方法还包括:
所述卫星通过所述随遇波束向终端发送系统信息,所述系统信息包括如下至少一项:
前导码与子区域的对应关系;
星历信息;
子区域划分规则信息;
子区域大小信息;
卫星覆盖范围大小信息;
子区域划分结果。
可选地,所述方法还包括:
所述卫星通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
所述卫星调用所述业务波束覆盖所述目标子区域。
需要说明的是,本实施例作为与图3所示的实施例中对应的卫星的实施方式,其具体的实施方式可以参见图3所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
下面通过多个实施例对本公开实施例提供的方法进行举例说明:
实施例一
该实施例以网络侧(即卫星侧)进行举例说明,具体如图9所示,包括以下步骤:
网络侧根据约定的尺寸规格(如:业务波束的大小)对卫星覆盖范围进行区域划分,形成多个子区域,然后按照约定的空分复用规则,对前导码序列和子区域进行映射;
网络侧将业务星历等信息、波束信息、映射规则、子区域划分规则或划分结果等,通过MIB或SIB在随遇波束通知终端;
网络侧收到上行随遇波束接收的前导码后,判断该前导码发送的子区域(对于某个方向接收的前导码,如果在约定的方向不存在该前导码,网络侧可以据此判断前导码检测虚警,避免调度业务波束,浪费资源);
网络侧调度业务波束覆盖该子区域。
实施例二
该实施例以终端侧进行举例说明,具体如图10所示,包括以下步骤:
终端从随遇波束获得卫星星历、子区域划分规则或方案、子区域与前导码对应规则等信息,结合终端的GNSS位置信息,终端估算所处位置属于当前卫星的哪个子区域;
终端根据估算的相对位置信息,选择对应的前导码,在随遇波束进行发送;
终端等待接收随遇波束反馈的RAR(包含业务波束的信息);
终端根据RAR中信息等待接收业务波束下行,在业务波束完成最终接入。
本公开实施例,通过将卫星覆盖区域进行细分,划分成多个子区域,每 个子区域映射前导码,不同方位的子区域可以复用同一组前导码,随机用户在随遇波束发起前导码接入后,网络侧根据随遇波束的接收方向判断前导码所属区域,通过前导码检测结果估计对应的子区域位置,然后调度业务波束覆盖对应的子区域为用户提供服务,该方法避免了在随遇波束上报终端位置信息带来的额外开销和延时,可适应不同大小结构配置的随遇波束和业务波束系统。
请参见图11,图11是本公开实施例提供的一种终端的结构图,如图11所示,包括存储器1120、收发机1100和处理器1110:
存储器1120,用于存储计算机程序;收发机1100,用于在所述处理器1110的控制下收发数据;处理器1110,用于读取所述存储器1120中的计算机程序并执行以下操作:
确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1110代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1100可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1130还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1110负责管理总线架构和通常的处理,存储器1120可以存储处理器1110在执行操作时所使用的数据。
可选地,处理器1110可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex  Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,处理器1110还用于:
对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域;或者
所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
可选地,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
可选地,所述确定位置信息,包括:
根据星历信息和定位信息,确定所述终端相对于卫星的位置信息。
可选地,处理器1110还用于:
从所述卫星的随遇波束接收系统信息,所述系统信息包括如下至少一项:
前导码与子区域的对应关系;
星历信息;
子区域划分规则信息;
子区域大小信息;
卫星覆盖范围大小信息;
子区域划分结果。
可选地,处理器1110还用于:
从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
根据所述响应信息在所述业务波束执行网络接入。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图12,图12是本公开实施例提供的一种卫星的结构图,如图12所示,包括存储器1220、收发机1200和处理器1210:
存储器1220,用于存储计算机程序;收发机1200,用于在所述处理器1210的控制下收发数据;处理器1210,用于读取所述存储器1220中的计算机程序并执行以下操作:
通过随遇波束接收终端发送的前导码;
根据所述前导码,在卫星覆盖范围内确定所述前导码关联的目标子区域,所述目标子区域为终端所处的子区域。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1210代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1200可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口1230还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1210负责管理总线架构和通常的处理,存储器1220可以存储处理器1210在执行操作时所使用的数据。
可选地,处理器1210可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,处理器1210还用于:
对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域;或者
所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
可选地,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
可选地,处理器1210还用于:
对所述前导码进行合法性验证;
其中,在所述随遇波束的当前发送方向对应的前导码组包括所述前导码的情况下,验证通过;
在所述随遇波束的当前发送方向对应的前导码组不包括所述前导码的情况下,验证不通过。
可选地,处理器1210还用于:
通过所述随遇波束向终端发送系统信息,所述系统信息包括如下至少一 项:
前导码与子区域的对应关系;
星历信息;
子区域划分规则信息;
子区域大小信息;
卫星覆盖范围大小信息;
子区域划分结果。
可选地,所述方法还包括:
所述卫星通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
所述卫星调用所述业务波束覆盖所述目标子区域。
在此需要说明的是,本公开实施例提供的上述卫星,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图13,图13是本公开实施例提供的另一种终端的结构图,如图13所示,终端1300,包括:
确定单元1301,用于确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
发送单元1302,用于向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。
可选地,所述终端还包括:
第一接收单元,用于从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
执行单元,用于根据所述响应信息在所述业务波束执行网络接入。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,所述终端还包括:
划分单元,用于对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域; 或者
所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
可选地,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
可选地,确定单元1301用于根据星历信息和定位信息,确定所述终端相对于卫星的位置信息。
可选地,所述终端还包括:
第二接收单元,用于从所述卫星的随遇波束接收系统信息,所述系统信息包括如下至少一项:
前导码与子区域的对应关系;
星历信息;
子区域划分规则信息;
子区域大小信息;
卫星覆盖范围大小信息;
子区域划分结果。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图14,图14是本公开实施例提供的另一种卫星的结构图,如图14所示,卫星1400,包括:
接收单元1401,用于通过随遇波束接收终端发送的前导码;
确定单元1402,用于根据所述前导码,在卫星覆盖范围内确定所述前导 码关联的目标子区域,所述目标子区域为终端所处的子区域。
可选地,所述卫星还包括:
第一发送单元,用于通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
调用单元,用于调用所述业务波束覆盖所述目标子区域。
可选地,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
可选地,所述卫星还包括:
划分单元,用于对所述卫星覆盖范围进行子区域划分,得到多个子区域。
可选地,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域;或者
所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
可选地,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
可选地,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
可选地,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
可选地,所述卫星还包括:
验证单元,用于对所述前导码进行合法性验证;
其中,在所述随遇波束的当前发送方向对应的前导码组包括所述前导码的情况下,验证通过;
在所述随遇波束的当前发送方向对应的前导码组不包括所述前导码的情况下,验证不通过。
可选地,所述卫星还包括:
第二发送单元,用于通过所述随遇波束向终端发送系统信息,所述系统 信息包括如下至少一项:
前导码与子区域的对应关系;
星历信息;
子区域划分规则信息;
子区域大小信息;
卫星覆盖范围大小信息;
子区域划分结果。
在此需要说明的是,本公开实施例提供的上述卫星,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开实施例提供的位置信息上报方法,或者,所述计算机程序用于使所述处理器执行本公开实施例提供的位置信息接收方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据 存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(Magneto-Optical Disk,MO)等)、光学存储器(例如光盘(Compact Disk,CD)、数字视频光盘(Digital Versatile Disc,DVD)、蓝光光碟(Blu-ray Disc,BD)、高清通用光盘(High-Definition Versatile Disc,HVD)等)、以及半导体存储器(例如只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、带电可擦可编程只读存储器(Electrically EPROM,EEPROM)、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk或Solid State Drive,SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和 C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (37)

  1. 一种位置信息上报方法,包括:
    终端确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
    所述终端向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。
  2. 如权利要求1所述的方法,其中,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
  3. 如权利要求2所述的方法,所述方法还包括:
    所述终端对所述卫星覆盖范围进行子区域划分,得到多个子区域。
  4. 如权利要求2或3所述的方法,其中,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域;或者
    所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
  5. 如权利要求2或3所述的方法,其中,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
    所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
  6. 如权利要求1所述的方法,其中,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
  7. 如权利要求6所述的方法,其中,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
  8. 如权利要求1所述的方法,其中,所述终端确定位置信息,包括:
    所述终端根据星历信息和定位信息,确定所述终端相对于卫星的位置信息。
  9. 如权利要求1、2、3、6、7或8所述的方法,所述方法还包括:
    所述终端从所述卫星的随遇波束接收系统信息,所述系统信息包括如下至少一项:
    前导码与子区域的对应关系;
    星历信息;
    子区域划分规则信息;
    子区域大小信息;
    卫星覆盖范围大小信息;
    子区域划分结果。
  10. 如权利要求1、2、3、6、7或8所述的方法,所述方法还包括:
    所述终端从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
    所述终端根据所述响应信息在所述业务波束执行网络接入。
  11. 一种位置信息接收方法,包括:
    卫星通过随遇波束接收终端发送的前导码;
    所述卫星根据所述前导码,在卫星覆盖范围内确定所述前导码关联的目标子区域,所述目标子区域为终端所处的子区域。
  12. 如权利要求11所述的方法,其中,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
  13. 如权利要求12所述的方法,所述方法还包括:
    卫星对所述卫星覆盖范围进行子区域划分,得到多个子区域。
  14. 如权利要求12或13所述的方法,其中,所述卫星覆盖范围以业务波束大小为基准划分成多个子区域;或者
    所述卫星覆盖范围以θ s/n基准划分成多个子区域,其中,θ s为业务波束夹角,n为大于1的整数。
  15. 如权利要求12或13所述的方法,其中,所述多个子区域排列为矩形覆盖区域,覆盖所述卫星覆盖范围;或者
    所述多个子区域排列为蜂窝形覆盖区域,覆盖所述卫星覆盖范围。
  16. 如权利要求11所述的方法,其中,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
  17. 如权利要求16所述的方法,其中,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区 域中,所述同一组前导码内不同的前导码关联不同的子区域。
  18. 如权利要求16所述的方法,所述方法还包括:
    所述卫星对所述前导码进行合法性验证;
    其中,在所述随遇波束的当前发送方向对应的前导码组包括所述前导码的情况下,验证通过;
    在所述随遇波束的当前发送方向对应的前导码组不包括所述前导码的情况下,验证不通过。
  19. 如权利要求11、12、13、16、17或18所述的方法,所述方法还包括:
    所述卫星通过所述随遇波束向终端发送系统信息,所述系统信息包括如下至少一项:
    前导码与子区域的对应关系;
    星历信息;
    子区域划分规则信息;
    子区域大小信息;
    卫星覆盖范围大小信息;
    子区域划分结果。
  20. 如权利要求11、12、13、16、17或18所述的方法,所述方法还包括:
    所述卫星通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
    所述卫星调用所述业务波束覆盖所述目标子区域。
  21. 一种终端,包括:存储器、收发机和处理器,其中:
    所述存储器,用于存储计算机程序;所述收发机,用于在所述处理器的控制下收发数据;所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
    向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。
  22. 如权利要求21所述的终端,其中,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
  23. 如权利要求22所述的终端,其中,所述处理器还用于:
    对所述卫星覆盖范围进行子区域划分,得到多个子区域。
  24. 如权利要求21所述的终端,其中,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
  25. 如权利要求24所述的终端,其中,所述随遇波束对应多个方向,所述多个方向对应的多个区域对应同一组前导码,在所述多个区域中的任一区域中,所述同一组前导码内不同的前导码关联不同的子区域。
  26. 如权利要求21、22、23、24或25所述的终端,其中,所述处理器还用于:
    从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
    根据所述响应信息在所述业务波束执行网络接入。
  27. 一种卫星,包括:存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    通过随遇波束接收终端发送的前导码;
    根据所述前导码,在卫星覆盖范围内确定所述前导码关联的目标子区域,所述目标子区域为终端所处的子区域。
  28. 如权利要求27所述的卫星,其中,所述卫星覆盖范围包括多个子区域,每个子区域对应一个或者多个前导码。
  29. 如权利要求28所述的卫星,所述卫星还包括:
    卫星对所述卫星覆盖范围进行子区域划分,得到多个子区域。
  30. 如权利要求27所述的卫星,其中,所述前导码为:为在所述随遇波束的不同方向的子区域的复用前导码。
  31. 如权利要求30所述的卫星,其中,所述处理器还用于:
    对所述前导码进行合法性验证;
    其中,在所述随遇波束的当前发送方向对应的前导码组包括所述前导码的情况下,验证通过;
    在所述随遇波束的当前发送方向对应的前导码组不包括所述前导码的情况下,验证不通过。
  32. 如权利要求27、28、29、30或31所述的卫星,其中,所述处理器还用于:
    通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
    调用所述业务波束覆盖所述目标子区域。
  33. 一种终端,包括:
    确定单元,用于确定位置信息,并根据所述位置信息确定所述终端所处的目标子区域,所述目标子区域为卫星覆盖范围内的子区域;
    发送单元,用于向卫星的随遇波束发送前导码,所述前导码与所述目标子区域关联。
  34. 如权利要求33所述的终端,所述终端还包括:
    第一接收单元,用于从所述随遇波束接收响应信息,所述响应信息包括业务波束的信息;
    执行单元,用于根据所述响应信息在所述业务波束执行网络接入。
  35. 一种卫星,包括:
    接收单元,用于通过随遇波束接收终端发送的前导码;
    确定单元,用于根据所述前导码,在卫星覆盖范围内确定所述前导码关联的目标子区域,所述目标子区域为终端所处的子区域。
  36. 如权利要求35所述的卫星,所述卫星还包括:
    第一发送单元,用于通过所述随遇波束向所述终端发送响应信息,所述响应信息包括业务波束的信息;
    调用单元,用于调用所述业务波束覆盖所述目标子区域。
  37. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至10中任一项所述的位置信息上报方法,或者,所述计算机程序用于使所述处理器执行权利要求11至20中任一项所述的位置信息接收方法。
PCT/CN2022/123815 2021-10-29 2022-10-08 位置信息上报方法、接收方法、终端、卫星和存储介质 WO2023071723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111270181.6 2021-10-29
CN202111270181.6A CN116074892A (zh) 2021-10-29 2021-10-29 位置信息上报方法、接收方法、终端、卫星和存储介质

Publications (1)

Publication Number Publication Date
WO2023071723A1 true WO2023071723A1 (zh) 2023-05-04

Family

ID=86160303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123815 WO2023071723A1 (zh) 2021-10-29 2022-10-08 位置信息上报方法、接收方法、终端、卫星和存储介质

Country Status (2)

Country Link
CN (1) CN116074892A (zh)
WO (1) WO2023071723A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117728882A (zh) * 2024-02-07 2024-03-19 中国电信股份有限公司 卫星系统的接入方法、装置及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560769B (zh) * 2024-01-11 2024-03-12 中国电子科技集团公司第五十四研究所 一种卫星通信星载基站波束管理的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200274594A1 (en) * 2019-02-21 2020-08-27 Atc Technologies, Llc Systems and Methods of Adaptive Beamforming for Mobile Satellite Systems Based on User Locations and Co-Channel Waveforms
CN112566193A (zh) * 2019-09-26 2021-03-26 华为技术有限公司 一种小区切换方法及装置
CN112583463A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种波束的指示方法及装置
CN113315562A (zh) * 2020-02-27 2021-08-27 华为技术有限公司 通信方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200274594A1 (en) * 2019-02-21 2020-08-27 Atc Technologies, Llc Systems and Methods of Adaptive Beamforming for Mobile Satellite Systems Based on User Locations and Co-Channel Waveforms
CN112566193A (zh) * 2019-09-26 2021-03-26 华为技术有限公司 一种小区切换方法及装置
CN112583463A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种波束的指示方法及装置
CN113315562A (zh) * 2020-02-27 2021-08-27 华为技术有限公司 通信方法、装置及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117728882A (zh) * 2024-02-07 2024-03-19 中国电信股份有限公司 卫星系统的接入方法、装置及电子设备

Also Published As

Publication number Publication date
CN116074892A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2023071723A1 (zh) 位置信息上报方法、接收方法、终端、卫星和存储介质
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
CN105453642A (zh) 异构网络中的通信方法、宏基站、微基站和用户设备
US11564228B2 (en) Method for transmitting reference signal, network device, and terminal device
EP4280716A1 (en) Positioning method and apparatus
US11659554B2 (en) Method and apparatus for wireless communication
JP2020504520A (ja) ビーム選択方法、装置およびシステム
US11792831B2 (en) Method and device for signal transmission
KR102478850B1 (ko) 사이드링크에서 전송 모드를 결정하는 방법, 단말 장치와 네트워크 장치
CN109842938B (zh) 一种信息指示方法和装置
US20220086777A1 (en) Wireless communication method, terminal device and network device
EP3751946A1 (en) Listening method and device
WO2022198432A1 (zh) 无线通信的方法及设备
WO2019168451A1 (en) Method and node(s) for providing synchronization signals of a wireless communication network
CN116250328A (zh) 状态切换的方法、终端设备和网络设备
WO2023019464A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2024017292A1 (zh) 一种信息处理方法、装置及可读存储介质
AU2017444362A1 (en) Information transmission method, network device, and terminal device
WO2023115545A1 (zh) 信息传输方法、第一接入网设备、第二接入网设备和终端
US20230224754A1 (en) Quality of service (qos) control method, terminal device, and network device
US20230291519A1 (en) Systems and techniques for secure positioning signaling
US20240063985A1 (en) Determining baseband processing capability using channel bandwdith multiplied by layers
WO2023124156A1 (zh) 信息确定、配置方法、装置、终端设备及网络设备
WO2022006827A1 (zh) 无线通信方法、终端设备和网络设备
JP2020031451A (ja) 端末装置、基地局、方法及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022885605

Country of ref document: EP

Effective date: 20240529