WO2023071413A1 - 一种碳排放的监测系统 - Google Patents

一种碳排放的监测系统 Download PDF

Info

Publication number
WO2023071413A1
WO2023071413A1 PCT/CN2022/112244 CN2022112244W WO2023071413A1 WO 2023071413 A1 WO2023071413 A1 WO 2023071413A1 CN 2022112244 W CN2022112244 W CN 2022112244W WO 2023071413 A1 WO2023071413 A1 WO 2023071413A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
gas
chamber
pipe
plate
Prior art date
Application number
PCT/CN2022/112244
Other languages
English (en)
French (fr)
Inventor
余海军
陈康
李爱霞
谢英豪
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023071413A1 publication Critical patent/WO2023071413A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to the technical field of recycling treatment of waste battery materials, in particular to a carbon emission monitoring system.
  • the battery recycling and processing industry belongs to the chemical industry.
  • a large number of organic solvents are used in the production process, and the treatment of organic solvents tends to generate more carbon emissions and is toxic to a certain extent.
  • environmental protection treatment of carbon emissions for example, adopt regenerative catalytic combustion treatment technology
  • carbon emissions into the atmosphere in the form of carbon dioxide through conduits after treatment.
  • the commonly used monitoring method is to set up a corresponding gas collector in the exhaust pipe, collect a certain volume of exhaust gas through the gas collector, monitor the carbon dioxide content in the exhaust gas, and finally determine the actual carbon dioxide emission according to a certain conversion ratio.
  • the present invention proposes a carbon emission monitoring system, which can completely catalyze and oxidize all organic matter in the waste gas, and then stir and measure the completely oxidized waste gas, so as to ensure the accuracy of monitoring.
  • the first aspect of the embodiments of the present invention provides a carbon emission monitoring system, the system comprising: an oxidation treatment device, a gas mixing device, a gas measuring device and a control device;
  • the oxidation treatment device, the gas mixing device, and the gas measurement device are connected in sequence, and the control device is respectively connected to the oxidation treatment device, the gas mixing device, and the gas measurement device.
  • the input end of the oxidation treatment device receives exhaust gas, and the The output of the gas measuring device discharges the exhaust gas.
  • the gas measurement device includes a surge tank, a filter catalyst box, a thermostat, and a surge tank, and the surge tank, filter catalyst box, and thermostat are arranged from bottom to bottom. connected in sequence, and the pressure relief tank communicates with the pressure relief tank through pipelines.
  • the filter catalytic box is provided with a measurement chamber, a catalytic flow chamber and a sampling chamber;
  • the catalytic flow chamber is provided with a spiral catalytic pipe, the top pipe port of the catalytic pipe communicates with the top of the measurement chamber, the bottom pipe port of the catalytic pipe communicates with the top of the sampling chamber, The gas extracted by the sampling chamber enters from the bottom pipe opening of the catalytic pipe and undergoes catalytic oxidation during the process of rotating and rising.
  • a sampling air inlet is provided at the bottom of the sampling chamber, and at least one filter screen and at least one catalytic oxidation screen are sequentially provided at the top of the sampling air inlet.
  • the measurement chamber is provided with a thermometer, a measurement chamber and an air outlet connected in sequence.
  • the gas mixing device includes a mixing box, and a first mixing plate, a second mixing plate, and a third mixing plate are sequentially arranged in the middle of the mixing box, and the mixing box
  • the space between the mixing inlet and one side of the first mixing plate is free to form a stirring chamber
  • the space between the first mixing plate and the second mixing plate forms a first mixing chamber
  • the second mixing plate The space between the third mixing plate and the third mixing plate forms a second mixing chamber
  • the space between the third mixing plate and the mixing exhaust port of the mixing box forms a discharge chamber;
  • both sides of the first mixing plate are respectively provided with a first guide port for discharging mixed gas
  • the middle of the second mixing plate is provided with a second guide port for discharging mixed gas
  • the third mixing plate is provided with Several third guide ports for discharging mixed gas, the radius of the second guide port is larger than the radius of the first guide port, the radius of the first guide port is larger than the radius of the third guide port.
  • the mixing inlet of the mixing box is provided with an air inlet guide pipe, and the side of the first mixing plate facing the stirring chamber is provided with a return guide cylinder,
  • the air intake guide pipe is arranged on the return guide cylinder.
  • the air intake guide pipe is conical, the inner wall of the air intake guide pipe is provided with an inner spiral plate, and the outer wall of the air intake guide pipe is provided with an outer spiral plate , the rotation direction of the inner helical plate is opposite to that of the outer helical plate.
  • the discharge chamber is provided with a conical net, and the conical head at the bottom of the conical net is connected to the third mixing plate to collect several of the third The mixed gas discharged from the pilot port.
  • the first aspect further includes a flow meter, an exhaust gas processor, and an exhaust gas discharge pipe, one end of the buffer tank is sequentially connected to the flow meter, the exhaust gas processor, and the exhaust gas discharge pipe, so that The pressure-relief box is provided with a thermometer.
  • the carbon emission monitoring system provided by the embodiment of the present invention has the beneficial effect that: the present invention can thoroughly oxidize and mix the waste gas to be discharged, so that the waste gas can be oxidized more comprehensively to reduce The organic matter remaining in the exhaust gas, and the gas is oxidized again in the sampling test, which can improve the accuracy of monitoring and improve the monitoring efficiency.
  • Fig. 1 is a schematic structural diagram of a carbon emission monitoring system provided by an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a gas measuring device provided by an embodiment of the present invention.
  • Fig. 3 is a schematic structural view of a catalytic filter box provided by an embodiment of the present invention.
  • Fig. 4 is a schematic structural view of a mixing box provided by an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a control device provided by an embodiment of the present invention.
  • oxidation treatment device 1 gas mixing device 2, gas measuring device 3, flow meter 4, exhaust gas processor 5, exhaust gas discharge pipe 6, mixing box 21, first mixing plate 22, second mixing plate 23, third Mixing plate 24, first guide port 25, second guide port 26, third guide port 27, air intake guide pipe 28, return guide cylinder 29, conical net 210, inner spiral plate 281, outer spiral plate 282, slow pressure Box 31, filter catalytic box 32, thermostat 33, slow pressure tank 34, catalytic pipeline 321, thermometer 322, measuring chamber 323, gas outlet 324, sampling air inlet 325, air pump 326, filter screen 327, catalytic oxidation net 328 .
  • FIG. 1 shows a schematic structural diagram of a carbon emission monitoring system provided by an embodiment of the present invention.
  • the carbon emission monitoring system may include: an oxidation treatment device 1, a gas mixing device 2, a gas measuring device 3 and a control device;
  • the oxidation treatment device 1, the gas mixing device 2, and the gas measuring device 3 are sequentially connected, and the control device is respectively connected with the oxidation treatment device 1, the gas mixing device 2, and the gas measuring device 3.
  • the oxidation treatment device 1 The input terminal receives the exhaust gas, and the output terminal of the gas measuring device 3 discharges the exhaust gas.
  • the exhaust gas can be input into the oxidation treatment device 1, and the exhaust gas is thoroughly oxidized by the oxidation treatment device 1, and then the oxidized exhaust gas is input into other mixing devices, and the oxidized waste gas is processed by the gas mixing device 2.
  • the gas is stirred and mixed to avoid incomplete oxidation, and then passes through the gas measuring device 3 for carbon emission measurement.
  • the exhaust gas can be stirred after the oxidation treatment, and the waste gas and organic matter can be further mixed, and the untreated organic matter can be further processed.
  • the secondary oxidation further reduces the probability of oxidation of organic matter in the subsequent discharge process, thereby improving the accuracy of subsequent detection; and the entire process is controlled by a control device, which can facilitate user operation and improve processing efficiency.
  • control device can be set outside the system or inside the system, and if it is set inside the system, it can be set in the gas measuring device 3 . Since there are various setting modes of the control device, they are not marked in the accompanying drawings, and the setting modes can be adjusted according to the actual needs of users.
  • the oxidation unit in the oxidation treatment device 1 may be a regenerative catalytic combustion unit, and exhaust gas may be completely oxidized by the regenerative catalytic combustion unit.
  • the monitoring system of described carbon emission can also comprise flow meter 4, exhaust gas processor 5 and exhaust gas discharge pipe 6, and described gas measurement device 3 is connected with described flow meter, exhaust gas processor and Exhaust gas discharge pipes can be connected sequentially.
  • the gas measuring device 3 can sample and detect the waste gas, and the remaining waste gas can enter the flow meter, the waste gas processor and the waste gas discharge pipe in turn, and the flow meter can calculate the discharged waste gas capacity,
  • the exhaust gas processor can further process the exhaust gas to reduce the pollution of the exhaust gas to the environment, and finally discharge it into the atmosphere through the exhaust gas discharge pipe.
  • the gas measuring device 3 includes a pressure-relief tank 31, a filter catalyst tank 32, a thermostat 33 and a pressure-relief tank 34, the pressure-relief tank 31, the filter catalyst tank 32 and a constant temperature
  • the devices 33 are connected sequentially from bottom to top, and the pressure relief tank 34 communicates with the pressure relief tank 31 through a connecting pipe 35 .
  • the pressure relief tank 31 can be used to buffer the air pressure of the exhaust gas; the filter catalyst box 32 can be used to detect the carbon emission capacity of the gas; the thermostat 33 is used to allow the pressure surge tank 31 and the filter catalyst box 32 to maintain a stable operating temperature ; The pressure tank 34 is used for the pressure of the pressure tank 31.
  • the pressure between the filter catalytic case 32 and the filter catalytic case 32 can be buffered by the buffer pressure case 31 , so as to maintain the stability of the filter catalytic case 32 and improve monitoring efficiency.
  • one end of the pressure relief tank 31 may be sequentially connected to the flow meter, the waste gas processor and the waste gas discharge pipe. After the gas passes through the pressure-relief tank 31, it passes through the flow meter, the waste gas processor and the waste gas discharge pipe in sequence, and finally is discharged.
  • the pressure relief tank 31 is provided with a thermometer.
  • the buffer tank 31 is a section of pipeline with a larger diameter than the pipeline, which is roughly the same as the buffer tank 34 . And in the monitoring process, the air pressure in the pressure-relieving box 31 may change in a large range, causing inaccurate phenomena when sampling.
  • the purpose is to reduce the measurement fluctuation caused by temperature.
  • the thermostat 33 can make each device Monitoring is carried out at the same temperature, so that the measurement of the filter catalyst box 32 is more accurate.
  • the thermostat 33 may be a water medium constant temperature unit, and the temperature of the water medium in the thermostat 33 is set within the range of ⁇ 5 degrees from the ambient temperature.
  • FIG. 3 show the structural representation of a kind of filtering catalytic case that an embodiment of the present invention provides, described filtering catalytic case 32 is provided with measuring chamber, catalytic flow chamber and sampling chamber;
  • the catalytic flow chamber is provided with a spiral catalytic pipeline 321, the top pipeline opening of the catalytic pipeline 321 communicates with the top of the measurement chamber, and the bottom pipeline opening of the catalytic pipeline 321 communicates with the sampling chamber.
  • the top is connected, so that the gas extracted by the sampling chamber enters from the bottom pipe port of the catalytic pipe 321 and undergoes catalytic oxidation during the process of rotating and rising.
  • the sampling chamber can extract an appropriate amount of gas from the pressure relief tank 31 , and then deliver the gas to the catalytic flow chamber, and then transfer the gas from the catalytic flow chamber to the measurement chamber for measurement. Since the catalytic flow chamber is equipped with a spiral catalytic pipe 321, the gas rotates and rises in the catalytic pipe 321, and can be further oxidized during the transmission process to further reduce the residual organic matter in the gas to improve the accuracy of monitoring .
  • the measurement chamber is provided with a thermometer 322 , a measurement chamber 323 and an air outlet 324 connected in sequence.
  • the thermometer 322 can be used to detect the temperature of the extracted gas
  • the measurement chamber 323 can be used to detect the carbon emission content of the extracted gas
  • the gas outlet 324 can be used to discharge the extracted gas.
  • an air stone may be provided at the air nozzle of the air outlet 324 .
  • the measuring chamber 323 may be provided with a wet flow meter and a carbon dioxide measuring device for detecting the humidity and carbon dioxide content of the gas, respectively.
  • the bottom of described sampling chamber is provided with sampling air inlet 325, and the rear end of described sampling air inlet 325 can be provided with suction pump 326, in described sampling air inlet 325
  • At least one filter screen 327 and at least one catalytic oxidation screen 328 are sequentially provided on the top of the output port of the air pump 326 at the rear end.
  • a wet flow meter is installed in the filter catalyst box 32 , and the wet flow meter can be set at the input port of the sampling air inlet 325 to monitor the humidity of the input gas.
  • the water medium in the thermostat 33 maintains a constant temperature and communicates with the air intake pipe, and the air pump 326 communicates with the pressure-relieving tank 31 through the sampling air inlet 325, and extracts low variable pressure from the pressure-relieving tank 31.
  • High-pressure gas the extracted gas is further catalyzed and oxidized through the pipeline through the wet flow meter, the filter screen 327 and the catalytic oxidation net 328, and then detected by the wet flow meter and the carbon dioxide measuring device, and the detected gas is discharged through the gas outlet 324 to the atmosphere.
  • Whole process can keep the temperature stability of work by thermostat 33.
  • the gas mixing device 2 includes a mixing box 21, and the middle of the mixing box 21 is sequentially provided with a first mixing plate 22, a second Mixing plate 23 and the 3rd mixing plate 24, the space between the mixing inlet of described mixing box 21 and the first mixing plate 22 side is free to form a stirring chamber, and the first mixing plate 22 and the second mixing plate
  • the space between the mixing plates 23 forms a first mixing chamber
  • the space between the second mixing plate 23 and the third mixing plate 24 forms a second mixing chamber
  • the third mixing plate 24 and the mixing box The space between the mixed exhaust port of 21 forms a discharge chamber;
  • both sides of the first mixing plate 22 are respectively provided with a first guide port 25 for discharging mixed gas
  • the middle of the second mixing plate 23 is provided with a second guide port 26 for discharging mixed gas
  • the mixing plate 24 is provided with several third guide ports 27 for discharging the mixed gas.
  • the stirring chamber can be used to stir the gas
  • the first mixing chamber and the second mixing chamber can be used to mix the stirred gas
  • the discharge chamber can be used to discharge the mixed gas to the gas Measuring device 3.
  • the gas treated by the oxidation treatment device 1 is output to the mixing box 21, and passes through the stirring chamber, the first mixing chamber, the second mixing chamber and the discharge chamber respectively for stirring, mixing and discharge treatment , and then measure again.
  • the flow rate of the gas can be adjusted.
  • the radius of the second guide port 26 is greater than the radius of the first guide port 25, and the radius of the first guide port 25 is greater than that of the third guide port 27 of the radius.
  • the speeds at which the gas passes through the first pilot port 25, the second pilot port 26 and the third pilot port 27 are different, so that the gas is A velocity difference is created during the flow process, so that the gas can be mixed better to improve the mixing efficiency of the gas.
  • One side of the stirring chamber is provided with a backflow guide cylinder 29 , and the air inlet guide pipe 28 is arranged on the backflow guide cylinder 29 .
  • the oxidized gas enters the intake guide tube 28, flows from the bottom of the return guide tube 29 to both sides after passing through the intake guide tube 28, passes through the port of the return guide tube 29, passes through the outer wall of the return guide tube 29, and finally Enter the first guide port 25.
  • the air intake guide pipe 28 is conical, the inner wall of the air intake guide pipe 28 is provided with an inner spiral plate 281, and the air intake guide pipe 28 is provided with an inner spiral plate 281, and the air intake guide pipe 28
  • the outer wall of the tube 28 is provided with an outer helical plate 282 , and the rotation direction of the inner helical plate 281 is opposite to that of the outer helical plate 282 .
  • the inner spiral plate 281 and the outer spiral plate 282 can respectively drive the gas to rotate and flow, so as to achieve a mixing effect.
  • the discharge chamber is provided with a conical net 210, The conical head at the bottom is connected to the third mixing plate 24 to collect the mixed gas discharged from the third guide ports 27 .
  • the control device may include a CPU control chip and a display connected to each other, wherein the display may be connected to an external IO interface, and the CPU control chip may be respectively connected to the oxidation treatment device 1, the gas mixing device 2, and the gas measurement device 3 , specifically, the CPU control chip can be connected with various flowmeters and thermometers, can be connected with the thermostat 33, and can be connected with the air pump.
  • the embodiment of the present invention provides a carbon emission monitoring system, and its beneficial effect is that: the present invention can thoroughly oxidize and mix the exhaust gas to be discharged, so that the exhaust gas can be oxidized more comprehensively to reduce the waste gas The organic matter remaining in the air, and the gas is oxidized again in the sampling test, which can improve the accuracy of monitoring and improve the monitoring efficiency.

Abstract

一种碳排放的监测系统,系统包括:氧化处理装置(1)、气体混合装置(2)、气体测量装置(3)和控制装置;氧化处理装置(1)、气体混合装置(2)、气体测量装置(3)依次连接,控制装置分别与氧化处理装置(1)、气体混合装置(2)、气体测量装置(3)连接,氧化处理装置(1)的输入端接收废气,气体测量装置(3)的输出端排出废气。该系统可以对待排放的废气分别进行彻底氧化和混合,使得废气可以氧化得更加全面,以减少废气中残留的有机物,并在抽样检测中再次对气体进行二次氧化,可以提高监测的准确率,提高监测效率。

Description

一种碳排放的监测系统 技术领域
本发明涉及废旧电池材料回循环处理的技术领域,尤其涉及一种碳排放的监测系统。
背景技术
电池回收加工行业属于化工行业,生产的过程中大量使用各种的有机溶剂,而有机溶剂的处理容易产生较多的碳排放,具有一定毒害性。为了减少碳排放的毒性,需要对碳排放进行废气环保处理(例如,采用蓄热式催化燃烧治理技术),在处理过后再通过导管将碳排放以二氧化碳的形式排放到大气之中。
在排放过程中,若二氧化碳浓度过高,容易造成环境污染,引发温室效应等问题。为了避免环境污染等问题,在排放时需要时刻监测实时的排放量。目前常用的监测方式是在排废管中设置对应的气体采集器,通过气体采集器采集一定容量的排放气体,监测排放气体中的二氧化碳含量,最后按照一定比例的换算确定实际的二氧化碳排放量。
目前常用的监测方式有如下技术问题:由于气体在排放过程中处于离散状态,而且影响气体排放的因素(管道的大小、温度、气压等)也众多,而单一监测点进行定量监测难以准确反映实际排放量,导致监测结果误差较大,难以精确判定实时的碳排放量,而且在废气处理过程中,废气中依然残留未彻底氧化的有机物,而有机物可以在排放过程中在空气进行二次氧化并产生一定量的二氧化碳,进一步增加了监测排放量与实际排放量之间的误差。
发明内容
本发明提出一种碳排放的监测系统,所述系统可以彻底催化氧化废气中的所有有机物,再对彻底氧化的废气进行搅拌和测量,从而监测的准确率。
本发明实施例的第一方面提供了一种碳排放的监测系统,所述系统包括:氧化处理装置、气体混合装置、气体测量装置和控制装置;
所述氧化处理装置、气体混合装置、气体测量装置依次连接,所述控制装置分别与所述氧化处理装置、气体混合装置、气体测量装置连接,所述氧化处理装置的输入端接收废 气,所述气体测量装置的输出端排出废气。
在第一方面的一种可能的实现方式中,所述气体测量装置,包括缓压箱、过滤催化箱、恒温器与缓压罐,所述缓压箱、过滤催化箱和恒温器从下往上依次连接,所述缓压罐通过管道与所述缓压箱连通。
在第一方面的一种可能的实现方式中,所述过滤催化箱设有测量腔室、催化流动腔室和抽样腔室;
所述催化流动腔室设有螺旋状的催化管道,所述催化管道的顶端管道口和所述测量腔室的顶部连通,所述催化管道的底部管道口与所述抽样腔室的顶部连通,以使所述抽样腔室抽取的气体从所述催化管道的底部管道口进入并在旋转上升的过程中进行催化氧化。
在第一方面的一种可能的实现方式中,所述抽样腔室的底部设有抽样进气口,所述抽样进气口的顶部依次设有至少一个过滤网与至少一个催化氧化网。
在第一方面的一种可能的实现方式中,所述测量腔室设有依次连接的温度计、测量仓和出气口。
在第一方面的一种可能的实现方式中,所述气体混合装置包括混合箱,所述混合箱中间依次设有第一混合板、第二混合板与第三混合板,所述混合箱的混合进气口与所述第一混合板一侧的间隔空闲形成搅拌腔室,所述第一混合板与所述第二混合板的间隔空间形成第一混合腔室,所述第二混合板与所述第三混合板的间隔空间形成第二混合腔室,所述第三混合板与所述混合箱的混合排气口的间隔空间形成排放腔室;
其中,所述第一混合板的两侧分别设有排放混合气体的第一导向口,所述第二混合板的中间设有排放混合气体的第二导向口,所述第三混合板设有若干个排放混合气体的第三导向口,所述第二导向口的半径大于所述第一导向口的半径,所述第一导向口的半径大于所述第三导向口的半径。
在第一方面的一种可能的实现方式中,所述混合箱的混合进气口设有进气导向管,所述第一混合板朝向所述搅拌腔室的一侧设有回流导向筒,所述进气导向管设置在所述回流导向筒。
在第一方面的一种可能的实现方式中,所述进气导向管为圆锥状,所述进气导向管的内壁设有内螺旋板,所述进气导向管的外壁设有外螺旋板,所述内螺旋板与所述外螺旋板 的旋转方向相反。
在第一方面的一种可能的实现方式中,所述排放腔室设有锥形网,所述锥形网底部的锥头与所述第三混合板连接,以采集若干个所述第三导向口排放的混合气体。
在第一方面的一种可能的实现方式中,还包括流量计、废气处理器和废气排放管,所述缓压箱的一端与所述流量计、废气处理器和废气排放管依次连接,所述缓压箱设有测温计。
相比于现有技术,本发明实施例提供的一种碳排放的监测系统,其有益效果在于:本发明可以对待排放的废气分别进行彻底氧化和混合,使得废气可以氧化得更加全面,以减少废气中残留的有机物,并在抽样检测中再次对气体进行二次氧化,可以提高监测的准确率,提高监测效率。
附图说明
图1是本发明一实施例提供的一种碳排放的监测系统的结构示意图;
图2是本发明一实施例提供的一种气体测量装置的结构示意图;
图3是本发明一实施例提供的一种过滤催化箱的结构示意图;
图4是本发明一实施例提供的一种混合箱的结构示意图;
图5是本发明一实施例提供的一种控制装置的结构示意图;
图中:氧化处理装置1、气体混合装置2、气体测量装置3、流量计4、废气处理器5、废气排放管6、混合箱21、第一混合板22、第二混合板23、第三混合板24、第一导向口25、第二导向口26、第三导向口27、进气导向管28、回流导向筒29、锥形网210、内螺旋板281、外螺旋板282、缓压箱31、过滤催化箱32、恒温器33、缓压罐34、催化管道321、温度计322、测量仓323、出气口324、抽样进气口325、抽气泵326、过滤网327、催化氧化网328。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前常用的监测方式有如下技术问题:由于气体在排放过程中处于离散状态,而且影响气体排放的因素(管道的大小、温度、气压等)也众多,而单一监测点进行定量监测难以准确反映实际排放量,导致监测结果误差较大,难以精确判定实时的碳排放量,而且在废气处理过程中,废气中依然残留未彻底氧化的有机物,而有机物可以在排放过程中在空气进行二次氧化并产生一定量的二氧化碳,进一步增加了监测排放量与实际排放量之间的误差。
为了解决上述问题,下面将通过以下具体的实施例对本申请实施例提供的一种碳排放的监测系统进行详细介绍和说明。
参见图1,示出了本发明一实施例提供的一种碳排放的监测系统的结构示意图。
其中,作为示例的,所述碳排放的监测系统可以包括:氧化处理装置1、气体混合装置2、气体测量装置3和控制装置;
所述氧化处理装置1、气体混合装置2、气体测量装置3依次连接,所述控制装置分别与所述氧化处理装置1、气体混合装置2、气体测量装置3连接,所述氧化处理装置1的输入端接收废气,所述气体测量装置3的输出端排出废气。
在使用时,废气可以输入至氧化处理装置1中,由氧化处理装置1彻底地将废气进行氧化处理,接着将氧化处理后的废气输入至其他混合装置中,通过气体混合装置2将氧化后的气体进行搅拌混合,避免氧化不彻底的情况,然后再经过气体测量装置3进行碳排放测量。通过彻底氧化可以减少废气中残留的有机物,降低因有机物在后续排放过程中进行氧化的概率,同时在氧化处理后可以对废气进行搅拌处理,进一步混合废气与有机物,进一步将未能处理的有机物进行二次氧化,进一步降低因有机物在后续排放过程中进行氧化的概率,从而提高后续检测的准确率;并且整个过程通过控制装置进行控制,可以方便用户操作,提高处理效率。
需要说明的是,控制装置可以设置在系统外部,也可以设置在系统内部,若设置在系统内部,可以设置在气体测量装置3中。由于控制装置的设置方式有多种,故此不在附图中标识,其设置方式可以根据用户的实际需要进行调整。
在本实施例中,所述氧化处理装置1内的氧化单元可以为蓄热式催化燃烧单元,可以通过蓄热式催化燃烧单元对废气进行彻底氧化处理。
参照图1,在一实施例中,所述碳排放的监测系统还可以包括流量计4、废气处理器5和废气排放管6,所述气体测量装置3与所述流量计、废气处理器和废气排放管可以依次连接。
经处理后的废气在进入气体测量装置3时,气体测量装置3可以对废气进行抽样检测,剩余的废气可以依次进入流量计、废气处理器和废气排放管,流量计可以计算排放的废气容量,废气处理器可以进一步对废气进行处理,以减少废气对环境的污染,最后经过废气排放管排放到大气中。
在监测时是抽样监测,而气体在排放时会产生不同的气压,为了稳定抽样时的气压,以提高抽样的稳定性,参照图2,示出了本发明一实施例提供的一种气体测量装置的结构示意图,在一实施例中,所述气体测量装置3包括缓压箱31、过滤催化箱32、恒温器33与缓压罐34,所述缓压箱31、过滤催化箱32和恒温器33从下往上依次连接,所述缓压罐34通过连接管道35与所述缓压箱31连通。
具体地,缓压箱31可以用于缓冲排放气体的气压;过滤催化箱32可以用于检测气体的碳排放容量;恒温器33用于让缓压箱31和过滤催化箱32保持稳定的工作温度;缓压罐34用于缓压箱31的气压。
通过缓压箱31可以缓冲气体排放时与过滤催化箱32之间的气压,从而保持过滤催化箱32的稳定性,以提高监测的效率。
参照图2,所述缓压箱31的一端可以与所述流量计、废气处理器和废气排放管依次连接。气体经过缓压箱31后再依次经过流量计、废气处理器和废气排放管,最后排出。
在使用时,为了确定排放气体的温度,在一实施例中,所述缓压箱31设有测温计。
由于不同温度下气体的体积不同的,而缓压箱31是比管路的直径更大的一段管路,与缓压罐34大致相同。而在监测过程中,缓压箱31内的气压可能发生较大的范围的变化,导致取样的时候发生不准确的现象,目的是为了降低因温度造成的测量波动,恒温器33可以让各个器件在同一温度下进行监测,从而让过滤催化箱32测量的更准确。
在一实施例中,所述恒温器33可以水介质恒温单元,恒温器33内的水介质温度设置在环境温度±5度范围内。
参照图3,示出了本发明一实施例提供的一种过滤催化箱的结构示意图,所述过滤催 化箱32设有测量腔室、催化流动腔室和抽样腔室;
所述催化流动腔室设有螺旋状的催化管道321,所述催化管道321的顶端管道口和所述测量腔室的顶部连通,所述催化管道321的底部管道口与所述抽样腔室的顶部连通,以使所述抽样腔室抽取的气体从所述催化管道321的底部管道口进入并在旋转上升的过程中进行催化氧化。
在应用时,抽样腔室可以从缓压箱31中抽取适量的气体,然后将气体输送到催化流动腔室中,由催化流动腔室再传输至测量腔室中进行测量。由于催化流动腔室设有螺旋状的催化管道321,气体在催化管道321中旋转上升传输,并在传输过程中可以进一步作氧化处理,以进一步减少气体中残留的有机物,以提高监测的准确率。
参照图3,所述测量腔室设有依次连接的温度计322、测量仓323和出气口324。具体地,温度计322可以用于检测抽取的气体的温度,测量仓323可以用于检测抽取的气体的碳排放含量,出气口324可以用于排放抽取的气体。
可选地,出气口324的气嘴处可以设置的气泡石。
在一应用中,测量仓323可以设有湿式流量计和二氧化碳测量器,分别用于检测气体的湿度和二氧化碳含量。
参照图3,在一实施例中,所述抽样腔室的底部设有抽样进气口325,所述抽样进气口325的后端可以设有抽气泵326,在所述抽样进气口325后端的抽气泵326的输出口的顶部依次设有至少一个过滤网327与至少一个催化氧化网328。
参照图3,在一可选的实施例中,过滤网327设有两个,催化氧化网328设有三个。
在又一可选的实施例中,在过滤催化箱32内的湿式流量计,所述湿式流量计可以设置在所述抽样进气口325的输入口,以监测输入的气体的湿度。
在使用时,恒温器33内的水介质保持恒定的温度并与空气进气管连通,抽气泵326的通过抽样进气口325与缓压箱31连通,并从缓压箱31内抽取低可变压强的气体,抽取的气体通过管道依次通过湿式流量计、过滤网327和催化氧化网328进一步催化氧化后,再通过湿式流量计和二氧化碳测量器进行检测,被检测后气体通过出气口324排放到大气中。整个过程可以通过恒温器33保持工作的温度稳定。
参照图4,示出了本发明一实施例提供的一种混合箱的结构示意图,所述气体混合装 置2包括混合箱21,所述混合箱21中间依次设有第一混合板22、第二混合板23与第三混合板24,所述混合箱21的混合进气口与所述第一混合板22一侧的间隔空闲形成搅拌腔室,所述第一混合板22与所述第二混合板23的间隔空间形成第一混合腔室,所述第二混合板23与所述第三混合板24的间隔空间形成第二混合腔室,所述第三混合板24与所述混合箱21的混合排气口的间隔空间形成排放腔室;
其中,所述第一混合板22的两侧分别设有排放混合气体的第一导向口25,所述第二混合板23的中间设有排放混合气体的第二导向口26,所述第三混合板24设有若干个排放混合气体的第三导向口27。
其中,搅拌腔室可以用于对气体进行搅拌处理,第一混合腔室和第二混合腔室可以用于对搅拌后的气体进行混合,排放腔室可以用于将混合后的气体排放至气体测量装置3中。
在使用时,氧化处理装置1处理后的气体输出至混合箱21中,分别经过搅拌腔室、第一混合腔室、第二混合腔室和排放腔室中,分别进行搅拌、混合和排放处理,最后再进行测量。
在一实施例中,为了提高气体的混合效率,可以调整气体的流动速率。参照图4,在一可选的实施方式里,所述第二导向口26的半径大于所述第一导向口25的半径,所述第一导向口25的半径大于所述第三导向口27的半径。
由于第一导向口25、第二导向口26和第三导向口27的半径不同,导致气体在经过第一导向口25、第二导向口26和第三导向口27的速率不同,使得气体在流动过程中产生速率差,从而让气体可以更好地进行混合,以提高气体的混合效率。
在一实施例中,为了增加气体的流动距离以提高气体的混合效果,参照图4,所述混合箱21的混合进气口设有进气导向管28,所述第一混合板22朝向所述搅拌腔室的一侧设有回流导向筒29,所述进气导向管28设置在所述回流导向筒29。
具体地,经过氧化处理的气体进入进气导向管28,经过进气导向管28后从回流导向筒29的底部向两侧流动,经过回流导向筒29的端口再经过回流导向筒29的外壁最后进入第一导向口25。
为了进一步提高气体的混合效果,参照图4,在一实施例中,所述进气导向管28为圆锥状,所述进气导向管28的内壁设有内螺旋板281,所述进气导向管28的外壁设有外螺旋 板282,所述内螺旋板281与所述外螺旋板282的旋转方向相反。
具体地,内螺旋板281和外螺旋板282可以分别带动气体旋转流动,从而达到混合效果。
在混合排放后,由于第三导向口27设有多个,为了能集合排放气体,参照图4,在一实施例中,所述排放腔室设有锥形网210,所述锥形网210底部的锥头与所述第三混合板24连接,以采集若干个所述第三导向口27排放的混合气体。
参照图5,示出了本发明一实施例提供的一种控制装置的结构示意图。在一实施例中,控制装置可以包括相互连接的CPU控制芯片和显示器,其中显示器可以与外部的IO接口连接,CPU控制芯片可以分别与氧化处理装置1、气体混合装置2、气体测量装置3连接,具体地,CPU控制芯片可以与各个流量计和温度计连接,可以与恒温器33连接,可以抽气泵连接。
在本实施例中,本发明实施例提供了一种碳排放的监测系统,其有益效果在于:本发明可以对待排放的废气分别进行彻底氧化和混合,使得废气可以氧化得更加全面,以减少废气中残留的有机物,并在抽样检测中再次对气体进行二次氧化,可以提高监测的准确率,提高监测效率。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种碳排放的监测系统,其特征在于,所述系统包括:氧化处理装置、气体混合装置、气体测量装置和控制装置;
    所述氧化处理装置、气体混合装置、气体测量装置依次连接,所述控制装置分别与所述氧化处理装置、气体混合装置、气体测量装置连接,所述氧化处理装置的输入端接收废气,所述气体测量装置的输出端排出废气。
  2. 根据权利要求1所述的碳排放的监测系统,其特征在于,所述气体测量装置,包括缓压箱、过滤催化箱、恒温器与缓压罐,所述缓压箱、过滤催化箱和恒温器从下往上依次连接,所述缓压罐通过连接管道与所述缓压箱连通。
  3. 根据权利要求2所述的碳排放的监测系统,其特征在于,所述过滤催化箱设有测量腔室、催化流动腔室和抽样腔室;
    所述催化流动腔室设有螺旋状的催化管道,所述催化管道的顶端管道口和所述测量腔室的顶部连通,所述催化管道的底部管道口与所述抽样腔室的顶部连通,以使所述抽样腔室抽取的气体从所述催化管道的底部管道口进入并在旋转上升的过程中进行催化氧化。
  4. 根据权利要求3所述的碳排放的监测系统,其特征在于,所述抽样腔室的底部设有抽样进气口,所述抽样进气口的顶部依次设有至少一个过滤网与至少一个催化氧化网。
  5. 根据权利要求3所述的碳排放的监测系统,其特征在于,所述测量腔室设有依次连接的温度计、测量仓和出气口。
  6. 根据权利要求1所述的碳排放的监测系统,其特征在于,所述气体混合装置包括混合箱,所述混合箱中间依次设有第一混合板、第二混合板与第三混合板,所述混合箱的混合进气口与所述第一混合板一侧的间隔空闲形成搅拌腔室,所述第一混合板与所述第二混合板的间隔空间形成第一混合腔室,所述第二混合板与所述第三混合板的间隔空间形成第二混合腔室,所述第三混合板与所述混合箱的混合排气口的间隔空间形成排放腔室;
    其中,所述第一混合板的两侧分别设有排放混合气体的第一导向口,所述第二混合板的中间设有排放混合气体的第二导向口,所述第三混合板设有若干个排放混合气体的第三导向口,所述第二导向口的半径大于所述第一导向口的半径,所述第一导向口的半径大于所述第三导向口的半径。
  7. 根据权利要求6所述的碳排放的监测系统,其特征在于,所述混合箱的混合进气口设有进气导向管,所述第一混合板朝向所述搅拌腔室的一侧设有回流导向筒,所述进气导向管设置在所述回流导向筒。
  8. 根据权利要求7所述的碳排放的监测系统,其特征在于,所述进气导向管为圆锥状,所述进气导向管的内壁设有内螺旋板,所述进气导向管的外壁设有外螺旋板,所述内螺旋板与所述外螺旋板的旋转方向相反。
  9. 根据权利要求6所述的碳排放的监测系统,其特征在于,所述排放腔室设有锥形网,所述锥形网底部的锥头与所述第三混合板连接,以采集若干个所述第三导向口排放的混合气体。
  10. 根据权利要求2-5中任意一项所述的碳排放的监测系统,其特征在于,还包括流量计、废气处理器和废气排放管,所述缓压箱的一端与所述流量计、废气处理器和废气排放管依次连接,所述缓压箱设有测温计。
PCT/CN2022/112244 2021-10-29 2022-08-12 一种碳排放的监测系统 WO2023071413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111271648.9A CN114137154B (zh) 2021-10-29 2021-10-29 一种碳排放的监测系统
CN202111271648.9 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071413A1 true WO2023071413A1 (zh) 2023-05-04

Family

ID=80394964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112244 WO2023071413A1 (zh) 2021-10-29 2022-08-12 一种碳排放的监测系统

Country Status (2)

Country Link
CN (1) CN114137154B (zh)
WO (1) WO2023071413A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117630297A (zh) * 2023-12-04 2024-03-01 安徽建工三建集团有限公司 一种建筑工程建造碳排放监测设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137154B (zh) * 2021-10-29 2024-02-09 广东邦普循环科技有限公司 一种碳排放的监测系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288204A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 排ガス除害装置及びその破過検知方法
KR20130031749A (ko) * 2011-09-21 2013-03-29 동아대학교 산학협력단 탄소배출량을 기반으로 한 차량의 탄소가스 모니터링 시스템 및 장치
CN103585726A (zh) * 2013-10-25 2014-02-19 中国矿业大学 一种用于矿井防灭火的泡沫凝胶制备装置
CN105194941A (zh) * 2015-10-15 2015-12-30 苏州韵蓝环保科技有限公司 结果可控有机废气催化燃烧处理装置
CN106014573A (zh) * 2016-06-28 2016-10-12 芜湖澳奔玛汽车部件有限公司 一种汽车尾气净化装置
CN108246045A (zh) * 2018-01-25 2018-07-06 杭州润信科技有限公司 集装箱式有机废气吸附净化-催化燃烧再生撬装装置
CN207680207U (zh) * 2017-11-07 2018-08-03 任荣 一种高效节能环保有机废气处理系统
CN109406674A (zh) * 2018-11-29 2019-03-01 江苏永安化工有限公司 一种流动相混合器、液相色谱分析仪以及二甲戊灵杂质分析方法
CN109882871A (zh) * 2019-01-29 2019-06-14 维珂瑞(北京)环境科技有限公司 一种高浓度有机废气处理系统
CN110314476A (zh) * 2019-07-09 2019-10-11 江苏中海华核环保有限公司 核废物焚烧处理的废气处理设备
CN110594759A (zh) * 2018-06-12 2019-12-20 通用电气公司 废气处理系统以及处理方法
CN209819561U (zh) * 2019-03-18 2019-12-20 青岛天雅环保科技设备有限公司 有机废气蓄热式催化燃烧设备
CN112628770A (zh) * 2020-11-30 2021-04-09 苏州市中天新工业技术有限公司 一种rto废气高效去除系统及去除方法
CN114137154A (zh) * 2021-10-29 2022-03-04 广东邦普循环科技有限公司 一种碳排放的监测系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0823362D0 (en) * 2008-12-22 2009-01-28 Morgan Everett Ltd Processing of off-gas from waste treatment
CN101935116B (zh) * 2010-07-22 2011-11-09 北京交通大学 一种难降解有机废水的处理方法、光催化反应器及微孔静态管道混合器
CN208365552U (zh) * 2018-04-26 2019-01-11 江苏瑞德斯环保科技有限公司 一种乏氧高浓度voc处理系统
CN109224848A (zh) * 2018-10-26 2019-01-18 广东贝尤安新材料科技有限公司 一种废气处理装置
CN109432943A (zh) * 2018-12-22 2019-03-08 江嗣中 连续型有机废气催化净化装置及其运行方法
CN111744382B (zh) * 2019-03-29 2023-01-03 中石化广州工程有限公司 气液两相流分配器与气液两相流分配方法
CN109894001A (zh) * 2019-04-21 2019-06-18 周封 立式多层组合uv光解氧化循环有机废气处理系统
CN212565820U (zh) * 2020-07-08 2021-02-19 苏州灿圣环保科技有限公司 一种基于催化燃烧反应的工业有机废气处理设备
CN214020109U (zh) * 2020-09-29 2021-08-24 天津市西青区富增环保设备有限公司 一种有机废气催化氧化装置
CN112082168A (zh) * 2020-10-10 2020-12-15 中山市智明节能环保科技有限公司 一种有机废气治理装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288204A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 排ガス除害装置及びその破過検知方法
KR20130031749A (ko) * 2011-09-21 2013-03-29 동아대학교 산학협력단 탄소배출량을 기반으로 한 차량의 탄소가스 모니터링 시스템 및 장치
CN103585726A (zh) * 2013-10-25 2014-02-19 中国矿业大学 一种用于矿井防灭火的泡沫凝胶制备装置
CN105194941A (zh) * 2015-10-15 2015-12-30 苏州韵蓝环保科技有限公司 结果可控有机废气催化燃烧处理装置
CN106014573A (zh) * 2016-06-28 2016-10-12 芜湖澳奔玛汽车部件有限公司 一种汽车尾气净化装置
CN207680207U (zh) * 2017-11-07 2018-08-03 任荣 一种高效节能环保有机废气处理系统
CN108246045A (zh) * 2018-01-25 2018-07-06 杭州润信科技有限公司 集装箱式有机废气吸附净化-催化燃烧再生撬装装置
CN110594759A (zh) * 2018-06-12 2019-12-20 通用电气公司 废气处理系统以及处理方法
CN109406674A (zh) * 2018-11-29 2019-03-01 江苏永安化工有限公司 一种流动相混合器、液相色谱分析仪以及二甲戊灵杂质分析方法
CN109882871A (zh) * 2019-01-29 2019-06-14 维珂瑞(北京)环境科技有限公司 一种高浓度有机废气处理系统
CN209819561U (zh) * 2019-03-18 2019-12-20 青岛天雅环保科技设备有限公司 有机废气蓄热式催化燃烧设备
CN110314476A (zh) * 2019-07-09 2019-10-11 江苏中海华核环保有限公司 核废物焚烧处理的废气处理设备
CN112628770A (zh) * 2020-11-30 2021-04-09 苏州市中天新工业技术有限公司 一种rto废气高效去除系统及去除方法
CN114137154A (zh) * 2021-10-29 2022-03-04 广东邦普循环科技有限公司 一种碳排放的监测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117630297A (zh) * 2023-12-04 2024-03-01 安徽建工三建集团有限公司 一种建筑工程建造碳排放监测设备

Also Published As

Publication number Publication date
CN114137154A (zh) 2022-03-04
CN114137154B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2023071413A1 (zh) 一种碳排放的监测系统
CN202141562U (zh) 燃煤锅炉空气预热器漏风在线监测装置
CN206399778U (zh) 光散射法大气颗粒物检测设备及其鞘气气路
CN207007705U (zh) 一种用于船舶尾气脱硫装置的烟气检测装置
CN206020262U (zh) 一种cems烟气连续在线监测系统
CN111982611B (zh) 烟气中氨在线检测装置及检测方法
CN103487294A (zh) 动压平衡型等速烟尘采样管
CN205538547U (zh) 一种发动机排气部分流颗粒物测量装置
CN108014610A (zh) 氨法脱硫工艺及其脱硫装置
CN214233547U (zh) 一种具有宽配气浓度和高准确度的动态配气系统
CN1699996A (zh) 一种液体、气体燃料燃烧完全度和燃气流量的确定方法
CN207036795U (zh) 一种scr烟气脱硝反应器断面分区烟气采样装置
CN202039929U (zh) 一种改进的非道路点燃式发动机排气污染物测量装置
CN111085106A (zh) 一种二氧化碳吸收反应器及其在线监测装置
CN204177640U (zh) 一种防爆大气采样仪器
CN116381135A (zh) 一种污染排放监测系统
WO2019157790A1 (zh) 基于多传感器信息融合的cod检测方法和装置
CN205643155U (zh) 一种脱销出口烟道中氨逃逸量的检测装置
CN212808040U (zh) 利用连续进样分析技术的烟气中氨在线检测装置
CN210347252U (zh) 一种烟尘烟气大气检测装置
CN210775377U (zh) 一种烟气取样分析及校准系统
CN209280672U (zh) 一种scr脱硝催化剂全尺寸性能评价系统
CN214703221U (zh) 粉尘气体采样稀释装置
CN101368884A (zh) 适用于空气污染监测仪器在线校准的样品采送装置及方法
CN110579379A (zh) 一种机动车尾气柔性采样系统及采样方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885313

Country of ref document: EP

Kind code of ref document: A1