WO2023071547A1 - 一种基于人体感知的自动控制方法、第一电子设备及系统 - Google Patents

一种基于人体感知的自动控制方法、第一电子设备及系统 Download PDF

Info

Publication number
WO2023071547A1
WO2023071547A1 PCT/CN2022/117923 CN2022117923W WO2023071547A1 WO 2023071547 A1 WO2023071547 A1 WO 2023071547A1 CN 2022117923 W CN2022117923 W CN 2022117923W WO 2023071547 A1 WO2023071547 A1 WO 2023071547A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
central
central device
message
electronic
Prior art date
Application number
PCT/CN2022/117923
Other languages
English (en)
French (fr)
Inventor
董伟
徐昊玮
徐秉堃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071547A1 publication Critical patent/WO2023071547A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of automatic control, in particular to an automatic control method based on human perception, a first electronic device and a system.
  • IoT devices also called IoT devices, smart devices, etc.
  • IoT devices also known as whole house smart, whole house smart home, smart housekeeper, etc.
  • IoT devices also known as whole house smart, whole house smart home, smart housekeeper, etc.
  • IoT devices also known as whole house smart, whole house smart home, smart housekeeper, etc.
  • IoT devices also known as whole house smart, whole house smart home, smart housekeeper, etc.
  • the present application provides an automatic control method based on human body perception, a first electronic device and a system.
  • the technical solution of the present application enables the IoT device to automatically perform a certain operation when the user is close to or away from the IoT device, without requiring the user to do any operation or carry any electronic device, which greatly improves the user experience.
  • IoT devices do not require hardware changes. For example, smart speakers generally do not have a camera and do not require an additional camera.
  • the present application provides a communication system based on human body perception, the system includes a central device, a first electronic device, and R second electronic devices; among the central device, the first electronic device, and R second electronic devices Any two of any one of the second electronic devices among the three communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; the R second electronic devices include routing devices and Terminal equipment; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the R second electronic devices by the first electronic device, the measurement and conversion of human body positions, and the communication between the central device and the first electronic device, the central device obtains the coordinate system of the whole room provided by the central device. The location information of the second electronic device and the location information of the user; the central device sends the first message to the routing device; the routing device receives the first message, and adjusts the beam according to the location of the routing device and the location of the user, so that the maximum gain of the adjusted beam Point to the user.
  • the routing device is controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and finally the terminal device can receive the narrow beam provided by the routing device 300a, thereby The terminal device can obtain the signal with large gain and accurate coverage provided by the routing device.
  • the routing device automatically adjusts according to the user's location without requiring manual operation by the user or carrying any equipment.
  • the central device sends the first message to the routing device after acquiring that the distance between the user and the terminal device is less than a preset error range. If the distance between the user and the terminal device is less than a preset error range, it means that the user and the terminal device are at the same location, that is, it can be considered that the user is using the terminal device. That is, if it is determined that the user uses the terminal device, the beam of the routing device is adjusted.
  • the hub device acquires that the user's position change is greater than the first preset range; or, the hub device acquires that the terminal device's position change is greater than the second preset range ; Then obtain the position information of the R second electronic devices and the position information of the user under the whole-room coordinate system provided by the central device.
  • the routing device is triggered to adjust the beam. Realize that the beam of the routing device is aimed at the user.
  • the present application provides a communication system based on human body perception, the system includes a central device, a first electronic device and R second electronic devices; the central device, the first electronic device and R second electronic devices Any two of any one of the second electronic devices among the three communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; the R second electronic devices include routing devices and N terminal devices; R and N are positive integers greater than or equal to 1 respectively.
  • the central device Based on the position measurement of the R second electronic devices by the first electronic device, the measurement and conversion of human body positions, and the communication between the central device and the first electronic device, the central device obtains the coordinate system of the whole room provided by the central device.
  • the central device sends the first to the routing device A message;
  • the routing device receives the first message, and adjusts the beam according to the location of the routing device and the locations of M1 users; so that the maximum gain point of the beam points to the locations of M1 users in turn in a time-division multiplexing manner.
  • the routing device can be controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and the routing device provides narrow pulse signals to M1 positions through time division multiplexing. The slots are short and the user cannot perceive them.
  • the maximum gain point of the beam provided by the routing device is directed to the terminal devices at M1 locations through time division multiplexing, and the terminal devices at M1 locations can receive the narrow beam provided by the routing device. beam.
  • the central device acquires that the position change of at least one of the M users is greater than the first preset range; or, the central device acquires that the position change of at least one of the N terminal devices is greater than the second preset range ; then obtain the location information of the R second electronic devices and the location information of the M users in the whole-room coordinate system provided by the central device.
  • the routing device is triggered to adjust the beam. Realize that the beam of the routing device is aimed at each user in turn.
  • the present application provides a communication system based on human body perception, the system includes a central device, a first electronic device, and R second electronic devices; among the central device, the first electronic device, and R second electronic devices Any two of any one of the second electronic devices among the three communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R second electronic devices include a first equipment and a mobile device, the mobile device includes a second ultra-wideband module; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the mobile device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position information of the first device in the whole room coordinate system provided by the central device and the location information of the user; the central device sends a first message to the first device; the first device receives the first message, and cleans the areas in the whole house except the first area to which the user belongs.
  • the cleaning device automatically avoids the room or area where the user is located during cleaning according to the user's location, so as to avoid disturbing the user.
  • the central device based on the position measurement and conversion of the mobile device by the first electronic device, and the communication between the central device and the first electronic device, the central device obtains the position information of M pieces of furniture under the whole-room coordinate system provided by the central device ; The central device acquires that the distance between the user and one of the M pieces of furniture is less than the preset first error range. The device sends a first message.
  • the first device leaves the first area to which the user belongs after receiving the first message.
  • the central device acquires that the change of the user within the preset time period is greater than or equal to the preset second error range; the central device sends a third message to the first device ; The first device receives the third message and enters the first area to which the user belongs.
  • the cleaning device automatically enters the room or area for cleaning.
  • the central device based on the position measurement and conversion of the mobile device by the first electronic device and the communication between the central device and the first electronic device, the central device obtains the information provided by the central device. Under the whole house coordinate system, the coordinate range of each area in the whole house; the central device sends the coordinate range information of each area in the whole house to the first device; the first device cleans according to the coordinate range information of each area in the whole house.
  • the present application provides a communication system based on human body perception, the system includes a central device, a first electronic device, and R second electronic devices; among the central device, the first electronic device, and R second electronic devices Any two of any one of the second electronic devices among the three communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R second electronic devices include a first Equipment; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; the central device obtains the first user whose distance from the first device is less than the preset first error range among one or more users; the central device obtains the height of the first user information, respiratory rate information, and heartbeat rate information; the central device sends a first message to the first device, and the first message includes at least one item of the first user's height information, respiratory rate information, and heartbeat rate information.
  • the user does not need to manually input information, and does not need the user to carry any equipment, and automatically obtains the user's body information such as the user's height, breathing rate, and heartbeat rate to obtain the user's body data.
  • the first device receives the first message, and obtains the first user's fat percentage, body mass index BMI, and muscle mass according to at least one item of the first user's height information, respiratory rate information, and heartbeat rate information , basal metabolic rate, and at least one of visceral fat levels.
  • the health management device triggers the central device to obtain information such as the user's height, breathing rate, and heartbeat rate.
  • the R second electronic devices include a mobile device, the mobile device includes a second ultra-wideband module, and the position measurement of the first device by the first electronic device includes : the first electronic device measures the position of the mobile device; and measures the position of the first device according to the position of the mobile device.
  • the first device does not include the UWB module, so it can be calibrated by the mobile device including the UWB module.
  • the present application provides a communication system based on human body perception, the system includes a central device, a first electronic device, and R second electronic devices; among the central device, the first electronic device, and R second electronic devices Any two of any one of the second electronic devices among the three communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R second electronic devices include a first Equipment; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; the distance between the first device and the ground is the first height; among the one or more users obtained by the central device, the distance between the first user and the first device is less than the preset first distance, optional Yes, the central device also obtains that the first user makes a preset action, and then sends the first message to the first device; the first device receives the first message, and descends to the second height from the ground; wherein, the second height is less than the first a height.
  • the drying equipment automatically descends according to the user's position without manual operation by the user, which improves the user experience.
  • the central device obtains the height information of the first user; the central device sends indication information to the first device, and the indication information is used to indicate the height of the first user; the first device receives the indication information, and obtains the second user according to the indication information. high.
  • the height at which the drying equipment descends is determined according to the height of the user.
  • the hub device acquires that the distance between the first user and the first device is less than the preset first distance and lasts longer than the preset value; Send the first message.
  • the hub device obtains that the distance between the first user and the first device is greater than or equal to the preset first distance, and sends the second message to the first device; A device receives the second message and ascends to the first height from the ground.
  • the drying equipment automatically rises according to the user's position, without manual operation by the user, which improves the user experience.
  • the R second electronic devices include a mobile device, the mobile device includes a second ultra-wideband module, and the position measurement of the first device by the first electronic device includes : the first electronic device measures the position of the mobile device; and measures the position of the first device according to the position of the mobile device.
  • the first device does not include the UWB module, so it can be calibrated by the mobile device including the UWB module.
  • the present application provides a communication system based on human body perception, the system includes a central device, a first electronic device, and R second electronic devices; among the central device, the first electronic device, and R second electronic devices Any two of any one of the second electronic devices among the three communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R second electronic devices include a first Equipment; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device information and location information of one or more users; if the location of the first device meets the preset condition between the location of the first user among the one or more users, the hub device notifies the first device to adjust the light; the first device A notification from the device adjusts the lights.
  • the switch, brightness and color of the lighting equipment are automatically adjusted according to the relative position of the user and the lighting equipment; the user experience is improved.
  • the preset condition includes: the first user enters the first area to which the first device belongs; or, the distance between the first user and the first device is less than or equal to the preset distance; or, the first user enters the first area.
  • a second area in a preset direction of a device; the central device notifying the first device to adjust the light includes: the central device sending a first message to the first device; the first message is used to instruct the first device to turn on.
  • the central device obtains the identity of the first user and the first brightness value corresponding to the identity of the first user; the central device sends first indication information to the first device, and the first indication information is used to indicate the first brightness value ; The first device receives the first indication information, and lights up the first brightness value according to the first indication information.
  • the central device acquires the identity of the first user and the first color corresponding to the identity of the first user; the central device sends second indication information to the first device, and the second indication information is used to indicate the first color; A device receives the second indication information, and lights up the first color according to the second indication information.
  • the preset condition includes: the first user leaves the first area to which the first device belongs; or, the distance between the first user and the first device is greater than a preset distance; or, the first user leaves the first device
  • the second area in the preset direction; the central device notifying the first device to adjust the light includes: the central device sending a second message to the first device, and the second message is used to instruct the first device to turn off.
  • the preset condition includes: the distance between the first user and the first device changes; the central device notifying the first device to adjust the light includes: the central device sends a third message to the first device, and the third message is used to indicate The first device reduces brightness; or, the hub device sends a fourth message to the first device, where the fourth message is used to instruct the first device to increase brightness.
  • the R second electronic devices include a mobile device, the mobile device includes a second ultra-wideband module, and the position measurement of the first device by the first electronic device includes: measuring the position of the mobile device by the first electronic device ; Measuring the location of the first device based on the location of the mobile device.
  • the first device does not include the UWB module, so it can be calibrated by the mobile device including the UWB module.
  • the present application provides an automatic control method based on human body perception, which is applied to a communication system based on human body perception.
  • the system includes a central device, a first electronic device, and R second electronic devices; the central device, the first electronic device Communicate with any two of any one of the R second electronic devices in the form of wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R The second electronic device includes a routing device and a terminal device; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the R second electronic devices by the first electronic device, the measurement and conversion of human body positions, and the communication between the central device and the first electronic device, the central device obtains the coordinate system of the whole room provided by the central device. The location information of the second electronic device and the location information of the user; the central device sends the first message to the routing device; the routing device receives the first message, and adjusts the beam according to the location of the routing device and the location of the user, so that the maximum gain of the adjusted beam Point to the user.
  • the routing device is controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and finally the terminal device can receive the narrow beam provided by the routing device 300a, thereby The terminal device can obtain the signal with large gain and accurate coverage provided by the routing device.
  • the routing device automatically adjusts according to the user's location without requiring manual operation by the user or carrying any equipment.
  • the central device when the central device acquires that the distance between the user and the terminal device is less than a preset error range, it sends the first message to the routing device. If the distance between the user and the terminal device is less than a preset error range, it means that the user and the terminal device are at the same location, that is, it can be considered that the user is using the terminal device. That is, if it is determined that the user uses the terminal device, the beam of the routing device is adjusted.
  • the central device obtains that the user's position change is greater than the first preset range; or, the central device obtains that the terminal device's position change is greater than the second preset range ; Then obtain the position information of the R second electronic devices and the position information of the user under the whole-room coordinate system provided by the central device.
  • the routing device is triggered to adjust the beam. Realize that the beam of the routing device is aimed at the user.
  • the present application provides an automatic control method based on human body perception, which is applied to a communication system based on human body perception.
  • the system includes a central device, a first electronic device, and R second electronic devices; the central device, the first The electronic device communicates with any two of any one of the R second electronic devices through wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module;
  • the R second electronic devices include routing devices and N terminal devices; R and N are positive integers greater than or equal to 1, respectively.
  • the central device Based on the position measurement of the R second electronic devices by the first electronic device, the measurement and conversion of human body positions, and the communication between the central device and the first electronic device, the central device obtains the coordinate system of the whole room provided by the central device.
  • the central device sends the first to the routing device A message;
  • the routing device receives the first message, and adjusts the beam according to the location of the routing device and the locations of M1 users; so that the maximum gain point of the beam points to the locations of M1 users in turn in a time-division multiplexing manner.
  • the routing device can be controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and the routing device provides narrow pulse signals to M1 positions through time division multiplexing. The slots are short and the user cannot perceive them.
  • the maximum gain point of the beam provided by the routing device is directed to the terminal devices at M1 locations through time division multiplexing, and the terminal devices at M1 locations can receive the narrow beam provided by the routing device. beam.
  • the central device acquires that the position change of at least one of the M users is greater than the first preset range; or, the central device acquires that the position change of at least one of the N terminal devices is greater than the second preset range ; then obtain the location information of the R second electronic devices and the location information of the M users in the whole-room coordinate system provided by the central device.
  • the routing device is triggered to adjust the beam. Realize that the beam of the routing device is aimed at each user in turn.
  • the present application provides an automatic control method based on human body perception, which is applied to a communication system based on human body perception, and the system includes a central device, a first electronic device, and R second electronic devices; the central device, the first The electronic device communicates with any two of any one of the R second electronic devices through wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module; The R second electronic devices include a first device and a mobile device, and the mobile device includes a second ultra-wideband module; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the mobile device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position information of the first device in the whole room coordinate system provided by the central device and the location information of the user; the central device sends a first message to the first device; the first device receives the first message, and cleans the areas in the whole house except the first area to which the user belongs.
  • the cleaning device automatically avoids the room or area where the user is located during cleaning according to the user's location, so as to avoid disturbing the user.
  • the central device based on the position measurement and conversion of the mobile device by the first electronic device, and the communication between the central device and the first electronic device, the central device obtains the position information of M pieces of furniture under the whole-room coordinate system provided by the central device ; The central device acquires that the distance between the user and one of the M pieces of furniture is less than the preset first error range. The device sends a first message.
  • the first device leaves the first area to which the user belongs after receiving the first message.
  • the central device acquires that the change of the user within the preset time period is greater than or equal to the preset second error range; the central device sends the third message to the first device ; The first device receives the third message and enters the first area to which the user belongs.
  • the cleaning device automatically enters the room or area for cleaning.
  • the central device based on the position measurement and conversion of the mobile device by the first electronic device and the communication between the central device and the first electronic device, the central device obtains the information provided by the central device. Under the whole house coordinate system, the coordinate range of each area in the whole house; the central device sends the coordinate range information of each area in the whole house to the first device; the first device cleans according to the coordinate range information of each area in the whole house.
  • the present application provides an automatic control method based on human body perception, which is applied to a communication system based on human body perception, and the system includes a central device, a first electronic device, and R second electronic devices; the central device, the first The electronic device communicates with any two of any one of the R second electronic devices through wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module; The R second electronic devices include one first device; R is a positive integer greater than or equal to 1.
  • the user does not need to manually input information, and does not need the user to carry any equipment, and automatically obtains the user's body information such as the user's height, breathing rate, and heartbeat rate to obtain the user's body data.
  • the first device receives the first message, and obtains the first user's fat percentage, body mass index BMI, and muscle mass according to at least one item of the first user's height information, respiratory rate information, and heart rate information , basal metabolic rate, and at least one of visceral fat levels.
  • the first device sends a first request message to the central device, and the first request message is used to instruct the central device to obtain user data; the central device receives the first request message , the first users whose distance to the first device is smaller than the preset first error range are obtained.
  • the health management device triggers the central device to obtain information such as the user's height, breathing rate, and heartbeat rate.
  • the R second electronic devices include a mobile device, the mobile device includes a second ultra-wideband module, and the position measurement of the first device by the first electronic device includes : the first electronic device measures the position of the mobile device; and measures the position of the first device according to the position of the mobile device.
  • the first device does not include the UWB module, so it can be calibrated by the mobile device including the UWB module.
  • the present application provides an automatic control method based on human body perception, which is applied to a communication system based on human body perception.
  • the system includes a central device, a first electronic device, and R second electronic devices; the central device, the first An electronic device communicates with any one of the R second electronic devices and any two of the three second electronic devices communicate in a wired or wireless manner; the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module ; R second electronic devices include one first device; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; the distance between the first device and the ground is the first height; among the one or more users obtained by the central device, the distance between the first user and the first device is less than the preset first distance, optional Yes, the central device also obtains that the first user makes a preset action, and then sends the first message to the first device; the first device receives the first message, and descends to the second height from the ground; wherein, the second height is less than the first a height.
  • the drying equipment automatically descends according to the user's position without manual operation by the user, which improves the user experience.
  • the central device obtains the height information of the first user; the central device sends indication information to the first device, and the indication information is used to indicate the height of the first user; the first device receives the indication information, and obtains the first user's height information according to the indication information Two heights.
  • the height at which the drying equipment descends is determined according to the height of the user.
  • the hub device acquires that the distance between the first user and the first device is less than the preset first distance and lasts longer than the preset value; A device sends a first message.
  • the hub device acquires that the distance between the first user and the first device is greater than or equal to the preset first distance, and sends the second message to the first device ;
  • the first device receives the second message and ascends to the first height from the ground.
  • the drying equipment automatically rises according to the user's position, without manual operation by the user, which improves the user experience.
  • the R second electronic devices include a mobile device, the mobile device includes a second ultra-wideband module, and the position of the first electronic device to the first device
  • the measuring includes: measuring the position of the mobile device by the first electronic device; and measuring the position of the first device according to the position of the mobile device.
  • the first device does not include the UWB module, so it can be calibrated by the mobile device including the UWB module.
  • the present application provides an automatic control method based on human body perception, which is applied to a communication system based on human body perception, and the system includes a central device, a first electronic device, and R second electronic devices; the central device, the first An electronic device communicates with any one of the R second electronic devices and any two of the three second electronic devices communicate in a wired or wireless manner; the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module ; R second electronic devices include one first device; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device information and location information of one or more users; if the location of the first device meets the preset condition between the location of the first user among the one or more users, the hub device notifies the first device to adjust the light; the first device A notification from the device adjusts the lights.
  • the switch, brightness and color of the lighting equipment are automatically adjusted according to the relative position of the user and the lighting equipment; the user experience is improved.
  • the preset condition includes: the first user enters the first area to which the first device belongs; or, the distance between the first user and the first device is less than or equal to the preset distance; or, the first user enters the first area.
  • a second area in a preset direction of a device; the central device notifying the first device to adjust the light includes: the central device sending a first message to the first device; the first message is used to instruct the first device to turn on.
  • the central device obtains the identity of the first user and the first brightness value corresponding to the identity of the first user; the central device sends first indication information to the first device, and the first indication information is used to indicate the first brightness value ; The first device receives the first indication information, and lights up the first brightness value according to the first indication information.
  • the central device acquires the identity of the first user and the first color corresponding to the identity of the first user; the central device sends second indication information to the first device, and the second indication information is used to indicate the first color; A device receives the second indication information, and lights up the first color according to the second indication information.
  • the preset condition includes: the first user leaves the first area to which the first device belongs; or, the distance between the first user and the first device is greater than a preset distance; or, the first user leaves the first device
  • the second area in the preset direction; the central device notifying the first device to adjust the light includes: the central device sending a second message to the first device, and the second message is used to instruct the first device to turn off.
  • the preset condition includes: the distance between the first user and the first device changes; the central device notifying the first device to adjust the light includes: the central device sends a third message to the first device, and the third message is used to indicate The first device reduces brightness; or, the hub device sends a fourth message to the first device, where the fourth message is used to instruct the first device to increase brightness.
  • the R second electronic devices include a mobile device, the mobile device includes a second ultra-wideband module, and the position measurement of the first device by the first electronic device includes: the first electronic device measures the position of the mobile device measuring; measuring the location of the first device based on the location of the mobile device.
  • the first device does not include the UWB module, so it can be calibrated by the mobile device including the UWB module.
  • the present application provides a central device, the central device communicates with any two of the first electronic device and any one of the R second electronic devices through wired or wireless communication
  • the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module
  • the R second electronic devices include a routing device and a terminal device
  • R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the R second electronic devices by the first electronic device, the measurement and conversion of human body positions, and the communication between the central device and the first electronic device, the central device obtains the coordinate system of the whole room provided by the central device. The position information of the second electronic device and the position information of the user; the central device sends the first message to the routing device; the first message is used to instruct the routing device to adjust the beam according to the position of the routing device and the position of the user, so that the maximum gain of the adjusted beam Point to the user.
  • the routing device is controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and finally the terminal device can receive the narrow beam provided by the routing device 300a, thereby The terminal device can obtain the signal with large gain and accurate coverage provided by the routing device.
  • the routing device automatically adjusts according to the user's location without requiring manual operation by the user or carrying any equipment.
  • the central device sends the first message to the routing device after acquiring that the distance between the user and the terminal device is less than a preset error range. If the distance between the user and the terminal device is less than a preset error range, it means that the user and the terminal device are at the same location, that is, it can be considered that the user is using the terminal device. That is, if it is determined that the user uses the terminal device, the beam of the routing device is adjusted.
  • the hub device acquires that the user's location change is greater than the first preset range; or, the hub device acquires the terminal device's location change is greater than the second preset range. If the range is set, then the position information of the R second electronic devices and the position information of the user are obtained under the whole-room coordinate system provided by the central device.
  • the routing device is triggered to adjust the beam. Realize that the beam of the routing device is aimed at the user.
  • the present application provides a central device, which communicates with any two of the first electronic device and any one of the R second electronic devices through wired or wireless communication
  • the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module;
  • R second electronic devices include routing devices and N terminal devices;
  • R and N are positive integers greater than or equal to 1, respectively.
  • the central device Based on the position measurement of the R second electronic devices by the first electronic device, the measurement and conversion of human body positions, and the communication between the central device and the first electronic device, the central device obtains the coordinate system of the whole room provided by the central device.
  • the central device sends the first to the routing device A message; the first message is used to instruct the routing device to adjust the beam according to the location of the routing device and the locations of the M1 users, so that the maximum gain point of the beam points to the locations of the M1 users in turn in a time-division multiplexing manner.
  • the routing device can be controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and the routing device provides narrow pulse signals to M1 positions through time division multiplexing. The slots are short and the user cannot perceive them.
  • the maximum gain point of the beam provided by the routing device is directed to the terminal devices at M1 locations through time division multiplexing, and the terminal devices at M1 locations can receive the narrow beam provided by the routing device. beam.
  • the central device acquires that the change in the position of at least one of the M users is greater than the first preset range; or, the central device acquires that the change in the position of at least one of the N terminal devices is greater than the second preset range; the location information of the R second electronic devices and the location information of the M users are obtained under the whole-room coordinate system provided by the central device.
  • the routing device is triggered to adjust the beam. Realize that the beam of the routing device is aimed at each user in turn.
  • the present application provides a central device, the central device communicates with any two of the first electronic device and any one of the R second electronic devices through wired or wireless communication
  • the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module
  • the R second electronic devices include a first device and a mobile device, and the mobile device includes a second ultra-wideband module
  • R is greater than or equal to A positive integer of 1.
  • the central device Based on the position measurement of the mobile device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position information of the first device in the whole room coordinate system provided by the central device and the location information of the user; the hub device sends a first message to the first device; the first message is used to instruct the first device to clean all areas in the house except the first area to which the user belongs.
  • the cleaning device automatically avoids the room or area where the user is located during cleaning according to the user's location, so as to avoid disturbing the user.
  • the central device based on the position measurement and conversion of the mobile device by the first electronic device and the communication between the central device and the first electronic device, the central device obtains the positions of the M pieces of furniture under the whole-room coordinate system provided by the central device information; the central device acquires that the distance between the user and one of the M furniture is less than the preset first error range, and optionally, the central device also acquires that the user's posture is lying or sitting A device sends a first message.
  • the central device obtains that the change of the user within the preset time period is greater than or equal to the preset second error range; the central device sends the first error range to the first device Three messages; the third message is used to instruct the first device to enter the first area to which the user belongs.
  • the cleaning device automatically enters the room or area for cleaning.
  • the central device acquires Under the whole house coordinate system provided, the coordinate range of each area in the whole house; the central device sends the coordinate range information of each area in the whole house to the first device; the first device cleans according to the coordinate range information of each area in the whole house.
  • the present application provides a central device, the central device communicates with any two of the first electronic device and any one of the R second electronic devices through wired or wireless communication
  • the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module
  • the R second electronic devices include a first device and a mobile device, and the mobile device includes a second ultra-wideband module
  • R is greater than or equal to A positive integer of 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; the central device obtains the first user whose distance from the first device is less than the preset first error range among one or more users; the central device obtains the height of the first user information, respiratory rate information, and heartbeat rate information; the central device sends a first message to the first device, and the first message includes at least one item of the first user's height information, respiratory rate information, and heartbeat rate information.
  • the user does not need to manually input information, and does not need the user to carry any equipment, and automatically obtains the user's body information such as the user's height, breathing rate, and heartbeat rate to obtain the user's body data.
  • the central device receives the first request message from the first device, and obtains the first request message whose distance from the first device is smaller than the preset first error range. user.
  • the first request message is used to instruct the hub device to acquire user data.
  • the health management device triggers the central device to obtain information such as the user's height, breathing rate, and heartbeat rate.
  • the present application provides a central device, the central device communicates with any two of the first electronic device and any one of the R second electronic devices through wired or wireless communication
  • the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module
  • the R second electronic devices include a first device and a mobile device, and the mobile device includes a second ultra-wideband module
  • R is greater than or equal to A positive integer of 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; the distance between the first device and the ground is the first height; among the one or more users obtained by the central device, the distance between the first user and the first device is less than the preset first distance, optional Yes, the central device also obtains that the first user has made a preset action, and then sends the first message to the first device; the first message is used to instruct the first device to descend to the second height from the ground; the second height is less than the first height .
  • the drying equipment automatically descends according to the user's position without manual operation by the user, which improves the user experience.
  • the central device obtains the height information of the first user; the central device sends indication information to the first device, and the indication information is used to indicate the height of the first user; the height of the first user is used to obtain the second height.
  • the height at which the drying equipment descends is determined according to the height of the user.
  • the hub device acquires that the distance between the first user and the first device is less than the preset first distance and lasts longer than the preset value; A device sends a first message.
  • the hub device acquires that the distance between the first user and the first device is greater than or equal to the preset first distance, and sends the second message to the first device ;
  • the second message is used to instruct the first device to rise to a first height from the ground.
  • the drying equipment automatically rises according to the user's position, without manual operation by the user, which improves the user experience.
  • the present application provides a central device, the central device communicates with any two of the first electronic device and any one of the R second electronic devices through wired or wireless communication
  • the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module
  • the R second electronic devices include a first device and a mobile device, and the mobile device includes a second ultra-wideband module
  • R is greater than or equal to A positive integer of 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; if the location of the first device and the location of the first user among the one or more users meet a preset condition, the central device notifies the first device to adjust the light.
  • the switch, brightness and color of the lighting equipment are automatically adjusted according to the relative position of the user and the lighting equipment; the user experience is improved.
  • the preset condition includes: the first user enters the first area to which the first device belongs; or, the distance between the first user and the first device is less than or equal to the preset distance; or, the first user enters the first area.
  • a second area in a preset direction of a device; the central device notifying the first device to adjust the light includes: the central device sending a first message to the first device; the first message is used to instruct the first device to turn on.
  • the central device obtains the identity of the first user and the first brightness value corresponding to the identity of the first user; the central device sends first indication information to the first device, and the first indication information is used to indicate the first brightness value ; The first device receives the first indication information, and lights up the first brightness value according to the first indication information.
  • the central device acquires the identity of the first user and the first color corresponding to the identity of the first user; the central device sends second indication information to the first device, and the second indication information is used to indicate the first color; A device receives the second indication information, and lights up the first color according to the second indication information.
  • the preset condition includes: the first user leaves the first area to which the first device belongs; or, the distance between the first user and the first device is greater than a preset distance; or, the first user leaves the first device
  • the second area in the preset direction; the central device notifying the first device to adjust the light includes: the central device sending a second message to the first device, and the second message is used to instruct the first device to turn off.
  • the preset condition includes: the distance between the first user and the first device changes; the central device notifying the first device to adjust the light includes: the central device sends a third message to the first device, and the third message is used to indicate The first device reduces brightness; or, the hub device sends a fourth message to the first device, where the fourth message is used to instruct the first device to increase brightness.
  • the present application provides an automatic control method based on human body perception, which is applied to the central device, and the central device is connected to the first electronic device and any one of the R second electronic devices. Any two of any two communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module; R second electronic devices include a routing device and a terminal device; R is greater than or equal to 1 positive integer.
  • the central device Based on the position measurement of the R second electronic devices by the first electronic device, the measurement and conversion of human body positions, and the communication between the central device and the first electronic device, the central device obtains the coordinate system of the whole room provided by the central device. The position information of the second electronic device and the position information of the user; the central device sends the first message to the routing device; the first message is used to instruct the routing device to adjust the beam according to the position of the routing device and the position of the user, so that the maximum gain of the adjusted beam Point to the user.
  • the routing device is controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and finally the terminal device can receive the narrow beam provided by the routing device 300a, thereby The terminal device can obtain the signal with large gain and accurate coverage provided by the routing device.
  • the routing device automatically adjusts according to the user's location without requiring manual operation by the user or carrying any equipment.
  • the central device sends the first message to the routing device after acquiring that the distance between the user and the terminal device is less than a preset error range. If the distance between the user and the terminal device is less than a preset error range, it means that the user and the terminal device are at the same location, that is, it can be considered that the user is using the terminal device. That is, if it is determined that the user uses the terminal device, the beam of the routing device is adjusted.
  • the hub device obtains that the user's location change is greater than the first preset range; or, the hub device acquires the terminal device's location change is larger than the second preset range. If the range is set, then the position information of the R second electronic devices and the position information of the user are obtained under the whole-room coordinate system provided by the central device.
  • the routing device is triggered to adjust the beam. Realize that the beam of the routing device is aimed at the user.
  • the present application provides an automatic control method based on human body perception, which is applied to a central device, and the central device is connected to the first electronic device and any one of the R second electronic devices. Any two of any two communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter-wave radar module; R second electronic devices include routing devices and N terminal devices; R and N are respectively A positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the R second electronic devices by the first electronic device, the measurement and conversion of human body positions, and the communication between the central device and the first electronic device, the central device obtains the coordinate system of the whole room provided by the central device.
  • the central device sends the first to the routing device A message; the first message is used to instruct the routing device to adjust the beam according to the location of the routing device and the locations of the M1 users, so that the maximum gain point of the beam points to the locations of the M1 users in turn in a time-division multiplexing manner.
  • the routing device can be controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and the routing device provides narrow pulse signals to M1 positions through time division multiplexing. The slots are short and the user cannot perceive them.
  • the maximum gain point of the beam provided by the routing device is directed to the terminal devices at M1 locations through time division multiplexing, and the terminal devices at M1 locations can receive the narrow beam provided by the routing device. beam.
  • the central device obtains that the position change of at least one of the M users is greater than the first preset range; or, the central device obtains that the position change of at least one of the N terminal devices is greater than the second preset range range; the position information of the R second electronic devices and the position information of the M users are acquired under the whole-room coordinate system provided by the central device.
  • the routing device is triggered to adjust the beam. Realize that the beam of the routing device is aimed at each user in turn.
  • the present application provides an automatic control method based on human body perception, which is applied to a central device, and the central device is connected to the first electronic device and any one of the R second electronic devices. Any two of them communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R second electronic devices include a first device and a mobile device, and the mobile device includes The second ultra-wideband module; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the mobile device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position information of the first device in the whole room coordinate system provided by the central device and the location information of the user; the hub device sends a first message to the first device; the first message is used to instruct the first device to clean all areas in the house except the first area to which the user belongs.
  • the cleaning device automatically avoids the room or area where the user is located during cleaning according to the user's location, so as to avoid disturbing the user.
  • the central device based on the position measurement and conversion of the mobile device by the first electronic device and the communication between the central device and the first electronic device, the central device obtains the coordinates of the M pieces of furniture in the whole room coordinate system provided by the central device. Position information; the central device acquires that the distance between the user and one of the M furniture is less than the first preset error range. Optionally, the central device also acquires that the user's posture is lying or sitting, and then sends The first device sends a first message.
  • the central device acquires that the change of the user within the preset time period is greater than or equal to the preset second error range; Sending a third message; the third message is used to instruct the first device to enter the first area to which the user belongs.
  • the cleaning device automatically enters the room or area for cleaning.
  • the central device based on the position measurement and conversion of the mobile device by the first electronic device and the communication between the central device and the first electronic device, the central device obtains the Under the whole house coordinate system provided by the central device, the coordinate range of each area in the whole house; the central device sends the coordinate range information of each area in the whole house to the first device; clean.
  • the present application provides an automatic control method based on human body perception, which is applied to a central device, and the central device is connected to the first electronic device and any one of the R second electronic devices. Any two of them communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R second electronic devices include a first device and a mobile device, and the mobile device includes The second ultra-wideband module; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; the central device obtains the first user whose distance from the first device is less than the preset first error range among one or more users; the central device obtains the height of the first user information, respiratory rate information, and heartbeat rate information; the central device sends a first message to the first device, and the first message includes at least one item of the first user's height information, respiratory rate information, and heartbeat rate information.
  • the user does not need to manually input information, and does not need the user to carry any equipment, and automatically obtains the user's body information such as the user's height, breathing rate, and heartbeat rate to obtain the user's body data.
  • the central device receives the first request message from the first device, and obtains the first user.
  • the first request message is used to instruct the hub device to acquire user data.
  • the health management device triggers the central device to obtain information such as the user's height, breathing rate, and heartbeat rate.
  • the present application provides an automatic control method based on human body perception, which is applied to a central device, and the central device is connected with the first electronic device and any one of the R second electronic devices. Any two of them communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R second electronic devices include a first device and a mobile device, and the mobile device includes The second ultra-wideband module; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; the distance between the first device and the ground is the first height; among the one or more users obtained by the central device, the distance between the first user and the first device is less than the preset first distance, optional Yes, the central device also obtains that the first user has made a preset action, and then sends the first message to the first device; the first message is used to instruct the first device to descend to the second height from the ground; the second height is less than the first height .
  • the drying equipment automatically descends according to the user's position without manual operation by the user, which improves the user experience.
  • the central device obtains the height information of the first user; the central device sends indication information to the first device, and the indication information is used to indicate the height of the first user; the height of the first user is used to obtain the second height.
  • the height at which the drying equipment descends is determined according to the height of the user.
  • the central device acquires that the distance between the first user and the first device is less than the preset first distance and lasts longer than the preset value; then A first message is sent to a first device.
  • the hub device obtains that the distance between the first user and the first device is greater than or equal to the preset first distance, and sends the first Two messages; the second message is used to instruct the first device to rise to a first height from the ground.
  • the drying equipment automatically rises according to the user's position, without manual operation by the user, which improves the user experience.
  • the present application provides an automatic control method based on human body perception, which is applied to a central device, and the central device is connected to the first electronic device and any one of the R second electronic devices. Any two of them communicate by wired communication or wireless communication; the first electronic device includes a first ultra-wideband module and a millimeter wave radar module; R second electronic devices include a first device and a mobile device, and the mobile device includes The second ultra-wideband module; R is a positive integer greater than or equal to 1.
  • the central device Based on the position measurement of the first device by the first electronic device, the measurement and conversion of the human body position, and the communication between the central device and the first electronic device, the central device obtains the position of the first device in the whole room coordinate system provided by the central device Information and location information of one or more users; if the location of the first device and the location of the first user among the one or more users meet a preset condition, the central device notifies the first device to adjust the light.
  • the switch, brightness and color of the lighting equipment are automatically adjusted according to the relative position of the user and the lighting equipment; the user experience is improved.
  • the preset condition includes: the first user enters the first area to which the first device belongs; or, the distance between the first user and the first device is less than or equal to the preset distance; or, the first user enters the first area.
  • a second area in a preset direction of a device; the central device notifying the first device to adjust the light includes: the central device sending a first message to the first device; the first message is used to instruct the first device to turn on.
  • the central device obtains the identity of the first user and the first brightness value corresponding to the identity of the first user; the central device sends first indication information to the first device, and the first indication information is used to indicate the first brightness value ; The first device receives the first indication information, and lights up the first brightness value according to the first indication information.
  • the central device acquires the identity of the first user and the first color corresponding to the identity of the first user; the central device sends second indication information to the first device, and the second indication information is used to indicate the first color; A device receives the second indication information, and lights up the first color according to the second indication information.
  • the preset condition includes: the first user leaves the first area to which the first device belongs; or, the distance between the first user and the first device is greater than a preset distance; or, the first user leaves the first device
  • the second area in the preset direction; the central device notifying the first device to adjust the light includes: the central device sending a second message to the first device, and the second message is used to instruct the first device to turn off.
  • the preset condition includes: the distance between the first user and the first device changes; the central device notifying the first device to adjust the light includes: the central device sends a third message to the first device, and the third message is used to indicate The first device reduces brightness; or, the hub device sends a fourth message to the first device, where the fourth message is used to instruct the first device to increase brightness.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium includes a computer program.
  • the electronic device executes the method according to any one of the nineteenth aspect or the nineteenth aspect, or executes the method according to the twentieth aspect or the first aspect.
  • the method in any one of the implementation modes of the twenty-first aspect, or perform the method in any one of the implementation modes in the twenty-first aspect or the twenty-first aspect, or perform the method in any one of the twenty-second aspect or the twenty-second aspect
  • the method of the embodiment or execute the method according to any one of the twenty-third aspect or the twenty-third aspect, or execute the method according to any one of the twenty-fourth aspect or the twenty-fourth aspect.
  • the present application provides a computer program product.
  • the electronic device executes the method according to any one of the nineteenth aspect or the nineteenth aspect, or executes any one of the twentieth aspect or the twentieth aspect method, or perform the method according to any one of the twenty-first aspect or the twenty-first aspect, or perform the method according to any one of the twenty-second aspect or the twenty-second aspect, or perform the method according to any one of the twenty-second aspects.
  • the twenty-fifth aspect and any one of the implementation forms of the twenty-fifth aspect are respectively the nineteenth aspect or any one of the nineteenth aspect of the implementation manner, or the twentieth aspect or any one of the twentieth aspect of the implementation manner, Or any one of the twenty-first aspect or the twenty-first aspect, or any one of the twenty-second aspect or the twenty-second aspect, or any one of the twenty-third aspect or the twenty-third aspect
  • An implementation manner, or the twenty-fourth aspect or any one of the twenty-fourth aspect is corresponding to the implementation manner.
  • the technical effects corresponding to the twenty-fifth aspect and any one of the implementation manners in the twenty-fifth aspect please refer to the technical effects corresponding to the above corresponding implementation manners, which will not be repeated here.
  • the twenty-sixth aspect and any one of the implementation forms of the twenty-sixth aspect are respectively the nineteenth aspect or any one of the nineteenth aspect of the implementation manner, or the twentieth aspect or any one of the twentieth aspect of the implementation manner, Or any one of the twenty-first aspect or the twenty-first aspect, or any one of the twenty-second aspect or the twenty-second aspect, or any one of the twenty-third aspect or the twenty-third aspect
  • An implementation manner, or the twenty-fourth aspect or any one of the twenty-fourth aspect is corresponding to the implementation manner.
  • the technical effects corresponding to the twenty-sixth aspect and any one of the implementation manners in the twenty-sixth aspect please refer to the technical effects corresponding to the above-mentioned corresponding implementation manners, which will not be repeated here.
  • FIG. 1 is a schematic diagram of a scene of an automatic control method based on human perception provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the first electronic device in the automatic control method provided by the embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a central device in an automatic control method provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of the second electronic device in the automatic control method provided by the embodiment of the present application.
  • Fig. 5 A is the structural representation of the Ultra-Wide Band (Ultra-Wide Band, UWB) module in the first electronic device provided by the present application;
  • FIG. 5B is a schematic structural diagram of the millimeter-wave radar module in the first electronic device provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a UWB module in a second electronic device provided in an embodiment of the present application.
  • Fig. 7 is a schematic diagram of distribution of several antennas of the UWB module in the first electronic device provided by the embodiment of the present application;
  • FIG. 8 is a schematic diagram of the distribution of several antennas of the millimeter-wave radar module in the first electronic device provided by the embodiment of the present application;
  • FIG. 9 is a schematic diagram of several establishment methods of the first coordinate system provided by the embodiment of the present application when the UWB module of the first electronic device includes three antennas;
  • FIG. 10 is a schematic diagram of a method of establishing a second coordinate system provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a method of establishing the third coordinate system provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of the principle of coordinate calculation of the second electronic device under the first coordinate system provided by the embodiment of the present application.
  • FIG. 13 is a schematic diagram of several marking methods for the second electronic device provided by the embodiment of the present application.
  • FIG. 14 is a schematic diagram of a marking method for a spatial region provided by an embodiment of the present application.
  • Figure 15 is the pitch angle of the second coordinate system relative to the first coordinate system provided by the embodiment of the present application Azimuth and roll angle schematic diagram;
  • Figure 16 is the pitch angle of the third coordinate system relative to the first coordinate system provided by the embodiment of the present application Azimuth and roll angle schematic diagram;
  • FIG. 17 is a schematic diagram of a way to establish the fourth coordinate system provided by the embodiment of the present application.
  • Fig. 18 is a schematic diagram of the principle of determining the distance and radial velocity of the reflection point by the millimeter-wave radar provided by the embodiment of the present application;
  • FIG. 19 is a schematic diagram of the principle of determining the signal direction of the reflected signal at the reflection point by the millimeter-wave radar provided in the embodiment of the present application;
  • FIG. 20 is a schematic diagram of the principle of determining the user's coordinates by the first electronic device under the fourth coordinate system provided by the embodiment of the present application;
  • FIG. 21 is a schematic diagram of a method for the first electronic device to determine the user's coordinates under the fourth coordinate system provided by the embodiment of the present application;
  • Fig. 22 is a schematic diagram of a method for obtaining the user's breathing frequency and heartbeat frequency by a millimeter-wave radar provided in an embodiment of the present application;
  • Fig. 23 is a schematic diagram of a method for determining a user's body posture by a millimeter-wave radar provided in an embodiment of the present application;
  • Fig. 24 is a schematic diagram of conversion between the first coordinate system and the fourth coordinate system in the first electronic device provided by the embodiment of the present application;
  • Fig. 25 is a schematic diagram of an example of establishing the whole house coordinate system (fifth coordinate system), the first coordinate system and the sixth coordinate system (geographical coordinate system) provided by the embodiment of the present application;
  • Fig. 26 is a schematic diagram of the process and principle of the automatic control method based on human perception in the whole house scenario provided by the embodiment of the present application;
  • Fig. 27 is a schematic flow chart of correcting the installation error of the first electronic device provided by the embodiment of the present application.
  • Fig. 28 is a schematic diagram of the principle of an ICP algorithm provided by the embodiment of the present application.
  • FIG. 29 is a schematic diagram of the area division and user interface provided by the embodiment of the present application.
  • FIG. 30 is a schematic diagram of a method for automatically adjusting beams of a routing device based on human perception in a whole-house scenario provided by an embodiment of the present application;
  • FIG. 31 is a schematic flow diagram of a method for automatically adjusting beams by a routing device based on human perception in a whole-house scenario provided by an embodiment of the present application;
  • Fig. 32 is another schematic flowchart of a method for automatically adjusting beams of a routing device based on human perception in a whole-house scenario provided by an embodiment of the present application;
  • FIG. 33 is a schematic diagram of a method for automatically adjusting a cleaning area based on human perception of a cleaning device in a whole-house scenario provided by an embodiment of the present application;
  • Fig. 34 is a schematic flowchart of a method for automatically adjusting the cleaning area based on human perception of the cleaning device in the whole house scenario provided by the embodiment of the present application;
  • Fig. 35 is another schematic flowchart of the method for automatically adjusting the cleaning area based on human perception of the cleaning device in the whole house scenario provided by the embodiment of the present application;
  • Fig. 36 is a schematic diagram of a specified area in the method of automatically adjusting the cleaning area based on human perception of the cleaning device in the whole house scenario provided by the embodiment of the present application;
  • FIG. 37 is a schematic diagram of a method for automatically obtaining human body information by a health management device based on human body perception in a whole-house scenario provided by an embodiment of the present application;
  • FIG. 38A is a schematic flowchart of a method for automatically obtaining human body information by a health management device based on human body perception in the whole-house scenario provided by the embodiment of the present application;
  • FIG. 38B is another schematic flowchart of a method for automatically obtaining human body information by a health management device based on human body perception in the whole-house scenario provided by the embodiment of the present application;
  • Fig. 39 is a schematic diagram of the scene of the automatic lifting method of drying equipment based on human perception in the whole house scene provided by the embodiment of the present application;
  • Fig. 40 is a schematic flow diagram of a method for automatically raising and lowering drying equipment based on human perception in the whole house scenario provided by the embodiment of the present application;
  • FIG. 41A is a schematic diagram of a method for automatically adjusting lighting based on human body perception in a whole-house scenario provided by an embodiment of the present application;
  • Fig. 41B is a schematic diagram of the illuminated area in the method of automatically adjusting the lighting based on the lighting equipment based on human perception in the whole house scene provided by the embodiment of the present application;
  • Fig. 42 is a schematic flowchart of a method for automatically adjusting lighting based on human body perception in a whole-house scenario provided by an embodiment of the present application;
  • Fig. 43 is a schematic structural diagram of the first electronic device provided by the embodiment of the present application.
  • FIG. 44 is a schematic structural diagram of a second electronic device provided by an embodiment of the present application.
  • a and/or B may indicate: A exists alone, A and B exist at the same time, and B exists alone, Wherein A and B can be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or" relationship.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • the term “connected” includes both direct and indirect connections, unless otherwise stated. "First” and “second” are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • FIG. 1 is a schematic diagram of a scenario of an automatic control method based on human perception provided in an embodiment of the present application.
  • the whole house includes an entrance hallway, a kitchen, a dining room, a living room, a balcony, a master bedroom, a second bedroom, a bathroom, and the like.
  • the whole house is provided with at least one first electronic device.
  • each room or area includes at least one first electronic device.
  • the whole house is also provided with a second electronic device (such as an IoT device).
  • the kitchen is equipped with a rice cooker or electric pressure cooker, gas equipment, etc.
  • the living room is equipped with speakers (such as smart speakers), TVs (such as smart TVs, also known as smart screens, large screens, etc.), routing equipment, etc.
  • the restaurant is equipped with sweeping robots, etc.;
  • the master bedroom is equipped with TVs (for example, smart TVs), speakers (for example, smart speakers), floor lamps (for example, smart floor lamps), routing equipment etc.;
  • the second bedroom is equipped with desk lamps (eg, smart desk lamps), speakers (eg, smart speakers), etc.;
  • the bathroom is equipped with body fat scales, etc.
  • the automatic control method based on human perception provided in the embodiment of the present application includes the automatic control method based on human perception in the whole house scene, and also includes the automatic control method based on human perception in a single room or area.
  • the automatic control method based on human perception provided in the embodiment of the present application is applied to a communication system.
  • the communication system includes a communication system based on human body perception in a whole-house scene (also called a whole-house intelligent system), and a communication system based on human body perception in a single room or area (also called a room smart system). or regional intelligence systems).
  • the communication system includes at least one first electronic device 100 and at least one second electronic device 300 .
  • the communication system may further include a central device 200 .
  • the first electronic device 100 is used to locate the second electronic device 300 and/or the user.
  • the first electronic device 100 may include a sensor.
  • the first electronic device 100 includes an Ultra-Wide Band (Ultra-Wide Band, UWB) module and a millimeter wave radar module.
  • UWB Ultra-Wide Band
  • the UWB module is used to locate the second electronic device 300
  • the millimeter wave radar module is used to locate the user.
  • UWB technology is a radio communication technology that does not use carrier modulation signals, but uses energy pulse sequences below the nanosecond or microsecond level, and extends the pulses to a frequency range through orthogonal frequency division modulation or direct sequencing.
  • UWB has the characteristics of wide spectrum, high precision, low power consumption, strong multipath resistance, high security, and low system complexity. It is mostly used for short-distance, high-speed wireless communication, especially in the field of indoor positioning. Generally speaking, the positioning accuracy of the UWB system can reach centimeter level.
  • the UWB system includes UWB base stations and UWB tags.
  • the UWB base station determines the position (coordinates) of the UWB tag by detecting the distance between the UWB tag and the UWB base station, and the signal direction of the UWB tag; that is, positioning the UWB tag.
  • the UWB positioning is based on the UWB coordinate system (also called the first coordinate system).
  • the second electronic device includes a UWB module.
  • the UWB module of the first electronic device 100 realizes the function of UWB base station, and the UWB module of the second electronic device realizes the function of UWB tag.
  • the UWB module of the first electronic device 100 By positioning the UWB module of the first electronic device 100 to the UWB module of the second electronic device, the positioning of the second electronic device by the first electronic device 100 can be realized.
  • some second electronic devices do not include a UWB module.
  • the second electronic device including the UWB module is a mobile device (such as a smart phone, a remote controller, etc.).
  • the second electronic device including the UWB module can be used to mark the second electronic device not including the UWB module, so that the first electronic device 100 can locate the second electronic device not including the UWB module.
  • the specific labeling method will be introduced in detail later.
  • Millimeter wave radar works in the millimeter wave (millimeter wave) band and is mainly used to detect moving objects. Its working frequency band is distributed in the frequency domain of 30-300 GHz (wavelength is 1-10 mm).
  • the millimeter-wave radar continuously transmits (radiates) a specific form of wireless electromagnetic signals when it is working, and receives the electromagnetic echo signals reflected by the object, and determines the spatial information of the object by comparing the difference between the transmitted signal and the received signal.
  • Millimeter wave radar has the characteristics of small size and high spatial resolution; deployed indoors, it can be used to detect the position of the human body (user) in the whole house, physiological characteristics (such as breathing rate, heartbeat frequency, etc.), identity category (such as, Adults, children, etc.) and human body posture (such as standing, sitting, lying down, etc.) information.
  • physiological characteristics such as breathing rate, heartbeat frequency, etc.
  • identity category such as, Adults, children, etc.
  • human body posture such as standing, sitting, lying down, etc.
  • the specific method will be introduced in detail later.
  • the positioning by the millimeter-wave radar is based on the millimeter-wave radar coordinate system (also referred to as the second coordinate system).
  • the coordinates of the second coordinate system and the first coordinate system need to be converted or unified into the same coordinate system.
  • the specific coordinate system conversion method will be introduced in detail later.
  • the embodiment of the present application is introduced by taking a first electronic device 100 including a UWB module and a millimeter wave radar as an example.
  • the first electronic device 100 may only include a UWB module or a millimeter wave radar, the first electronic device 100 including the UWB module is used to locate the second electronic device 300, and the first electronic device 100 including the millimeter wave radar
  • the device 100 is used to locate a user.
  • the aforementioned two types of first electronic devices 100 cooperate with each other to implement the automatic control method based on human body perception provided by the embodiment of the present application.
  • the embodiment of the present application does not limit this.
  • the first electronic device 100 may acquire the location of the second electronic device 300 (ie, locate the second electronic device), and may also acquire the location of the user in the room or area (ie, locate the user).
  • the whole house includes at least one room or area. If only one first electronic device is installed in the whole house, signal attenuation may be caused due to wall blocking and other reasons. Such a first electronic device cannot cover all areas of the whole house. Therefore, generally a plurality of first electronic devices are installed in the whole house.
  • each relatively independent space in the whole house (for example, living room, bedroom, study room, balcony, bathroom, kitchen, corridor, etc.) is respectively provided with a first electronic device, which is used for the second electronic device in the independent space and The user performs positioning; in this way, the second electronic device or user at any position in the whole house can be detected by the first electronic device.
  • a first electronic device which is used for the second electronic device in the independent space and The user performs positioning; in this way, the second electronic device or user at any position in the whole house can be detected by the first electronic device.
  • the signal sending and receiving range of the first electronic device installed in the entrance hallway may cover the entrance hallway.
  • the transmitting and receiving signal range of the first electronic device set in the kitchen can cover the kitchen.
  • the transmitting and receiving signal range of the first electronic device set in the living room can cover the living room.
  • the transmitting and receiving signal range of the first electronic device set in the restaurant can cover the restaurant.
  • the transmitting and receiving signal range of the first electronic device installed on the balcony can cover the balcony.
  • the sending and receiving signal range of the first electronic device set in the master bedroom can cover the master bedroom.
  • the transmitting and receiving signal range of the first electronic device set in the bathroom can cover the bathroom.
  • the sending and receiving signal range of the first electronic device set in the second bedroom can cover the second bedroom.
  • the first electronic device may be set on a wall of a room or area.
  • the first electronic device may be installed on a ceiling of a room or an area, or the like. In this way, the shielding of the signal by objects such as furniture in the whole house can be reduced, preventing the signal from being blocked from reducing the detection accuracy of the first electronic device.
  • the first electronic device may be set on the floor of a room or area, or the like.
  • the first electronic device 100 may exist independently, or may be integrated with the second electronic device. This application does not limit this.
  • the first electronic device 100 and the smart air conditioner are integrated into one device.
  • some rooms or areas do not need to be provided with the first electronic device; that is, not all rooms or areas are provided with at least one first electronic device.
  • a restaurant may not be provided with the first electronic device.
  • the entrance aisle and the dining room can share a first electronic device, or the dining room and living room can share a first electronic device.
  • the second electronic device 300 includes but is not limited to a smart TV, Lamps (such as ceiling lamps, smart table lamps, aroma lamps, etc.), sweeping robots, body fat scales, smart clothes hangers, smart rice cookers, air purifiers, humidifiers, desktop computers, routing devices, smart sockets, water dispensers, smart refrigerators, Smart air conditioner, smart switch, smart door lock, etc.
  • the second electronic device 300 may not be a smart home device, but a portable device, such as a personal computer (person computer, PC), a tablet computer, a mobile phone, and a smart remote control. The embodiment of the present application does not limit the specific form of the second electronic device 300 .
  • the second electronic device 300 and the first electronic device 100 can be wired (for example, power line communication (power line communication, PLC)) and/or wireless (for example, wireless fidelity (wireless fidelity, Wi-Fi), Bluetooth, etc.)
  • the mode is connected with the central device 200.
  • the connection manners of the second electronic device 300 and the first electronic device 100 to the hub device 200 may be the same or different.
  • both the second electronic device 300 and the first electronic device 100 are connected to the central device 200 in a wireless manner.
  • the second electronic device 300 is connected to the central device 200 in a wireless manner
  • the first electronic device 100 is connected to the central device 200 in a wired manner.
  • devices such as smart speakers, smart TVs, body fat scales, and sweeping robots in the second electronic device 300 are connected to the central device 200 wirelessly (such as Wi-Fi).
  • devices such as smart door locks are connected to the central device 200 through a wired method (such as PLC).
  • the first electronic device 100 communicates with the second electronic device 300 in a wireless manner.
  • the first electronic device 100 may transmit at least one item of the location information of the second electronic device 300 acquired through detection, and the user's location, physiological characteristics, identity category, and human body posture, through wired or Upload to the central device 200 wirelessly.
  • the hub device 200 also referred to as a hub, a central control system, or a host, is configured to receive information sent by the first electronic device 100 .
  • the central device 200 is also used to build a whole-house map, establish a whole-house coordinate system, and unify the location information obtained by each first electronic device 100 into the whole-house coordinate system for unified measurement.
  • the position information of the second electronic device 300 or the user detected and acquired by each first electronic device 100 can be unified into the whole room coordinate system, and the specific position of the second electronic device 300 or the user in the whole room can be determined.
  • the hub device 200 also notifies or controls the second electronic device 300 according to the received information (including but not limited to location information).
  • the conversion of each coordinate system is also involved, which will be described in detail later.
  • the central device 200 receives the information sent by the first electronic device 100, including the location information of the second electronic device 300 and at least one of the user's location, physiological characteristics, identity category, and human body posture.
  • the central device 200 notifies or controls the second electronic device 300 to execute preset instructions according to the location information of the second electronic device 300 and at least one of the user's location, physiological characteristics, identity category, and human body posture. For example, when a user wakes up a smart speaker by voice, the central device 200 notifies or controls one or more smart speakers closest to the user to be woken up according to the positions of multiple smart speakers in the whole house.
  • the hub device 200 controls the smart speaker in the room where the user leaves to stop playing audio, and controls the smart speaker in the room where the user enters to start playing (for example, continue playing) audio.
  • the central device 200 controls the playback volume of the smart speakers according to the distance between the two smart speakers (the two smart speakers respectively play the left channel audio and the right channel audio of the same audio) and the user, so that the left audio received by the user channel audio and right channel audio at the same volume.
  • the user watches a video (for example, the video includes violent content, etc.) through a smart TV in a room, and detects that a child user enters the room, and the central device 200 controls the smart TV to stop playing the video.
  • the hub device 200 notifies or controls the smart TV to start or stop playing video according to the user's position relative to the smart TV (such as distance, orientation, etc.).
  • At least one central device 200 is provided in the whole house.
  • the first electronic device in each room or area may send the detected location information of the user and the location information of one or more second electronic devices in the room or area to the central device 200 .
  • the central device 200 obtains the detection data (including but not limited to location information) of each room or area of the whole house, so that it can notify or control the corresponding second electronic device in the corresponding room or area when the preset condition is met.
  • a central device may also be provided in each room or area of the whole house.
  • the first electronic device in each room or area can send the detected location information of the user and the location information of one or more second electronic devices in the room or area to the central device in the room or area.
  • the central device in this room or in this area sends it to the central device 200 in the whole house.
  • the central device 200 of the whole house acquires the detection data of each room or area of the whole house, so that when the preset conditions are met, the central device in the corresponding room or area can be notified or controlled.
  • the central device in the corresponding room or the corresponding area then notifies or controls the corresponding second electronic device.
  • the central equipment of each room or area, and the central equipment of the whole house can exist independently, or can be integrated with the first electronic equipment or the second electronic equipment into one equipment, and can also be integrated with the first electronic equipment and the second electronic equipment. Electronic devices integrated into one device. This application does not limit this.
  • some rooms or areas do not need to be provided with a central device; that is, not all rooms or areas are provided with at least one central device.
  • a central device For example, a restaurant does not need to set up a central device.
  • the dining room and the entrance aisle share a central device, or the dining room and the living room share a central device.
  • the central device 200 of the whole house may also assume the function of the central device of a certain room or area.
  • the central device 200 of the whole house may also assume the function of the central device in the living room.
  • a central device is provided for each room or area other than a certain room or area (for example, a living room).
  • the central device 200 of the whole house communicates to the second electronic device in each room or area other than the above-mentioned certain room or area (such as the living room), it still passes through the central device in each room or area;
  • the second electronic device in a room or area for example, the living room
  • communicates it no longer communicates through the central device in the above-mentioned room or area (for example, the living room).
  • the communication system further includes a routing device (such as a router).
  • Routing devices are used to connect to local area networks or the Internet, using specific protocols to select and set the path for sending signals.
  • one or more routers are deployed in the whole house to form a local area network, or access the local area network or the Internet.
  • the second electronic device 300 or the first electronic device 100 is connected to the router, and performs data transmission with devices in the local area network or devices in the Internet through the Wi-Fi channel established by the router.
  • the hub device 200 and the routing device may be integrated into one device.
  • the hub device 200 and the routing device are integrated into a routing device, that is, the routing device has the functions of the hub device 200 .
  • the routing device may be one or more routing devices in the parent-child routing device, or may be an independent routing device.
  • the communication system further includes a gateway (Gateway).
  • Gateway is also called internet connector and protocol converter.
  • the gateway is used to forward the information of the first electronic device 100 to the routing device or the hub device 200 .
  • the functions of the hub device 200 may be implemented by a gateway.
  • the communication system further includes a server (eg, a cloud server).
  • the hub device 200, the routing device or the gateway may send the received information from the first electronic device 100 to the server. Further, the central device 200, the routing device or the gateway may also send the control information of the central device 200 to the second electronic device 300 to the server. Furthermore, the hub device 200, the routing device or the gateway may also upload various information generated during the operation of the second electronic device 300 to the server for the user to view.
  • the communication system further includes one or more input devices (for example, the input device is a control panel).
  • the control panel displays a human-computer interaction interface of the communication system.
  • the user can view the information of the communication system (for example, the connection information of each device in the communication system), the operation information of the second electronic device 300 and/or the control information of the second electronic device 300 by the central device 200 on the human-computer interaction interface. Users can also input control commands on the human-computer interaction interface by clicking on the screen or voice to control the devices in the communication system.
  • FIG. 2 shows a schematic structural diagram of a first electronic device 100 .
  • the first electronic device 100 may include a processor 110 , a memory 120 , a power management module 130 , a power supply 131 , a wireless communication module 140 , a UWB module 150 , a millimeter wave radar module 160 and so on.
  • the structure shown in FIG. 2 does not constitute a specific limitation on the first electronic device 100 .
  • the first electronic device 100 may include more or fewer components than shown in the illustration, or combine some components, or separate some components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, and different processing units may be independent devices or integrated into one or more processors.
  • the processor 110 is a central processing unit (central processing unit, CPU), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more integrated circuits of the embodiments of the present application , for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the memory 120 may be used to store computer-executable program code, which includes instructions.
  • the memory 120 may also store data processed by the processor 110 .
  • the memory 120 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 110 executes various functional applications and data processing of the first electronic device 100 by executing instructions stored in the memory 120 and/or instructions stored in the memory provided in the processor.
  • the power management module 130 is configured to receive an input from a power source 131 .
  • the power source 131 may be a battery or a commercial power.
  • the power management module 130 receives power from the battery and/or commercial power, and supplies power to various components of the first electronic device 100, such as the processor 110, the memory 120, the wireless communication module 140, the UWB module 150, and the millimeter wave radar module 160.
  • the wireless communication module 140 can provide applications on the first electronic device 100 including wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (wireless fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global Solutions for wireless communications such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), infrared (IR), and ZigBee plan.
  • WLAN wireless local area networks
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared
  • ZigBee plan The wireless communication module 140 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 140 receives electromagnetic waves via the antenna, frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 140 can also receive the signal to be sent from the processor 110, frequency-modulate it, amplify it, and convert it into electromagnetic wave and radiate it through the antenna. It should be noted that the number of antennas of the wireless communication module 140 , the UWB module 150 and the millimeter wave radar module 160 in FIG. 4 is only for illustration. It can be understood that the communication module 140 , the UWB module 150 and the millimeter wave radar module 160 may include more or fewer antennas, which is not limited in this embodiment of the present application.
  • the UWB module 150 may provide a wireless communication solution based on UWB technology applied on the first electronic device 100 .
  • the UWB module 150 is used to implement the above-mentioned functions of the UWB base station.
  • the UWB base station can locate the UWB tag.
  • the UWB signal can be detected and combined with some positioning algorithms to calculate the duration of the UWB signal flying in the air, and the duration is multiplied by the transmission rate of the UWB signal in the air (such as the speed of light) to obtain the distance between the UWB tag and the UWB base station .
  • the UWB base station can also determine the direction of the UWB tag relative to the UWB base station (that is, the direction of the signal of the UWB tag) according to the phase difference between the UWB signal sent by the UWB tag and the different antennas of the UWB base station.
  • the signal direction includes horizontal direction and vertical direction.
  • FIG. 3 shows a schematic structural diagram of a central device 200 .
  • the central device 200 may include a processor 210 , a memory 220 , a power management module 230 , a power supply 231 , a wireless communication module 240 and the like.
  • the structure shown in FIG. 3 does not constitute a specific limitation on the central device 200 .
  • the hub device 200 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 210 may include one or more processing units, and different processing units may be independent devices or integrated into one or more processors.
  • the processor 210 is a central processing unit (central processing unit, CPU), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more integrated circuits of the embodiments of the present application , for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Memory 220 may be used to store computer-executable program code, which includes instructions.
  • the memory 220 may also store data processed by the processor 210 .
  • the memory 220 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 210 executes various functional applications and data processing of the hub device 200 by executing instructions stored in the memory 220 and/or instructions stored in the memory provided in the processor.
  • the power management module 230 is configured to receive an input from a power source 231 .
  • the power source 231 may be a battery or a commercial power.
  • the power management module 230 receives power from the battery and/or commercial power, and supplies power to various components of the central device 200, such as the processor 210, the memory 220, the wireless communication module 240, and the like.
  • the wireless communication module 240 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite, etc. applied on the central device 200.
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • purple peak ZigBee
  • the wireless communication module 240 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 240 receives electromagnetic waves through the antenna, frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 210 .
  • the wireless communication module 240 can also receive the signal to be sent from the processor 210, frequency-modulate it, amplify it, and convert it into electromagnetic wave to radiate through the antenna.
  • FIG. 4 shows a schematic structural diagram of a second electronic device 300 .
  • the second electronic device 300 may include a processor 310, a memory 320, a universal serial bus (universal serial bus, USB) interface 330, a power module 340, a UWB module 350, a wireless communication module 360, and the like.
  • the second electronic device 300 may further include an audio module 370, a speaker 370A, a receiver 370B, a microphone 370C, an earphone interface 370D, a display screen 380, a sensor module 390, and the like.
  • the structure shown in FIG. 4 does not constitute a specific limitation on the second electronic device 300 .
  • the second electronic device 300 may include more or fewer components than shown in the illustration, or combine some components, or separate some components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the interface connection relationship among the modules shown in FIG. 4 is only for schematic illustration, and does not constitute a structural limitation of the second electronic device 300 .
  • the second electronic device 300 may also adopt an interface connection manner different from that in FIG. 4 , or a combination of multiple interface connection manners.
  • the processor 310 may include one or more processing units, for example: the processor 310 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), video codec, digital signal processor (digital signal processor, DSP), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • DSP digital signal processor
  • Memory 320 may be used to store computer-executable program code, which includes instructions.
  • the memory 320 may also store data processed by the processor 310 .
  • the memory 320 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 310 executes various functional applications and data processing of the second electronic device 300 by executing instructions stored in the memory 320 and/or instructions stored in the memory provided in the processor.
  • the USB interface 330 is an interface conforming to the USB standard specification, specifically, it may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 330 can be used to connect a charger to charge the second electronic device 300 , and can also be used to transmit data between the second electronic device 300 and peripheral devices.
  • the power supply module 340 is used for supplying power to various components of the second electronic device 300, such as the processor 310, the memory 320, and the like.
  • the UWB module 350 can provide a wireless communication solution based on UWB technology applied on the second electronic device 300 .
  • the UWB module 350 is used to implement the above-mentioned functions of the UWB tag.
  • the wireless communication module 360 can provide applications on the second electronic device 300 including wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (wireless fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global Solutions for wireless communications such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR), and ZigBee plan.
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • Bluetooth blue-BT
  • BT wireless fidelity
  • BT wireless fidelity
  • the wireless communication module 360 can also receive the signal to be transmitted from the processor 310, frequency-modulate it, amplify it, and convert it into electromagnetic wave and radiate it through the antenna.
  • the wireless communication module 360 may be integrated with the UWB module 350 or set separately, which is not limited in this application.
  • the second electronic device 300 can realize the audio function through the audio module 370 , the speaker 370A, the receiver 370B, the microphone 370C, the earphone interface 370D, and the application processor. Such as audio playback, recording, etc.
  • the audio module 370 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 370 may also be used to encode and decode audio signals.
  • the audio module 370 can be set in the processor 310 , or some functional modules of the audio module 370 can be set in the processor 310 .
  • Speaker 370A also called “horn” is used to convert audio electrical signals into sound signals.
  • the second electronic device 300 may listen to audio through the speaker 370A.
  • Receiver 370B also called “earpiece” is used to convert audio electrical signals into audio signals.
  • the microphone 370C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. The user can make a sound by approaching the microphone 370C with the human mouth, and input the sound signal to the microphone 370C.
  • the earphone interface 370D is used to connect wired earphones.
  • the earphone interface 370D may be a USB interface 330, or a 3.5mm open mobile terminal platform (open mobile terminal platform, OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the display screen 380 is used to display images, videos and the like.
  • the display screen 380 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED active matrix organic light emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed
  • quantum dot light emitting diodes quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the sensor module 390 includes an inertial measurement unit (inertial measurement unit, IMU) module and the like.
  • IMU modules can include gyroscopes, accelerometers, etc.
  • the gyroscope and the accelerometer can be used to determine the motion posture of the second electronic device 300 .
  • the angular velocity of the second electronic device 300 around three axes can be determined by a gyroscope.
  • the accelerometer can be used to detect the acceleration of the second electronic device 300 in various directions (generally three axes). When the second electronic device 300 is stationary, the magnitude and direction of gravity can be detected.
  • the device attitude of the second electronic device 300 may be acquired according to the angular velocity and acceleration measured by the IMU module.
  • some second electronic devices may include an IMU module, and some second electronic devices do not include an IMU module.
  • the second electronic device 300 further includes a filter (for example, a Kalman filter).
  • a filter for example, a Kalman filter.
  • the output of the IMU module and the output of the UWB module 350 can be superimposed, and the superimposed signal can be input to a Kalman filter for filtering, thereby reducing errors.
  • FIG. 5A shows the structure of the UWB module in the first electronic device provided by the embodiment of the present application.
  • the UWB module 150 includes a transmitter 1501 and a receiver 1502 .
  • Transmitter 1501 and receiver 1502 can operate independently.
  • the transmitter 1501 includes a data signal generator, a pulse generator, a modulator, a digital-to-analog converter, a power amplifier, and a transmitting antenna.
  • the data signal generator is used to generate data signals, and is also used to send timing start instruction information to the receiver 1502 when the data signal generation starts.
  • the pulse generator is used to generate periodic pulse signals.
  • Digital-to-analog converters are used to convert digital signals into analog signals.
  • the data signal to be sent is modulated by the modulator to the pulse signal generated by the pulse generator, and after being amplified by the power amplifier, the UWB signal is transmitted through the transmitting antenna.
  • the receiver 1502 includes a receiving antenna, a mixer, a filter, a sampling module, a first processing module and so on. Any receiving antenna receives a UWB signal (for example, in the form of a pulse sequence), mixes the received UWB signal with a mixer, filters and amplifies it with a filter, and performs analog-to-digital conversion through a sampling module to obtain a baseband digital signal.
  • the first processing module is used to process the baseband digital signal to realize the detection of the UWB signal.
  • the first processing module calculates the signal time of flight (time of flight, ToF) of the UWB signal according to the timing start indication information and the moment when the pulse sequence is received, and calculates the second according to the ToF and the rate of transmission of the UWB signal in the air (such as the speed of light)
  • the distance between an electronic device 100 and a second electronic device 300 including the UWB module 350 .
  • the first processing module calculates the signal direction of the second electronic device 300 including the UWB module 350 according to the phase difference of the pulse sequences received by the multiple receiving antennas.
  • the pulse sequence received by each receiving antenna in FIG. 5A passes through a set of power amplifiers, mixers, filters and sampling modules, which represents the processing flow of the pulse sequence.
  • the receiver 1502 may only include a set of power amplifiers, mixers, filters and sampling modules.
  • one antenna may implement the functions of a transmitting antenna in the transmitter 1501 and a receiving antenna in the receiver 1502, that is, the transmitting antenna and the receiving antenna are integrated into the same antenna.
  • FIG. 5B shows the structure of the millimeter wave radar module in the first electronic device provided by the embodiment of the present application.
  • the millimeter wave radar module 160 includes a transmitting antenna, a relay switch, a receiving antenna, a waveform generator, a mixer, a filter, a second processing module and the like.
  • the waveform generator is used to generate a transmission signal, for example, the transmission signal is a linear frequency-modulation continuous wave (LFMCW).
  • LFMCW linear frequency-modulation continuous wave
  • n and m are positive integers greater than or equal to 1.
  • Fig. 6 shows the structure of the UWB module in the second electronic device.
  • the UWB module 350 includes a transmitter 3501 and a receiver 3502 .
  • the transmitter 3501 and receiver 3502 can operate independently.
  • the transmitter 3501 includes a data signal generator, a pulse generator, a modulator, a digital-to-analog converter, a power amplifier, and a transmitting antenna.
  • the data signal generator is used for generating data signals.
  • the pulse generator is used to generate periodic pulse signals.
  • Digital-to-analog converters are used to convert digital signals into analog signals.
  • the data signal to be sent is modulated by the modulator to the pulse signal generated by the pulse generator, and after being amplified by the power amplifier, the UWB signal is transmitted through the transmitting antenna.
  • Receiver 3502 includes receiving antenna, mixer, filter, sampling module, processing module and so on.
  • the receiving antenna receives the UWB signal (for example, in the form of a pulse sequence), and after the received UWB signal is mixed by a mixer, filtered and amplified by a filter, the analog-to-digital conversion is performed by the sampling module to obtain a baseband digital signal.
  • the processing module is used to process the baseband digital signal to realize the detection of the UWB signal.
  • the transmitting antenna in the transmitter 3501 and the receiving antenna in the receiver 3502 may be integrated into the same antenna.
  • FIG. 7 shows several antenna distributions of the UWB module in the first electronic device provided by the embodiment of the present application.
  • (a) of FIG. 7 exemplarily shows two two-antenna structures.
  • One is a horizontal (for example, horizontal) antenna structure
  • the other is a longitudinal (for example, vertical) antenna structure.
  • the distance between antenna 0 and antenna 1 is ⁇ /2, where ⁇ is the wavelength of the UWB signal.
  • the horizontal antenna structure can be used to measure the lateral direction of UWB signals (eg, horizontal direction)
  • the longitudinal antenna structure can be used to measure the longitudinal direction of UWB signals (eg, vertical direction).
  • the first electronic device on the left and the first electronic device on the right as shown in (a) of FIG. ), to detect the incoming and outgoing signal of the second electronic device including the UWB module.
  • FIG. 7(b) of FIG. 7 and (c) of FIG. 7 exemplarily show a three-antenna structure.
  • the three antennas present an L-shaped (or called a right-angled triangle) structural relationship.
  • antenna 0 and antenna 1 are aligned in the lateral direction (for example, the horizontal direction)
  • antenna 0 and antenna 2 are aligned in the longitudinal direction (for example, the vertical direction), that is, antenna 0,
  • the plane where the antenna 1 and the antenna 2 are located is a longitudinal plane (for example, a longitudinal plane), and an L-shaped distribution relationship is present on the longitudinal plane.
  • the plane where antenna 0, antenna 1, and antenna 2 are located is a transverse plane (for example, a horizontal plane), and the connection line between antenna 0 and antenna 1 (assuming that there is a connection line between antenna 0 and antenna 1 ), perpendicular to the connection line between antenna 0 and antenna 2 (assuming that there is a connection between antenna 0 and antenna 2). That is, the antenna 0, the antenna 1, and the antenna 2 present an L-shaped distribution relationship on the lateral plane.
  • the distance between Antenna 0 and Antenna 1, and between Antenna 0 and Antenna 2 may be less than or equal to ⁇ /2; where ⁇ is a UWB signal wavelength.
  • the distance between antenna 0 and antenna 1, and the distance between antenna 0 and antenna 2 may be the same or different.
  • FIG. 7 exemplarily shows some other three-antenna structures.
  • the three antennas are in a triangular (eg, equilateral triangle, isosceles triangle) structural relationship.
  • the plane where the antenna 0, the antenna 1, and the antenna 2 are located is a longitudinal plane (for example, a vertical plane), and a triangular distribution appears on the longitudinal plane.
  • antenna 0 , antenna 1 , and antenna 2 are distributed in a triangle on a lateral plane (for example, a horizontal plane).
  • the distance between any two antennas among Antenna 0, Antenna 1, and Antenna 2 can be less than or equal to ⁇ /2; where ⁇ is the UWB signal wavelength.
  • the distance between any two antennas among antenna 0, antenna 1 and antenna 2 may be the same or different. For example, the distance between antenna 0 and antenna 1 is ⁇ /2; the distance between antenna 0 and antenna 2 is
  • antennas are also within the scope of the present application.
  • four antennas, antenna 0 , antenna 1 , antenna 2 and antenna 3 are distributed in a rectangular shape.
  • any three antennas among the four antennas are distributed in an L-shape or a triangle as described above.
  • the first electronic device 100 obtains the lateral direction of the UWB signal according to the phase difference between the UWB signal from the second electronic device 300 and the two laterally distributed antennas of the UWB module 150; The phase difference between the two longitudinally distributed antennas reaching the UWB module 150 obtains the longitudinal direction of the UWB signal. Furthermore, the first electronic device 100 acquires the direction of the UWB signal according to the horizontal direction and the vertical direction.
  • the UWB module 150 of the first electronic device 100 may only include one antenna. At this time, more than three first electronic devices 100 need to be used, and more than three first electronic devices 100 are distributed in an L shape or a triangle, and cooperate together to obtain the direction of the UWB signal. The specific principle is similar to the above, and will not be repeated here.
  • the embodiment of the present application does not limit the number and distribution of antennas in the UWB module of the first electronic device 100, as long as the direction of the UWB signal can be obtained.
  • FIG. 8 shows several antenna distributions of the millimeter wave radar module in the first electronic device provided by the embodiment of the present application.
  • the transmitting antennas include transmitting antenna 0, transmitting antenna 1, and transmitting antenna 2.
  • the receiving antennas include receiving antenna 0 , receiving antenna 1 , receiving antenna 2 and receiving antenna 3 .
  • the distribution of transmitting antenna 0, transmitting antenna 1, and transmitting antenna 2, and receiving antenna 0, receiving antenna 1, receiving antenna 2, and receiving antenna 3 may be as shown in (a) or (b) of FIG. 8 .
  • the transmitting antenna is used to transmit the electromagnetic signal working in the millimeter wave band (such as LFMCW), and the receiving antenna is used to receive the electromagnetic signal working in the millimeter wave band reflected by a reflector (object or human body).
  • the millimeter wave radar module 160 obtains a difference frequency signal according to the transmitted signal and the received signal, and determines the position of an object or a human body according to the difference frequency signal.
  • the three transmitting antennas and the four receiving antennas are located on the same longitudinal plane (for example, a vertical plane), and the three transmitting antennas are distributed in a triangle on the longitudinal plane.
  • the transmitting antenna 0 and the transmitting antenna 2 are located on the same horizontal plane (for example, a horizontal plane), and the four receiving antennas are located on the same horizontal line (for example, a horizontal line).
  • the distances between any two receiving antennas are equal (for example, both are ⁇ L /2); the distances between the transmitting antenna 0 and the transmitting antenna 2 are all equal (for example, both are 2 ⁇ L ); the transmitting antenna 1 and transmitting antenna 0, and the distances between transmitting antenna 1 and transmitting antenna 2 in the longitudinal direction are equal (for example, both are ⁇ L /2).
  • ⁇ L is the wavelength of the highest frequency of the chirp continuous signal.
  • the transmitting antenna 0 and the transmitting antenna 2 are located on the same longitudinal line (for example, a vertical line); the four receiving antennas are located on the same longitudinal line (for example, a vertical line on-line.
  • the distance between any two receiving antennas is equal (for example, ⁇ L /2); the distance between transmitting antenna 0 and transmitting antenna 2 is equal (for example, both are 2 ⁇ L ); transmitting antenna 1 and transmitting antenna 0, And the distances between the transmitting antenna 1 and the transmitting antenna 2 in the lateral direction are equal (for example, both are ⁇ L /2). It can be understood that the number and distribution of transmitting antennas and/or receiving antennas may be in other forms. The embodiment of the present application does not limit this.
  • the millimeter-wave radar module 160 can calculate the lateral direction of the target according to the phase difference of multiple receiving antennas in the horizontal direction (such as the horizontal direction) of the reflected signal; Receive the phase difference of the antenna and calculate the longitudinal direction of the target.
  • the number of transmitting antennas may be more or less than three.
  • the number of receiving antennas may be more than four or less than four. This application does not limit this. In an implementation manner, there is at least one transmitting antenna, and at least three receiving antennas.
  • the number of transmitting antennas is one, and the number of receiving antennas is three.
  • three receiving antennas—receiving antenna 0, receiving antenna 1 and receiving antenna 2 are distributed in a triangle.
  • the connection line between receiving antenna 0 and receiving antenna 1 is located in the horizontal direction
  • the connection line between receiving antenna 0 and receiving antenna 2 is located in the vertical direction direction. In this way, after the transmitting signal of the transmitting antenna is reflected by the reflector (object or human body), the three receiving antennas respectively receive the reflected signal.
  • the millimeter-wave radar module 160 can obtain the lateral direction (for example, the horizontal direction) of the reflected signal according to the phase difference between the reflected signals received by the receiving antenna 0 and the receiving antenna 1 respectively. 2 The phase difference between the reflected signals received by the two respectively, and obtain the longitudinal direction of the reflected signal (for example, the vertical direction). Furthermore, the direction of the reflected signal can be determined according to the horizontal direction and the vertical direction.
  • the number of transmitting antennas is at least two, and the number of receiving antennas is at least two.
  • the number of transmitting antennas is at least two.
  • two transmit antennas transmit antenna 0 and transmit antenna 1
  • two receive antennas receive antenna 0 and receive antenna 1 as an example.
  • the connecting line (actually no connecting line) between the transmitting antenna 0 and the transmitting antenna 1 is located in the horizontal direction
  • the connecting line (actually no connecting line) between the receiving antenna 0 and the receiving antenna 1 is located in the longitudinal direction.
  • the transmitting signals of the transmitting antenna 0 and the transmitting antenna 1 are respectively reflected by the reflector (object or human body), at least one receiving antenna receives the reflected signal.
  • the millimeter-wave radar module 160 can calculate the lateral direction of the reflected signal (in this case, it can also be called the reflected signal) according to the phase difference between the signals transmitted by the transmitting antenna 0 and the transmitting antenna 1 and reaching the same receiving antenna. (for example, horizontally). After the transmitting signal of the transmitting antenna is reflected by the reflector (object or human body), the two receiving antennas receive the reflected signal respectively; according to the phase difference between the reflected signals received by the receiving antenna 0 and the receiving antenna 1, the reflected signal is obtained The longitudinal direction (for example, the vertical direction). Furthermore, the direction of the reflected signal can be determined according to the horizontal direction and the vertical direction.
  • the number of transmitting antennas is at least two, and the number of receiving antennas is at least two.
  • the number of transmitting antennas is at least two.
  • two transmit antennas transmit antenna 0 and transmit antenna 1
  • two receive antennas receive antenna 0 and receive antenna 1 as an example.
  • the connecting line (actually no connecting line) between transmitting antenna 0 and transmitting antenna 1 is located in the longitudinal direction
  • the connecting line (actually no connecting line) between receiving antenna 0 and receiving antenna 1 is located in the lateral direction.
  • the transmitting signals of the two transmitting antennas are respectively reflected by the reflector (object or human body), at least one receiving antenna receives the reflected signal.
  • the millimeter-wave radar module 160 can calculate the longitudinal direction of the reflected signal (in this case, it can also be called the reflected signal) according to the phase difference between the signals transmitted by the transmitting antenna 0 and the transmitting antenna 1 and reaching the same receiving antenna. (for example, the horizontal direction); according to the phase difference between the reflected signals received by the receiving antenna 0 and the receiving antenna 1, the lateral direction of the reflected signal (for example, the horizontal direction) is acquired. Furthermore, the direction of the reflected signal can be determined according to the horizontal direction and the vertical direction.
  • the number of transmitting antennas is at least three, and the number of receiving antennas is at least one.
  • the number of transmitting antennas is at least one.
  • Transmitting antenna 0, transmitting antenna 1 and transmitting antenna 2 are distributed in a triangle. Assuming that the connection line between transmitting antenna 0 and transmitting antenna 1 (actually there is no connection line) is located in the lateral direction (for example, horizontal direction), the connection line between transmitting antenna 0 and transmitting antenna 2 (actually there is no connection line) in portrait orientation.
  • the receiving antenna 0 receives the reflected signal.
  • the millimeter-wave radar module 160 can calculate the lateral direction of the reflected signal (in this case, it can also be called the reflected signal) according to the phase difference between the signals transmitted by the transmitting antenna 0 and the transmitting antenna 1 and reaching the same receiving antenna. (For example, horizontal direction); According to the phase difference between the signals transmitted by the transmitting antenna 0 and the transmitting antenna 2 and arriving at the same receiving antenna, calculate the longitudinal direction of the reflected signal (at this time, it can also be called the reflected signal) Coming (for example, vertical coming).
  • the following takes the first electronic device 100 including the UWB module 150 and the millimeter wave radar module 160 as an example to introduce specific positioning principles in detail.
  • positioning means acquiring a location.
  • the position is represented by coordinates in a coordinate system.
  • the coordinates of the first electronic device represent the position of the first electronic device
  • the coordinates of the second electronic device represent the position of the second electronic device
  • the coordinates of the user represent the position of the user.
  • the location may be represented in other ways. This embodiment of the present application does not limit it.
  • the projection of the antenna 2 on the Z e axis is located on the positive direction of the Z e axis.
  • the direction of the Y e axis is determined based on the rule of the right-handed rectangular coordinate system.
  • the right-handed rectangular coordinate system can be referred to simply as the right-handed coordinate system, which is one of the methods for specifying the rectangular coordinate system in space.
  • the positive directions of the X e axis, the Y e axis and the Z e axis in the right-hand rectangular coordinate system are specified as follows: put the right hand at the position of the origin, and make the thumb, index finger and middle finger At right angles to each other, the thumb and index finger are in the same plane, and when the thumb points to the positive direction of the X e axis and the middle finger points to the positive direction of the Z e axis, the direction pointed by the index finger is the positive direction of the Y e axis.
  • the Z e axis can be set on a vertical plane, and the positive direction of the Z e axis is opposite to the direction of gravity.
  • the outer surface of the first electronic device 100 may be marked with prompt information, which is used to prompt the correct installation method or placement method, so that the Z e axis of the first coordinate system is located on the vertical plane, and the positive direction of the Z e axis Opposite to the direction of gravity. Exemplarily, as shown in FIG. 9(a) or FIG.
  • an arrow is marked on the outer surface of the UWB base station, which is used to prompt to install or place the first electronic device 100 in the direction indicated by the arrow (the direction of the arrow is upward).
  • the Z e axis of the first coordinate system is located on the vertical plane, and the positive direction of the Z e axis is opposite to the direction of gravity.
  • the arrow on the outer surface of the first electronic device is parallel to the wall, and the direction of the arrow is upward, so that the Z e axis of the first coordinate system is on the vertical plane, and the Z e The positive direction of the axis is opposite to the direction of gravity.
  • the user when installing the first electronic device, the user can use instruments such as a plumb meter to make the arrow on the outer surface of the first electronic device parallel to the plumb line determined by the plumb meter, and the direction of the arrow is upward, so that the first coordinate
  • the Z e axis of the system is located in the vertical plane, and the positive direction of the Z e axis is opposite to the direction of gravity.
  • the first electronic device 100 may include only one UWB module, and the UWB module 150 may include only one antenna.
  • three first electronic devices 100 need to cooperate with each other to establish the first coordinate system.
  • the Chinese invention patent application with application number 202110872916.6 please refer to the Chinese invention patent application with application number 202110872916.6. I won't repeat them here. It should be pointed out that the entire content of the Chinese invention patent application with application number 202110872916.6 is incorporated into this application and is within the scope of this application.
  • the positive direction of the Y e axis is determined based on the rule of the left-handed Cartesian coordinate system.
  • the left-handed rectangular coordinate system can be referred to simply as the left-handed system, which is one of the methods for specifying the rectangular coordinate system in space.
  • the positive directions of X e axis, Y e axis and Z e axis in the left-hand Cartesian coordinate system are specified as follows: put the left hand at the origin, make the thumb, index finger and middle finger form a right angle to each other, and the thumb and The index finger is in the same plane, and when the thumb points to the positive direction of the X e axis and the middle finger points to the positive direction of the Z e axis, the direction the index finger points to is the positive direction of the Y e axis.
  • the Y e axis, Y b axis, Y t axis and the positive directions of the Y e axis, Y b axis, and Y t axis are determined according to the rule of the right-handed rectangular coordinate system. It should be understood by those skilled in the art that the Y e axis, the Y b axis, the Y t axis and the positive direction of the Y e axis, the Y b axis, and the Y t axis are determined by the rule of the left-handed rectangular coordinate system or in other ways, Also within the scope of this application.
  • the first coordinate system may be established automatically after receiving a specific input, or may be pre-established.
  • the first electronic device 100 when the first electronic device 100 receives a specific input, the first electronic device 100 automatically establishes the first coordinate system.
  • the specific input may be a user input, and may also be a non-user input (for example, receiving an instruction message from another device such as a remote controller).
  • the first electronic device 100 after the first electronic device 100 is installed according to the requirements of the prompt information, when the first electronic device 100 receives a specific input, the first electronic device 100 automatically retrieves relevant information from the local or server, thereby calling Create a pre-established first coordinate system.
  • the server in this application may be a home central device or a cloud server.
  • a point on antenna 0 is taken as the origin of the first coordinate system. This is only exemplary, and a point on other antennas (for example, antenna 1) may also be the origin of the first coordinate system.
  • FIG. 10 shows the establishment process of the second coordinate system provided by the embodiment of the present application.
  • the edge profile of the second electronic device includes four sides: two vertical sides and two horizontal sides.
  • O b is the center of gravity or the center of the second electronic device, the axis that includes the point O b and is parallel to the lateral side of the second electronic device is the X b axis, and the positive direction of the X b axis points to the right side of the second electronic device; contains O
  • the axis at point b and parallel to the vertical side of the second electronic device is the Y b axis, the positive direction of the Y b axis points to the upper side of the second electronic device, and the direction of the second electronic device is the positive direction of the Y b axis;
  • Z b The axis is perpendicular to the plane where the X b axis and the Y b axis are located, and the positive direction of the Z b axis
  • O b may be the center of the second electronic device, or O b may be the center of the IMU module of the second electronic device (on the premise that the second electronic device includes an IMU module).
  • (b) of FIG. 10 is a perspective view of the second electronic device in (a) of FIG. 10 .
  • FIG. 10 only schematically introduces the second coordinate system.
  • the second coordinate system can also be defined according to other rules.
  • the coordinate origin O b may also be any point on the second electronic device, or any point outside the second electronic device.
  • the three-axis directions of the second coordinate system are not limited to the positive directions of the X b axis, the Y b axis, and the Z b axis shown in (a) or (b) of FIG. 10 .
  • the second coordinate system can be established in advance. For example, when the second electronic device leaves the factory, it has already been established, and the relevant information of the second coordinate system is saved locally or on the server; when the second electronic device is started, or when the first electronic device receives a specific input, The second electronic device calls the relevant information of the second coordinate system locally or from the server.
  • FIG. 11 shows the establishment process of the third coordinate system provided by the embodiment of the present application.
  • the edge profile of the second electronic device includes four sides: a first side A 0 A 1 , a second side A 1 A 2 , a third side A 2 A 3 and a fourth side A 3 A 0 .
  • the first side A 0 A 1 and the third side A 2 A 3 are vertical sides
  • the second side A 1 A 2 and the fourth side A 3 A 0 are horizontal sides.
  • the origin of coordinates O t is an intersection point where the leftmost edge of the display area of the second electronic device meets the bottom edge of the display area of the second electronic device (ie, the lower left corner of the display area of the second electronic device).
  • X t axis Take the axis including O t point and parallel to A 3 A 0 as X t axis, and the positive direction of X t axis is the direction from A 0 point to A 3 point; take the axis including O t point and parallel to A 0 A 1
  • the axis is the Y t axis, and the positive direction of the Y t axis is the direction from A 0 to A 1 ;
  • the Z t axis is perpendicular to the plane where the X t axis and the Y t axis are located, and is determined according to the rule of the right-handed Cartesian coordinate system out of the positive direction of the Z t axis.
  • FIG. 11 only schematically introduces the third coordinate system.
  • the third coordinate system can also be defined according to other rules.
  • Ot may be the center of the display area of the second electronic device, or any point of the display area of the second electronic device.
  • the positive directions of the three axes of the third coordinate system are not limited to the positive directions indicated by the X t axis, the Y t axis, and the Z t axis shown in FIG. 11 .
  • the edge profile of the display area of the second electronic device is the edge profile of the second electronic device
  • the A 0 point of the second electronic device coincides with the O t point
  • the outline is not the edge outline of the second electronic device, for example, when there is a frame outside the display area of the second electronic device, the A0 point of the second electronic device does not coincide with the Ot point.
  • the third coordinate system can be established in advance. For example, when the second electronic device leaves the factory, that is, the third coordinate system has been established, and the relevant information of the third coordinate system is stored locally or on the server; when the second electronic device is started, or, the second electronic device receives a trigger , the second electronic device invokes the third coordinate system locally or from the server.
  • the second electronic device 300 includes a UWB module, and the second electronic device 300 is a mobile device (such as a smart phone or a remote controller) as an example.
  • the first electronic device 100 and the second electronic device 300 are located in the same room or area. Wherein, the first electronic device 100 has established the first coordinate system, and the second electronic device 300 has established the second coordinate system.
  • the first electronic device 100 and the second electronic device 300 can perform UWB communication, and accordingly the distance between the second electronic device 300 and the first electronic device 100, the second electronic device 300 relative to the first electronic device 100, so that the coordinates of the second electronic device 300 in the first coordinate system can be determined.
  • the distance L between the first electronic device and the second electronic device can be acquired in the following manner:
  • the first electronic device 100 may measure the distance L between the first electronic device 100 and the second electronic device 300 by using a two-way ranging method.
  • the two-way ranging method includes Single-sided Two-way Ranging (SS-TWR) and Double-sided Two-way Ranging (DS-TWR).
  • SS-TWR Single-sided Two-way Ranging
  • DS-TWR Double-sided Two-way Ranging
  • DS-TWR is taken as an example to briefly describe the ranging method.
  • DS-TWR time stamps between the two first electronic devices 100 and the second electronic device 300 are recorded, and finally the flight time is obtained.
  • the DS-TWR method increases the response time, it reduces the ranging error.
  • Bilateral and two-way ranging is divided into two methods according to the number of messages sent: 4-message method and 3-message method.
  • the second electronic device 300 sends the ranging request message (that is, the first message), and records the sending time T s1 .
  • the first electronic device 100 After receiving the request message, the first electronic device 100 records the receiving time T r1 .
  • the time difference t between T r1 and T s1 is the transmission time of the message between the two devices. It takes time T re1 for the first electronic device 100 to process the request message. Then, the first electronic device 100 sends a response message (that is, the second message), and records the sending time T s2 , and the second electronic device 300 records the receiving time T r2 after receiving the response message.
  • the time difference between T r2 and T s2 is t.
  • the time difference from the generation of the first message to the reception of the second message by the second electronic device 300 is T ro1 . It takes time T re2 for the second electronic device 300 to process the response message.
  • the second electronic device 300 sends the last message (that is, the third message), and records the sending time T s3 .
  • the first electronic device 100 receives the third packet, and records the receiving time T r3 .
  • the time difference between T r3 and T s3 is t.
  • the time difference between the first electronic device 100 sending the second message and receiving the third message is T ro2 . Therefore, the following formula (1) can be used to calculate the transmission time t of the message between the two devices, and the distance L between the first electronic device 100 and the second electronic device 300 can be calculated according to formula (2).
  • c is the transmission rate of UWB signal in the medium.
  • c is generally chosen as the speed of light.
  • the ranging request message can also be sent by the first electronic device 100; correspondingly, the response message can also be sent by the second electronic device 300; correspondingly, the last message can also be sent by the first electronic device 100 send.
  • the first electronic device 100 or the second electronic device 300 may calculate L according to formula (1) and formula (2).
  • the distance L between the first electronic device 100 and the second electronic device 300 may also be calculated in other ways, and is not limited to the ways listed above.
  • the direction of the second electronic device 200 can be represented by the direction measured by the first electronic device 100 to the signal emitted by the second electronic device 200 .
  • two angles ⁇ and ⁇ may be used to indicate the direction from which the second electronic device 200 transmits the signal.
  • is the angle between the component of the UWB signal emitted by the second electronic device on the X e O e Y e plane of the first coordinate system and the negative axis of the X e axis, Usually ⁇ [0, ⁇ ].
  • can also be understood as: assuming that the UWB module of the second electronic device forms a vector to the UWB module of the first electronic device, the angle between the component of the vector on the X e O e Y e plane and the negative axis of the X e axis.
  • is the angle between the UWB signal emitted by the second electronic device and the positive axis of the Ze axis of the first coordinate system, usually ⁇ [0, ⁇ ].
  • can also be understood as: assuming that the UWB module of the second electronic device forms a vector to the UWB module of the first electronic device, the angle between the vector and the positive axis of the Z e axis is assumed.
  • the following takes three antennas as an example and combines two types of antenna distribution in the UWB module of the first electronic device - L-shaped and triangular-shaped, to specifically describe the process of solving ⁇ and ⁇ .
  • the UWB module of the first electronic device adopts an L-shaped three-antenna structure, and the first electronic device can determine the angle ⁇ according to the UWB signal received by the antenna 1;
  • the UWB signal received by the antenna 2 determines the included angle ⁇ .
  • L1 and L2 are far smaller than the distance L between the second electronic device and the first electronic device, so the UWB signal can be regarded as parallel when it reaches the UWB module of the first electronic device;
  • the components on the X e O e Y e plane can also be regarded as parallel.
  • the UWB signal is represented by two parallel solid lines, and the components of the UWB signal on the X e O e Y e plane are represented by two parallel dotted lines;
  • the distance between antenna 0 and antenna 1 The distance is L1, and the distance between antenna 0 and antenna 2 is L2;
  • O e M1 is perpendicular to the straight line where M1N1 passes through the point O e
  • O e M2 is perpendicular to the straight line where M2N2 is located through the point O e; among them,
  • N1 is The intersection point of the straight line where the component of the UWB signal is on the X e O e Y e plane and the X e axis
  • N2 is the intersection point of the straight line where the UWB signal is located and the Z e axis.
  • the angle between the UWB signal and the positive axis of the Z e axis is ⁇
  • the angle between the component of the UWB signal on the X e O e Y e plane and the positive axis of the X e axis is ⁇ .
  • both L1 and L2 are ⁇ /2.
  • is the wavelength of the UWB signal.
  • the phases of the same UWB signal measured by antenna 0, antenna 1 and antenna 2 are and The phase difference between antenna 1 and antenna 0 is The phase difference between antenna 2 and antenna 0 is because and have been measured, so can be calculated. Since ⁇ /2 corresponds to the phase difference ⁇ , ⁇ and ⁇ can be calculated according to formula (3) and formula (4) by combining the cosine formula, d1, d2, L1 and L2.
  • the UWB module of the first electronic device adopts a triangular three-antenna structure. Similar to the introduction to (e) in Figure 12, the UWB signal can be regarded as parallel when it reaches the UWB module of the first electronic device; similarly, when the UWB signal reaches the UWB module of the first electronic device, it is The components on the e O e Y e plane can also be regarded as parallel.
  • the UWB signal is represented by two parallel solid lines, and the components of the UWB signal on the X e O e Y e plane are represented by two parallel dotted lines; the distance between antenna 0 and antenna 1 The distance is L1, and the distance between the projections of antenna 0 and antenna 2 on the Z e axis is L2; point N0 is the center point of antenna 1 and antenna 0 on the X e axis.
  • N1 is the straight line where the component of the UWB signal on the X e O e Y e plane is located and the X e axis
  • N2 is the intersection of the straight line where the UWB signal is located and the Z e axis.
  • the angle between the UWB signal and the positive axis of the Z e axis is ⁇
  • the angle between the component of the UWB signal on the X e O e Y e plane and the negative axis of the X e axis is ⁇ .
  • both L1 and L2 are ⁇ /2.
  • is the wavelength of the UWB signal.
  • the calculation formula of ⁇ is the same as the formula (3), and will not be repeated here.
  • first calculate the phase at which the UWB signal emitted by the second electronic device reaches N0 Phase with Arrival Antenna 2 difference, that is
  • the first electronic device can use the formula (7) Calculate the coordinates (x e , y e , z e ) of the second electronic device in the first coordinate system established by the first electronic device, as follows:
  • the distance L between the first electronic device 100 and the second electronic device 300 can be obtained through the communication interaction such as shown in (c) of FIG.
  • the electronic device 100 can determine the origin of the UWB signal according to the received UWB signal. Therefore, the first electronic device 100 can obtain the direction and distance of the second case device 300 relative to the first electronic device 100 , so as to obtain the coordinates of the second electronic device 300 in the first coordinate system.
  • the coordinates of the second electronic device in the first coordinate system can be obtained in real time or periodically coordinate of.
  • the second electronic device does not contain a UWB module, such as a smart phone containing a UWB module, a smart speaker not containing a UWB module, or a smart air conditioner not containing a UWB module, there may be two marking methods at this time.
  • a UWB module such as a smart phone containing a UWB module, a smart speaker not containing a UWB module, or a smart air conditioner not containing a UWB module
  • Marking method 1 as shown in (a) of Figure 13, the smart phone moves to the smart speaker, and the coordinates of the smart phone in the first coordinate system are obtained through the communication of the UWB signal between the smart phone and the first electronic device , marking the coordinates as the coordinates of the smart speaker in the first coordinate system.
  • Marking method 2 As shown in Figure 13(b), first use the smartphone to point to the smart air conditioner at position 1, so that the Y b axis of the second coordinate system is facing the first point on the smart air conditioner (such as the switch button) ).
  • the coordinate 1 of the position 1 in the first coordinate system is acquired through the communication of the UWB signal between the smart phone and the first electronic device.
  • the smart phone also includes an IMU module, and the attitude angle 1 of the smart phone at position 1 is determined through the IMU module. According to the coordinate 1 and the attitude angle 1, the straight line 1 established by the smart phone pointing at the first point of the smart air conditioner at the position 1 can be determined.
  • the coordinate 2 of the position 2 in the first coordinate system is obtained through the communication of the UWB signal between the smart phone and the first electronic device.
  • the straight line 2 established by the smart phone pointing at the second point of the smart air conditioner at the position 2 can be determined. Calculate the coordinates of the intersection of straight line 1 and straight line 2, that is, the coordinates of the smart air conditioner in the first coordinate system.
  • a smart speaker or a smart air conditioner is only a schematic example.
  • a smart speaker is used to represent a second electronic device that is easily touched by a mobile device such as a smart phone held by the user.
  • a smart air conditioner is used to represent a second electronic device that is not easily The second electronic device touched by the mobile device of the smartphone.
  • the smart phone that includes the UWB module can be used to mark the smart TV multiple times.
  • the smart phone moves to point A0 of the smart TV to mark the position, and the first electronic device obtains the coordinates of the lower left corner contour point of the smart TV.
  • the first electronic device can obtain the coordinates of multiple contour points (for example, the three contour points of the lower left corner, the upper left corner, and the lower right corner, etc.) of the smart TV.
  • the first electronic device can obtain the coordinates of the four corner contour points. If A 0 , A 1 , A 2 and A 3 are marked, the first electronic device can obtain the coordinates of the four corner contour points. If A 0 , A 1 and A 2 are marked, the first electronic device can obtain the coordinates of the three corner contour points. If A 0 and A 2 are marked, the first electronic device can obtain the coordinates of the two corner contour points.
  • the present application does not limit which corner contour points are selected among the four corner contour points, as long as the contour range of the smart TV can be finally acquired.
  • the above outline range may refer to the outline range of the display area of the smart TV.
  • the above display area may include or not include the frame of the display screen of the smart TV.
  • the smart phone can move to more than three different positions of the display area of the smart TV, and when moving to a position of the display area of the smart TV, based on the user's input, the coordinates of the smart phone at this time are marked as the coordinates of the smart TV.
  • the coordinates of a position in the display area in this way, the coordinates of more than three different positions in the display area of the smart TV can be marked.
  • the coordinates of a position in the front area of the smart TV can be marked. In the process of marking three or more different positions of the display area of the smart TV, it is not required that the pointing, orientation, etc. No limit.
  • the three or more positions of the display area of the smart TV may be more than three positions (for example, 1/2 position , 1/3, etc.), or more than three positions in the center of the display area of the smart TV.
  • the second electronic device containing the UWB module can not only mark the second electronic device not containing the UWB module, but can also mark the space area. For example, mark the extent of a three-dimensional space region. Let's take a smartphone containing a UWB module as an example.
  • the smartphones are respectively placed at four positions A, B, C, and D.
  • the first electronic device 100 respectively acquires D The coordinates of the four positions in the first coordinate system and The plumb line passing through position A The plumb line passing through position B The plumb line passing through position C and a plumb line passing through position D form a three-dimensional area.
  • z e may be a preset value, or the height of the room or the area.
  • the smart phone is respectively placed at the eight vertex positions of the three-dimensional space area.
  • the first electronic device 100 respectively obtains the eight The coordinates in the coordinate system, so that the coordinate range of the three-dimensional space area can be obtained.
  • the three-dimensional space area is a room, that is, the coordinate range of the room in the first coordinate system is acquired.
  • the above is only an example of the position of the vertex, and the actual area can be determined according to the position where the smart phone is placed.
  • the smart phone may not be placed at the vertex, so that the determined area is an area smaller than the entire area of the room.
  • the conversion of coordinates in different coordinate systems can be performed in the form of vectors.
  • the distance between two points is the same in different coordinate systems, but the direction representation of the vector formed by the two points may be different in different coordinate systems.
  • the conversion can be carried out in the form of vectors.
  • the way to convert the vector The distance (both L) in the first coordinate system and the second coordinate system is the same, but the vector the direction in the first coordinate system, and the vector The directions represented by the second coordinate system are different.
  • the vector By obtaining the relative direction change between the first coordinate system and the second coordinate system, in the known vector Using the direction represented by the first coordinate system, the vector can be obtained The direction represented by the second coordinate system; combined with the coordinates of O e point, O b point in the first coordinate system, and the coordinates of O b point in the second coordinate system, can obtain the O e point in the second coordinate system Coordinates in the coordinate system.
  • the relative direction change of different coordinate systems can be changed by the pitch angle between the coordinate systems.
  • Azimuth (yaw) ⁇ and roll angle (roll) ⁇ are expressed.
  • the azimuth angle may also be called a yaw angle or a heading angle.
  • the coordinate origin O e of the UWB base station is moved in parallel to the coordinate origin O b of the second coordinate system.
  • the first coordinate system also moves accordingly. Definitions of the pitch angle, azimuth angle and roll angle are well known to those skilled in the art, and will not be repeated here.
  • Fig. 15 shows the pitch angle of the second coordinate system relative to the first coordinate system Azimuth and roll angle
  • the coordinate origin O b of the second coordinate system coincides with the coordinate origin O e of the first coordinate system after the parallel movement
  • the three axes of the second coordinate system are the X b axis, the Y b axis and the Z b axis
  • the first coordinate system's The three axes are X e axis, Y e axis and Z e axis.
  • O e Y b ' (that is, O b Y b ') is the projection of the Y b axis on the X e O e Y e plane of the first coordinate system.
  • O e Z b ' ie O b Z b '
  • the pitch angle of the second coordinate system relative to the first coordinate system The angle between the Y b axis of the second coordinate system and the X e O e Y e plane of the first coordinate system. That is, the angle between O b Y b ' and the Y b axis.
  • O b Y b on the Z e axis When the component of O b Y b on the Z e axis is located on the positive axis of the Z e axis, is positive; when the component of O b Y b on the Z e axis is located on the negative axis of the Z e axis, is negative.
  • the azimuth of the second coordinate system relative to the first coordinate system The angle between the projection of the Y b axis of the second coordinate system on the X e O e Y e plane of the first coordinate system and the Y e axis of the first coordinate system. That is, the angle between O b Y b ' and the Y e axis.
  • O b Y b ' on the X e axis is located on the positive axis of the X e axis, is positive; when the component of O b Y b ' on the X e axis is located on the negative axis of the X e axis, is negative.
  • the roll angle of the second coordinate system relative to the first coordinate system The angle between the Z b axis of the second coordinate system and the Y b O e Z e plane. That is, the angle between O b Z b ' and the Z b axis.
  • the component of the projection of the positive axis of the Z b axis on the Y b O e Z e plane on the X b axis is located on the positive axis of the X b axis, is positive; when the component of the projection of the positive axis of the Z b axis on the Y b O e Z e plane on the X b axis is located on the negative axis of the X b axis, is negative.
  • the component on the X b axis is located on the positive axis of the X b axis, is positive; when the projection of O b Z b 'on the X b O b Y b plane, the component on the X b axis is located on the negative axis of the X b axis, is negative.
  • Fig. 16 shows the pitch angle of the third coordinate system relative to the first coordinate system Azimuth and roll angle
  • the coordinate origin O t of the third coordinate system coincides with the coordinate origin O e of the first coordinate system after the parallel movement
  • the three axes of the third coordinate system are the X t axis, the Y t axis and the Z t axis
  • the three axes of the first coordinate system are X e axis, Y e axis and Z e axis.
  • O e Y t ' (that is, O t Y t ') is the projection of the Y t axis on the X e O e Y e plane of the first coordinate system.
  • O e Z t ' that is, O t Z t '
  • O t Z t ' is the projection of the Z t axis on the Y t O e Z e plane.
  • the pitch angle of the third coordinate system relative to the first coordinate system The angle between the Y t axis of the third coordinate system and the X e O e Y e plane of the first coordinate system. That is, the angle between O e Y t ' (that is, O t Y t ') and the Y t axis.
  • the azimuth of the third coordinate system relative to the first coordinate system The angle between the projection of the Y t axis of the third coordinate system on the X e O e Y e plane of the first coordinate system and the Y e axis of the first coordinate system. That is, the angle between O e Y t ' (that is, O t Y t ') and the Y e axis.
  • the roll angle of the third coordinate system relative to the first coordinate system The angle between the Z t axis of the third coordinate system and the Y t O e Z e plane. That is, the angle between O t Z t ' and the Z t axis.
  • the component of the projection of the positive axis of the Z t axis on the Y t O e Z e plane on the X t axis is located on the positive axis of the X t axis, is positive; when the component of the projection of the positive axis of the Z t axis on the Y t O e Z e plane on the X t axis is located on the negative axis of the X t axis, is negative.
  • the component on the X t axis is located on the positive axis of the X t axis, is positive; when the projection of O t Z t 'on the X t O t Y t plane, the component on the X t axis is located on the negative axis of the X t axis, is negative.
  • the direction change of the third coordinate system relative to the first coordinate system can use the attitude matrix to express.
  • attitude matrix The above formula (8) is the prior art, and those skilled in the art can obtain it from the prior art.
  • the first chapter 1.2.1 of the book “Inertial Navigation” (Beijing: Science Press, ISBN 7-03-016428-8, edited by Qin Yongyuan, first edition in May 2006, first printing in May 2006) pose matrix.
  • the second electronic device may include an IMU module.
  • the IMU module of the second electronic device is calibrated first. That is, the coordinate system based on the pitch angle, azimuth angle and roll angle output by the IMU module of the second electronic device is calibrated to the first coordinate system, or the IMU module output by the second electronic device calibrated to In this way, following the movement of the second electronic device, the pitch angle, azimuth angle and roll angle output by the IMU module of the second electronic device are the pitch angle, azimuth angle and roll angle of the second coordinate system relative to the first coordinate system. roll angle; or, the output of the IMU module of the second electronic device After transposition, the direction change of the second coordinate system relative to the first coordinate system can be reflected.
  • the second coordinate system of the second electronic device may be parallel to the first coordinate system (for example, the X b axis is parallel to the X e axis, the Y b axis is parallel to the Y e axis, and the Z b axis is parallel to the Z e axis. ), and the corresponding coordinate axes of the two coordinate systems have the same positive direction (for example, the positive direction of the X b axis is the same as the positive direction of the X e axis, the positive direction of the Y b axis is the same as the positive direction of the Y e axis, and the positive direction of the Z b axis is the same as that of the Y e axis.
  • Z e axis positive direction is the same)
  • the pitch angle, azimuth angle and roll angle output by the IMU module of the second electronic device at this time are all set to 0.
  • the second coordinate system of the second electronic device can be parallel to the first coordinate system, and the positive directions of each axis of the two coordinate systems are the same.
  • the millimeter wave radar module 160 of the first electronic device 100 is used to implement the millimeter wave radar function.
  • the multiple antennas in the millimeter-wave radar have distance differences in the lateral direction (for example, horizontal direction) and/or longitudinal direction (for example, vertical direction), and the distance difference between the antennas can be used to establish the coordinate system of the millimeter-wave radar ( fourth coordinate system).
  • the millimeter wave radar module 160 includes three transmitting antennas and four receiving antennas. Exemplarily, as shown in FIG. 17 , three transmitting antennas and four receiving antennas are located on the same longitudinal plane (for example, a vertical plane). The three transmitting antennas present a triangular distribution on the longitudinal plane. Wherein, the transmitting antenna 0 and the transmitting antenna 2 are located on the same horizontal plane; the four receiving antennas are located on the same horizontal line (for example, a horizontal line).
  • the receiving antenna 0 for example, an end point on one side
  • take the line connecting the receiving antenna 0 and the receiving antenna 1 as the X of the fourth coordinate system m axis, and the direction of receiving antenna 1 pointing to receiving antenna 0 is the positive direction of the X m axis
  • the line passing through the origin O m and perpendicular to the X m axis is the Z m axis of the fourth coordinate system
  • the direction pointing to the zenith is The positive direction of the Z m axis; combined with the rule of the right-hand rectangular coordinate system, the Y m axis and the positive direction of the Y m axis of the fourth coordinate system are determined.
  • prompt information may be marked on the outer surface of the first electronic device 100 for prompting the correct installation method or correct placement method, so that the three transmitting antennas and the four antennas of the millimeter-wave radar module 160 in the first electronic device 100 The receiving antennas are located on the same longitudinal plane.
  • the names of the three axes in the fourth coordinate system and the positive direction of the three axes can also adopt other definitions, which will not be repeated here.
  • the embodiment of the present application is introduced by taking the X m axis, the Y m axis, and the Z m axis in the fourth coordinate system shown in FIG. 17 as an example.
  • the point on the receiving antenna 0 is used as the origin of the fourth coordinate system above, which is only exemplary.
  • a point on other antennas may also be the origin of the fourth coordinate system.
  • the fourth coordinate system may be established in advance. It is only necessary for the installer to install the first electronic device 100 as required. For example, before the first electronic device 100 leaves the factory, it has already been established, and the related information of the fourth coordinate system is stored locally or in the server. When the first electronic device 100 is started, or when the first electronic device 100 receives a specific trigger, the first electronic device 100 calls the relevant information of the fourth coordinate system from the local or the server.
  • the server in this application may be the home central device 200 or a cloud server.
  • the outer surface of the first electronic device 100 may only have one marked prompt information, and the marked prompt information indicates the installation of the first electronic device.
  • the transmitting antenna and the receiving antenna of the millimeter wave radar module, and the antenna of the UWB module all meet the preset requirements.
  • the transmitting antenna of the millimeter wave radar module 160 transmits a signal, and the signal is received by the receiving antenna of the millimeter wave radar module 160 after being reflected by a reflection point.
  • the frequency of the LFMCW millimeter-wave radar transmission signal increases linearly with time, and this type of signal is called a chirp signal.
  • the millimeter-wave radar module 160 receives the Chirp signal through the receiving antenna, and the received signal and the local oscillator signal are mixed by a mixer to output a difference frequency signal. The number is converted into a digital difference frequency signal.
  • FIG. 18 shows a schematic diagram of the principle of determining the distance and radial velocity of the reflection point by the millimeter-wave radar provided in the embodiment of the present application.
  • the solid line is the transmission signal of the millimeter wave radar module 160
  • the dotted line is the reception signal of the millimeter wave radar module 160 .
  • a frequency sweep period Tc of the Chirp signal is usually on the order of microseconds (us), and the modulation frequency S 0 (ie, the frequency change rate) reaches an order of magnitude of 10 12 (unit Hz/s).
  • a Chirp signal within a frequency sweep period Tc is referred to as a Chirp signal. It is generally considered that the spatial position of the target does not change within a frequency sweep period Tc.
  • the transmitting antenna transmits a Chirp signal.
  • the receiving antenna receives the signal reflected from the reflection point, and the frequency difference between the received signal and the transmitted signal is ⁇ *S 0 .
  • 2d/c
  • d is the distance between the reflection point and the millimeter-wave radar module (also can be regarded as the first electronic device)
  • c is the transmission rate of the Chirp signal in the air
  • the speed of light is generally selected. Therefore, the relationship between the distance d of the reflection point and the frequency f 0 of the beat frequency signal is shown in formula (9).
  • the time domain signal can be converted into a frequency domain signal, and the sine wave in the time domain correspondingly generates a peak value in the frequency domain, and the peak value corresponds to the frequency f 0 of the difference frequency signal.
  • the transmission signal of the millimeter-wave radar module is reflected back as three signals by three reflection points.
  • the millimeter-wave radar module receives 3 received signals, and obtains 3 corresponding difference frequency signals respectively.
  • Performing fast Fourier transformation (FFT) on the three difference frequency signals to obtain a range (range) curve (called range FFT (range FFT)
  • range FFT range FFT
  • each peak indicates that there is a reflection point at the corresponding position.
  • the frequency of the beat frequency signal can be obtained by calculating the frequency corresponding to the peak value.
  • the distance of the reflection point can be obtained by detecting the frequency of the beat frequency signal.
  • doppler FFT Doppler FFT
  • the millimeter-wave radar module receives the Chirp signal, mixes the transmitted signal and the received signal to obtain a difference frequency signal after frequency mixing, power amplification and filtering, and the difference frequency signal is converted into a digital difference frequency signal through analog-to-digital conversion.
  • the distance and radial velocity of the reflection point can be obtained by detecting the digital difference frequency signal.
  • one frame of data of the millimeter-wave radar module is the data within one radar scanning period, and one radar scanning period includes M frequency scanning periods Tc. There are N sampling points of the beat frequency signal in the period Tc.
  • the frequency of the beat frequency signal can be obtained by performing a one-dimensional range FFT on the digital beat frequency signal within a frequency sweep period Tc. This allows the distance to the reflection point to be calculated based on the beat signal frequency.
  • the number of points of the range FFT is the number of sampling points N of the difference frequency signal corresponding to the Chirp signal.
  • the phase difference of multiple digital difference frequency signals can be obtained by performing one-dimensional doppler FFT on the digital difference frequency signals of the same reflection point in multiple adjacent frequency sweep periods Tc. In this way, the radial velocity of the reflection point can be calculated according to the phase difference of multiple beat frequency signals.
  • the number of doppler FFT points is the number of sweep cycles included in one frame of data.
  • the joint operation of range FFT and doppler FFT can be considered as a two-dimensional FFT of one frame of data.
  • one frame of data processed by two-dimensional FFT is referred to as one frame of two-dimensional FFT data.
  • FIG. 18 is a schematic diagram of a frame of two-dimensional FFT data acquired by the millimeter wave radar module. As shown in (e) of FIG. 18 , there are multiple peaks in a frame of two-dimensional FFT data, and each peak represents a reflection point at a corresponding location. The value of a reflection point in the distance dimension or velocity dimension is the distance of the reflection point or the radial velocity of the reflection point.
  • the signal direction of the reflected signal includes a horizontal direction (for example, a horizontal direction) and a vertical direction (for example, a vertical direction).
  • the azimuth angle can be used to indicate the horizontal direction of the signal
  • the elevation angle can be used to indicate the vertical direction of the signal.
  • the azimuth angle and the elevation angle can be calculated through the phase difference between the received signals of the multiple receiving antennas of the millimeter wave radar module.
  • FIG. 19 shows a schematic diagram of the principle of the millimeter wave radar provided in the embodiment of the present application for determining the signal direction of the reflected signal at the reflection point.
  • the millimeter wave radar module includes four receiving antennas. After the signal transmitted by the same transmitting antenna is reflected by the reflection point, the phase difference between the reflected signals arriving at any two different receiving antennas can be used by the millimeter-wave radar module to measure the azimuth of the reflected signal.
  • the millimeter-wave radar module determines the lateral direction of the reflected signal according to the phase difference between the signals arriving at two adjacent receiving antennas, and can refer to the calculation method of the angle ⁇ in (e) of FIG. 12 . I won't repeat them here.
  • the accuracy of measuring the incoming direction of signals may be improved by increasing the number of antennas.
  • the antenna of the millimeter wave radar module adopts the distribution structure shown in (a) of FIG. 8 .
  • the millimeter-wave radar module transmits signals, it can switch the transmitting antenna by changing the relay switch, so as to realize the separation of signals from different transmitting antennas by the receiving antenna.
  • the distance between the transmitting antenna 0 and the transmitting antenna 2 is 2 ⁇ L ; where ⁇ L is the wavelength of the millimeter wave.
  • the signal transmitted by the transmitting antenna 2 and reaching the receiving antenna 0 can be equivalent to the receiving signal of the receiving antenna 4; the signal transmitted by the transmitting antenna 2 reaching the receiving antenna 1 can be equivalent to the receiving signal of the receiving antenna 5;
  • the signal transmitted by the transmitting signal reaching the receiving antenna 2 can be equivalent to the receiving signal of the receiving antenna 6 ;
  • the signal transmitted by the transmitting antenna 2 reaching the receiving antenna 3 can be equivalent to the receiving signal of the receiving antenna 7 .
  • the receiving antenna 4 , the receiving antenna 5 , the receiving antenna 6 and the receiving antenna 7 in the one-transmit-eight-receive schematic diagram in (b) of FIG. 19 are equivalent virtual receiving antennas.
  • the antenna of the millimeter wave radar module adopts the structure shown in (a) of FIG. 8 .
  • the signals transmitted by the transmitting antenna 0 and received by the receiving antenna 2 and the receiving antenna 3 can be combined; the transmitting antenna 2 transmits and the signals received by the receiving antenna 0 and the receiving antenna 1; Antenna 1 transmits, receives signals received by antenna 0, receiving antenna 1, receiving antenna 2, and receiving antenna 3; compares the signals with phase differences in the longitudinal dimension, and calculates the longitudinal direction of the reflected signal (for example, through the pitch angle to reveal ). For example, it is possible to compare the signal received by transmitting antenna 0 and receiving antenna 2 with the signal transmitted and received by transmitting antenna 1 and receiving antenna 0, obtain the phase difference between them, and calculate the pitch angle based on the phase difference. For the specific steps of calculating the pitch angle according to the phase difference of the received signals, refer to the calculation method of the angle ⁇ in (f) of FIG. 12 ; no more details are given here.
  • the first electronic device may use formula (7) to calculate the fourth coordinate of the reflection point established by the first electronic device according to the distance between the reflection point and the millimeter-wave radar, and the signal direction (azimuth and elevation angle) of the reflection signal coordinates in the system.
  • the millimeter-wave radar will detect a human body as multiple reflection points within the detectable range.
  • the point cloud data of the reflection points can be clustered, that is, multiple detected reflection points are aggregated into one class, and the cluster is determined as an object or a human body.
  • FIG. 20 is a schematic diagram of the effect of clustering processing on point cloud data.
  • Each point in (a) of Figure 20 represents a reflection point detected by the millimeter-wave radar module, and the three closed curves represent the clustered classes, and the points outside the three closed curves indicate that they have not been converged into any category reflection points in .
  • the millimeter-wave radar module uses a clustering algorithm to cluster multiple reflection points into an object or human body (user), and the object or human body (user) can be calculated according to the coordinates of the clustered multiple reflection points Coordinates in the fourth coordinate system.
  • the coordinates of the object or human body (user) in the fourth coordinate system may be the coordinates of the center of gravity of the object or human body in the fourth coordinate system.
  • the smaller point in (b) of Figure 20 represents the reflection point detected by the millimeter-wave radar, and the largest point is the human body (user) in the fourth coordinate system coordinate point.
  • the coordinates of the human body (user) in the fourth coordinate system are marked as
  • the height of the object or the height of the human body (user) may also be calculated according to the height H of the first electronic device from the ground and the coordinates of the object or human body (user) in the fourth coordinate system.
  • formula (10) can be used to calculate the height h m of a human body (user), as follows:
  • FIG. 21 shows a flow chart of a method for the first electronic device to determine the user's coordinates in the fourth coordinate system provided by the embodiment of the present application.
  • the method may include:
  • the millimeter wave radar module receives reflected signals.
  • the millimeter wave radar module performs two-dimensional fast Fourier transform on the digital difference frequency signal.
  • the receiving antenna of the millimeter-wave radar module receives the reflected signal, obtains the digital difference frequency signal according to the reflected signal, performs two-dimensional fast Fourier transform on the digital difference frequency signal, and obtains two-dimensional FFT data.
  • the millimeter-wave radar module uses a target detection algorithm to obtain the distance between the reflection point and the millimeter-wave radar and the radial velocity.
  • the millimeter-wave radar can use the target detection algorithm to detect a frame of two-dimensional FFT data to obtain the distance and radial velocity of the target.
  • the signal received by the millimeter-wave radar includes target reflection signals, background noise, and clutter interference.
  • the signal received by the millimeter-wave radar includes target reflection signals, background noise, and clutter interference.
  • the test environment of a frame of two-dimensional FFT data shown in (e) of Figure 18 there are moving human bodies at distances of 1m, 2m and 4m from the millimeter-wave radar, and it can be seen from (e) of Figure 18 , in addition to the above three peaks at 1m, 2m and 4m from the millimeter-wave radar, there are other large peaks caused by reflected signals (background noise and clutter interference, etc.). If the reflection signal caused by background noise and clutter interference is detected as a reflection point, a false alarm will be generated.
  • a constant false-alarm rate (CFAR) target detection algorithm can be used to obtain the distance and radial velocity of the reflection point, so as to maintain a constant false alarm rate and improve the target detection accuracy.
  • CFAR constant false-alarm rate
  • the millimeter-wave radar module can use the target detection algorithm in the prior art as needed to obtain the distance and radial velocity of the reflection point according to the two-dimensional FFT data. limited. The specific implementation method of the target detection algorithm can be obtained from the prior art, and will not be repeated here.
  • the millimeter wave radar module determines the signal direction of the reflected signal.
  • a phase difference method such as a phase difference method, a sum-difference beam method, and a music method may be used to estimate the azimuth angle and the elevation angle.
  • Algorithms such as the phase difference method, the sum-difference beam method, and the music method can be obtained from the prior art, and will not be repeated here.
  • the millimeter wave radar module determines the coordinates of the reflection point in the fourth coordinate system.
  • the millimeter-wave radar determines the coordinates of the reflection point in the fourth coordinate system according to the distance between the reflection point and the millimeter-wave radar and the signal of the reflection point.
  • the millimeter wave radar module determines the coordinates of the smart device or the user in the fourth coordinate system.
  • a clustering algorithm is used to cluster the detected reflection points, and multiple reflection points are clustered into smart devices or users.
  • Clustering algorithms include: partition-based clustering methods, density-based partition methods, model-based partition methods, network-based partition methods, etc.
  • common clustering algorithms include density-based spatial clustering of applications with noise (DBSCAN), K-Means algorithm, Birch algorithm, etc. Any clustering algorithm may be used for clustering processing, which is not limited in this embodiment of the present application.
  • the coordinates of the smart device or the user in the fourth coordinate system can be calculated according to the average coordinates of multiple reflection points of the smart device or the user after clustering.
  • the millimeter wave radar module tracks smart devices or users.
  • the millimeter wave radar module performs target detection on each frame of data received. Furthermore, after using the target detection algorithm and clustering algorithm to detect the object (smart device) or human body in each frame of data, the detection result in the current frame can also be combined with the detection result in the previous frame through the association algorithm.
  • One matching to realize the tracking of the object or human body (that is, to obtain the change of the coordinate value of the object or human body over time).
  • a tracking algorithm front and back frame correlation algorithm
  • the millimeter wave radar module can determine whether the target is stationary or moving according to the target tracking result.
  • the millimeter wave radar module can also be used to detect the physiological characteristics (such as breathing rate, heartbeat rate) of the target in a stationary state. If it is determined that the physiological characteristics of the target meet the set conditions (for example, the breathing rate is within a preset range, and the heart rate is within a preset range), then it is determined that the target or the clustered target is a human body (user); and the user is tracked .
  • the millimeter wave radar module detects the user's physiological characteristics, identity category and human body posture, etc.
  • the millimeter-wave radar module detects information such as the user's physiological characteristics, identity category, and human body posture in conjunction with the accompanying drawings.
  • the millimeter wave radar module detects the user's physiological characteristics
  • the user's physiological characteristics include the user's breathing rate, heart rate, and the like.
  • the slight displacement of the user's body caused by breathing and heartbeat can cause the phase change of the reflected signal of the millimeter-wave radar module.
  • the breathing frequency and heartbeat frequency of the user can be obtained by detecting the phase change of the reflected signal of the millimeter-wave radar module when the user is stationary.
  • the method for the millimeter-wave radar module to obtain the user's breathing frequency and heartbeat frequency may include:
  • Range FFT is performed on each frame of data of the millimeter-wave radar, and the frequency of the difference frequency signal can be obtained according to the result of the Range FFT, that is, the phase of the difference frequency signal can be obtained.
  • the millimeter-wave radar tracks the target of the user, and can obtain the change of the user's position over time, that is, the user's position at a certain moment can be obtained.
  • the phase extraction is performed on the Range FFT result at the user's current position, that is, the phase information of the difference frequency signal is extracted .
  • the radar scanning period is 100ms, that is to say, the period of one frame of data is 100ms.
  • the phase information of the beat frequency signal is extracted once for each frame of data.
  • phase unwrapping is performed by subtracting 2 ⁇ from the phase value; if the phase value calculated in S2201 is less than - ⁇ , phase unwrapping is performed by adding 2 ⁇ to the phase value.
  • phase difference operation is performed on the unwrapped phase by subtracting successive phase values, resulting in a phase difference ⁇ v; this enhances the heartbeat signal and removes any phase drift.
  • ⁇ v(k) v(k)-v(k-1).
  • the phase values are filtered with a band-pass filter for discrimination according to the heart rate and respiratory rate, respectively. For example, set the passband range of the bandpass filter to 0.8Hz-4Hz, filter the phase value, and detect heartbeat; set the passband range of the bandpass filter to 0.1Hz-0.6Hz, and filter the phase value Values are filtered to detect respiration.
  • the millimeter wave radar module detects the identity category of the user
  • the millimeter wave radar module can determine the identity category of the user according to the calculated height h m (of the user).
  • User identity categories include adult, child, etc.
  • the millimeter-wave radar module calculates the height of the user detected in each frame of data, denoted as h m (t) represents the height value at time t.
  • the average value H m of the user's height can also be calculated according to h m (t), and the identity category of the user can be determined according to H m .
  • the corresponding relationship between the user's height and the user's identity category is shown in Table 1.
  • the millimeter wave radar module detects the user's human body posture
  • the millimeter wave radar module can determine the user's body posture according to the calculated (user's) height h m changes.
  • Human posture includes standing, sitting, lying down, etc.
  • the millimeter-wave radar module performs target tracking on the user. If it is determined that the height of the user has changed, and the value of the height change is greater than the preset height difference threshold, and the maintenance time after the height change is longer than the preset time length, then It is determined that the user's body posture changes. For example, as shown in (a) of FIG. 23 , the millimeter-wave radar module detects that the user's height changes from 175 cm to 80 cm, and keeps at 80 cm for a period of time, then determines that the user changes from standing to lying down. The millimeter-wave radar module detects that the height of the user changes from 175 cm to 120 cm, and keeps at 120 cm for a period of time, then it is determined that the user changes from standing to sitting.
  • the millimeter wave radar module determines the user's body posture according to the height difference ⁇ h between the user's current height and the standing height.
  • ⁇ h(t) can be calculated by formula (11).
  • ⁇ h(t) represents the height difference between the height of the user at time t and the height of the user standing, as follows:
  • the millimeter-wave radar module determines that ⁇ h at multiple consecutive moments (greater than a preset duration) satisfies the preset altitude difference threshold, it determines that the user's body posture changes.
  • the corresponding relationship between height difference ⁇ h and human body posture is shown in Table 2.
  • the millimeter wave radar can also identify the user's fall behavior by monitoring the change of the user's height.
  • (b) of FIG. 23 shows the height change of the user falling down and lying down normally. As shown in (b) of Figure 23, compared to lying down normally, the height of the user changes faster when falling (that is, the height difference within the same duration is large), and the height after the fall is lower.
  • the millimeter-wave radar module determines that the height difference ⁇ h between the user's current height and the standing height meets the preset fall height threshold, and the time period ⁇ t for the user to change from the standing height to the current height meets the preset If the fall time threshold is exceeded, it is determined that the user has fallen.
  • the corresponding relationship between ⁇ h, ⁇ t and the user's fall is shown in Table 3.
  • the first electronic device 100 establishes the first coordinate system and the fourth coordinate system, in order to facilitate coordination, it is necessary to convert the coordinate values in the first coordinate system and the coordinate values in the fourth coordinate system. For example, transform the coordinates of the second electronic device 300 in the first coordinate system into the coordinates of the second electronic device 300 in the fourth coordinate system, or transform the coordinates of the user in the fourth coordinate system into the coordinates of the user in the first coordinate system. Coordinates in the coordinate system. Therefore, the conversion between the first coordinate system and the fourth coordinate system is involved.
  • the antenna distribution of both the UWB module 150 and the millimeter wave radar module 160 of the first electronic device 100 can be set as shown in FIG. 24 .
  • the antenna 0, the antenna 1 and the antenna 2 present an L-shaped distribution on a longitudinal plane (for example, a vertical plane).
  • Transmitting antenna 0, transmitting antenna 1, and transmitting antenna 2 present a triangular distribution on a longitudinal plane (for example, a vertical plane), and receiving antenna 0, receiving antenna 1, receiving antenna 2, and receiving antenna 3 are distributed in a longitudinal plane (for example, a vertical plane). plane) on the same horizontal line, and three transmitting antennas and four receiving antennas are arranged on the same longitudinal plane.
  • the origin O e of the first coordinate system is set at the end point of antenna 0 (which can also be replaced by a center point, etc.); the connection line between antenna 0 and antenna 1 is used as the X e axis, and the direction that antenna 1 points to antenna 0 is the positive direction of X e axis.
  • a straight line perpendicular to the X e axis is the Z e axis of the first coordinate system, and the antenna 2 is located in the positive direction of the Z e axis.
  • the Y e axis and the positive direction of the Y e axis of the first coordinate system are determined.
  • the direction pointing to the receiving antenna 0 is the positive direction of the X m axis;
  • the longitudinal line passing through the origin O m (for example, a plumb line) is the Z m axis of the fourth coordinate system, and the direction pointing to the zenith is the positive direction of the Z m axis ;
  • combined with the rule of the right-hand rectangular coordinate system determine the Y m axis and the positive direction of the Y m axis of the fourth coordinate system.
  • the X e axis is parallel to the X m axis
  • the Y e axis is parallel to the Y m axis
  • the Z e axis is parallel to the Z m axis.
  • the fourth coordinate system and the first coordinate system can be transformed into each other only by translation.
  • the first coordinate system moves along the direction parallel to the X e axis for a distance dx, then moves along a direction parallel to the Y e axis for a distance dy, and then moves along a direction parallel to the Z e axis for a distance dz coincides with the fourth coordinate system.
  • the relative positions of the first coordinate system and the fourth coordinate system of the first electronic device 100 may be set in other manners.
  • a similar method can be used to convert the fourth coordinate system and the first coordinate system, which will not be repeated here.
  • each room or each area is provided with one first electronic device.
  • the first electronic device acquires information about the devices in the room or in the area by marking the second electronic device that does not contain the UWB module with the second electronic device that contains the UWB module, and communicating and interacting with the second electronic device that contains the UWB module. Position information of each setting area.
  • the first electronic device obtains the location information of the user in the room or the area through the millimeter-wave radar module; and can further obtain information such as the user's physiological characteristics, identity category, and human body posture.
  • the first electronic device controls or notifies the second electronic device to perform a preset operation according to the received information. This example is for a single room or area.
  • a hub device may be set.
  • Devices such as the central device, the first electronic device, and the second electronic device form a whole-house system in a wired or wireless manner.
  • the first electronic device acquires information about the devices in the room or in the area by marking the second electronic device that does not contain the UWB module with the second electronic device that contains the UWB module, and communicating and interacting with the second electronic device that contains the UWB module. Position information of each setting area.
  • the first electronic device obtains the location information of the user in the room or the area through the millimeter-wave radar module, and obtains information such as the user's physiological characteristics, identity category, and human body posture.
  • the first electronic device sends the location information of each device and each set area, and at least one item of information such as the user's location, physiological characteristics, identity category, and human body posture, to the central device through wired or wireless means.
  • the central device controls or notifies the second electronic device to perform a preset operation according to the received information.
  • the hub device may be integrated with a specific first electronic device (for example, the first electronic device in the living room) into one device.
  • a fifth coordinate system (also known as the whole house coordinate system) needs to be established.
  • the user may input the floor plan of the whole house, the installation location of the central device, the location of the installation location of the central device in the floor plan of the whole house, the height information of the whole house, etc. into the central device.
  • the floor plan of the whole house is the planar space layout of the house, which is a picture describing the use function, relative position and size of each independent space in the whole house.
  • the central device establishes the fifth coordinate system according to the floor plan of the whole house.
  • the projection point of the southernmost point of the whole house type projected on the horizontal plane is the first projection point, and a first straight line parallel to the east-west direction is drawn through the first projection point. line; the projection point of the westernmost point of the whole house on the horizontal plane is the second projection point, and a second straight line parallel to the north-south direction is drawn through the second projection point; the intersection point of the first straight line and the second straight line is taken as the fifth coordinate The origin Oh of the system.
  • the first straight line serves as the X h axis, and the due east direction is the positive direction of the X h axis.
  • the second straight line serves as the Y h axis, and the true north direction is the positive direction of the Y h axis.
  • the Z h axis is perpendicular to the horizontal plane, and the direction pointing to the sky is the positive direction of the Z h axis.
  • the names of the three axes in the fifth coordinate system and the positive directions of the three axes can also be determined in other ways, which will not be repeated here.
  • the first electronic device includes an IMU module.
  • a central device is installed in the living room, and the central device and the first electronic device in the living room are installed on the wall or the ceiling in parallel.
  • the included angle can be output by the IMU module of the first electronic device, or can be obtained through analysis based on the results output by the IMU module of the first electronic device, or can be calculated by measuring results of instruments such as a level gauge and/or a plumb gauge.
  • the fifth coordinate system 25 shows the included angle ⁇ between the positive direction of the Y g axis and the positive direction of the Y e axis.
  • the conversion between the sixth coordinate system and the fifth coordinate system is well known to those skilled in the art, and will not be repeated here.
  • the three axes of the sixth coordinate system are respectively parallel to the three axes of the fifth coordinate system. In this way, the conversion between the first coordinate system and the fifth coordinate system can be realized.
  • the central device when the central device establishes the fifth coordinate system, the three axes of the fifth coordinate system are respectively parallel to the three axes of the sixth coordinate system, and the fifth coordinate system can also be determined according to the method shown in (a) of Figure 25 The origin Oh of the coordinate system.
  • instruments such as a level and/or a plumb meter or equipment including an IMU module are used to assist, so that the three axes of the first coordinate system established by the first electronic device are respectively parallel to the three axes of the sixth coordinate system. axis. In this way, the three axes of the first coordinate system are respectively parallel to the three axes of the fifth coordinate system, and the conversion between the first coordinate system and the fifth coordinate system is not required.
  • the distance difference between the coordinate origins of the first coordinate system and the fifth coordinate system can be obtained through two coordinate values of the same central device in the first coordinate system and the fifth coordinate system.
  • the hub device can obtain coordinate information of the hub device in the fifth coordinate system.
  • the coordinate information of the central device in the first coordinate system can be obtained in two ways: (i) If the central device includes a UWB module, through the UWB communication between the central device and the first electronic device, the central device can be obtained at Coordinate information in the first coordinate system; (ii) If the central device does not include a UWB module, the second electronic device containing the UWB module can mark the central device to obtain the coordinate information of the central device in the first coordinate system.
  • the distance difference between the coordinate origins of the first coordinate system and the fifth coordinate system can be realized.
  • each room is equipped with a first electronic device in all or some of the rooms, all or some areas are equipped with a first electronic device, and a single room is equipped with one or more second electronic devices. equipment.
  • FIG. 26 shows the overall steps of the automatic control method based on human perception. As shown in (a) of Figure 26, the method may include:
  • the first electronic device establishes the first coordinate system and the fourth coordinate system
  • the second electronic device establishes the second coordinate system
  • the central device establishes the fifth coordinate system; through the first coordinate system, the second coordinate system, and the third coordinate system 1. Conversion from the fourth coordinate system to the fifth coordinate system, obtaining position information of each device, area, and user in the fifth coordinate system.
  • S1 The introduction of S1 is specifically divided into the following steps.
  • the first electronic device establishes the first coordinate system and the fourth coordinate system
  • the second electronic device establishes the second coordinate system
  • the central device establishes the fifth coordinate system.
  • the second electronic device including the UWB module establishes the second coordinate system
  • the second electronic device not including the UWB module establishes the third coordinate system
  • the establishment of the first coordinate system and the fourth coordinate system by the first electronic device the establishment of the second coordinate system by the second electronic device, and the establishment of the fifth coordinate system by the central device, please refer to the above principles, which will not be repeated here.
  • the first electronic device may be calibrated during the first use, so as to reduce or even avoid errors caused by installation.
  • the installation error of the first electronic device may reduce the measurement accuracy of the UWB system.
  • at least one of the first electronic device 1 located in the entrance hallway and the first electronic device 3 located in the living room may have an installation error.
  • the first electronic device 1 determines that the second electronic device is located at position 1
  • the first electronic device 3 determines that the second electronic device is located at position 2.
  • the first electronic device 1 and the first electronic device 3 determine that the electronic devices at positions 1 and 2 are actually the same second electronic device, which indicates that there is an installation error, which will reduce the measurement precision.
  • the first electronic device includes a UWB module and a millimeter-wave radar module, and can perform installation error correction on the UWB module and the millimeter-wave radar module respectively.
  • the antennas in the UWB module 150 and the millimeter wave radar module 160 of the first electronic device 100 are distributed as shown in FIG. 24 . Since the hardware configuration ensures that the relative positions of the UWB module and the millimeter-wave radar in the first electronic device are determined, installation error correction can only be performed on the UWB module or the millimeter-wave radar module. In another implementation manner, installation error correction can be performed on the UWB module and the millimeter-wave radar module of the first electronic device at the same time, and correction accuracy can be improved through multiple corrections.
  • the correction of the UWB module of the first electronic device is taken as an example for introduction. It can be understood that the process of calibrating the millimeter-wave radar module of the first electronic device is similar to the calibrating process of the UWB module of the first electronic device, which will not be repeated here. The following methods are merely exemplary, and do not limit the methods of correction. Other methods of correction are also within the scope of this application.
  • Step 11 Correct the installation error of the reference first electronic device through the central device, and obtain the first correction parameter.
  • the reference first electronic device is one first electronic device among the plurality of first electronic devices.
  • the central device is installed in a living room, the first electronic device in the living room may serve as the reference first electronic device.
  • the first coordinate system of the reference first electronic device is denoted as e1 system.
  • the central device can display a map of the whole house.
  • the hub device may instruct the user to hold a second electronic device including a UWB module and move from a known and easily identifiable location 1 to another known and easily identifiable location 2 according to the first track.
  • the reference first electronic device detects the movement trajectory of the second electronic device (through the UWB module) or the movement trajectory of the user (through the millimeter-wave radar module). Taking the movement trajectory of the second electronic device as an example, if the detected second electronic device There is a deviation between the movement trajectory of the device and the first trajectory.
  • the hub device may instruct the user to hold a second electronic device containing a UWB module to move from position one with known coordinates to position two with known coordinates along a straight line.
  • the first electronic device 1 can acquire the actual movement track of the second electronic device according to the detection of the UWB module.
  • the attitude error rotation matrix W and the position error vector G can be calculated by an algorithm.
  • the algorithm may adopt the ICP algorithm as shown in FIG. 28 .
  • the optimal matching attitude error rotation matrix W and position error vector G can be calculated to minimize the error function.
  • the first correction parameters include the optimal matching attitude error rotation matrix W and position error vector G at this time.
  • the installation error of the first electronic device is corrected based on the reference first electronic device.
  • Step 12 Correct the installation error of the first electronic device by reference to the first electronic device, and obtain a second correction parameter.
  • the user holds the second electronic device including the UWB module and moves in each room of the whole house, and each first electronic device in the whole house locates the second electronic device.
  • each first electronic device in the whole house locates the second electronic device.
  • the user moves in the overlapping area 2701 , as shown in (b) of FIG. 27 , there is a certain deviation in the movement trajectory of the second electronic device acquired by the first electronic device 1 and the first electronic device 3.
  • the first electronic device 1 is the reference first electronic device.
  • the installation errors of the two first electronic devices are corrected according to the moving trajectories of the second electronic devices respectively detected by the two first electronic devices.
  • the correction parameters include an attitude error rotation matrix W and a position error vector G.
  • the first electronic device 1 acquires the moving track of the second electronic device in the first coordinate system (e1 system) established by the first electronic device 1
  • the first electronic device 3 obtains the movement track of the second electronic device under the first coordinate system (e3 system) established by the first electronic device 3 in Indicates the coordinates of the second electronic device in the e1 system detected by the first electronic device 1 at time tn, Indicates the coordinates of the second electronic device detected by the first electronic device 3 in the e3 system at time tn.
  • the user movement trajectories q e1 and q e3 can be converted to the fifth coordinate system through the following formula (13), which are respectively recorded as q e1->h and q e3->h .
  • q e1->h and q e3->h are point clouds that record the user’s movement trajectory
  • the iterative closest point (ICP) algorithm can be used to calculate the difference between the two point clouds q e1->h and q e3->h
  • the attitude error rotation matrix W e3->e1 and the position error vector G e3->e1 make the three-dimensional space error between the q e1->h corrected and the q e3->h two cluster point clouds the smallest.
  • the basic principle of the ICP algorithm is shown in Figure 28.
  • the second correction parameters include the optimal matching attitude error rotation matrix W and position error vector G at this time.
  • the above steps 11 and 12 can be exchanged in order.
  • the above step 11 and step 12 are only an example.
  • all the first electronic devices may be calibrated with the central device without going through the reference first electronic device.
  • each first electronic device can detect the user's movement track.
  • the relevant manner is similar to the processing manner of the movement track of the second electronic device, and will not be repeated here.
  • Step 13 Transform the coordinates of the second electronic device in the first coordinate system or the user's coordinates in the fourth coordinate system calculated by the first electronic device into coordinates in the fifth coordinate system.
  • an attitude error rotation matrix and a position error vector of the reference first electronic device relative to the hub device are acquired.
  • the attitude error rotation matrix and position error vector of the first electronic device 1 relative to the central device are denoted as [W e1->h , G e1->h ].
  • the attitude error rotation matrix and the position error vector of other first electronic devices relative to the reference first electronic device are corrected.
  • the attitude error rotation matrix and position error vector of other first electronic devices relative to the first electronic device 1 are recorded as [W ek->e1 , G ek->e1 ], k ⁇ 2,...,n.
  • the first electronic device 1 as a reference first electronic device as an example.
  • the coordinates of the origin of the first coordinate system of the kth other first electronic equipment except the reference first electronic equipment in the fifth coordinate system are expressed as Select any point in space as point q, and the coordinates of point q in the first coordinate system established by the kth first electronic device are expressed as The coordinates of point q in the fifth coordinate system after installation error correction are expressed as The coordinates of the point q in the first coordinate system established by the k-th first electronic device can be converted to the fifth coordinate system after installation error correction through the formula (12), as follows:
  • the coordinates of the origin of the first coordinate system established by the reference first electronic device in the fifth coordinate system are expressed as The coordinates of point q in the first coordinate system established by the reference first electronic device are expressed as The coordinates of point q in the fifth coordinate system after installation error correction are expressed as The coordinates of point q in the first coordinate system established by the reference first electronic device can be converted to the fifth coordinate system after installation error correction through formula (13), as follows:
  • the coordinates detected by the first electronic device are directly converted to the fifth coordinate system after installation error correction without passing through the reference first electronic device.
  • the attitude error rotation matrix between the user's movement track detected by the first electronic device and the actual user's movement track is denoted as W e->h
  • the position error vector is denoted as G e->h .
  • the coordinates of the origin of the first coordinate system established by the first electronic device in the fifth coordinate system are expressed as
  • the coordinates of point q in the first coordinate system established by the first electronic device are expressed as
  • the coordinates of point q in the fifth coordinate system after installation error correction are expressed as
  • the coordinates of point q in the first coordinate system established by the first electronic device can be converted to the fifth coordinate system after installation error correction by formula (14), as follows:
  • the method of converting the coordinates of the user detected by the first electronic device in the fourth coordinate system to the fifth coordinate system after installation error correction is the same as converting the coordinates of the user detected by the first electronic device in the first coordinate system
  • the method of converting to the fifth coordinate system after installation error correction is similar and will not be repeated here.
  • the UWB module of the first electronic device can be used to locate the second electronic device in the whole house.
  • the first electronic device in each room or area may determine the coordinates of the second electronic device in the room or area in the first coordinate system of the first electronic device.
  • the second electronic device in an overlapping area among the multiple first electronic devices may be positioned.
  • each first electronic device in the whole house transforms the acquired coordinates of one or more second electronic devices in the first coordinate system into the fifth coordinate system, and converts the coordinates of one or more second electronic devices The coordinates of the second electronic device in the fifth coordinate system are sent to the central device.
  • each first electronic device in the whole house sends the acquired coordinates of one or more second electronic devices in the first coordinate system to the central device, and the central device sends the coordinates received from each first electronic device The coordinates of the second electronic device in the first coordinate system are converted to the fifth coordinate system.
  • converting the coordinates of the second electronic device in the first coordinate system to the fifth coordinate system includes: converting the coordinates of the second electronic device in the first coordinate system to the fifth coordinate system after installation error correction.
  • the hub device may store the acquired coordinates of the second electronic device in the fifth coordinate system.
  • the whole house may add or remove the second electronic device, or the position of the second electronic device may change.
  • the central device periodically locates the second electronic device through the first electronic device in each room or area, and updates the coordinates of the second electronic device saved by the central device.
  • the central device detects a new second electronic device in the whole house, it triggers the first electronic device to locate the second electronic device, and updates the coordinates of the second electronic device saved by the central device.
  • the central device stores configuration information of all first electronic devices, second electronic devices, and other devices in the whole house.
  • the second electronic device connects to the central device, and adds corresponding configuration information; the central device determines to add the second electronic device according to the configuration information, and then triggers the first electronic device to locate the second electronic device.
  • the user can manually trigger the first electronic device to locate the second electronic device and update the central device The saved coordinates of the second electronic device.
  • the user activates the first electronic device to locate the second electronic device through the human-computer interaction interface displayed on the control panel.
  • the control panel displays an interface 2901 for positioning the central device, and the interface 2901 for positioning the central device includes room options such as living room, dining room, and kitchen.
  • the user can select one or more of the room options, and click the "OK" button 2902 to start the first electronic device in the corresponding room to locate the central device in the room.
  • the interface 2901 of the positioning hub device further includes a "Cancel” button 2903, which is used to cancel the positioning of the IoT device.
  • the locating IoT device interface 2901 also includes a "select all” button 2904, the user can click the "select all” button 2904 to select all the rooms in the house, and click the "OK” button 2902 to activate the first electronic devices in the whole house respectively Locate the second electronic device.
  • the first electronic device in each room or area can periodically locate the users in the whole house and track the movement trajectory of each user. For example, if the period is 1 second, the first electronic device performs detection at a frequency of 10 Hz (10 times per second), and sends the detection result to the central device at a frequency of 1 Hz (1 time per second). Wherein, each first electronic device in the whole house can locate (acquire the coordinates of the user in the fourth coordinate system) and track (acquire the user's movement trajectory in the fourth coordinate system) of the user within the signal coverage area of the first electronic device .
  • one of the multiple first electronic devices may locate and track users in the overlapping areas.
  • each first electronic device in the whole house converts the acquired coordinates or movement trajectories of one or more users in the fourth coordinate system to the coordinates or movement trajectories of the fifth coordinate system, and The coordinates or movement tracks of one or more users in the fifth coordinate system are sent to the central device.
  • each first electronic device in the whole house sends the acquired coordinates or movement tracks of one or more users in the fourth coordinate system to the central device, and the central device sends The coordinates or movement track of the user in the fourth coordinate system are converted to the coordinates or movement track of the fifth coordinate system.
  • transforming the coordinates or movement trajectory of the user in the fourth coordinate system to the fifth coordinate system includes: converting the coordinates or movement trajectory of the user in the fourth coordinate system to the coordinates of the fifth coordinate system after installation error correction or moving tracks.
  • the hub device may save and periodically update the acquired user's position (for example, the user's coordinates in the fifth coordinate system) or movement track (the coordinate track in the fifth coordinate system).
  • step (2) is not necessary, but optional. For example, at the beginning of the installation, it needs to be corrected. After that, it generally does not need to be calibrated, or it will be calibrated again after a long period of use.
  • step (3) does not need to be carried out again.
  • step (3) is performed. That is, choose one of step (2) and step (3) to execute.
  • the conversion of the first coordinate system, the second coordinate system, the third coordinate system, the fourth coordinate system to the fifth coordinate system can be specifically: the conversion of the second coordinate system, the third coordinate system and the first coordinate system can be based on According to the aforementioned principle, to fulfill.
  • the conversion between the fourth coordinate system and the first coordinate system has been clarified in the previous part of the principle.
  • the second coordinate system, the third coordinate system, and the fourth coordinate system are all converted to the first coordinate system, based on the aforementioned principle, it can be obtained Further, the transformation from the first coordinate system to the fifth coordinate system is realized.
  • the first electronic device may transform the coordinates of the first coordinate system or the fourth coordinate system of its own device into the fifth coordinate system. That is, the coordinates of the fourth coordinate system do not need to be converted to the coordinates of the first coordinate system first, and then the coordinates of the first coordinate system are converted to the coordinates of the fifth coordinate system; instead, they can be directly converted to the coordinates of the fifth coordinate system. Afterwards, the transformed coordinates of the fifth coordinate system are sent to the central device. Based on the aforementioned principles, it can be obtained Further, the transformation from the fourth coordinate system to the fifth coordinate system is realized.
  • the above conversion is performed by the central device.
  • the first electronic device respectively sends the coordinates of the first coordinate system or the fourth coordinate system of its own device to the central device, and the central device converts the coordinates based on the first coordinate system or the fourth coordinate system of each first electronic device to the fifth The coordinates of the coordinate system.
  • a reference first electronic device is set among the multiple first electronic devices.
  • the other first electronic devices except the reference first electronic device respectively send the coordinate information of the first coordinate system or the fourth coordinate system of their own devices to the reference first electronic device.
  • the reference first electronic device converts the coordinates of the first coordinate system or the fourth coordinate system based on each first electronic device to the coordinates of the fifth coordinate system, and sends the converted coordinates of the fifth coordinate system to the central device.
  • the second electronic device executes a preset operation.
  • the whole house is divided into one or more rooms and/or one or more areas, which do not overlap with each other.
  • the central device can locate the room or area through the first electronic device, acquire and save the coordinate range of each room or area.
  • the method in (b) of FIG. 14 can be used to obtain the coordinate range of each room or area.
  • the hub device can determine the room or area where each first electronic device and each second electronic device is located.
  • the user can query through the central device, for example, input the device name (the name of the first electronic device, the name of the second electronic device), the room or area where the device is located, and the like.
  • at least one first electronic device is installed in each room or area.
  • the hub device determines the room or area where each first electronic device is located according to user input.
  • the central device determines the room where each first electronic device or each second electronic device is located according to the coordinates of the first electronic device or the second electronic device and the coordinate range of each room or area in the whole house or area.
  • the method shown in (a) of FIG. 29 for a room with a quadrilateral in the horizontal direction, the method shown in (a) of FIG.
  • the coordinates of the four positions of point A, point B, point C and point D in the fifth coordinate system are obtained respectively through the first electronic device 100 and
  • the plumb line passing through position A, the plumb line passing through position B, the plumb line passing through position C and the plumb line passing through position D can determine the area range of a defined area in the room.
  • the coordinates of the second electronic device in the fifth coordinate system are is the coordinate of the projected point Q of the second electronic device in the X h O h Y h plane.
  • represents the vector cross product, express and The vector cross product of , express and The vector cross product of , express and The vector cross product of , express and The vector cross product of two vectors is a scalar.
  • the central device can save the device information table in the whole house, and the device information table includes information of one or more devices (including but not limited to the first electronic device, the second electronic device, etc.) in the whole house.
  • the information of the device includes the name of the device, the room or area (room) where the device is located, etc.; optionally, the coordinates of the device (such as coordinates in the fifth coordinate system) may also be included.
  • the device information table is shown in Table 4.
  • the hub device can also determine the room or area the user is in.
  • at least one first electronic device is installed in each room or area.
  • the hub device determines the room or area where each first electronic device is located.
  • the room or area where each first electronic device is located is the room or area where the user can be detected by the first electronic device.
  • the central device determines the room or area where each user is located according to the coordinates of the user and the coordinate range of each room or area in the whole house.
  • the specific method may refer to the method in which the central device determines the room or area where each second electronic device is located according to the coordinates of the second electronic device and the coordinate range of each room or area in the whole house.
  • the central device periodically acquires the user's coordinates, and determines the room or area where the user is located according to the user's coordinates.
  • the central device obtains the information of the whole house and the whole house according to the floor plan of the whole house, the installation position of the central device, the position of the installation position of the central device in the floor plan of the whole house, the height information of the whole house, etc.
  • the central device can determine that the user enters another room or area from one room or area, or leaves the whole room, or enters the whole room, etc. according to the room or area where the user is currently located and the room or area where the user was located last cycle.
  • the central device can also obtain at least one item of information such as physiological characteristics, identity category, and human body posture from the first electronic device in each room or area, and then can subsequently and at least one item of information such as human body posture, etc., to notify or control the corresponding second electronic device in the corresponding room or corresponding area to perform preset operations.
  • at least one item of information such as physiological characteristics, identity category, and human body posture
  • (b) of FIG. 26 shows an implementation of the automatic control method based on human body perception provided by the embodiment of the present application.
  • the UWB module of the first electronic device locates the devices, rooms, areas, etc. in the whole house, obtains the coordinates of the devices in the whole house and the room or area where they are located, and reports to the central device.
  • the millimeter-wave radar module of the first electronic device tracks the targets of the users in the whole house, and periodically reports the coordinates and the room or area of the users in the whole house to the central device.
  • the central device sends corresponding preset instructions to the second electronic device according to the coordinates of the second electronic device and the coordinates of the user.
  • the second electronic device if it is determined that the relative position between the first user and the second electronic device satisfies a preset condition, the second electronic device is controlled to execute a preset instruction.
  • the coordinates of the first user may be the coordinates of one user or the average value of the coordinates of multiple users.
  • the second electronic device executes preset instructions. In this way, for example, when the user approaches the smart light, the second electronic device can execute a preset instruction through the process shown in (b) of FIG. 26 , such as turning on the smart light.
  • the central device can determine that the second electronic device executes the preset command according to the coordinates of the second electronic device and the coordinates of the user; According to the coordinates of the second electronic device and the coordinates of the user, other devices determine that the second electronic device executes preset instructions; or the central device sends the coordinates of the second electronic device and the coordinates of the user to the second electronic device, and the second electronic device Based on this, it is determined to execute the preset instruction. It can be understood that the embodiment of the present application does not limit the subject of execution of the automatic control method based on human perception.
  • some embodiments involve communication interactions between multiple different second electronic devices and the hub device, and even involve communication interactions between multiple different second electronic devices.
  • the following uses the first device, the second device, the third device, etc. to represent different second electronic devices for description.
  • the automatic control method based on human body perception can be refined into a method of automatically adjusting beams of routing equipment based on human body perception, and an automatic adjustment method of cleaning equipment based on human body perception in specific embodiments.
  • the method of cleaning the area the method of automatically obtaining human body information based on human body perception for health management equipment, the method of automatic lifting of drying equipment based on human body perception, and the method of automatically adjusting light for lighting equipment based on human body perception.
  • Embodiment 1 relates to FIG. 30 , FIG. 31 and FIG. 32 , and provides a method for automatically adjusting a beam of a routing device based on human perception.
  • Most routing devices eg, routers
  • the signal coverage of the routing device is related to the beam shape of the signal transmitted by the multi-antenna.
  • the multi-antenna routing device can increase the transmission and reception gain of signals through beamforming.
  • FIG. 30 shows a schematic diagram of a scenario in which a routing device automatically adjusts a beam in a whole-house scenario provided by an embodiment of the present application. As shown in (a) of FIG.
  • the second electronic device includes a routing device 300a (also called a first terminal) and a terminal device 300b (also called a second terminal).
  • the terminal device 300b accesses the network through the routing device 300a.
  • the routing device 300a is a multi-antenna routing device.
  • the routing device 300a may provide signals by beamforming into wide beams or narrow beams.
  • a wide beam has a wide coverage angle but less signal gain and usually includes one lobe.
  • the signal gain of the narrow beam is relatively large, but the coverage angle is small, and usually includes multiple lobes, and the multi-lobes include a main lobe and multiple slave lobes, where the main lobe is also called the maximum gain point of the beam.
  • multi-antenna routing devices use wide beams to provide signals.
  • the user's terminal device 300b may not be able to receive the signal provided by the routing device 300a, or although it receives the signal provided by the routing device 300a, the signal provided is not a signal with a large gain; thus causing the user to use the terminal device 300b to pass the routing
  • the experience of the device 300a surfing the Internet is relatively poor.
  • the terminal device 300b includes a UWB module.
  • the routing device 300a establishes its own coordinate system, and marks it by the aforementioned marking method according to whether the routing device 300a contains a UWB module.
  • the first electronic device 100 obtains the location of the routing device 300a (eg, specific coordinates, etc.) and the location of the terminal device 300b. Further, the first electronic device 100 also acquires the location of the user.
  • the routing device 300a is controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and finally as shown in (b) of Figure 30, This enables the terminal device 300b to receive the narrow beam provided by the routing device 300a, so that the terminal device 300b can obtain the signal with greater gain and accurate coverage provided by the routing device 300a.
  • the routing device 300a and the terminal device 300b, or the position of the routing device 300a and the user the routing device is controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and finally as shown in (b) of Figure 30, so that The maximum gain point of the beam provided by the routing device 300a points to the terminal device 300b, and the terminal device 300b can receive the narrow beam provided by the routing device 300a.
  • This implementation manner is especially applicable to scenarios such as the user holds the terminal device 300b to surf the Internet.
  • the routing device 300a can be controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and the routing device 300a provides narrow pulse signals to M1 positions by means of time division multiplexing, etc., because the time slot of time division is relatively short , the user cannot perceive it, and finally the maximum gain point of the beam provided by the routing device 300a is directed to the terminal devices at M1 locations through time division multiplexing, and the terminal devices at M1 locations can all receive the narrow beam provided by the routing device 300a .
  • M1 is less than or equal to M, and M1 is less than or equal to N.
  • M1 is less than or equal to N.
  • the routing device 300a is controlled to provide narrow beams to the terminal devices at two positions through time division multiplexing, so that the maximum gain point of the beam provided by the routing device 300a points to the terminal devices at the two positions. Terminal devices at locations can receive the narrow beam provided by the routing device 300a.
  • the routing device is controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and finally, as shown in (b) of Figure 30, the terminal device
  • the terminal device 300b can receive the narrow beam provided by the routing device 300a, so that the terminal device 300b can obtain the signal with larger gain and accurate coverage provided by the routing device 300a.
  • This implementation manner is especially applicable to scenarios where an IoT device (for example, a smart air conditioner, etc.) in a home or an office accesses a signal of the routing device 300a.
  • the positions of N terminal devices can be obtained, and then the routing device 300a is controlled to automatically adjust the beam (for example, according to the beamforming algorithm), and the routing device 300a sends information to the N terminal devices through time division multiplexing, etc.
  • Narrow pulse signals are provided at each location. Due to the short time-division time slots, the N terminal devices have almost no delay.
  • the maximum gain points of the beams provided by the routing device 300a are all directed to the terminal devices at N locations through time-division multiplexing. N The terminal devices at each location can receive the narrow beam provided by the routing device 300a.
  • the execution subject of the aforementioned various embodiments may be the routing device 300a, may also be the first electronic device 100, and may also be a central device (not shown in FIG. 30 ).
  • the hub device, the first electronic device 100 or the routing device 300a controls the routing device to automatically adjust the beam according to the location of the user, the location of the routing device 300a, and the terminal device 300b.
  • the routing device 300a is the execution subject, the routing device 300a needs to communicate with the central device or the first electronic device 100 in advance to obtain the corresponding location (for example, the location of the user, the location of the routing device 300a and the terminal device 300b).
  • the following takes the central device as the execution subject as an example, with reference to Figure 31 and Figure 32, to introduce the communication interaction process between the central device and the routing device in detail, so as to illustrate the method of automatically adjusting the beam of the routing device based on human perception.
  • FIG. 31 is a schematic flowchart of a method for automatically adjusting beams of a routing device based on human perception in a whole-house scenario provided by an embodiment of the present application. As shown in Figure 31, the method includes:
  • the central device acquires the coordinates of the routing device, the user, and the terminal device in the fifth coordinate system in real time or periodically.
  • the central device determines whether the coordinates of both the user and the terminal device are within a preset error range.
  • the preset error range is 1 meter. If the coordinates of both the user and the terminal device are within a preset error range, it can be considered that the user is using the terminal device. If the coordinates of both the user and the terminal device are within the preset error range, follow-up steps are performed.
  • the hub device sends the first message to the routing device.
  • the central device obtains the device posture of the routing device by using the method described in the foregoing principle section.
  • the central device also calculates the coordinates of the coordinate system established by the user or terminal device on the routing device according to the coordinates of the routing device in the fifth coordinate system and the device posture, and the coordinates of the user or terminal device in the fifth coordinate system.
  • the central device calculates the azimuth angle of the user or the terminal device relative to the routing device according to the coordinates of the coordinate system established by the user or the terminal device on the routing device.
  • the hub device sends a first message to the routing device; the first message is used to instruct the routing device to automatically adjust the beam.
  • the first message includes azimuth indication information, which is used to indicate the azimuth of the user or terminal device relative to the routing device.
  • the routing device receives the first message, automatically adjusts the beam, provides a narrow beam, and makes the maximum gain point of the beam point to the user or the terminal device.
  • the routing device receives the first message, acquires the azimuth indication information, and acquires the azimuth of the user or terminal device relative to the routing device according to the azimuth indication information.
  • the routing device automatically adjusts the beam according to the azimuth angle of the user or terminal device relative to the routing device, provides a narrow beam, and makes the maximum gain point of the beam point to the user or terminal device.
  • the method may also include:
  • the routing device sends the second message to the central device.
  • the second message is used to indicate that the routing device has completed automatic beam adjustment.
  • the central device receives the second message, and learns that the routing device has been adjusted.
  • the central device receives the second message, determines that the routing device has been adjusted according to the second message, and continues to periodically obtain the coordinates of the user and the terminal device in the fifth coordinate system.
  • S3102-S3104 is executed, so that the routing device automatically adjusts the beam to point the maximum gain point of the beam to the user or terminal device after the changed position. Realize that the maximum gain point of the narrow beam provided by the routing device moves with the user position. If the central device determines that the change of the user's coordinates does not exceed the first preset range, S3108 is executed.
  • the coordinate change of the terminal device exceeds a second preset range.
  • the central device determines that the coordinate change of the terminal device exceeds the second preset range, it executes S3102-S3104, so that the routing device automatically adjusts the beam to point the maximum gain point of the beam to the user or terminal device after the changed position. Realize that the maximum gain point of the narrow beam provided by the routing device moves with the user position.
  • FIG. 32 is another schematic flowchart of a method for automatically adjusting beams of a routing device based on human body perception in a whole-house scenario provided by an embodiment of the present application. As shown in Figure 32, the method includes:
  • the central device acquires the coordinates of the routing device, M users and N terminal devices in the fifth coordinate system in real time or periodically, and the coordinates of the M users and N terminal devices are within a preset error range The number is M1.
  • the hub device sends the first message to the routing device.
  • the central device obtains the device posture of the routing device by using the method described in the foregoing principle section.
  • the central device also calculates the coordinates of the routing device in the fifth coordinate system and the device posture, and the coordinates of the M1 users (or terminal devices) in the fifth coordinate system, and respectively calculates the number of M1 users (or terminal devices) in the routing device.
  • the coordinates of the coordinate system are the coordinates of the coordinate system.
  • the central device calculates the azimuth angle of the user relative to the routing device according to the coordinates of each of the M1 users (or terminal devices) in the coordinate system established by the routing device.
  • the hub device sends a first message to the routing device; the first message is used to instruct the routing device to automatically adjust the beam.
  • the first message includes M1 azimuth indication information, and each azimuth indication information is used to indicate an azimuth of a user (or terminal device) relative to the routing device.
  • the routing device receives the first message, automatically adjusts the beam, and provides narrow beams to the M1 positions respectively in a time-division multiplexing manner, and makes the maximum gain point of the beam point to the M1 positions in turn.
  • the routing device receives the first message, acquires M1 azimuth angle indication information, and acquires the azimuth angles of the M1 users (or terminal devices) relative to the routing device according to the M1 azimuth angle indication information.
  • the routing device automatically adjusts the beam according to the azimuth angles of M1 users (or terminal devices) relative to the routing device, and provides narrow beams to M1 locations in a time-division multiplexing manner, and makes the maximum gain point of the beam point to M1 locations in turn.
  • the method may also include:
  • the routing device sends the second message to the central device.
  • the central device receives the second message and learns that the routing device has been adjusted.
  • the central device receives the second message, determines that the routing device has been adjusted according to the second message, and continues to periodically obtain the coordinates of the user and the terminal device in the fifth coordinate system.
  • the coordinate change of at least one user among the M users exceeds a first preset range.
  • the central device determines that the coordinate change of at least one of the M users exceeds the first preset range, it executes S3202-S3204, so that the routing device automatically adjusts the beam according to the position movement of the user or the terminal device, respectively Provides narrow beams to multiple locations. Realize that the maximum gain point of the narrow beam provided by the routing device moves with the user position. If the central device determines that there is no coordinate change of the user exceeding the first preset range, S3208 is executed.
  • the coordinate change of at least one terminal device among the N terminal devices exceeds a second preset range.
  • the central device determines that the coordinate change of at least one terminal device among the N terminal devices exceeds the second preset range, it will execute S3202-S3204, so that the routing device automatically adjusts the beam according to the position movement of the user or the terminal device, using time division multiplexing
  • the method provides narrow beams to multiple locations respectively. Realize that the maximum gain point of the narrow beam provided by the routing device moves with the user position.
  • Embodiment 2 relates to FIG. 33 , FIG. 34 , FIG. 35 and FIG. 36 , and provides a method for automatically adjusting the cleaning area of a cleaning device based on human perception.
  • Cleaning equipment (such as sweeping robots and mopping robots) is an important IoT device in the whole house intelligent system. Generally speaking, after cleaning the whole house several times, the cleaning equipment can draw a map of the whole house according to its own equipped lidar and IMU modules. The cleaning equipment can automatically clean according to the map of the whole house.
  • the user can install an application program (application, App) supporting the cleaning device on the electronic device, and through the App, specify the cleaning area of the cleaning device, the area not to be cleaned, or control the cleaning route of the cleaning device.
  • application, App application program supporting the cleaning device on the electronic device, and through the App, specify the cleaning area of the cleaning device, the area not to be cleaned, or control the cleaning route of the cleaning device.
  • the embodiment of the present application provides a method for automatically adjusting the cleaning area of a cleaning device based on human perception.
  • the cleaning device automatically adjusts the cleaning area according to the user's location, automatically avoiding the room or area where the user is located, without user operation or carrying any electronic equipment.
  • the sweeping robot automatically avoids the second bedroom when cleaning, and cleans the living room and other areas first.
  • the user leaves the second bedroom, and the cleaning robot enters the second bedroom for cleaning.
  • the robot vacuum automatically avoids the user while cleaning.
  • the method for automatically adjusting the cleaning area of a cleaning device based on human perception may include:
  • the central device acquires the coordinates of the user, the M pieces of furniture and the cleaning equipment in the fifth coordinate system and the posture of the user in real time or periodically, and acquires the coordinates of the user and one of the M pieces of furniture in the preset Within the first error range of , it is acquired that the posture of the user is lying or sitting, and it is acquired that the cleaning device is cleaning.
  • the whole house includes M pieces of furniture, and M is greater than or equal to zero.
  • the M pieces of furniture may include beds, sofas, chairs, and the like. If the coordinates of the user and one of the M pieces of furniture are within a preset first error range (for example, 0.5 meters), it can be considered that the user is on the piece of furniture. For example, the user sits or lies on a bed, sofa or chair, and the like. Cleaning equipment performs cleaning on the premises.
  • the central device can obtain the coordinates of users in the whole house, the coordinates of M furniture, and the coordinates of cleaning equipment in real time or periodically.
  • the central device may also obtain, according to the coordinates of the user and the coordinates of the M furniture, that the coordinates of the user and one of the M furniture are within a preset first error range.
  • the central device can acquire the posture of the user, and determine that the posture of the user is lying or sitting.
  • the central device can also obtain that the cleaning device is cleaning.
  • the cleaning device starts to clean, it sends an activation indication message to the central device.
  • the central device receives the start instruction message, it acquires that the cleaning device is cleaning.
  • the central device determines that the cleaning device is moving according to the coordinates of the cleaning device, and then acquires that the cleaning device is cleaning.
  • the central device obtains the coordinate range of each room or area of the whole house, that is, obtains the whole house map; and sends the whole house map to the cleaning device.
  • the central device determines whether the change of the user's coordinates within a preset time period is within a second preset error range.
  • the preset duration is 10 minutes
  • the preset second error range is 1 meter.
  • the central device determines that the user's posture is a lying or sitting posture.
  • the central device determines whether the coordinates of the user and the coordinates of the cleaning device belong to different rooms or areas.
  • the central device determines that the coordinates of the user and the coordinates of the cleaning device belong to different rooms or areas, it sends a first message to the cleaning device to indicate that the cleaning device does not clean the room or area to which the user belongs.
  • the first message includes first area indication information, and the first area indication information is used to indicate the room or area that the cleaning device does not clean.
  • the central device sends a first message to the cleaning device.
  • the cleaning device After receiving the first message, the cleaning device does not clean the room or area to which the user belongs.
  • the cleaning device sends a second message to the central device.
  • the cleaning device sends a second message to the central device, which is used to indicate that the cleaning device does not clean the room or area to which the user belongs.
  • the central device receives the second message and learns that the cleaning device does not clean the room or area to which the user belongs.
  • the central device receives the second message, and updates the saved operating information of the cleaning device to the room or area to which the user does not clean.
  • the central device determines whether the change of the user's coordinates within the preset time period is within the second preset error range.
  • the central device continues to obtain coordinates of users in the whole house in real time or periodically. If it is determined that the change of the user's coordinates within the preset duration is not within the preset second error range, that is, the user leaves the original position (for example, the second error range is 1 meter) or the user leaves the room or area (for example, The second error range is 5 meters); the central device sends a third message to the cleaning device, which is used to instruct the cleaning device to clean the room or area to which the user belongs.
  • the central device sends a third message to the cleaning device.
  • the third message includes area information, where the area information is used to indicate the room or area that needs to be cleaned.
  • the cleaning device receives the third message, and cleans the room or area to which the user belongs.
  • the cleaning device receives the third message, acquires area information, and cleans the room or area indicated by the area information.
  • the cleaning appliance maintains the rooms or areas to which the user belongs. After receiving the third message, the cleaning device performs cleaning according to the stored room or area information.
  • the cleaning device sends a fourth message to the central device.
  • the cleaning device sends a fourth message to the central device, which is used to represent the room or area to which the cleaning device cleans the user.
  • the fourth message includes second area indication information, and the second area indication information is used to indicate the room or area where the cleaning device cleans.
  • the central device receives the fourth message, and learns that the cleaning device cleans the room or area to which the user belongs.
  • the central device receives the fourth message, and updates the saved operating information of the cleaning device to the room or area to which the cleaning user belongs.
  • the cleaning device is in a different room or area than the user.
  • the cleaning device automatically avoids the room or area the user is in while cleaning.
  • the cleaning equipment automatically enters the room or area for cleaning.
  • the method for automatically adjusting the cleaning area of a cleaning device based on human perception may include:
  • the central device acquires the coordinates of the user, the M pieces of furniture and the cleaning equipment in the fifth coordinate system and the posture of the user in real time or periodically, and acquires the coordinates of the user and one of the M pieces of furniture in the preset Within the first error range of , it is acquired that the posture of the user is lying or sitting, and it is acquired that the cleaning device is cleaning.
  • the central device determines whether the change of the user's coordinates within the preset time period is within the second preset error range.
  • the central device determines whether the coordinates of the user and the coordinates of the cleaning device belong to different rooms or areas.
  • the central device determines that the user's coordinates and the cleaning device's coordinates belong to the same room or area, it sends a first message to the cleaning device to indicate that the cleaning device does not clean the room or area to which the user belongs.
  • the central device sends a first message to the cleaning device.
  • the cleaning device After receiving the first message, the cleaning device leaves the room or area to which the user belongs, and goes to other rooms or areas for cleaning.
  • the cleaning device sends a second message to the central device.
  • the central device receives the second message, and learns that the cleaning device cleans other rooms or areas.
  • the central device sends a third message to the cleaning device.
  • the cleaning device receives the third message, and cleans the room or area to which the user belongs.
  • the cleaning device sends a fourth message to the central device.
  • the central device receives the fourth message, and learns that the cleaning device cleans the room or area to which the user belongs.
  • the cleaning device is in the same room or area as the user.
  • the cleaning device leaves the room or area where the user is present and cleans other rooms or areas first. If the user initiates activity or the user leaves the room or area, the cleaning device automatically enters the room or area to clean.
  • the embodiment of this application also provides some implementation manners.
  • the user can specify a cleaning area or an area not to be cleaned by voice or a mobile device, and the cleaning device will clean or avoid cleaning the specified area.
  • the user specifies the area by voice
  • the cleaning device determines the cleaning area according to the specified area of the user's voice, and determines the coordinate range of the cleaning area according to the cleaning area and the whole house map.
  • the designated area is a clean area.
  • the user sends a voice "clean the living room” or "clean the bedroom” to the voice input device (such as a smart speaker).
  • the voice input device performs semantic recognition on the voice input by the user, and generates corresponding voice instructions.
  • the smart speaker receives the voice "clean the living room”, performs semantic recognition on the received voice, and converts it into a corresponding first voice command, and the first voice command is used to indicate the designated area (the designated area is the living room).
  • the smart speaker sends the first voice command to the cleaning device.
  • the cleaning device receives the first voice instruction, determines that the designated area is the living room according to the first voice instruction, and then moves to the living room for cleaning.
  • the designated area is an area that is not to be cleaned.
  • the user sends a voice "don't clean the living room” or “don't clean the bedroom” to the voice input device (such as a smart speaker).
  • the voice input device performs semantic recognition on the voice input by the user, and generates corresponding voice instructions.
  • the smart speaker receives the voice "don't clean the living room”, performs semantic recognition on the received voice, and converts it into a corresponding second voice command, which is used to indicate the designated area (the designated area is the living room).
  • the smart speaker sends a second voice command to the cleaning device.
  • the cleaning device receives the second voice instruction, and according to the second voice instruction determines that the designated area is the living room, and then determines that the cleaning area is the area in the whole house except the living room. Cleaning equipment avoids the living room when cleaning.
  • the user designates an area based on the user's location by voice.
  • the cleaning area is determined according to the user's current location and the area based on the user's location.
  • the user specifies a cleaning area.
  • the user sends a voice "clean the room I am in” or "clean the 1-meter area around me” to the voice input device (such as a smart speaker).
  • the voice input device performs semantic recognition on the voice input by the user, and generates corresponding voice instructions.
  • a smart speaker receives the voice "clean the room I am in”, performs semantic recognition on the received voice, and converts it into a corresponding third voice command, which is used to indicate a designated area based on the user's location ( For example, the specified area is the room the user is in).
  • the smart speaker sends a third voice command to the cleaning device (or central device).
  • the cleaning device receives the third voice instruction, and determines the cleaning area according to the third voice instruction.
  • the central device acquires the number of users in the whole room and the coordinates of each user. If it is determined that the number of users in the whole room is 1, the room where the user is located is determined according to the user's coordinates. If it is determined that the number of users in the whole house is greater than 1, the central device sends a confirmation instruction message to the smart speaker that sends the voice command, which is used to instruct the smart speaker to play the confirmation message, and the confirmation message is used to confirm the user identity of the input voice to the user.
  • the smart speaker plays the voice "Which owner has issued the task". For example, the user again enters "clean the room I am in" by voice. The smart speaker receives the input voice and sends a third voice command to the central device.
  • the central device receives the third voice instruction again, determines that the user who input the voice is the user closest to the smart speaker, and determines the room where the user is located according to the user's coordinates. For another example, the user inputs the voice "clean the room where Dad is.”
  • the smart speaker receives the voice "clean the room where Dad is”, performs semantic recognition on the received voice, and converts it into a corresponding fourth voice command, the fourth voice command is used to indicate the designated area based on the user's location (designated area for the room where Dad is).
  • the smart speaker sends the fourth voice command to the central device. If the hub device stores the user identity of each user, the room where the user is located is determined according to the user's coordinates. After the central device determines the cleaning area, it notifies the cleaning device to clean the area.
  • the user specifies areas that are not to be cleaned.
  • the user sends a voice to a voice input device (such as a smart speaker) such as "don't clean the room I'm in” or "don't clean the 1-meter area around me”.
  • the cleaning device determines that the specified area is the room where the user is located, and then determines that the cleaning area is an area in the whole house except the room where the user is located.
  • the user specifies a cleaning area or an area not to be cleaned through the mobile device.
  • the user uses the mobile device to point to a point C on the ground.
  • the central device obtains the coordinates and device posture of the mobile device, and obtains the coordinates of point C on the ground according to the coordinates and device posture of the mobile device.
  • the central device sends the coordinates of point C to the cleaning device 300 .
  • the cleaning device 300 moves to point C for cleaning.
  • users can also use their mobile devices to point to an area on the ground.
  • the user uses a mobile device to point to points C1, C2, and C3 on the ground, and the central device obtains the coordinates of points C1, C2, and C3, that is, the triangle on the ground with points C1, C2, and C3 as vertices
  • the coordinate extent of the region For example, the user uses a mobile device to point to points C1, C2, C3, and C4 on the ground, and the central device obtains the coordinates of points C1, C2, C3, and C4, that is, obtains the coordinates of points C1, C2, and C4 on the ground.
  • Point C3 and point C4 are the coordinate range of the quadrilateral area of vertices.
  • the cleaning area acquired by the cleaning device 300 is an area formed by pointing the mobile device at multiple points on the ground.
  • the mobile device is a smart phone as an example.
  • the first electronic device 100 locates the smart phone, and obtains the coordinates of the smart phone in the fifth coordinate system (ie, the coordinates of point p).
  • a smartphone determines its device pose through the IMU module.
  • the smart phone establishes the second coordinate system according to the coordinates of point p and the device posture. Define a point q 1 with a distance of 1 from the origin O b on the Y b axis of the second coordinate system established by the smartphone.
  • the first electronic device 100 acquires the coordinates of point q1 .
  • a straight line is determined according to the coordinates of point p and the coordinates of point q 1 , and the point of intersection between the straight line and the ground is point C.
  • Embodiment 3 relates to FIG. 37 , FIG. 38A and FIG. 38B , and provides a method for automatically obtaining human body information by a health management device based on human body perception.
  • Health management equipment includes body fat scales, physical examination scales, weight scales, etc.
  • health management equipment for example, body fat scale
  • body fat scale can measure the user's weight, combined with the height information manually input by the user, can calculate the user's fat percentage, body mass index (body mass index, BMI), muscle mass, Body data such as basal metabolic rate and visceral fat level.
  • body mass index body mass index, BMI
  • muscle mass a body mass index
  • Body data such as basal metabolic rate and visceral fat level.
  • body data such as basal metabolic rate and visceral fat level
  • the method for automatically obtaining human body information by a health management device based on human body perception does not require the user to manually input information, nor does the user need to carry any equipment, and automatically obtains the user's body information such as height, breathing rate, heartbeat rate, etc., to obtain user information. body data.
  • body data Exemplarily, as shown in FIG. 37 , the user stands on the body fat scale 300, and the body fat scale 300 can automatically obtain information such as the user's height, breathing rate, and heart rate, and calculate the user's body data.
  • the method for automatically obtaining human body information by a health management device based on human body perception may include:
  • the central device obtains the coordinates of the health management device and the coordinates of the users in the whole house in real time or periodically.
  • the central device determines that the distance between the first user and the health management device is smaller than a preset first error range.
  • the central device determines, according to the coordinates of the health management device and the coordinates of one or more users in the whole house, that the distance between the first user of the one or more users and the health management device is less than a preset first error range.
  • the first error range is 0.5 meters. If the central device determines that the distance between the first user and the health management device is less than a preset first error range, it determines that the first user uses the health management device (for example, the first user stands on a body fat scale).
  • the central device determines that there is no user whose distance to the health management device is less than a preset first error range, indicating that after the last acquisition of the location of the health management device, the location of the health management device has changed. Change.
  • the central device can obtain the coordinates of the health management device again in real time; and obtain the first user whose distance from the health management device is smaller than a preset first error range.
  • the central device acquires at least one item of height information, respiratory rate information, and heartbeat rate information of the first user.
  • the central device acquires at least one item of height information, respiratory rate information, and heartbeat rate information of the first user.
  • the central device sends a first message to the health management device, where the first message includes at least one item of height information, respiratory rate information, and heartbeat rate information of the first user.
  • the health management device receives the first message, and acquires at least one item of height information, respiratory rate information, and heartbeat rate information of the first user.
  • the health management device acquires the physical data of the first user according to at least one item of height information, respiratory rate information, and heart rate information.
  • the health management device acquires the physical data of the first user according to at least one item of height information, respiratory rate information, and heartbeat rate information.
  • Body data includes fat percentage, body mass index (BMI), muscle mass, basal metabolic rate, visceral fat level, etc.
  • the health management device needs to save the body data acquired this time to one of the multiple users after acquiring the body data each time.
  • the health management device (or the first electronic device or the central device) stores the historical physical data of each user. According to one or more items (such as height, weight, etc.) in the body data obtained this time, compare with the saved body data, and then the body data obtained this time can be matched with one of the multiple users. For example, in the stored user body data, the height of user 1 is 178 cm, the height of user 2 is 160 cm, and the height of user 3 is 120 cm. If the height in the body data acquired this time is 160 cm, the body data acquired this time is saved as the body data of user 2.
  • items such as height, weight, etc.
  • the central device or the first electronic device acquires and saves the identity of each user. For example, a user unlocks a smart door lock with a fingerprint, and the central device obtains the user's identity based on the user's fingerprint.
  • the first message sent by the central device to the health management device may further include user identity indication information.
  • the health management device obtains the identity of the first user according to the identity indication information, and then matches the body data obtained this time with one of the multiple users.
  • the method for automatically obtaining human body information by a health management device based on human body perception may include:
  • the central device obtains the coordinates of the health management device and the coordinates of the users in the whole house in real time or periodically.
  • the health management device detects that the user is using the health management device. For example, the body fat scale detects that the user is standing on the body fat scale through a gravity sensor. The health management device sends a first request message to the central device, where the first request message is used to instruct the central device to acquire user data.
  • the central device receives the first request message, and determines the first user whose distance to the health management device is smaller than the preset first error range.
  • the central device receives the first request message, and according to the coordinates of the health management device and the coordinates of one or more users in the whole house, determines the first user whose distance from the health management device is less than the preset first error range.
  • the first error range is 0.5 meters. If the central device determines that the distance between the first user and the health management device is less than a preset first error range, it determines that the first user uses the health management device (for example, the first user stands on a body fat scale).
  • the central device determines that there is no user whose distance to the health management device is less than a preset first error range, indicating that after the last acquisition of the location of the health management device, the location of the health management device has changed. Change.
  • the central device can obtain the coordinates of the health management device again in real time; and obtain the first user whose distance from the health management device is smaller than the preset first error range.
  • the central device acquires at least one item of height information, respiratory rate information, and heartbeat rate information of the first user.
  • the central device sends a first message to the health management device, including at least one item of height information, respiratory rate information, and heartbeat rate information of the first user.
  • the health management device receives the first message, and acquires at least one item of height information, respiratory rate information, and heartbeat rate information of the first user.
  • the health management device acquires the physical data of the first user according to at least one item of height information, respiratory rate information, and heart rate information.
  • the central device when the user uses the health management device, the central device automatically acquires the height information, respiratory rate information, and heartbeat rate information of the first user whose distance from the health management device is less than the preset first error range.
  • the health management device can automatically calculate the user's body data such as fat percentage, body mass index (BMI), muscle mass, basal metabolic rate, and visceral fat level without the user inputting information.
  • BMI body mass index
  • the health management device can also automatically match the body data measured each time to the corresponding user, reducing user operations.
  • Embodiment 4 relates to Fig. 39 and Fig. 40, and provides an automatic lifting method for drying equipment based on human perception.
  • the embodiment of the present application provides an automatic lifting method for drying equipment based on human perception.
  • the drying equipment automatically rises or falls according to the user's position without manual operation by the user, thereby improving user experience.
  • the user approaches the smart clothes rack 300, and the smart clothes rack 300 automatically descends; rise. No manual operation by the user is required, nor is the user required to carry any equipment.
  • the method for automatically raising and lowering drying equipment based on human perception may include:
  • the drying equipment is located at the first height.
  • the height from the ground is the first height.
  • the central device obtains the coordinates of the drying device.
  • the central equipment obtains the coordinates of the drying equipment in real time or periodically. It should be noted that the coordinates of the drying equipment may be the coordinates of the UWB module in the drying equipment, or the coordinates of the center of gravity or the center of the drying equipment.
  • the central device periodically obtains coordinates of users in the whole house.
  • the central device determines that the distance between the first user and the drying equipment is less than a preset first distance, and sends a first message to the drying equipment.
  • the preset first distance is 0.2 meters.
  • the distance between the first user and the drying equipment is smaller than the preset first distance, that is, the first user is close to the drying equipment.
  • the central device determines that the distance between the first user and the drying equipment is less than the preset first distance, and sends the first message to the drying equipment.
  • the first message is used to indicate that the drying equipment is lowered.
  • the central device further determines the duration of time that the distance between the first user and the drying device is shorter than the preset first distance. If it is determined that the distance between the first user and the drying equipment is less than the preset first distance and the duration lasts longer than the preset duration threshold, the central device sends a first message to the drying equipment.
  • the hub device also acquires user actions.
  • the central device determines that the distance between the first user and the drying equipment is less than a preset first distance, and the first user makes a preset action to send a first message to the drying equipment.
  • the preset actions include raising the hand, raising the arm, and raising the head.
  • the room or area where the drying equipment is located is provided with camera equipment.
  • the central device determines that the distance between the first user and the drying device is less than the preset first distance, and then notifies the camera device to start collecting images of the user.
  • the camera device sends the collected user images to the central device.
  • the central device determines that the user performs a preset action according to the user image.
  • the central device acquires the height of the first user, and determines the descending height of the drying equipment according to the height of the first user.
  • the first instruction sent by the central device includes height indication information, and the height indication information is used to indicate the height of the user.
  • the central device determines the descending value according to the user's height; the first instruction sent by the central device includes second indication information, and the second indicating information is used to indicate the descending value.
  • Table 5 the corresponding relationship between the height of the user and the drop value of the drying equipment is shown in Table 5.
  • the central device may determine the corresponding first drop value according to the correspondence between the user's height and the drop value of the drying device shown in Table 5 and the height of the first user.
  • the first message includes first indication information, and the first indication information is used to indicate the drop value of the drying equipment.
  • the drying equipment receives the first message and descends to the second height.
  • the drying equipment descends to the preset second height after receiving the first message.
  • the drying equipment receives the first message, acquires the first indication information, and acquires the drop value of the drying equipment according to the first indication information.
  • the drying equipment determines the second height according to the current height value and the drop value.
  • the central device determines that the distance between the first user and the drying equipment is greater than or equal to the preset first distance, and sends a second message to the drying equipment.
  • the distance between the first user and the drying equipment is greater than or equal to the preset first distance, that is, the first user leaves the drying equipment.
  • the central device sends a second message to the drying equipment, and the second message is used to instruct the drying equipment to rise.
  • the drying equipment receives the second message and rises to the first height.
  • the central device detects that the user approaches the drying equipment, and then notifies the drying equipment to lower the height; when the central device detects that the user leaves the drying equipment, it notifies the drying equipment to raise the height.
  • the drying equipment automatically descends or rises according to the control of the central equipment, and does not require manual operation by the user. Furthermore, the drying equipment can also adjust the lowering height value according to the height of the user, which is convenient for the user.
  • Embodiment 5 relates to FIG. 41A , FIG. 41B and FIG. 42 , and provides a method for automatically adjusting lighting of lighting equipment based on human perception.
  • the embodiment of the present application provides a method for automatically adjusting lighting of lighting equipment based on human perception, which automatically adjusts the switch, brightness, and color of the lighting equipment according to the relative position between the user and the lighting equipment, thereby improving user experience.
  • a first electronic device 100 and a lighting device (second electronic device 300 ) are set in a room.
  • the central device acquires the coordinates of the lighting device and the coordinates of the user through the first electronic device, and adjusts the switch, brightness and color of the lighting device according to the relative position of the user and the lighting device.
  • the central device can obtain the coordinates of the lighting device and the room or area where it is located, and can also obtain the coordinates of the users in the whole room in real time or periodically. In this way, the hub device can determine that the user enters or exits the room or area where the lighting device is located.
  • the embodiment of the present application provides a method for automatically adjusting lighting based on human body perception. If the user enters the room or area where the lighting device is located, the lighting device will automatically turn on (light up); if the user leaves the room or area where the lighting device is located, the lighting device will automatically turn off. (off).
  • the hub device can also obtain the distance between the user and the lighting device according to the coordinates of the lighting device and the user coordinates. According to the change of the distance between the user and the lighting device, the lighting device automatically adjusts the brightness.
  • an area in a preset direction of the lighting device may be determined as an illumination area of the lighting device.
  • the mobile device is respectively placed at two vertices E and F of the illuminated area, and the lighting device is located at point J.
  • the three-dimensional area surrounded by the plumb line passing through the position E, the vertical line passing through the position F and the vertical line passing through the position J is the illumination area of the lighting device.
  • the central device obtains the coordinates of point E, point F and point J, that is, obtains the coordinate range of the illuminated area of the lighting device.
  • the hub device can determine the illuminated area where the user enters or leaves the lighting device according to the user coordinates. If the user enters the lighting area of the lighting device, the lighting device is automatically turned on (lit); if the user leaves the lighting area of the lighting device, the lighting device is automatically turned off (extinguished).
  • the central device can also obtain the user identity, and obtain the brightness or color of the lighting device matching the user identity; control the lighting device to light up the brightness or color corresponding to the user identity.
  • the lighting device when the first user enters the room or area where the lighting device is located or the lighting area, the lighting device turns on the brightness or color that matches the identity of the first user; when the second user enters the room or area where the lighting device is located or the lighting area, the lighting device points Brightness or color matching the second user identity.
  • the method for automatically adjusting lighting based on human body perception may include:
  • the central device obtains the coordinates of the lighting device and the coordinates of the users in the whole house in real time or periodically.
  • the central device sends a message to the lighting device, instructing the lighting device to adjust the light.
  • the central device determines whether the preset condition is met according to the coordinates of the lighting device and the coordinates of each user in the whole house.
  • the first preset condition includes that the user enters a room or area where the lighting device is located; or the distance between the user and the lighting device is less than or equal to a preset distance; or the user enters an area in a preset direction of the lighting device.
  • the central device determines that the first preset condition is met, and sends a first message to the lighting device, which is used to instruct the lighting device to turn on (light up).
  • the first message includes first indication information, and the first indication information is used to indicate the brightness of the lighting device.
  • the central device or the server saves the history information of each user adjusting the brightness of the lighting device.
  • the central device determines that the preset condition is satisfied, then obtains the user's identity information; and determines the corresponding brightness value of the lighting device according to the user's identity information and the stored historical information of adjusting the brightness of the lighting device for each user.
  • the first message sent by the central device to the lighting device includes the first instruction information; in this way, when the lighting device is turned on, the brightness matching the user can be turned on.
  • the first message includes second indication information, and the second indication information is used to indicate the color of the lighting device.
  • the central device or the server stores the color information of the lighting device corresponding to each user. The central device determines that the preset condition is satisfied, then obtains the user's identity information; and determines the corresponding lighting device color according to the user's identity information.
  • the first message sent by the hub device to the lighting device includes the second indication information; in this way, when the lighting device is turned on, the color matching the user can be turned on.
  • the second preset condition includes that the user leaves the room or area where the lighting device is located; or the distance between the user and the lighting device is greater than a preset distance; or the user leaves the area in a preset direction of the lighting device.
  • the central device determines that the second preset condition is met, and sends a second message to the lighting device, which is used to instruct the lighting device to turn off (go out).
  • the third preset condition includes that the distance between the user and the lighting device changes (becomes larger or smaller) after the lighting device is turned on.
  • the central device determines that the third preset condition is met, and sends a third message to the lighting device, which is used to instruct the lighting device to reduce brightness.
  • the third message includes third indication information, which is used to indicate the brightness reduction value of the lighting device.
  • the corresponding relationship between the distance between the user and the lighting device and the brightness of the lighting device is set in advance, and the reduction of the lighting device is determined according to the distance between the user and the lighting device and the corresponding relationship between the distance between the user and the lighting device and the brightness of the lighting device. Brightness value.
  • the fourth preset condition includes that after the lighting device is turned on, the distance between the user and the lighting device changes (increases or decreases), and the central device determines that the fourth preset condition is met and the second preset condition is not satisfied.
  • a condition is set, and a fourth message is sent to the lighting device, which is used to instruct the lighting device to increase brightness.
  • the fourth message includes fourth indication information, which is used to indicate a brightness increase value of the lighting device.
  • the lighting device receives the message, and adjusts the lighting of the lighting device.
  • the lighting device upon receiving the first message, the lighting device turns on (lights up) the lighting device. If the first message includes the first instruction information, turn on the brightness matching the user according to the first instruction information. If the first message includes the second instruction information, the color matching the user is turned on according to the second instruction information.
  • the lighting device turns off (extinguishes) the lighting device after receiving the second message.
  • the lighting device reduces the brightness of the lighting device after receiving the third message. If the third message includes the third indication information, reduce the brightness of the lighting device according to the value indicated by the third indication information.
  • the lighting device increases the brightness of the lighting device after receiving the fourth message. If the fourth message includes the fourth indication information, increase the brightness of the lighting device according to the value indicated by the fourth indication information.
  • the lighting device is automatically turned on, turned off, and the brightness or color of the lighting device is adjusted, without manual operation by the user, thereby improving user experience.
  • each device in the above-mentioned whole-house system includes a corresponding hardware structure and/or software module for performing each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the example units and algorithm steps described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered as exceeding the scope of the embodiments of the present application.
  • the embodiments of the present application may divide the above-mentioned device into functional modules according to the above-mentioned method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 43 shows a schematic structural diagram of a possible structure of the first electronic device involved in the foregoing embodiments.
  • the electronic device 4300 includes: a processor 4310 and a memory 4320 .
  • the processor 4310 is configured to control and manage the actions of the electronic device 4300 .
  • it can be used to calculate the coordinates of the user and the room or area where the user is located; calculate the coordinates of the second electronic device and the room or area where it is located; calculate the distance between the user and the second electronic device; determine the instructions executed by the second electronic device; and/or Other procedures for the techniques described herein.
  • the memory 4320 is used to store program codes and data of the electronic device 4300 .
  • the unit modules in the above electronic device 4300 include but not limited to the above processor 4310 and memory 4320 .
  • electronic device 4300 may further include a power supply unit and the like.
  • the power supply unit is used to supply power to the electronic device 4300 .
  • FIG. 44 shows a schematic structural diagram of a possible structure of the second electronic device involved in the above embodiment.
  • the electronic device 4400 includes: a processor 4410 , a memory 4420 and a display screen 4430 .
  • the processor 4410 is configured to control and manage the actions of the electronic device 4400 .
  • the memory 4420 is used to store program codes and data of the electronic device 4400 .
  • the display screen 4430 is used for displaying information, images, videos, etc. of the electronic device 4400 .
  • the unit modules in the above electronic device 4400 include but not limited to the above processor 4410 , memory 4420 and display screen 4430 .
  • electronic device 4400 may further include a power supply unit and the like.
  • the power supply unit is used to supply power to the electronic device 4400 .
  • the embodiment of the present application also provides a computer-readable storage medium, in which computer program code is stored, and when the processor of the electronic device executes the computer program code, the electronic device executes the method in the foregoing embodiments.
  • the embodiment of the present application also provides a computer program product, which causes the computer to execute the method in the foregoing embodiments when the computer program product is run on the computer.
  • the electronic device 4300, the electronic device 4400, the computer-readable storage medium or the computer program product provided in the embodiment of the present application are all used to execute the corresponding method provided above. Therefore, the beneficial effects that it can achieve can refer to the above The beneficial effects of the corresponding method provided herein will not be repeated here.
  • the disclosed electronic device and method can be implemented in other ways.
  • the above-described electronic device embodiments are only illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods such as multiple units or components May be incorporated or may be integrated into another electronic device, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of electronic devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium Among them, several instructions are included to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: various media capable of storing program codes such as U disks, mobile hard disks, ROMs, magnetic disks, or optical disks.

Abstract

本申请提供了一种基于人体感知的自动控制方法、第一电子设备及系统,涉及自动控制领域。该系统包括第一电子设备和第二电子设备,第一电子设备包括第一超宽带模块和毫米波雷达模块。基于第一电子设备对第二电子设备的位置测量、人体位置的测量及转换,获取到第二电子设备的位置信息、用户的位置信息;根据用户的位置信息和第二电子设备的位置信息,至少一个第二电子设备自动执行预设的操作。本申请无需用户携带设备,实现对IoT设备的自动控制,方便快捷。

Description

一种基于人体感知的自动控制方法、第一电子设备及系统
本申请要求于2021年10月25日提交国家知识产权局、申请号为202111243793.6、申请名称为“一种基于人体感知的自动控制方法、第一电子设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动控制领域,尤其涉及一种基于人体感知的自动控制方法、第一电子设备及系统。
背景技术
随着智能家居的快速发展,越来越多的用户在诸如家或办公室等场所中安装物联网(Internet of Things,IoT)设备(也可称为IoT设备、智能设备等),甚至全屋安装IoT设备(也称为全屋智能、全屋智能家居、智能管家等)。用户可以感受到IoT设备所带来的便捷的用户体验。不过,现有技术中对IoT设备的自动控制,需要用户随身携带移动设备(比如,智能手机、可穿戴设备等),通过移动设备与IoT设备的通信感知等来实现。用户在诸如家或办公室等场所中,有时忘记携带移动设备,无法实现对IoT设备的自动控制,从而给用户带来不便,影响用户体验。
发明内容
基于上述背景技术,如何使得用户对IoT设备的自动控制更为方便,进一步提升用户体验,成为我们需要考虑的问题。
为了解决上述的技术问题,本申请提供了一种基于人体感知的自动控制方法、第一电子设备及系统。本申请的技术方案,能够使得用户在靠近或远离IoT设备时,IoT设备自动进行某项操作,无需用户做任何操作,也无需用户携带任何电子设备,较大地提升了用户体验。另外,IoT设备也无需做硬件上的改动。比如,智能音箱一般没有摄像头,不需要额外安装摄像头。
第一方面,本申请提供了一种基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括路由设备和终端设备;R为大于或等于1的正整数。
基于第一电子设备对R个第二电子设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、用户的位置信息;中枢设备向路由设备发送第一消息;路由设备接收到第一消息,根据路由设备的位置和用户的位置调整波束,使得调整后波束的最大增益点指向用户。
在该方式中,根据用户的位置、路由设备和终端设备的位置,控制路由设备自动调整波束(比如,根据波束赋形算法),最终使得终端设备能够接收到路由设备300a提供的窄波束,从而终端设备能获取到路由设备提供的增益较大且覆盖精准的信号。 不需要用户手动操作,或携带任何设备,路由设备自动根据用户位置进行调节。
根据第一方面,中枢设备获取到用户与终端设备两者的距离小于预设的误差范围,则向路由设备发送第一消息。用户与终端设备两者的距离小于预设的误差范围,表示用户与终端设备在同一位置,即可以认为用户使用该终端设备。也就是说,如果确定用户使用终端设备,则调整路由设备的波束。
根据第一方面,或者以上第一方面的任意一种实施方式,如果中枢设备获取到用户的位置变化大于第一预设范围;或者,中枢设备获取到终端设备的位置变化大于第二预设范围;则获取在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、用户的位置信息。
在该方式中,如果确定用户移动位置,或终端设备移动位置,则触发路由设备调整波束。实现路由设备波束对准用户。
第二方面,本申请提供了一种基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括路由设备和N个终端设备;R和N分别为大于或等于1的正整数。
基于第一电子设备对R个第二电子设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、M个用户的位置信息;M个用户和N个终端设备中的距离在预设的误差范围内的个数为M1,M1>0;中枢设备向路由设备发送第一消息;路由设备接收到第一消息,根据路由设备的位置和M1个用户的位置调整波束;使得波束最大增益点以时分复用方式轮流指向M1个用户位置。
在该方式中,对于有M个用户的情形,可以获取到M个用户的位置以及N个终端设备的位置,进而可以获取到有M1个位置为N个终端设备的位置与M个用户的位置一致或者误差在预设范围内的位置,则可以控制路由设备自动调整波束(比如,根据波束赋形算法),路由设备通过时分复用等方式向M1个位置提供窄脉冲信号,由于时分的时隙较短,用户感知不到,最终使得路由设备提供的波束最大增益点通过时分复用的方式,都指向M1个位置的终端设备,M1个位置的终端设备都能接收到路由设备提供的窄波束。
根据第二方面,中枢设备获取到M个用户中至少一个用户的位置变化大于第一预设范围;或者,中枢设备获取到N个终端设备中至少一个终端设备的位置变化大于第二预设范围;则获取在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、M个用户的位置信息。
在该方式中,如果确定至少一个用户移动位置,或至少一个终端设备移动位置,则触发路由设备调整波束。实现路由设备波束轮流对准每个用户。
第三方面,本申请提供了一种基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设 备和一个移动设备,该移动设备包括第二超宽带模块;R为大于或等于1的正整数。基于第一电子设备对移动设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和用户的位置信息;中枢设备向第一设备发送第一消息;第一设备接收到第一消息,清洁全屋内除用户所属的第一区域之外的区域。
在该方式中,清洁设备根据用户位置,在进行清洁时自动避开用户所在的房间或区域,避免打扰用户。
根据第三方面,基于第一电子设备对移动设备的位置测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,M个家具的位置信息;中枢设备获取到用户与M个家具中的一个家具两者的距离小于预设的第一误差范围,可选的,中枢设备还获取到用户的姿势为躺或坐的姿势,则向第一设备发送第一消息。
在该方式中,如果确定用户正在休息,则不清扫用户所在房间或区域。
根据第三方面,或者以上第三方面的任意一种实施方式,如果用户与第一设备属于同一区域,第一设备接收到第一消息之后,离开用户属于的第一区域。
根据第三方面,或者以上第三方面的任意一种实施方式,中枢设备获取到用户在预设时长内的变化大于或等于预设的第二误差范围;中枢设备向第一设备发送第三消息;第一设备接收到第三消息,进入用户属于的第一区域。
在该方式中,如果确定用户开始活动或者用户离开该房间或区域,清洁设备自动进入该房间或区域进行清洁。
根据第三方面,或者以上第三方面的任意一种实施方式,基于第一电子设备对移动设备的位置测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,全屋内每个区域的坐标范围;中枢设备向第一设备发送全屋内每个区域的坐标范围信息;第一设备根据全屋内每个区域的坐标范围信息进行清洁。
第四方面,本申请提供了一种基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;中枢设备获取到一个或多个用户中,与第一设备的距离小于预设的第一误差范围的第一用户;中枢设备获取到第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项;中枢设备向第一设备发送第一消息,第一消息包括第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
在该方式中,无需用户手动输入信息,也无需用户携带任何设备,自动获取用户的身高、呼吸频率、心跳频率等人体信息,以获取用户的身体数据。
根据第四方面,第一设备接收到第一消息,根据第一用户的身高信息、呼吸频率 信息和心跳频率信息中至少一项获取所述第一用户的脂肪率、身体质量指数BMI、肌肉量、基础代谢率、内脏脂肪等级中至少一项。
根据第四方面,或者以上第四方面的任意一种实施方式,第一设备向中枢设备发送第一请求消息,第一请求消息用于指示中枢设备获取用户数据;中枢设备接收到第一请求消息,则获取与第一设备的距离小于预设的第一误差范围的第一用户。
在该方式中,健康管理设备触发中枢设备获取用户身高、呼吸频率、心跳频率等信息。
根据第四方面,或者以上第四方面的任意一种实施方式,该R个第二电子设备包括一个移动设备,移动设备包括第二超宽带模块,第一电子设备对第一设备的位置测量包括:第一电子设备对移动设备的位置进行测量;根据移动设备的位置测量第一设备的位置。在该实施方式中,第一设备不包括UWB模块,则可以通过包括UWB模块的移动设备对其进行标定。
第五方面,本申请提供了一种基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;第一设备距离地面为第一高度;中枢设备获取到一个或多个用户中第一用户与第一设备的距离小于预设的第一距离,可选的,中枢设备还获取到第一用户做出预设动作,则向第一设备发送第一消息;第一设备接收到第一消息,下降至距离地面第二高度;其中,第二高度小于第一高度。
在该方式中,晾晒设备根据用户位置自动下降,不需用户手动操作,提高了用户使用体验。
根据第五方面,中枢设备获取第一用户的身高信息;中枢设备向第一设备发送指示信息,指示信息用于指示第一用户的身高;第一设备接收该指示信息,根据指示信息获取第二高度。
在该方式中,根据用户身高确定晾晒设备下降的高度。
根据第五方面,或者以上第五方面的任意一种实施方式,中枢设备获取到第一用户与第一设备的距离小于预设的第一距离持续的时长大于预设值;则向第一设备发送第一消息。
在该方式中,如果确定用户在晾晒设备旁停留一定时长,才下降;避免误操作。
根据第五方面,或者以上第五方面的任意一种实施方式,中枢设备获取到第一用户与第一设备的距离大于或等于预设的第一距离,向第一设备发送第二消息;第一设备接收到第二消息,上升至距离地面第一高度。
在该方式中,晾晒设备根据用户位置自动上升,不需用户手动操作,提高了用户使用体验。
根据第五方面,或者以上第五方面的任意一种实施方式,该R个第二电子设备包 括一个移动设备,移动设备包括第二超宽带模块,第一电子设备对第一设备的位置测量包括:第一电子设备对移动设备的位置进行测量;根据移动设备的位置测量第一设备的位置。在该实施方式中,第一设备不包括UWB模块,则可以通过包括UWB模块的移动设备对其进行标定。
第六方面,本申请提供了一种基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;如果第一设备的位置与一个或多个用户中第一用户的位置之间满足预设条件,中枢设备通知第一设备调节灯光;第一设备根据中枢设备的通知调节灯光。
在该方式中,根据用户与照明设备的相对位置自动调节照明设备的开关、亮度和颜色等;提高用户使用体验。
在一种实施方式中,预设条件包括:第一用户进入第一设备所属的第一区域;或者,第一用户与第一设备的距离小于或等于预设距离;或者,第一用户进入第一设备预设方向上的第二区域;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第一消息;第一消息用于指示第一设备点亮。可选的,中枢设备获取第一用户的身份,及与第一用户的身份对应的第一亮度值;中枢设备向第一设备发送第一指示信息,第一指示信息用于指示第一亮度值;第一设备接收到第一指示信息,根据第一指示信息点亮第一亮度值。可选的,中枢设备获取第一用户的身份,及与第一用户的身份对应的第一颜色;中枢设备向第一设备发送第二指示信息,第二指示信息用于指示第一颜色;第一设备接收到第二指示信息,根据第二指示信息点亮第一颜色。
在一种实施方式中,预设条件包括:第一用户离开第一设备所属的第一区域;或者,第一用户与第一设备的距离大于预设距离;或者,第一用户离开第一设备预设方向上的第二区域;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第二消息,第二消息用于指示第一设备熄灭。
在一种实施方式中,预设条件包括:第一用户与第一设备的距离改变;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第三消息,第三消息用于指示第一设备减小亮度;或者,中枢设备向第一设备发送第四消息,第四消息用于指示第一设备增大亮度。
根据第六方面,该R个第二电子设备包括一个移动设备,移动设备包括第二超宽带模块,第一电子设备对第一设备的位置测量包括:第一电子设备对移动设备的位置进行测量;根据移动设备的位置测量第一设备的位置。在该实施方式中,第一设备不包括UWB模块,则可以通过包括UWB模块的移动设备对其进行标定。
第七方面,本申请提供了基于人体感知的自动控制方法,应用于基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第 一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括路由设备和终端设备;R为大于或等于1的正整数。
基于第一电子设备对R个第二电子设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、用户的位置信息;中枢设备向路由设备发送第一消息;路由设备接收到第一消息,根据路由设备的位置和用户的位置调整波束,使得调整后波束的最大增益点指向用户。
在该方式中,根据用户的位置、路由设备和终端设备的位置,控制路由设备自动调整波束(比如,根据波束赋形算法),最终使得终端设备能够接收到路由设备300a提供的窄波束,从而终端设备能获取到路由设备提供的增益较大且覆盖精准的信号。不需要用户手动操作,或携带任何设备,路由设备自动根据用户位置进行调节。
根据第七方面,中枢设备获取到用户与终端设备两者的距离小于预设的误差范围,则向路由设备发送第一消息。用户与终端设备两者的距离小于预设的误差范围,表示用户与终端设备在同一位置,即可以认为用户使用该终端设备。也就是说,如果确定用户使用终端设备,则调整路由设备的波束。
根据第七方面,或者以上第七方面的任意一种实施方式,如果中枢设备获取到用户的位置变化大于第一预设范围;或者,中枢设备获取到终端设备的位置变化大于第二预设范围;则获取在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、用户的位置信息。
在该方式中,如果确定用户移动位置,或终端设备移动位置,则触发路由设备调整波束。实现路由设备波束对准用户。
第八方面,本申请提供了一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括路由设备和N个终端设备;R和N分别为大于或等于1的正整数。
基于第一电子设备对R个第二电子设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、M个用户的位置信息;M个用户和N个终端设备中的距离在预设的误差范围内的个数为M1,M1>0;中枢设备向路由设备发送第一消息;路由设备接收到第一消息,根据路由设备的位置和M1个用户的位置调整波束;使得波束最大增益点以时分复用方式轮流指向M1个用户位置。
在该方式中,对于有M个用户的情形,可以获取到M个用户的位置以及N个终端设备的位置,进而可以获取到有M1个位置为N个终端设备的位置与M个用户的位置一致或者误差在预设范围内的位置,则可以控制路由设备自动调整波束(比如,根据波束赋形算法),路由设备通过时分复用等方式向M1个位置提供窄脉冲信号,由于时分的时隙较短,用户感知不到,最终使得路由设备提供的波束最大增益点通过时 分复用的方式,都指向M1个位置的终端设备,M1个位置的终端设备都能接收到路由设备提供的窄波束。
根据第八方面,中枢设备获取到M个用户中至少一个用户的位置变化大于第一预设范围;或者,中枢设备获取到N个终端设备中至少一个终端设备的位置变化大于第二预设范围;则获取在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、M个用户的位置信息。
在该方式中,如果确定至少一个用户移动位置,或至少一个终端设备移动位置,则触发路由设备调整波束。实现路由设备波束轮流对准每个用户。
第九方面,本申请提供了一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,该移动设备包括第二超宽带模块;R为大于或等于1的正整数。基于第一电子设备对移动设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和用户的位置信息;中枢设备向第一设备发送第一消息;第一设备接收到第一消息,清洁全屋内除用户所属的第一区域之外的区域。
在该方式中,清洁设备根据用户位置,在进行清洁时自动避开用户所在的房间或区域,避免打扰用户。
根据第九方面,基于第一电子设备对移动设备的位置测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,M个家具的位置信息;中枢设备获取到用户与M个家具中的一个家具两者的距离小于预设的第一误差范围,可选的,中枢设备还获取到用户的姿势为躺或坐的姿势,则向第一设备发送第一消息。
在该方式中,如果确定用户正在休息,则不清扫用户所在房间或区域。
根据第九方面,或者以上第九方面的任意一种实施方式,如果用户与第一设备属于同一区域,第一设备接收到第一消息之后,离开用户属于的第一区域。
根据第九方面,或者以上第九方面的任意一种实施方式,中枢设备获取到用户在预设时长内的变化大于或等于预设的第二误差范围;中枢设备向第一设备发送第三消息;第一设备接收到第三消息,进入用户属于的第一区域。
在该方式中,如果确定用户开始活动或者用户离开该房间或区域,清洁设备自动进入该房间或区域进行清洁。
根据第九方面,或者以上第九方面的任意一种实施方式,基于第一电子设备对移动设备的位置测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,全屋内每个区域的坐标范围;中枢设备向第一设备发送全屋内每个区域的坐标范围信息;第一设备根据全屋内每个区域的坐标范围信息进行清洁。
第十方面,本申请提供了一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、 第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;中枢设备获取到一个或多个用户中,与第一设备的距离小于预设的第一误差范围的第一用户;中枢设备获取到第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项;中枢设备向第一设备发送第一消息,第一消息包括第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
在该方式中,无需用户手动输入信息,也无需用户携带任何设备,自动获取用户的身高、呼吸频率、心跳频率等人体信息,以获取用户的身体数据。
根据第十方面,第一设备接收到第一消息,根据第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项获取所述第一用户的脂肪率、身体质量指数BMI、肌肉量、基础代谢率、内脏脂肪等级中至少一项。
根据第十方面,或者以上第十方面的任意一种实施方式,第一设备向中枢设备发送第一请求消息,第一请求消息用于指示中枢设备获取用户数据;中枢设备接收到第一请求消息,则获取与第一设备的距离小于预设的第一误差范围的第一用户。
在该方式中,健康管理设备触发中枢设备获取用户身高、呼吸频率、心跳频率等信息。
根据第十方面,或者以上第十方面的任意一种实施方式,该R个第二电子设备包括一个移动设备,移动设备包括第二超宽带模块,第一电子设备对第一设备的位置测量包括:第一电子设备对移动设备的位置进行测量;根据移动设备的位置测量第一设备的位置。在该实施方式中,第一设备不包括UWB模块,则可以通过包括UWB模块的移动设备对其进行标定。
第十一方面,本申请提供了一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;第一设备距离地面为第一高度;中枢设备获取到一个或多个用户中第一用户与第一设备的距离小于预设的第一距离,可选的,中枢设备还获取到第一用户做出预设动作,则向第一设备发送第一消息;第一设备接收到第一消息,下降至距离地面第二高度;其中,第二高度小于第一高度。
在该方式中,晾晒设备根据用户位置自动下降,不需用户手动操作,提高了用户使用体验。
根据第十一方面,中枢设备获取第一用户的身高信息;中枢设备向第一设备发送指示信息,指示信息用于指示第一用户的身高;第一设备接收该指示信息,根据指示 信息获取第二高度。
在该方式中,根据用户身高确定晾晒设备下降的高度。
根据第十一方面,或者以上第十一方面的任意一种实施方式,中枢设备获取到第一用户与第一设备的距离小于预设的第一距离持续的时长大于预设值;则向第一设备发送第一消息。
在该方式中,如果确定用户在晾晒设备旁停留一定时长,才下降;避免误操作。
根据第十一方面,或者以上第十一方面的任意一种实施方式,中枢设备获取到第一用户与第一设备的距离大于或等于预设的第一距离,向第一设备发送第二消息;第一设备接收到第二消息,上升至距离地面第一高度。
在该方式中,晾晒设备根据用户位置自动上升,不需用户手动操作,提高了用户使用体验。
根据第十一方面,或者以上第十一方面的任意一种实施方式,该R个第二电子设备包括一个移动设备,移动设备包括第二超宽带模块,第一电子设备对第一设备的位置测量包括:第一电子设备对移动设备的位置进行测量;根据移动设备的位置测量第一设备的位置。在该实施方式中,第一设备不包括UWB模块,则可以通过包括UWB模块的移动设备对其进行标定。
第十二方面,本申请提供了一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,该系统包括中枢设备、第一电子设备和R个第二电子设备;中枢设备、第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;如果第一设备的位置与一个或多个用户中第一用户的位置之间满足预设条件,中枢设备通知第一设备调节灯光;第一设备根据中枢设备的通知调节灯光。
在该方式中,根据用户与照明设备的相对位置自动调节照明设备的开关、亮度和颜色等;提高用户使用体验。
在一种实施方式中,预设条件包括:第一用户进入第一设备所属的第一区域;或者,第一用户与第一设备的距离小于或等于预设距离;或者,第一用户进入第一设备预设方向上的第二区域;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第一消息;第一消息用于指示第一设备点亮。可选的,中枢设备获取第一用户的身份,及与第一用户的身份对应的第一亮度值;中枢设备向第一设备发送第一指示信息,第一指示信息用于指示第一亮度值;第一设备接收到第一指示信息,根据第一指示信息点亮第一亮度值。可选的,中枢设备获取第一用户的身份,及与第一用户的身份对应的第一颜色;中枢设备向第一设备发送第二指示信息,第二指示信息用于指示第一颜色;第一设备接收到第二指示信息,根据第二指示信息点亮第一颜色。
在一种实施方式中,预设条件包括:第一用户离开第一设备所属的第一区域;或者,第一用户与第一设备的距离大于预设距离;或者,第一用户离开第一设备预设方 向上的第二区域;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第二消息,第二消息用于指示第一设备熄灭。
在一种实施方式中,预设条件包括:第一用户与第一设备的距离改变;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第三消息,第三消息用于指示第一设备减小亮度;或者,中枢设备向第一设备发送第四消息,第四消息用于指示第一设备增大亮度。
根据第十二方面,该R个第二电子设备包括一个移动设备,移动设备包括第二超宽带模块,第一电子设备对第一设备的位置测量包括:第一电子设备对移动设备的位置进行测量;根据移动设备的位置测量第一设备的位置。在该实施方式中,第一设备不包括UWB模块,则可以通过包括UWB模块的移动设备对其进行标定。
第十三方面,本申请提供了一种中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括路由设备和终端设备;R为大于或等于1的正整数。
基于第一电子设备对R个第二电子设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、用户的位置信息;中枢设备向路由设备发送第一消息;第一消息用于指示路由设备根据路由设备的位置和用户的位置调整波束,使得调整后波束的最大增益点指向用户。
在该方式中,根据用户的位置、路由设备和终端设备的位置,控制路由设备自动调整波束(比如,根据波束赋形算法),最终使得终端设备能够接收到路由设备300a提供的窄波束,从而终端设备能获取到路由设备提供的增益较大且覆盖精准的信号。不需要用户手动操作,或携带任何设备,路由设备自动根据用户位置进行调节。
根据第十三方面,中枢设备获取到用户与终端设备两者的距离小于预设的误差范围,则向路由设备发送第一消息。用户与终端设备两者的距离小于预设的误差范围,表示用户与终端设备在同一位置,即可以认为用户使用该终端设备。也就是说,如果确定用户使用终端设备,则调整路由设备的波束。
根据第十三方面,或者以上第十三方面的任意一种实施方式,如果中枢设备获取到用户的位置变化大于第一预设范围;或者,中枢设备获取到终端设备的位置变化大于第二预设范围;则获取在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、用户的位置信息。
在该方式中,如果确定用户移动位置,或终端设备移动位置,则触发路由设备调整波束。实现路由设备波束对准用户。
第十四方面,本申请提供了一种中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括路由设备和N个终端设备;R和N分别为大于或等于1的正整数。
基于第一电子设备对R个第二电子设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,R 个第二电子设备的位置信息、M个用户的位置信息;M个用户和N个终端设备中的距离在预设的误差范围内的个数为M1,M1>0;中枢设备向路由设备发送第一消息;第一消息用于指示路由设备根据路由设备的位置和M1个用户的位置调整波束,使得波束最大增益点以时分复用方式轮流指向M1个用户位置。
在该方式中,对于有M个用户的情形,可以获取到M个用户的位置以及N个终端设备的位置,进而可以获取到有M1个位置为N个终端设备的位置与M个用户的位置一致或者误差在预设范围内的位置,则可以控制路由设备自动调整波束(比如,根据波束赋形算法),路由设备通过时分复用等方式向M1个位置提供窄脉冲信号,由于时分的时隙较短,用户感知不到,最终使得路由设备提供的波束最大增益点通过时分复用的方式,都指向M1个位置的终端设备,M1个位置的终端设备都能接收到路由设备提供的窄波束。
根据第十四方面,中枢设备获取到M个用户中至少一个用户的位置变化大于第一预设范围;或者,中枢设备获取到N个终端设备中至少一个终端设备的位置变化大于第二预设范围;则获取在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、M个用户的位置信息。
在该方式中,如果确定至少一个用户移动位置,或至少一个终端设备移动位置,则触发路由设备调整波束。实现路由设备波束轮流对准每个用户。
第十五方面,本申请提供了一种中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,移动设备包括第二超宽带模块;R为大于或等于1的正整数。基于第一电子设备对移动设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和用户的位置信息;中枢设备向第一设备发送第一消息;第一消息用于指示第一设备清洁全屋内除用户所属的第一区域之外的区域。
在该方式中,清洁设备根据用户位置,在进行清洁时自动避开用户所在的房间或区域,避免打扰用户。
根据第十五方面,基于第一电子设备对移动设备的位置测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,M个家具的位置信息;中枢设备获取到用户与M个家具中的一个家具两者的距离小于预设的第一误差范围,可选的,中枢设备还获取到用户的姿势为躺或坐的姿势,则向第一设备发送第一消息。
在该方式中,如果确定用户正在休息,则不清扫用户所在房间或区域。
根据第十五方面,或者以上第十五方面的任意一种实施方式,中枢设备获取到用户在预设时长内的变化大于或等于预设的第二误差范围;中枢设备向第一设备发送第三消息;第三消息用于指示第一设备进入用户属于的第一区域。
在该方式中,如果确定用户开始活动或者用户离开该房间或区域,清洁设备自动进入该房间或区域进行清洁。
根据第十五方面,或者以上第十五方面的任意一种实施方式,基于第一电子设备 对移动设备的位置测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,全屋内每个区域的坐标范围;中枢设备向第一设备发送全屋内每个区域的坐标范围信息;第一设备根据全屋内每个区域的坐标范围信息进行清洁。
第十六方面,本申请提供了一种中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,移动设备包括第二超宽带模块;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;中枢设备获取到一个或多个用户中,与第一设备的距离小于预设的第一误差范围的第一用户;中枢设备获取到第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项;中枢设备向第一设备发送第一消息,第一消息包括第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
在该方式中,无需用户手动输入信息,也无需用户携带任何设备,自动获取用户的身高、呼吸频率、心跳频率等人体信息,以获取用户的身体数据。
根据第十六方面,或者以上第十六方面的任意一种实施方式,中枢设备从第一设备接收第一请求消息,则获取与第一设备的距离小于预设的第一误差范围的第一用户。其中,第一请求消息用于指示中枢设备获取用户数据。
在该方式中,健康管理设备触发中枢设备获取用户身高、呼吸频率、心跳频率等信息。
第十七方面,本申请提供了一种中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,移动设备包括第二超宽带模块;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;第一设备距离地面为第一高度;中枢设备获取到一个或多个用户中第一用户与第一设备的距离小于预设的第一距离,可选的,中枢设备还获取到第一用户做出预设动作,则向第一设备发送第一消息;第一消息用于指示第一设备下降至距离地面第二高度;第二高度小于第一高度。
在该方式中,晾晒设备根据用户位置自动下降,不需用户手动操作,提高了用户使用体验。
根据第十七方面,中枢设备获取第一用户的身高信息;中枢设备向第一设备发送指示信息,指示信息用于指示第一用户的身高;第一用户的身高用于获取第二高度。
在该方式中,根据用户身高确定晾晒设备下降的高度。
根据第十七方面,或者以上第十七方面的任意一种实施方式,中枢设备获取到第 一用户与第一设备的距离小于预设的第一距离持续的时长大于预设值;则向第一设备发送第一消息。
在该方式中,如果确定用户在晾晒设备旁停留一定时长,才下降;避免误操作。
根据第十七方面,或者以上第十七方面的任意一种实施方式,中枢设备获取到第一用户与第一设备的距离大于或等于预设的第一距离,向第一设备发送第二消息;第二消息用于指示第一设备上升至距离地面第一高度。
在该方式中,晾晒设备根据用户位置自动上升,不需用户手动操作,提高了用户使用体验。
第十八方面,本申请提供了一种中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,移动设备包括第二超宽带模块;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;如果第一设备的位置与一个或多个用户中第一用户的位置之间满足预设条件,中枢设备通知第一设备调节灯光。
在该方式中,根据用户与照明设备的相对位置自动调节照明设备的开关、亮度和颜色等;提高用户使用体验。
在一种实施方式中,预设条件包括:第一用户进入第一设备所属的第一区域;或者,第一用户与第一设备的距离小于或等于预设距离;或者,第一用户进入第一设备预设方向上的第二区域;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第一消息;第一消息用于指示第一设备点亮。可选的,中枢设备获取第一用户的身份,及与第一用户的身份对应的第一亮度值;中枢设备向第一设备发送第一指示信息,第一指示信息用于指示第一亮度值;第一设备接收到第一指示信息,根据第一指示信息点亮第一亮度值。可选的,中枢设备获取第一用户的身份,及与第一用户的身份对应的第一颜色;中枢设备向第一设备发送第二指示信息,第二指示信息用于指示第一颜色;第一设备接收到第二指示信息,根据第二指示信息点亮第一颜色。
在一种实施方式中,预设条件包括:第一用户离开第一设备所属的第一区域;或者,第一用户与第一设备的距离大于预设距离;或者,第一用户离开第一设备预设方向上的第二区域;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第二消息,第二消息用于指示第一设备熄灭。
在一种实施方式中,预设条件包括:第一用户与第一设备的距离改变;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第三消息,第三消息用于指示第一设备减小亮度;或者,中枢设备向第一设备发送第四消息,第四消息用于指示第一设备增大亮度。
第十九方面,本申请提供了一种基于人体感知的自动控制方法,应用于中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫 米波雷达模块;R个第二电子设备包括路由设备和终端设备;R为大于或等于1的正整数。
基于第一电子设备对R个第二电子设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、用户的位置信息;中枢设备向路由设备发送第一消息;第一消息用于指示路由设备根据路由设备的位置和用户的位置调整波束,使得调整后波束的最大增益点指向用户。
在该方式中,根据用户的位置、路由设备和终端设备的位置,控制路由设备自动调整波束(比如,根据波束赋形算法),最终使得终端设备能够接收到路由设备300a提供的窄波束,从而终端设备能获取到路由设备提供的增益较大且覆盖精准的信号。不需要用户手动操作,或携带任何设备,路由设备自动根据用户位置进行调节。
根据第十九方面,中枢设备获取到用户与终端设备两者的距离小于预设的误差范围,则向路由设备发送第一消息。用户与终端设备两者的距离小于预设的误差范围,表示用户与终端设备在同一位置,即可以认为用户使用该终端设备。也就是说,如果确定用户使用终端设备,则调整路由设备的波束。
根据第十九方面,或者以上第十九方面的任意一种实施方式,如果中枢设备获取到用户的位置变化大于第一预设范围;或者,中枢设备获取到终端设备的位置变化大于第二预设范围;则获取在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、用户的位置信息。
在该方式中,如果确定用户移动位置,或终端设备移动位置,则触发路由设备调整波束。实现路由设备波束对准用户。
第二十方面,本申请提供了一种基于人体感知的自动控制方法,应用于中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括路由设备和N个终端设备;R和N分别为大于或等于1的正整数。
基于第一电子设备对R个第二电子设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、M个用户的位置信息;M个用户和N个终端设备中的距离在预设的误差范围内的个数为M1,M1>0;中枢设备向路由设备发送第一消息;第一消息用于指示路由设备根据路由设备的位置和M1个用户的位置调整波束,使得波束最大增益点以时分复用方式轮流指向M1个用户位置。
在该方式中,对于有M个用户的情形,可以获取到M个用户的位置以及N个终端设备的位置,进而可以获取到有M1个位置为N个终端设备的位置与M个用户的位置一致或者误差在预设范围内的位置,则可以控制路由设备自动调整波束(比如,根据波束赋形算法),路由设备通过时分复用等方式向M1个位置提供窄脉冲信号,由于时分的时隙较短,用户感知不到,最终使得路由设备提供的波束最大增益点通过时分复用的方式,都指向M1个位置的终端设备,M1个位置的终端设备都能接收到路由设备提供的窄波束。
根据第二十方面,中枢设备获取到M个用户中至少一个用户的位置变化大于第一预设范围;或者,中枢设备获取到N个终端设备中至少一个终端设备的位置变化大于第二预设范围;则获取在中枢设备提供的全屋坐标系下,R个第二电子设备的位置信息、M个用户的位置信息。
在该方式中,如果确定至少一个用户移动位置,或至少一个终端设备移动位置,则触发路由设备调整波束。实现路由设备波束轮流对准每个用户。
第二十一方面,本申请提供了一种基于人体感知的自动控制方法,应用于中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,移动设备包括第二超宽带模块;R为大于或等于1的正整数。基于第一电子设备对移动设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和用户的位置信息;中枢设备向第一设备发送第一消息;第一消息用于指示第一设备清洁全屋内除用户所属的第一区域之外的区域。
在该方式中,清洁设备根据用户位置,在进行清洁时自动避开用户所在的房间或区域,避免打扰用户。
根据第二十一方面,基于第一电子设备对移动设备的位置测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,M个家具的位置信息;中枢设备获取到用户与M个家具中的一个家具两者的距离小于预设的第一误差范围,可选的,中枢设备还获取到用户的姿势为躺或坐的姿势,则向第一设备发送第一消息。
在该方式中,如果确定用户正在休息,则不清扫用户所在房间或区域。
根据第二十一方面,或者以上第二十一方面的任意一种实施方式,中枢设备获取到用户在预设时长内的变化大于或等于预设的第二误差范围;中枢设备向第一设备发送第三消息;第三消息用于指示第一设备进入用户属于的第一区域。
在该方式中,如果确定用户开始活动或者用户离开该房间或区域,清洁设备自动进入该房间或区域进行清洁。
根据第二十一方面,或者以上第二十一方面的任意一种实施方式,基于第一电子设备对移动设备的位置测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,全屋内每个区域的坐标范围;中枢设备向第一设备发送全屋内每个区域的坐标范围信息;第一设备根据全屋内每个区域的坐标范围信息进行清洁。
第二十二方面,本申请提供了一种基于人体感知的自动控制方法,应用于中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,移动设备包括第二超宽带模块;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与 第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;中枢设备获取到一个或多个用户中,与第一设备的距离小于预设的第一误差范围的第一用户;中枢设备获取到第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项;中枢设备向第一设备发送第一消息,第一消息包括第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
在该方式中,无需用户手动输入信息,也无需用户携带任何设备,自动获取用户的身高、呼吸频率、心跳频率等人体信息,以获取用户的身体数据。
根据第二十二方面,或者以上第二十二方面的任意一种实施方式,中枢设备从第一设备接收第一请求消息,则获取与第一设备的距离小于预设的第一误差范围的第一用户。其中,第一请求消息用于指示中枢设备获取用户数据。
在该方式中,健康管理设备触发中枢设备获取用户身高、呼吸频率、心跳频率等信息。
第二十三方面,本申请提供了一种基于人体感知的自动控制方法,应用于中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,移动设备包括第二超宽带模块;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;第一设备距离地面为第一高度;中枢设备获取到一个或多个用户中第一用户与第一设备的距离小于预设的第一距离,可选的,中枢设备还获取到第一用户做出预设动作,则向第一设备发送第一消息;第一消息用于指示第一设备下降至距离地面第二高度;第二高度小于第一高度。
在该方式中,晾晒设备根据用户位置自动下降,不需用户手动操作,提高了用户使用体验。
根据第二十三方面,中枢设备获取第一用户的身高信息;中枢设备向第一设备发送指示信息,指示信息用于指示第一用户的身高;第一用户的身高用于获取第二高度。
在该方式中,根据用户身高确定晾晒设备下降的高度。
根据第二十三方面,或者以上第二十三方面的任意一种实施方式,中枢设备获取到第一用户与第一设备的距离小于预设的第一距离持续的时长大于预设值;则向第一设备发送第一消息。
在该方式中,如果确定用户在晾晒设备旁停留一定时长,才下降;避免误操作。
根据第二十三方面,或者以上第二十三方面的任意一种实施方式,中枢设备获取到第一用户与第一设备的距离大于或等于预设的第一距离,向第一设备发送第二消息;第二消息用于指示第一设备上升至距离地面第一高度。
在该方式中,晾晒设备根据用户位置自动上升,不需用户手动操作,提高了用户使用体验。
第二十四方面,本申请提供了一种基于人体感知的自动控制方法,应用于中枢设备,该中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者 中的任意两者以有线通信或无线通信的方式通信;第一电子设备包括第一超宽带模块和毫米波雷达模块;R个第二电子设备包括一个第一设备和一个移动设备,移动设备包括第二超宽带模块;R为大于或等于1的正整数。
基于第一电子设备对第一设备的位置测量、人体位置的测量及转换、中枢设备与第一电子设备的通信,中枢设备获取到在中枢设备提供的全屋坐标系下,第一设备的位置信息和一个或多个用户的位置信息;如果第一设备的位置与一个或多个用户中第一用户的位置之间满足预设条件,中枢设备通知第一设备调节灯光。
在该方式中,根据用户与照明设备的相对位置自动调节照明设备的开关、亮度和颜色等;提高用户使用体验。
在一种实施方式中,预设条件包括:第一用户进入第一设备所属的第一区域;或者,第一用户与第一设备的距离小于或等于预设距离;或者,第一用户进入第一设备预设方向上的第二区域;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第一消息;第一消息用于指示第一设备点亮。可选的,中枢设备获取第一用户的身份,及与第一用户的身份对应的第一亮度值;中枢设备向第一设备发送第一指示信息,第一指示信息用于指示第一亮度值;第一设备接收到第一指示信息,根据第一指示信息点亮第一亮度值。可选的,中枢设备获取第一用户的身份,及与第一用户的身份对应的第一颜色;中枢设备向第一设备发送第二指示信息,第二指示信息用于指示第一颜色;第一设备接收到第二指示信息,根据第二指示信息点亮第一颜色。
在一种实施方式中,预设条件包括:第一用户离开第一设备所属的第一区域;或者,第一用户与第一设备的距离大于预设距离;或者,第一用户离开第一设备预设方向上的第二区域;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第二消息,第二消息用于指示第一设备熄灭。
在一种实施方式中,预设条件包括:第一用户与第一设备的距离改变;中枢设备通知第一设备调节灯光包括:中枢设备向第一设备发送第三消息,第三消息用于指示第一设备减小亮度;或者,中枢设备向第一设备发送第四消息,第四消息用于指示第一设备增大亮度。
第二十五方面,本申请提供了一种计算机可读存储介质。计算机可读存储介质包括计算机程序,当计算机程序在电子设备上运行时,使得电子设备执行如第十九方面或第十九方面任意一种实施方式的方法,或执行如第二十方面或第二十方面任意一种实施方式的方法,或执行如第二十一方面或第二十一方面任意一种实施方式的方法,或执行如第二十二方面或第二十二方面任意一种实施方式的方法,或执行如第二十三方面或第二十三方面任意一种实施方式的方法,或执行如第二十四方面或第二十四方面任意一种实施方式的方法。
第二十六方面,本申请提供了一种计算机程序产品。当计算机程序产品在电子设备上运行时,使得电子设备执行如第十九方面或第十九方面任意一种实施方式的方法,或执行如第二十方面或第二十方面任意一种实施方式的方法,或执行如第二十一方面或第二十一方面任意一种实施方式的方法,或执行如第二十二方面或第二十二方面任意一种实施方式的方法,或执行如第二十三方面或第二十三方面任意一种实施方式的方法,或执行如第二十四方面或第二十四方面任意一种实施方式的方法。
第二十五方面及第二十五方面的任意一种实施方式分别与第十九方面或第十九方面任意一种实施方式,或第二十方面或第二十方面任意一种实施方式,或第二十一方面或第二十一方面任意一种实施方式,或第二十二方面或第二十二方面任意一种实施方式,或第二十三方面或第二十三方面任意一种实施方式,或第二十四方面或第二十四方面任意一种实施方式相对应。第二十五方面及第二十五方面中任意一种实施方式所对应的技术效果可参见上述相应的实施方式所对应的技术效果,此处不再赘述。
第二十六方面及第二十六方面的任意一种实施方式分别与第十九方面或第十九方面任意一种实施方式,或第二十方面或第二十方面任意一种实施方式,或第二十一方面或第二十一方面任意一种实施方式,或第二十二方面或第二十二方面任意一种实施方式,或第二十三方面或第二十三方面任意一种实施方式,或第二十四方面或第二十四方面任意一种实施方式相对应。第二十六方面及第二十六方面中任意一种实施方式所对应的技术效果可参见上述相应的实施方式所对应的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的基于人体感知的自动控制方法的一种场景示意图;
图2为本申请实施例提供的自动控制方法中第一电子设备的结构示意图;
图3为本申请实施例提供的自动控制方法中中枢设备的结构示意图;
图4为本申请实施例提供的自动控制方法中第二电子设备的结构示意图;
图5A为本申请提供的第一电子设备中超宽带(Ultra-Wide Band,UWB)模块的结构示意图;
图5B为本申请实施例提供的第一电子设备中毫米波雷达模块的结构示意图;
图6为本申请实施例提供的第二电子设备中UWB模块的结构示意图;
图7为本申请实施例提供的第一电子设备中UWB模块的数种天线分布示意图;
图8为本申请实施例提供的第一电子设备中毫米波雷达模块的数种天线分布示意图;
图9为本申请实施例提供的在第一电子设备的UWB模块包括三个天线的情形下,第一坐标系的数种建立方式示意图;
图10为本申请实施例提供的第二坐标系的一种建立方式的示意图;
图11为本申请实施例提供的第三坐标系的一种建立方式的示意图;
图12为本申请实施例提供的在第一坐标系下,第二电子设备的坐标计算的原理示意图;
图13为本申请实施例提供的对第二电子设备的数种标记方式的示意图;
图14为本申请实施例提供的对空间区域的标记方式的示意图;
图15为本申请实施例提供的第二坐标系相对于第一坐标系的俯仰角
Figure PCTCN2022117923-appb-000001
方位角
Figure PCTCN2022117923-appb-000002
和横滚角
Figure PCTCN2022117923-appb-000003
的示意图;
图16为本申请实施例提供的第三坐标系相对于第一坐标系的俯仰角
Figure PCTCN2022117923-appb-000004
方位角
Figure PCTCN2022117923-appb-000005
和横滚角
Figure PCTCN2022117923-appb-000006
的示意图;
图17为本申请实施例提供的第四坐标系的一种建立方式的示意图;
图18为本申请实施例提供的毫米波雷达确定反射点的距离和径向速度的原理示意图;
图19为本申请实施例提供的毫米波雷达确定反射点的反射信号的信号来向的原理示意图;
图20为本申请实施例提供的在第四坐标系下,第一电子设备确定用户的坐标的原理示意图;
图21为本申请实施例提供的在第四坐标系下,第一电子设备确定用户的坐标的方法示意图;
图22为本申请实施例提供的一种毫米波雷达获取用户的呼吸频率和心跳频率的方法示意图;
图23为本申请实施例提供的一种毫米波雷达确定用户的人体姿态的一种方法示意图;
图24为本申请实施例提供的第一电子设备中第一坐标系和第四坐标系的转换示意图;
图25为本申请实施例提供的建立全屋坐标系(第五坐标系)、第一坐标系与第六坐标系(地理坐标系)一种示例的示意图;
图26为本申请实施例提供的全屋场景下,基于人体感知的自动控制方法的流程及原理示意图;
图27为本申请实施例提供的一种校正第一电子设备安装误差的流程示意图;
图28为本申请实施例提供的一种ICP算法原理示意图;
图29为本申请实施例提供的区域划分及用户界面的示意图;
图30为本申请实施例提供的全屋场景下,基于人体感知的路由设备自动调整波束方法的场景示意图;
图31为本申请实施例提供的全屋场景下,基于人体感知的路由设备自动调整波束方法的一种流程示意图;
图32为本申请实施例提供的全屋场景下,基于人体感知的路由设备自动调整波束方法的另一种流程示意图;
图33为本申请实施例提供的全屋场景下,基于人体感知的清洁设备自动调整清洁区域方法的场景示意图;
图34为本申请实施例提供的全屋场景下,基于人体感知的清洁设备自动调整清洁区域方法的一种流程示意图;
图35为本申请实施例提供的全屋场景下,基于人体感知的清洁设备自动调整清洁区域方法的另一种流程示意图;
图36为本申请实施例提供的全屋场景下,基于人体感知的清洁设备自动调整清洁区域方法中指定区域的示意图;
图37为本申请实施例提供的全屋场景下,基于人体感知的健康管理设备自动获取人体信息方法的场景示意图;
图38A为本申请实施例提供的全屋场景下,基于人体感知的健康管理设备自动获取人体信息方法的一种流程示意图;
图38B为本申请实施例提供的全屋场景下,基于人体感知的健康管理设备自动获取人体信息方法的另一种流程示意图;
图39为本申请实施例提供的全屋场景下,基于人体感知的晾晒设备自动升降方法的场景示意图;
图40为本申请实施例提供的全屋场景下,基于人体感知的晾晒设备自动升降方法的一种流程示意图;
图41A为本申请实施例提供的全屋场景下,基于人体感知的照明设备自动调节灯光方法的场景示意图;
图41B为本申请实施例提供的全屋场景下,基于人体感知的照明设备自动调节灯光方法中光照区域的示意图;
图42为本申请实施例提供的全屋场景下,基于人体感知的照明设备自动调节灯光方法的一种流程示意图;
图43为本申请实施例提供的第一电子设备的结构示意图;
图44为本申请实施例提供的第二电子设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个或两个以上(包含两个)。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。术语“连接”包括直接连接和间接连接,除非另外说明。“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
一、整体场景介绍
示例性地,图1为本申请实施例提供的基于人体感知的自动控制方法的一种场景示意图。如图1的(a)所示,全屋包括入户过道、厨房、餐厅、客厅、阳台、主卧、 次卧、卫生间等。全屋设置有至少一个第一电子设备。示例性地,每个房间或区域包括至少一个第一电子设备。全屋还设置有第二电子设备(比如,IoT设备)。具体来说,厨房设置有电饭煲或电压力锅、燃气设备等;客厅设置有音箱(比如,智能音箱)、电视(比如,智能电视,也称为智慧屏、大屏等)、路由设备等;阳台设置有晾衣架(比如,智能晾衣架等);餐厅设置有扫地机器人等;主卧设置有电视(比如,智能电视)、音箱(比如,智能音箱)、落地灯(比如,智能落地灯)、路由设备等;次卧设置有台灯(比如,智能台灯)、音箱(比如,智能音箱)等;卫生间设置有体脂秤等。
本申请实施例提供的基于人体感知的自动控制方法,包括全屋场景下的基于人体感知的自动控制方法,还包括单个房间或区域下的基于人体感知的自动控制方法。本申请实施例提供的基于人体感知的自动控制方法,应用于通信系统。相应地,该通信系统包括全屋场景下的基于人体感知的通信系统(也可称为全屋智能系统),以及单个房间或区域下的基于人体感知的通信系统(也可称为房间智能系统或区域智能系统)。该通信系统包括至少一个第一电子设备100,至少一个第二电子设备300。另外,该通信系统还可包括中枢设备200。
第一电子设备100用于对第二电子设备300和/或用户进行定位。第一电子设备100可以包括传感器。在一种示例中,第一电子设备100包括超宽带(Ultra-Wide Band,UWB)模块和毫米波雷达模块。UWB模块用于对第二电子设备300进行定位,毫米波雷达模块用于对用户进行定位。
UWB技术是一种无线电通信技术,不使用载波调制信号,而是使用纳秒或微秒级以下的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。UWB具有频谱宽、精度高、低功耗、抗多径能力强、安全性高、系统复杂度低等特点,多用于短距离、高速率的无线通信,尤其在室内定位领域具备巨大优势。一般来说,UWB系统的定位精度可以达到厘米级别。UWB系统包括UWB基站和UWB标签。UWB基站通过检测UWB标签与UWB基站之间的距离,以及UWB标签的信号来向,确定UWB标签的位置(坐标);即对UWB标签进行定位。其中,通过UWB定位是基于UWB坐标系(也称第一坐标系)来定位的。
在一种示例中,第二电子设备包括UWB模块。第一电子设备100的UWB模块实现UWB基站功能,第二电子设备的UWB模块实现UWB标签功能。通过第一电子设备100的UWB模块对第二电子设备的UWB模块定位,可以实现第一电子设备100对第二电子设备的定位。
在另一种示例中,有的第二电子设备不包括UWB模块。通常来说,包括UWB模块的第二电子设备为移动设备(比如,智能手机、遥控器等)。这样,可以利用包括UWB模块的第二电子设备对未包括UWB模块的第二电子设备进行标注,实现第一电子设备100对未包括UWB模块的第二电子设备的定位。具体的标注方法将在后面详细介绍。
毫米波雷达工作在毫米波(millimeter wave)波段,主要用于探测移动的物体,其工作频段分布于30~300GHz频域(波长为1~10mm)上。毫米波雷达在工作时持续发射(辐射)特定形式的无线电磁信号,并接收物体反射的电磁回波信号,通过比较发 射信号与接收信号之间的差异确定物体的空间信息。毫米波雷达具有体积小和空间分辨率高的特点;部署在室内,可以用于检测人体(用户)在全屋内的位置、生理特征(比如,呼吸频率、心跳频率等)、身份类别(比如,成人、儿童等)和人体姿态(比如站立、坐、躺等)信息。这样,第一电子设备100可以通过集成的毫米波雷达模块,对用户定位,甚至检测用户的生理特征、身份类别和人体姿态等信息。具体方法在后面详细介绍。
其中,通过毫米波雷达定位是基于毫米波雷达坐标系(也称第二坐标系)来定位的。第二坐标系与第一坐标系两者分别定位的坐标,需要转换或统一到同一坐标系下。具体的坐标系转换方法在后面详细介绍。
需要说明的是,本申请实施例以一个第一电子设备100包括UWB模块和毫米波雷达为例进行介绍。在另一些实施例中,第一电子设备100可以仅包括UWB模块或毫米波雷达,包括UWB模块的第一电子设备100用于对第二电子设备300进行定位,包括毫米波雷达的第一电子设备100用于对用户进行定位。上述的两种类型的第一电子设备100相互配合,也能实现本申请实施例提供的基于人体感知的自动控制方法。本申请实施例对此并不限定。
第一电子设备100可以获取第二电子设备300的位置(即对第二电子设备进行定位),还可以获取房间或区域内用户的位置(即对用户进行定位)。全屋包括至少一个房间或区域,如果在全屋只设置一个第一电子设备的话,由于墙壁遮挡等原因可能导致信号衰减等,这样一个第一电子设备不能覆盖全屋所有区域。因此,一般在全屋设置有多个第一电子设备。比如,在全屋内每个相对独立的空间(比如,客厅、卧室、书房、阳台、卫生间、厨房、过道等)分别设置一个第一电子设备,用于对该独立空间内的第二电子设备和用户进行定位;这样,全屋内任意位置的第二电子设备或用户,都可以被第一电子设备检测到。
示例性地,如图1的(a)所示,入户过道设置的第一电子设备的收发信号范围可以覆盖入户过道。厨房设置的第一电子设备的收发信号范围可以覆盖厨房。客厅设置的第一电子设备的收发信号范围可以覆盖客厅。餐厅设置的第一电子设备的收发信号范围可以覆盖餐厅。阳台设置的第一电子设备的收发信号范围可以覆盖阳台。主卧设置的第一电子设备的收发信号范围可以覆盖主卧。卫生间设置的第一电子设备的收发信号范围可以覆盖卫生间。次卧设置的第一电子设备的收发信号范围可以覆盖次卧。在一种示例中,如图1的(b)所示,第一电子设备可以设置在房间或区域的墙壁上。在一种示例中,第一电子设备可以设置在房间或区域的天花板等。这样,可以减少全屋内家具等物对信号的遮挡,避免信号被遮挡降低第一电子设备检测准确性。在一种示例中,第一电子设备可以设置在房间或区域的地面等。可选地,第一电子设备100可以单独存在,也可以与第二电子设备集成。本申请对此不做限定。比如,第一电子设备100与智能空调集成为一个设备。
可选地,有的房间或区域可以无需设置第一电子设备;即并非所有的房间或区域均设置至少一个第一电子设备。比如,餐厅可以不设置第一电子设备。入户过道和餐厅可以共用一个第一电子设备,或者餐厅和客厅可以共用一个第一电子设备。
需要说明的是,虽然在图1的(a)中,第二电子设备300仅示出智能电视,但本 领域技术人员应当知晓,第二电子设备300包括但不限于智能电视、智能音箱、智能灯具(如吸顶灯、智能台灯、香薰灯等)、扫地机器人、体脂秤、智能晾衣架、智能电饭煲、空气净化器、加湿器、台式电脑、路由设备、智能插座、饮水机、智能冰箱、智能空调、智能开关、智能门锁等。需要说明的是,第二电子设备300也可以不是智能家居设备,而是便携设备,比如个人电脑(person computer,PC)、平板电脑、手机、智能遥控器等。本申请实施例对第二电子设备300的具体形式不做限定。
第二电子设备300和第一电子设备100可以通过有线(比如,电力总线通信(power line communication,PLC))和/或无线(比如,无线保真(wireless fidelity,Wi-Fi)、蓝牙等)方式与中枢设备200连接。可以理解的,第二电子设备300和第一电子设备100与中枢设备200连接的方式可以相同也可以不同。比如,第二电子设备300和第一电子设备100都通过无线方式与中枢设备200连接。或者,第二电子设备300通过无线方式与中枢设备200连接,第一电子设备100通过有线方式与中枢设备200连接。或者,第二电子设备300中智能音箱、智能电视、体脂称、扫地机器人等设备与中枢设备200通过无线(比如Wi-Fi)方式连接,第二电子设备300中智能台灯、智能晾衣架、智能门锁等设备通过有线方式(比如PLC)与中枢设备200连接。优选地,第一电子设备100与第二电子设备300通过无线方式通信。
在一种示例中,第一电子设备100可以将通过检测获取的第二电子设备300的位置信息,以及用户的位置、生理特征、身份类别和人体姿态等信息中的至少一项,通过有线或无线方式上传至中枢设备200。
中枢设备200,也称为中枢、中央控制系统或主机等,用于接收第一电子设备100发送的信息。可选地,中枢设备200还用于构建全屋地图,建立全屋坐标系,将各个第一电子设备100获取到的位置信息统一到全屋坐标系下,统一衡量。这样,可以将各个第一电子设备100检测获取的第二电子设备300或用户的位置信息统一到全屋坐标系中,并确定第二电子设备300或用户在全屋内的具体位置。中枢设备200还根据接收的信息(包括但不限于位置信息)通知或控制第二电子设备300。相应地,也涉及到各坐标系的转换,具体在后面详细介绍。
在一种实施方式中,中枢设备200接收第一电子设备100发送的信息,包括第二电子设备300的位置信息以及用户的位置、生理特征、身份类别和人体姿态等中的至少一项。中枢设备200根据第二电子设备300的位置信息,以及用户的位置、生理特征、身份类别和人体姿态等中的至少一项,通知或控制第二电子设备300执行预设指令。比如,当用户通过语音唤醒智能音箱时,中枢设备200根据全屋内多个智能音箱的位置,通知或控制距离用户最近的一个或多个智能音箱被唤醒。比如,当用户从全屋内一个房间移动至另一房间,中枢设备200控制用户离开的房间内的智能音箱停止播放音频,控制用户进入的房间内的智能音箱开始播放(比如,续播)音频。再比如,中枢设备200根据两个智能音箱(该两个智能音箱分别播放同一音频的左声道音频和右声道音频)与用户的距离,控制智能音箱的播放音量,使用户接收的左声道音频和右声道音频的音量一致。再比如,用户在一个房间通过智能电视观看视频(比如,视频包括暴力内容等),检测到儿童用户进入该房间,中枢设备200控制智能电视停止播放视频。再比如,中枢设备200根据用户相对于智能电视的位置(比如距离、方位 等),通知或控制智能电视开始播放或停止播放视频。
可选地,如图1的(a)所示,全屋设置有至少一个中枢设备200。各房间或各区域的第一电子设备可将检测到的用户的位置信息、本房间或本区域内的一个或多个第二电子设备的位置信息,都发送至中枢设备200。中枢设备200获取到全屋各房间或各区域的检测数据(包括但不限于位置信息),从而可以在符合预设的条件时,通知或控制相应房间或相应区域的相应第二电子设备。
可选地,还可在全屋的各房间或各区域中设置有一个中枢设备(图中未示出)。各房间或各区域的第一电子设备可将检测到的用户的位置信息、本房间或本区域内的一个或多个第二电子设备的位置信息,发送至本房间或本区域的中枢设备。本房间或本区域的中枢设备,再发送给全屋的中枢设备200。全屋的中枢设备200获取到全屋各房间或各区域的检测数据,从而可以在符合预设的条件时,通知或控制相应房间或相应区域的中枢设备。相应房间或相应区域的中枢设备再通知或控制相应的第二电子设备。
可选地,各房间或各区域的中枢设备、全屋的中枢设备均可以单独存在,也可以与第一电子设备或第二电子设备集成为一个设备,还可以与第一电子设备和第二电子设备集成为一个设备。本申请对此不做限定。
可选地,有的房间或区域可以无需设置中枢设备;即并非所有的房间或区域均设置至少一个中枢设备。比如,餐厅可以不设置中枢设备。餐厅和入户过道共用一个中枢设备,或者,餐厅和客厅共用一个中枢设备。
可选地,全屋的中枢设备200还可以承担某个房间或区域的中枢设备的功能。比如,全屋的中枢设备200还可以承担客厅的中枢设备的功能。在一种示例中,对于某个房间或区域(比如,客厅)以外的各房间或各区域,设置有一个中枢设备。全屋的中枢设备200在向上述某个房间或区域(比如,客厅)以外的各房间或各区域的第二电子设备通信时,仍然通过各房间或各区域的中枢设备;而在向上述某个房间或区域(比如,客厅)的第二电子设备通信时,不再通过上述某个房间或区域(比如,客厅)的中枢设备进行通信。
在一种示例中,该通信系统还包括路由设备(比如路由器)。路由设备用于连接局域网或因特网,使用特定协议选择和设定发送信号的路径。示例性地,全屋内部署一个或多个路由器,组成局域网,或者接入局域网或因特网。第二电子设备300或第一电子设备100接入路由器,通过路由器建立的Wi-Fi通道与局域网内的设备或互联网内的设备进行数据传输。在一种实施方式中,中枢设备200可以与路由设备集成为一个设备。比如,中枢设备200与路由设备集成为路由设备,即路由设备具有中枢设备200的功能。该路由设备可以为子母路由设备中的一个或多个路由设备,也可以为独立的路由设备。
在一种示例中,该通信系统还包括网关(Gateway)。网关又称网间连接器、协议转换器。在一种实施方式中,网关用于将第一电子设备100的信息转发给路由设备或中枢设备200。在另一种实施方式中,中枢设备200的功能可以由网关实现。
在一种示例中,该通信系统还包括服务器(比如,云服务器)。中枢设备200、路由设备或网关可以将接收到的来自第一电子设备100的信息发送至服务器。进一步 地,中枢设备200、路由设备或网关还可以将中枢设备200对第二电子设备300的控制信息发送至服务器。进一步地,中枢设备200、路由设备或网关还可以将第二电子设备300运行过程中产生的各种信息上传至服务器,提供给用户查看。
在一种示例中,该通信系统还包括一个或多个输入设备(比如,输入设备为控制面板)。示例性地,控制面板显示该通信系统的人机交互界面。用户可以在人机交互界面查看通信系统的信息(比如,通信系统中各个设备的连接信息)、第二电子设备300的运行信息和/或中枢设备200对第二电子设备300的控制信息等。用户还可以在人机交互界面通过点击屏幕或语音等方式输入控制指令,控制通信系统内的设备。
上述内容,仅是对本申请实施例提供的基于人体感知的自动控制方法的一些阐述。需要说明的是,在上述阐述的各示例或各可选地方式中,任意内容均可自由组合,组合后的内容也在本申请的范围之内。
二、涉及的电子设备的硬件结构介绍
示例性地,图2示出了一种第一电子设备100的结构示意图。
如图2所示,第一电子设备100可以包括处理器110,存储器120,电源管理模块130,电源131,无线通信模块140,UWB模块150,毫米波雷达模块160等。
可以理解的是,图2示意的结构并不构成对第一电子设备100的具体限定。在本申请另一些实施例中,第一电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。例如,处理器110是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
存储器120可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。例如,存储器120还可以存储处理器110处理后的数据。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在存储器120的指令,和/或存储在设置于处理器中的存储器的指令,执行第一电子设备100的各种功能应用以及数据处理。
电源管理模块130用于接收电源131输入。其中,电源131可以是电池,也可以是市电。电源管理模块130接收电池和/或市电的供电,为第一电子设备100的各个部件,如处理器110、存储器120、无线通信模块140、UWB模块150、毫米波雷达模块160等供电。
无线通信模块140可以提供应用在第一电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC), 红外技术(infrared,IR),紫峰(ZigBee)等无线通信的解决方案。无线通信模块140可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块140经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块140还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。需要说明的是,图4中无线通信模块140、UWB模块150和毫米波雷达模块160的天线个数仅为示例性说明。可以理解的,通信模块140、UWB模块150和毫米波雷达模块160可以包括更多或更少的天线,本申请实施例对此并不进行限定。
UWB模块150可以提供应用在第一电子设备100上的基于UWB技术的无线通信的解决方案。示例性地,UWB模块150用于实现上述UWB基站的功能。本申请实施例中,UWB基站可以对UWB标签进行定位。具体的可以通过检测UWB信号,并结合某些定位算法来计算UWB信号在空中飞行的时长,该时长乘以UWB信号在空中传输的速率(例如光速)即得到UWB标签和UWB基站之间的距离。本申请实施例中,UWB基站还可以根据UWB标签发送的UWB信号到达UWB基站的不同天线的相位差,确定UWB标签相对于UWB基站的方向(即UWB标签的信号来向)。其中,信号来向包括水平来向和铅垂来向。
示例性地,图3示出了一种中枢设备200的结构示意图。
如图3所示,中枢设备200可以包括处理器210,存储器220,电源管理模块230,电源231,无线通信模块240等。
可以理解的是,图3示意的结构并不构成对中枢设备200的具体限定。在本申请另一些实施例中,中枢设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器210可以包括一个或多个处理单元,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。例如,处理器210是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
存储器220可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。例如,存储器220还可以存储处理器210处理后的数据。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器210通过运行存储在存储器220的指令,和/或存储在设置于处理器中的存储器的指令,执行中枢设备200的各种功能应用以及数据处理。
电源管理模块230用于接收电源231输入。其中,电源231可以是电池,也可以是市电。电源管理模块230接收电池和/或市电的供电,为中枢设备200的各个部件,如处理器210、存储器220、无线通信模块240等供电。
无线通信模块240可以提供应用在中枢设备200上的包括无线局域网(wireless  local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR),紫峰(ZigBee)等无线通信的解决方案。无线通信模块240可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块240经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器210。无线通信模块240还可以从处理器210接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。
示例性地,图4示出了一种第二电子设备300的结构示意图。
如图4所示,第二电子设备300可以包括处理器310,存储器320,通用串行总线(universal serial bus,USB)接口330,电源模块340,UWB模块350,无线通信模块360等。可选地,第二电子设备300还可以包括音频模块370,扬声器370A,受话器370B,麦克风370C,耳机接口370D,显示屏380,传感器模块390等。
可以理解的是,图4示意的结构并不构成对第二电子设备300的具体限定。在本申请另一些实施例中,第二电子设备300可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。另外,图4示意的各模块间的接口连接关系,只是示意性说明,并不构成对第二电子设备300的结构限定。在本申请另一些实施例中,第二电子设备300也可以采用与图4不同的接口连接方式,或多种接口连接方式的组合。
处理器310可以包括一个或多个处理单元,例如:处理器310可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),视频编解码器,数字信号处理器(digital signal processor,DSP)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
存储器320可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。例如,存储器320还可以存储处理器310处理后的数据。此外,存储器320可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器310通过运行存储在存储器320的指令,和/或存储在设置于处理器中的存储器的指令,执行第二电子设备300的各种功能应用以及数据处理。
USB接口330是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口330可以用于连接充电器为第二电子设备300充电,也可以用于第二电子设备300与外围设备之间传输数据。
电源模块340用于为第二电子设备300的各个部件,如处理器310、存储器320等供电。
UWB模块350可以提供应用在第二电子设备300上的基于UWB技术的无线通信的解决方案。示例性地,UWB模块350用于实现上述UWB标签的功能。
无线通信模块360可以提供应用在第二电子设备300上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙 (bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR),紫峰(ZigBee)等无线通信的解决方案。无线通信模块360可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块360经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器310。无线通信模块360还可以从处理器310接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。无线通信模块360可以与UWB模块350集成在一起或者分开设置,本申请不做限定。
第二电子设备300可以通过音频模块370,扬声器370A,受话器370B,麦克风370C,耳机接口370D,以及应用处理器等实现音频功能。例如音频播放,录音等。
音频模块370用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块370还可以用于对音频信号编码和解码。在一些实施例中,音频模块370可以设置于处理器310中,或将音频模块370的部分功能模块设置于处理器310中。
扬声器370A,也称“喇叭”,用于将音频电信号转换为声音信号。第二电子设备300可以通过扬声器370A收听音频。
受话器370B,也称“听筒”,用于将音频电信号转换成声音信号。
麦克风370C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。用户可以通过人嘴靠近麦克风370C发声,将声音信号输入到麦克风370C。
耳机接口370D用于连接有线耳机。耳机接口370D可以是USB接口330,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
显示屏380用于显示图像,视频等。显示屏380包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flexible light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。
可选地,传感器模块390包括惯性测量单元(inertial measurement unit,IMU)模块等。IMU模块可以包括陀螺仪,加速度计等。陀螺仪和加速度计可以用于确定第二电子设备300的运动姿态。在一些实施例中,可以通过陀螺仪确定第二电子设备300围绕三个轴的角速度。加速度计可以用于检测第二电子设备300在各个方向上(一般为三轴)加速度的大小。当第二电子设备300静止时可检测出重力的大小及方向。本申请实施例中,可以根据IMU模块测量到的角速度和加速度,获取第二电子设备300的设备姿态。可选地,有的第二电子设备可以包括IMU模块,有的第二电子设备不包括IMU模块。
可选地,第二电子设备300还包括滤波器(比如,卡尔曼滤波器)。示例性地,IMU模块的输出和UWB模块350的输出两者可以叠加,两者叠加后的信号可以输入 至卡尔曼滤波器进行滤波,从而减少误差。
示例性地,图5A示出了本申请实施例提供的第一电子设备中UWB模块的结构。如图5A所示,UWB模块150包括发射机1501和接收机1502。发射机1501和接收机1502可以独立运行。发射机1501包括数据信号产生器,脉冲发生器,调制器,数模转换器,功率放大器和发射天线等。数据信号产生器用于产生数据信号,还用于在开始启动产生数据信号时,向接收机1502发送计时开始指示信息。脉冲发生器用于产生周期性的脉冲信号。数模转换器用于将数字信号转换为模拟信号。需要发送的数据信号经调制器调制到脉冲发生器产生的脉冲信号上,并经过功率放大器的功率放大后,通过发射天线将UWB信号发射出去。接收机1502包括接收天线,混频器,滤波器,采样模块,第一处理模块等。任意一个接收天线接收到UWB信号(比如,脉冲序列的形式),将接收的UWB信号经混频器混频、滤波器滤波放大后,通过采样模块进行模数转换,得到基带数字信号。第一处理模块用于对基带数字信号进行处理,实现对UWB信号的检测。比如,第一处理模块根据计时开始指示信息和接收到脉冲序列的时刻,计算UWB信号的信号飞行时间(time of flight,ToF),根据ToF和UWB信号在空中传输的速率(例如光速)计算第一电子设备100与包含UWB模块350的第二电子设备300之间的距离。再比如,第一处理模块根据多个接收天线接收的脉冲序列的相位差计算包含UWB模块350的第二电子设备300的信号来向。需要说明的是,图5A中每个接收天线接收的脉冲序列经过一组功率放大器、混频器、滤波器和采样模块,是表示对脉冲序列的处理流程。可选地,接收机1502可以只包括一组功率放大器、混频器、滤波器和采样模块。在一种实施方式中,可以由一个天线实现发射机1501中一个发射天线和接收机1502中一个接收天线的功能,即将发射天线和接收天线集成为同一天线。
示例性地,图5B示出了本申请实施例提供的第一电子设备中毫米波雷达模块的结构。如图5B所示,毫米波雷达模块160包括发射天线,继电器开关,接收天线,波形产生器,混频器,滤波器和第二处理模块等。波形产生器用于产生发射信号,比如发射信号为线性调频连续信号(linear frequency-modulation continuous wave,LFMCW)。发射信号通过功分器后,一部分经功率放大器功率放大后由继电器开关选择一个发射天线将毫米波信号发射出去;另一部分作为本振,通过混频器与接收天线接收的毫米波信号通过混频器混频。混频器输出的信号为差频信号,差频信号经过滤波器滤波放大和采样模块进行模数转换(采样)成为数字差频信号。第二处理模块通过对数字差频信号进行处理实现对目标的检测,并获取目标的距离、信号来向等信息。在图5B中,n和m为大于或等于1的正整数。
示例性地,图6示出了第二电子设备中UWB模块的结构。如图6所示,UWB模块350包括发射机3501和接收机3502。发射机3501和接收机3502可以独立运行。发射机3501包括数据信号产生器,脉冲发生器,调制器,数模转换器,功率放大器和发射天线等。数据信号产生器用于产生数据信号。脉冲发生器用于产生周期性的脉冲信号。数模转换器用于将数字信号转换为模拟信号。需要发送的数据信号经调制器调制到脉冲发生器产生的脉冲信号上,并经过功率放大器的功率放大后,通过发射天线将UWB信号发射出去。接收机3502包括接收天线,混频器,滤波器,采样模块,处 理模块等。接收天线接收到UWB信号(比如,以脉冲序列的形式),将接收的UWB信号经混频器混频、滤波器滤波放大后,通过采样模块进行模数转换,得到基带数字信号。处理模块用于对基带数字信号进行处理,实现对UWB信号的检测。在一种实施方式中,发射机3501中的发射天线和接收机3502中的接收天线可以集成为同一天线。
示例性地,图7示出了本申请实施例提供的第一电子设备中UWB模块的数种天线分布。其中,图7的(a)示例性地示出了两种两天线结构。一种为横向型(比如,水平型)天线结构,一种为纵向型(比如,垂直型)天线结构。优选地,天线0和天线1间的距离为λ/2,λ为UWB信号的波长。横向型天线结构可以用于测量UWB信号的横向来向(比如,水平来向),纵向型天线结构可以用于测量UWB信号的纵向来向(比如,铅垂来向)。在一种实施方式中,可以通过图7的(a)所示的左侧的第一电子设备与右侧的第一电子设备相互配合(比如,按照一定角度设置上述的两个第一电子设备),来检测包含UWB模块的第二电子设备的信号来向。
图7的(b)和图7的(c)示例性地示出了三天线结构。如图7的(b)和图7的(c)所示,三个天线呈现L形(或称为直角三角形)的结构关系。其中,如图7的(b)所示,天线0和天线1在横向方向(比如,水平方向)对齐,天线0和天线2在纵向方向(比如,铅垂方向)上对齐,即天线0、天线1和天线2所在的平面为纵向面(比如,纵向面),且在纵向面上呈现L形的分布关系。如图7的(c)所示,天线0、天线1和天线2所在的平面为横向面(比如,水平面),且天线0和天线1的连线(假设天线0和天线1有连线的话),垂直于天线0和天线2的连线(假设天线0和天线2有连线的话)。即天线0、天线1和天线2在横向面上呈现L形的分布关系。示例性地,当天线0、天线1和天线2呈L形的分布时,天线0与天线1,以及天线0与天线2之间的距离可以小于或等于λ/2;其中,λ为UWB信号的波长。天线0与天线1,以及天线0与天线2之间的距离可以相同,也可以不同。
图7的(d)示例性地示出了另外一些三天线结构。如图7的(d)所示,三个天线呈现三角形(如等边三角形、等腰三角形)的结构关系。例如,天线0、天线1和天线2所在的平面为纵向面(比如,铅垂面),且在纵向面上呈现三角形的分布。又例如,天线0、天线1和天线2在横向面(比如,水平面)上呈现三角形的分布。示例性地,当天线0、天线1和天线2呈三角形的分布,天线0、天线1和天线2中任意两个天线之间的距离可以小于或等于λ/2;其中,λ为UWB信号的波长。并且,天线0、天线1和天线2中任意两个天线之间的距离可以相同,也可以不同。例如,天线0与天线1之间的距离为λ/2;天线0与天线2之间的距离为
Figure PCTCN2022117923-appb-000007
可以理解的是,多于三个天线的情况也在本申请的范围之内。例如,如图7的(e)所示,天线0、天线1、天线2和天线3四个天线成矩形分布。其中,该四个天线中的任意三个天线呈前文所述的L形分布或三角形分布。
示例性地,第一电子设备100根据来自第二电子设备300的UWB信号到达UWB模块150两个横向分布天线的相位差,获取UWB信号的横向来向;根据来自第二电子设备300的UWB信号到达UWB模块150两个纵向分布天线的相位差,获取UWB信号的纵向来向。进而,第一电子设备100根据横向来向和纵向来向获取UWB信号 的来向。
在另一些示例中,第一电子设备100的UWB模块150可以只包括一根天线。此时,需要使用三个以上的第一电子设备100,将三个以上的第一电子设备100分布为L形或三角形,共同配合来获取UWB信号的来向。具体的原理,与上述类似,此处不再赘述。
本申请实施例对第一电子设备100的UWB模块中天线的数量和分布不做限定,只要能获取UWB信号的来向即可。
示例性地,图8示出了本申请实施例提供的第一电子设备中毫米波雷达模块的数种天线分布。示例性地,发射天线包括发射天线0、发射天线1和发射天线2。接收天线包括接收天线0、接收天线1、接收天线2和接收天线3。发射天线0、发射天线1和发射天线2,以及接收天线0、接收天线1、接收天线2和接收天线3的分布,可以如图8的(a)或(b)所示。其中,发射天线用于发射工作在毫米波波段的电磁信号(比如LFMCW),接收天线用于接收该工作在毫米波波段的电磁信号经反射物(物体或人体)反射的信号。毫米波雷达模块160根据发射信号与接收信号得到差频信号,并根据差频信号,确定物体或人体的位置。
如图8所示,三个发射天线和四个接收天线位于同一纵向面(比如,铅垂面),三个发射天线在纵向面上呈现三角形的分布。在一种示例中,如图8的(a)所示,发射天线0和发射天线2位于同一横向面(比如,水平面),四个接收天线位于同一横向线(比如,水平线)上。示例性地,任意两个接收天线之间的距离都相等(例如,都为λ L/2);发射天线0和发射天线2之间的距离都相等(例如,都为2λ L);发射天线1与发射天线0,以及发射天线1与发射天线2,在纵向上的距离都相等(例如,都为λ L/2)。λ L为线性调频连续信号最高频率的波长。在另一种示例中,如图8的(b)所示,发射天线0和发射天线2位于同一纵向线(比如,铅垂线)上;四个接收天线位于同一纵向线(比如,铅垂线)上。任意两个接收天线之间的距离都相等(例如为λ L/2);发射天线0和发射天线2之间的距离都相等(例如,都为2λ L);发射天线1与发射天线0,以及发射天线1与发射天线2,在横向上的距离都相等(例如,都为λ L/2)。可以理解的,发射天线和/或接收天线的个数以及分布可以是其他形式。本申请实施例对此并不限定。
多发射天线和多接收天线用于准确测量反射信号的方向,即反射信号的来向,包括横向来向(比如,水平来向)和纵向来向(比如,铅垂来向),且尽可能增大毫米波雷达接收口径。毫米波雷达模块160可以根据反射信号在横向(比如,水平方向)上的多个接收天线的相位差,计算目标的横向来向;根据反射信号在纵向(比如,铅垂方向)上的多个接收天线的相位差,计算目标的纵向来向。
可选地,发射天线的数量可以多于或少于3。可选地,接收天线的数量可以多于4或少于4。本申请对此不做限定。在一种实施方式中,发射天线的数量至少为一个,接收天线的数量至少为三个。
在一种实施方式中,发射天线的数量为一个,接收天线的数量为三个。其中,三个接收天线——接收天线0、接收天线1和接收天线2呈三角形分布。为了便于介绍,假设接收天线0与接收天线1之间的连线(实际上没有连线)位于横向方向上,接收 天线0与接收天线2之间的连线(实际上没有连线)位于纵向方向上。这样,发射天线的发射信号经反射物(物体或人体)反射后,三个接收天线分别接收到反射信号。毫米波雷达模块160可以根据接收天线0和接收天线1两者分别接收到的反射信号之间的相位差,获取反射信号的横向来向(比如,水平来向),根据接收天线0和接收天线2两者分别接收到的反射信号之间的相位差,获取反射信号的纵向来向(比如,铅垂来向)。进而,可以根据横向来向和纵向来向,确定出反射信号的来向。
在另一种实施方式中,发射天线的数量至少为两个,接收天线的数量至少为两个。以两个发射天线——发射天线0和发射天线1,两个接收天线——接收天线0和接收天线1为例。假设发射天线0与发射天线1之间的连线(实际上没有连线)位于横向方向上,接收天线0与接收天线1之间的连线(实际上没有连线)位于纵向方向上。发射天线0与发射天线1两者各自的发射信号分别经反射物(物体或人体)反射后,至少一个接收天线接收到反射信号。毫米波雷达模块160可以根据发射天线0和发射天线1两者分别发射的信号到达同一接收天线的相位差来计算发射信号经反射后信号(此时,也可称为反射信号)的横向来向(比如,水平来向)。发射天线的发射信号经反射物(物体或人体)反射后,两个接收天线分别接收反射信号;根据接收天线0和接收天线1两者分别接收到的反射信号之间的相位差,获取反射信号的纵向来向(比如,铅垂来向)。进而,可以根据横向来向和纵向来向,确定出反射信号的来向。
在另一种实施方式中,发射天线的数量至少为两个,接收天线的数量至少为两个。以两个发射天线——发射天线0和发射天线1,两个接收天线——接收天线0和接收天线1为例。假设发射天线0与发射天线1之间的连线(实际上没有连线)位于纵向方向上,接收天线0与接收天线1之间的连线(实际上没有连线)位于横向方向上。两个发射天线的发射信号分别经反射物(物体或人体)反射后,至少一个接收天线接收到反射信号。毫米波雷达模块160可以根据发射天线0和发射天线1两者分别发射的信号到达同一接收天线的相位差来计算发射信号经反射后信号(此时,也可称为反射信号)的纵向来向(比如,水平来向);根据接收天线0和接收天线1两者分别接收到的反射信号之间的相位差,获取反射信号的横向来向(比如,水平来向)。进而,可以根据横向来向和纵向来向,确定出反射信号的来向。
在另一种实施方式中,发射天线的数量至少为三个,接收天线的数量至少为一个。以三个发射天线——发射天线0、发射天线1和发射天线2,一个接收天线——接收天线0为例。发射天线0、发射天线1和发射天线2呈三角形分布。假设发射天线0与发射天线1之间的连线(实际上没有连线)位于横向方向(比如,水平方向)上,发射天线0与发射天线2之间的连线(实际上没有连线)位于纵向方向上。发射天线0、发射天线1和发射天线2的发射信号分别经反射物(物体或人体)反射后,接收天线0接收到反射信号。毫米波雷达模块160可以根据发射天线0和发射天线1两者分别发射的信号到达同一接收天线的相位差来计算发射信号经反射后信号(此时,也可称为反射信号)的横向来向(比如,水平来向);根据发射天线0和发射天线2两者分别发射的信号到达同一接收天线的相位差来计算发射信号经反射后信号(此时,也可称为反射信号)的纵向来向(比如,铅垂来向)。
三、定位原理介绍
为了便于说明,下面以第一电子设备100包括UWB模块150和毫米波雷达模块160为例,详细介绍具体的定位原理。
需要说明的是,定位即获取位置。本申请实施例中,以坐标系中的坐标来表示位置。比如,以第一电子设备的坐标表示第一电子设备的位置,以第二电子设备的坐标表示第二电子设备的位置,以用户的坐标表示用户的位置。可以理解的,在另一些实施例中,可以其他方式表示位置。本申请实施例对此并不进行限定。
(一)第一坐标系(第一电子设备坐标系)的建立
UWB模块150为了能够准确定位,需要建立第一坐标系,通过在第一坐标系下的坐标来具体定位。下面结合图9,具体说明第一坐标系的建立过程。以图9的(a)和(b)中一个UWB模块包括三个天线为例。天线0与天线1之间的距离、天线0与天线2之间的距离都为预设的距离。设天线0上的一点(比如中心点、一头的端点等)为坐标原点O e。以天线0和天线1的连线作为X e轴,且天线1指向天线0的方向为X e轴的正向。在天线0、天线1和天线2所在的平面内,以垂直于X e轴的直线为Z e轴,且天线2在Z e轴上的投影位于Z e轴的正向,据此可以确定Z e轴的正向。在图9的(a)中,天线2位于Z e轴的正向上;在图9的(b)中,天线2在Z e轴上的投影位于Z e轴的正向上。最后,根据X e轴和Z e轴的方向,基于右手直角坐标系的规则,确定Y e轴的方向。其中,右手直角坐标系可以简称为右手系,是在空间中规定直角坐标系的方法之一。如图9的(c)所示,右手直角坐标系中X e轴,Y e轴和Z e轴的正向是如下规定的:把右手放在原点的位置,使大姆指,食指和中指互成直角,大姆指和食指在同一平面内,把大姆指指向X e轴的正向,中指指向Z e轴的正向时,食指所指的方向就是Y e轴的正向。
在一些示例中,为了计算方便和减小计算误差,可以将Z e轴设置在铅垂面,且Z e轴的正向与重力方向相反。可选地,第一电子设备100的外表面可以标注提示信息,用于提示正确的安装方式或放置方式,以使得第一坐标系的Z e轴位于铅垂面,且Z e轴的正向与重力方向相反。示例性地,如图9的(a)或图9的(b)所示,UWB基站外表面标注一个箭头,用于提示按照箭头指示方向(箭头方向朝上)安装或放置第一电子设备100,以使第一坐标系的Z e轴位于铅垂面,且Z e轴的正向与重力方向相反。比如,用户可以在安装第一电子设备时,将第一电子设备外表面的箭头与墙面平行,且箭头方向朝上,以使得第一坐标系的Z e轴位于铅垂面,且Z e轴的正向与重力方向相反。比如,用户可以在安装第一电子设备时,使用铅垂仪等仪器,将第一电子设备外表面的箭头与铅垂仪确定的铅垂线平行,且箭头方向朝上,以使得第一坐标系的Z e轴位于铅垂面,且Z e轴的正向与重力方向相反。
可替换地,第一电子设备100可以仅包括一个UWB模块,而UWB模块150可以仅包括一个天线。这样,需要三个第一电子设备100互相配合,来建立第一坐标系。该情形下第一坐标系建立的详细过程,可以参见申请号为202110872916.6的中国发明专利申请。此处不再赘述。需要指出的是,申请号为202110872916.6的中国发明专利申请的全部内容均引入至本申请中,都在本申请的范围之内。
示例性地,也根据X e轴和Z e轴的方向,基于左手直角坐标系的规则,确定Y e轴的正向。其中,左手直角坐标系可以简称为左手系,是在空间中规定直角坐标系的方 法之一。其中,左手直角坐标系中X e轴,Y e轴和Z e轴的正向是如下规定的:把左手放在原点的位置,使大姆指,食指和中指互成直角,大姆指和食指在同一平面内,把大姆指指向X e轴的正向,中指指向Z e轴的正向时,食指所指的方向就是Y e轴的正向。
为了便于说明,本申请实施例中,都是以右手直角坐标系的规则,来确定Y e轴、Y b轴、Y t轴及Y e轴、Y b轴、Y t轴的正向。本领域技术人员应当理解的是,以左手直角坐标系的规则或者以其他方式,来确定Y e轴、Y b轴、Y t轴及Y e轴、Y b轴、Y t轴的正向,也在本申请的范围之内。另外,只要符合上述的规则或方式,第一坐标系、第二坐标系和第三坐标系中任意一个坐标系的任意两个以上轴的名称都可切换。当然,第一坐标系中三轴的正向,也可采用其他的规则,此处不再赘述。
可选地,第一坐标系可以是在接收到特定输入后自动建立的,也可以是预先建立好的。
示例性地,在按照提示信息的要求,安装好第一电子设备100后,在第一电子设备100接收到特定输入时,第一电子设备100自动建立第一坐标系。其中,特定输入可以为用户输入,还可以为非用户输入(比如,接收到诸如遥控器的另一设备的指令消息)。
示例性地,在按照提示信息的要求,安装好第一电子设备100后,在第一电子设备100接收到特定输入时,第一电子设备100自动从本地或服务器中调取相关信息,从而调出预先建立好的第一坐标系。在没有特别说明的情况下,本申请中的服务器可以为家庭的中枢设备,也可以为云服务器。
需要说明的是,上述都是以天线0上的一点为第一坐标系的原点。这仅为示例性地,其他天线(比如,天线1)上的一点也可以为第一坐标系的原点。
(二)第二坐标系的建立
示例性地,图10示出了本申请实施例提供的第二坐标系的建立过程。如图10的(a)所示,第二电子设备的边缘轮廓包括四条边:两条竖边和两条横边。O b为第二电子设备的重心或中心,包含O b点且平行于第二电子设备的横边的轴为X b轴,X b轴的正向指向第二电子设备的右侧;包含O b点且平行于第二电子设备的竖边的轴为Y b轴,Y b轴的正向指向第二电子设备的上侧,第二电子设备的指向为Y b轴的正向;Z b轴垂直于X b轴和Y b轴所在的平面,根据右手直角坐标坐标系的规则,确定出Z b轴的正向。可选地,O b可以为第二电子设备的中心,或者O b可以为第二电子设备的IMU模块的中心(在第二电子设备包括IMU模块的前提下)。图10的(b)为图10的(a)中第二电子设备的立体图。
需要说明的是,图10仅示意性地介绍了第二坐标系。第二坐标系还可以根据其他规则定义。例如,坐标原点O b还可以为第二电子设备上的任意一点,或者第二电子设备外的任意一点。另外,第二坐标系的三轴方向不限于图10中的(a)或(b)所示的X b轴,Y b轴和Z b轴的正向。
可选地,第二坐标系可以预先建立好。比如,在第二电子设备出厂时,即已经建立好,并将第二坐标系的相关信息保存在本地或者服务器;在第二电子设备启动时,或者,第一电子设备接收到特定输入时,第二电子设备从本地或服务器调用第二坐标系的相关信息。
(三)第三坐标系的建立
示例性地,图11示出了本申请实施例提供的第三坐标系的建立过程。如图11所示,第二电子设备的边缘轮廓包括四条边:第一边A 0A 1,第二边A 1A 2,第三边A 2A 3和第四边A 3A 0。其中,第一边A 0A 1和第三边A 2A 3为竖边,第二边A 1A 2和第四边A 3A 0为横边。可选地,以第二电子设备的显示区域的最左边与第二电子设备的显示区域的最下边交汇的交点(即第二电子设备的显示区域的左下角)为坐标原点O t。以包含O t点且平行于A 3A 0的轴为X t轴,且X t轴的正向为A 0点到A 3点的指向;以包含O t点且平行于A 0A 1的轴为Y t轴,且Y t轴的正向为A 0点到A 1点的指向;Z t轴垂直于X t轴和Y t轴所在的平面,根据右手直角坐标坐标系的规则,确定出Z t轴的正向。
需要说明的是,图11仅示意性地介绍了第三坐标系。第三坐标系还可以根据其他规则定义。可选地,O t可以为第二电子设备的显示区域的中心,或者第二电子设备的显示区域的任意一点。另外,第三坐标系的三轴正向不限于图11中所示的X t轴,Y t轴和Z t轴所指示的正向。
需要说明的是,在第二电子设备的显示区域的边缘轮廓为第二电子设备的边缘轮廓时,第二电子设备的A 0点与O t点重合;在第二电子设备的显示区域的边缘轮廓不为第二电子设备的边缘轮廓时,比如,第二电子设备的显示区域之外还有边框时,第二电子设备的A 0点不与O t点重合。
可选地,第三坐标系可以预先建立好。比如,在第二电子设备出厂时,即第三坐标系已经建立好,并且第三坐标系的相关信息保存在本地或服务器;在第二电子设备启动时,或者,第二电子设备接收到触发时,第二电子设备从本地或服务器调用第三坐标系。
(四)第一坐标系下的坐标计算
下面结合图12,来具体说明在第一坐标系下,第一电子设备100对第二电子设备300的坐标进行定位的计算原理。在图12中,第二电子设备300包括UWB模块,且第二电子设备300以移动设备(比如,智能手机或遥控器)为例。如图12的(a)所示,第一电子设备100和第二电子设备300位于同一房间或区域。其中,第一电子设备100已经建立好第一坐标系,第二电子设备300已经建立好第二坐标系。如图12的(b)所示,第一电子设备100与第二电子设备300可以进行UWB通信,据此可以确定第二电子设备300与第一电子设备100之间的距离、第二电子设备300相对于第一电子设备100的方向,从而可以确定第二电子设备300在第一坐标系中的坐标。
1、测量第一电子设备与第二电子设备之间的距离L。
示例性地,如图12的(c)所示,第一电子设备与第二电子设备之间的距离L可以通过如下方式获取:
第一电子设备100可以采用双向测距法,测得第一电子设备100与第二电子设备300之间的距离L。其中,双向测距法包括单边双向测距(Single-sided Two-way Ranging,SS-TWR)和双边双向测距(Double-sided Two-way Ranging,DS-TWR)。此处以DS-TWR为例,对测距方法进行简单说明。
其中,DS-TWR方法中记录了两个第一电子设备100和第二电子设备300之间往返的时间戳,最后得到飞行时间。虽然DS-TWR方法增加了响应的时间,但会降低测 距误差。双边双向测距根据发送消息个数不同,分为两种方法:4消息方式和3消息方式。
以3消息方式为例。第二电子设备300发送测距请求报文(即第一个报文),并记录发送时间T s1。第一电子设备100接收到请求报文后,记录接收时间T r1。其中,T r1与T s1的时间差t,为报文在两个设备之间的传输时间。第一电子设备100对请求报文进行处理,耗时T re1。而后,第一电子设备100发送响应报文(即第二个报文),并记录发送时间T s2,第二电子设备300接收到该响应报文后,并记录接收时间T r2。其中,T r2与T s2的时间差为t。第二电子设备300从发生第一个报文到接收到第二个报文的时间差为T ro1。第二电子设备300对响应报文进行处理,耗时T re2。第二电子设备300发送最后的报文(即第三个报文),记录发送时间T s3。第一电子设备100接收到第三个报文,并记录接收时间T r3。其中,T r3与T s3的时间差为t。并且,第一电子设备100从开始发送第二个报文到接收到第三个报文的时间差为T ro2。于是,可采用下列公式(1)计算报文在两个设备之间的传输时间t,并根据公式(2)计算第一电子设备100与第二电子设备300之间的距离L。
Figure PCTCN2022117923-appb-000008
L=c×t           公式(2)
其中,c为UWB信号在介质中的传输速率。c一般选取为光速。
可选地,测距请求报文也可以由第一电子设备100发送;相应地,响应报文也可以由第二电子设备300发送;相应地,最后的报文也可以由第一电子设备100发送。第一电子设备100或第二电子设备300可以根据公式(1)和公式(2)来计算L。
需要说明的是,第一电子设备100与第二电子设备300之间的距离L也可通过其他方式计算得到,不限于上述列出的方式。
2、确定第二电子设备的信号来向。
第二电子设备200的方向可通过第一电子设备100测量到第二电子设备200发射信号的来向来表示。在本申请中,可以用两个角度α和β来表示第二电子设备200发射信号的来向。示例性地,如图12的(d)所示,α为第二电子设备发射的UWB信号在第一坐标系的X eO eY e平面上的分量与X e轴负轴的夹角,通常α∈[0,π]。α也可理解为:假设第二电子设备的UWB模块至第一电子设备的UWB模块形成一个矢量,该矢量在X eO eY e平面上的分量与X e轴负轴的夹角。β为第二电子设备发射的UWB信号与第一坐标系的Z e轴正轴的夹角,通常β∈[0,π]。β也可理解为:假设第二电子设备的UWB模块至第一电子设备的UWB模块形成一个矢量,该矢量与Z e轴正轴的夹角。
下面以三天线为例,结合第一电子设备的UWB模块中两种天线分布类型——L形和三角形,来具体阐述α和β的求解过程。
在一种示例中,在图12的(e)中,第一电子设备的UWB模块采用L形的三天线结构,第一电子设备可以根据天线1接收到的UWB信号确定夹角α;可以根据天线2接收到的UWB信号确定夹角β。通常来说,L1、L2远远小于第二电子设备与第一电子设备之间的距离L,所以UWB信号在到达第一电子设备的UWB模块时可以看作平行的;同样地,UWB信号在到达第一电子设备的UWB模块时,在X eO eY e平面上 的分量也可以看作是平行的。如图12的(e)所示,UWB信号通过两条平行的实线表示,UWB信号在X eO eY e平面上的分量通过两条平行的虚线表示;天线0与天线1之间的距离为L1,天线0与天线2之间的距离为L2;过点O e作O eM1垂直于M1N1所在的直线,过点O e作O eM2垂直于M2N2所在的直线;其中,N1为UWB信号在X eO eY e平面上的分量所在直线与X e轴的交点,N2为UWB信号所在直线与Z e轴的交点。UWB信号与Z e轴正轴的夹角为β,UWB信号在X eO eY e平面上的分量与X e轴正轴的夹角为α。优选地,L1和L2都为λ/2。其中,λ为UWB信号的波长。天线0、天线1和天线2测量到的同一UWB信号的相位分别为
Figure PCTCN2022117923-appb-000009
Figure PCTCN2022117923-appb-000010
天线1与天线0之间的相位差为
Figure PCTCN2022117923-appb-000011
天线2与天线0之间的相位差为
Figure PCTCN2022117923-appb-000012
由于
Figure PCTCN2022117923-appb-000013
Figure PCTCN2022117923-appb-000014
均已经测量得到,故
Figure PCTCN2022117923-appb-000015
均可计算得到。由于λ/2对应相位差π,所以结合余弦公式、d1、d2、L1和L2,根据公式(3)和公式(4)可以计算得到α和β。
Figure PCTCN2022117923-appb-000016
Figure PCTCN2022117923-appb-000017
当L1为λ/2时,
Figure PCTCN2022117923-appb-000018
当L2为λ/2时,
Figure PCTCN2022117923-appb-000019
在一种示例中,如图12的(f)所示,第一电子设备的UWB模块采用三角形的三天线结构。与有关对图12的(e)的介绍相同的,UWB信号在到达第一电子设备的UWB模块时可以看作平行的;同样地,UWB信号在到达第一电子设备的UWB模块时,在X eO eY e平面上的分量也可以看作是平行的。如图12的(f)所示,UWB信号通过两条平行的实线表示,UWB信号在X eO eY e平面上的分量通过两条平行的虚线表示;天线0与天线1之间的距离为L1,天线0与天线2两者在Z e轴上的投影之间的距离为L2;点N0为天线1与天线0在X e轴上的中心点。过点O e作O eM1垂直于M1N1所在的直线,过点N0作N0M2垂直于M2N2所在的直线;其中,N1为UWB信号在X eO eY e平面上的分量所在直线与X e轴的交点,N2为UWB信号所在直线与Z e轴的交点。
UWB信号与Z e轴正轴的夹角为β,UWB信号在X eO eY e平面上的分量与X e轴负轴的夹角为α。优选地,L1和L2都为λ/2。其中,λ为UWB信号的波长。
其中,α的计算公式与公式(3)相同,此处不再赘述。在计算β时,先计算第二电子设备发射的UWB信号到达N0的相位
Figure PCTCN2022117923-appb-000020
与到达天线2的相位
Figure PCTCN2022117923-appb-000021
之差,即
Figure PCTCN2022117923-appb-000022
再采用公式(5),计算出到达N0与到达天线2的波程差d2,而后采用公式(6)计算得到β,如下:
Figure PCTCN2022117923-appb-000023
Figure PCTCN2022117923-appb-000024
3、根据第二电子设备与第一电子设备之间的距离L,以及第二电子设备的信号来向,计算第二电子设备在第一坐标系中的坐标。
如图12的(d)所示,第一电子设备可以根据第二电子设备与第一电子设备之间 的距离L,以及第二电子设备的信号来向(角度α和角度β),采用公式(7)计算第二电子设备在第一电子设备建立的第一坐标系中的坐标(x e,y e,z e),如下:
Figure PCTCN2022117923-appb-000025
第一电子设备100与第二电子设备300之间通过诸如图12的(c)示出的通信交互,可以获取到第一电子设备100与第二电子设备300之间的距离L,并且第一电子设备100可以根据接收到的UWB信号,来确定UWB信号的来向。从而,第一电子设备100可以获取到第二案子设备300相对于第一电子设备100的方向、距离,从而在第一坐标系中获取到第二电子设备300的坐标。
对于有的第二电子设备包含UWB模块的情形,通过第二电子设备与第一电子设备之间的UWB信号的通信,可以实时地或周期性地获取到第二电子设备在第一坐标系下的坐标。
对于有的第二电子设备没有包含UWB模块的情形,比如智能手机包含UWB模块,智能音箱没有包含UWB模块,或者智能空调没有包含UWB模块,此时可以存在两种标记方式。
标记方式一、如图13的(a)所示,智能手机移动至智能音箱处,通过智能手机与第一电子设备之间的UWB信号的通信,获取到智能手机在第一坐标系下的坐标,将该坐标标记为智能音箱在第一坐标系下的坐标。
标记方式二、如图13的(b)所示,先使用智能手机在位置1指向智能空调,使第二坐标系的Y b轴正向对着智能空调上的第一点(比如开关按钮处)。通过智能手机与第一电子设备之间的UWB信号的通信,获取到位置1在第一坐标系中的坐标1。智能手机还包括IMU模块,通过IMU模块确定智能手机在位置1时的姿态角1。根据坐标1和姿态角1可以确定智能手机在位置1指向智能空调的第一点所确立的直线1。然后使用智能手机在位置2指向智能空调,使第二坐标系的Y b轴正向对着智能空调上的第一点。通过智能手机与第一电子设备之间的UWB信号的通信,获取到位置2在第一坐标系中的坐标2。通过IMU模块确定智能手机在位置2时的姿态角2。根据坐标2和姿态角2可以确定智能手机在位置2指向智能空调的第二点所确立的直线2。计算直线1和直线2交点的坐标,即智能空调在第一坐标系中的坐标。
需要说明的是,智能音箱或智能空调仅为示意性举例,智能音箱用于代表容易被用户持诸如智能手机的移动设备触碰的第二电子设备,智能空调用于代表不容易被用户持诸如智能手机的移动设备触碰的第二电子设备。
对于有的第二电子设备没有包含UWB模块的情形,比如智能手机包含UWB模块,智能电视没有包含UWB模块,则可以利用包含UWB模块的智能手机对智能电视进行多次标记。如图13的(c)所示,智能手机移动至智能电视的点A 0进行位置标记,第一电子设备获取到智能电视的左下角轮廓点的坐标。相应地,按照上述方式,第一电子设备可以获取到智能电视的多个轮廓点(比如,左下角、左上角和右下角三个轮廓点等)坐标。如果标记A 0、A 1、A 2和A 3,第一电子设备可以获取到四个角轮廓点的坐标。如果标记A 0、A 1和A 2,第一电子设备可以获取到三个角轮廓点的坐标。如果标记A 0和A 2,第一电子设备可以获取到两个角轮廓点的坐标。本申请对四个角轮廓 点中的选取哪几个角轮廓点不做限制,只要最终能够获取到智能电视的轮廓范围即可。可选地,上述的轮廓范围可以指智能电视的显示区域的轮廓范围。可选地,上述的显示区域可以包括智能电视的显示屏的边框,也可以不包括智能电视的显示屏的边框。
优选地,智能手机可移动至智能电视的显示区域的三个以上不同位置,在移动至智能电视的显示区域的一个位置时,基于用户的输入,将此时智能手机的坐标标记为智能电视的显示区域的一个位置的坐标;如此循环,可以标记智能电视的显示区域的三个以上不同位置的坐标。可选地,标记智能电视的显示区域的三个位置的坐标。同理,可以标记智能电视正面区域的一个位置的坐标。在对智能电视的显示区域的三个以上不同位置进行标记的过程中,并不要求智能手机在三个以上的不同位置的指向、朝向等保持一致,即在标记中智能电视的朝向、指向等不做限定。
可选地,智能电视的显示区域的三个以上位置可以为智能电视的显示区域的边缘轮廓(比如,显示区域的横边轮廓或竖边轮廓)的三个以上位置(比如,1/2处、1/3处等),也可以为智能电视的显示区域的中心部位的三个以上位置。
可选地,包含UWB模块的第二电子设备不仅可以标记不包含UWB模块的第二电子设备,还可以标记空间区域。比如,标记一个三维空间区域的范围。下面以包含UWB模块的智能手机为例。
示例性地,如图14的(a)所示,将智能手机分别放置在A、B、C、D四个位置,基于上述的原理,第一电子设备100分别获取到A、B、C和D四个位置在第一坐标系中的坐标
Figure PCTCN2022117923-appb-000026
Figure PCTCN2022117923-appb-000027
经过位置A的铅垂线
Figure PCTCN2022117923-appb-000028
经过位置B的铅垂线
Figure PCTCN2022117923-appb-000029
经过位置C的铅垂线
Figure PCTCN2022117923-appb-000030
和经过位置D的铅垂线
Figure PCTCN2022117923-appb-000031
围成一个三维区域。其中z e可为预先设定的值,也可为该房间或该区域的高度。
在另一示例中,如图14的(b)所示,智能手机分别放置在三维空间区域的八个顶点位置,基于上述的原理,第一电子设备100分别获取到八个顶点位置在第一坐标系中的坐标,从而可以获取到该三维空间区域的坐标范围。比如,该三维空间区域是一个房间,即获取到该房间在第一坐标系的坐标范围。以上仅以顶点位置来示例,实际的区域可以根据智能手机放置的位置来确定。比如,智能手机可以不放置在顶点位置上,这样确定的区域即为小于该房间全部区域的一个区域。
(五)基于UWB的不同坐标系的转换
在本申请中,有关不同坐标系下的坐标转换,可以通过向量的方式进行转换。具体来说,两个点之间的距离在不同坐标系下是相同的,但两个点所形成的向量在不同坐标系下的方向表示可能是不同的。比如,要将O e点在第一坐标系下的坐标转换为O e点在第二坐标系下的坐标,可以通过向量的方式进行转换。示例性地,以通过
Figure PCTCN2022117923-appb-000032
的方式进行转换为例,向量
Figure PCTCN2022117923-appb-000033
在第一坐标系下和第二坐标系下的距离(都是L)是相同的,但向量
Figure PCTCN2022117923-appb-000034
用第一坐标系表示的方向,与向量
Figure PCTCN2022117923-appb-000035
用第二坐标系表示的方向是不同的。通过获取到第一坐标系和第二坐标系之间的相对方向变化,在已知向量
Figure PCTCN2022117923-appb-000036
用第一坐标系表示的方向,可以获知向量
Figure PCTCN2022117923-appb-000037
用第二坐标系表示的方向;再结合O e点、O b点在第一坐标系下的坐标,以及O b点在第二坐标系下的坐标,便可求得O e点在第二坐标系下的坐标。
上述的同一点在不同坐标系下的坐标转换方式仅为示意性的,本申请对于坐标转换方式不做限定。
不同坐标系的相对方向变化,可以通过坐标系之间的俯仰角(pitch)
Figure PCTCN2022117923-appb-000038
方位角(yaw)ψ和横滚角(roll)θ来表达。其中,方位角也可以称为偏航角或航向角。比如,第二坐标系相对于第一坐标系的俯仰角、方位角和横滚角,第三坐标系相对于第一坐标系的俯仰角、方位角和横滚角。为了便于求得三个坐标系之间的俯仰角、方位角和横滚角,需要先假想将上述三个坐标系的坐标原点都汇集到一个点上。比如,将UWB基站的坐标原点O e平行移动至第二坐标系的坐标原点O b。相应地,第一坐标系也随之移动。有关俯仰角、方位角和横滚角的定义为本领域技术人员公知的,此处不再赘述。
示例性地,图15示出了第二坐标系相对于第一坐标系的俯仰角
Figure PCTCN2022117923-appb-000039
方位角
Figure PCTCN2022117923-appb-000040
和横滚角
Figure PCTCN2022117923-appb-000041
第二坐标系的坐标原点O b与平行移动后的第一坐标系的坐标原点O e重合,第二坐标系的三轴为X b轴、Y b轴和Z b轴,第一坐标系的三轴为X e轴、Y e轴和Z e轴。如图15的(a)所示,O eY b'(即O bY b')为Y b轴在第一坐标系的X eO eY e平面上的投影。如图15的(b)所示,O eZ b'(即O bZ b')为Z b轴在Y bO bZ e平面上的投影。
第二坐标系相对于第一坐标系的俯仰角
Figure PCTCN2022117923-appb-000042
第二坐标系的Y b轴与第一坐标系的X eO eY e平面之间的夹角。
Figure PCTCN2022117923-appb-000043
也即O bY b'与Y b轴之间的夹角。当O bY b在Z e轴上的分量,位于Z e轴的正轴时,
Figure PCTCN2022117923-appb-000044
为正;当O bY b在Z e轴上的分量,位于Z e轴的负轴时,
Figure PCTCN2022117923-appb-000045
为负。
第二坐标系相对于第一坐标系的方位角
Figure PCTCN2022117923-appb-000046
第二坐标系的Y b轴在第一坐标系的X eO eY e平面上的投影,与第一坐标系的Y e轴之间的夹角。
Figure PCTCN2022117923-appb-000047
也即O bY b'与Y e轴之间的夹角。当O bY b'在X e轴上的分量,位于X e轴的正轴时,
Figure PCTCN2022117923-appb-000048
为正;当O bY b'在X e轴上的分量,位于X e轴的负轴时,
Figure PCTCN2022117923-appb-000049
为负。
第二坐标系相对于第一坐标系的横滚角
Figure PCTCN2022117923-appb-000050
第二坐标系的Z b轴与Y bO eZ e平面之间的夹角。
Figure PCTCN2022117923-appb-000051
也即O bZ b'与Z b轴之间的夹角。当Z b轴正轴在Y bO eZ e平面上的投影在X b轴上的分量,位于X b轴的正轴时,
Figure PCTCN2022117923-appb-000052
为正;当Z b轴正轴在Y bO eZ e平面上的投影在X b轴上的分量,位于X b轴的负轴时,
Figure PCTCN2022117923-appb-000053
为负。
可替换地,当O bZ b'在X bO bY b平面上的投影,在X b轴上的分量,位于X b轴的正轴时,
Figure PCTCN2022117923-appb-000054
为正;当O bZ b'在X bO bY b平面上的投影,在X b轴上的分量,位于X b轴的负轴时,
Figure PCTCN2022117923-appb-000055
为负。
示例性地,图16示出了第三坐标系相对于第一坐标系的俯仰角
Figure PCTCN2022117923-appb-000056
方位角
Figure PCTCN2022117923-appb-000057
和横滚角
Figure PCTCN2022117923-appb-000058
如图16所示,第三坐标系的坐标原点O t与平行移动后的第一坐标系的坐标原点O e重合,第三坐标系的三轴为X t轴、Y t轴和Z t轴,第一坐标系的三轴为X e轴、Y e轴和Z e轴。如图16的(a)所示,O eY t'(即O tY t')为Y t轴在第一坐标系的X eO eY e平面上的投影。如图16的(b)所示,O eZ t'(即O tZ t')为Z t轴在Y tO eZ e平面上的投影。
第三坐标系相对于第一坐标系的俯仰角
Figure PCTCN2022117923-appb-000059
第三坐标系的Y t轴与第一坐标系的 X eO eY e平面的夹角。
Figure PCTCN2022117923-appb-000060
也即O eY t'(即O tY t')与Y t轴之间的夹角。当O eY t在Z e轴上的分量,位于Z e轴的正轴时,
Figure PCTCN2022117923-appb-000061
为正;当O eY t在Z e轴上的分量,位于Z e轴的负轴时,
Figure PCTCN2022117923-appb-000062
为负。
第三坐标系相对于第一坐标系的方位角
Figure PCTCN2022117923-appb-000063
第三坐标系的Y t轴在第一坐标系的X eO eY e平面上的投影,与第一坐标系的Y e轴之间的夹角。
Figure PCTCN2022117923-appb-000064
也即O eY t'(即O tY t')与Y e轴之间的夹角。当O eY t'在X e轴上的分量,位于X e轴的正轴时,
Figure PCTCN2022117923-appb-000065
为正;当O eY t'在X e轴上的分量,位于X e轴的负轴时,
Figure PCTCN2022117923-appb-000066
为负。
第三坐标系相对于第一坐标系的横滚角
Figure PCTCN2022117923-appb-000067
第三坐标系的Z t轴与Y tO eZ e平面之间的夹角。
Figure PCTCN2022117923-appb-000068
也即O tZ t'与Z t轴之间的夹角。当Z t轴正轴在Y tO eZ e平面上的投影在X t轴上的分量,位于X t轴的正轴时,
Figure PCTCN2022117923-appb-000069
为正;当Z t轴正轴在Y tO eZ e平面上的投影在X t轴上的分量,位于X t轴的负轴时,
Figure PCTCN2022117923-appb-000070
为负。
可替换地,当O tZ t'在X tO tY t平面上的投影,在X t轴上的分量,位于X t轴的正轴时,
Figure PCTCN2022117923-appb-000071
为正;当O tZ t'在X tO tY t平面上的投影,在X t轴上的分量,位于X t轴的负轴时,
Figure PCTCN2022117923-appb-000072
为负。
第三坐标系相对于第一坐标系的方向变化,可以用姿态矩阵
Figure PCTCN2022117923-appb-000073
来表达。
Figure PCTCN2022117923-appb-000074
姿态矩阵
Figure PCTCN2022117923-appb-000075
的上述公式(8)为现有技术,本领域技术人员可从现有技术中获取。比如,书籍《惯性导航》(北京:科学出版社,ISBN 7-03-016428-8,秦永元编著,2006年5月第一版,2006年5月第一次印刷)第一章1.2.1的姿态矩阵。
上述仅为示例性地示出了第二坐标系、第三坐标系相对于第一坐标系的转换,本领域技术人员应当明了的是,其他坐标系的转换也是基于上述的原理,采用相同的公式,只是更改对应的参数。
可选地,第二电子设备可以包括IMU模块。可选地,先对第二电子设备的IMU模块进行校准。即将第二电子设备的IMU模块输出的俯仰角、方位角和横滚角所基于的坐标系校准为第一坐标系,或者将第二电子设备的IMU模块输出的
Figure PCTCN2022117923-appb-000076
校准为
Figure PCTCN2022117923-appb-000077
这样,后续随着第二电子设备的移动,第二电子设备的IMU模块输出的俯仰角、方位角和横滚角即为第二坐标系相对于第一坐标系的俯仰角、方位角和横滚角;或者,第二电子设备的IMU模块输出的
Figure PCTCN2022117923-appb-000078
经过转置,即可反映出第二坐标系相对于第一坐标系的方向变化。
示例性地,可以将第二电子设备的第二坐标系平行于第一坐标系(比如,X b轴平行于X e轴,Y b轴平行于Y e轴,Z b轴平行于Z e轴),且两个坐标系的相应坐标轴正向都相同(比如,X b轴正向与X e轴正向相同,Y b轴正向与Y e轴正向相同,Z b轴正向与Z e轴正向相同),将此时第二电子设备的IMU模块输出的俯仰角、方位角和横滚角均 置为0。
示例性地,可以将第二电子设备的第二坐标系平行于第一坐标系,且两个坐标系各轴正向都相同,通过调整,使得此时第二电子设备的IMU模块输出的
Figure PCTCN2022117923-appb-000079
(六)第四坐标系(毫米波雷达坐标系)的建立
第一电子设备100的毫米波雷达模块160用于实现毫米波雷达功能。毫米波雷达中的多个天线在横向方向(比如,水平方向)和/或纵向方向(比如,铅垂方向)具有距离差,可利用天线之间的距离差,建立毫米波雷达的坐标系(第四坐标系)。
在一种示例中,毫米波雷达模块160包括三个发射天线和四个接收天线。示例性地,如图17所示,三个发射天线和四个接收天线位于同一纵向面(比如,铅垂面)。三个发射天线在纵向面上呈现三角形的分布。其中,发射天线0和发射天线2位于同一横向面;四个接收天线位于同一横向线(比如,水平线)上。在一种实施方式中,以接收天线0上的一点(比如,一侧的端点)为第四坐标系的原点O m,以接收天线0和接收天线1的连线为第四坐标系的X m轴,且接收天线1指向接收天线0的方向为X m轴的正向;以经过原点O m且垂直于X m轴的直线为第四坐标系的Z m轴,且指向天顶方向为Z m轴正向;再结合右手直角坐标系定则,确定第四坐标系的Y m轴及Y m轴的正向。可选地,第一电子设备100外表面可以标注提示信息,用于提示正确的安装方式或正确的放置方式,以使得第一电子设备100中毫米波雷达模块160的三个发射天线和四个接收天线位于同一纵向面。
此处第四坐标系中三轴的命名,以及三轴的正向也可以采用其他的定义,此处不再赘述。本申请实施例以图17所示的第四坐标系中X m轴、Y m轴和Z m轴为例进行介绍。
需要说明的是,上述以接收天线0上的一点为第四坐标系的原点,这仅为示例性地。其他天线(比如,接收天线1)上的一点也可以为第四坐标系的原点。
可选地,第四坐标系可以预先建立好。只需安装人员按照要求安装好第一电子设备100即可。比如,在第一电子设备100出厂之前,即已经建立好,并将第四坐标系的相关信息保存在本地或者服务器。在第一电子设备100启动时,或者,第一电子设备100接收到特定触发时,第一电子设备100从本地或服务器调用第四坐标系的相关信息。在没有特别说明的情况下,本申请中的服务器可以为家庭的中枢设备200,也可以为云服务器。
优选地,第一电子设备100的外表面可以仅有一个标注提示信息,该标注提示信息指示第一电子设备的安装。这样,毫米波雷达模块的发射天线和接收天线,以及UWB模块的天线都符合预设要求。
(七)第四坐标系下的坐标计算
1、确定反射点与毫米波雷达模块的距离,和反射点的径向速度。
(1)确定反射点与毫米波雷达模块的距离
毫米波雷达模块160的发射天线发射信号,信号经反射点反射后,被毫米波雷达模块160的接收天线接收。LFMCW毫米波雷达发射信号的频率随时间变化呈线性升高,此类信号称为线性调频脉冲(Chirp)信号。结合图5B,毫米波雷达模块160通 过接收天线接收到Chirp信号,接收信号与本振信号通过混频器混频,输出差频信号,差频信号经过滤波器滤波放大和采样模块后,进行模数转换成为数字差频信号。
示例性地,图18示出了本申请实施例提供的毫米波雷达确定反射点的距离和径向速度的原理示意图。如图18的(a)所示,实线为毫米波雷达模块160的发射信号,虚线为毫米波雷达模块160的接收信号。Chirp信号的一个扫频周期Tc通常是微秒(us)级,调频率S 0(即频率的变化率)达到10 12的数量级(单位Hz/s)。在本申请实施例中,一个扫频周期Tc内的Chirp信号称为一个Chirp信号。通常认为目标在一个扫频周期Tc内的空间位置无变化。
如图18的(b)所示,在一个扫频周期Tc内,发射天线发射Chirp信号,经过时间τ后,接收天线接收到反射点反射回来的信号,接收信号和发射信号的频率差为τ*S 0。接收信号和发射信号的频率差即差频信号的频率f 0,也就是说f 0=τ*S 0。其中,τ=2d/c,d为反射点与毫米波雷达模块(也可看作与第一电子设备)之间的距离,c为Chirp信号在空中传输的速率,一般选择光速。因此,反射点的距离d与差频信号的频率f 0的关系如公式(9)所示。
d=f 0*c/(2*S 0)         公式(9)
通过傅里叶变换,可以将时域信号转换为频域信号,时域中的正弦波在频域中对应产生一个峰值,该峰值对应差频信号的频率f 0。示例性地,如图18的(c)所示,毫米波雷达模块的发射信号经3个反射点反射回来3个信号。毫米波雷达模块接收到3个接收信号,分别获取3个对应的差频信号。对3个差频信号进行快速傅里叶变换(fast fourier transformation,FFT)以获取范围(range)曲线(称为范围FFT(range FFT)),可以产生一个具有3个不同分离峰值的频谱。其中,每个峰值表示对应处存在一个反射点。计算峰值对应频率即可获取差频信号的频率。可以通过检测差频信号的频率,获取反射点的距离。
类似地,对同一反射点不同扫频周期Tc的多个差频信号进行多普勒FFT(doppler FFT),获取多个差频信号的相位差。通过检测多个差频信号的相位差,即可获取反射点的径向速度。详细原理可参考现有技术,此处不再赘述。
毫米波雷达模块接收到Chirp信号,将发射信号和接收信号经过混频、功率放大和滤波后得到差频信号,差频信号经模数转换为数字差频信号。通过检测数字差频信号可以获取反射点的距离和径向速度。
示例性地,如图18的(d)所示,毫米波雷达模块的一帧数据即一个雷达扫面周期内的数据,一个雷达扫面周期包括M个扫频周期Tc,在每个扫频周期Tc内有差频信号的N个采样点。
可以通过对一个扫频周期Tc内的数字差频信号进行一维range FFT,获取差频信号频率。这样可以根据差频信号频率计算反射点的距离。其中,range FFT的点数为该Chirp信号对应的差频信号的采样点数N。
可以通过对同一反射点在多个相邻扫频周期Tc内的数字差频信号进行一维doppler FFT,获取多个数字差频信号的相位差。这样可以根据多个差频信号的相位差计算反射点的径向速度。其中,doppler FFT的点数为一帧数据包括的扫频周期个数。
range FFT和doppler FFT的联合操作,可以认为是对一帧数据的二维FFT。本申 请实施例中,经二维FFT处理后的一帧数据称为一帧二维FFT数据。示例性地,图18的(e)为毫米波雷达模块获取的一帧二维FFT数据的示意图。如图18的(e)所示,一帧二维FFT数据中存在多个峰值,每个峰值表示对应处存在一个反射点。一个反射点在距离维度或速度维度的取值即该反射点的距离或反射点的径向速度。
(2)确定反射点的反射信号的信号来向
反射信号的信号来向包括横向来向(比如,水平来向)和纵向来向(比如,铅垂来向)。可以用方位角表示信号的横向来向,用俯仰角表示信号的纵向来向。在一种实施方式中,可以通过毫米波雷达模块的多个接收天线的接收信号之间的相位差计算方位角和俯仰角。
示例性地,图19示出了本申请实施例提供的毫米波雷达确定反射点的反射信号的信号来向的原理示意图。如图19的(a)所示,毫米波雷达模块包括4个接收天线。同一发射天线发射信号经反射点反射后,到达任意两个不同接收天线的反射信号的相位差可被毫米波雷达模块用于测量反射信号的方位角。其中,毫米波雷达模块根据信号到达相邻两个接收天线的相位差,确定反射信号的横向来向的具体方式,可参考图12的(e)中角度α的计算方法。此处不再赘述。
在一种实施方式中,可以通过增加天线个数的方式提高测量信号来向的精度。在一种示例中,毫米波雷达模块的天线采用图8的(a)所示的分布结构。毫米波雷达模块在发射信号时,可以通过改变继电器开关的方式切换发射天线,实现接收天线对不同发射天线信号的分离。示例性地,如图19的(b)所示,当发射天线0和发送天线2交替进行信号发射时,根据天线位置差产生的相位差原理,可以实现两发四收天线等效为一发八收的效果。比如,图19的(b)中接收天线间的距离为λ L/2,发射天线0和发射天线2之间的距离为2λ L;其中,λ L为毫米波的波长。发射天线2的发射信号到达接收天线0的信号可以等效为接收天线4的接收信号;发射天线2的发射信号到达接收天线1的信号可以等效为接收天线5的接收信号;发射天线2的发射信号到达接收天线2的信号可以等效为接收天线6的接收信号;发射天线2的发射信号到达接收天线3的信号可以等效为接收天线7的接收信号。示例性地,图19的(b)的一发八收示意图中接收天线4、接收天线5、接收天线6和接收天线7为等效得到的虚拟接收天线。
在纵向维度上存在距离的发射天线,发射出去的信号经反射点反射后到达接收天线的相位差,可被毫米波雷达模块用于测量反射信号的纵向来向(比如,通过俯仰角来揭示)。在一种示例中,毫米波雷达模块的天线采用图8的(a)所示结构。发射天线1与发射天线0在纵向维度上存在距离,发射天线1与发射天线2在纵向维度上存在距离,可以通过比较同一接收天线分别从发射天线1、发射天线0和发射天线2接收的信号来确定反射信号的俯仰角。示例性地,如图19的(c)所示,可以联合发射天线0发射,接收天线2和接收天线3接收的信号;发射天线2发射,接收天线0和接收天线1接收的信号;与发射天线1发射,接收天线0、接收天线1、接收天线2和接收天线3接收的信号;对纵向维度存在相位差的信号进行比较,计算出反射信号的纵向来向(比如,通过俯仰角来揭示)。比如,可以比较发射天线0发射接收天线2接收的信号,与发射天线1发射接收天线0接收的信号,获取二者的相位差,并根 据该相位差计算俯仰角。根据接收信号相位差计算俯仰角的具体步骤,可参考图12的(f)中角度β的计算方法;此处不再赘述。
(3)确定反射点在第四坐标系下的坐标
第一电子设备可以根据反射点与毫米波雷达之间的距离,以及反射信号的信号来向(方位角和俯仰角),采用公式(7)计算反射点在第一电子设备建立的第四坐标系中的坐标。
(4)确定用户在第四坐标系下的坐标
在一些情况下,由于体积较大的人体的不同部位可能穿戴有不同的衣物、有不同的骨骼结构,这样可能会有不同的检测结果,从而导致对人体检测可能有多个反射点,甚至分布不太均匀。对于体积较大的物体来说,不同部位可能采用不同的材料、有不同的形状等,也导致对这样的物体检测可能有多个反射点,甚至分布不太均匀。对于人体来说,由于人体的头部、手部和脚等部分都会对毫米波雷达的发射信号产生反射,毫米波雷达在可侦测范围内会将一个人体检测为多个反射点。此时,可以对反射点的点云数据进行聚类处理,即将检测到的多个反射点汇聚成一个类,将该聚类确定为一个物体或人体。
示例性地,图20的(a)为对点云数据进行聚类处理的效果示意图。图20的(a)中的每个点表示毫米波雷达模块检测到的一个反射点,三个封闭曲线分别代表汇聚成的类,三个封闭曲线之外的点表示没有被汇聚到任何一个类别中的反射点。在一种示例中,毫米波雷达模块采用聚类算法将多个反射点聚类成一个物体或人体(用户),可以根据聚类后的多个反射点的坐标计算出物体或人体(用户)在第四坐标系下的坐标。示例性地,物体或人体(用户)在第四坐标系下的坐标,可以为物体或人体的重心在第四坐标系下的坐标。示例性地,如图20的(b)所示,图20的(b)中较小的点表示毫米波雷达检测到的反射点,最大的一个点为人体(用户)在第四坐标系下的坐标点。人体(用户)在第四坐标系下的坐标记为
Figure PCTCN2022117923-appb-000080
进一步地,还可以根据第一电子设备距离地面的高度H、物体或人体(用户)在第四坐标系下的坐标,计算出物体的高度或人体(用户)的身高。示例性地,可以采用公式(10)计算人体(用户)的身高h m,如下:
Figure PCTCN2022117923-appb-000081
示例性地,图21示出了本申请实施例提供的在第四坐标系下,第一电子设备确定用户的坐标的方法流程图。如图21所示,该方法可以包括:
S2100、毫米波雷达模块接收反射信号。
S2101、毫米波雷达模块对数字差频信号进行二维快速傅里叶变换。
毫米波雷达模块的接收天线接收到反射信号,根据反射信号获取数字差频信号,对取数字差频信号进行二维快速傅里叶变换,获取二维FFT数据。
S2102、毫米波雷达模块采用目标检测算法获取反射点与毫米波雷达的距离以及径向速度。
毫米波雷达可以采用目标检测算法对一帧二维FFT数据进行目标检测,获取目标的距离和径向速度。
需要说明的是,在室内环境中,会产生多径效应和杂波干扰,毫米波雷达接收的 信号中包含目标反射信号、背景噪声以及杂波干扰等。比如,图18的(e)所示一帧二维FFT数据的测试环境中,分别在距离毫米波雷达1m、2m和4m处存在运动的人体,而从图18的(e)中可以看到,除了上述距离毫米波雷达1m、2m和4m处的3个峰值以外,还存在其他的反射信号引起的较大峰值(背景噪声以及杂波干扰等)。如果将背景噪声以及杂波干扰等引起的反射信号检测为反射点,则产生了虚警。在一种实现方法中,可以采用恒虚警(constant false-alarm rate,CFAR)目标检测算法获取反射点的距离和径向速度,以保持一个恒定的虚警率,提高目标检测精度。
需要说明的是,毫米波雷达模块可以根据需要,采用现有技术中的目标检测算法,根据二维FFT数据获取反射点的距离和径向速度,本申请实施例对使用的目标检测算法不做限定。目标检测算法的具体实现方法可以从现有技术中获取,此处不再赘述。
S2103、毫米波雷达模块确定反射信号的信号来向。
示例性地,可以采用相位差法、和差波束法、music法等算法估计方位角和俯仰角。相位差法、和差波束法、music法等算法可以从现有技术中获取,此处不再赘述。
S2104、毫米波雷达模块确定反射点在第四坐标系的坐标。
毫米波雷达根据反射点与毫米波雷达的距离,以及反射点的信号来向确定反射点在第四坐标系的坐标。
S2105、毫米波雷达模块确定智能设备或用户在第四坐标系的坐标。
在一种实施方式中,采用聚类算法对检测到的反射点进行聚类,将多个反射点聚类为智能设备或用户。聚类算法包括:基于划分的聚类方法,基于密度的划分方法,基于模型的划分方法,基于网络的划分方法等。比如,常见的聚类算法有具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noise,DBSCAN)、K-Means算法、Birch算法等。可以采用任意一种聚类算法进行聚类处理,本申请实施例对此并不进行限定。
可以根据聚类后的一个智能设备或用户的多个反射点的坐标平均值,计算出该智能设备或用户在第四坐标系下的坐标。
S2106、毫米波雷达模块对智能设备或用户进行跟踪。
毫米波雷达模块对接收到的每一帧数据进行目标检测。进一步地,使用目标检测算法和聚类算法将每一帧数据中的物体(智能设备)或人体检测出来后,还可以通过关联算法将当前帧中的检测结果与上一帧中的检测结果一一匹配,实现对物体或人体的跟踪(即获取随时间变化,物体或人体坐标值发生的变化)。示例性地,一种跟踪算法(前后帧关联算法)为,计算两帧中两个目标之间的欧式距离(空间两点之间的直线距离),将欧式距离最短的两个目标确定为同一个目标,然后通过匈牙利算法链接跟踪目标。
进一步地,在一种实施方式中,毫米波雷达模块可以根据目标跟踪结果确定目标是静止的或运动的。毫米波雷达模块还可以用于检测静止状态的目标的生理特征(比如呼吸频率、心跳频率)。如果确定目标的生理特征满足设定条件(比如,呼吸频率在预设范围内,心跳频率在预设范围内),则确定目标或聚类后的目标是人体(用户);并对用户进行跟踪。
(八)毫米波雷达模块对用户生理特征、身份类别和人体姿态等的检测
下面结合附图,详细介绍毫米波雷达模块检测用户的生理特征、身份类别和人体姿态等信息的具体方法。
(1)毫米波雷达模块检测用户的生理特征
用户的生理特征包括用户的呼吸频率、心跳频率等。用户静止(用户位置未发生变化)时,呼吸和心跳引起的用户身体的微小位移可以引起毫米波雷达模块反射信号的相位变化。可以通过检测用户静止时,毫米波雷达模块反射信号的相位变化,获取用户的呼吸频率和心跳频率。
在一种实施方式中,如图22所示,毫米波雷达模块获取用户的呼吸频率和心跳频率的方法可以包括:
S2201、提取相位信息。
上述S2201中,对毫米波雷达的每一帧数据进行Range FFT,根据Range FFT结果可以获取差频信号频率,即获取差频信号相位。上述S2206中,毫米波雷达对用户进行目标跟踪,可以获取随时间变化,用户位置发生的变化,即可以获取某一时刻的用户位置。
如果毫米波雷达根据目标跟踪结果确定用户静止(比如,在一段时间内,用户的坐标变化量小于设定值),对用户当前位置处的Range FFT结果进行相位提取,即提取差频信号相位信息。示例性地,雷达扫面周期为100ms,也就是说一帧数据的周期为100ms。对每一帧数据提取一次差频信号相位信息。连续提取多帧数据的相位信息,即可获取相位随帧数变化关系,即相位随时间变化的关系;记为振动信号v(j),其中,j为帧数。
S2202、相位解缠绕。
展开相位以获取实际的位移曲线。其中,规定相位值在[-π,π]之间。如果S2201中计算出的相位值大于π,通过从相位值中减去2π来执行相位展开;如果S2201中计算出的相位值小于-π,通过在相位值中加2π来执行相位展开。
S2203、计算相位差。
通过对连续的相位值进行相减,对展开的相位执行相位差运算,得到相位差Δv;这样可以增强心跳信号并消除任何相位漂移。其中,Δv(k)=v(k)-v(k-1)。
S2204、带通滤波。
分别根据心跳频率和呼吸频率,采用带通滤波器对相位值进行滤波以进行区分。示例性地,将带通滤波器的通带范围设置为0.8Hz-4Hz,对相位值进行滤波,可以检测出心跳;将带通滤波器的通带范围设置为0.1Hz-0.6Hz,对相位值进行滤波,可以检测出呼吸。
S2205、范围估计。
对相位差信号做FFT,依据峰值大小及谐波特征,获取N帧时间内的呼吸频率和心跳频率。
S2206、判决。
记录一段时间内的呼吸频率和心跳频率,根据预设的置信度指标(比如,准确率95%,虚警率5%)筛选获取的呼吸频率和心跳频率值,并输出呼吸频率和心跳频率随时间变化的关系。
(2)毫米波雷达模块检测用户的身份类别
毫米波雷达模块可以根据计算出的(用户)的身高h m确定用户的身份类别。用户身份类别包括成人、儿童等。
在一种实施方式中,当用户在毫米波雷达模块的检测范围内,如果用户被检测到处于运动状态,则毫米波雷达模块计算每一帧数据中检测到的用户的身高,记为h m(t),表示t时刻的身高值。还可以根据h m(t)计算用户身高的平均值H m,并根据H m确定用户的身份类别。示例性地,用户身高与用户身份类别的对应关系如表1所示。
表1
身份类别 身高
成人 H m>120厘米
儿童 120厘米≥H m>50厘米
宠物 H m≤50厘米
(3)毫米波雷达模块检测用户的人体姿态
毫米波雷达模块可以根据计算出的(用户)的身高h m的变化确定用户的人体姿态。人体姿态包括站立、坐、躺等。
在一种实施方式中,毫米波雷达模块对用户进行目标跟踪,如果确定用户的身高发生变化,且身高变化的值大于预设的高度差门限,且身高变化后维持时长大于预设时长,则确定用户的人体姿态发生变化。示例性地,如图23的(a)所示,毫米波雷达模块检测到用户的身高由175厘米变化为80厘米,且在80厘米保持一段时间,则确定用户由站立变为躺。毫米波雷达模块检测到用户的身高由175厘米变化为120厘米,且在120厘米保持一段时间,则确定用户由站立变为坐。
在一种示例中,毫米波雷达模块根据用户当前身高与站立时身高的高度差Δh确定用户的人体姿态。比如,Δh(t)可以通过公式(11)计算得到,Δh(t)表示用户t时刻的身高与用户站立时身高的高度差,如下:
Δh(t)=H m-h m(t)       公式(11)
示例性地,如果毫米波雷达模块确定连续多个时刻(大于预设时长)的Δh满足预设的高度差门限,则确定用户的人体姿态发生变化。示例性地,高度差Δh与人体姿态的对应关系如表2所示。
表2
Figure PCTCN2022117923-appb-000082
进一步地,毫米波雷达还可以通过监测用户身高的变化识别用户的跌倒行为。示例性地,图23的(b)示出了用户跌倒与正常躺下的身高变化。如图23的(b)所示,相比于正常躺下,跌倒时用户身高变化更快(即在相同时长内产生的身高差大),且跌倒后的身高更低。
在一种实施方式中,如果毫米波雷达模块确定用户当前身高与站立时身高的高度 差Δh满足预设的跌倒高度门限,且用户从站立时身高变化为当前身高所用的时长Δt满足预设的跌倒时长门限,则确定用户跌倒。示例性地,Δh、Δt与用户跌倒的对应关系如表3所示。
表3
身份类别 状态 高度差Δh Δt
成人 跌倒 120厘米≤Δh Δt≤0.3秒
儿童 跌倒 80厘米≤Δh Δt≤0.3秒
(九)第一坐标系与第四坐标系的转换
第一电子设备100建立第一坐标系和第四坐标系后,为了便于协同,需要将第一坐标系下的坐标值与第四坐标系下的坐标值进行转换。比如,将第二电子设备300在第一坐标系中的坐标转换为第二电子设备300在第四坐标系中的坐标,或者,将用户在第四坐标系中的坐标转换为用户在第一坐标系中的坐标。因此,涉及到第一坐标系与第四坐标系的转换。
示例性地,第一电子设备100的UWB模块150和毫米波雷达模块160两者的天线分布可以按图24所示设置。其中,天线0、天线1和天线2在纵向面(比如,铅垂面)上呈现L形的分布。发射天线0、发射天线1和发射天线2在纵向面(比如,铅垂面)上呈现三角形的分布,接收天线0、接收天线1、接收天线2和接收天线3在纵向面(比如,铅垂面)上的同一水平线上,且三个发射天线和四个接收天线设置于同一纵向面。
示例性地,如图24所示,以天线0的末端端点(也可替换为中心点等)为第一坐标系的原点O e;以天线0和天线1的连线为第一坐标系的X e轴,且天线1指向天线0的方向为X e轴正向。在天线0、天线1和天线2所在的平面内,以垂直于X e轴的直线为第一坐标系的Z e轴,且天线2位于Z e轴的正向。再结合右手直角坐标系定则,确定第一坐标系的Y e轴,及Y e轴正向。以接收天线0的末端端点(也可替换为中心点等)为第四坐标系的原点O m;以接收天线0和接收天线1的连线为第四坐标系的X m轴,且接收天线1指向接收天线0的方向为X m轴正向;以经过原点O m的纵向线(比如,铅垂线)为第四坐标系的Z m轴,且指向天顶方向为Z m轴正向;再结合右手直角坐标系定则,确定第四坐标系的Y m轴及Y m轴正向。可以看出,X e轴与X m轴平行,Y e轴与Y m轴平行,Z e轴与Z m轴平行,第四坐标系和第一坐标系仅需通过平移就能实现互相转换。
示例性地,如图24所示,第一坐标系沿着平行于X e轴方向移动距离dx,再沿着平行于Y e轴方向移动距离dy,再沿着平行于Z e轴方向移动距离dz,就与第四坐标系重合。比如,定义一点在第一坐标系下的坐标为(x e,y e,z e),该点在第四坐标系的坐标为(x m,y m,z m),那么[x m,y m,z m] T=[x e,y e,z e] T-[dx,dy,dz] T
可以理解的,第一电子设备100的第一坐标系和第四坐标系的相对位置可以有其他的设置方式。可以采用类似的方法进行第四坐标系和第一坐标系的转换,此处不再赘述。
(十)第五坐标系(全屋坐标系)的建立及第五坐标系与第一坐标系的转换
在一种示例中,各房间或各区域设置有一个第一电子设备。第一电子设备通过包 含UWB模块的第二电子设备对未包含UWB模块的第二电子设备的标记,以及与包含UWB模块的第二电子设备通信交互,获取到该房间或该区域中各设备、各设定区域的位置信息。第一电子设备通过毫米波雷达模块,获取用户在该房间或该区域的位置信息;并可以进一步地获取用户的生理特征、身份类别和人体姿态等信息。第一电子设备根据接收到的上述信息,控制或通知第二电子设备执行预设操作。该示例是以单独的房间或区域为例示意的。
在另一种示例中,比如全屋场景中,可以设置中枢设备。中枢设备、第一电子设备和第二电子设备等设备通过有线或无线方式组成全屋系统。第一电子设备通过包含UWB模块的第二电子设备对未包含UWB模块的第二电子设备的标记,以及与包含UWB模块的第二电子设备通信交互,获取到该房间或该区域中各设备、各设定区域的位置信息。第一电子设备通过毫米波雷达模块,获取用户在该房间或该区域的位置信息,并获取用户的生理特征、身份类别和人体姿态等信息。第一电子设备将各设备、各设定区域的位置信息,以及用户的位置位置、生理特征、身份类别和人体姿态等信息中的至少一项,通过有线或无线方式发送至中枢设备。中枢设备根据接收到的上述信息,控制或通知第二电子设备执行预设操作。
可选地,中枢设备可以与某一个特定的第一电子设备(比如,客厅的第一电子设备)集成为一个设备。
对于全屋场景,就需要将各房间和/或各区域的上述信息,统一汇总。其中涉及到各房间下的不同坐标系的转换。比如,主卧房间下第一坐标系的位置信息、次卧房间下第一坐标系的位置信息等,都要统一到一个坐标系下。这样,才能从全屋的层面,统一控制或通知。因此,需要建立第五坐标系(也称全屋坐标系)。
示例性地,用户可以将全屋户型图、中枢设备的安装位置、中枢设备的安装位置在全屋户型图中的位置、全屋的高度信息等输入中枢设备。全屋户型图即房屋的平面空间布局图,是对全屋各个独立空间的使用功能、相对位置、大小等进行描述的图。中枢设备根据全屋户型图建立第五坐标系。
在一种示例中,如图25的(a)所示,全屋户型的最南点投影在水平面上的投影点为第一投影点,过第一投影点作平行于东西方向的第一直线;全屋户型的最西点投影在水平面上的投影点为第二投影点,过第二投影点作平行于南北方向的第二直线;第一直线和第二直线的交点作为第五坐标系的原点O h。第一直线作为X h轴,且正东方向为X h轴正向。第二直线作为Y h轴,且正北方向为Y h轴正向。Z h轴垂直于水平面,且指向天空方向为Z h轴正向。可选地,第五坐标系中三轴的命名,以及三轴的正向也可以采用其他的方式确定,此处不再赘述。
可选地,第一电子设备包括IMU模块。示例性地,客厅里安装一个中枢设备,中枢设备与客厅中的第一电子设备两者平行地安装在墙壁或天花板等位置上。第一电子设备建立的第一坐标系与地理坐标系(第六坐标系)在三轴的全部或部分上可能存在夹角。该夹角可通过第一电子设备的IMU模块输出,或者可根据第一电子设备的IMU模块输出的结果经过解析得到,或者通过水平仪和/或铅垂仪等仪器的测量结果计算得到。示例性地,图25的(b)示出了Y g轴正向与Y e轴正向之间的夹角Δε。第六坐标系与第五坐标系两者之间的转换,为本领域技术人员所熟知的,此处不再赘述。在一 种实施方式中,第六坐标系的三轴分别平行于第五坐标系的三轴。这样,就可以实现第一坐标系与第五坐标系的转换。
在另一种示例中,中枢设备建立第五坐标系时,使第五坐标系的三轴分别平行于第六坐标系的三轴,还可以根据图25的(a)所示方法确定第五坐标系的原点O h。并且,第一电子设备安装时,采用水平仪和/或铅垂仪等仪器或包括IMU模块的设备辅助,使得第一电子设备建立的第一坐标系的三轴分别平行于第六坐标系的三轴。这样,第一坐标系的三轴分别平行于第五坐标系的三轴,第一坐标系与第五坐标系不需进行转换。
第一坐标系和第五坐标系两者的坐标原点的距离差值,可以通过同一中枢设备在第一坐标系和第五坐标系下的两个坐标值来获取。具体来说,中枢设备可以获取到在第五坐标系下,中枢设备的坐标信息。中枢设备在第一坐标系下的坐标信息,可以有两种方式获取到:(i)如果中枢设备包括UWB模块,通过中枢设备与第一电子设备之间的UWB通信,可以获取到中枢设备在第一坐标系下的坐标信息;(ii)如果中枢设备不包括UWB模块,可以通过包含UWB模块的第二电子设备对中枢设备标记,获取到中枢设备在第一坐标系下的坐标信息。通过同一中枢设备在第一坐标系和第五坐标系下的两个坐标值,可以实现第一坐标系和第五坐标系两者的坐标原点的距离差值。
四、基于人体感知的自动控制方法
如上文所述,全屋场景下,全部或部分房间中每个房间设置有一个第一电子设备,全部或部分区域设置有一个第一电子设备,单个房间中设置有一个或多个第二电子设备。示例性地,图26的(a)示出了基于人体感知的自动控制方法的总体步骤。如图26的(a)所示,该方法可以包括:
S1、第一电子设备建立第一坐标系和第四坐标系,第二电子设备建立第二坐标系,中枢设备建立第五坐标系;通过第一坐标系、第二坐标系、第三坐标系、第四坐标系至第五坐标系的转换,获取各设备、区域和用户的位置信息等在第五坐标系下的位置信息。
对S1的介绍,具体分为以下步骤来介绍。
(一)第一电子设备建立第一坐标系和第四坐标系,第二电子设备建立第二坐标系,中枢设备建立第五坐标系。
可选地,包括UWB模块的第二电子设备建立第二坐标系,不包含UWB模块的第二电子设备建立第三坐标系。
有关第一电子设备建立第一坐标系和第四坐标系,第二电子设备建立第二坐标系,中枢设备建立第五坐标系,可参见上文的原理,此处不再赘述。
(二)对第一电子设备的安装误差校正及通过对第一坐标系、第二坐标系、第三坐标系、第四坐标系至第五坐标系的转换,获取各设备、区域和用户的位置信息等在第五坐标系下的位置信息。
第一电子设备在安装中可能存在误差,导致第一电子设备对第二电子设备或用户的定位存在偏差。在一种实施方式中,可以在首次使用中,对第一电子设备进行校正,以减少甚至避免安装带来的误差。
第一电子设备存在安装误差可能会降低UWB系统测量精度。例如,如图27的(a) 所示,位于入户过道的第一电子设备①与位于客厅的第一电子设备③中的至少一个可能存在安装误差。对于同一个第二电子设备,第一电子设备①确定第二电子设备位于位置1,第一电子设备③确定该第二电子设备位于位置2。第一电子设备①和第一电子设备③根据该第二电子设备的标识,确定分别位于位置1与位置2的电子设备实际为同一个第二电子设备,从而表明存在安装误差,这样会降低测量精度。
第一电子设备包括UWB模块和毫米波雷达模块,可以对UWB模块和毫米波雷达模块分别进行安装误差校正。在一种实施方式中,如果第一电子设备100的UWB模块150与毫米波雷达模块160中的天线如图24所示分布。由于硬件设置保证第一电子设备内UWB模块和毫米波雷达的相对位置是确定的,可以仅对UWB模块或毫米波雷达模块进行安装误差校正。在另一种实施方式中,可以同时对第一电子设备的UWB模块和毫米波雷达模块进行安装误差校正,通过多次校正提高校正精度。
本申请实施例以校正第一电子设备的UWB模块为例进行介绍。可以理解的,对第一电子设备的毫米波雷达模块的校正与对第一电子设备的UWB模块的校正流程类似,此处不再赘述。如下的方法仅为示例性地,并非限制校正的方法。其他校正的方法也在本申请的范围之内。
步骤11、通过中枢设备,校正基准第一电子设备的安装误差,获取第一校正参数。
基准第一电子设备为多个第一电子设备中的一个第一电子设备。示例性地,比如中枢设备安装在客厅中,客厅中的第一电子设备可作为基准第一电子设备。基准第一电子设备的第一坐标系记为e1系。
可选地,中枢设备可以显示全屋地图。中枢设备可以指示用户持有包含UWB模块的一个第二电子设备,从一个已知且容易识别的位置1按第一轨迹移动至另一个已知且容易识别的位置2。基准第一电子设备检测到第二电子设备的移动轨迹(通过UWB模块)或用户的移动轨迹(通过毫米波雷达模块),以第二电子设备的移动轨迹为例,若检测到的第二电子设备的移动轨迹与第一轨迹之间存在偏差。
示例性地,如图27的(c)所示,中枢设备可以指示用户持有包含UWB模块的一个第二电子设备从已知坐标的位置一沿直线移动至已知坐标的位置二。第一电子设备①可以根据UWB模块的检测,获取到实际的第二电子设备移动轨迹。如图27的(c)所示,第一电子设备①检测到的用户移动轨迹与实际的用户移动轨迹存在一定偏差。
之后,可通过算法来计算出姿态误差旋转矩阵W和位置误差向量G。示例性地,算法可以采用如图28所示的ICP算法。通过ICP算法,可以计算出最优匹配姿态误差旋转矩阵W和位置误差向量G,使得误差函数最小。有关ICP算法的具体内容可以参考现有技术,此处不再展开。第一校正参数包括此时的最优匹配姿态误差旋转矩阵W和位置误差向量G。
在基准第一电子设备校正后,再以基准第一电子设备为基础,校正第一电子设备的安装误差。
步骤12、通过基准第一电子设备,校正第一电子设备的安装误差,获取第二校正参数。
在一种示例中,用户手持包含UWB模块的第二电子设备在全屋的各个房间移动,全屋的各个第一电子设备都对该第二电子设备进行定位。例如,如图27的(a)所示, 第一电子设备①和第一电子设备③的信号覆盖区域存在交叠区域2701。用户在交叠区域2701移动时,如图27的(b)所示,第一电子设备①和第一电子设备③获取的第二电子设备移动轨迹存在一定偏差。第一电子设备①为基准第一电子设备。
在一种实施方式中,根据两个第一电子设备分别检测出的第二电子设备移动轨迹,对两个第一电子设备的安装误差进行校正。示例性地,校正参数包括姿态误差旋转矩阵W和位置误差向量G。比如,第一电子设备①获取第一电子设备①建立的第一坐标系(e1系)下,第二电子设备移动轨迹
Figure PCTCN2022117923-appb-000083
第一电子设备③获取第一电子设备③建立的第一坐标系(e3系)下,第二电子设备移动轨迹
Figure PCTCN2022117923-appb-000084
其中
Figure PCTCN2022117923-appb-000085
表示tn时刻第一电子设备①检测到的该第二电子设备在e1系下的坐标,
Figure PCTCN2022117923-appb-000086
表示tn时刻第一电子设备③检测到的第二电子设备在e3系下的坐标。通过后续的公式(13)可以将用户移动轨迹q e1和q e3转换到第五坐标系,分别记为q e1->h和q e3->h
q e1->h和q e3->h为记录用户移动轨迹的点云,可以通过迭代最近点(iterative closest point,ICP)算法计算q e1->h和q e3->h两个点云之间的姿态误差旋转矩阵W e3->e1和位置误差向量G e3->e1,使q e1->h经过校正后与q e3->h两簇点云之间的三维空间误差最小。其中,ICP算法的基本原理如图28所示,通过在待匹配的目标点云q e3->h和基准点云q e1->h中,按照约束条件
Figure PCTCN2022117923-appb-000087
找到最邻近点
Figure PCTCN2022117923-appb-000088
然后计算出最优匹配姿态误差旋转矩阵W和位置误差向量G,使得误差函数最小。ICP算法的具体步骤可以参考现有技术,本申请实施例不再赘述。第二校正参数包括此时的最优匹配姿态误差旋转矩阵W和位置误差向量G。
可选地,上述的步骤11和步骤12可以互换顺序。另外,上述的步骤11和步骤12仅为一种示例。在另外一种示例中,也可以无需通过基准第一电子设备,所有的第一电子设备都与中枢设备实现校正。
在用户未持有包含UWB模块的第二电子设备移动时,各个第一电子设备可以检测出用户的移动轨迹。有关方式与第二电子设备移动轨迹的处理方式类似,此处不再赘述。
步骤13、将第一电子设备计算出的第二电子设备在第一坐标系的坐标或用户在第四坐标系的坐标转换到第五坐标系的坐标。
在一种示例中,通过上述步骤11,获取基准第一电子设备相对于中枢设备的姿态误差旋转矩阵和位置误差向量。以第一电子设备①作为基准第一电子设备为例,第一电子设备①相对于中枢设备的姿态误差旋转矩阵和位置误差向量记为[W e1->h,G e1->h]。
通过上述步骤12,校正其他第一电子设备相对于基准第一电子设备的姿态误差旋转矩阵和位置误差向量。以第一电子设备①作为基准第一电子设备为例,其他第一电子设备相对于第一电子设备①的姿态误差旋转矩阵和位置误差向量记为[W ek->e1,G ek->e1],k∈2,…,n。
在一种示例中,以第一电子设备①作为基准第一电子设备为例。除基准第一电子设备外的第k个其他第一电子设备的第一坐标系的原点在第五坐标系的坐标表示为
Figure PCTCN2022117923-appb-000089
选取空间中的任意一点为点q,点q在第k个第一电子设备建立的第一 坐标系的坐标表示为
Figure PCTCN2022117923-appb-000090
点q在第五坐标系的经过安装误差校正后的坐标表示为
Figure PCTCN2022117923-appb-000091
可以通过公式(12)将点q在第k个第一电子设备建立的第一坐标系的坐标经过安装误差校正后转换到第五坐标系,如下:
Figure PCTCN2022117923-appb-000092
基准第一电子设备建立的第一坐标系的原点在第五坐标系的坐标表示为
Figure PCTCN2022117923-appb-000093
点q在基准第一电子设备建立的第一坐标系的坐标表示为
Figure PCTCN2022117923-appb-000094
点q在第五坐标系的经过安装误差校正后的坐标表示为
Figure PCTCN2022117923-appb-000095
Figure PCTCN2022117923-appb-000096
可以通过公式(13)将点q在基准第一电子设备建立的第一坐标系的坐标经过安装误差校正后转换到第五坐标系,如下:
Figure PCTCN2022117923-appb-000097
在另一种示例中,第一电子设备检测到的坐标不经过基准第一电子设备,而直接经过安装误差校正后转换到第五坐标系。示例性地,第一电子设备检测到的用户移动轨迹与实际的用户移动轨迹两个点云之间的姿态误差旋转矩阵记为W e->h,位置误差向量记为G e->h。第一电子设备建立的第一坐标系的原点在第五坐标系的坐标表示为
Figure PCTCN2022117923-appb-000098
点q在第一电子设备建立的第一坐标系的坐标表示为
Figure PCTCN2022117923-appb-000099
点q在第五坐标系的经过安装误差校正后的坐标表示为
Figure PCTCN2022117923-appb-000100
可以通过公式(14)将点q在第一电子设备建立的第一坐标系的坐标经过安装误差校正后转换到第五坐标系,如下:
Figure PCTCN2022117923-appb-000101
可以理解的,将第一电子设备检测到的用户在第四坐标系的坐标经过安装误差校正后转换到第五坐标系的方法与将第一电子设备检测到的用户在第一坐标系的坐标经过安装误差校正后转换到第五坐标系的方法类似,此处不再赘述。
在首次使用中,可以通过第一电子设备的UWB模块对全屋的第二电子设备进行定位。每个房间或区域内的第一电子设备可以确定该房间或该区域内的第二电子设备在该第一电子设备的第一坐标系下的坐标。可选地,对于信号覆盖区域存在交叠区域的多个第一电子设备,可以多个第一电子设备中的一个交叠区域内的第二电子设备定位。
进一步地,在一种实施方式中,全屋内每个第一电子设备将获取的一个或多个第二电子设备在第一坐标系的坐标转换到第五坐标系,并将一个或多个第二电子设备在第五坐标系的坐标发送给中枢设备。在另一种实施方式中,全屋内每个第一电子设备将获取的一个或多个第二电子设备在第一坐标系的坐标发送给中枢设备,中枢设备将从各个第一电子设备接收的第二电子设备在第一坐标系的坐标转换到第五坐标系。可选地,将第二电子设备在第一坐标系的坐标转换到第五坐标系,包括:将第二电子设备在第一坐标系的坐标经过安装误差校正后转换到第五坐标系。中枢设备可以保存获取到的第二电子设备在第五坐标系的坐标。
可选地,首次使用后,全屋可能新增或去除第二电子设备,或者第二电子设备的 位置可能发生变化。在一种实施方式中,中枢设备周期性地通过各房间或各区域的第一电子设备对第二电子设备进行定位,并更新中枢设备保存的第二电子设备的坐标。在另一种实施方式中,中枢设备检测到全屋新增的第二电子设备,则触发通过第一电子设备对第二电子设备进行定位,并更新中枢设备保存的第二电子设备的坐标。比如,中枢设备保存全屋内全部第一电子设备和第二电子设备等设备的配置信息。第二电子设备接入中枢设备,并新增对应的配置信息;中枢设备根据配置信息确定新增第二电子设备,则触发第一电子设备对第二电子设备进行定位。在另一种实施方式中,全屋内新增或去除第二电子设备,或者第二电子设备的位置发生变化后,用户可以手动触发第一电子设备对第二电子设备进行定位,并更新中枢设备保存的第二电子设备的坐标。比如用户通过在控制面板显示的人机交互界面启动第一电子设备对第二电子设备定位。示例性地,如图29的(a)所示,控制面板显示定位中枢设备的界面2901,定位中枢设备的界面2901包括客厅、餐厅、厨房等房间选项。用户可以选择房间选项中一个或多个,并点击“确定”按钮2902,启动对应房间的第一电子设备对该房间内的中枢设备进行定位。定位中枢设备的界面2901还包括“取消”按钮2903,用于取消执行对IoT设备定位。可选地,定位IoT设备界面2901还包括“全选”按钮2904,用户可以点击“全选”按钮2904选中房屋内全部房间,并点击“确定”按钮2902,启动全屋内的第一电子设备分别进行第二电子设备定位。
可选地,首次使用后,可以周期性地通过各房间或各区域的第一电子设备对全屋内的用户进行定位,并跟踪每个用户的移动轨迹。比如,周期为1秒,第一电子设备以10Hz(赫兹)的频率(1秒10次)进行检测,并以1Hz的频率(1秒1次)将检测结果发送至中枢设备。其中,全屋内每个第一电子设备可以对该第一电子设备信号覆盖区域内的用户进行定位(获取用户在第四坐标系的坐标)和跟踪(获取用户在第四坐标系的移动轨迹)。可选地,对于信号覆盖区域存在交叠区域的多个第一电子设备,可以多个第一电子设备中的一个对交叠区域内用户定位和跟踪。进一步地,在一种实施方式中,全屋内每个第一电子设备将获取的一个或多个用户在第四坐标系的坐标或移动轨迹转换到第五坐标系的坐标或移动轨迹,并将一个或多个用户在第五坐标系的坐标或移动轨迹发送给中枢设备。在另一种实施方式中,全屋内每个第一电子设备将获取的一个或多个用户在第四坐标系的坐标或移动轨迹发送给中枢设备,中枢设备将从各个第一电子设备接收的用户在第四坐标系的坐标或移动轨迹转换到第五坐标系的坐标或移动轨迹。可选地,将用户在第四坐标系的坐标或移动轨迹转换到第五坐标系,包括:将用户在第四坐标系的坐标或移动轨迹经过安装误差校正后转换到第五坐标系的坐标或移动轨迹。中枢设备可以保存并周期性地更新获取到的用户的位置(比如,用户在第五坐标系的坐标)或移动轨迹(在第五坐标系的坐标轨迹)。
需要说明的是,步骤(二)并不是必需的,是可选地。比如,在刚开始安装时,需要校正一下。之后,一般不需要校正,或者在使用很长时间后再校正一次。在执行步骤(二)时,就无需再执行步骤(三)。在不执行步骤(二)时,执行步骤(三)。即步骤(二)和步骤(三)择一执行。
(三)通过第一坐标系、第二坐标系、第三坐标系、第四坐标系至第五坐标系的转换,获取各设备、区域和用户的位置信息等在第五坐标系下的位置信息。
第一坐标系、第二坐标系、第三坐标系、第四坐标系至第五坐标系的转换,具体可以为:第二坐标系、第三坐标系与第一坐标系的转换,可根据前述的原理得到
Figure PCTCN2022117923-appb-000102
来实现。第四坐标系与第一坐标系的转换,在前述原理部分已经阐明。在第二坐标系、第三坐标系、第四坐标系都转换至第一坐标系后,基于前述的原理,可得到
Figure PCTCN2022117923-appb-000103
进而实现第一坐标系至第五坐标系的转换。
Figure PCTCN2022117923-appb-000104
其中,
Figure PCTCN2022117923-appb-000105
分别为第五坐标系相对于第一坐标系的航向角、俯仰角和横滚角。对于全屋空间中的任意一点q,其在第五坐标系下的坐标
Figure PCTCN2022117923-appb-000106
其在第一坐标系下的坐标
Figure PCTCN2022117923-appb-000107
第一坐标系的原点O e在第五坐标系的坐标为
Figure PCTCN2022117923-appb-000108
可以通过公式(16)将点q在第一坐标系的坐标转换到第五坐标系。
Figure PCTCN2022117923-appb-000109
可选地,第一电子设备可以将自身设备的第一坐标系或第四坐标系的坐标转换到第五坐标系。即第四坐标系的坐标无需先转换为第一坐标系的坐标,再将第一坐标系的坐标转换为第五坐标系的坐标;而是可以直接转换到第五坐标系的坐标。之后,再将转换后的第五坐标系的坐标发送至中枢设备。基于前述的原理,可得到
Figure PCTCN2022117923-appb-000110
进而实现第四坐标系至第五坐标系的转换。
Figure PCTCN2022117923-appb-000111
其中,
Figure PCTCN2022117923-appb-000112
Figure PCTCN2022117923-appb-000113
分别为第五坐标系相对于第四坐标系的航向角、俯仰角和横滚角。对于全屋空间中的任意一点q,其在第五坐标系下的坐标
Figure PCTCN2022117923-appb-000114
其在第四坐标系下的坐标
Figure PCTCN2022117923-appb-000115
第四坐标系的原点O m在第五坐标系的坐标为
Figure PCTCN2022117923-appb-000116
可以通过公式(18)将点q在第一坐标系的坐标转换到第五坐标系。
Figure PCTCN2022117923-appb-000117
可选地,上述转换由中枢设备执行。第一电子设备分别将自身设备的第一坐标系或第四坐标系的坐标发送至中枢设备,中枢设备将基于各个第一电子设备的第一坐标系或第四坐标系的坐标转换至第五坐标系的坐标。
可选地,在多个第一电子设备中设置一个基准第一电子设备。除基准第一电子设备之外的其他第一电子设备,分别将自身设备的第一坐标系或第四坐标系的坐标信息,发送给基准第一电子设备。基准第一电子设备将基于各个第一电子设备的第一坐标系或第四坐标系的坐标转换至第五坐标系的坐标,并将转换后的第五坐标系的坐标发送至中枢设备。
S2、根据用户的位置信息与第二电子设备的位置信息,第二电子设备执行预设的操作。
本申请实施例中,全屋内划分为一个或多个房间和/或一个或多个区域,彼此互不重叠。中枢设备可以通过第一电子设备对房间或区域定位,获取并保存每个房间或区域的坐标范围。比如,可以采用图14的(b)的方法获取每个房间或区域的坐标范围。
中枢设备可以确定每个第一电子设备、每个第二电子设备所在的房间或区域。在一种实施方式中,用户可以通过中枢设备来查询,比如,输入设备名称(第一电子设备名称、第二电子设备名称)、设备所在的房间或区域等。在一种实施方式中,每个房间或区域安装至少一个第一电子设备。中枢设备根据用户输入确定每个第一电子设备所在的房间或区域。在一种实施方式中,中枢设备根据第一电子设备或第二电子设备的坐标和全屋内每个房间或区域的坐标范围,确定每个第一电子设备或每个第二电子设备所在的房间或区域。
示例性地,如图29的(b)所示,对于一个水平方向是四边形的房间,可以采用图14的(a)所示的方法,将智能手机分别放置在房间内点A、点B、点C和点D四个位置,通过第一电子设备100分别获取点A、点B、点C和点D四个位置在第五坐标系中的坐标
Figure PCTCN2022117923-appb-000118
Figure PCTCN2022117923-appb-000119
经过位置A的铅垂线、经过位置B的铅垂线、经过位置C的铅垂线和经过位置D的铅垂线可以确定该房间内划定的一个区域的区域范围。第二电子设备在第五坐标系的坐标为
Figure PCTCN2022117923-appb-000120
是第二电子设备在X hO hY h平面内的投影点Q的坐标。按照顺时针方向,沿着A、B、C、D的顺序连接成一个凸四边形。凸四边形的四个边分别为
Figure PCTCN2022117923-appb-000121
Figure PCTCN2022117923-appb-000122
如果确定点Q分别在
Figure PCTCN2022117923-appb-000123
Figure PCTCN2022117923-appb-000124
四条边的右侧,则确定点Q位于点A、点B、点C和点D组成的凸四边形内,即确定第二电子设备位于该房间内。示例性地,如果点Q的坐标
Figure PCTCN2022117923-appb-000125
与点A、点B、点C、点D的坐标满足公式(19),则确定点Q位于点A、点B、点C和点D组成的区域范围内。
Figure PCTCN2022117923-appb-000126
其中,×表示矢量叉积,
Figure PCTCN2022117923-appb-000127
表示
Figure PCTCN2022117923-appb-000128
Figure PCTCN2022117923-appb-000129
的矢量叉积,
Figure PCTCN2022117923-appb-000130
表示
Figure PCTCN2022117923-appb-000131
Figure PCTCN2022117923-appb-000132
的矢量叉积,
Figure PCTCN2022117923-appb-000133
表示
Figure PCTCN2022117923-appb-000134
Figure PCTCN2022117923-appb-000135
的矢量叉积,
Figure PCTCN2022117923-appb-000136
表示
Figure PCTCN2022117923-appb-000137
Figure PCTCN2022117923-appb-000138
的矢量叉积;两个矢量的矢量叉积是标量。
示例性地,
Figure PCTCN2022117923-appb-000139
Figure PCTCN2022117923-appb-000140
Figure PCTCN2022117923-appb-000141
Figure PCTCN2022117923-appb-000142
Figure PCTCN2022117923-appb-000143
Figure PCTCN2022117923-appb-000144
Figure PCTCN2022117923-appb-000145
Figure PCTCN2022117923-appb-000146
在一种示例中,中枢设备可以保存全屋内的设备信息表,设备信息表包括全屋内 一个或多个设备(包括但不限于第一电子设备、第二电子设备等)的信息。比如,设备的信息包括设备名称,设备所在的房间或区域(房间)等;可选地,还可以包括设备的坐标(比如在第五坐标系的坐标)。示例性地,设备信息表如表4所示。
表4
Figure PCTCN2022117923-appb-000147
中枢设备还可以确定用户所在的房间或区域。在一种实施方式中,每个房间或区域安装至少一个第一电子设备。中枢设备确定每个第一电子设备所在的房间或区域。每个第一电子设备所在的房间或区域即该第一电子设备能够检测到的用户所在的房间或区域。在一种实施方式中,中枢设备根据用户的坐标和全屋内每个房间或区域的坐标范围,确定每个用户所在的房间或区域。具体方法可以参考中枢设备根据第二电子设备的坐标和全屋内每个房间或区域的坐标范围,确定每个第二电子设备所在的房间或区域的方法。进一步地,中枢设备周期性地获取到用户的坐标,根据用户坐标确定用户所在的房间或区域。在另一种实施方式中,中枢设备根据全屋户型图、中枢设备的安装位置、中枢设备的安装位置在全屋户型图中的位置、全屋的高度信息等,获取到全屋及全屋内各房间或各区域的坐标范围;之后,中枢设备根据获取到的用户的坐标,经过比较即可得知用户位于全屋内的哪个房间或哪个区域内。中枢设备可以根据用户当前所在的房间或区域与上一周期所在的房间或区域确定用户由一个房间或区域进入另一个房间或区域,或者离开全屋,或者进入全屋等。
可选地,中枢设备还可从各房间或各区域的第一电子设备处获取到生理特征、身份类别和人体姿态等信息中的至少一项,进而后续可以根据位置信息、生理特征、身份类别和人体姿态等信息中的至少一项,通知或控制对应房间或对应区域的对应第二电子设备执行预设的操作。
有关S2的具体内容,可以在后续结合具体场景进一步说明。
示例性地,图26的(b)示出了本申请实施例提供的基于人体感知的自动控制方法的一种实施方式。如图26的(b)所示,第一电子设备的UWB模块对全屋内设备、房间、区域等进行定位,获取全屋内设备的坐标和所在房间或区域,并上报中枢设备。第一电子设备的毫米波雷达模块对全屋内用户进行目标跟踪,周期性地向中枢设备上报全屋内用户的坐标和所在房间或区域。中枢设备根据第二电子设备的坐标和用户的坐标,向第二电子设备发送对应的预设指令。在一种实施方式中,如果确定第一用户与第二电子设备之间的相对位置满足预设条件,控制第二电子设备执行预设指令。其 中,第一用户的坐标可以是一个用户的坐标或多个用户的坐标的平均值。第二电子设备执行预设指令。这样,比如在用户靠近智能灯时,第二电子设备就可以通过图26的(b)示出的流程,执行预设指令,比如打开智能灯。
需要说明的是,本申请实施例提供的基于人体感知的自动控制方法,可以由中枢设备根据第二电子设备的坐标和用户的坐标确定第二电子设备执行预设指令;也可以由中枢设备之外的其他设备根据第二电子设备的坐标和用户的坐标确定第二电子设备执行预设指令;或中枢设备将第二电子设备的坐标和用户的坐标发送给第二电子设备,第二电子设备据此确定执行预设指令。可以理解的,本申请实施例对基于人体感知的自动控制方法的执行主体并不进行限定。
五、具体实施例介绍
在阐述完上述的整体场景、涉及的电子设备的硬件结构、定位原理和基于人体感知的自动控制方法的总体介绍后,下面结合附图和具体场景,以多个实施例的方式,进一步说明基于人体感知的自动控制方法,从而更为清楚地说明本申请实施例提供的技术方案是如何让用户对IoT设备的自动控制更为便捷,进一步提升用户体验,该过程中用户无需携带任何电子设备。
需要说明的是,有些实施例涉及到多个不同的第二电子设备与中枢设备之间的通信交互,甚至还涉及多个不同的第二电子设备之间的通信交互。为了便于后续的说明,下面采用第一设备、第二设备、第三设备等表示不同的第二电子设备来进行说明。
需要说明的是,本申请实施例提供的基于人体感知的自动控制方法,可以在具体的实施例中,分别细化为基于人体感知的路由设备自动调整波束方法、基于人体感知的清洁设备自动调整清洁区域方法、基于人体感知的健康管理设备自动获取人体信息方法、基于人体感知的晾晒设备自动升降方法和基于人体感知的照明设备自动调节灯光方法等。下面结合具体的实施例,具体介绍说明。
实施例1
实施例1涉及图30、图31和图32,提供了一种基于人体感知的路由设备自动调整波束方法。大多数的路由设备(比如,路由器)均包括多天线。路由设备的信号覆盖范围与多天线发射信号的波束形状有关。多天线路由设备可以通过波束成形的方式增加信号的发射和接收增益。示例性地,图30示出了本申请实施例提供的全屋场景下,路由设备自动调整波束方法的场景示意图。如图30的(a)所示,在本实施例中,第二电子设备包括路由设备300a(也可称为第一终端)和终端设备300b(也可称为第二终端)。终端设备300b通过路由设备300a接入网络。路由设备300a为多天线路由设备。路由设备300a可以通过波束成形为宽波束或窄波束来提供信号。宽波束的覆盖角度广,但是信号增益较小,通常包括一瓣。窄波束的信号增益较大,但覆盖角度小,通常包括多瓣,多瓣包括一个主瓣和多个从瓣,其中主瓣也称为波束最大增益点。一般地,多天线路由设备采用宽波束来提供信号。这样就导致用户的终端设备300b可能无法接收到路由设备300a提供的信号,或者虽然接收到路由设备300a提供的信号但该提供的信号并非增益较大的信号;从而导致用户使用终端设备300b通过路由设备300a上网等的体验较差。可选地,终端设备300b包括UWB模块。
基于前述的原理,路由设备300a建立自身的坐标系,根据路由设备300a是否包 含UWB模块,通过诸如前述的标记方式进行标记。通过坐标系转换,第一电子设备100获取到路由设备300a的位置(比如,具体的坐标等)、终端设备300b的位置。进一步地,第一电子设备100还获取到用户的位置。
在一种实施方式中,根据用户的位置、路由设备300a和终端设备300b的位置,控制路由设备300a自动调整波束(比如,根据波束赋形算法),最终如图30的(b)所示,使得终端设备300b能够接收到路由设备300a提供的窄波束,从而终端设备300b能获取到路由设备300a提供的增益较大且覆盖精准的信号。具体地,可以先判断用户的位置是否与终端设备300b的位置相同,或者两者的位置(比如,距离)在预设的范围内;在两者位置相同,或者在预设的范围内后,再根据路由设备300a和终端设备300b的位置,或者,路由设备300a和用户的位置,控制路由设备自动调整波束(比如,根据波束赋形算法),最终如图30的(b)所示,使得路由设备300a提供的波束最大增益点指向终端设备300b,终端设备300b能够接收到路由设备300a提供的窄波束。该实施方式尤其适用于用户持有终端设备300b上网等场景。
对于有M个用户的情形,可以获取到M个用户的位置以及N个终端设备的位置,进而可以获取到有M1个位置为N个终端设备的位置与M个用户的位置一致或者误差在预设范围内的位置,则可以控制路由设备300a自动调整波束(比如,根据波束赋形算法),路由设备300a通过时分复用等方式向M1个位置提供窄脉冲信号,由于时分的时隙较短,用户感知不到,最终使得路由设备300a提供的波束最大增益点通过时分复用的方式,都指向M1个位置的终端设备,M1个位置的终端设备都能接收到路由设备300a提供的窄波束。其中,M1小于等于M,且M1小于等于N。示例性地,比如,获取到主卧内有5个用户和2个终端设备,根据获取到的5个用户和2个终端设备的位置,获取到有2个位置为用户和终端设备一致或误差在预设范围内的位置,控制路由设备300a通过时分复用等方式,分别向2个位置的终端设备提供窄波束,使得路由设备300a提供的波束最大增益点指向2个位置的终端设备,2个位置的终端设备能够接收到路由设备300a提供的窄波束。
在一种实施方式中,根据路由设备300a的位置和终端设备300b的位置,控制路由设备自动调整波束(比如,根据波束赋形算法),最终如图30的(b)所示,使得终端设备300b能够接收到路由设备300a提供的窄波束,从而终端设备300b能获取到路由设备300a提供的增益较大且覆盖精准的信号。该实施方式尤其适用于家中或办公场所中的IoT设备(比如,智能空调等)接入路由设备300a的信号等场景。
对于有多个终端设备300b的情形,可以获取到N个终端设备的位置,进而控制路由设备300a自动调整波束(比如,根据波束赋形算法),路由设备300a通过时分复用等方式向N个位置提供窄脉冲信号,由于时分的时隙较短,N个终端设备几乎没有延迟,最终使得路由设备300a提供的波束最大增益点通过时分复用的方式,都指向N个位置的终端设备,N个位置的终端设备都能接收到路由设备300a提供的窄波束。
前面提到的各种实施方式的执行主体,可以为路由设备300a,也可以为第一电子设备100,还可以为中枢设备(图30中未示出)。比如,中枢设备、第一电子设备100或路由设备300a根据用户的位置、路由设备300a和终端设备300b的位置,控制路由设备自动调整波束。在路由设备300a为执行主体的话,路由设备300a需要事前与中 枢设备或第一电子设备100通信,获取到相应的位置(比如,用户的位置、路由设备300a和终端设备300b的位置)。
下面以执行主体为中枢设备为例,结合图31和图32,来详细介绍中枢设备与路由设备之间的通信交互过程,从而示例性地说明基于人体感知的路由设备自动调整波束的方法。
示例性地,图31为本申请实施例提供的全屋场景下,基于人体感知的路由设备自动调整波束方法的一种流程示意图。如图31所示,该方法包括:
S3101、中枢设备实时或周期性地获取到路由设备、用户和终端设备在第五坐标系下的坐标。
S3102、用户和终端设备两者的坐标是否在预设的误差范围内。
可选的,中枢设备确定用户和终端设备两者的坐标是否在预设的误差范围内。比如,预设的误差范围为1米。用户和终端设备两者的坐标在预设的误差范围内,可以认为用户在使用终端设备。如果用户和终端设备两者的坐标在预设的误差范围内,执行后续步骤。
S3103、中枢设备向路由设备发送第一消息。
在一种实施方式中,中枢设备采用前述原理部分所述方法获取路由设备的设备姿态。中枢设备还根据路由设备在第五坐标系的坐标和设备姿态,以及用户或终端设备在第五坐标系的坐标,计算用户或终端设备在该路由设备建立的坐标系的坐标。
进一步的,在一种实施方式中,中枢设备根据用户或终端设备在路由设备建立的坐标系的坐标计算用户或终端设备相对于路由设备的方位角。
中枢设备向路由设备发送第一消息;第一消息用于指示路由设备自动调整波束。在一种示例中,第一消息包括方位角指示信息,用于指示用户或终端设备相对于路由设备的方位角。
S3104、路由设备接收到第一消息,自动调整波束,提供窄波束,并使得波束最大增益点指向用户或终端设备。
路由设备接收到第一消息,获取方位角指示信息,并根据方位角指示信息获取用户或终端设备相对于路由设备的方位角。路由设备根据用户或终端设备相对于路由设备的方位角自动调整波束,提供窄波束,并使得波束最大增益点指向用户或终端设备。
可选的,如图31所示,该方法还可以包括:
S3105、路由设备向中枢设备发送第二消息。
第二消息用于指示路由设备已完成自动调整波束。
S3106、中枢设备接收到第二消息,获悉到路由设备已经完成调整。
中枢设备接收到第二消息,根据第二消息确定路由设备已经完成调整;继续周期性地获取用户和终端设备在第五坐标系下的坐标。
S3107、用户的坐标变化超过第一预设范围。
如果中枢设备确定用户的坐标变化超过第一预设范围,则执行S3102-S3104,以使得路由设备自动调整波束,将波束最大增益点指向变化位置后的用户或终端设备。实现路由设备提供的窄波束的最大增益点跟随用户位置移动。如果中枢设备确定用户的坐标变化未超过第一预设范围,则执行S3108。
S3108、终端设备的坐标变化超过第二预设范围。
如果中枢设备确定终端设备的坐标变化超过第二预设范围,则执行S3102-S3104,以使得路由设备自动调整波束,将波束最大增益点指向变化位置后的用户或终端设备。实现路由设备提供的窄波束的最大增益点跟随用户位置移动。
示例性地,图32为本申请实施例提供的全屋场景下,基于人体感知的路由设备自动调整波束方法的另一种流程示意图。如图32所示,该方法包括:
S3201、中枢设备实时或周期性地获取到路由设备、M个用户和N个终端设备在第五坐标系下的坐标,M个用户和N个终端设备中的坐标在预设的误差范围内的个数为M1。
S3202、M1大于0。
如果确定M1大于0,执行后续步骤。
S3203、中枢设备向路由设备发送第一消息。
在一种实施方式中,中枢设备采用前述原理部分所述方法获取路由设备的设备姿态。中枢设备还根据路由设备在第五坐标系的坐标和设备姿态,以及M1个用户(或终端设备)在第五坐标系的坐标,分别计算M1个用户(或终端设备)在该路由设备建立的坐标系的坐标。
进一步的,在一种实施方式中,中枢设备分别根据M1个用户(或终端设备)中每一个在路由设备建立的坐标系的坐标计算该用户相对于路由设备的方位角。
中枢设备向路由设备发送第一消息;第一消息用于指示路由设备自动调整波束。在一种示例中,第一消息包括M1个方位角指示信息,每个方位角指示信息用于指示一个用户(或终端设备)相对于路由设备的方位角。
S3204、路由设备接收到第一消息,自动调整波束,以时分复用的方式分别向M1个位置提供窄波束,并使得波束最大增益点轮流指向M1个位置。
路由设备接收到第一消息,获取M1个方位角指示信息,并根据M1个方位角指示信息获取M1个用户(或终端设备)相对于路由设备的方位角。路由设备根据M1个用户(或终端设备)相对于路由设备的方位角自动调整波束,以时分复用的方式分别向M1个位置提供窄波束,并使得波束最大增益点轮流指向M1个位置。
可选的,如图32所示,该方法还可以包括:
S3205、路由设备向中枢设备发送第二消息。
S3206、中枢设备接收到第二消息,获悉到路由设备已经完成调整。
中枢设备接收到第二消息,根据第二消息确定路由设备已经完成调整;继续周期性地获取用户和终端设备在第五坐标系下的坐标。
S3207、M个用户中至少一个用户的坐标变化超过第一预设范围。
如果中枢设备确定M个用户中至少一个用户的坐标变化超过第一预设范围,则执行S3202-S3204,以使得路由设备根据用户或终端设备的位置移动自动调整波束,以时分复用的方式分别向多个位置提供窄波束。实现路由设备提供的窄波束的最大增益点跟随用户位置移动。如果中枢设备确定不存在用户的坐标变化超过第一预设范围,则执行S3208。
S3208、N个终端设备中至少一个终端设备的坐标变化超过第二预设范围。
如果中枢设备确定N个终端设备中至少一个终端设备的坐标变化超过第二预设范围,则执行S3202-S3204,以使得路由设备根据用户或终端设备的位置移动自动调整波束,以时分复用的方式分别向多个位置提供窄波束。实现路由设备提供的窄波束的最大增益点跟随用户位置移动。
实施例2
实施例2涉及图33、图34、图35和图36,提供了一种基于人体感知的清洁设备自动调整清洁区域方法。清洁设备(比如,扫地机器人、拖地机器人)是全屋智能系统中重要的IoT设备。一般来说,清洁设备完成多次全屋内的清洁后,能够根据自身配备的激光雷达和IMU模块绘制出全屋的地图。清洁设备可以根据全屋地图进行自动清洁。用户可以在电子设备上安装清洁设备配套的应用程序(application,App),并通过App指定清洁设备的清洁区域、不进行清洁的区域或者控制清洁设备的清洁路线。但是这种操作方式较为繁琐,用户使用体验较差。本申请实施例提供的基于人体感知的清洁设备自动调整清洁区域方法,清洁设备根据用户位置自动调整清洁区域,自动避开用户所在房间或区域,无需用户操作,也无需用户携带任何电子设备。示例性地,如图33的(a)所示,用户在次卧内,扫地机器人在清洁时自动避开次卧,先清洁客厅等区域。如图33的(b)所示,用户离开次卧,扫地机器人进入次卧进行清洁。扫地机器人在清洁时自动避开用户。
示例性地,如图34所示,本申请实施例提供的基于人体感知的清洁设备自动调整清洁区域方法可以包括:
S3401、中枢设备实时或周期性地获取到用户、M个家具和清洁设备在第五坐标系下的坐标以及用户的姿势,获取到用户与M个家具中的一个家具两者的坐标在预设的第一误差范围内,获取到用户的姿势为躺或坐的姿势,以及获取到清洁设备处于清洁中。
示例性地,全屋内包括M个家具,M大于或等于0。比如,M个家具可以包括床、沙发、椅子等。用户与M个家具中的一个家具两者的坐标在预设的第一误差(比如,0.5米)范围内,可以认为用户在该家具上。比如,用户坐或躺在床上、沙发上或椅子上等。清洁设备在房屋内进行清洁。
基于前述原理部分介绍的方法,中枢设备可以实时或周期性地获取到全屋内用户坐标,M个家具的坐标,清洁设备的坐标。中枢设备还可以根据用户坐标和与M个家具的坐标获取到用户与M个家具中的一个家具两者的坐标在预设的第一误差范围内。中枢设备可以获取到用户的姿势,并确定用户姿势为躺或坐的姿势。
中枢设备还可以获取到清洁设备处于清洁中。在一种实施方式中,清洁设备开始进行清洁时,向中枢设备发送启动指示消息。中枢设备接收到启动指示消息,则获取到清洁设备处于清洁中。在另一种实施方式中,中枢设备根据清洁设备的坐标确定清洁设备处于移动中,则获取到清洁设备处于清洁中。
可选的,中枢设备获取全屋各个房间或区域的坐标范围,即获取全屋地图;并将全屋地图发送给清洁设备。
S3402、中枢设备确定用户的坐标在预设时长内的变化是否在预设的第二误差范围内。
示例性地,预设时长为10分钟,预设的第二误差范围为1米。一般来说,用户在休息时,用户的坐标在预设时长内的变化在预设的第二误差范围内。在一种实施方式中,中枢设备还确定用户姿势为躺或坐的姿势。
S3403、中枢设备确定用户的坐标与清洁设备的坐标是否分属不同的房间或区域。
可选的,如果中枢设备确定用户的坐标与清洁设备的坐标分属不同的房间或区域,向清洁设备发送第一消息,用于指示清洁设备不清洁用户所属的房间或区域。比如,第一消息包括第一区域指示信息,第一区域指示信息用于指示清洁设备不进行清洁的房间或区域。
S3404、中枢设备向清洁设备发送第一消息。
S3405、清洁设备接收到第一消息,不清洁用户所属的房间或区域。
S3406、清洁设备向中枢设备发送第二消息。
可选的,清洁设备向中枢设备发送第二消息,用于表征清洁设备不清洁用户所属的房间或区域。
S3407、中枢设备接收到第二消息,获悉到清洁设备不清洁用户所属的房间或区域。
中枢设备接收到第二消息,更新保存的清洁设备的运行信息为不清洁用户所属的房间或区域。
S3408、中枢设备确定用户的坐标在预设时长内的变化是否在预设的第二误差范围内。
可选的,中枢设备继续实时或周期性地获取全屋内用户坐标。如果确定不满足用户的坐标在预设时长内的变化在预设的第二误差范围,即用户离开原来的位置(比如,第二误差范围为1米)或用户离开该房间或区域(比如,第二误差范围为5米);中枢设备向清洁设备发送第三消息,用于指示清洁设备清洁用户所属的房间或区域。
S3409、中枢设备向清洁设备发送第三消息。
可选的,第三消息包括区域信息,该区域信息用于指示需要清洁的房间或区域。
S3410、清洁设备接收到第三消息,清洁用户所属的房间或区域。
在一种示例中,清洁设备接收到第三消息,获取区域信息,清洁该区域信息指示的房间或区域。
在一种示例中,清洁设备保存了用户所属的房间或区域。清洁设备接收到第三消息后,根据保存的房间或区域信息进行清洁。
S3411、清洁设备向中枢设备发送第四消息。
可选的,清洁设备向中枢设备发送第四消息,用于表征清洁设备清洁用户所属的房间或区域。比如,第四消息包括第二区域指示信息,第二区域指示信息用于指示清洁设备进行清洁的房间或区域。
S3412、中枢设备接收到第四消息,获悉到清洁设备清洁用户所属的房间或区域。
中枢设备接收到第四消息,更新保存的清洁设备的运行信息为清洁用户所属的房间或区域。
在该示例中,清洁设备与用户在不同的房间或区域。清洁设备进行清洁时自动避开用户所在的房间或区域。用户开始活动或者用户离开该房间或区域,清洁设备自动进入该房间或区域进行清洁。
在另一种示例中,如图35所示,本申请实施例提供的基于人体感知的清洁设备自动调整清洁区域方法可以包括:
S3501、中枢设备实时或周期性地获取到用户、M个家具和清洁设备在第五坐标系下的坐标以及用户的姿势,获取到用户与M个家具中的一个家具两者的坐标在预设的第一误差范围内,获取到用户的姿势为躺或坐的姿势,以及获取到清洁设备处于清洁中。
S3502、中枢设备确定用户的坐标在预设时长内的变化是否在预设的第二误差范围内。
S3501-S3502可以参考S3401-S3402,此处不再赘述。
S3503、中枢设备确定用户的坐标与清洁设备的坐标是否分属不同的房间或区域。
可选的,如果中枢设备确定用户的坐标与清洁设备的坐标属于同一房间或区域,向清洁设备发送第一消息,用于指示清洁设备不清洁用户所属的房间或区域。
S3504、中枢设备向清洁设备发送第一消息。
S3505、清洁设备接收到第一消息,离开用户所属的房间或区域,前往其他房间或区域清洁。
S3506、清洁设备向中枢设备发送第二消息。
S3507、中枢设备接收到第二消息,获悉到清洁设备清洁其他房间或区域。
S3508、用户的坐标在预设时长内的变化是否在预设的第二误差范围内。
S3509、中枢设备向清洁设备发送第三消息。
S3510、清洁设备接收到第三消息,清洁用户所属的房间或区域。
S3511、清洁设备向中枢设备发送第四消息。
S3512、中枢设备接收到第四消息,获悉到清洁设备清洁用户所属的房间或区域。
S3506-S3512可以参考S3406-S3412,此处不再赘述。
在该示例中,清洁设备与用户在同一房间或区域。清洁设备离开用户所在的房间或区域,先清扫其他房间或区域。如果用户开始活动或者用户离开该房间或区域,清洁设备自动进入该房间或区域进行清洁。
本申请实施例还提供一些实施方式。比如,用户可以通过语音或移动设备指定清洁区域或不进行清洁的区域,清洁设备对指定区域进行清洁或避免清洁。
在一些实施例中,用户通过语音指定区域,清洁设备根据用户语音的指定区域确定清洁区域,并根据清洁区域和全屋地图确定清洁区域坐标范围。
在一种示例中,指定区域为清洁区域。示例性地,用户向语音输入设备(比如智能音箱)发出语音“清洁客厅”或“清洁卧室”等。语音输入设备对用户输入语音进行语义识别,并生成对应的语音指令。比如,智能音箱接收到语音“清洁客厅”,对接收到的语音进行语义识别,并转换为对应的第一语音指令,第一语音指令用于指示指定区域(指定区域为客厅)。智能音箱向清洁设备发送第一语音指令。清洁设备接收到第一语音指令,根据第一语音指令确定指定区域为客厅,则移动至客厅进行清洁。
在另一种示例中,指定区域为不进行清洁的区域。示例性地,用户向语音输入设备(比如智能音箱)发出语音“不要清洁客厅”或“不要清洁卧室”等。语音输入设备对用户输入语音进行语义识别,并生成对应的语音指令。比如,智能音箱接收到语音“不 要清洁客厅”,对接收到的语音进行语义识别,并转换为对应的第二语音指令,第二语音指令用于指示指定区域(指定区域为客厅)。智能音箱向清洁设备发送第二语音指令。清洁设备接收到第二语音指令,根据第二语音指令确定指定区域为客厅,则确定清洁区域为全屋内除客厅之外的区域。清洁设备在清洁时避开客厅。
在另一些实施例中,用户通过语音指定以用户位置为基准的区域。根据用户当前位置和以用户位置为基准的区域确定清洁区域。
在一种示例中,用户指定的是清洁区域。示例性地,用户向语音输入设备(比如智能音箱)发出语音“清洁我所在的房间”或“清洁我周围1米区域”等。语音输入设备对用户输入语音进行语义识别,并生成对应的语音指令。比如,智能音箱接收到语音“清洁我所在的房间”,对接收到的语音进行语义识别,并转换为对应的第三语音指令,第三语音指令用于指示以用户位置为基准的指定区域(比如,指定区域为用户所在的房间)。智能音箱向清洁设备(或中枢设备)发送第三语音指令。清洁设备(或中枢设备)接收到第三语音指令,根据第三语音指令确定清洁区域。
示例性地,中枢设备获取全屋内的用户数以及每个用户的坐标。如果确定全屋内的用户数为1,根据该用户的坐标确定用户所在的房间。如果确定全屋内的用户数大于1,中枢设备向发送语音指令的智能音箱发送确认指示信息,用于指示智能音箱播放确认信息,确认信息用于向用户确认输入语音的用户身份。示例性地,智能音箱播放语音“哪位主人下达了任务”。比如,用户再次通过语音输入“清洁我所在的房间”。智能音箱接收到输入语音,向中枢设备发送第三语音指令。中枢设备再次接收到第三语音指令,确定输入语音的用户是距离该智能音箱最近的用户,根据该用户的坐标确定用户所在的房间。再比如,用户输入语音“清洁爸爸所在的房间”。智能音箱接收到语音“清洁爸爸所在的房间”,对接收到的语音进行语义识别,并转换为对应的第四语音指令,第四语音指令用于指示以用户位置为基准的指定区域(指定区域为爸爸所在的房间)。智能音箱向中枢设备发送第四语音指令。如果中枢设备保存了每个用户的用户身份,根据该用户的坐标确定用户所在的房间。中枢设备确定清洁区域后,通知清洁设备对该区域进行清洁。
在另一种示例中,用户指定的是不进行清洁的区域。示例性地,用户向语音输入设备(比如智能音箱)发出语音“不要清洁我所在的房间”或“不要清洁我周围1米区域”等。清洁设备确定指定区域为用户所在的房间,则确定清洁区域为全屋内除用户所在的房间之外的区域。
在另一些实施例中,用户通过移动设备指定清洁区域或不进行清洁的区域。示例性地,如图36的(a)所示,用户使用移动设备指向地面上一点C。中枢设备获取该移动设备的坐标和设备姿态,根据移动设备的坐标和设备姿态获取地面上点C的坐标。中枢设备将点C的坐标发送给清洁设备300。清洁设备300移动至点C进行清洁。当然,用户也可以使用移动设备指向地面上一个区域。比如,用户使用移动设备指向地面上点C1、点C2和点C3,中枢设备获取点C1、点C2和点C3的坐标,即获取到地面上以点C1、点C2和点C3为顶点的三角形区域的坐标范围。比如,用户使用移动设备指向地面上点C1、点C2、点C3和点C4,中枢设备获取点C1、点C2、点C3和点C4的坐标,即获取到地面上以点C1、点C2、点C3和点C4为顶点的四边形区域 的坐标范围。清洁设备300获取到清洁区域为移动设备指向地面上多个点形成的区域。
示例性地,以移动设备是智能手机为例。如图36的(b)所示,第一电子设备100对智能手机定位,获取智能手机在第五坐标系的坐标(即点p的坐标)。智能手机通过IMU模块确定其设备姿态。智能手机根据点p的坐标和设备姿态建立第二坐标系。定义智能手机建立的第二坐标系的Y b轴上与原点O b的距离为1的点q 1。第一电子设备100获取点q 1的坐标。根据点p的坐标和点q 1的坐标确定一条直线,该直线与地面的交点即为点C。
实施例3
实施例3涉及图37、图38A和图38B,提供了一种基于人体感知的健康管理设备自动获取人体信息方法。
健康管理设备包括体脂秤、体检秤、体重秤等。一般来说,健康管理设备(比如,体脂秤)能够测量用户的体重,结合用户手动输入的身高信息,可以计算出用户的脂肪率、身体质量指数(body mass index,BMI)、肌肉量、基础代谢率、内脏脂肪等级等身体数据。另外,体脂秤测量出的体重、脂肪率等身体数据与用户的匹配,也需要用户手动进行;用户操作比较繁琐。
本申请实施例提供的基于人体感知的健康管理设备自动获取人体信息方法,无需用户手动输入信息,也无需用户携带任何设备,自动获取用户的身高、呼吸频率、心跳频率等人体信息,以获取用户的身体数据。示例性地,如图37所示,用户站在体脂秤300上,体脂秤300可以自动获取该用户的身高、呼吸频率、心跳频率等信息,并计算该用户的身体数据。
示例性地,如图38A所示,本申请实施例提供的基于人体感知的健康管理设备自动获取人体信息方法可以包括:
S3801a、中枢设备实时或周期性地获取健康管理设备的坐标、全屋内用户的坐标。
S3802a、中枢设备确定第一用户与健康管理设备之间的距离小于预设的第一误差范围。
中枢设备根据健康管理设备的坐标和全屋内一个或多个用户的坐标,确定一个或多个用户中第一用户与健康管理设备之间的距离小于预设的第一误差范围。示例性地,第一误差范围为0.5米。中枢设备如果确定第一用户与健康管理设备之间的距离小于预设的第一误差范围,则确定第一用户使用健康管理设备(比如,第一用户站在体脂秤上)。
在一种示例中,中枢设备确定不存在与健康管理设备之间的距离小于预设的第一误差范围的用户,表明在上次获取到健康管理设备的位置之后,健康管理设备的位置发生了改变。中枢设备可以再次实时获取健康管理设备的坐标;并获取与健康管理设备之间的距离小于预设的第一误差范围的第一用户。
S3803a、中枢设备获取第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
基于前述原理部分介绍的方法,中枢设备获取第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
S3804a、中枢设备向健康管理设备发送第一消息,第一消息包括第一用户的身高 信息、呼吸频率信息和心跳频率信息中至少一项。
S3805a、健康管理设备接收第一消息,获取到第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
S3806a、健康管理设备根据身高信息、呼吸频率信息和心跳频率信息中至少一项获取第一用户的身体数据。
可选的,健康管理设备根据身高信息、呼吸频率信息和心跳频率信息中至少一项获取第一用户的身体数据。身体数据包括脂肪率、身体质量指数(body mass index,BMI)、肌肉量、基础代谢率、内脏脂肪等级等。
可选的,如果有多个用户都使用健康管理设备,健康管理设备每次获取到身体数据后需要将本次获取的身体数据保存至多个用户其中一个。
在一种实施方式中,健康管理设备(或第一电子设备或中枢设备)保存了每个用户的历史身体数据。根据本次获取的身体数据中一项或多项(比如身高、体重等),与保存的身体数据进行比较,即可将本次获取的身体数据与多个用户中的一个进行匹配。比如,保存的用户身体数据中,用户1的身高为178厘米,用户2的身高为160厘米,用户3的身高为120厘米。如果本次获取的身体数据中身高为160厘米,则将本次获取的身体数据保存为用户2的身体数据。
在一种实施方式中,中枢设备或第一电子设备获取并保存了每个用户的身份。比如,用户通过指纹打开智能门锁,中枢设备根据用户的指纹获取用户身份。中枢设备向健康管理设备发送的第一消息中还可以包括用户身份指示信息。健康管理设备根据身份指示信息获取第一用户的身份,即可将本次获取的身体数据与多个用户中的一个进行匹配。
示例性地,如图38B所示,本申请实施例提供的基于人体感知的健康管理设备自动获取人体信息方法可以包括:
S3801b、中枢设备实时或周期性地获取健康管理设备的坐标、全屋内用户的坐标。
S3802b、检测到用户使用健康管理设备,健康管理设备向中枢设备发送第一请求消息。
健康管理设备检测到用户使用健康管理设备,比如,体脂秤通过重力传感器检测到用户站立在体脂秤上。健康管理设备向中枢设备发送第一请求消息,第一请求消息用于指示中枢设备获取用户数据。
S3803b、中枢设备接收到第一请求消息,确定与健康管理设备的距离小于预设的第一误差范围的第一用户。
中枢设备接收到第一请求消息,根据健康管理设备的坐标和全屋内一个或多个用户的坐标,确定与健康管理设备的距离小于预设的第一误差范围的第一用户。示例性地,第一误差范围为0.5米。中枢设备如果确定第一用户与健康管理设备之间的距离小于预设的第一误差范围,则确定第一用户使用健康管理设备(比如,第一用户站在体脂秤上)。
在一种示例中,中枢设备确定不存在与健康管理设备之间的距离小于预设的第一误差范围的用户,表明在上次获取到健康管理设备的位置之后,健康管理设备的位置发生了改变。中枢设备可以再次实时获取健康管理设备的坐标;并获取与健康管理设 备之间的距离小于预设的第一误差范围的第一用户。
S3804b、中枢设备获取第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
S3805b、中枢设备向健康管理设备发送第一消息,包括第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
S3806b、健康管理设备接收第一消息,获取到第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
S3807b、健康管理设备根据身高信息、呼吸频率信息和心跳频率信息中至少一项获取第一用户的身体数据。
S3804b-S3807b可以参考S3803a-S3806a,此处不再赘述。
在该实施例中,用户使用健康管理设备时,中枢设备自动获取与健康管理设备的距离小于预设的第一误差范围内的第一用户的身高信息、呼吸频率信息和心跳频率信息等。这样,健康管理设备可以不需要用户输入信息,自动计算用户的脂肪率、身体质量指数(body mass index,BMI)、肌肉量、基础代谢率、内脏脂肪等级等身体数据。提高用户使用健康管理设备的便利性。进一步的,健康管理设备还可以自动将每次测量的身体数据匹配至对应用户,减少用户操作。
实施例4
实施例4涉及图39和图40,提供了一种基于人体感知的晾晒设备自动升降方法。
本申请实施例提供的基于人体感知的晾晒设备自动升降方法,晾晒设备根据用户位置自动上升或下降,不需用户手动操作,提高用户使用体验。示例性地,如图39的(a)所示,用户靠近智能晾衣架300,智能晾衣架300自动下降;如图39的(b)所示,用户离开智能晾衣架300,智能晾衣架300自动上升。不需要用户手动操作,也不需要用户携带任何设备。
示例性地,如图40所示,本申请实施例提供的基于人体感知的晾晒设备自动升降方法可以包括:
S4001、晾晒设备位于第一高度。
比如,晾晒设备安装后,距离地面的高度为第一高度。
S4002、中枢设备获取晾晒设备的坐标。
中枢设备实时地或周期性的获取晾晒设备的坐标。需要说明的是,晾晒设备的坐标可以是晾晒设备中UWB模块的坐标,或晾晒设备的重心或中心的坐标等。
S4003、中枢设备周期性地获取全屋内用户的坐标。
S4004、中枢设备确定第一用户与晾晒设备的距离小于预设的第一距离,向晾晒设备发送第一消息。
示例性地,预设的第一距离为0.2米。第一用户与晾晒设备的距离小于预设的第一距离,即第一用户靠近晾晒设备。中枢设备确定第一用户与晾晒设备的距离小于预设的第一距离,向晾晒设备发送第一消息。第一消息用于指示晾晒设备下降。
可选的,中枢设备还判断第一用户与晾晒设备的距离小于预设的第一距离持续的时长。如果确定第一用户与晾晒设备的距离小于预设的第一距离持续的时长大于预设的时长阈值,中枢设备向晾晒设备发送第一消息。
可选的,中枢设备还获取用户动作。比如,中枢设备确定第一用户与晾晒设备的距离小于预设的第一距离,且第一用户做出预设动作,向晾晒设备发送第一消息。比如,预设动作包括抬手、抬胳膊、抬头等。在一种实施方式中,晾晒设备所在房间或区域设置有摄像设备。中枢设备确定第一用户与晾晒设备的距离小于预设的第一距离,则通知摄像设备开始采集用户图像。摄像设备将采集的用户图像发送给中枢设备。中枢设备根据用户图像确定用户做出预设动作。
在一种实施方式中,中枢设备获取第一用户身高,根据第一用户身高确定晾晒设备下降高度。在一种示例中,中枢设备发送的第一指令中包括身高指示信息,身高指示信息用于指示用户身高。在另一种示例中,中枢设备根据用户身高确定下降值;中枢设备发送的第一指令中包括第二指示信息,第二指示信息用于指示下降值。示例性地,用户身高与晾晒设备下降值的对应关系如表5所示。
表5
身高(厘米) 下降值(米)
小于160 0.55
大于或等于160且小于165 0.50
大于或等于165且小于170 0.45
大于或等于170且小于175 0.40
大于或等于175且小于180 0.35
大于或等于180 0.30
中枢设备可以根据表5所示用户身高与晾晒设备下降值的对应关系以及第一用户的身高确定对应的第一下降值。可选的,第一消息包括第一指示信息,第一指示信息用于指示晾晒设备的下降值。
S4005、晾晒设备接收到第一消息,下降至第二高度。
在一种实施方式中,晾晒设备接收到第一消息,下降至预设的第二高度。
在另一种实施方式中,晾晒设备接收到第一消息,获取第一指示信息,并根据第一指示信息获取晾晒设备的下降值。晾晒设备根据当前高度值和下降值确定第二高度。
S4006、中枢设备确定第一用户与晾晒设备的距离大于或等于预设的第一距离,向晾晒设备发送第二消息。
第一用户与晾晒设备的距离大于或等于预设的第一距离,即第一用户离开晾晒设备。中枢设备向晾晒设备发送第二消息,第二消息用于指示晾晒设备上升。
S4007、晾晒设备接收到第二消息,上升至第一高度。
在该实施例中,中枢设备检测到用户靠近晾晒设备,则通知晾晒设备下降高度;中枢设备检测到用户离开晾晒设备,则通知晾晒设备上升高度。晾晒设备根据中枢设备控制,自动下降或上升,不需要用户手动操作。进一步的,晾晒设备还可以根据用户身高调节下降高度值,方便用户使用。
实施例5
实施例5涉及图41A、图41B和图42,提供了一种基于人体感知的照明设备自动调节灯光方法。
本申请实施例提供的基于人体感知的照明设备自动调节灯光方法,根据用户与照 明设备的相对位置自动调节照明设备的开关、亮度和颜色等;提高用户使用体验。示例性地,如图41A所示,房间内设置第一电子设备100和照明设备(第二电子设备300)。中枢设备通过第一电子设备获取照明设备的坐标和用户的坐标,并根据用户与照明设备的相对位置调节照明设备的开关、亮度和颜色等。
根据原理部分所述方法,中枢设备可以获取照明设备的坐标及所在房间或区域,还可以实时或周期性地获取全屋内用户的坐标。这样,中枢设备可以确定用户进入或离开照明设备所在房间或区域。本申请实施例提供的基于人体感知的照明设备自动调节灯光方法,如果用户进入照明设备所在房间或区域,照明设备自动打开(点亮);如果用户离开照明设备所在房间或区域,照明设备自动关闭(熄灭)。
中枢设备还可以根据照明设备的坐标和用户坐标获取用户与照明设备之间的距离。根据用户与照明设备之间的距离变化,照明设备自动调节亮度。
在一种示例中,可以将照明设备预设方向上的区域确定为照明设备的光照区域。示例性地,如图41B所示,将移动设备分别放置在光照区域两个顶点E和F处,照明设备位于点J处。经过位置E的铅垂线、经过位置F的铅垂线和经过位置J的铅垂线围成的三维区域即照明设备的光照区域。中枢设备获取点E、点F和点J的坐标,即获取到照明设备的光照区域的坐标范围。根据原理部分所述方法,中枢设备可以根据用户坐标确定用户进入或离开照明设备的光照区域。如果用户进入照明设备的光照区域,照明设备自动打开(点亮);如果用户离开照明设备的光照区域,照明设备自动关闭(熄灭)。
中枢设备还可以获取用户身份,并获取与用户身份匹配的照明设备亮度或颜色;控制照明设备点亮与用户身份对应的亮度或颜色。示例性的,第一用户进入照明设备所在房间或区域或光照区域,照明设备点亮与第一用户身份匹配的亮度或颜色;第二用户进入照明设备所在房间或区域或光照区域,照明设备点亮与第二用户身份匹配的亮度或颜色。
示例性地,如图42所示,本申请实施例提供的基于人体感知的照明设备自动调节灯光方法可以包括:
S4201、中枢设备实时或周期性地获取照明设备的坐标,全屋内用户的坐标。
S4202、如果确定用户位置与照明设备位置满足预设条件,中枢设备向照明设备发送消息,指示照明设备调节灯光。
中枢设备根据照明设备的坐标和全屋内每个用户的坐标确定是否满足预设条件。
在一种示例中,第一预设条件包括用户进入照明设备所在房间或区域;或用户与照明设备之间的距离小于或等于预设距离;或用户进入照明设备预设方向上的区域。中枢设备确定满足第一预设条件,向照明设备发送第一消息,用于指示照明设备打开(点亮)。
可选的,第一消息包括第一指示信息,第一指示信息用于指示照明设备的亮度。比如,中枢设备或服务器中保存每个用户调节照明设备亮度的历史信息。中枢设备确定满足预设条件,则获取用户的身份信息;并根据用户身份信息和保存的每个用户调节照明设备亮度的历史信息确定对应的照明设备亮度值。中枢设备向照明设备发送的第一消息中包括第一指示信息;这样就可以在打开照明设备时,打开与用户匹配的亮 度。
可选的,第一消息包括第二指示信息,第二指示信息用于指示照明设备的颜色。比如,中枢设备或服务器中保存每个用户对应的照明设备颜色信息。中枢设备确定满足预设条件,则获取用户的身份信息;并根据用户身份信息确定对应的照明设备颜色。中枢设备向照明设备发送的第一消息中包括第二指示信息;这样就可以在打开照明设备时,打开与用户匹配的颜色。
在一种示例中,第二预设条件包括用户离开照明设备所在房间或区域;或用户与照明设备之间的距离大于预设距离;或用户离开照明设备预设方向上的区域。中枢设备确定满足第二预设条件,向照明设备发送第二消息,用于指示照明设备关闭(熄灭)。
在一种示例中,第三预设条件包括照明设备打开后,用户与照明设备之间的距离改变(变大或变小)。中枢设备确定满足第三预设条件,向照明设备发送第三消息,用于指示照明设备减小亮度。可选的,第三消息包括第三指示信息,用于指示照明设备亮度减小的值。比如,预先设置用户和照明设备之间的距离与照明设备亮度的对应关系,根据用户与照明设备之间的距离以及用户和照明设备之间的距离与照明设备亮度的对应关系确定照明设备减小亮度的值。
在一种示例中,第四预设条件包括照明设备打开后,用户与照明设备之间的距离改变(变大或变小),中枢设备确定满足第四预设条件,且不满足第二预设条件,向照明设备发送第四消息,用于指示照明设备增大亮度。可选的,第四消息包括第四指示信息,用于指示照明设备亮度增大的值。
S4203、照明设备接收消息,调节照明设备灯光。
比如,照明设备接收到第一消息,则打开(点亮)照明设备。如果第一消息包括第一指示信息,则按照第一指示信息打开与用户匹配的亮度。如果第一消息包括第二指示信息,则按照第二指示信息打开与用户匹配的颜色。
比如,照明设备接收到第二消息,则关闭(熄灭)照明设备。
比如,照明设备接收到第三消息,则减小照明设备亮度。如果第三消息包括第三指示信息,则按照第三指示信息指示的值减小照明设备亮度。
比如,照明设备接收到第四消息,则增大照明设备亮度。如果第四消息包括第四指示信息,则按照第四指示信息指示的值增大照明设备亮度。
在该实施例中,根据用户与照明设备的相对位置,自动点亮照明设备、熄灭照明设备、调节照明设备亮度或颜色等,不需要用户手动操作,提高用户使用体验。
需要说明的是,本申请实施例各个实施例、实施方式以及各种示例中所述的方法,可以分别进行组合,组合后的实施例、实施方式或示例也属于本申请实施例保护的范围。本申请各个实施例中的步骤或技术特征可以任意组合,组合后的实施方式也属于本申请实施例保护的范围。
可以理解的是,上述全屋系统中各设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用 来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在一种示例中,请参考图43,其示出了上述实施例中所涉及的第一电子设备的一种可能的结构示意图。该电子设备4300包括:处理器4310和存储器4320。
其中,处理器4310,用于对电子设备4300的动作进行控制管理。例如,可以用于计算用户的坐标和所在房间或区域;计算第二电子设备的坐标和所在房间或区域;计算用户和第二电子设备的距离;确定第二电子设备执行的指令;和/或用于本文所描述的技术的其它过程。
存储器4320用于保存电子设备4300的程序代码和数据。
当然,上述电子设备4300中的单元模块包括但不限于上述处理器4310和存储器4320。例如,电子设备4300中还可以包括电源单元等。电源单元用于对电子设备4300供电。
在一种示例中,请参考图44,其示出了上述实施例中所涉及的第二电子设备的一种可能的结构示意图。该电子设备4400包括:处理器4410、存储器4420和显示屏4430。
其中,处理器4410,用于对电子设备4400的动作进行控制管理。
存储器4420用于保存电子设备4400的程序代码和数据。
显示屏4430用于显示电子设备4400的信息、图像、视频等。
当然,上述电子设备4400中的单元模块包括但不限于上述处理器4410、存储器4420和显示屏4430。例如,电子设备4400中还可以包括电源单元等。电源单元用于对电子设备4400供电。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当电子设备的处理器执行该计算机程序代码时,电子设备执行上述实施例中的方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述实施例中的方法。
其中,本申请实施例提供的电子设备4300、电子设备4400、计算机可读存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将电子设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的电子设备和方法,可以通过其它的方式实现。例如,以上所描述的电子设备实施例仅仅是示意性的,例如, 所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个电子设备,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,电子设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以使用硬件的形式实现,也可以使用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (99)

  1. 一种基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括路由设备和终端设备;R为大于或等于1的正整数;
    基于所述第一电子设备对所述R个第二电子设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、用户的位置信息;
    所述中枢设备向所述路由设备发送第一消息;
    所述路由设备接收到第一消息,根据所述路由设备的位置和所述用户的位置调整波束,使得调整后波束的最大增益点指向所述用户。
  2. 根据权利要求1所述的通信系统,其特征在于,所述中枢设备向所述路由设备发送第一消息之前,
    所述中枢设备获取到所述用户与所述终端设备两者的距离小于预设的误差范围。
  3. 根据权利要求1或2所述的通信系统,其特征在于,在所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、用户的位置信息之前,
    所述中枢设备获取到所述用户的位置变化大于第一预设范围;或者,
    所述中枢设备获取到所述终端设备的位置变化大于第二预设范围。
  4. 一种基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括路由设备和N个终端设备;R和N分别为大于或等于1的正整数;
    基于所述第一电子设备对所述R个第二电子设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、M个用户的位置信息;所述M个用户和所述N个终端设备中的距离在预设的误差范围内的个数为M1,M1>0;
    所述中枢设备向所述路由设备发送第一消息;
    所述路由设备接收到第一消息,根据所述路由设备的位置和M1个用户的位置调整波束;使得波束最大增益点以时分复用方式轮流指向M1个用户位置。
  5. 根据权利要求4所述的通信系统,其特征在于,在所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、M个用户的位置信息之前,
    所述中枢设备获取到所述M个用户中至少一个用户的位置变化大于第一预设范围;或者,
    所述中枢设备获取到所述N个终端设备中至少一个终端设备的位置变化大于第二预设范围。
  6. 一种基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备和一个移动设备,所述移动设备包括第二超宽带模块;R为大于或等于1的正整数;
    基于所述第一电子设备对所述移动设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和用户的位置信息;
    所述中枢设备向所述第一设备发送第一消息;
    所述第一设备接收到第一消息,清洁全屋内除所述用户所属的第一区域之外的区域。
  7. 根据权利要求6所述的通信系统,其特征在于,在所述中枢设备向所述第一设备发送第一消息之前,
    基于所述第一电子设备对所述移动设备的位置测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,M个家具的位置信息;
    所述中枢设备获取到所述用户与所述M个家具中的一个家具两者的距离小于预设的第一误差范围。
  8. 根据权利要求7所述的通信系统,其特征在于,在所述中枢设备向所述第一设备发送第一消息之前,
    所述中枢设备获取到所述用户的姿势为躺或坐的姿势。
  9. 根据权利要求6-8任意一项所述的通信系统,其特征在于,
    如果所述用户与所述第一设备属于同一区域,所述第一设备接收到第一消息之后,离开所述用户属于的第一区域。
  10. 根据权利要求6-8任意一项所述的通信系统,其特征在于,
    所述中枢设备获取到所述用户在预设时长内的变化大于或等于预设的第二误差范围;
    所述中枢设备向所述第一设备发送第三消息;
    所述第一设备接收到所述第三消息,进入所述用户属于的第一区域。
  11. 根据权利要求6-10任意一项所述的通信系统,其特征在于,
    基于所述第一电子设备对所述移动设备的位置测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,全屋内每个区域的坐标范围;
    所述中枢设备向所述第一设备发送全屋内每个区域的坐标范围信息;
    所述第一设备根据所述全屋内每个区域的坐标范围信息进行清洁。
  12. 一种基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信; 所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;
    所述中枢设备获取到所述一个或多个用户中,与所述第一设备的距离小于预设的第一误差范围的第一用户;
    所述中枢设备获取到所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项;
    所述中枢设备向所述第一设备发送第一消息,所述第一消息包括所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
  13. 根据权利要求12所述的通信系统,其特征在于,
    所述第一设备接收所述第一消息,根据所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项获取所述第一用户的脂肪率、身体质量指数BMI、肌肉量、基础代谢率、内脏脂肪等级中至少一项。
  14. 根据权利要求13所述的通信系统,其特征在于,所述中枢设备获取到与所述第一设备的距离小于预设的第一误差范围的第一用户之前,
    所述第一设备向所述中枢设备发送第一请求消息,所述第一请求消息用于指示中枢设备获取用户数据;
    所述中枢设备接收所述第一请求消息。
  15. 一种基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;所述第一设备距离地面为第一高度;
    所述中枢设备获取到所述一个或多个用户中第一用户与所述第一设备的距离小于预设的第一距离,向所述第一设备发送第一消息;
    所述第一设备接收到所述第一消息,下降至距离地面第二高度;所述第二高度小于所述第一高度。
  16. 根据权利要求15所述的通信系统,其特征在于,
    所述中枢设备获取所述第一用户的身高信息;
    所述中枢设备向所述第一设备发送指示信息,所述指示信息用于指示所述第一用户的身高;
    所述第一设备接收所述指示信息,根据所述指示信息获取所述第二高度。
  17. 根据权利要求15或16所述的通信系统,其特征在于,所述中枢设备向所述第 一设备发送第一消息之前,
    所述中枢设备获取到所述第一用户与所述第一设备的距离小于预设的第一距离持续的时长大于预设值。
  18. 根据权利要求15-17任意一项所述的通信系统,其特征在于,所述中枢设备向所述第一设备发送第一消息之前,
    所述中枢设备获取到所述第一用户做出预设动作。
  19. 根据权利要求15-18任意一项所述的通信系统,其特征在于,
    所述中枢设备获取到所述第一用户与所述第一设备的距离大于或等于预设的第一距离,向所述第一设备发送第二消息;
    所述第一设备接收到所述第二消息,上升至距离地面第一高度。
  20. 一种基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;
    如果所述第一设备的位置与所述一个或多个用户中第一用户的位置之间满足预设条件,所述中枢设备通知所述第一设备调节灯光;
    所述第一设备根据所述中枢设备的通知调节灯光。
  21. 根据权利要求20所述的通信系统,其特征在于,
    预设条件包括:所述第一用户进入所述第一设备所属的第一区域;或者,所述第一用户与所述第一设备的距离小于或等于预设距离;或者,所述第一用户进入所述第一设备预设方向上的第二区域;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第一消息;所述第一消息用于指示所述第一设备点亮。
  22. 根据权利要求21所述的通信系统,其特征在于,
    所述中枢设备获取所述第一用户的身份,及与所述第一用户的身份对应的第一亮度值;
    所述中枢设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示第一亮度值;
    所述第一设备接收到第一指示信息,根据所述第一指示信息点亮第一亮度值。
  23. 根据权利要求21所述的通信系统,其特征在于,
    所述中枢设备获取所述第一用户的身份,及与所述第一用户的身份对应的第一颜色;
    所述中枢设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示第一颜色;
    所述第一设备接收到第二指示信息,根据所述第二指示信息点亮第一颜色。
  24. 根据权利要求20所述的通信系统,其特征在于,
    预设条件包括:所述第一用户离开所述第一设备所属的第一区域;或者,所述第一用户与所述第一设备的距离大于预设距离;或者,所述第一用户离开所述第一设备预设方向上的第二区域;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第二消息,所述第二消息用于指示所述第一设备熄灭。
  25. 根据权利要求20所述的通信系统,其特征在于,
    预设条件包括:所述第一用户与所述第一设备的距离改变;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第三消息,所述第三消息用于指示所述第一设备减小亮度;或者,
    所述中枢设备向所述第一设备发送第四消息,所述第四消息用于指示所述第一设备增大亮度。
  26. 根据权利要求12-25任意一项所述的通信系统,其特征在于,所述R个第二电子设备包括一个移动设备,所述移动设备包括第二超宽带模块,
    所述第一电子设备对所述第一设备的位置测量包括:
    所述第一电子设备对所述移动设备的位置进行测量;根据所述移动设备的位置测量所述第一设备的位置。
  27. 一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括路由设备和终端设备;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述R个第二电子设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、用户的位置信息;
    所述中枢设备向所述路由设备发送第一消息;
    所述路由设备接收到第一消息,根据所述路由设备的位置和所述用户的位置调整波束,使得调整后波束的最大增益点指向所述用户。
  28. 根据权利要求27所述的方法,其特征在于,所述中枢设备向所述路由设备发送第一消息之前,所述方法还包括:
    所述中枢设备获取到所述用户与所述终端设备两者的距离小于预设的误差范围。
  29. 根据权利要求27或28所述的方法,其特征在于,在所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、用户的位置信息之前,所述方法还包括:
    所述中枢设备获取到所述用户的位置变化大于第一预设范围;或者,
    所述中枢设备获取到所述终端设备的位置变化大于第二预设范围。
  30. 一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括路由设备和N个终端设备;R和N分别为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述R个第二电子设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、M个用户的位置信息;所述M个用户和所述N个终端设备中的距离在预设的误差范围内的个数为M1,M1>0;
    所述中枢设备向所述路由设备发送第一消息;
    所述路由设备接收到第一消息,根据所述路由设备的位置和M1个用户的位置调整波束;使得波束最大增益点以时分复用方式轮流指向M1个用户位置。
  31. 根据权利要求30所述的方法,其特征在于,在所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、M个用户的位置信息之前,所述方法还包括:
    所述中枢设备获取到所述M个用户中至少一个用户的位置变化大于第一预设范围;或者,
    所述中枢设备获取到所述N个终端设备中至少一个终端设备的位置变化大于第二预设范围。
  32. 一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备和一个移动设备,所述移动设备包括第二超宽带模块;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述移动设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和用户的位置信息;
    所述中枢设备向所述第一设备发送第一消息;
    所述第一设备接收到第一消息,清洁全屋内除所述用户所属的第一区域之外的区域。
  33. 根据权利要求32所述的方法,其特征在于,在所述中枢设备向所述第一设备发送第一消息之前,所述方法还包括:
    基于所述第一电子设备对所述移动设备的位置测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,M个家具的位置信息;
    所述中枢设备获取到所述用户与所述M个家具中的一个家具两者的距离小于预设 的第一误差范围。
  34. 根据权利要求33所述的方法,其特征在于,在所述中枢设备向所述第一设备发送第一消息之前,所述方法还包括:
    所述中枢设备获取到所述用户的姿势为躺或坐的姿势。
  35. 根据权利要求32-34任意一项所述的方法,其特征在于,所述方法还包括:
    如果所述用户与所述第一设备属于同一区域,所述第一设备接收到第一消息之后,离开所述用户属于的第一区域。
  36. 根据权利要求32-34任意一项所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取到所述用户在预设时长内的变化大于或等于预设的第二误差范围;
    所述中枢设备向所述第一设备发送第三消息;
    所述第一设备接收到所述第三消息,进入所述用户属于的第一区域。
  37. 根据权利要求32-36任意一项所述的方法,其特征在于,所述方法还包括:
    基于所述第一电子设备对所述移动设备的位置测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,全屋内每个区域的坐标范围;
    所述中枢设备向所述第一设备发送全屋内每个区域的坐标范围信息;
    所述第一设备根据所述全屋内每个区域的坐标范围信息进行清洁。
  38. 一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;
    所述中枢设备获取到所述一个或多个用户中,与所述第一设备的距离小于预设的第一误差范围的第一用户;
    所述中枢设备获取到所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项;
    所述中枢设备向所述第一设备发送第一消息,所述第一消息包括所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
  39. 根据权利要求38所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第一消息,根据所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项获取所述第一用户的脂肪率、身体质量指数BMI、肌肉量、基础代谢率、内脏脂肪等级中至少一项。
  40. 根据权利要求39所述的方法,其特征在于,所述中枢设备获取到与所述第一设备的距离小于预设的第一误差范围的第一用户之前,所述方法还包括:
    所述第一设备向所述中枢设备发送第一请求消息,所述第一请求消息用于指示中枢设备获取用户数据;
    所述中枢设备接收所述第一请求消息。
  41. 一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;所述第一设备距离地面为第一高度;
    所述中枢设备获取到所述一个或多个用户中第一用户与所述第一设备的距离小于预设的第一距离,向所述第一设备发送第一消息;
    所述第一设备接收到所述第一消息,下降至距离地面第二高度;所述第二高度小于所述第一高度。
  42. 根据权利要求41所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取所述第一用户的身高信息;
    所述中枢设备向所述第一设备发送指示信息,所述指示信息用于指示所述第一用户的身高;
    所述第一设备接收所述指示信息,根据所述指示信息获取所述第二高度。
  43. 根据权利要求41或42所述的方法,其特征在于,所述中枢设备向所述第一设备发送第一消息之前,所述方法还包括:
    所述中枢设备获取到所述第一用户与所述第一设备的距离小于预设的第一距离持续的时长大于预设值。
  44. 根据权利要求41-43任意一项所述的方法,其特征在于,所述中枢设备向所述第一设备发送第一消息之前,所述方法还包括:
    所述中枢设备获取到所述第一用户做出预设动作。
  45. 根据权利要求41-44任意一项所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取到所述第一用户与所述第一设备的距离大于或等于预设的第一距离,向所述第一设备发送第二消息;
    所述第一设备接收到所述第二消息,上升至距离地面第一高度。
  46. 一种基于人体感知的自动控制方法,应用于基于人体感知的通信系统,其特征在于,所述系统包括中枢设备、第一电子设备和R个第二电子设备;所述中枢设备、所述第一电子设备和所述R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;
    如果所述第一设备的位置与所述一个或多个用户中第一用户的位置之间满足预设条件,所述中枢设备通知所述第一设备调节灯光;
    所述第一设备根据所述中枢设备的通知调节灯光。
  47. 根据权利要求46所述的方法,其特征在于,
    所述预设条件包括:所述第一用户进入所述第一设备所属的第一区域;或者,所述第一用户与所述第一设备的距离小于或等于预设距离;或者,所述第一用户进入所述第一设备预设方向上的第二区域;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第一消息;所述第一消息用于指示所述第一设备点亮。
  48. 根据权利要求47所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取所述第一用户的身份,及与所述第一用户的身份对应的第一亮度值;
    所述中枢设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示第一亮度值;
    所述第一设备接收到第一指示信息,根据所述第一指示信息点亮第一亮度值。
  49. 根据权利要求47所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取所述第一用户的身份,及与所述第一用户的身份对应的第一颜色;
    所述中枢设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示第一颜色;
    所述第一设备接收到第二指示信息,根据所述第二指示信息点亮第一颜色。
  50. 根据权利要求46所述的方法,其特征在于,
    所述预设条件包括:所述第一用户离开所述第一设备所属的第一区域;或者,所述第一用户与所述第一设备的距离大于预设距离;或者,所述第一用户离开所述第一设备预设方向上的第二区域;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第二消息,所述第二消息用于指示所述第一设备熄灭。
  51. 根据权利要求46所述的方法,其特征在于,
    所述预设条件包括:所述第一用户与所述第一设备的距离改变;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第三消息,所述第三消息用于指示所述第一设备减小亮度;或者,
    所述中枢设备向所述第一设备发送第四消息,所述第四消息用于指示所述第一设备增大亮度。
  52. 根据权利要求38-51任意一项所述的方法,其特征在于,所述R个第二电子设备包括一个移动设备,所述移动设备包括第二超宽带模块,
    所述第一电子设备对所述第一设备的位置测量包括:
    所述第一电子设备对所述移动设备的位置进行测量;根据所述移动设备的位置测量所述第一设备的位置。
  53. 一种中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括路由设备和终端设备;R为大于或等于1的正整数;
    基于所述第一电子设备对所述R个第二电子设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、用户的位置信息;
    所述中枢设备向所述路由设备发送第一消息,所述第一消息用于指示所述路由设备根据所述路由设备的位置和所述用户的位置调整波束,使得调整后波束的最大增益点指向所述用户。
  54. 根据权利要求53所述的中枢设备,其特征在于,所述中枢设备向所述路由设备发送第一消息之前,
    所述中枢设备获取到所述用户与所述终端设备两者的距离小于预设的误差范围。
  55. 根据权利要求53或54所述的中枢设备,其特征在于,在所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、用户的位置信息之前,
    所述中枢设备获取到所述用户的位置变化大于第一预设范围;或者,
    所述中枢设备获取到所述终端设备的位置变化大于第二预设范围。
  56. 一种中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括路由设备和N个终端设备;R和N分别为大于或等于1的正整数;
    基于所述第一电子设备对所述R个第二电子设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、M个用户的位置信息;所述M个用户和所述N个终端设备中的距离在预设的误差范围内的个数为M1,M1>0;
    所述中枢设备向所述路由设备发送第一消息,所述第一消息用于指示所述路由设备根据所述路由设备的位置和M1个用户的位置调整波束,使得波束最大增益点以时分复用方式轮流指向M1个用户位置。
  57. 根据权利要求56所述的中枢设备,其特征在于,在所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、M个用户的位置信息之前,
    所述中枢设备获取到所述M个用户中至少一个用户的位置变化大于第一预设范围;或者,
    所述中枢设备获取到所述N个终端设备中至少一个终端设备的位置变化大于第二预设范围。
  58. 一种中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备和一个移动设备,所述移动设备包括第二超宽带模块;R为大于或等于1的正整数;
    基于所述第一电子设备对所述移动设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和用户的位置信息;
    所述中枢设备向所述第一设备发送第一消息;所述第一消息用于指示所述第一设备清洁全屋内除所述用户所属的第一区域之外的区域。
  59. 根据权利要求58所述的中枢设备,其特征在于,在所述中枢设备向所述第一设备发送第一消息之前,
    基于所述第一电子设备对所述移动设备的位置测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,M个家具的位置信息;
    所述中枢设备获取到所述用户与所述M个家具中的一个家具两者的距离小于预设的第一误差范围。
  60. 根据权利要求59所述的中枢设备,其特征在于,在所述中枢设备向所述第一设备发送第一消息之前,
    所述中枢设备获取到所述用户的姿势为躺或坐的姿势。
  61. 根据权利要求58-60任意一项所述的中枢设备,其特征在于,
    所述中枢设备获取到所述用户在预设时长内的变化大于或等于预设的第二误差范围;
    所述中枢设备向所述第一设备发送第三消息,所述第三消息用于指示所述第一设备进入所述用户属于的第一区域。
  62. 根据权利要求58-61任意一项所述的中枢设备,其特征在于,
    基于所述第一电子设备对所述移动设备的位置测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,全屋内每个区域的坐标范围;
    所述中枢设备向所述第一设备发送全屋内每个区域的坐标范围信息。
  63. 一种中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;
    所述中枢设备获取到所述一个或多个用户中,与所述第一设备的距离小于预设的第一误差范围的第一用户;
    所述中枢设备获取到所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项;
    所述中枢设备向所述第一设备发送第一消息,所述第一消息包括所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
  64. 根据权利要求63所述的中枢设备,其特征在于,所述中枢设备获取到与所述第一设备的距离小于预设的第一误差范围的第一用户之前,
    所述中枢设备从所述第一设备接收第一请求消息,所述第一请求消息用于指示中枢设备获取用户数据。
  65. 一种中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;所述第一设备距离地面为第一高度;
    所述中枢设备获取到所述一个或多个用户中第一用户与所述第一设备的距离小于预设的第一距离,向所述第一设备发送第一消息;所述第一消息用于指示所述第一设备下降至距离地面第二高度;所述第二高度小于所述第一高度。
  66. 根据权利要求65所述的中枢设备,其特征在于,
    所述中枢设备获取所述第一用户的身高信息;
    所述中枢设备向所述第一设备发送指示信息,所述指示信息用于指示所述第一用户的身高;所述第一用户的身高用于获取所述第二高度。
  67. 根据权利要求65或66所述的中枢设备,其特征在于,所述中枢设备向所述第一设备发送第一消息之前,
    所述中枢设备获取到所述第一用户与所述第一设备的距离小于预设的第一距离持续的时长大于预设值。
  68. 根据权利要求65-67任意一项所述的中枢设备,其特征在于,所述中枢设备向所述第一设备发送第一消息之前,
    所述中枢设备获取到所述第一用户做出预设动作。
  69. 根据权利要求65-68任意一项所述的中枢设备,其特征在于,
    所述中枢设备获取到所述第一用户与所述第一设备的距离大于或等于预设的第一距离,向所述第一设备发送第二消息;所述第二消息用于指示所述第一设备上升至距离地面第一高度。
  70. 一种中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包 括一个第一设备;R为大于或等于1的正整数;
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;
    如果所述第一设备的位置与所述一个或多个用户中第一用户的位置之间满足预设条件,所述中枢设备通知所述第一设备调节灯光。
  71. 根据权利要求70所述的中枢设备,其特征在于,
    预设条件包括:所述第一用户进入所述第一设备所属的第一区域;或者,所述第一用户与所述第一设备的距离小于或等于预设距离;或者,所述第一用户进入所述第一设备预设方向上的第二区域;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第一消息;所述第一消息用于指示所述第一设备点亮。
  72. 根据权利要求71所述的中枢设备,其特征在于,
    所述中枢设备获取所述第一用户的身份,及与所述第一用户的身份对应的第一亮度值;
    所述中枢设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示第一亮度值。
  73. 根据权利要求71所述的中枢设备,其特征在于,
    所述中枢设备获取所述第一用户的身份,及与所述第一用户的身份对应的第一颜色;
    所述中枢设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示第一颜色。
  74. 根据权利要求70所述的中枢设备,其特征在于,
    预设条件包括:所述第一用户离开所述第一设备所属的第一区域;或者,所述第一用户与所述第一设备的距离大于预设距离;或者,所述第一用户离开所述第一设备预设方向上的第二区域;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第二消息,所述第二消息用于指示所述第一设备熄灭。
  75. 根据权利要求70所述的中枢设备,其特征在于,
    预设条件包括:所述第一用户与所述第一设备的距离改变;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第三消息,所述第三消息用于指示所述第一设备减小亮度;或者,
    所述中枢设备向所述第一设备发送第四消息,所述第四消息用于指示所述第一设备增大亮度。
  76. 一种基于人体感知的自动控制方法,应用于中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两 者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括路由设备和终端设备;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述R个第二电子设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、用户的位置信息;
    所述中枢设备向所述路由设备发送第一消息,所述第一消息用于指示所述路由设备根据所述路由设备的位置和所述用户的位置调整波束,使得调整后波束的最大增益点指向所述用户。
  77. 根据权利要求76所述的方法,其特征在于,所述中枢设备向所述路由设备发送第一消息之前,所述方法还包括:
    所述中枢设备获取到所述用户与所述终端设备两者的距离小于预设的误差范围。
  78. 根据权利要求76或77所述的方法,其特征在于,在所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、用户的位置信息之前,所述方法还包括:
    所述中枢设备获取到所述用户的位置变化大于第一预设范围;或者,
    所述中枢设备获取到所述终端设备的位置变化大于第二预设范围。
  79. 一种基于人体感知的自动控制方法,应用于中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括路由设备和N个终端设备;R和N分别为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述R个第二电子设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、M个用户的位置信息;所述M个用户和所述N个终端设备中的距离在预设的误差范围内的个数为M1,M1>0;
    所述中枢设备向所述路由设备发送第一消息,所述第一消息用于指示所述路由设备根据所述路由设备的位置和M1个用户的位置调整波束,使得波束最大增益点以时分复用方式轮流指向M1个用户位置。
  80. 根据权利要求79所述的方法,其特征在于,在所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述R个第二电子设备的位置信息、M个用户的位置信息之前,所述方法还包括:
    所述中枢设备获取到所述M个用户中至少一个用户的位置变化大于第一预设范围;或者,
    所述中枢设备获取到所述N个终端设备中至少一个终端设备的位置变化大于第二预设范围。
  81. 一种基于人体感知的自动控制方法,应用于中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫 米波雷达模块;所述R个第二电子设备包括一个第一设备和一个移动设备,所述移动设备包括第二超宽带模块;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述移动设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和用户的位置信息;
    所述中枢设备向所述第一设备发送第一消息;所述第一消息用于指示所述第一设备清洁全屋内除所述用户所属的第一区域之外的区域。
  82. 根据权利要求81所述的方法,其特征在于,在所述中枢设备向所述第一设备发送第一消息之前,所述方法还包括:
    基于所述第一电子设备对所述移动设备的位置测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,M个家具的位置信息;
    所述中枢设备获取到所述用户与所述M个家具中的一个家具两者的距离小于预设的第一误差范围。
  83. 根据权利要求82所述的方法,其特征在于,在所述中枢设备向所述第一设备发送第一消息之前,所述方法还包括:
    所述中枢设备获取到所述用户的姿势为躺或坐的姿势。
  84. 根据权利要求81-83任意一项所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取到所述用户在预设时长内的变化大于或等于预设的第二误差范围;
    所述中枢设备向所述第一设备发送第三消息,所述第三消息用于指示所述第一设备进入所述用户属于的第一区域。
  85. 根据权利要求81-84任意一项所述的方法,其特征在于,所述方法还包括:
    基于所述第一电子设备对所述移动设备的位置测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,全屋内每个区域的坐标范围;
    所述中枢设备向所述第一设备发送全屋内每个区域的坐标范围信息。
  86. 一种基于人体感知的自动控制方法,应用于中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;
    所述中枢设备获取到所述一个或多个用户中,与所述第一设备的距离小于预设的第一误差范围的第一用户;
    所述中枢设备获取到所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项;
    所述中枢设备向所述第一设备发送第一消息,所述第一消息包括所述第一用户的身高信息、呼吸频率信息和心跳频率信息中至少一项。
  87. 根据权利要求86所述的方法,其特征在于,所述中枢设备获取到与所述第一设备的距离小于预设的第一误差范围的第一用户之前,所述方法还包括:
    所述中枢设备从所述第一设备接收第一请求消息,所述第一请求消息用于指示中枢设备获取用户数据。
  88. 一种基于人体感知的自动控制方法,应用于中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;所述第一设备距离地面为第一高度;
    所述中枢设备获取到所述一个或多个用户中第一用户与所述第一设备的距离小于预设的第一距离,向所述第一设备发送第一消息;所述第一消息用于指示所述第一设备下降至距离地面第二高度;所述第二高度小于所述第一高度。
  89. 根据权利要求88所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取所述第一用户的身高信息;
    所述中枢设备向所述第一设备发送指示信息,所述指示信息用于指示所述第一用户的身高;所述第一用户的身高用于获取所述第二高度。
  90. 根据权利要求88或89所述的方法,其特征在于,所述中枢设备向所述第一设备发送第一消息之前,所述方法还包括:
    所述中枢设备获取到所述第一用户与所述第一设备的距离小于预设的第一距离持续的时长大于预设值。
  91. 根据权利要求88-90任意一项所述的方法,其特征在于,所述中枢设备向所述第一设备发送第一消息之前,所述方法还包括:
    所述中枢设备获取到所述第一用户做出预设动作。
  92. 根据权利要求88-91任意一项所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取到所述第一用户与所述第一设备的距离大于或等于预设的第一距离,向所述第一设备发送第二消息;所述第二消息用于指示所述第一设备上升至距离地面第一高度。
  93. 一种基于人体感知的自动控制方法,应用于中枢设备,其特征在于,所述中枢设备与第一电子设备和R个第二电子设备中的任意一个第二电子设备三者中的任意两者以有线通信或无线通信的方式通信;所述第一电子设备包括第一超宽带模块和毫米波雷达模块;所述R个第二电子设备包括一个第一设备;R为大于或等于1的正整数;所述方法包括:
    基于所述第一电子设备对所述第一设备的位置测量、人体位置的测量及转换、所 述中枢设备与所述第一电子设备的通信,所述中枢设备获取到在所述中枢设备提供的全屋坐标系下,所述第一设备的位置信息和一个或多个用户的位置信息;
    如果所述第一设备的位置与所述一个或多个用户中第一用户的位置之间满足预设条件,所述中枢设备通知所述第一设备调节灯光。
  94. 根据权利要求93所述的方法,其特征在于,
    预设条件包括:所述第一用户进入所述第一设备所属的第一区域;或者,所述第一用户与所述第一设备的距离小于或等于预设距离;或者,所述第一用户进入所述第一设备预设方向上的第二区域;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第一消息;所述第一消息用于指示所述第一设备点亮。
  95. 根据权利要求94所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取所述第一用户的身份,及与所述第一用户的身份对应的第一亮度值;
    所述中枢设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示第一亮度值。
  96. 根据权利要求94所述的方法,其特征在于,所述方法还包括:
    所述中枢设备获取所述第一用户的身份,及与所述第一用户的身份对应的第一颜色;
    所述中枢设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示第一颜色。
  97. 根据权利要求93所述的方法,其特征在于,
    预设条件包括:所述第一用户离开所述第一设备所属的第一区域;或者,所述第一用户与所述第一设备的距离大于预设距离;或者,所述第一用户离开所述第一设备预设方向上的第二区域;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第二消息,所述第二消息用于指示所述第一设备熄灭。
  98. 根据权利要求93所述的方法,其特征在于,
    预设条件包括:所述第一用户与所述第一设备的距离改变;
    所述中枢设备通知所述第一设备调节灯光包括:
    所述中枢设备向所述第一设备发送第三消息,所述第三消息用于指示所述第一设备减小亮度;或者,
    所述中枢设备向所述第一设备发送第四消息,所述第四消息用于指示所述第一设备增大亮度。
  99. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当所述计算机程序在电子设备上运行时,使得所述电子设备执行如权利要求76-98中任意一项所述的方法。
PCT/CN2022/117923 2021-10-25 2022-09-08 一种基于人体感知的自动控制方法、第一电子设备及系统 WO2023071547A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111243793.6A CN116033330A (zh) 2021-10-25 2021-10-25 一种基于人体感知的自动控制方法、第一电子设备及系统
CN202111243793.6 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023071547A1 true WO2023071547A1 (zh) 2023-05-04

Family

ID=86069333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117923 WO2023071547A1 (zh) 2021-10-25 2022-09-08 一种基于人体感知的自动控制方法、第一电子设备及系统

Country Status (2)

Country Link
CN (1) CN116033330A (zh)
WO (1) WO2023071547A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106541407A (zh) * 2015-09-18 2017-03-29 三星电子株式会社 清洁机器人及其控制方法
US20170328997A1 (en) * 2016-05-13 2017-11-16 Google Inc. Systems, Methods, and Devices for Utilizing Radar with Smart Devices
KR20190076332A (ko) * 2017-12-22 2019-07-02 숙명여자대학교산학협력단 지능형 IoT 기반 스마트 홈 에너지 관리 모델
CN110528234A (zh) * 2019-08-29 2019-12-03 珠海格力电器股份有限公司 一种智能调整晾衣架高度的方法、智能晾衣架及控制设备
CN112118659A (zh) * 2019-06-19 2020-12-22 广东小天才科技有限公司 一种灯光调节方法及智能装置
CN113257415A (zh) * 2020-02-12 2021-08-13 阿里巴巴集团控股有限公司 健康数据收集装置和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106541407A (zh) * 2015-09-18 2017-03-29 三星电子株式会社 清洁机器人及其控制方法
US20170328997A1 (en) * 2016-05-13 2017-11-16 Google Inc. Systems, Methods, and Devices for Utilizing Radar with Smart Devices
KR20190076332A (ko) * 2017-12-22 2019-07-02 숙명여자대학교산학협력단 지능형 IoT 기반 스마트 홈 에너지 관리 모델
CN112118659A (zh) * 2019-06-19 2020-12-22 广东小天才科技有限公司 一种灯光调节方法及智能装置
CN110528234A (zh) * 2019-08-29 2019-12-03 珠海格力电器股份有限公司 一种智能调整晾衣架高度的方法、智能晾衣架及控制设备
CN113257415A (zh) * 2020-02-12 2021-08-13 阿里巴巴集团控股有限公司 健康数据收集装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIN YONGYUAN: "Inertial Navigation", May 2006, SCIENCE PRESS

Also Published As

Publication number Publication date
CN116033330A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
JP7064679B2 (ja) 無線測位システム
US11310761B2 (en) Positioning method and system based on Wi-Fi internet of things device network
US11914033B2 (en) Transmitting device for use in location determination systems
CN108139460A (zh) 使用超声脉冲和无线电信号的云协调定位系统
WO2020172933A1 (zh) 一种uwb室内三维定位系统及方法
Taniuchi et al. Spring model based collaborative indoor position estimation with neighbor mobile devices
CN102355623A (zh) 根据移动终端的位置改变其桌面应用主题的系统及方法
AU2014236165A1 (en) Network of speaker lights and wearable devices using intelligent connection managers
CN108449953A (zh) 用于登记装置位置的方法和装置
CN113207171A (zh) 一种基于物联网监控的智能家居服务系统
Cinefra An adaptive indoor positioning system based on Bluetooth Low Energy RSSI
WO2023071398A1 (zh) 一种基于人体感知的自动控制方法、电子设备及系统
WO2023071547A1 (zh) 一种基于人体感知的自动控制方法、第一电子设备及系统
CN108427099A (zh) 用于超声波室内定位的方法、设备、系统以及移动终端
WO2023071498A1 (zh) 一种基于人体感知的自动控制方法、第一电子设备及系统
CN205049732U (zh) 一种无线、超声波复合定位系统
WO2023071484A1 (zh) 一种基于人体感知的自动控制方法、电子设备及系统
CN109672465A (zh) 一种调整天线增益的方法、设备及系统
WO2023071565A1 (zh) 一种基于人体感知的自动控制方法、第一电子设备及系统
Kanan et al. A combined batteryless radio and WiFi indoor Positioning System
WO2022240609A1 (en) Acoustic configuration based on radio frequency sensing
CN213152381U (zh) 一种定位装置
Moriya et al. Indoor localization based on distance-illuminance model and active control of lighting devices
Zhang et al. Acoustic localization system based on smartphone without time synchronization
CN218514518U (zh) 卫浴设备、用户移动终端及云平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022885436

Country of ref document: EP

Effective date: 20240311