WO2023071325A1 - Method for determining configuration parameter of optical transmission apparatus, optical transmission apparatus, and communication device - Google Patents

Method for determining configuration parameter of optical transmission apparatus, optical transmission apparatus, and communication device Download PDF

Info

Publication number
WO2023071325A1
WO2023071325A1 PCT/CN2022/107511 CN2022107511W WO2023071325A1 WO 2023071325 A1 WO2023071325 A1 WO 2023071325A1 CN 2022107511 W CN2022107511 W CN 2022107511W WO 2023071325 A1 WO2023071325 A1 WO 2023071325A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission device
parameter
optical transmission
target
parameter value
Prior art date
Application number
PCT/CN2022/107511
Other languages
French (fr)
Chinese (zh)
Inventor
田雨
陈健
林友熙
尹纯静
高士民
郑建宇
谭健思
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071325A1 publication Critical patent/WO2023071325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the embodiments of the present application relate to the technical field of optical networks, and in particular to a method for determining configuration parameters of an optical transmission device, an optical transmission device, and communication equipment.
  • the configuration parameters of the optical module exemplarily include configuration parameters of a transmitter and a receiver in the optical module.
  • the manufacturer calibrates the optimal configuration parameters of the optical module based on a closed-loop test, and then writes the optimal configuration parameters into the registers of the optical module for subsequent use of the optical module.
  • the closed-loop test refers to: After inputting the optical signal output by the transmitter of the optical module to other equipment, the optical signal output by other equipment is then input to the receiver of the optical module, and then adjust the configuration parameters of the transmitter or receiver to Test the quality of the optical signal transmitted between the transmitter and receiver under different configuration parameters, so as to calibrate the optimal configuration parameters of the transmitter and receiver of the optical module.
  • the optical module After the optical module operates based on the above calibrated optimal configuration parameters, it is usually found that the quality of the optical signal output or received by the optical module is not optimal.
  • the present application provides a method for determining configuration parameters of an optical transmission device, an optical transmission device and communication equipment, which can improve the performance of an optical network system.
  • the technical solution is as follows:
  • a method for determining configuration parameters of an optical transmission device in which method, the first optical transmission device obtains a scan result of a target parameter, and the scan result includes a plurality of scan parameter values and a plurality of scan parameter values respectively Corresponding signal quality, the signal quality corresponding to a scanning parameter value indicates the quality of the target optical signal when the value of the target parameter is the scanning parameter value of the first optical transmission device, the target optical signal is the first optical transmission device and the second optical transmission device
  • the optical signal transmitted between the devices; the first optical transmission device determines the preferred parameter value of the target parameter based on the scanning result of the target parameter, and the quality of the target optical signal when the target parameter is the preferred parameter value by the first optical transmission device is optimal.
  • the quality of the target optical signal when the target parameter takes the value of other parameters in the first optical transmission device.
  • Preferred parameter values for target parameters can be obtained based on the present application.
  • the target parameter of the optical transmission device can be configured according to the corresponding optimal parameter value, so as to realize the adjustment of the performance of the optical transmission device. That is to say, the present application provides an automatic performance adjustment mechanism of the configuration parameters of the optical transmission device, which can realize the automatic performance adjustment of the optical network system, so as to improve the reliability of the operation of the optical network system. And this application can save the cumbersome links of factory calibration, saving manpower and material resources.
  • the signal quality of the target optical signal when the N target parameters are respectively corresponding to the corresponding optimal parameter values by the first optical transmission device is taken as Optimal signal quality, N is greater than or equal to 1; if the optimal signal quality is better than the signal quality threshold, then based on the scanning results of each target parameter in the N target parameters, determine the debugging parameter values of M target parameters in the N target parameters, and M is less than is equal to N; wherein, when the first optical transmission device takes the value of each target parameter in the M target parameters as the corresponding debugging parameter value, the signal quality of the target optical signal is better than the signal quality threshold, and the power of the first optical transmission device The power consumption of the first optical transmission device is lower than the power consumption of the first optical transmission device when each of the N target parameters takes a value corresponding to a preferred parameter value.
  • each target parameter may be further adjusted in combination with power consumption, so as to achieve a balance between performance and power consumption.
  • the implementation method of determining the debugging parameter values of the M target parameters among the N target parameters is: for any target parameter among the N target parameters, according to reducing the first
  • the principle of the power consumption of an optical transmission device is to adjust the value of any target parameter from the initial parameter value to the first step length to obtain the first parameter value, and the initial parameter value is the preferred parameter value of any target parameter; determine the first light
  • the transmission device obtains the quality of the target optical signal when any target parameter is the first parameter value, and obtains the signal quality corresponding to the first parameter value; if the signal quality corresponding to the first parameter value is better than the signal quality threshold, then the first parameter Value is used as the initial parameter value, return execution
  • the corresponding parameter value when the signal quality is slightly higher than the signal quality threshold is found, and this parameter value is used as the debugging parameter value. Therefore, while the performance of the first optical transmission device satisfies the performance threshold, power consumption is kept at a minimum.
  • the implementation method of obtaining the scanning result of the target parameter is: after setting the value of the target parameter of the first optical transmission device to After any scan parameter value among multiple scan parameter values, the first optical transmission device sends a signal quality request message to the second optical transmission device; the first optical transmission device receives the signal quality response message sent by the second optical transmission device, and the signal The quality response message carries the signal quality of the target optical signal collected by the second optical transmission device, and the signal quality carried in the signal quality response message is used as the signal quality corresponding to any scanning parameter value.
  • the first optical transmission device needs to perform information interaction with the second optical transmission device to obtain the signal quality corresponding to a certain scanning parameter value. That is, through the information interaction between the first optical transmission device and the second optical transmission device, the first optical transmission device can obtain the information collected by the opposite end.
  • the implementation method of obtaining the scanning result of the target parameter is: taking the value of the target parameter of the first optical transmission device After being set to any scanning parameter value among the multiple scanning parameter values, the first optical transmission device collects the signal quality of the target optical signal received by the first optical transmission device, and uses the collected signal quality as a value corresponding to any scanning parameter value. signal quality.
  • the first optical transmission device can obtain the signal quality corresponding to a certain scanning parameter value by analyzing the received optical signal at the local end. The efficiency of determining the signal quality corresponding to the scanning parameter value by the first optical transmission device is improved.
  • the target parameter includes a compensation coefficient used when the first optical transmission device performs a compensation operation on the target optical signal.
  • the first optical transmission device Based on the scanning results, after determining the preferred parameter value of the target parameter, the first optical transmission device sends the preferred parameter value of the compensation coefficient to the second optical transmission device, so that the second optical transmission device based on the preferred parameter value of the compensation coefficient The second optical transmission device compensates the target optical signal transmitted by the first optical transmission device.
  • the target parameter is the compensation coefficient used when the first optical transmission device performs compensation operations on the target optical signal
  • the first optical transmission device can also send the optimal parameter value of the compensation coefficient to the second optical transmission device, so that the second optical transmission device
  • the transmission device compensates the target optical signal transmitted by the second optical transmission device to the first optical transmission device based on the preferred parameter value of the compensation coefficient. That is, the first optical transmission device can also implement the adjustment of configuration parameters of the opposite end.
  • the first optical transmission device receives the preferred parameter value of the compensation coefficient sent by the second optical transmission device; Compensating the target optical signal transmitted by the second optical transmission device;
  • the implementation manner for the first optical transmission device to obtain the scanning result of the target parameter is: the first optical transmission device obtains the scanning result of the filtering parameter and/or the clipping parameter of the first optical transmission device;
  • the filtering parameter is the parameter used when the first optical transmission device performs the filtering operation on the compensated target optical signal
  • the clipping parameter is the parameter used when the first optical transmission device performs the clipping operation on the compensated target optical signal. parameter.
  • the first optical transmission device determines the target transmitted by the first optical transmission device to the second optical transmission device based on the preferred parameter value of the compensation coefficient Optical signal is compensated.
  • the first optical transmission device may continue to adjust parameters used for filtering and/or clipping operations on the transmitted optical signal on this basis. The application flexibility of the present application is further improved.
  • the first optical transmission device obtains the scan result of the target parameter in the following manner: the first optical transmission device obtains multiple scan parameter values corresponding to the target parameter; for each scan in the multiple scan parameter values corresponding to the target parameter parameter value, the first optical transmission device determines the signal quality corresponding to each scanning parameter value.
  • the method for the first optical transmission device to obtain the scan result of the target parameter is: the first optical transmission device uses the current value of the target parameter as the first scan parameter value, and determines the signal quality corresponding to the first scan parameter value; Adjust the current value according to the first scan step to obtain the second scan parameter value, determine the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is better than the signal quality corresponding to the first scan parameter value , then continue to adjust the second scan parameter value according to the first scan step, until the third scan parameter value appears for the first time, and the signal quality corresponding to the third scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value.
  • the signal quality corresponding to the second scan parameter value After determining the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is lower than the signal quality corresponding to the first scan parameter value, adjust the current value according to the second scan step size to obtain the fourth scan Parameter value, determine the signal quality corresponding to the fourth scan parameter value, if the signal quality corresponding to the fourth scan parameter value is better than the signal quality corresponding to the first scan parameter value, continue to adjust the fourth scan parameter value according to the second scan step , until the fifth scanning parameter value appears for the first time, the signal quality corresponding to the fifth scanning parameter value is lower than the signal quality corresponding to the previous adjusted scanning parameter value; wherein, the direction of the first scanning step and the second scanning step are opposite .
  • these multiple scan parameter values can be acquired in advance, and can also be obtained by scanning based on the current values, which improves the application flexibility of this application.
  • the first optical transmission device obtains the scanning result of the target parameter in the following manner: the first optical transmission device obtains the scanning result of the target parameter according to a parameter scanning instruction, and the parameter scanning instruction comes from a network device connected to the first optical transmission device, Or the parameter scanning instruction comes from the control unit of the first optical transmission device.
  • the first optical transmission device may respond to the parameter scanning instruction to start scanning the target parameters in various scenarios, which improves the application flexibility of the present application.
  • an optical transmission device in a second aspect, includes at least one module, and the at least one module is used to implement the method for determining configuration parameters of the optical transmission device provided in the first aspect and various implementations thereof.
  • a communication device in a third aspect, includes a processor and a memory, and the memory is used to store and support the communication device to execute the method for determining configuration parameters of an optical transmission device provided in the first aspect and its various implementations program, and store the data involved in implementing the method for determining the configuration parameters of the optical transmission device provided by the above first aspect and various implementations thereof.
  • the processor is configured to execute programs stored in the memory.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium.
  • the computer-readable storage medium When the computer-readable storage medium is run on a computer, it causes the computer to perform the determination described in the above-mentioned first aspect and various implementations thereof.
  • a method for configuring parameters of an optical transmission device When the computer-readable storage medium is run on a computer, it causes the computer to perform the determination described in the above-mentioned first aspect and various implementations thereof.
  • a fifth aspect provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the method for determining configuration parameters of an optical transmission device described in the first aspect above.
  • FIG. 1 is a schematic diagram of the architecture of an optical network system provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for determining configuration parameters of an optical transmission device provided in an embodiment of the present application
  • FIG. 3 is a schematic flow diagram of an online automatic adjustment of configuration parameters provided by an embodiment of the present application.
  • FIG. 4 is a flow chart of a method for debugging parameters provided in an embodiment of the present application.
  • FIG. 5 is a flow chart of a method for determining configuration parameters of an optical module provided in an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of another optical network system provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the purpose of the operation and maintenance of the optical network system is to optimize the performance of the optical network system.
  • a major factor affecting the performance of the optical network system is the parameter configuration of the transmitter/receiver in the optical module. These parameters include the transmitted optical power (that is, the output optical power), eye diagram, extinction ratio, bit Bit error rate (bit error ratio, BER), receiving sensitivity, etc. Therefore, in the operation and maintenance process, it is necessary to adjust the parameters of the optical module to improve the performance of the optical network system.
  • the manufacturer can go through multiple commissioning steps to confirm the optimal configuration parameters of the optical module, and then write the optimal configuration parameters into the register of the optical module, and the subsequent optical module works
  • the best configuration parameters can be used directly in the process.
  • Various devices are required in the above commissioning steps, including optical attenuators, optical power meters, eye diagram meters, bit error meters, and so on.
  • the commissioning process is complicated and requires personnel with commissioning experience, which consumes a lot of manpower and material resources.
  • the performance of the optical network system is usually not optimal after the optimal configuration parameters are directly used in the working process of the optical module.
  • an embodiment of the present application provides a method for determining configuration parameters of an optical transmission device, and the method can optimize parameters in an optical module to improve performance of an optical network system.
  • FIG. 1 is a schematic structural diagram of an optical network system provided by an embodiment of the present application.
  • the optical network system 10 includes a first communication device 100 and a second communication device 200 .
  • the first communication device 100 includes a first optical transmission device 101
  • the second communication device 200 includes a second optical transmission device 201 .
  • the first optical transmission device 101 includes a first transmitter and a first receiver
  • the second optical transmission device 201 includes a second transmitter and a second receiver.
  • the first transmitter and the second receiver are connected through an optical fiber link, and the first transmitter is used to transmit an optical signal to the second receiver.
  • the first receiver and the second transmitter are also connected through an optical fiber link, and the second transmitter is used to transmit optical signals to the first receiver.
  • the first communication device 100 also includes a first network device (not shown in FIG. 1 ) connected to the first optical transmission device 101, and the second communication device 200 also includes a second network device connected to the second optical transmission device 201. equipment (not shown in Figure 1).
  • the first communication device 100 communicates with the management device through the first network device.
  • the second communication device 200 communicates with the management device through the second network device.
  • the first network device and the second network device may be data forwarding devices such as switches.
  • the first optical transmission device 101 is a first optical module
  • the second optical transmission device 201 is a second optical module
  • the network device is configured with a port, and the optical module can be inserted into the port to realize the connection between the optical module and the network device.
  • the first network device and the first optical transmission device 101 are integrated on one physical device, and the second network device and the second optical transmission device 201 are also integrated on another physical device.
  • the first optical The transmission device 101 or the second optical transmission device 201 is a device on a physical device for sending or receiving an optical signal.
  • the first optical transmission device 101 is deployed on the first network device
  • the second optical transmission device 201 is deployed on the second network device.
  • the optical network system provided by the embodiment of the present application can be applied to a scenario where an optical module is inserted into a network device, and can also be applied to a scenario where an optical transmission device is integrated into a network device.
  • the first optical transmission device 101 further includes a return channel transmitting unit connected to the first transmitter, and the return channel transmitting unit may also be called an auxiliary channel modulation unit.
  • the return channel transmitting unit is used for modulating the non-service signal into the service signal, and then sending the modulated signal to the second receiver through the first transmitter and the optical fiber link.
  • the non-service signal in this embodiment of the present application includes data other than service data sent by any first optical transmission device 101 to the second optical transmission device 201 .
  • data other than service data sent by any first optical transmission device 101 to the second optical transmission device 201 includes parameter commissioning instructions, system performance parameters, control signals, and so on.
  • the first optical transmission device 101 further includes a return channel detection unit connected to the first receiver, and the return channel detection unit may also be called an auxiliary channel demodulation unit.
  • the return channel detection unit is used to demodulate the non-service signal sent to the first optical transmission device 101 by the second optical transmission device 201 from the optical signal received by the first receiver.
  • the auxiliary channel modulation unit and the auxiliary channel demodulation unit may be the same unit (ie, the auxiliary channel modulation/demodulation unit) or different units.
  • a return channel is constructed between the first optical transmission device 101 and the second optical transmission device 201, and the return channel is used to transmit the aforementioned non-service signals.
  • This return channel is also referred to as an auxiliary channel.
  • the return channel is a non-service signal transmission channel other than the service channel constructed between the receiver and the transmitter.
  • the return channel is a logical channel, which can be physically based on the original optical fiber link Road to achieve.
  • different optical transmission devices can transmit non-service signals such as control information and configuration parameters, so as to implement the method provided by the embodiment of the present application.
  • the first optical transmission device 101 further includes an optical signal quality calculation/storage unit connected to the return channel detection unit.
  • the optical signal quality calculation/storage unit is used to calculate and store the signal quality of the received optical signal, and the signal quality of the optical signal can represent the performance of the optical network system.
  • Signal quality illustratively includes BER or signal-to-noise ratio (SNR).
  • the first optical transmission device 101 further includes a data analysis unit connected to the optical signal quality calculation/storage unit, and a parameter adjustment control unit connected to the data analysis unit.
  • the data analysis unit is used to analyze and determine the optimal configuration parameter according to the signal quality of the optical signal, and input the preferred configuration parameter to the parameter adjustment control unit, so that the parameter adjustment control unit adjusts the first optical transmission device 101 based on the optimal configuration parameter.
  • the parameter includes, for example, a bias voltage or a bias current of the transmitter, or a gain of the transmitter, or a bias voltage of the receiver, a compensation coefficient of the receiver, output optical power, and the like.
  • the parameter adjustment control unit may be implemented by a micro control unit (micro control unit, MCU) or a digital signal processor (digital signal processor, DSP) in the first optical transmission device.
  • the parameter adjustment control unit may also be implemented by a management device or a network device, and in this case, the parameter adjustment control unit is integrated on the management device or the network device.
  • each unit in the second optical transmission device 201 in FIG. 1 may refer to the functions of each unit in the first optical transmission device 101 , and will not be described in detail here.
  • the parameter adjustment control unit, the optical signal quality calculation/storage unit, and the data analysis unit may be collectively referred to as a processing unit. That is, the processing unit is used to realize the functions of the above parameter adjustment control unit, optical signal quality calculation/storage unit, and data analysis unit.
  • Fig. 2 is a flow chart of a method for determining configuration parameters of an optical transmission device provided by an embodiment of the present application. As shown in Figure 2, the method includes the following steps.
  • Step 201 The first optical transmission device obtains the scan result of the target parameter, the scan result includes multiple scan parameter values and the signal quality corresponding to the multiple scan parameter values, and the signal quality corresponding to one scan parameter value indicates the first optical transmission device
  • the quality of the target optical signal is the optical signal transmitted between the first optical transmission device and the second optical transmission device.
  • the signal quality can be BER or SNR.
  • the embodiment shown in FIG. 2 is described by taking determining the optimal configuration of target parameters as an example.
  • the target parameter may be any parameter used in the working process of the first optical transmission device.
  • the target parameter may be the bias voltage or bias current of the transmitter of the first optical transmission device, or the gain of the transmitter of the first optical transmission device, or the bias voltage of the receiver of the first optical transmission device , or the compensation coefficient used when the receiver of the first optical transmission device performs a compensation operation on the received optical signal, and the like.
  • the embodiment of the present application does not limit which parameters in the first optical transmission device are optimized, that is, does not limit which specific target parameters are.
  • the bias voltage or bias current of the transmitter is the bias voltage or bias current of the laser in the transmitter.
  • the gain of the transmitter is the amplification factor of the amplifier circuit in the transmitter.
  • the bias voltage of the receiver is the bias voltage of the photodetector in the receiver.
  • the compensation coefficient is a correlation coefficient of a compensation algorithm used by the receiver when performing a compensation operation for the received optical signal. The compensation coefficient will be described in detail later, and will not be expanded here.
  • the first optical transmission device can obtain the scanning result of the target parameter according to the parameter scanning instruction, the parameter scanning instruction comes from the network device connected to the first optical transmission device, or the parameter scanning instruction comes from the control unit of the first optical transmission device . That is, the first optical transmission device starts scanning the target parameter in response to the parameter scanning instruction.
  • the control unit may adjust the control unit for the parameters in FIG. 1 .
  • the control unit detects a power-on signal and then generates the parameter scanning instruction to trigger step 201 .
  • the network equipment connected to the first optical transmission device detects that the first optical transmission device is powered on, and then sends the parameter scan command to the first optical transmission device.
  • the management device sends the parameter scanning instruction to the first optical transmission device in response to the operations of the operation and maintenance personnel. That is, the first optical transmission device may respond to the parameter scanning instruction to start scanning the target parameter in various scenarios.
  • step 201 may be implemented in the following two manners.
  • the first implementation mode the first optical transmission device acquires multiple scanning parameter values corresponding to the target parameter; for each scanning parameter value in the multiple scanning parameter values corresponding to the target parameter, the first optical transmission device determines each scanning parameter value Corresponding signal quality.
  • a plurality of scan parameter values may be preset.
  • the target parameter is a compensation coefficient
  • multiple coefficient values of the compensation coefficient may be preset, and the multiple coefficient values are multiple scan parameter values corresponding to the compensation coefficient.
  • multiple scan parameter values may also be obtained by sampling a preset range of numerical values.
  • the implementation process for the first optical transmission device to obtain multiple scanning parameter values corresponding to the target parameter may be: the first optical transmission device obtains the scanning value range and the first scanning step of the target parameter; Scanning the value range and the first scanning step, the first optical transmission device determines a plurality of scanning parameter values corresponding to the target parameter.
  • the target parameter is the bias voltage of the receiver, assuming that the range of the scan value is 1 to 4 volts (V), and the scan step size is 0.2, there are 16 multiple scan parameter values corresponding to the target parameter.
  • the scanning value range of the target parameter may be determined based on the performance requirement of the first optical transmission device. For example, if the target parameter is the bias voltage of the receiver, the scanning value range of the bias voltage can be determined based on the receiver responsivity requirement, wherein the receiver responsivity requirement refers to the preset receiver response to the received The required range of the responsivity of the optical signal. For another example, if the target parameter is the bias current of the transmitter, the scanning value range of the bias current may be determined based on the output optical power requirement of the transmitter.
  • a second implementation manner start scanning with the current value of the first optical transmission device to obtain a scanning result.
  • This implementation may be referred to as online automatic adjustment of configuration parameters.
  • the online automatic adjustment of configuration parameters may be implemented as follows: the first optical transmission device uses the current value of the target parameter as the first scan parameter value, and determines the signal quality corresponding to the first scan parameter value; according to the first Adjust the current value of the scan step to obtain the second scan parameter value, determine the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is better than the signal quality corresponding to the first scan parameter value, continue The second scan parameter value is adjusted according to the first scan step until the third scan parameter value appears for the first time, and the signal quality corresponding to the third scan parameter value is lower than the signal quality corresponding to the previously adjusted scan parameter value. That is, if the signal quality becomes better after adjusting the parameter value according to the first scan step, continue to adjust the parameter value in the same way until the signal quality begins to deteriorate, so that a parameter value with the best signal quality can be determined.
  • the first scanning step has a direction.
  • adjusting the parameter value each time refers to increasing the first scan step on the basis of the original parameter value.
  • adjusting the parameter value each time refers to subtracting the absolute value of the first scan step from the original parameter value.
  • the target parameter is the bias voltage of the receiver, and the current parameter value of the bias voltage is 2V.
  • the first scan step size is 0.1
  • the first scan parameter value is (2+0.1)V.
  • the first scan parameter value is (2-0.1)V.
  • the signal quality corresponding to the second scan parameter value is lower than the signal quality corresponding to the first scan parameter value, adjust the current value of the target parameter according to the second scan step to obtain the fourth scan parameter value, and determine the fourth scan
  • the signal quality corresponding to the parameter value if the signal quality corresponding to the fourth scan parameter value is better than the signal quality corresponding to the first scan parameter value, continue to adjust the fourth scan parameter value according to the second scan step until the fifth scan occurs for the first time parameter value, the signal quality corresponding to the fifth scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value.
  • the directions of the first scanning step and the second scanning step are opposite.
  • the target parameter is the bias voltage of the receiver, and the current parameter value of the bias voltage is 2V.
  • the adjusted first scan parameter value is (2+0.1)V.
  • the signal quality corresponding to the first scanning parameter value becomes worse.
  • the current value is readjusted according to the second scanning step size -0.1, and the adjusted fourth scanning parameter value is (2-0.1)V.
  • FIG. 3 is a schematic flowchart of an online automatic adjustment of configuration parameters provided by an embodiment of the present application.
  • the target parameter is the bias voltage of the receiver.
  • the current bias voltage of the receiver is recorded as Vpd0, and BER0 or SRN0 corresponding to Vpd0.
  • the bias voltage is reduced by 0.1V on the basis of Vpd0 (that is, the first scan step is -0.1) to obtain Vpd1, and the BER1 or SRN1 corresponding to Vpd1 is recorded.
  • BER1>BER0 or SNR1 ⁇ SNR0 it indicates that the signal quality after adjusting the parameter value according to the first scan step size -0.1 is degraded, then adjust Vpd0 again according to the second scan step size 0.1, that is, the bias voltage is at Add 0.1V on the basis of Vpd0 to get Vpd2, and record the BER2 or SRN2 corresponding to Vpd2.
  • BER2 ⁇ BER0/or SNR2>SNR0 it means that the signal quality after adjusting the parameter value according to the second scanning step becomes better, then continue to adjust the bias voltage according to the second scanning step of 0.1 until the signal quality begins to deteriorate. In this way, multiple signal qualities respectively corresponding to multiple scan parameter values can be obtained.
  • the target parameter can be the parameter used by the first optical transmission device to process the transmitted optical signal, or the parameter used by the first optical transmission device to process the received optical signal, therefore, any scan of the target parameter
  • the way to obtain the signal quality corresponding to the parameter value can be described respectively through the following two situations.
  • the target parameter is a parameter used by the first optical transmission device when processing the transmitted optical signal.
  • the implementation method of obtaining the signal quality corresponding to any scanning parameter value of the target parameter may be: the target parameter of the first optical transmission device After the value is set to any scan parameter value among the multiple scan parameter values, the first optical transmission device sends a signal quality request message to the second optical transmission device; the first optical transmission device receives the signal quality response sent by the second optical transmission device The signal quality response message carries the signal quality of the target optical signal collected by the second optical transmission device, and the first optical transmission device uses the signal quality carried in the signal quality response message as the signal quality corresponding to the scanning parameter value.
  • the first optical transmission device needs to perform information interaction with the second optical transmission device to obtain the signal quality corresponding to a certain scanning parameter value.
  • the second optical transmission device collects the signal quality, it can modulate the signal quality on the service signal through the return channel transmitting unit in FIG. 1, and then send the modulated signal to the first optical transmission device.
  • a return channel detection unit of an optical transmission device demodulates the signal received by the receiver, and then obtains the signal quality.
  • the target parameter is a parameter used by the first optical transmission device when processing the received optical signal.
  • the implementation method of obtaining the signal quality corresponding to any scanning parameter value of the target parameter may be: After the value of the parameter is set to any scan parameter value among the multiple scan parameter values, the first optical transmission device collects the signal quality of the target optical signal received by the first optical transmission device, and uses the collected signal quality as the The signal quality corresponding to the parameter value.
  • the first optical transmission device can obtain the signal quality corresponding to a certain scanning parameter value by analyzing the optical signal received at the local end.
  • the signal quality refers to: the optical signal received by the receiver The quality of the signal after the signal is processed by oDSP.
  • the receiver of the first optical transmission device may compensate various channel impairments of the optical network system through the oDSP, and this operation is a compensation operation.
  • the compensation operation can be used for in-phase and quadrature components (IQ) imbalance compensation, clock recovery, dispersion compensation, frequency domain equalization, time domain equalization, polarization demultiplexing and dynamic equalization, frequency offset Estimation and carrier phase recovery, etc.
  • IQ in-phase and quadrature components
  • the tap coefficient of the FEE filter used in the FFE algorithm is the compensation coefficient, and the tap coefficient is actually a set of coefficients, so it is also
  • the tap coefficients may be referred to as a set of FEE coefficients.
  • the obtained scan results of the target parameters include: multiple sets of FEE coefficient values corresponding to this set of FFE coefficients.
  • Step 202 The first optical transmission device determines the optimal parameter value of the target parameter based on the scanning result of the target parameter.
  • the quality of the target optical signal of the first optical transmission device is better than that of the first optical transmission device.
  • the first optical transmission device may determine the preferred parameter value of the target parameter based on the scanning result of the target parameter in the following manner: from multiple scanning parameter values, determine the scanning parameter value with the best signal quality, and set The determined scanning parameter value is used as the preferred parameter value of the target parameter.
  • the first optical transmission device may adjust a certain parameter to obtain an optimal configuration parameter value (ie, a preferred parameter value) of the parameter.
  • the first optical transmission device After the first optical transmission device obtains the scanning result of the target parameter, it can also determine the corresponding relationship between the parameter value of the target parameter and the signal quality according to the scanning result, and the operation and maintenance personnel can analyze the target parameter based on the corresponding relationship. Take the value to configure.
  • the target parameter is the compensation coefficient used when the first optical transmission device performs a compensation operation on the target optical signal
  • the first optical transmission device can also send the optimal parameter value of the compensation coefficient to The second optical transmission device, so that the second optical transmission device compensates the target optical signal transmitted by the second optical transmission device to the first optical transmission device based on the preferred parameter value of the compensation coefficient.
  • the receiving end (that is, the first optical transmission device) will first converge a set of FFE coefficients corresponding to the FFE algorithm through the received partial data (that is, determine the optimal parameter value of the FEE coefficient ), the purpose of convergence is to achieve stability for the FFE algorithm. Then the receiving end transmits the FFE coefficients to the transmitting end through the return channel, and the transmitting end configures the set of FEE coefficients to preprocess the optical signal at the transmitting end.
  • the receiving end after determining the optimal parameter value adjustment of the FEE coefficient, the receiving end will obtain a set of data containing 15 coefficients, and these 15 coefficients are the optimal parameter value of the FFE coefficient. After the set of data is transmitted to the sending end, the sending end will convolve the signal to be sent with this set of coefficients (pre-complementing process), and then obtain the final signal to be sent.
  • the first optical transmission device is the transmitting end and the second optical transmission device is the receiving end
  • the second optical transmission device when the first optical transmission device receives the optimal parameter value of the compensation coefficient sent by the second optical transmission device, the second optical transmission device An optical transmission device compensates the target optical signal transmitted by the first optical transmission device to the second optical transmission device based on the preferred parameter value of the compensation coefficient.
  • the first optical transmission device may continue to adjust parameters used for filtering and/or clipping operations on the transmitted optical signal on this basis.
  • the realization method for the first optical transmission device to obtain the scanning result of the target parameter may also include: the first optical transmission device evaluates the target optical signal transmitted by the first optical transmission device to the second optical transmission device based on the optimal parameter value of the compensation coefficient After the compensation is performed, the first optical transmission device obtains the scanning result of the filtering parameters and/or clipping parameters of the first optical transmission device; wherein, the filtering parameters are obtained when the first optical transmission device performs a filtering operation on the compensated target optical signal.
  • the parameter used, the clipping parameter is a parameter used when the first optical transmission device performs a clipping operation on the compensated target optical signal.
  • the peak-to-average power ratio of the signal will increase, and the peak-to-average power ratio refers to the ratio of the peak power to the average The ratio of the power, so the signal can also be clipped.
  • the clipping operation refers to: assuming that the clipping threshold is 2, the data exceeding 2 in the signal will be clipped, and the data smaller than 2 will not be affected.
  • the filtering operation refers to filtering out some low-frequency parts of the signal through convolution processing.
  • the filtering operation and the aforementioned compensation operation are implemented together.
  • the FFE coefficient is convolved with [alpha 1 alpha]
  • the data after the convolution operation is used as the FEE coefficient required for the compensation operation.
  • the convolution operation is: perform convolution operation on the FFE coefficient with the set of numbers [0.2 1 0.2].
  • the optimal parameter value of alpha is obtained through scanning, and the scanning parameter value of alpha may be 0.1, 0.2, 0.3, etc.
  • the embodiment shown in FIG. 2 is described by taking the scanning result of determining a single target parameter as an example.
  • the aforementioned operations may be performed sequentially on the multiple target parameters to obtain the optimal parameter value of each target parameter.
  • the value of the target parameter for which the preferred parameter value has been determined may be set as the corresponding preferred parameter value.
  • the value of the target parameter for which the preferred parameter value has been determined may also be set as a preset parameter value. This embodiment of the present application does not limit it.
  • optimal parameter values of various target parameters can be obtained. After obtaining the optimal parameter value of each target parameter, each parameter of the optical transmission device can be configured according to the corresponding optimal parameter value, so as to realize the adjustment of the performance of the optical transmission device, that is, to make the optical transmission device operate at the optimal under performance.
  • the optical transmission device is an optical module
  • multiple commissioning steps are required to calibrate the optimal configuration parameters of the optical module at the factory, which consumes a lot of manpower and material resources.
  • changes in the environment, device aging, and different application scenarios will all lead to performance changes, making a set of fixed parameters calibrated at the factory unable to adapt to changing live network scenarios.
  • the embodiment of the present application provides an automatic performance adjustment mechanism, which can realize the automatic performance adjustment of the optical network system, save the cumbersome steps of factory calibration, and save manpower and material resources.
  • the optical module can be automatically optimized to the optimal performance to improve the reliability of the system operation.
  • each parameter may be further debugged in combination with power consumption, so as to achieve a balance between performance and power consumption.
  • Fig. 4 is a flow chart of a method for debugging parameters provided by an embodiment of the present application. As shown in Figure 4, the method includes the following steps.
  • Step 401 After obtaining the optimal parameter values corresponding to the N target parameters, use the signal quality of the target optical signal of the first optical transmission device when the values of the N target parameters are respectively the corresponding optimal parameter values as the optimal signal quality, where N is greater than is equal to 1.
  • the values of each target parameter in the first optical transmission device can be configured as corresponding optimal parameter values, and then The signal quality of the target optical signal in this state is obtained to obtain the optimal signal quality.
  • the first optical transmission device may obtain the optimal signal quality from the second optical transmission device, specifically For an implementation manner, reference may be made to step 201 in FIG. 2 , and the description will not be repeated here.
  • the first optical transmission device can obtain the optimal signal quality from the local end. Reference can be made to step 201 in FIG. 2 , which will not be repeated here.
  • Step 402 If the preferred signal quality is better than the signal quality threshold, determine the debugging parameter values of M target parameters among the N target parameters based on the scanning results of each target parameter among the N target parameters, and M is less than or equal to N.
  • the first optical transmission device when the first optical transmission device takes the value of each target parameter in the M target parameters as the corresponding debugging parameter value, the signal quality of the target optical signal is better than the signal quality threshold, and the power consumption of the first optical transmission device is low.
  • the preferred signal quality may refer to: the BER (that is, the preferred BER) or the SNR (that is, the preferred SNR) of the target optical signal of the first optical transmission device when the values of the N target parameters are respectively the corresponding preferred parameter values.
  • the preferred signal quality being better than the signal quality threshold may refer to: the preferred BER is less than the BER threshold, and/or the preferred SNR is greater than the SNR threshold.
  • the preferred signal quality is better than the signal quality threshold, it indicates that the current performance of the first optical transmission device is relatively good, and the performance of the first optical transmission device can be reduced in exchange for a reduction in power consumption of the first optical transmission device. That is, some performance is sacrificed in exchange for power consumption gains. Therefore, the value of each target parameter can be debugged on the basis of the optimal parameter value to obtain the corresponding debugging parameter value.
  • M may be equal to N, and at this time, all target parameters are debugged.
  • M may also be smaller than N, and at this time, some target parameters are debugged.
  • the implementation of step 402 may be: for any target parameter among the N target parameters, according to the principle of reducing the power consumption of the first optical transmission device, the value of the target parameter is adjusted from the initial parameter value
  • the first step is long, to obtain the first parameter value, the initial parameter value is the optimal parameter value of the target parameter; determine the quality of the target optical signal when the target parameter value of the first optical transmission device is the first parameter value, and obtain the second A parameter value corresponding to the signal quality. If the signal quality corresponding to the first parameter value is better than the signal quality threshold, then use the first parameter value as the initial parameter value, and return to execute.
  • the value of the target parameter is changed from the initial parameter
  • the value of the first parameter is adjusted until the signal quality corresponding to the obtained first parameter value is lower than the signal quality threshold, then the previously obtained first parameter value is used as the debugging parameter value of any target parameter.
  • a reference signal quality that is slightly greater than the signal quality threshold may also be preset. If the difference between the signal quality corresponding to the currently determined first parameter value and the reference signal quality is If the value is smaller than the reference value (that is, the signal quality corresponding to the first parameter value is relatively close to the reference signal quality), then the currently determined first parameter value is determined as the debugging parameter value.
  • optical modules In order to ensure the performance margin of the optical network system, or to cope with performance fluctuations caused by factors such as device aging and temperature changes, optical modules generally work at full capacity. For example: the optical module works at the highest output power, the oDSP algorithm in the optical module turns on the highest performance mode, etc., but this will cause a lot of waste of energy consumption of the optical module. In the context of the continuous expansion of the optical network system, the increase in energy consumption of a large number of optical modules will lead to a substantial increase in the energy consumption of the entire optical network system, thereby increasing the operating cost of the optical network system.
  • the embodiment shown in Figure 4 provides a mechanism for automatic parameter adjustment, which can automatically adjust various parameters of the optical module, so that the performance of the optical network system can meet the link requirements and reduce the optical network performance.
  • the power consumption of the system thereby reducing the operating cost of the optical network system.
  • FIG. 2 and FIG. 4 are further explained below by taking FIG. 5 and FIG. 6 as examples.
  • FIG. 5 is a flow chart of a method for determining configuration parameters of an optical module provided by an embodiment of the present application.
  • the method shown in FIG. 5 is applied in the scenario shown in FIG. 6 , that is, the scenario where the optical transmission device is an optical module.
  • the transmitter of the optical module includes a drive circuit (driver, DRV) and an optical transmitter assembly (transmitter optical subassembly, TOSA), which is used to convert electrical signals into optical signals.
  • the optical transmitter assembly is also called for the laser.
  • the receiver of the optical module includes a receiving optical subassembly (ROSA) and a transimpedance amplifier (TIA), which are used to convert optical signals into electrical signals.
  • ROSA receiving optical subassembly
  • TIA transimpedance amplifier
  • the optical module also includes an oDSP and/or a clock and data recovery unit (clock and data recovery, CDR).
  • clock and data recovery clock and data recovery, CDR
  • the data analysis unit and the optical signal quality calculation/storage unit in the processing unit in FIG. 1 are deployed on the oDSP or the CDR.
  • the optical module further includes an MCU, and the parameter adjustment control unit in the processing unit in FIG. 1 is deployed on the MCU.
  • the optical module also includes the backhaul channel transmitting unit and the backhaul channel detection unit in FIG. 1 . Refer to FIG. 1 for specific functions.
  • the method for determining configuration parameters of an optical module shown in FIG. 5 includes the following steps 501-506.
  • Step 501 When the optical module A is powered on, the parameter adjustment control unit in the module A configures each parameter of the optical module A as an initialized parameter value.
  • Step 502 Scan the bias voltage of the receiver of the optical module A (that is, the parameter adjustment control unit configures the value of the bias voltage as each scanning parameter value), and the oDSP/CDR collects the corresponding signal quality to receive tor bias voltage corresponding to the scan result.
  • the scanning result is recorded in a lookup table (look up table, LUT).
  • Step 503 Scan the bias voltage and bias current of the transmitter of the optical module A to obtain LUTs respectively corresponding to the bias voltage and bias current of the transmitter.
  • Step 504 Scan the gain of the transmitter of the optical module A to obtain the LUT corresponding to the gain of the transmitter.
  • Step 505 Scan the compensation coefficients corresponding to the compensation operation (pre-compensation) for the optical signal emitted by the optical module A to obtain the LUT corresponding to the compensation coefficients.
  • Step 506 After completing the adjustment of these five parameters, oDSP/CDR obtains the optimal parameter values corresponding to these five parameters respectively. Then the oDSP/CDR further adjusts the power consumption based on the optimal parameter values corresponding to these five parameters, that is, the oDSP/CDR determines the debugging parameter values corresponding to these five parameters.
  • oDSP/CDR after obtaining the optimal parameter values or debugging parameter values corresponding to these five parameters, oDSP/CDR sends the optimal parameter values or debugging parameter values corresponding to these five parameters to the parameter adjustment control unit , the parameter adjustment control unit adjusts the values of the five parameters in the optical module A, so that the module A transmits data based on the preferred parameter values or debugging parameter values respectively corresponding to the five parameters.
  • the parameter adjustment control unit controls the bias voltage and bias current of the laser in the transmitter to be adjusted to the debug parameter values.
  • the parameter adjustment control unit controls the magnification of the DRV in the transmitter to be adjusted to the debug parameter value.
  • the parameter adjustment control unit controls the oDSP to adjust the compensation coefficient to the debugging parameter value.
  • module A The above is described by taking module A as an example.
  • the debugging process of module B in FIG. 6 can also refer to the above process, and the description will not be repeated here.
  • the parameter adjustment control unit is also connected to the return channel transmitting unit, so that the preferred parameter value or debugging parameter value of a certain parameter can be adjusted by the return channel transmitting unit.
  • the return channel detection unit of optical module B obtains the optimal parameter value or debugging parameter value of the parameter through demodulation, it can send the optimal parameter value or debugging parameter value of the parameter to the parameter adjustment control unit of optical module B,
  • the parameter adjustment control unit of the optical module B configures the parameters of related devices. It will not be described in detail here.
  • optical module A can adjust some configuration parameters to automatically optimize optical module A to the optimal performance, thereby improving the reliability of optical network system operation sex.
  • optical module A can automatically adjust various parameters of optical module A based on power consumption requirements, so that the performance of the optical network system can meet the link requirements, and reduce the power consumption of the optical network system, thereby reducing the power consumption of the optical network system. operating costs.
  • Fig. 7 is a schematic structural diagram of an optical transmission device provided by an embodiment of the present application. As shown in FIG. 7 , the optical transmission device 700 includes a processing unit 701 .
  • the processing unit 701 is configured to obtain a scan result of the target parameter, the scan result includes multiple scan parameter values and signal qualities corresponding to the multiple scan parameter values, and the signal quality corresponding to one scan parameter value indicates that the optical transmission device is within the target parameter
  • the value is the quality of the target optical signal when scanning the parameter value, and the target optical signal is the optical signal transmitted between the optical transmission device and another optical transmission device.
  • the processing unit 701 is also used to determine the preferred parameter value of the target parameter based on the scanning result of the target parameter.
  • step 202 in the embodiment in FIG. 2 reference may be made to.
  • processing unit 701 is also configured to:
  • the signal quality of the target optical signal of the optical transmission device when the values of the N target parameters are respectively the corresponding optimal parameter values is taken as the optimal signal quality, and N is greater than or equal to 1.
  • step 401 in the embodiment in FIG. 4 reference may be made to.
  • step 402 in the embodiment in FIG. 4 .
  • each target parameter is the power consumption of the optical transmission device corresponding to an optimal parameter value.
  • processing unit 701 is configured to:
  • the value of any target parameter is adjusted from the initial parameter value to the first step length to obtain the first parameter value, and the initial parameter value is any a preferred parameter value of a target parameter;
  • any target parameter value is changed from the initial parameter value Adjust the length of the first step until the signal quality corresponding to the obtained first parameter value is lower than the signal quality threshold, then use the previously obtained first parameter value as the debugging parameter value of any target parameter.
  • the optical transmission device 700 when the target parameter is a parameter used by the optical transmission device to process the transmitted optical signal, the optical transmission device 700 further includes a transmitter 702, configured to:
  • the optical transmission device 700 further includes a receiver 703 for:
  • the signal quality response message carries the signal quality of the target optical signal collected by another optical transmission device, and use the signal quality carried in the signal quality response message as corresponding to any scan parameter value signal quality.
  • the processing unit 701 is configured to:
  • the optical transmission device collects the signal quality of the target optical signal received by the optical transmission device, and uses the collected signal quality as the The signal quality corresponding to any scan parameter value.
  • the target parameter includes a compensation coefficient used when the optical transmission device performs a compensation operation on the target optical signal
  • the optical transmission device 700 further includes a transmitter 702 for:
  • the preferred parameter value of the compensation coefficient is sent to another optical transmission device, so that the other optical transmission device compensates the target optical signal transmitted by the other optical transmission device to the optical transmission device based on the preferred parameter value of the compensation coefficient.
  • the optical transmission device 700 further includes a receiver 703, configured to:
  • the processing unit 701 is configured to compensate the target optical signal transmitted by the optical transmission device to another optical transmission device based on the preferred parameter value of the compensation coefficient;
  • processing unit 701 is also used for:
  • the optical transmission device acquires a scanning result of filtering parameters and/or clipping parameters of the optical transmission device
  • the filtering parameter is a parameter used by the optical transmission device to filter the compensated target optical signal
  • the clipping parameter is a parameter used by the optical transmission device to clip the compensated target optical signal
  • processing unit 701 is configured to:
  • the signal quality corresponding to each scanning parameter value is determined.
  • processing unit 701 is configured to:
  • Adjust the current value according to the first scan step to obtain the second scan parameter value determine the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is better than the signal quality corresponding to the first scan parameter value , then continue to adjust the second scan parameter value according to the first scan step, until the third scan parameter value appears for the first time, and the signal quality corresponding to the third scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value.
  • processing unit 701 is also configured to:
  • the signal quality corresponding to the second scan parameter value is lower than the signal quality corresponding to the first scan parameter value, adjust the current value according to the second scan step size to obtain the fourth scan parameter value, and determine the signal corresponding to the fourth scan parameter value Quality, if the signal quality corresponding to the fourth scan parameter value is better than the signal quality corresponding to the first scan parameter value, continue to adjust the fourth scan parameter value according to the second scan step size until the fifth scan parameter value appears for the first time, the fifth scan parameter value The signal quality corresponding to the scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value;
  • the directions of the first scanning step and the second scanning step are opposite.
  • processing unit 701 is configured to:
  • the scanning result of the target parameter is acquired according to the parameter scanning instruction, the parameter scanning instruction comes from the network equipment connected to the optical transmission device, or the parameter scanning instruction comes from the control unit of the optical transmission device.
  • the optical transmission device 700 is an optical module.
  • the optical transmission apparatus 700 is deployed in network equipment.
  • the above-mentioned processing unit 701 may include one or more of the parameter adjustment control unit, the data analysis unit, and the optical signal quality calculation/storage unit in FIG. 1 .
  • Preferred parameter values for target parameters can be obtained based on the present application.
  • the target parameter of the optical transmission device can be configured according to the corresponding optimal parameter value, so as to realize the adjustment of the performance of the optical transmission device. That is to say, the present application provides an automatic performance adjustment mechanism of the configuration parameters of the optical transmission device, which can realize the automatic performance adjustment of the optical network system, so as to improve the reliability of the operation of the optical network system. And this application can save the cumbersome links of factory calibration, saving manpower and material resources.
  • the division of the above-mentioned functional modules is used as an example for illustration.
  • the above-mentioned function allocation can be completed by different functional modules according to needs. That is, the internal structure of the optical transmission device is divided into different functional modules to complete all or part of the functions described above.
  • the optical transmission device provided by the above embodiments and the method embodiment for determining the configuration parameters of the optical transmission device belong to the same concept, and the specific implementation process thereof is detailed in the method embodiment, and will not be repeated here.
  • all or part may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example: floppy disk, hard disk, magnetic tape), an optical medium (for example: digital versatile disc (digital versatile disc, DVD)), or a semiconductor medium (for example: solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example: floppy disk, hard disk, magnetic tape
  • an optical medium for example: digital versatile disc (digital versatile disc, DVD)
  • a semiconductor medium for example: solid state disk (solid state disk, SSD) )wait.
  • the program can be stored in a computer-readable storage medium.
  • the above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)

Abstract

The present application relates to the technical field of optical networks, and discloses a method for determining a configuration parameter of an optical transmission apparatus, an optical transmission apparatus, and a communication device. The method comprises: a first optical transmission apparatus obtaining a scanning result of a target parameter, the scanning result comprising multiple scanning parameter values and signal qualities respectively corresponding to the multiple scanning parameter values; and determining a preferred parameter value for the target parameter on the basis of the scanning result of the target parameter. On the basis of the present application, the preferred parameter value for the target parameter can be obtained. After the preferred parameter value for the target parameter is obtained, the target parameter of the optical transmission apparatus can be configured according to the corresponding preferred parameter value, so as to implement performance tuning of the optical transmission apparatus. That is, the present application provides an automatic performance tuning mechanism for a configuration parameter of an optical transmission apparatus. The mechanism can implement automatic performance tuning of an optical network system, so as to improve the reliability of the operation of the optical network system.

Description

确定光传输装置配置参数的方法、光传输装置及通信设备Method for determining configuration parameters of optical transmission device, optical transmission device and communication equipment
本申请要求于2021年10月26日提交的申请号为202111248581.7,发明名称为“一种光模块、光网络管理方法以及系统”、以及2021年12月06日提交的申请号为202111481710.7,发明名称为“确定光传输装置配置参数的方法、光传输装置及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application requires that the application number submitted on October 26, 2021 is 202111248581.7, the title of the invention is "an optical module, optical network management method and system", and the application number submitted on December 06, 2021 is 202111481710.7, the title of the invention is The priority of the Chinese patent application for "Method for Determining Configuration Parameters of Optical Transmission Device, Optical Transmission Device and Communication Equipment", the entire content of which is incorporated by reference in this application.
技术领域technical field
本申请实施例涉及光网络技术领域,特别涉及一种确定光传输装置配置参数的方法、光传输装置及通信设备。The embodiments of the present application relate to the technical field of optical networks, and in particular to a method for determining configuration parameters of an optical transmission device, an optical transmission device, and communication equipment.
背景技术Background technique
随着光网络系统的扩容,对光网络系统的性能要求也越来越高。其中,光网络系统中光模块的配置参数是影响光网络系统性能的一大因素。因此,如何确定光模块的最佳配置参数是当前研究的热点。光模块的配置参数示例地包括光模块中发射器以及接收器的配置参数。With the expansion of the optical network system, the performance requirements of the optical network system are also getting higher and higher. Among them, the configuration parameters of the optical modules in the optical network system are a major factor affecting the performance of the optical network system. Therefore, how to determine the optimal configuration parameters of the optical module is a current research hotspot. The configuration parameters of the optical module exemplarily include configuration parameters of a transmitter and a receiver in the optical module.
相关技术中,在光模块出厂前,由厂商基于闭环测试标定光模块的最佳配置参数,然后将该最佳配置参数写入光模块的寄存器中,以便后续光模块使用。其中,闭环测试是指:将光模块的发射器输出的光信号输入至其他设备后,其他设备输出的光信号再输入至光模块的接收器,然后调整发射器或接收器的配置参数,以测试不同配置参数下发射器和接收器之间传输的光信号的质量,从而标定光模块的发射器和接收器的最佳配置参数。In related technologies, before the optical module leaves the factory, the manufacturer calibrates the optimal configuration parameters of the optical module based on a closed-loop test, and then writes the optimal configuration parameters into the registers of the optical module for subsequent use of the optical module. Among them, the closed-loop test refers to: After inputting the optical signal output by the transmitter of the optical module to other equipment, the optical signal output by other equipment is then input to the receiver of the optical module, and then adjust the configuration parameters of the transmitter or receiver to Test the quality of the optical signal transmitted between the transmitter and receiver under different configuration parameters, so as to calibrate the optimal configuration parameters of the transmitter and receiver of the optical module.
在光模块基于上述标定的最佳配置参数运行之后,通常发现光模块输出或接收的光信号的质量并不是最佳的。After the optical module operates based on the above calibrated optimal configuration parameters, it is usually found that the quality of the optical signal output or received by the optical module is not optimal.
发明内容Contents of the invention
本申请提供了一种确定光传输装置配置参数的方法、光传输装置及通信设备,可以提高光网络系统的性能。技术方案如下:The present application provides a method for determining configuration parameters of an optical transmission device, an optical transmission device and communication equipment, which can improve the performance of an optical network system. The technical solution is as follows:
第一方面,提供了一种确定光传输装置配置参数的方法,在该方法中,第一光传输装置获取目标参数的扫描结果,扫描结果包括多个扫描参数值以及和多个扫描参数值分别对应的信号质量,一个扫描参数值对应的信号质量指示第一光传输装置在目标参数的取值为扫描参数值时目标光信号的质量,目标光信号为第一光传输装置和第二光传输装置之间传输的光信号;第一光传输装置基于目标参数的扫描结果,确定目标参数的优选参数值,第一光传输装置在目标参数取值为优选参数值时目标光信号的质量,优于第一光传输装置在目标参数取值为其他参数值时目标光信号的质量。In a first aspect, a method for determining configuration parameters of an optical transmission device is provided, in which method, the first optical transmission device obtains a scan result of a target parameter, and the scan result includes a plurality of scan parameter values and a plurality of scan parameter values respectively Corresponding signal quality, the signal quality corresponding to a scanning parameter value indicates the quality of the target optical signal when the value of the target parameter is the scanning parameter value of the first optical transmission device, the target optical signal is the first optical transmission device and the second optical transmission device The optical signal transmitted between the devices; the first optical transmission device determines the preferred parameter value of the target parameter based on the scanning result of the target parameter, and the quality of the target optical signal when the target parameter is the preferred parameter value by the first optical transmission device is optimal. The quality of the target optical signal when the target parameter takes the value of other parameters in the first optical transmission device.
基于本申请可得到目标参数的优选参数值。在得到目标参数的优选参数值后,便可将光传输装置的目标参数按照相应的优选参数值进行配置,以实现对光传输装置的性能的调整。也即本申请提供了一种光传输装置的配置参数的自动性能调整机制,该机制可以实现光网络系统的自动性能调整,以提高光网络系统运行的可靠性。并且本申请可以省去出厂标定的繁 琐环节,节约人力物力。Preferred parameter values for target parameters can be obtained based on the present application. After the optimal parameter value of the target parameter is obtained, the target parameter of the optical transmission device can be configured according to the corresponding optimal parameter value, so as to realize the adjustment of the performance of the optical transmission device. That is to say, the present application provides an automatic performance adjustment mechanism of the configuration parameters of the optical transmission device, which can realize the automatic performance adjustment of the optical network system, so as to improve the reliability of the operation of the optical network system. And this application can save the cumbersome links of factory calibration, saving manpower and material resources.
可选地,在该方法中,在得到N个目标参数分别对应的优选参数值后,将第一光传输装置在N个目标参数取值分别为相应优选参数值时目标光信号的信号质量作为优选信号质量,N大于等于1;如果优选信号质量优于信号质量门限,则基于N个目标参数中各个目标参数的扫描结果,确定N个目标参数中M个目标参数的调试参数值,M小于等于N;其中,第一光传输装置在M个目标参数中每个目标参数取值为对应的调试参数值时,目标光信号的信号质量优于信号质量门限,且第一光传输装置的功耗,低于第一光传输装置在N个目标参数中每个目标参数取值为对应的优选参数值时第一光传输装置的功耗。Optionally, in this method, after obtaining the optimal parameter values corresponding to the N target parameters respectively, the signal quality of the target optical signal when the N target parameters are respectively corresponding to the corresponding optimal parameter values by the first optical transmission device is taken as Optimal signal quality, N is greater than or equal to 1; if the optimal signal quality is better than the signal quality threshold, then based on the scanning results of each target parameter in the N target parameters, determine the debugging parameter values of M target parameters in the N target parameters, and M is less than is equal to N; wherein, when the first optical transmission device takes the value of each target parameter in the M target parameters as the corresponding debugging parameter value, the signal quality of the target optical signal is better than the signal quality threshold, and the power of the first optical transmission device The power consumption of the first optical transmission device is lower than the power consumption of the first optical transmission device when each of the N target parameters takes a value corresponding to a preferred parameter value.
光传输装置运行在最优性能时,光传输装置的功耗也比较大,并且在很多场景下,可能并不需要光传输装置运行在最优性能下,而是只需光传输装置的性能满足最低性能门限即可。因此在本申请中,在得到各个目标参数的优选参数值后,还可以进一步结合功耗对各个目标参数进行调试,以实现性能和功耗的平衡。When the optical transmission device runs at the optimal performance, the power consumption of the optical transmission device is also relatively large, and in many scenarios, it may not be required that the optical transmission device run at the optimal performance, but only the performance of the optical transmission device meets The minimum performance threshold is sufficient. Therefore, in the present application, after obtaining the optimal parameter value of each target parameter, each target parameter may be further adjusted in combination with power consumption, so as to achieve a balance between performance and power consumption.
可选地,基于N个目标参数中各个目标参数的扫描结果,确定N个目标参数中M个目标参数的调试参数值的实现方式为:对于N个目标参数中任一目标参数,按照降低第一光传输装置的功耗的原则,将任一目标参数取值从初始参数值调整第一步长,得到第一参数值,初始参数值为任一目标参数的优选参数值;确定第一光传输装置在任一目标参数取值为第一参数值时目标光信号的质量,得到第一参数值对应的信号质量;如果第一参数值对应的信号质量优于信号质量门限,则将第一参数值作为初始参数值,返回执行按照降低第一光传输装置的功耗的原则,将任一目标参数取值从初始参数值调整第一步长,直至得到的第一参数值对应的信号质量低于信号质量门限,则将前一次得到的第一参数值作为任一目标参数的调试参数值。Optionally, based on the scanning results of each of the N target parameters, the implementation method of determining the debugging parameter values of the M target parameters among the N target parameters is: for any target parameter among the N target parameters, according to reducing the first The principle of the power consumption of an optical transmission device is to adjust the value of any target parameter from the initial parameter value to the first step length to obtain the first parameter value, and the initial parameter value is the preferred parameter value of any target parameter; determine the first light The transmission device obtains the quality of the target optical signal when any target parameter is the first parameter value, and obtains the signal quality corresponding to the first parameter value; if the signal quality corresponding to the first parameter value is better than the signal quality threshold, then the first parameter Value is used as the initial parameter value, return execution According to the principle of reducing the power consumption of the first optical transmission device, adjust the value of any target parameter from the initial parameter value to the first step length until the signal quality corresponding to the obtained first parameter value is low If it is lower than the signal quality threshold, the value of the first parameter obtained last time is used as the debugging parameter value of any target parameter.
通过上述实现方式,对于某个目标参数,在该目标参数的优选参数值的基础上,查找到信号质量稍微高于信号质量门限时对应的参数值,将该参数值作为调试参数值。从而使得第一光传输装置的性能满足性能阈值门限的同时,保持功耗最低。Through the above implementation, for a certain target parameter, on the basis of the preferred parameter value of the target parameter, the corresponding parameter value when the signal quality is slightly higher than the signal quality threshold is found, and this parameter value is used as the debugging parameter value. Therefore, while the performance of the first optical transmission device satisfies the performance threshold, power consumption is kept at a minimum.
可选地,当目标参数为第一光传输装置对发射的光信号处理时所采用的参数时,获取目标参数的扫描结果的实现方式为:在将第一光传输装置的目标参数取值设置为多个扫描参数值中任一扫描参数值后,第一光传输装置向第二光传输装置发送信号质量请求消息;第一光传输装置接收第二光传输装置发送的信号质量响应消息,信号质量响应消息携带第二光传输装置采集的目标光信号的信号质量,将信号质量响应消息中携带的信号质量作为与任一扫描参数值对应的信号质量。Optionally, when the target parameter is the parameter used by the first optical transmission device to process the transmitted optical signal, the implementation method of obtaining the scanning result of the target parameter is: after setting the value of the target parameter of the first optical transmission device to After any scan parameter value among multiple scan parameter values, the first optical transmission device sends a signal quality request message to the second optical transmission device; the first optical transmission device receives the signal quality response message sent by the second optical transmission device, and the signal The quality response message carries the signal quality of the target optical signal collected by the second optical transmission device, and the signal quality carried in the signal quality response message is used as the signal quality corresponding to any scanning parameter value.
对于对发射的光信号处理时所采用的参数,第一光传输装置需要和第二光传输装置进行信息交互来获取某个扫描参数值对应的信号质量。也即,通过第一光传输装置和第二光传输装置之间的信息交互,能够实现第一光传输装置获取到对端采集的信息。For the parameters used in processing the transmitted optical signal, the first optical transmission device needs to perform information interaction with the second optical transmission device to obtain the signal quality corresponding to a certain scanning parameter value. That is, through the information interaction between the first optical transmission device and the second optical transmission device, the first optical transmission device can obtain the information collected by the opposite end.
可选地,当目标参数为第一光传输装置对接收到的光信号处理时所采用的参数时,获取目标参数的扫描结果的实现方式为:在将第一光传输装置的目标参数取值设置为多个扫描参数值中任一扫描参数值后,第一光传输装置采集第一光传输装置接收到的目标光信号的信号质量,将采集到的信号质量作为与任一扫描参数值对应的信号质量。Optionally, when the target parameter is the parameter used by the first optical transmission device to process the received optical signal, the implementation method of obtaining the scanning result of the target parameter is: taking the value of the target parameter of the first optical transmission device After being set to any scanning parameter value among the multiple scanning parameter values, the first optical transmission device collects the signal quality of the target optical signal received by the first optical transmission device, and uses the collected signal quality as a value corresponding to any scanning parameter value. signal quality.
也即对于对接收到的光信号处理时所采用的参数,第一光传输装置对本端接收到光信号进行分析即可得到某个扫描参数值对应的信号质量。提高了第一光传输装置确定扫描参数值 对应的信号质量的效率。That is, for the parameters used in processing the received optical signal, the first optical transmission device can obtain the signal quality corresponding to a certain scanning parameter value by analyzing the received optical signal at the local end. The efficiency of determining the signal quality corresponding to the scanning parameter value by the first optical transmission device is improved.
可选地,目标参数包括第一光传输装置对目标光信号进行补偿操作时所使用的补偿系数。基于扫描结果,确定目标参数的优选参数值之后,第一光传输装置将补偿系数的优选参数值发送至第二光传输装置,以使第二光传输装置基于补偿系数的优选参数值,对第二光传输装置向第一光传输装置发射的目标光信号进行补偿。Optionally, the target parameter includes a compensation coefficient used when the first optical transmission device performs a compensation operation on the target optical signal. Based on the scanning results, after determining the preferred parameter value of the target parameter, the first optical transmission device sends the preferred parameter value of the compensation coefficient to the second optical transmission device, so that the second optical transmission device based on the preferred parameter value of the compensation coefficient The second optical transmission device compensates the target optical signal transmitted by the first optical transmission device.
在目标参数为第一光传输装置对目标光信号进行补偿操作时所使用的补偿系数的场景中,如果向第一光传输装置发送光信号的第二光传输装置中没有进行补偿操作(也即无发端预补),则第一光传输装置在确定出补偿系数的优选参数值之后,第一光传输装置还可以将补偿系数的优选参数值发送至第二光传输装置,以使第二光传输装置基于补偿系数的优选参数值,对第二光传输装置向第一光传输装置发射的目标光信号进行补偿。也即第一光传输装置还可以实现对对端配置参数的调整。提高了本申请的应用灵活性。In the scenario where the target parameter is the compensation coefficient used when the first optical transmission device performs compensation operations on the target optical signal, if no compensation operation is performed in the second optical transmission device that sends the optical signal to the first optical transmission device (that is, No origin precompensation), after the first optical transmission device determines the optimal parameter value of the compensation coefficient, the first optical transmission device can also send the optimal parameter value of the compensation coefficient to the second optical transmission device, so that the second optical transmission device The transmission device compensates the target optical signal transmitted by the second optical transmission device to the first optical transmission device based on the preferred parameter value of the compensation coefficient. That is, the first optical transmission device can also implement the adjustment of configuration parameters of the opposite end. The application flexibility of the present application is improved.
可选地,获取目标参数的扫描结果之前,第一光传输装置接收第二光传输装置发送的补偿系数的优选参数值;第一光传输装置基于补偿系数的优选参数值对第一光传输装置向第二光传输装置发射的目标光信号进行补偿;Optionally, before obtaining the scanning result of the target parameter, the first optical transmission device receives the preferred parameter value of the compensation coefficient sent by the second optical transmission device; Compensating the target optical signal transmitted by the second optical transmission device;
相应地,第一光传输装置获取目标参数的扫描结果的实现方式为:第一光传输装置获取第一光传输装置的滤波参数和/或削波参数的扫描结果;Correspondingly, the implementation manner for the first optical transmission device to obtain the scanning result of the target parameter is: the first optical transmission device obtains the scanning result of the filtering parameter and/or the clipping parameter of the first optical transmission device;
其中,滤波参数为第一光传输装置对补偿后的目标光信号进行滤波操作时所使用的参数,削波参数为第一光传输装置对补偿后的目标光信号进行削波操作时所使用的参数。Wherein, the filtering parameter is the parameter used when the first optical transmission device performs the filtering operation on the compensated target optical signal, and the clipping parameter is the parameter used when the first optical transmission device performs the clipping operation on the compensated target optical signal. parameter.
当第一光传输装置接收到第二光传输装置发送的补偿系数的优选参数值时,第一光传输装置基于补偿系数的优选参数值对第一光传输装置向第二光传输装置发射的目标光信号进行补偿。这种场景下,第一光传输装置还可以在此基础上继续调整对发射的光信号进行滤波操作和/或削波操作所使用的参数。进一步提高了本申请的应用灵活性。When the first optical transmission device receives the preferred parameter value of the compensation coefficient sent by the second optical transmission device, the first optical transmission device determines the target transmitted by the first optical transmission device to the second optical transmission device based on the preferred parameter value of the compensation coefficient Optical signal is compensated. In this scenario, the first optical transmission device may continue to adjust parameters used for filtering and/or clipping operations on the transmitted optical signal on this basis. The application flexibility of the present application is further improved.
可选地,第一光传输装置获取目标参数的扫描结果的实现方式为:第一光传输装置获取目标参数对应的多个扫描参数值;对于目标参数对应的多个扫描参数值中每个扫描参数值,第一光传输装置确定每个扫描参数值对应的信号质量。Optionally, the first optical transmission device obtains the scan result of the target parameter in the following manner: the first optical transmission device obtains multiple scan parameter values corresponding to the target parameter; for each scan in the multiple scan parameter values corresponding to the target parameter parameter value, the first optical transmission device determines the signal quality corresponding to each scanning parameter value.
可选地,第一光传输装置获取目标参数的扫描结果的实现方式为:第一光传输装置将目标参数的当前取值作为第一扫描参数值,确定第一扫描参数值对应的信号质量;按照第一扫描步长调整当前取值,得到第二扫描参数值,确定第二扫描参数值对应的信号质量,如果第二扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照第一扫描步长调整第二扫描参数值,直至首次出现第三扫描参数值,第三扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量。确定第二扫描参数值对应的信号质量之后,如果第二扫描参数值对应的信号质量低于第一扫描参数值对应的信号质量,则按照第二扫描步长调整当前取值,得到第四扫描参数值,确定第四扫描参数值对应的信号质量,如果第四扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照第二扫描步长调整第四扫描参数值,直至首次出现第五扫描参数值,第五扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量;其中,第一扫描步长和第二扫描步长的方向相反。Optionally, the method for the first optical transmission device to obtain the scan result of the target parameter is: the first optical transmission device uses the current value of the target parameter as the first scan parameter value, and determines the signal quality corresponding to the first scan parameter value; Adjust the current value according to the first scan step to obtain the second scan parameter value, determine the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is better than the signal quality corresponding to the first scan parameter value , then continue to adjust the second scan parameter value according to the first scan step, until the third scan parameter value appears for the first time, and the signal quality corresponding to the third scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value. After determining the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is lower than the signal quality corresponding to the first scan parameter value, adjust the current value according to the second scan step size to obtain the fourth scan Parameter value, determine the signal quality corresponding to the fourth scan parameter value, if the signal quality corresponding to the fourth scan parameter value is better than the signal quality corresponding to the first scan parameter value, continue to adjust the fourth scan parameter value according to the second scan step , until the fifth scanning parameter value appears for the first time, the signal quality corresponding to the fifth scanning parameter value is lower than the signal quality corresponding to the previous adjusted scanning parameter value; wherein, the direction of the first scanning step and the second scanning step are opposite .
在本申请中,这多个扫描参数值可以预先获取,还可以在当前取值的基础上扫描得到,提高了本申请的应用灵活性。In this application, these multiple scan parameter values can be acquired in advance, and can also be obtained by scanning based on the current values, which improves the application flexibility of this application.
可选地,第一光传输装置获取目标参数的扫描结果的实现方式为:第一光传输装置根据参数扫描指令获取目标参数的扫描结果,参数扫描指令来自第一光传输装置连接的网络设备,或参数扫描指令来自第一光传输装置的控制单元。Optionally, the first optical transmission device obtains the scanning result of the target parameter in the following manner: the first optical transmission device obtains the scanning result of the target parameter according to a parameter scanning instruction, and the parameter scanning instruction comes from a network device connected to the first optical transmission device, Or the parameter scanning instruction comes from the control unit of the first optical transmission device.
在本申请中,第一光传输装置可以在各种场景下响应于该参数扫描指令启动对目标参数的扫描,提高了本申请的应用灵活性。In the present application, the first optical transmission device may respond to the parameter scanning instruction to start scanning the target parameters in various scenarios, which improves the application flexibility of the present application.
第二方面,提供了一种光传输装置,所述光传输装置包括至少一个模块,该至少一个模块用于实现上述第一方面及其各实现方式所提供的确定光传输装置配置参数的方法。In a second aspect, an optical transmission device is provided, and the optical transmission device includes at least one module, and the at least one module is used to implement the method for determining configuration parameters of the optical transmission device provided in the first aspect and various implementations thereof.
第三方面,提供了一种通信设备,所述通信设备包括处理器和存储器,所述存储器用于存储支持通信设备执行上述第一方面及其各实现方式所提供的确定光传输装置配置参数方法的程序,以及存储用于实现上述第一方面及其各实现方式所提供的确定光传输装置配置参数方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。In a third aspect, a communication device is provided, the communication device includes a processor and a memory, and the memory is used to store and support the communication device to execute the method for determining configuration parameters of an optical transmission device provided in the first aspect and its various implementations program, and store the data involved in implementing the method for determining the configuration parameters of the optical transmission device provided by the above first aspect and various implementations thereof. The processor is configured to execute programs stored in the memory.
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面及其各实现方式所述的确定光传输装置配置参数方法。In the fourth aspect, a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium. When the computer-readable storage medium is run on a computer, it causes the computer to perform the determination described in the above-mentioned first aspect and various implementations thereof. A method for configuring parameters of an optical transmission device.
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的确定光传输装置配置参数方法。A fifth aspect provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the method for determining configuration parameters of an optical transmission device described in the first aspect above.
上述第二至第五方面所获得的技术效果与第一方面中对应的技术手段获得的技术效果近似,在这里不再赘述。The technical effects obtained by the above-mentioned second to fifth aspects are similar to those obtained by the corresponding technical means in the first aspect, and will not be repeated here.
附图说明Description of drawings
图1是本申请实施例提供的一种光网络系统的架构示意图;FIG. 1 is a schematic diagram of the architecture of an optical network system provided by an embodiment of the present application;
图2是本申请实施例提供的一种确定光传输装置配置参数的方法的流程图;FIG. 2 is a flowchart of a method for determining configuration parameters of an optical transmission device provided in an embodiment of the present application;
图3是本申请实施例提供的一种在线自动调整配置参数的流程示意图;FIG. 3 is a schematic flow diagram of an online automatic adjustment of configuration parameters provided by an embodiment of the present application;
图4是本申请实施例提供的一种调试参数的方法流程图;FIG. 4 is a flow chart of a method for debugging parameters provided in an embodiment of the present application;
图5是本申请实施例提供的一种确定光模块配置参数的方法流程图;FIG. 5 is a flow chart of a method for determining configuration parameters of an optical module provided in an embodiment of the present application;
图6是本申请实施例提供的另一种光网络系统的架构示意图;FIG. 6 is a schematic structural diagram of another optical network system provided by an embodiment of the present application;
图7是本申请实施例提供的一种通信设备的结构示意图。Fig. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。In order to make the purpose, technical solution and advantages of the present application clearer, the implementation manners of the present application will be further described in detail below in conjunction with the accompanying drawings.
为了后续便于说明,下面先对本申请实施例的应用场景进行解释说明。For the convenience of subsequent description, the application scenarios of the embodiments of the present application are firstly explained below.
5G时代的到来以及视频、游戏、智能终端等业务的爆发增长,使得业务流量快速上升。随之而来的是不可避免的光网络系统的提速和扩容。为了保障光网络系统的可靠性和稳定性,需要进行日常的运行维护管理工作。随着光网络系统的规模日益扩大,对光网络系统运维的要求也越来越高。当前对光网络系统的运维有如下需求和难题:随着光网络系统单载波的速率不断提升,光网络系统性能或功耗的余量逐渐减小,导致对光网络系统的运维时间大大增加。The advent of the 5G era and the explosive growth of services such as video, games, and smart terminals have led to a rapid increase in business traffic. Followed by the inevitable speed and expansion of the optical network system. In order to ensure the reliability and stability of the optical network system, daily operation, maintenance and management work is required. With the increasing scale of the optical network system, the requirements for the operation and maintenance of the optical network system are also getting higher and higher. At present, there are the following requirements and problems for the operation and maintenance of the optical network system: With the continuous increase of the single carrier rate of the optical network system, the performance or power consumption margin of the optical network system is gradually reduced, which leads to a significant increase in the operation and maintenance time of the optical network system. Increase.
对光网络系统的运维的目的是优化光网络系统的性能。在光网络系统中,影响光网络系统性能的一大因素是光模块中的发射器/接收器的参数配置,这些参数包括发射光功率(也即输出光功率)、眼图、消光比、比特误码率(bit error ratio,BER)、接收灵敏度等。因此,在运维过程中,需要调试光模块的参数,以提升光网络系统的性能。The purpose of the operation and maintenance of the optical network system is to optimize the performance of the optical network system. In the optical network system, a major factor affecting the performance of the optical network system is the parameter configuration of the transmitter/receiver in the optical module. These parameters include the transmitted optical power (that is, the output optical power), eye diagram, extinction ratio, bit Bit error rate (bit error ratio, BER), receiving sensitivity, etc. Therefore, in the operation and maintenance process, it is necessary to adjust the parameters of the optical module to improve the performance of the optical network system.
目前,在光模块出厂时为了保证光模块的性能,厂商可以经过多个调测步骤从而确认光模块的最佳配置参数,然后将最佳配置参数写入光模块的寄存器中,后续光模块工作过程中直接使用最佳配置参数即可。上述调测步骤中需要用到各种设备,包括光衰减器、光功率计、眼图仪、误码仪等等。另外,调测过程繁杂,需要有调测经验的人员进行,耗费大量人力物力。此外,光模块工作过程中直接使用最佳配置参数后光网络系统的性能通常并不是最佳。At present, in order to ensure the performance of the optical module when the optical module leaves the factory, the manufacturer can go through multiple commissioning steps to confirm the optimal configuration parameters of the optical module, and then write the optimal configuration parameters into the register of the optical module, and the subsequent optical module works The best configuration parameters can be used directly in the process. Various devices are required in the above commissioning steps, including optical attenuators, optical power meters, eye diagram meters, bit error meters, and so on. In addition, the commissioning process is complicated and requires personnel with commissioning experience, which consumes a lot of manpower and material resources. In addition, the performance of the optical network system is usually not optimal after the optimal configuration parameters are directly used in the working process of the optical module.
基于上述场景,本申请实施例提供了一种确定光传输装置配置参数的方法,该方法能够优化光模块中的参数,以提升光网络系统的性能。Based on the above scenario, an embodiment of the present application provides a method for determining configuration parameters of an optical transmission device, and the method can optimize parameters in an optical module to improve performance of an optical network system.
图1是本申请实施例提供的一种光网络系统的架构示意图。如图1所示,该光网络系统10包括第一通信设备100和第二通信设备200。其中,第一通信设备100包括第一光传输装置101,第二通信设备200包括第二光传输装置201。第一光传输装置101包括第一发射器和第一接收器,第二光传输装置201包括第二发射器和第二接收器。FIG. 1 is a schematic structural diagram of an optical network system provided by an embodiment of the present application. As shown in FIG. 1 , the optical network system 10 includes a first communication device 100 and a second communication device 200 . Wherein, the first communication device 100 includes a first optical transmission device 101 , and the second communication device 200 includes a second optical transmission device 201 . The first optical transmission device 101 includes a first transmitter and a first receiver, and the second optical transmission device 201 includes a second transmitter and a second receiver.
其中,第一发射器和第二接收器之间通过光纤链路连接,第一发射器用于向第二接收器发射光信号。第一接收器和第二发射器之间也通过光纤链路连接,第二发射器用于向第一接收器发射光信号。以实现第一通信设备100和第二通信设备200之间的通信。Wherein, the first transmitter and the second receiver are connected through an optical fiber link, and the first transmitter is used to transmit an optical signal to the second receiver. The first receiver and the second transmitter are also connected through an optical fiber link, and the second transmitter is used to transmit optical signals to the first receiver. In order to realize the communication between the first communication device 100 and the second communication device 200 .
另外,第一通信设备100还包括与第一光传输装置101连接的第一网络设备(图1中未示出),第二通信设备200还包括与第二光传输装置201连接的第二网络设备(图1中未示出)。第一通信设备100通过第一网络设备和管理设备通信。第二通信设备200通过第二网络设备和管理设备通信。其中,第一网络设备和第二网络设备可以为交换机等数据转发设备。In addition, the first communication device 100 also includes a first network device (not shown in FIG. 1 ) connected to the first optical transmission device 101, and the second communication device 200 also includes a second network device connected to the second optical transmission device 201. equipment (not shown in Figure 1). The first communication device 100 communicates with the management device through the first network device. The second communication device 200 communicates with the management device through the second network device. Wherein, the first network device and the second network device may be data forwarding devices such as switches.
在一些实施例中,第一光传输装置101为第一光模块,第二光传输装置201为第二光模块。这种场景下,网络设备上配置有端口,光模块可插入端口,以实现光模块与网络设备之间的连接。In some embodiments, the first optical transmission device 101 is a first optical module, and the second optical transmission device 201 is a second optical module. In this scenario, the network device is configured with a port, and the optical module can be inserted into the port to realize the connection between the optical module and the network device.
在另一些实施例中,第一网络设备和第一光传输装置101集成在一个物理设备上,第二网络设备和第二光传输装置201也集成在另一个物理设备上,此时第一光传输装置101或第二光传输装置201为物理设备上的用于发送或接收光信号的装置。换句话说,第一光传输装置101部署在第一网络设备上,第二光传输装置201部署在第二网络设备上。In other embodiments, the first network device and the first optical transmission device 101 are integrated on one physical device, and the second network device and the second optical transmission device 201 are also integrated on another physical device. At this time, the first optical The transmission device 101 or the second optical transmission device 201 is a device on a physical device for sending or receiving an optical signal. In other words, the first optical transmission device 101 is deployed on the first network device, and the second optical transmission device 201 is deployed on the second network device.
也即,本申请实施例提供的光网络系统可以应用于网络设备上插入有光模块的场景,也可以应用于网络设备上集成有光传输装置的场景。That is to say, the optical network system provided by the embodiment of the present application can be applied to a scenario where an optical module is inserted into a network device, and can also be applied to a scenario where an optical transmission device is integrated into a network device.
此外,如图1所示,第一光传输装置101还包括与第一发射器连接的回传通道发射单元,该回传通道发射单元还可称为辅助信道调制单元。回传通道发射单元用于将非业务信号调制到业务信号中,然后将调制后的信号通过第一发射器和光纤链路发送至第二接收器。In addition, as shown in FIG. 1 , the first optical transmission device 101 further includes a return channel transmitting unit connected to the first transmitter, and the return channel transmitting unit may also be called an auxiliary channel modulation unit. The return channel transmitting unit is used for modulating the non-service signal into the service signal, and then sending the modulated signal to the second receiver through the first transmitter and the optical fiber link.
本申请实施例的非业务信号包括任意第一光传输装置101向第二光传输装置201发送的除了业务数据之外的数据。比如包括参数调测指令、系统性能参数、控制信号等等。The non-service signal in this embodiment of the present application includes data other than service data sent by any first optical transmission device 101 to the second optical transmission device 201 . For example, it includes parameter commissioning instructions, system performance parameters, control signals, and so on.
第一光传输装置101还包括与第一接收器连接的回传通道检测单元,该回传通道检测单元还可称为辅助信道解调单元。回传通道检测单元用于从第一接收器接收到的光信号中解调 出第二光传输装置201发送给第一光传输装置101的非业务信号。辅助信道调制单元和辅助信道解调单元可以为同一个单元(即辅助信道调制/解调单元)或不同的单元。The first optical transmission device 101 further includes a return channel detection unit connected to the first receiver, and the return channel detection unit may also be called an auxiliary channel demodulation unit. The return channel detection unit is used to demodulate the non-service signal sent to the first optical transmission device 101 by the second optical transmission device 201 from the optical signal received by the first receiver. The auxiliary channel modulation unit and the auxiliary channel demodulation unit may be the same unit (ie, the auxiliary channel modulation/demodulation unit) or different units.
在本申请实施例中,在第一光传输装置101和第二光传输装置201之间构建了一个回传通道,该回传通道用于传递上述非业务信号。该回传通道也称为辅助信道。需要说明的是,回传通道是在接收器和发射器之间构建的除了业务信道之外的非业务信号传输信道,该回传通道为逻辑上的信道,物理上可基于原有的光纤链路实现。回传通道的实现有多种方式,例如光传感(light sensor,LS)调顶、标准KP4(4-level编解码方式)前向纠错(forward error correction,FEC)插帧、私有FEC插帧、链路训练(link training)序列、集成有光传输装置的网络设备之间的通信通道等等,本申请实施例对此不做详细说明。In the embodiment of the present application, a return channel is constructed between the first optical transmission device 101 and the second optical transmission device 201, and the return channel is used to transmit the aforementioned non-service signals. This return channel is also referred to as an auxiliary channel. It should be noted that the return channel is a non-service signal transmission channel other than the service channel constructed between the receiver and the transmitter. The return channel is a logical channel, which can be physically based on the original optical fiber link Road to achieve. There are many ways to implement the return channel, such as light sensor (light sensor, LS) top adjustment, standard KP4 (4-level codec mode) forward error correction (forward error correction, FEC) frame insertion, private FEC insertion Frames, link training (link training) sequences, communication channels between network devices integrated with optical transmission devices, etc., are not described in detail in this embodiment of the present application.
基于回传通道、回传通道发射单元和回传通道检测单元,不同光传输装置可传递控制信息以及配置参数等非业务信号,以实现本申请实施例提供的方法。Based on the return channel, the return channel transmitting unit, and the return channel detection unit, different optical transmission devices can transmit non-service signals such as control information and configuration parameters, so as to implement the method provided by the embodiment of the present application.
此外,如图1所示,第一光传输装置101还包括与回传通道检测单元连接的光信号质量计算/存储单元。光信号质量计算/存储单元用于计算并存储接收到的光信号的信号质量,光信号的信号质量能够表征光网络系统的性能。信号质量示例地包括BER或信噪比(signal-to-noise ratio,SNR)。In addition, as shown in FIG. 1 , the first optical transmission device 101 further includes an optical signal quality calculation/storage unit connected to the return channel detection unit. The optical signal quality calculation/storage unit is used to calculate and store the signal quality of the received optical signal, and the signal quality of the optical signal can represent the performance of the optical network system. Signal quality illustratively includes BER or signal-to-noise ratio (SNR).
此外,如图1所示,第一光传输装置101还包括与光信号质量计算/存储单元连接的数据分析单元,以及与数据分析单元连接的参数调整控制单元。数据分析单元用于根据光信号的信号质量分析并判断出优选配置参数,将优先配置参数输入给参数调整控制单元,以使参数调整控制单元基于该优选配置参数调整第一光传输装置101中的各个硬件的工作参数。该参数示例地包括发射器的偏置电压或偏置电流、或者,发射器的增益,或者,接收器的偏置电压、接收器的补偿系数、输出光功率等。In addition, as shown in FIG. 1 , the first optical transmission device 101 further includes a data analysis unit connected to the optical signal quality calculation/storage unit, and a parameter adjustment control unit connected to the data analysis unit. The data analysis unit is used to analyze and determine the optimal configuration parameter according to the signal quality of the optical signal, and input the preferred configuration parameter to the parameter adjustment control unit, so that the parameter adjustment control unit adjusts the first optical transmission device 101 based on the optimal configuration parameter. The operating parameters of each hardware. The parameter includes, for example, a bias voltage or a bias current of the transmitter, or a gain of the transmitter, or a bias voltage of the receiver, a compensation coefficient of the receiver, output optical power, and the like.
其中,参数调整控制单元可以由第一光传输装置中的微控制单元(micro control unit,MCU)或数字信号处理器(digital signal processor,DSP)实现。可选地,参数调整控制单元也可以由管理设备或网络设备实现,此时参数调整控制单元集成在管理设备或网络设备上。Wherein, the parameter adjustment control unit may be implemented by a micro control unit (micro control unit, MCU) or a digital signal processor (digital signal processor, DSP) in the first optical transmission device. Optionally, the parameter adjustment control unit may also be implemented by a management device or a network device, and in this case, the parameter adjustment control unit is integrated on the management device or the network device.
图1中第二光传输装置201中的各个单元的功能可以参考第一光传输装置101中的各个单元的功能,在此不再详细说明。The functions of each unit in the second optical transmission device 201 in FIG. 1 may refer to the functions of each unit in the first optical transmission device 101 , and will not be described in detail here.
此外,如图1所示,参数调整控制单元、光信号质量计算/存储单元、以及数据分析单元可以统称为处理单元。也即,处理单元用于实现上述参数调整控制单元、光信号质量计算/存储单元、以及数据分析单元的功能。In addition, as shown in FIG. 1 , the parameter adjustment control unit, the optical signal quality calculation/storage unit, and the data analysis unit may be collectively referred to as a processing unit. That is, the processing unit is used to realize the functions of the above parameter adjustment control unit, optical signal quality calculation/storage unit, and data analysis unit.
下面对本申请实施例提供的确定光传输装置配置参数的方法进行解释说明。The method for determining the configuration parameters of the optical transmission device provided by the embodiment of the present application is explained below.
图2是本申请实施例提供的一种确定光传输装置配置参数的方法的流程图。如图2所示,该方法包括如下几个步骤。Fig. 2 is a flow chart of a method for determining configuration parameters of an optical transmission device provided by an embodiment of the present application. As shown in Figure 2, the method includes the following steps.
步骤201:第一光传输装置获取目标参数的扫描结果,扫描结果包括多个扫描参数值以及和多个扫描参数值分别对应的信号质量,一个扫描参数值对应的信号质量指示第一光传输装置在目标参数的取值为该扫描参数值时目标光信号的质量,目标光信号为第一光传输装置和第二光传输装置之间传输的光信号。Step 201: The first optical transmission device obtains the scan result of the target parameter, the scan result includes multiple scan parameter values and the signal quality corresponding to the multiple scan parameter values, and the signal quality corresponding to one scan parameter value indicates the first optical transmission device When the value of the target parameter is the value of the scanning parameter, the quality of the target optical signal is the optical signal transmitted between the first optical transmission device and the second optical transmission device.
在本申请实施例中,对于第一光传输装置上的任一参数,为了能够确定出该参数的最佳配置(也即对该参数进行优化),可以对该参数的不同参数值进行扫描,扫描的目的在于确定不同参数值对应的信号质量,以基于信号质量确定该参数的最佳配置。其中,信号质量可以 为BER,也可以为SNR。BER越小表明信号质量越优,BER越大表明信号质量越差。SNR越大表明信号质量越优,SNR越小表明信号质量越差。In the embodiment of the present application, for any parameter on the first optical transmission device, in order to determine the optimal configuration of the parameter (that is, to optimize the parameter), different parameter values of the parameter may be scanned, The purpose of scanning is to determine the signal quality corresponding to different parameter values, so as to determine the optimal configuration of the parameter based on the signal quality. Wherein, the signal quality can be BER or SNR. The smaller the BER, the better the signal quality, and the larger the BER, the worse the signal quality. The larger the SNR, the better the signal quality, and the smaller the SNR, the worse the signal quality.
图2所示的实施例以确定目标参数的最佳配置为例进行说明。其中,目标参数可以为第一光传输装置工作过程中所使用的任一参数。The embodiment shown in FIG. 2 is described by taking determining the optimal configuration of target parameters as an example. Wherein, the target parameter may be any parameter used in the working process of the first optical transmission device.
示例地,目标参数可以为第一光传输装置的发射器的偏置电压或偏置电流,或者,第一光传输装置的发射器的增益,或者第一光传输装置的接收器的偏置电压,或者第一光传输装置的接收器对接收到的光信号进行补偿操作时所使用的补偿系数等。本申请实施例不限定对第一光传输装置中的哪些参数进行优化,也即不限定目标参数具体为哪些。Exemplarily, the target parameter may be the bias voltage or bias current of the transmitter of the first optical transmission device, or the gain of the transmitter of the first optical transmission device, or the bias voltage of the receiver of the first optical transmission device , or the compensation coefficient used when the receiver of the first optical transmission device performs a compensation operation on the received optical signal, and the like. The embodiment of the present application does not limit which parameters in the first optical transmission device are optimized, that is, does not limit which specific target parameters are.
其中,发射器的偏置电压或偏置电流为发射器中的激光器的偏置电压或偏置电流。发射器的增益为发射器中的放大电路的放大倍数。接收器的偏置电压为接收器中的光电检测器的偏置电压。补偿系数为接收器为接收到的光信号进行补偿操作时所使用的补偿算法的相关系数。关于补偿系数后续有详细说明,在此先不展开。Wherein, the bias voltage or bias current of the transmitter is the bias voltage or bias current of the laser in the transmitter. The gain of the transmitter is the amplification factor of the amplifier circuit in the transmitter. The bias voltage of the receiver is the bias voltage of the photodetector in the receiver. The compensation coefficient is a correlation coefficient of a compensation algorithm used by the receiver when performing a compensation operation for the received optical signal. The compensation coefficient will be described in detail later, and will not be expanded here.
此外,第一光传输装置可以根据参数扫描指令来获取目标参数的扫描结果,该参数扫描指令来自第一光传输装置连接的网络设备,或者,该参数扫描指令来自第一光传输装置的控制单元。也即,第一光传输装置响应于该参数扫描指令启动对目标参数的扫描。控制单元可以为图1中的参数调整控制单元。In addition, the first optical transmission device can obtain the scanning result of the target parameter according to the parameter scanning instruction, the parameter scanning instruction comes from the network device connected to the first optical transmission device, or the parameter scanning instruction comes from the control unit of the first optical transmission device . That is, the first optical transmission device starts scanning the target parameter in response to the parameter scanning instruction. The control unit may adjust the control unit for the parameters in FIG. 1 .
示例地,在第一光传输装置上电时,控制单元检测到上电信号然后生成该参数扫描指令,以触发步骤201。又示例地,在第一光传输装置上电时,与第一光传输装置连接的网络设备检测到第一光传输装置上电,然后向第一光传输装置下发该参数扫描指令。又示例,在第一光传输装置工作的过程中,管理设备响应于运维人员的操作向第一光传输装置下发该参数扫描指令。也即,第一光传输装置可以在各种场景下响应于该参数扫描指令启动对目标参数的扫描。For example, when the first optical transmission device is powered on, the control unit detects a power-on signal and then generates the parameter scanning instruction to trigger step 201 . In another example, when the first optical transmission device is powered on, the network equipment connected to the first optical transmission device detects that the first optical transmission device is powered on, and then sends the parameter scan command to the first optical transmission device. As another example, during the working process of the first optical transmission device, the management device sends the parameter scanning instruction to the first optical transmission device in response to the operations of the operation and maintenance personnel. That is, the first optical transmission device may respond to the parameter scanning instruction to start scanning the target parameter in various scenarios.
在一些实施例中,步骤201可以有以下两种实现方式。In some embodiments, step 201 may be implemented in the following two manners.
第一种实现方式:第一光传输装置获取目标参数对应的多个扫描参数值;对于目标参数对应的多个扫描参数值中每个扫描参数值,第一光传输装置确定每个扫描参数值对应的信号质量。The first implementation mode: the first optical transmission device acquires multiple scanning parameter values corresponding to the target parameter; for each scanning parameter value in the multiple scanning parameter values corresponding to the target parameter, the first optical transmission device determines each scanning parameter value Corresponding signal quality.
其中,多个扫描参数值可以为预先设置。示例地,目标参数为补偿系数时,可以预先设置补偿系数的多个系数值,多个系数值即为补偿系数对应的多个扫描参数值。Wherein, a plurality of scan parameter values may be preset. For example, when the target parameter is a compensation coefficient, multiple coefficient values of the compensation coefficient may be preset, and the multiple coefficient values are multiple scan parameter values corresponding to the compensation coefficient.
可选地,多个扫描参数值也可以通过对预先设置的一段数值区间采样得到。这种场景下,第一光传输装置获取目标参数对应的多个扫描参数值的实现过程可以为:第一光传输装置获取目标参数的扫描取值范围和第一扫描步长;基于目标参数的扫描取值范围和第一扫描步长,第一光传输装置确定目标参数对应的多个扫描参数值。比如,目标参数为接收器的偏置电压,假设扫描取值范围为1到4伏特(V),扫描步长为0.2,则目标参数对应的多个扫描参数值有16个。Optionally, multiple scan parameter values may also be obtained by sampling a preset range of numerical values. In this scenario, the implementation process for the first optical transmission device to obtain multiple scanning parameter values corresponding to the target parameter may be: the first optical transmission device obtains the scanning value range and the first scanning step of the target parameter; Scanning the value range and the first scanning step, the first optical transmission device determines a plurality of scanning parameter values corresponding to the target parameter. For example, the target parameter is the bias voltage of the receiver, assuming that the range of the scan value is 1 to 4 volts (V), and the scan step size is 0.2, there are 16 multiple scan parameter values corresponding to the target parameter.
在上述实现方式中,目标参数的扫描取值范围可以基于第一光传输装置的性能要求来确定。比如,目标参数为接收器的偏置电压,则该偏置电压的扫描取值范围可基于接收器响应度要求来确定,其中,接收器响应度要求是指预先设置的接收器对接收到的光信号的响应度的要求范围。又比如,目标参数为发射器的偏置电流,则该偏置电流的扫描取值范围可基于发射器输出光功率要求来确定。In the above implementation manner, the scanning value range of the target parameter may be determined based on the performance requirement of the first optical transmission device. For example, if the target parameter is the bias voltage of the receiver, the scanning value range of the bias voltage can be determined based on the receiver responsivity requirement, wherein the receiver responsivity requirement refers to the preset receiver response to the received The required range of the responsivity of the optical signal. For another example, if the target parameter is the bias current of the transmitter, the scanning value range of the bias current may be determined based on the output optical power requirement of the transmitter.
第二种实现方式:以第一光传输装置的当前取值开始扫描得到扫描结果。该实现方式可称为在线自动调整配置参数。A second implementation manner: start scanning with the current value of the first optical transmission device to obtain a scanning result. This implementation may be referred to as online automatic adjustment of configuration parameters.
在一些实施例中,在线自动调整配置参数的实现方式可以为:第一光传输装置将目标参数的当前取值作为第一扫描参数值,确定第一扫描参数值对应的信号质量;按照第一扫描步长调整当前取值,得到第二扫描参数值,确定第二扫描参数值对应的信号质量,如果第二扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照第一扫描步长调整第二扫描参数值,直至首次出现第三扫描参数值,第三扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量。也即,如果按照第一扫描步长调整参数值后的信号质量变优,则继续按照同一方式调整参数值,直至信号质量开始变差,这样便可确定出一个信号质量最优的参数值。In some embodiments, the online automatic adjustment of configuration parameters may be implemented as follows: the first optical transmission device uses the current value of the target parameter as the first scan parameter value, and determines the signal quality corresponding to the first scan parameter value; according to the first Adjust the current value of the scan step to obtain the second scan parameter value, determine the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is better than the signal quality corresponding to the first scan parameter value, continue The second scan parameter value is adjusted according to the first scan step until the third scan parameter value appears for the first time, and the signal quality corresponding to the third scan parameter value is lower than the signal quality corresponding to the previously adjusted scan parameter value. That is, if the signal quality becomes better after adjusting the parameter value according to the first scan step, continue to adjust the parameter value in the same way until the signal quality begins to deteriorate, so that a parameter value with the best signal quality can be determined.
需要说明的是,第一扫描步长是有方向的。当第一扫描步长为正时,则每次调整参数值是指:在原参数值的基础上增加第一扫描步长。当第一扫描步长为负时,则每次调整参数值是指:在原参数值的基础上减去第一扫描步长的绝对值。比如,目标参数为接收器的偏置电压,该偏置电压的当前参数值为2V,当第一扫描步长为0.1时,则第一扫描参数值为(2+0.1)V。当第一扫描步长为-0.1时,则第一扫描参数值为(2-0.1)V。It should be noted that the first scanning step has a direction. When the first scan step is positive, adjusting the parameter value each time refers to increasing the first scan step on the basis of the original parameter value. When the first scan step is negative, adjusting the parameter value each time refers to subtracting the absolute value of the first scan step from the original parameter value. For example, the target parameter is the bias voltage of the receiver, and the current parameter value of the bias voltage is 2V. When the first scan step size is 0.1, the first scan parameter value is (2+0.1)V. When the first scan step size is -0.1, the first scan parameter value is (2-0.1)V.
此外,如果第二扫描参数值对应的信号质量低于第一扫描参数值对应的信号质量,则按照第二扫描步长调整目标参数的当前取值,得到第四扫描参数值,确定第四扫描参数值对应的信号质量,如果第四扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照第二扫描步长调整第四扫描参数值,直至首次出现第五扫描参数值,第五扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量。其中,第一扫描步长和第二扫描步长的方向相反。也即,如果按照第一扫描步长调整参数值后的信号质量变差,则按照与第一扫描步长方向相反的第二扫描步长调整参数值,直至信号质量开始变差,这样便可确定出一个信号质量最优的参数值。In addition, if the signal quality corresponding to the second scan parameter value is lower than the signal quality corresponding to the first scan parameter value, adjust the current value of the target parameter according to the second scan step to obtain the fourth scan parameter value, and determine the fourth scan The signal quality corresponding to the parameter value, if the signal quality corresponding to the fourth scan parameter value is better than the signal quality corresponding to the first scan parameter value, continue to adjust the fourth scan parameter value according to the second scan step until the fifth scan occurs for the first time parameter value, the signal quality corresponding to the fifth scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value. Wherein, the directions of the first scanning step and the second scanning step are opposite. That is, if the signal quality becomes worse after adjusting the parameter value according to the first scanning step, then adjust the parameter value according to the second scanning step opposite to the direction of the first scanning step until the signal quality starts to deteriorate, so that Determine a parameter value with the best signal quality.
比如,目标参数为接收器的偏置电压,该偏置电压的当前参数值为2V,当第一扫描步长为0.1时,调整后的第一扫描参数值为(2+0.1)V,第一扫描参数值对应的信号质量变差,此时则按照第二扫描步长-0.1重新调整当前取值,调整后的第四扫描参数值为(2-0.1)V。For example, the target parameter is the bias voltage of the receiver, and the current parameter value of the bias voltage is 2V. When the first scan step is 0.1, the adjusted first scan parameter value is (2+0.1)V. The signal quality corresponding to the first scanning parameter value becomes worse. At this time, the current value is readjusted according to the second scanning step size -0.1, and the adjusted fourth scanning parameter value is (2-0.1)V.
图3是本申请实施例提供的一种在线自动调整配置参数的流程示意图。如图3所示,目标参数为接收器的偏置电压。当检测到接收器偏置电压在线调整开始指令时,记录接收器的当前偏置电压为Vpd0,以及Vpd0对应的BER0或SRN0。偏置电压在Vpd0的基础上降低0.1V(也即第一扫描步长为-0.1)得到Vpd1,记录Vpd1对应的BER1或SRN1。如果BER1<BER0/或SNR1>SNR0,则表明调整参数值后的信号质量变优,则继续按照第一扫描步长-0.1调整偏置电压,直至信号质量开始变差。如此便可得到与多个扫描参数值分别对应的多个信号质量。FIG. 3 is a schematic flowchart of an online automatic adjustment of configuration parameters provided by an embodiment of the present application. As shown in Figure 3, the target parameter is the bias voltage of the receiver. When the on-line adjustment start instruction of the receiver bias voltage is detected, the current bias voltage of the receiver is recorded as Vpd0, and BER0 or SRN0 corresponding to Vpd0. The bias voltage is reduced by 0.1V on the basis of Vpd0 (that is, the first scan step is -0.1) to obtain Vpd1, and the BER1 or SRN1 corresponding to Vpd1 is recorded. If BER1<BER0/or SNR1>SNR0, it indicates that the signal quality after adjusting the parameter value becomes better, then continue to adjust the bias voltage according to the first scan step size -0.1 until the signal quality begins to deteriorate. In this way, multiple signal qualities respectively corresponding to multiple scan parameter values can be obtained.
相应地,如果BER1>BER0或SNR1<SNR0,则表明按照第一扫描步长-0.1调整参数值后的信号质量变差,则重新按照第二扫描步长0.1调整Vpd0,也即偏置电压在Vpd0的基础上增加0.1V,得到Vpd2,记录Vpd2对应的BER2或SRN2。如果BER2<BER0/或SNR2>SNR0,则表明按照第二扫描步长调整参数值后的信号质量变优,则继续按照第二扫描步长0.1调整偏置电压,直至信号质量开始变差。如此便可得到与多个扫描参数值分别对应的多个信号质量。Correspondingly, if BER1>BER0 or SNR1<SNR0, it indicates that the signal quality after adjusting the parameter value according to the first scan step size -0.1 is degraded, then adjust Vpd0 again according to the second scan step size 0.1, that is, the bias voltage is at Add 0.1V on the basis of Vpd0 to get Vpd2, and record the BER2 or SRN2 corresponding to Vpd2. If BER2<BER0/or SNR2>SNR0, it means that the signal quality after adjusting the parameter value according to the second scanning step becomes better, then continue to adjust the bias voltage according to the second scanning step of 0.1 until the signal quality begins to deteriorate. In this way, multiple signal qualities respectively corresponding to multiple scan parameter values can be obtained.
由于目标参数可以为第一光传输装置对发射的光信号处理时所采用的参数,也可以为第一光传输装置对接收到的光信号处理时所采用的参数,因此,目标参数任一扫描参数值对应的信号质量的获取方式可以通过以下两种情况分别说明。Since the target parameter can be the parameter used by the first optical transmission device to process the transmitted optical signal, or the parameter used by the first optical transmission device to process the received optical signal, therefore, any scan of the target parameter The way to obtain the signal quality corresponding to the parameter value can be described respectively through the following two situations.
情况一:目标参数为第一光传输装置对发射的光信号处理时所采用的参数。Case 1: The target parameter is a parameter used by the first optical transmission device when processing the transmitted optical signal.
当目标参数为第一光传输装置对发射的光信号处理时所采用的参数时,获取目标参数任一扫描参数值对应的信号质量的实现方式可以为:在将第一光传输装置的目标参数取值设置为多个扫描参数值中任一扫描参数值后,第一光传输装置向第二光传输装置发送信号质量请求消息;第一光传输装置接收第二光传输装置发送的信号质量响应消息,该信号质量响应消息携带第二光传输装置采集的目标光信号的信号质量,第一光传输装置将信号质量响应消息中携带的信号质量作为与该扫描参数值对应的信号质量。When the target parameter is the parameter used by the first optical transmission device to process the transmitted optical signal, the implementation method of obtaining the signal quality corresponding to any scanning parameter value of the target parameter may be: the target parameter of the first optical transmission device After the value is set to any scan parameter value among the multiple scan parameter values, the first optical transmission device sends a signal quality request message to the second optical transmission device; the first optical transmission device receives the signal quality response sent by the second optical transmission device The signal quality response message carries the signal quality of the target optical signal collected by the second optical transmission device, and the first optical transmission device uses the signal quality carried in the signal quality response message as the signal quality corresponding to the scanning parameter value.
也即对于对发射的光信号处理时所采用的参数,第一光传输装置需要和第二光传输装置进行信息交互来获取某个扫描参数值对应的信号质量。That is, for the parameters used in processing the transmitted optical signal, the first optical transmission device needs to perform information interaction with the second optical transmission device to obtain the signal quality corresponding to a certain scanning parameter value.
其中,第二光传输装置在采集到信号质量后,可以通过图1中的回传通道发射单元将该信号质量调制在业务信号上,然后将调制后的信号发送至第一光传输装置,第一光传输装置的回传通道检测单元解调接收器接收到的信号,进而得到该信号质量。Wherein, after the second optical transmission device collects the signal quality, it can modulate the signal quality on the service signal through the return channel transmitting unit in FIG. 1, and then send the modulated signal to the first optical transmission device. A return channel detection unit of an optical transmission device demodulates the signal received by the receiver, and then obtains the signal quality.
情况二:目标参数为第一光传输装置对接收到的光信号处理时所采用的参数。Case 2: The target parameter is a parameter used by the first optical transmission device when processing the received optical signal.
当目标参数为第一光传输装置对接收到的光信号处理时所采用的参数时,获取目标参数任一扫描参数值对应的信号质量的实现方式可以为:在将第一光传输装置的目标参数的取值设置为多个扫描参数值中任一扫描参数值后,第一光传输装置采集第一光传输装置接收到的目标光信号的信号质量,将采集到的信号质量作为与该扫描参数值对应的信号质量。When the target parameter is the parameter used by the first optical transmission device to process the received optical signal, the implementation method of obtaining the signal quality corresponding to any scanning parameter value of the target parameter may be: After the value of the parameter is set to any scan parameter value among the multiple scan parameter values, the first optical transmission device collects the signal quality of the target optical signal received by the first optical transmission device, and uses the collected signal quality as the The signal quality corresponding to the parameter value.
也即对于接收器中的参数,第一光传输装置对本端接收到光信号进行分析即可得到某个扫描参数值对应的信号质量。That is, for the parameters in the receiver, the first optical transmission device can obtain the signal quality corresponding to a certain scanning parameter value by analyzing the optical signal received at the local end.
可以理解的是,当目标参数为第一光传输装置的光数字信号处理器(optical digital signal processor,oDSP)进行补偿操作时所采用的补偿系数时,信号质量是指:接收器接收到的光信号经过oDSP处理之后的信号的质量。It can be understood that when the target parameter is the compensation coefficient used when the optical digital signal processor (oDSP) of the first optical transmission device performs the compensation operation, the signal quality refers to: the optical signal received by the receiver The quality of the signal after the signal is processed by oDSP.
为了后续便于说明,在此对补偿操作进行解释说明。For convenience of description later, the compensation operation is explained here.
第一光传输装置的接收器在接收到光信号之后,可以通过oDSP对光网络系统的各种信道损伤进行补偿,该操作即为补偿操作。其中,补偿操作可以用于同相和正交分量(in-phase and quadrature components,IQ)不平衡补偿、时钟恢复、色散补偿、频域均衡、时域均衡、偏振解复用与动态均衡、频偏估计以及载波相位恢复等等。这些补偿操作可以通过不同的算法实现,相应地,补偿系数也即补偿操作时所使用的算法的参数。After receiving the optical signal, the receiver of the first optical transmission device may compensate various channel impairments of the optical network system through the oDSP, and this operation is a compensation operation. Among them, the compensation operation can be used for in-phase and quadrature components (IQ) imbalance compensation, clock recovery, dispersion compensation, frequency domain equalization, time domain equalization, polarization demultiplexing and dynamic equalization, frequency offset Estimation and carrier phase recovery, etc. These compensation operations can be realized by different algorithms, and correspondingly, the compensation coefficient is also a parameter of the algorithm used in the compensation operation.
比如,oDSP在通过前向反馈均衡(feed-forward equalization,FFE)算法进行补偿操作时,FFE算法中使用的FEE滤波器的抽头系数即为补偿系数,该抽头系数实际为一组系数,因此还可以将抽头系数称为一组FEE系数。这种场景下,获取的目标参数的扫描结果包括:与这一组FFE系数对应的多组FEE系数值。For example, when oDSP performs the compensation operation through the feed-forward equalization (FFE) algorithm, the tap coefficient of the FEE filter used in the FFE algorithm is the compensation coefficient, and the tap coefficient is actually a set of coefficients, so it is also The tap coefficients may be referred to as a set of FEE coefficients. In this scenario, the obtained scan results of the target parameters include: multiple sets of FEE coefficient values corresponding to this set of FFE coefficients.
步骤202:第一光传输装置基于目标参数的扫描结果,确定目标参数的优选参数值,第一光传输装置在目标参数取值为优选参数值时目标光信号的质量,优于第一光传输装置在目标参数取值为其他参数值时目标光信号的质量。Step 202: The first optical transmission device determines the optimal parameter value of the target parameter based on the scanning result of the target parameter. When the target parameter value is the optimal parameter value, the quality of the target optical signal of the first optical transmission device is better than that of the first optical transmission device. The quality of the target optical signal of the device when the target parameter takes the value of other parameters.
在一些实施例中,第一光传输装置基于目标参数的扫描结果,确定目标参数的优选参数 值的实现方式可以为:从多个扫描参数值中,确定信号质量最优的扫描参数值,将确定的扫描参数值作为目标参数的优选参数值。In some embodiments, the first optical transmission device may determine the preferred parameter value of the target parameter based on the scanning result of the target parameter in the following manner: from multiple scanning parameter values, determine the scanning parameter value with the best signal quality, and set The determined scanning parameter value is used as the preferred parameter value of the target parameter.
在另一些实施例中,上述目标参数的优选参数值还可以为多个,比如,从多个扫描参数值中,确定信号质量大于参考信号质量的扫描参数值作为优选参数值。这种场景下,后续可以根据应用场景从多个优选参数值中选择一个信号质量次优的扫描参数值来配置光传输装置,以实现功耗和性能的均衡。In some other embodiments, there may be more than one preferred parameter value of the target parameter. For example, from among multiple scanning parameter values, a scanning parameter value whose signal quality is greater than the reference signal quality is determined as the preferred parameter value. In this scenario, a scanning parameter value with suboptimal signal quality can be selected from multiple optimal parameter values according to the application scenario to configure the optical transmission device, so as to achieve a balance between power consumption and performance.
基于上述步骤201和步骤202,第一光传输装置可以实现对某个参数的调整,以得到该参数的最佳配置参数值(也即优选参数值)。Based on the above steps 201 and 202, the first optical transmission device may adjust a certain parameter to obtain an optimal configuration parameter value (ie, a preferred parameter value) of the parameter.
另外,第一光传输装置在得到目标参数的扫描结果后,还可以根据该扫描结果确定该目标参数的参数值和信号质量之间的对应关系,运维人员可以基于该对应关系对目标参数的取值进行配置。In addition, after the first optical transmission device obtains the scanning result of the target parameter, it can also determine the corresponding relationship between the parameter value of the target parameter and the signal quality according to the scanning result, and the operation and maintenance personnel can analyze the target parameter based on the corresponding relationship. Take the value to configure.
可选地,在本申请实施例中,在目标参数为第一光传输装置对目标光信号进行补偿操作时所使用的补偿系数的场景中,如果向第一光传输装置发送光信号的第二光传输装置中没有进行补偿操作(也即无发端预补),则第一光传输装置在确定出补偿系数的优选参数值之后,第一光传输装置还可以将补偿系数的优选参数值发送至第二光传输装置,以使第二光传输装置基于补偿系数的优选参数值,对第二光传输装置向第一光传输装置发射的目标光信号进行补偿。Optionally, in this embodiment of the present application, in the scenario where the target parameter is the compensation coefficient used when the first optical transmission device performs a compensation operation on the target optical signal, if the second optical signal sent to the first optical transmission device No compensation operation is performed in the optical transmission device (that is, there is no origin pre-compensation), after the first optical transmission device determines the optimal parameter value of the compensation coefficient, the first optical transmission device can also send the optimal parameter value of the compensation coefficient to The second optical transmission device, so that the second optical transmission device compensates the target optical signal transmitted by the second optical transmission device to the first optical transmission device based on the preferred parameter value of the compensation coefficient.
比如,在无发端预补的场景中,收端(也即第一光传输装置)会先通过接收到的部分数据收敛出FFE算法对应的一组FFE系数(也即确定FEE系数的优选参数值),收敛的目的是为了FFE算法达到稳定。然后收端通过回传通道将该FFE系数传递到发端,发端配置该组FEE系数对发端的光信号进项预处理。For example, in a scenario where there is no pre-compensation at the sending end, the receiving end (that is, the first optical transmission device) will first converge a set of FFE coefficients corresponding to the FFE algorithm through the received partial data (that is, determine the optimal parameter value of the FEE coefficient ), the purpose of convergence is to achieve stability for the FFE algorithm. Then the receiving end transmits the FFE coefficients to the transmitting end through the return channel, and the transmitting end configures the set of FEE coefficients to preprocess the optical signal at the transmitting end.
以15拍(tap)FFE为例,在确定出FEE系数的优选参数值调整之后,收端会得到一组包含15个系数的数据,这15个系数即为FFE系数的优选参数值,将这组数据传到发端后,发端将待发送的信号和这组系数进行卷积(预补过程),进而得到最终要发射的信号。Taking the 15-tap FFE as an example, after determining the optimal parameter value adjustment of the FEE coefficient, the receiving end will obtain a set of data containing 15 coefficients, and these 15 coefficients are the optimal parameter value of the FFE coefficient. After the set of data is transmitted to the sending end, the sending end will convolve the signal to be sent with this set of coefficients (pre-complementing process), and then obtain the final signal to be sent.
此外,在另一场景中,假设第一光传输装置为发端,第二光传输装置为收端,当第一光传输装置接收到第二光传输装置发送的补偿系数的优选参数值时,第一光传输装置基于补偿系数的优选参数值对第一光传输装置向第二光传输装置发射的目标光信号进行补偿。这种场景下,第一光传输装置还可以在此基础上继续调整对发射的光信号进行滤波操作和/或削波操作所使用的参数。In addition, in another scenario, assuming that the first optical transmission device is the transmitting end and the second optical transmission device is the receiving end, when the first optical transmission device receives the optimal parameter value of the compensation coefficient sent by the second optical transmission device, the second optical transmission device An optical transmission device compensates the target optical signal transmitted by the first optical transmission device to the second optical transmission device based on the preferred parameter value of the compensation coefficient. In this scenario, the first optical transmission device may continue to adjust parameters used for filtering and/or clipping operations on the transmitted optical signal on this basis.
基于此,第一光传输装置获取目标参数的扫描结果的实现方式还可以包括:第一光传输装置基于补偿系数的优选参数值对第一光传输装置向第二光传输装置发射的目标光信号进行补偿后,第一光传输装置获取第一光传输装置的滤波参数和/或削波参数的扫描结果;其中,滤波参数为第一光传输装置对补偿后的目标光信号进行滤波操作时所使用的参数,削波参数为第一光传输装置对补偿后的目标光信号进行削波操作时所使用的参数。Based on this, the realization method for the first optical transmission device to obtain the scanning result of the target parameter may also include: the first optical transmission device evaluates the target optical signal transmitted by the first optical transmission device to the second optical transmission device based on the optimal parameter value of the compensation coefficient After the compensation is performed, the first optical transmission device obtains the scanning result of the filtering parameters and/or clipping parameters of the first optical transmission device; wherein, the filtering parameters are obtained when the first optical transmission device performs a filtering operation on the compensated target optical signal. The parameter used, the clipping parameter is a parameter used when the first optical transmission device performs a clipping operation on the compensated target optical signal.
比如,在基于第二光传输装置发送的一组FEE系数对待发射的信号进行补偿操作(也即反补)后,信号的峰均功率比会增大,峰均功率比是指峰值功率与平均功率的比值,因此还可以对信号进行削波操作。削波操作是指:假设限制削波门限为2,则将信号中超过2的数据削掉,小于2的数据不受影响。For example, after the signal to be transmitted is compensated (that is, reversed) based on a set of FEE coefficients sent by the second optical transmission device, the peak-to-average power ratio of the signal will increase, and the peak-to-average power ratio refers to the ratio of the peak power to the average The ratio of the power, so the signal can also be clipped. The clipping operation refers to: assuming that the clipping threshold is 2, the data exceeding 2 in the signal will be clipped, and the data smaller than 2 will not be affected.
此外,在基于第二光传输装置发送的一组FEE系数对待发射的信号进行补偿操作(也即 反补)后,信号中可能还有一些低频部分,因此还可以继续对信号进行滤波操作。滤波操作是指:通过卷积处理过滤掉信号中一些低频部分。通常滤波操作和前述的补偿操作是一起实现的,具体地,把FFE系数与[alpha 1 alpha]这组数进行卷积运算,将卷积运算后的数据作为补偿操作时所需使用的FEE系数。以alpha的优选参数值为0.2为例,卷积运算为:将FFE系数以[0.2 1 0.2]这组数进行卷积运算。其中通过扫描得到alpha的优选参数值,alpha的扫描参数值可以为0.1,0.2,0.3等。In addition, after the signal to be transmitted is compensated (that is, inversely compensated) based on a set of FEE coefficients sent by the second optical transmission device, there may still be some low-frequency components in the signal, so the signal can continue to be filtered. The filtering operation refers to filtering out some low-frequency parts of the signal through convolution processing. Usually, the filtering operation and the aforementioned compensation operation are implemented together. Specifically, the FFE coefficient is convolved with [alpha 1 alpha], and the data after the convolution operation is used as the FEE coefficient required for the compensation operation. . Taking the preferred parameter value of alpha as 0.2 as an example, the convolution operation is: perform convolution operation on the FFE coefficient with the set of numbers [0.2 1 0.2]. The optimal parameter value of alpha is obtained through scanning, and the scanning parameter value of alpha may be 0.1, 0.2, 0.3, etc.
关于滤波操作和削波操作的具体实现方式本申请实施例不做限定。The specific implementation manners of the filtering operation and the clipping operation are not limited in this embodiment of the present application.
图2所示的实施例是以确定单个目标参数的扫描结果为例进行说明。在目标参数的数量为多个场景中,可以对这多个目标参数依次执行前述操作,以得到各个目标参数的优选参数值。示例地,在确定某个目标参数的优选参数值的过程中,可以将已经确定出优选参数值的目标参数的取值设置为相应优选参数值。可选地,在确定某个目标参数的优选参数值的过程中,也可以将已经确定出优选参数值的目标参数的取值设置为预先设置的参数值。本申请实施例对此不做限定。The embodiment shown in FIG. 2 is described by taking the scanning result of determining a single target parameter as an example. In a scenario where there are multiple target parameters, the aforementioned operations may be performed sequentially on the multiple target parameters to obtain the optimal parameter value of each target parameter. For example, in the process of determining the preferred parameter value of a certain target parameter, the value of the target parameter for which the preferred parameter value has been determined may be set as the corresponding preferred parameter value. Optionally, in the process of determining the preferred parameter value of a certain target parameter, the value of the target parameter for which the preferred parameter value has been determined may also be set as a preset parameter value. This embodiment of the present application does not limit it.
基于图2所示的实施例可得到各个目标参数的优选参数值。在得到各个目标参数的优选参数值后,便可将光传输装置的各个参数按照相应的优选参数值进行配置,以实现对光传输装置的性能的调整,也即让光传输装置运行在最优性能下。Based on the embodiment shown in FIG. 2 , optimal parameter values of various target parameters can be obtained. After obtaining the optimal parameter value of each target parameter, each parameter of the optical transmission device can be configured according to the corresponding optimal parameter value, so as to realize the adjustment of the performance of the optical transmission device, that is, to make the optical transmission device operate at the optimal under performance.
对于光传输装置为光模块的场景,由于光模块出厂标定最佳配置参数需要经过多个调测步骤,耗费大量人力物力。并且在现网应用中,环境的变化、器件老化、应用场景的不同等均会导致性能的改变,使得出厂标定的一套固定参数无法适应多变的现网场景。基于图2所示的实施例,本申请实施例提供了一种自动性能调整机制,可以实现光网络系统的自动性能调整,省去出厂标定的繁琐环节,节约人力物力。并且可以在光模块的不同应用场景(如不同传输距离、不同环境、器件老化等)中,将光模块自动优化至最优性能,提高系统运行的可靠性。For the scenario where the optical transmission device is an optical module, multiple commissioning steps are required to calibrate the optimal configuration parameters of the optical module at the factory, which consumes a lot of manpower and material resources. And in live network applications, changes in the environment, device aging, and different application scenarios will all lead to performance changes, making a set of fixed parameters calibrated at the factory unable to adapt to changing live network scenarios. Based on the embodiment shown in FIG. 2 , the embodiment of the present application provides an automatic performance adjustment mechanism, which can realize the automatic performance adjustment of the optical network system, save the cumbersome steps of factory calibration, and save manpower and material resources. And in different application scenarios of the optical module (such as different transmission distances, different environments, device aging, etc.), the optical module can be automatically optimized to the optimal performance to improve the reliability of the system operation.
需要说明的是,光传输装置运行在最优性能时,光传输装置的功耗也比较大,并且在很多场景下,可能并不需要光传输装置运行在最优性能下,而是只需光传输装置的性能满足最低性能门限即可。因此在本申请实施例中,在得到各个参数的优选参数值后,还可以进一步结合功耗对各个参数进行调试,以实现性能和功耗的平衡。It should be noted that when the optical transmission device operates at the optimal performance, the power consumption of the optical transmission device is also relatively large, and in many scenarios, it may not be necessary for the optical transmission device to operate at the optimal performance, but only the optical It is sufficient that the performance of the transmission device meets the minimum performance threshold. Therefore, in the embodiment of the present application, after the optimal parameter values of each parameter are obtained, each parameter may be further debugged in combination with power consumption, so as to achieve a balance between performance and power consumption.
图4是本申请实施例提供的一种调试参数的方法流程图。如图4所示,该方法包括如下几个步骤。Fig. 4 is a flow chart of a method for debugging parameters provided by an embodiment of the present application. As shown in Figure 4, the method includes the following steps.
步骤401:在得到N个目标参数分别对应的优选参数值后,将第一光传输装置在N个目标参数取值分别为相应优选参数值时目标光信号的信号质量作为优选信号质量,N大于等于1。Step 401: After obtaining the optimal parameter values corresponding to the N target parameters, use the signal quality of the target optical signal of the first optical transmission device when the values of the N target parameters are respectively the corresponding optimal parameter values as the optimal signal quality, where N is greater than is equal to 1.
在一些实施例中,在基于图2所示的实施例得到各个目标参数对应的优选参数值后,便可将第一光传输装置中各个目标参数的取值配置为相应的优选参数值,然后获取这种状态下目标光信号的信号质量,得到优选信号质量。In some embodiments, after obtaining the optimal parameter values corresponding to each target parameter based on the embodiment shown in FIG. 2 , the values of each target parameter in the first optical transmission device can be configured as corresponding optimal parameter values, and then The signal quality of the target optical signal in this state is obtained to obtain the optimal signal quality.
示例地,在基于图2所示的实施例得到处理发射光信号所采用的各个目标参数对应的优选参数值后,第一光传输装置可以从第二光传输装置处获取该优选信号质量,具体实现方式可以参考图2中的步骤201,在此不再重复说明。For example, after obtaining the optimal parameter value corresponding to each target parameter used to process the transmitted optical signal based on the embodiment shown in FIG. 2 , the first optical transmission device may obtain the optimal signal quality from the second optical transmission device, specifically For an implementation manner, reference may be made to step 201 in FIG. 2 , and the description will not be repeated here.
又示例地,在基于图2所示的实施例得到处理接收到的光信号所采用的各个目标参数对应的优选参数值后,第一光传输装置可以从本端获取该优选信号质量,实现方式可以参考图2中的步骤201,在此同样不再重复说明。As another example, after obtaining the optimal parameter values corresponding to the target parameters used to process the received optical signal based on the embodiment shown in FIG. 2 , the first optical transmission device can obtain the optimal signal quality from the local end. Reference can be made to step 201 in FIG. 2 , which will not be repeated here.
步骤402:如果优选信号质量优于信号质量门限,则基于N个目标参数中各个目标参数的扫描结果,确定N个目标参数中M个目标参数的调试参数值,M小于等于N。Step 402: If the preferred signal quality is better than the signal quality threshold, determine the debugging parameter values of M target parameters among the N target parameters based on the scanning results of each target parameter among the N target parameters, and M is less than or equal to N.
其中,第一光传输装置在M个目标参数中每个目标参数取值为对应的调试参数值时,目标光信号的信号质量优于信号质量门限,且第一光传输装置的功耗,低于第一光传输装置在N个目标参数中每个目标参数取值为对应的优选参数值时第一光传输装置的功耗。Wherein, when the first optical transmission device takes the value of each target parameter in the M target parameters as the corresponding debugging parameter value, the signal quality of the target optical signal is better than the signal quality threshold, and the power consumption of the first optical transmission device is low The power consumption of the first optical transmission device when each target parameter of the N target parameters takes a corresponding optimal parameter value.
优选信号质量可以是指:将第一光传输装置在N个目标参数取值分别为相应优选参数值时目标光信号的BER(也即优选BER)或SNR(也即优选SNR)。相应地,优选信号质量优于信号质量门限可以是指:优选BER小于BER门限,和/或,优选SNR大于SNR门限。The preferred signal quality may refer to: the BER (that is, the preferred BER) or the SNR (that is, the preferred SNR) of the target optical signal of the first optical transmission device when the values of the N target parameters are respectively the corresponding preferred parameter values. Correspondingly, the preferred signal quality being better than the signal quality threshold may refer to: the preferred BER is less than the BER threshold, and/or the preferred SNR is greater than the SNR threshold.
如果优选信号质量优于信号质量门限,表明当前第一光传输装置的性能较好,可以通过降低第一光传输装置的性能进而换取第一光传输装置的功耗的降低。也即牺牲部分性能换取功耗的收益。因此,可以在优选参数值的基础上,对各个目标参数的取值进行调试,得到相应的调试参数值。If the preferred signal quality is better than the signal quality threshold, it indicates that the current performance of the first optical transmission device is relatively good, and the performance of the first optical transmission device can be reduced in exchange for a reduction in power consumption of the first optical transmission device. That is, some performance is sacrificed in exchange for power consumption gains. Therefore, the value of each target parameter can be debugged on the basis of the optimal parameter value to obtain the corresponding debugging parameter value.
其中,M可以等于N,此时对全部目标参数进行调试。可选地,M也可以小于N,此时对部分目标参数进行调试。Wherein, M may be equal to N, and at this time, all target parameters are debugged. Optionally, M may also be smaller than N, and at this time, some target parameters are debugged.
在一些实施例中,步骤402的实现方式可以为:对于N个目标参数中任一目标参数,按照降低第一光传输装置的功耗的原则,将该目标参数的取值从初始参数值调整第一步长,得到第一参数值,初始参数值为该目标参数的优选参数值;确定第一光传输装置在该目标参数的取值为第一参数值时目标光信号的质量,得到第一参数值对应的信号质量。如果第一参数值对应的信号质量优于信号质量门限,则将第一参数值作为初始参数值,返回执行按照降低第一光传输装置的功耗的原则,将该目标参数取值从初始参数值调整第一步长,直至得到的第一参数值对应的信号质量低于信号质量门限,则将前一次得到的第一参数值作为任一目标参数的调试参数值。In some embodiments, the implementation of step 402 may be: for any target parameter among the N target parameters, according to the principle of reducing the power consumption of the first optical transmission device, the value of the target parameter is adjusted from the initial parameter value The first step is long, to obtain the first parameter value, the initial parameter value is the optimal parameter value of the target parameter; determine the quality of the target optical signal when the target parameter value of the first optical transmission device is the first parameter value, and obtain the second A parameter value corresponding to the signal quality. If the signal quality corresponding to the first parameter value is better than the signal quality threshold, then use the first parameter value as the initial parameter value, and return to execute. According to the principle of reducing the power consumption of the first optical transmission device, the value of the target parameter is changed from the initial parameter The value of the first parameter is adjusted until the signal quality corresponding to the obtained first parameter value is lower than the signal quality threshold, then the previously obtained first parameter value is used as the debugging parameter value of any target parameter.
也即,对于某个目标参数,在该目标参数的优选参数值的基础上,查找到信号质量稍微高于信号质量门限时对应的参数值,将该参数值作为调试参数值。从而使得第一光传输装置的性能满足性能阈值门限的同时,保持功耗最低。That is, for a certain target parameter, on the basis of the preferred parameter value of the target parameter, find the corresponding parameter value when the signal quality is slightly higher than the signal quality threshold, and use this parameter value as the debugging parameter value. Therefore, while the performance of the first optical transmission device satisfies the performance threshold, power consumption is kept at a minimum.
可选地,上述循环确定第一参数值的过程中,还可以预先设置一个稍微大于信号质量门限的参考信号质量,如果当前确定的第一参数值对应的信号质量和参考信号质量之间的差值小于参考数值(也即第一参数值对应的信号质量和参考信号质量比较接近),则将当前确定的第一参数值确定为调试参数值。Optionally, in the above process of cyclically determining the first parameter value, a reference signal quality that is slightly greater than the signal quality threshold may also be preset. If the difference between the signal quality corresponding to the currently determined first parameter value and the reference signal quality is If the value is smaller than the reference value (that is, the signal quality corresponding to the first parameter value is relatively close to the reference signal quality), then the currently determined first parameter value is determined as the debugging parameter value.
为了便于理解,在此对图4所示的实施例的技术效果进一步解释说明:For ease of understanding, the technical effect of the embodiment shown in Figure 4 is further explained here:
为了保证光网络系统性能裕量,或应对器件老化、温度变化等等因素带来的性能波动,光模块一般满负荷工作。例如:光模块工作在最高的出光功率、光模块中的oDSP算法开启最高性能模式等等,但是这样会造成光模块能耗的大量浪费。在光网络系统不断扩张的背景下,海量光模块的能耗增加会导致整个光网络系统的能耗大量增加,从而增加光网络系统的运营成本。基于此,图4所示的实施例提供了一种自动调试参数的机制,该机制能够对光模块的各种参数进行自动调节,使光网络系统性能满足链路要求的前提下,降低光网络系统的 功耗,从而降低光网络系统的运营成本。In order to ensure the performance margin of the optical network system, or to cope with performance fluctuations caused by factors such as device aging and temperature changes, optical modules generally work at full capacity. For example: the optical module works at the highest output power, the oDSP algorithm in the optical module turns on the highest performance mode, etc., but this will cause a lot of waste of energy consumption of the optical module. In the context of the continuous expansion of the optical network system, the increase in energy consumption of a large number of optical modules will lead to a substantial increase in the energy consumption of the entire optical network system, thereby increasing the operating cost of the optical network system. Based on this, the embodiment shown in Figure 4 provides a mechanism for automatic parameter adjustment, which can automatically adjust various parameters of the optical module, so that the performance of the optical network system can meet the link requirements and reduce the optical network performance. The power consumption of the system, thereby reducing the operating cost of the optical network system.
下面以图5和图6为例对图2以及图4所示的实施例进一步解释说明。The embodiments shown in FIG. 2 and FIG. 4 are further explained below by taking FIG. 5 and FIG. 6 as examples.
图5是本申请实施例提供的一种确定光模块配置参数的方法流程图。图5所示的方法应用在图6所示的场景中,也即光传输装置为光模块的场景中。在图6所示的光网络系统中,光模块的发射器包括驱动电路(driver,DRV)和光发射组件(transmitter optical subassembly,TOSA),用于将电信号转换为光信号,光发射组件也称为激光器。光模块的接收器包括光接收组件(receiving optical subassembly,ROSA)和跨阻放大器(transimpedance amplifier,TIA),用于将光信号转换为电信号。FIG. 5 is a flow chart of a method for determining configuration parameters of an optical module provided by an embodiment of the present application. The method shown in FIG. 5 is applied in the scenario shown in FIG. 6 , that is, the scenario where the optical transmission device is an optical module. In the optical network system shown in Figure 6, the transmitter of the optical module includes a drive circuit (driver, DRV) and an optical transmitter assembly (transmitter optical subassembly, TOSA), which is used to convert electrical signals into optical signals. The optical transmitter assembly is also called for the laser. The receiver of the optical module includes a receiving optical subassembly (ROSA) and a transimpedance amplifier (TIA), which are used to convert optical signals into electrical signals.
此外,光模块还包括oDSP和/或时钟数据恢复单元(clock and data recovery,CDR)。其中,oDSP或CDR上部署有图1中的处理单元中的数据分析单元以及光信号质量计算/存储单元。光模块还包括MCU,MCU上部署有图1中的处理单元中的参数调整控制单元。此外,光模块还包括图1中的回传通道发射单元和回传通道检测单元,具体功能参考图1。In addition, the optical module also includes an oDSP and/or a clock and data recovery unit (clock and data recovery, CDR). Wherein, the data analysis unit and the optical signal quality calculation/storage unit in the processing unit in FIG. 1 are deployed on the oDSP or the CDR. The optical module further includes an MCU, and the parameter adjustment control unit in the processing unit in FIG. 1 is deployed on the MCU. In addition, the optical module also includes the backhaul channel transmitting unit and the backhaul channel detection unit in FIG. 1 . Refer to FIG. 1 for specific functions.
如图5所示,图5所示的确定光模块配置参数的方法包括如下步骤501-506。As shown in FIG. 5, the method for determining configuration parameters of an optical module shown in FIG. 5 includes the following steps 501-506.
步骤501:在光模块A上电时,模块A中的参数调整控制单元将光模块A的各个参数配置为初始化的参数值。Step 501: When the optical module A is powered on, the parameter adjustment control unit in the module A configures each parameter of the optical module A as an initialized parameter value.
步骤502:对光模块A的接收器的偏置电压进行扫描(也即参数调整控制单元分别将偏置电压的取值配置为各个扫描参数值),由oDSP/CDR收集相应的信号质量得到接收器的偏置电压对应的扫描结果。图5中将该扫描结果记录在查找表(look up table,LUT)。Step 502: Scan the bias voltage of the receiver of the optical module A (that is, the parameter adjustment control unit configures the value of the bias voltage as each scanning parameter value), and the oDSP/CDR collects the corresponding signal quality to receive tor bias voltage corresponding to the scan result. In FIG. 5, the scanning result is recorded in a lookup table (look up table, LUT).
步骤503:对光模块A的发射器的偏置电压以及偏置电流进行扫描,得到发射器的偏置电压以及偏置电流分别对应的LUT。Step 503: Scan the bias voltage and bias current of the transmitter of the optical module A to obtain LUTs respectively corresponding to the bias voltage and bias current of the transmitter.
步骤504:对光模块A的发射器的增益进行扫描,得到发射器的增益对应的LUT。Step 504: Scan the gain of the transmitter of the optical module A to obtain the LUT corresponding to the gain of the transmitter.
步骤505:对光模块A发射光信号进行补偿操作(预补)对应的补偿系数进行扫描,得到补偿系数对应的LUT。Step 505: Scan the compensation coefficients corresponding to the compensation operation (pre-compensation) for the optical signal emitted by the optical module A to obtain the LUT corresponding to the compensation coefficients.
步骤506:在完成这五个参数的调整之后,oDSP/CDR得到这五个参数分别对应的优选参数值。然后oDSP/CDR在这五个参数分别对应的优选参数值的基础上,进一步进行功耗调整,也即oDSP/CDR确定这五个参数分别对应的调试参数值。Step 506: After completing the adjustment of these five parameters, oDSP/CDR obtains the optimal parameter values corresponding to these five parameters respectively. Then the oDSP/CDR further adjusts the power consumption based on the optimal parameter values corresponding to these five parameters, that is, the oDSP/CDR determines the debugging parameter values corresponding to these five parameters.
其中,如图6所示,在得到这五个参数分别对应的优选参数值或调试参数值后,oDSP/CDR将这五个参数分别对应的优选参数值或调试参数值发送至参数调整控制单元,由参数调整控制单元调整光模块A中的这五个参数的取值,以使模块A基于这五个参数分别对应的优选参数值或调试参数值传输数据。Among them, as shown in Figure 6, after obtaining the optimal parameter values or debugging parameter values corresponding to these five parameters, oDSP/CDR sends the optimal parameter values or debugging parameter values corresponding to these five parameters to the parameter adjustment control unit , the parameter adjustment control unit adjusts the values of the five parameters in the optical module A, so that the module A transmits data based on the preferred parameter values or debugging parameter values respectively corresponding to the five parameters.
比如,参数调整控制单元在得到发射器的偏置电压以及偏置电流的调试参数值后,参数调整控制单元控制发射器中的激光器的偏置电压以及偏置电流调整为调试参数值。又比如,参数调整控制单元在得到发射器的增益的调试参数值后,参数调整控制单元控制发射器中的DRV的放大倍数调整为调试参数值。又比如,参数调整控制单元在得到预补对应的补偿系数的调试参数值后,参数调整控制单元控制oDSP将补偿系数调整为调试参数值。For example, after the parameter adjustment control unit obtains the debug parameter values of the bias voltage and bias current of the transmitter, the parameter adjustment control unit controls the bias voltage and bias current of the laser in the transmitter to be adjusted to the debug parameter values. For another example, after the parameter adjustment control unit obtains the debug parameter value of the gain of the transmitter, the parameter adjustment control unit controls the magnification of the DRV in the transmitter to be adjusted to the debug parameter value. For another example, after the parameter adjustment control unit obtains the debugging parameter value of the compensation coefficient corresponding to the pre-compensation, the parameter adjustment control unit controls the oDSP to adjust the compensation coefficient to the debugging parameter value.
上述是以模块A为例说明,图6中模块B的调试过程同样可以参考上述过程,在此不再重复说明。The above is described by taking module A as an example. The debugging process of module B in FIG. 6 can also refer to the above process, and the description will not be repeated here.
另外需要说明的是,如图6所示,在光模块A中,参数调整控制单元还和回传通道发射 单元连接,以通过回传通道发射单元将某个参数的优选参数值或调试参数值发送至光模块B。光模块B的回传通道检测单元在解调得到该参数的优选参数值或调试参数值后,便可将该参数的优选参数值或调试参数值上送至光模块B的参数调整控制单元,以使光模块B的参数调整控制单元对相关器件的参数进行配置。在此不再详细说明。In addition, it should be noted that, as shown in Figure 6, in the optical module A, the parameter adjustment control unit is also connected to the return channel transmitting unit, so that the preferred parameter value or debugging parameter value of a certain parameter can be adjusted by the return channel transmitting unit. Send to optical module B. After the return channel detection unit of optical module B obtains the optimal parameter value or debugging parameter value of the parameter through demodulation, it can send the optimal parameter value or debugging parameter value of the parameter to the parameter adjustment control unit of optical module B, The parameter adjustment control unit of the optical module B configures the parameters of related devices. It will not be described in detail here.
基于图5和图6,在光模块A和光模块B连接之后,光模块A可以实现对某些配置参数的调整,以将光模块A自动优化至最优性能,从而提高光网络系统运行的可靠性。另外,光模块A还能基于功耗需求对光模块A的各种参数进行自动调节,使光网络系统性能满足链路要求的前提下,降低光网络系统的功耗,从而降低光网络系统的运营成本。Based on Figure 5 and Figure 6, after optical module A and optical module B are connected, optical module A can adjust some configuration parameters to automatically optimize optical module A to the optimal performance, thereby improving the reliability of optical network system operation sex. In addition, optical module A can automatically adjust various parameters of optical module A based on power consumption requirements, so that the performance of the optical network system can meet the link requirements, and reduce the power consumption of the optical network system, thereby reducing the power consumption of the optical network system. operating costs.
图7是本申请实施例提供的一种光传输装置的结构示意图。如图7所示,该光传输装置700包括处理单元701。Fig. 7 is a schematic structural diagram of an optical transmission device provided by an embodiment of the present application. As shown in FIG. 7 , the optical transmission device 700 includes a processing unit 701 .
处理单元701,用于获取目标参数的扫描结果,扫描结果包括多个扫描参数值以及和多个扫描参数值分别对应的信号质量,一个扫描参数值对应的信号质量指示光传输装置在目标参数的取值为扫描参数值时目标光信号的质量,目标光信号为光传输装置和另一光传输装置之间传输的光信号。具体实现方式可以参考图2实施例中的步骤201。The processing unit 701 is configured to obtain a scan result of the target parameter, the scan result includes multiple scan parameter values and signal qualities corresponding to the multiple scan parameter values, and the signal quality corresponding to one scan parameter value indicates that the optical transmission device is within the target parameter The value is the quality of the target optical signal when scanning the parameter value, and the target optical signal is the optical signal transmitted between the optical transmission device and another optical transmission device. For a specific implementation manner, reference may be made to step 201 in the embodiment in FIG. 2 .
处理单元701,还用于基于目标参数的扫描结果,确定目标参数的优选参数值,光传输装置在目标参数取值为优选参数值时目标光信号的质量,优于光传输装置在目标参数取值为其他参数值时目标光信号的质量。具体实现方式可以参考图2实施例中的步骤202。The processing unit 701 is also used to determine the preferred parameter value of the target parameter based on the scanning result of the target parameter. The quality of the target optical signal when the value is other parameter values. For a specific implementation manner, reference may be made to step 202 in the embodiment in FIG. 2 .
可选地,处理单元701还用于:Optionally, the processing unit 701 is also configured to:
在得到N个目标参数分别对应的优选参数值后,将光传输装置在N个目标参数取值分别为相应优选参数值时目标光信号的信号质量作为优选信号质量,N大于等于1。具体实现方式可以参考图4实施例中的步骤401。After obtaining the optimal parameter values corresponding to the N target parameters respectively, the signal quality of the target optical signal of the optical transmission device when the values of the N target parameters are respectively the corresponding optimal parameter values is taken as the optimal signal quality, and N is greater than or equal to 1. For a specific implementation manner, reference may be made to step 401 in the embodiment in FIG. 4 .
如果优选信号质量优于信号质量门限,则基于N个目标参数中各个目标参数的扫描结果,确定N个目标参数中M个目标参数的调试参数值,M小于等于N。具体实现方式可以参考图4实施例中的步骤402。If the preferred signal quality is better than the signal quality threshold, then based on the scanning results of each of the N target parameters, determine the debugging parameter values of M target parameters among the N target parameters, where M is less than or equal to N. For a specific implementation manner, reference may be made to step 402 in the embodiment in FIG. 4 .
其中,光传输装置在M个目标参数中每个目标参数取值为对应的调试参数值时,目标光信号的信号质量优于信号质量门限,且光传输装置的功耗,低于光传输装置在N个目标参数中每个目标参数取值为对应的优选参数值时光传输装置的功耗。Wherein, when the optical transmission device takes the value of each target parameter in the M target parameters as the corresponding debugging parameter value, the signal quality of the target optical signal is better than the signal quality threshold, and the power consumption of the optical transmission device is lower than that of the optical transmission device Among the N target parameters, each target parameter is the power consumption of the optical transmission device corresponding to an optimal parameter value.
可选地,处理单元701用于:Optionally, the processing unit 701 is configured to:
对于N个目标参数中任一目标参数,按照降低光传输装置的功耗的原则,将任一目标参数取值从初始参数值调整第一步长,得到第一参数值,初始参数值为任一目标参数的优选参数值;For any target parameter in the N target parameters, according to the principle of reducing the power consumption of the optical transmission device, the value of any target parameter is adjusted from the initial parameter value to the first step length to obtain the first parameter value, and the initial parameter value is any a preferred parameter value of a target parameter;
确定光传输装置在任一目标参数取值为第一参数值时目标光信号的质量,得到第一参数值对应的信号质量;Determining the quality of the target optical signal of the optical transmission device when any target parameter value is the first parameter value, and obtaining the signal quality corresponding to the first parameter value;
如果第一参数值对应的信号质量优于信号质量门限,则将第一参数值作为初始参数值,返回执行按照降低光传输装置的功耗的原则,将任一目标参数取值从初始参数值调整第一步长,直至得到的第一参数值对应的信号质量低于信号质量门限,则将前一次得到的第一参数值作为任一目标参数的调试参数值。If the signal quality corresponding to the first parameter value is better than the signal quality threshold, then use the first parameter value as the initial parameter value, and return to execute. According to the principle of reducing the power consumption of the optical transmission device, any target parameter value is changed from the initial parameter value Adjust the length of the first step until the signal quality corresponding to the obtained first parameter value is lower than the signal quality threshold, then use the previously obtained first parameter value as the debugging parameter value of any target parameter.
可选地,如图7所示,当目标参数为光传输装置对发射的光信号处理时所采用的参数时, 光传输装置700还包括发射器702,用于:Optionally, as shown in FIG. 7, when the target parameter is a parameter used by the optical transmission device to process the transmitted optical signal, the optical transmission device 700 further includes a transmitter 702, configured to:
在将光传输装置的目标参数取值设置为多个扫描参数值中任一扫描参数值后,向另一光传输装置发送信号质量请求消息;After setting the target parameter value of the optical transmission device to any one of the multiple scan parameter values, sending a signal quality request message to another optical transmission device;
如图7所示,光传输装置700还包括接收器703,用于:As shown in FIG. 7, the optical transmission device 700 further includes a receiver 703 for:
接收另一光传输装置发送的信号质量响应消息,信号质量响应消息携带另一光传输装置采集的目标光信号的信号质量,将信号质量响应消息中携带的信号质量作为与任一扫描参数值对应的信号质量。Receive a signal quality response message sent by another optical transmission device, the signal quality response message carries the signal quality of the target optical signal collected by another optical transmission device, and use the signal quality carried in the signal quality response message as corresponding to any scan parameter value signal quality.
可选地,当目标参数为光传输装置对接收到的光信号处理时所采用的参数时,处理单元701用于:Optionally, when the target parameter is a parameter used by the optical transmission device to process the received optical signal, the processing unit 701 is configured to:
在将光传输装置的目标参数取值设置为多个扫描参数值中任一扫描参数值后,光传输装置采集光传输装置接收到的目标光信号的信号质量,将采集到的信号质量作为与任一扫描参数值对应的信号质量。After setting the target parameter value of the optical transmission device to any one of the multiple scanning parameter values, the optical transmission device collects the signal quality of the target optical signal received by the optical transmission device, and uses the collected signal quality as the The signal quality corresponding to any scan parameter value.
可选地,目标参数包括光传输装置对目标光信号进行补偿操作时所使用的补偿系数;Optionally, the target parameter includes a compensation coefficient used when the optical transmission device performs a compensation operation on the target optical signal;
如图7所示,光传输装置700还包括发射器702,用于:As shown in FIG. 7 , the optical transmission device 700 further includes a transmitter 702 for:
将补偿系数的优选参数值发送至另一光传输装置,以使另一光传输装置基于补偿系数的优选参数值,对另一光传输装置向光传输装置发射的目标光信号进行补偿。The preferred parameter value of the compensation coefficient is sent to another optical transmission device, so that the other optical transmission device compensates the target optical signal transmitted by the other optical transmission device to the optical transmission device based on the preferred parameter value of the compensation coefficient.
可选地,如图7所示,如图7所示,光传输装置700还包括接收器703,用于:Optionally, as shown in FIG. 7, as shown in FIG. 7, the optical transmission device 700 further includes a receiver 703, configured to:
接收另一光传输装置发送的补偿系数的优选参数值;receiving the preferred parameter value of the compensation coefficient sent by another optical transmission device;
处理单元701,用于基于补偿系数的优选参数值对光传输装置向另一光传输装置发射的目标光信号进行补偿;The processing unit 701 is configured to compensate the target optical signal transmitted by the optical transmission device to another optical transmission device based on the preferred parameter value of the compensation coefficient;
相应地,处理单元701还用于:Correspondingly, the processing unit 701 is also used for:
光传输装置获取光传输装置的滤波参数和/或削波参数的扫描结果;The optical transmission device acquires a scanning result of filtering parameters and/or clipping parameters of the optical transmission device;
其中,滤波参数为光传输装置对补偿后的目标光信号进行滤波操作时所使用的参数,削波参数为光传输装置对补偿后的目标光信号进行削波操作时所使用的参数。Wherein, the filtering parameter is a parameter used by the optical transmission device to filter the compensated target optical signal, and the clipping parameter is a parameter used by the optical transmission device to clip the compensated target optical signal.
可选地,处理单元701用于:Optionally, the processing unit 701 is configured to:
获取目标参数对应的多个扫描参数值;Obtain multiple scan parameter values corresponding to the target parameter;
对于目标参数对应的多个扫描参数值中每个扫描参数值,确定每个扫描参数值对应的信号质量。For each scanning parameter value among the plurality of scanning parameter values corresponding to the target parameter, the signal quality corresponding to each scanning parameter value is determined.
可选地,处理单元701用于:Optionally, the processing unit 701 is configured to:
将目标参数的当前取值作为第一扫描参数值,确定第一扫描参数值对应的信号质量;Using the current value of the target parameter as the first scan parameter value, determining the signal quality corresponding to the first scan parameter value;
按照第一扫描步长调整当前取值,得到第二扫描参数值,确定第二扫描参数值对应的信号质量,如果第二扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照第一扫描步长调整第二扫描参数值,直至首次出现第三扫描参数值,第三扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量。Adjust the current value according to the first scan step to obtain the second scan parameter value, determine the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is better than the signal quality corresponding to the first scan parameter value , then continue to adjust the second scan parameter value according to the first scan step, until the third scan parameter value appears for the first time, and the signal quality corresponding to the third scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value.
可选地,处理单元701还用于:Optionally, the processing unit 701 is also configured to:
如果第二扫描参数值对应的信号质量低于第一扫描参数值对应的信号质量,则按照第二扫描步长调整当前取值,得到第四扫描参数值,确定第四扫描参数值对应的信号质量,如果第四扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照第二扫描步长调整第四扫描参数值,直至首次出现第五扫描参数值,第五扫描参数值对应的信号质量 低于前一次调整后的扫描参数值对应的信号质量;If the signal quality corresponding to the second scan parameter value is lower than the signal quality corresponding to the first scan parameter value, adjust the current value according to the second scan step size to obtain the fourth scan parameter value, and determine the signal corresponding to the fourth scan parameter value Quality, if the signal quality corresponding to the fourth scan parameter value is better than the signal quality corresponding to the first scan parameter value, continue to adjust the fourth scan parameter value according to the second scan step size until the fifth scan parameter value appears for the first time, the fifth scan parameter value The signal quality corresponding to the scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value;
其中,第一扫描步长和第二扫描步长的方向相反。Wherein, the directions of the first scanning step and the second scanning step are opposite.
可选地,处理单元701用于:Optionally, the processing unit 701 is configured to:
根据参数扫描指令获取目标参数的扫描结果,参数扫描指令来自光传输装置连接的网络设备,或参数扫描指令来自光传输装置的控制单元。The scanning result of the target parameter is acquired according to the parameter scanning instruction, the parameter scanning instruction comes from the network equipment connected to the optical transmission device, or the parameter scanning instruction comes from the control unit of the optical transmission device.
可选地,光传输装置700为光模块。Optionally, the optical transmission device 700 is an optical module.
可选地,光传输装置700部署在网络设备中。Optionally, the optical transmission apparatus 700 is deployed in network equipment.
上述处理单元701可以包括图1中的参数调整控制单元,数据分析单元,光信号质量计算/存储单元中的一个或多个。The above-mentioned processing unit 701 may include one or more of the parameter adjustment control unit, the data analysis unit, and the optical signal quality calculation/storage unit in FIG. 1 .
基于本申请可得到目标参数的优选参数值。在得到目标参数的优选参数值后,便可将光传输装置的目标参数按照相应的优选参数值进行配置,以实现对光传输装置的性能的调整。也即本申请提供了一种光传输装置的配置参数的自动性能调整机制,该机制可以实现光网络系统的自动性能调整,以提高光网络系统运行的可靠性。并且本申请可以省去出厂标定的繁琐环节,节约人力物力。Preferred parameter values for target parameters can be obtained based on the present application. After the optimal parameter value of the target parameter is obtained, the target parameter of the optical transmission device can be configured according to the corresponding optimal parameter value, so as to realize the adjustment of the performance of the optical transmission device. That is to say, the present application provides an automatic performance adjustment mechanism of the configuration parameters of the optical transmission device, which can realize the automatic performance adjustment of the optical network system, so as to improve the reliability of the operation of the optical network system. And this application can save the cumbersome links of factory calibration, saving manpower and material resources.
需要说明的是:上述实施例提供的光传输装置在确定配置参数时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将光传输装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的光传输装置与确定光传输装置配置参数的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。It should be noted that when the configuration parameters of the optical transmission device provided in the above-mentioned embodiments are determined, the division of the above-mentioned functional modules is used as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to needs. That is, the internal structure of the optical transmission device is divided into different functional modules to complete all or part of the functions described above. In addition, the optical transmission device provided by the above embodiments and the method embodiment for determining the configuration parameters of the optical transmission device belong to the same concept, and the specific implementation process thereof is detailed in the method embodiment, and will not be repeated here.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(digital subscriber line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如:固态硬盘(solid state disk,SSD))等。In the above embodiments, all or part may be implemented by software, hardware, firmware or any combination thereof. When implemented using software, it may be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part. The computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices. The computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.). The computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media. The available medium may be a magnetic medium (for example: floppy disk, hard disk, magnetic tape), an optical medium (for example: digital versatile disc (digital versatile disc, DVD)), or a semiconductor medium (for example: solid state disk (solid state disk, SSD) )wait.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps for implementing the above embodiments can be completed by hardware, and can also be completed by instructing related hardware through a program. The program can be stored in a computer-readable storage medium. The above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.
以上所述为本申请提供的实施例,并不用以限制本申请实施例,凡在本申请实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。The above-mentioned embodiments provided by this application are not intended to limit the embodiments of this application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the embodiments of this application shall be included in this application. Within the protection scope of the embodiment.

Claims (25)

  1. 一种确定光传输装置配置参数的方法,其特征在于,所述方法包括:A method for determining configuration parameters of an optical transmission device, characterized in that the method includes:
    第一光传输装置获取目标参数的扫描结果,所述扫描结果包括多个扫描参数值以及和所述多个扫描参数值分别对应的信号质量,一个扫描参数值对应的信号质量指示所述第一光传输装置在所述目标参数的取值为所述扫描参数值时目标光信号的质量,所述目标光信号为所述第一光传输装置和第二光传输装置之间传输的光信号;The first optical transmission device obtains the scan result of the target parameter, the scan result includes multiple scan parameter values and signal qualities corresponding to the multiple scan parameter values, and the signal quality corresponding to one scan parameter value indicates the first The optical transmission device is the quality of the target optical signal when the value of the target parameter is the value of the scanning parameter, and the target optical signal is the optical signal transmitted between the first optical transmission device and the second optical transmission device;
    所述第一光传输装置基于所述目标参数的扫描结果,确定所述目标参数的优选参数值,所述第一光传输装置在所述目标参数取值为所述优选参数值时所述目标光信号的质量,优于所述第一光传输装置在所述目标参数取值为其他参数值时所述目标光信号的质量。The first optical transmission device determines the preferred parameter value of the target parameter based on the scanning result of the target parameter, and the target The quality of the optical signal is better than the quality of the target optical signal of the first optical transmission device when the value of the target parameter is other parameter values.
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:The method of claim 1, further comprising:
    在得到N个目标参数分别对应的优选参数值后,将所述第一光传输装置在所述N个目标参数取值分别为相应优选参数值时所述目标光信号的信号质量作为优选信号质量,N大于等于1;After obtaining the optimal parameter values corresponding to the N target parameters respectively, the signal quality of the target optical signal when the values of the N target parameters are respectively the corresponding optimal parameter values by the first optical transmission device is taken as the optimal signal quality , N is greater than or equal to 1;
    如果所述优选信号质量优于信号质量门限,则基于所述N个目标参数中各个目标参数的扫描结果,确定所述N个目标参数中M个目标参数的调试参数值,M小于等于N;If the preferred signal quality is better than the signal quality threshold, then based on the scan results of each of the N target parameters, determine the debugging parameter values of the M target parameters among the N target parameters, where M is less than or equal to N;
    其中,所述第一光传输装置在所述M个目标参数中每个目标参数取值为对应的调试参数值时,所述目标光信号的信号质量优于所述信号质量门限,且所述第一光传输装置的功耗,低于所述第一光传输装置在所述N个目标参数中每个目标参数取值为对应的优选参数值时所述第一光传输装置的功耗。Wherein, when the first optical transmission device takes a value of each target parameter among the M target parameters as a corresponding debugging parameter value, the signal quality of the target optical signal is better than the signal quality threshold, and the The power consumption of the first optical transmission device is lower than the power consumption of the first optical transmission device when each of the N target parameters takes a value corresponding to a preferred parameter value.
  3. 如权利要求2所述的方法,其特征在于,所述基于所述N个目标参数中各个目标参数的扫描结果,确定所述N个目标参数中M个目标参数的调试参数值,包括:The method according to claim 2, wherein said determining the debugging parameter values of the M target parameters among the N target parameters based on the scan results of each of the N target parameters comprises:
    对于所述N个目标参数中任一目标参数,按照降低所述第一光传输装置的功耗的原则,将所述任一目标参数取值从初始参数值调整第一步长,得到第一参数值,所述初始参数值为所述任一目标参数的优选参数值;For any target parameter among the N target parameters, according to the principle of reducing the power consumption of the first optical transmission device, the value of any target parameter is adjusted from the initial parameter value to the first step to obtain the first parameter value, the initial parameter value is the preferred parameter value of any target parameter;
    确定所述第一光传输装置在所述任一目标参数取值为所述第一参数值时所述目标光信号的质量,得到所述第一参数值对应的信号质量;determining the quality of the target optical signal of the first optical transmission device when the value of any target parameter is the first parameter value, and obtaining the signal quality corresponding to the first parameter value;
    如果所述第一参数值对应的信号质量优于所述信号质量门限,则将所述第一参数值作为所述初始参数值,返回执行按照降低所述第一光传输装置的功耗的原则,将所述任一目标参数取值从初始参数值调整第一步长,直至得到的第一参数值对应的信号质量低于所述信号质量门限,则将前一次得到的第一参数值作为所述任一目标参数的调试参数值。If the signal quality corresponding to the first parameter value is better than the signal quality threshold, then use the first parameter value as the initial parameter value, and return to execute according to the principle of reducing the power consumption of the first optical transmission device , adjust the value of any target parameter from the initial parameter value to the first step until the signal quality corresponding to the obtained first parameter value is lower than the signal quality threshold, then use the previously obtained first parameter value as The debug parameter value for any of the target parameters.
  4. 如权利要求1-3任一所述的方法,其特征在于,当所述目标参数为所述第一光传输装置对发射的光信号处理时所采用的参数时,所述获取目标参数的扫描结果,包括:The method according to any one of claims 1-3, wherein when the target parameter is a parameter used by the first optical transmission device to process the transmitted optical signal, the scan for acquiring the target parameter Results, including:
    在将所述第一光传输装置的目标参数取值设置为所述多个扫描参数值中任一扫描参数值后,所述第一光传输装置向所述第二光传输装置发送信号质量请求消息;After setting the target parameter value of the first optical transmission device to any scan parameter value among the plurality of scan parameter values, the first optical transmission device sends a signal quality request to the second optical transmission device information;
    所述第一光传输装置接收所述第二光传输装置发送的信号质量响应消息,所述信号质量响应消息携带所述第二光传输装置采集的所述目标光信号的信号质量,将所述信号质量响应消息中携带的信号质量作为与所述任一扫描参数值对应的信号质量。The first optical transmission device receives the signal quality response message sent by the second optical transmission device, the signal quality response message carries the signal quality of the target optical signal collected by the second optical transmission device, and sends the The signal quality carried in the signal quality response message is used as the signal quality corresponding to any scanning parameter value.
  5. 如权利要求1至3任一所述的方法,其特征在于,当所述目标参数为所述第一光传输装置对接收到的光信号处理时所采用的参数时,所述获取目标参数的扫描结果,包括:The method according to any one of claims 1 to 3, wherein when the target parameter is a parameter used by the first optical transmission device to process the received optical signal, the acquired target parameter Scan results, including:
    在将所述第一光传输装置的目标参数取值设置为所述多个扫描参数值中任一扫描参数值后,所述第一光传输装置采集所述第一光传输装置接收到的所述目标光信号的信号质量,将采集到的信号质量作为与所述任一扫描参数值对应的信号质量。After setting the target parameter value of the first optical transmission device as any one of the multiple scanning parameter values, the first optical transmission device collects all the data received by the first optical transmission device. The signal quality of the target optical signal is determined, and the collected signal quality is used as the signal quality corresponding to any scanning parameter value.
  6. 如权利要求5所述的方法,其特征在于,所述目标参数包括所述第一光传输装置对所述目标光信号进行补偿操作时所使用的补偿系数;The method according to claim 5, wherein the target parameter comprises a compensation coefficient used when the first optical transmission device performs a compensation operation on the target optical signal;
    所述基于所述扫描结果,确定所述目标参数的优选参数值之后,所述方法还包括:After determining the preferred parameter value of the target parameter based on the scan result, the method further includes:
    所述第一光传输装置将所述补偿系数的优选参数值发送至所述第二光传输装置,以使所述第二光传输装置基于所述补偿系数的优选参数值,对所述第二光传输装置向所述第一光传输装置发射的所述目标光信号进行补偿。The first optical transmission device sends the optimal parameter value of the compensation coefficient to the second optical transmission device, so that the second optical transmission device performs an operation on the second optical transmission device based on the optimal parameter value of the compensation coefficient. The optical transmission device compensates the target optical signal transmitted by the first optical transmission device.
  7. 如权利要求1至5任一所述的方法,其特征在于,所述获取目标参数的扫描结果之前,所述方法还包括:The method according to any one of claims 1 to 5, wherein before acquiring the scan result of the target parameter, the method further comprises:
    所述第一光传输装置接收所述第二光传输装置发送的补偿系数的优选参数值;The first optical transmission device receives the preferred parameter value of the compensation coefficient sent by the second optical transmission device;
    所述第一光传输装置基于所述补偿系数的优选参数值对所述第一光传输装置向所述第二光传输装置发射的所述目标光信号进行补偿;The first optical transmission device compensates the target optical signal transmitted by the first optical transmission device to the second optical transmission device based on the preferred parameter value of the compensation coefficient;
    相应地,所述第一光传输装置获取目标参数的扫描结果,包括:Correspondingly, the scanning result of the target parameter acquired by the first optical transmission device includes:
    所述第一光传输装置获取所述第一光传输装置的滤波参数和/或削波参数的扫描结果;The first optical transmission device acquires scanning results of filtering parameters and/or clipping parameters of the first optical transmission device;
    其中,所述滤波参数为所述第一光传输装置对补偿后的目标光信号进行滤波操作时所使用的参数,所述削波参数为所述第一光传输装置对补偿后的目标光信号进行削波操作时所使用的参数。Wherein, the filtering parameter is a parameter used by the first optical transmission device to filter the compensated target optical signal, and the clipping parameter is a parameter used by the first optical transmission device to compensate the target optical signal Parameter used when performing clipping operations.
  8. 如权利要求1至5任一所述的方法,其特征在于,所述第一光传输装置获取目标参数的扫描结果,包括:The method according to any one of claims 1 to 5, wherein said first optical transmission device acquires the scanning results of target parameters, comprising:
    所述第一光传输装置获取所述目标参数对应的多个扫描参数值;The first optical transmission device acquires a plurality of scanning parameter values corresponding to the target parameter;
    对于所述目标参数对应的多个扫描参数值中每个扫描参数值,所述第一光传输装置确定每个扫描参数值对应的信号质量。For each scanning parameter value in the plurality of scanning parameter values corresponding to the target parameter, the first optical transmission device determines the signal quality corresponding to each scanning parameter value.
  9. 如权利要求1至5任一所述的方法,其特征在于,所述第一光传输装置获取目标参数的扫描结果,包括:The method according to any one of claims 1 to 5, wherein said first optical transmission device acquires the scanning results of target parameters, comprising:
    所述第一光传输装置将所述目标参数的当前取值作为第一扫描参数值,确定所述第一扫描参数值对应的信号质量;The first optical transmission device uses the current value of the target parameter as a first scan parameter value, and determines the signal quality corresponding to the first scan parameter value;
    按照第一扫描步长调整所述当前取值,得到第二扫描参数值,确定所述第二扫描参数值 对应的信号质量,如果所述第二扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照所述第一扫描步长调整所述第二扫描参数值,直至首次出现第三扫描参数值,所述第三扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量。Adjust the current value according to the first scan step to obtain a second scan parameter value, determine the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is better than the first scan The signal quality corresponding to the parameter value, then continue to adjust the second scan parameter value according to the first scan step size until the third scan parameter value appears for the first time, and the signal quality corresponding to the third scan parameter value is lower than the previous time The signal quality corresponding to the adjusted scan parameter value.
  10. 如权利要求9所述的方法,其特征在于,所述确定所述第二扫描参数值对应的信号质量之后,所述方法还包括:The method according to claim 9, wherein after determining the signal quality corresponding to the second scanning parameter value, the method further comprises:
    如果所述第二扫描参数值对应的信号质量低于第一扫描参数值对应的信号质量,则按照第二扫描步长调整所述当前取值,得到第四扫描参数值,确定所述第四扫描参数值对应的信号质量,如果所述第四扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照第二扫描步长调整所述第四扫描参数值,直至首次出现第五扫描参数值,所述第五扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量;If the signal quality corresponding to the second scanning parameter value is lower than the signal quality corresponding to the first scanning parameter value, adjust the current value according to the second scanning step to obtain a fourth scanning parameter value, and determine the fourth scanning parameter value. Scan the signal quality corresponding to the parameter value, if the signal quality corresponding to the fourth scanning parameter value is better than the signal quality corresponding to the first scanning parameter value, continue to adjust the fourth scanning parameter value according to the second scanning step until The fifth scan parameter value appears for the first time, and the signal quality corresponding to the fifth scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value;
    其中,所述第一扫描步长和所述第二扫描步长的方向相反。Wherein, the directions of the first scanning step and the second scanning step are opposite.
  11. 如权利要求1-10中任意一项所述的方法,其特征在于,所述第一光传输装置获取目标参数的扫描结果包括:The method according to any one of claims 1-10, wherein the acquisition of the scanning results of the target parameters by the first optical transmission device comprises:
    所述第一光传输装置根据参数扫描指令获取目标参数的扫描结果,所述参数扫描指令来自所述第一光传输装置连接的网络设备,或所述参数扫描指令来自所述第一光传输装置的控制单元。The first optical transmission device acquires the scanning result of the target parameter according to a parameter scanning instruction, the parameter scanning instruction comes from a network device connected to the first optical transmission device, or the parameter scanning instruction comes from the first optical transmission device control unit.
  12. 一种光传输装置,其特征在于,所述光传输装置包括:An optical transmission device, characterized in that the optical transmission device comprises:
    处理单元,用于获取目标参数的扫描结果,所述扫描结果包括多个扫描参数值以及和所述多个扫描参数值分别对应的信号质量,一个扫描参数值对应的信号质量指示所述光传输装置在所述目标参数的取值为所述扫描参数值时目标光信号的质量,所述目标光信号为所述光传输装置和另一光传输装置之间传输的光信号;A processing unit, configured to obtain a scan result of the target parameter, the scan result includes multiple scan parameter values and signal qualities corresponding to the multiple scan parameter values, and the signal quality corresponding to one scan parameter value indicates the optical transmission The quality of the target optical signal of the device when the value of the target parameter is the value of the scanning parameter, and the target optical signal is an optical signal transmitted between the optical transmission device and another optical transmission device;
    所述处理单元,还用于基于所述目标参数的扫描结果,确定所述目标参数的优选参数值,所述光传输装置在所述目标参数取值为所述优选参数值时所述目标光信号的质量,优于所述光传输装置在所述目标参数取值为其他参数值时所述目标光信号的质量。The processing unit is further configured to determine a preferred parameter value of the target parameter based on the scanning result of the target parameter, and the target light of the light transmission device when the value of the target parameter is the preferred parameter value The quality of the signal is better than the quality of the target optical signal of the optical transmission device when the value of the target parameter is other parameter values.
  13. 如权利要求12所述的光传输装置,其特征在于,所述处理单元还用于:The optical transmission device according to claim 12, wherein the processing unit is further configured to:
    在得到N个目标参数分别对应的优选参数值后,将所述光传输装置在所述N个目标参数取值分别为相应优选参数值时所述目标光信号的信号质量作为优选信号质量,N大于等于1;After obtaining the optimal parameter values corresponding to the N target parameters, the signal quality of the target optical signal of the optical transmission device when the values of the N target parameters are respectively the corresponding optimal parameter values is taken as the optimal signal quality, N greater than or equal to 1;
    如果所述优选信号质量优于信号质量门限,则基于所述N个目标参数中各个目标参数的扫描结果,确定所述N个目标参数中M个目标参数的调试参数值,M小于等于N;If the preferred signal quality is better than the signal quality threshold, then based on the scan results of each of the N target parameters, determine the debugging parameter values of the M target parameters among the N target parameters, where M is less than or equal to N;
    其中,所述光传输装置在所述M个目标参数中每个目标参数取值为对应的调试参数值时,所述目标光信号的信号质量优于所述信号质量门限,且所述光传输装置的功耗,低于所述光传输装置在所述N个目标参数中每个目标参数取值为对应的优选参数值时所述光传输装置的功耗。Wherein, in the optical transmission device, when each target parameter value of the M target parameters is a corresponding debugging parameter value, the signal quality of the target optical signal is better than the signal quality threshold, and the optical transmission The power consumption of the device is lower than the power consumption of the optical transmission device when each of the N target parameters takes a value corresponding to a preferred parameter value.
  14. 如权利要求13所述的光传输装置,其特征在于,所述处理单元用于:The optical transmission device according to claim 13, wherein the processing unit is used for:
    对于所述N个目标参数中任一目标参数,按照降低所述光传输装置的功耗的原则,将所述任一目标参数取值从初始参数值调整第一步长,得到第一参数值,所述初始参数值为所述任一目标参数的优选参数值;For any target parameter among the N target parameters, according to the principle of reducing the power consumption of the optical transmission device, adjust the value of any target parameter from the initial parameter value to the first step to obtain the first parameter value , the initial parameter value is the preferred parameter value of any target parameter;
    确定所述光传输装置在所述任一目标参数取值为所述第一参数值时所述目标光信号的质量,得到所述第一参数值对应的信号质量;determining the quality of the target optical signal of the optical transmission device when the value of any target parameter is the first parameter value, and obtaining the signal quality corresponding to the first parameter value;
    如果所述第一参数值对应的信号质量优于所述信号质量门限,则将所述第一参数值作为所述初始参数值,返回执行按照降低所述光传输装置的功耗的原则,将所述任一目标参数取值从初始参数值调整第一步长,直至得到的第一参数值对应的信号质量低于所述信号质量门限,则将前一次得到的第一参数值作为所述任一目标参数的调试参数值。If the signal quality corresponding to the first parameter value is better than the signal quality threshold, then use the first parameter value as the initial parameter value, return to execute according to the principle of reducing the power consumption of the optical transmission device, set The value of any target parameter is adjusted from the initial parameter value to the first step until the signal quality corresponding to the obtained first parameter value is lower than the signal quality threshold, then the previously obtained first parameter value is used as the The debug parameter value for any target parameter.
  15. 如权利要求12-14任一所述的光传输装置,其特征在于,当所述目标参数为所述光传输装置对发射的光信号处理时所采用的参数时,所述光传输装置还包括发射器,用于:The optical transmission device according to any one of claims 12-14, wherein when the target parameter is a parameter used by the optical transmission device to process the transmitted optical signal, the optical transmission device further includes Transmitters for:
    在将所述光传输装置的目标参数取值设置为所述多个扫描参数值中任一扫描参数值后,向所述另一光传输装置发送信号质量请求消息;After setting the target parameter value of the optical transmission device as any one of the plurality of scanning parameter values, sending a signal quality request message to the other optical transmission device;
    所述光传输装置还包括接收器,用于:The optical transmission device also includes a receiver for:
    接收所述另一光传输装置发送的信号质量响应消息,所述信号质量响应消息携带所述另一光传输装置采集的所述目标光信号的信号质量,将所述信号质量响应消息中携带的信号质量作为与所述任一扫描参数值对应的信号质量。receiving a signal quality response message sent by the other optical transmission device, where the signal quality response message carries the signal quality of the target optical signal collected by the other optical transmission device, and taking the signal quality response message carried in the signal quality response message The signal quality is taken as the signal quality corresponding to any one of the scan parameter values.
  16. 如权利要求12至14任一所述的光传输装置,其特征在于,当所述目标参数为所述光传输装置对接收到的光信号处理时所采用的参数时,所述处理单元用于:The optical transmission device according to any one of claims 12 to 14, wherein when the target parameter is a parameter used by the optical transmission device to process the received optical signal, the processing unit is configured to :
    在将所述光传输装置的目标参数取值设置为所述多个扫描参数值中任一扫描参数值后,采集所述光传输装置接收到的所述目标光信号的信号质量,将采集到的信号质量作为与所述任一扫描参数值对应的信号质量。After the target parameter value of the optical transmission device is set to any one of the multiple scanning parameter values, the signal quality of the target optical signal received by the optical transmission device is collected, and the collected The signal quality of is taken as the signal quality corresponding to any scanning parameter value.
  17. 如权利要求16所述的光传输装置,其特征在于,所述目标参数包括所述光传输装置对所述目标光信号进行补偿操作时所使用的补偿系数;The optical transmission device according to claim 16, wherein the target parameter includes a compensation coefficient used by the optical transmission device to perform a compensation operation on the target optical signal;
    所述光传输装置还包括发射器,用于:The optical transmission device also includes a transmitter for:
    将所述补偿系数的优选参数值发送至所述另一光传输装置,以使所述另一光传输装置基于所述补偿系数的优选参数值,对所述另一光传输装置向所述光传输装置发射的所述目标光信号进行补偿。sending the preferred parameter value of the compensation coefficient to the another optical transmission device, so that the other optical transmission device will send the optical signal to the optical transmission device based on the preferred parameter value of the compensation coefficient The target optical signal emitted by the transmission device is compensated.
  18. 如权利要求12至16任一所述的光传输装置,其特征在于,所述光传输装置还包括接收器,用于:The optical transmission device according to any one of claims 12 to 16, wherein the optical transmission device further comprises a receiver for:
    接收所述另一光传输装置发送的补偿系数的优选参数值;receiving the preferred parameter value of the compensation coefficient sent by the other optical transmission device;
    所述处理单元,用于基于所述补偿系数的优选参数值对所述光传输装置向所述另一光传输装置发射的所述目标光信号进行补偿;The processing unit is configured to compensate the target optical signal transmitted by the optical transmission device to the other optical transmission device based on the preferred parameter value of the compensation coefficient;
    相应地,所述处理单元还用于:Correspondingly, the processing unit is also used for:
    获取所述光传输装置的滤波参数和/或削波参数的扫描结果;Acquiring scanning results of filtering parameters and/or clipping parameters of the optical transmission device;
    其中,所述滤波参数为所述光传输装置对补偿后的目标光信号进行滤波操作时所使用的参数,所述削波参数为所述光传输装置对补偿后的目标光信号进行削波操作时所使用的参数。Wherein, the filtering parameter is a parameter used by the optical transmission device to filter the compensated target optical signal, and the clipping parameter is a clipping operation performed by the optical transmission device to the compensated target optical signal parameters used when .
  19. 如权利要求12至16任一所述的光传输装置,其特征在于,所述处理单元用于:The optical transmission device according to any one of claims 12 to 16, wherein the processing unit is used for:
    获取所述目标参数对应的多个扫描参数值;Obtaining a plurality of scanning parameter values corresponding to the target parameter;
    对于所述目标参数对应的多个扫描参数值中每个扫描参数值,确定每个扫描参数值对应的信号质量。For each scanning parameter value in the plurality of scanning parameter values corresponding to the target parameter, determine the signal quality corresponding to each scanning parameter value.
  20. 如权利要求12至16任一所述的光传输装置,其特征在于,所述处理单元用于:The optical transmission device according to any one of claims 12 to 16, wherein the processing unit is used for:
    将所述目标参数的当前取值作为第一扫描参数值,确定所述第一扫描参数值对应的信号质量;Using the current value of the target parameter as a first scan parameter value, determining the signal quality corresponding to the first scan parameter value;
    按照第一扫描步长调整所述当前取值,得到第二扫描参数值,确定所述第二扫描参数值对应的信号质量,如果所述第二扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照所述第一扫描步长调整所述第二扫描参数值,直至首次出现第三扫描参数值,所述第三扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量。Adjust the current value according to the first scan step to obtain a second scan parameter value, determine the signal quality corresponding to the second scan parameter value, if the signal quality corresponding to the second scan parameter value is better than the first scan The signal quality corresponding to the parameter value, then continue to adjust the second scan parameter value according to the first scan step size until the third scan parameter value appears for the first time, and the signal quality corresponding to the third scan parameter value is lower than the previous time The signal quality corresponding to the adjusted scan parameter value.
  21. 如权利要求20所述的光传输装置,其特征在于,所述处理单元还用于:The optical transmission device according to claim 20, wherein the processing unit is further used for:
    如果所述第二扫描参数值对应的信号质量低于第一扫描参数值对应的信号质量,则按照第二扫描步长调整所述当前取值,得到第四扫描参数值,确定所述第四扫描参数值对应的信号质量,如果所述第四扫描参数值对应的信号质量优于第一扫描参数值对应的信号质量,则继续按照第二扫描步长调整所述第四扫描参数值,直至首次出现第五扫描参数值,所述第五扫描参数值对应的信号质量低于前一次调整后的扫描参数值对应的信号质量;If the signal quality corresponding to the second scanning parameter value is lower than the signal quality corresponding to the first scanning parameter value, adjust the current value according to the second scanning step to obtain a fourth scanning parameter value, and determine the fourth scanning parameter value. Scan the signal quality corresponding to the parameter value, if the signal quality corresponding to the fourth scanning parameter value is better than the signal quality corresponding to the first scanning parameter value, continue to adjust the fourth scanning parameter value according to the second scanning step until The fifth scan parameter value appears for the first time, and the signal quality corresponding to the fifth scan parameter value is lower than the signal quality corresponding to the previous adjusted scan parameter value;
    其中,所述第一扫描步长和所述第二扫描步长的方向相反。Wherein, the directions of the first scanning step and the second scanning step are opposite.
  22. 如权利要求12-21中任意一项所述的光传输装置,其特征在于,所述处理单元用于:The optical transmission device according to any one of claims 12-21, wherein the processing unit is used for:
    所述光传输装置根据参数扫描指令获取目标参数的扫描结果,所述参数扫描指令来自所述光传输装置连接的网络设备,或所述参数扫描指令来自所述光传输装置的控制单元。The optical transmission device acquires the scanning result of the target parameter according to a parameter scanning instruction, the parameter scanning instruction comes from a network device connected to the optical transmission device, or the parameter scanning instruction comes from a control unit of the optical transmission device.
  23. 如权利要求12-22中任意一项所述的光传输装置,其特征在于,所述光传输装置为光模块。The optical transmission device according to any one of claims 12-22, wherein the optical transmission device is an optical module.
  24. 如权利要求12-22中任意一项所述的光传输装置,其特征在于,所述光传输装置部署在网络设备中。The optical transmission device according to any one of claims 12-22, wherein the optical transmission device is deployed in network equipment.
  25. 一种通信设备,其特征在于,所述通信设备包括存储器和处理器;A communication device, characterized in that the communication device includes a memory and a processor;
    所述存储器用于存储支持所述通信设备执行权利要求1-11任一项所述的方法的程序,以及存储用于实现权利要求1-11任一项所述的方法所涉及的数据;The memory is used to store a program that supports the communication device to execute the method described in any one of claims 1-11, and to store data involved in implementing the method described in any one of claims 1-11;
    所述处理器被配置为用于执行所述存储器中存储的程序。The processor is configured to execute programs stored in the memory.
PCT/CN2022/107511 2021-10-26 2022-07-22 Method for determining configuration parameter of optical transmission apparatus, optical transmission apparatus, and communication device WO2023071325A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111248581 2021-10-26
CN202111248581.7 2021-10-26
CN202111481710.7A CN116032356A (en) 2021-10-26 2021-12-06 Method for determining configuration parameters of optical transmission device, optical transmission device and communication equipment
CN202111481710.7 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023071325A1 true WO2023071325A1 (en) 2023-05-04

Family

ID=86069482

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/107517 WO2023071326A1 (en) 2021-10-26 2022-07-22 Fault locating method, device and optical network system
PCT/CN2022/107511 WO2023071325A1 (en) 2021-10-26 2022-07-22 Method for determining configuration parameter of optical transmission apparatus, optical transmission apparatus, and communication device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107517 WO2023071326A1 (en) 2021-10-26 2022-07-22 Fault locating method, device and optical network system

Country Status (2)

Country Link
CN (7) CN116032377A (en)
WO (2) WO2023071326A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116723091B (en) * 2023-08-09 2023-11-07 中国电信股份有限公司 Control system, control method, control device, electronic apparatus, and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162944A (en) * 2006-10-13 2008-04-16 中兴通讯股份有限公司 Method of implementing automatic detection optical module parameter
CN102223175A (en) * 2011-06-13 2011-10-19 烽火通信科技股份有限公司 Method for optimizing receiving parts of high-speed optical module
US20120099867A1 (en) * 2009-03-03 2012-04-26 Atsuya Hotta Wavelength multiplexing optical communication device and optical dispersion compensation method
CN102684781A (en) * 2012-04-17 2012-09-19 华为技术有限公司 Method and device for optimizing performance of optical module
CN106936510A (en) * 2015-12-30 2017-07-07 华为技术有限公司 The method of regulating optical power, the network equipment and Network Management Equipment
CN108900251A (en) * 2018-06-21 2018-11-27 青岛海信宽带多媒体技术有限公司 A kind of optimization method, device and the optical module of optical module balance parameters
CN208924244U (en) * 2018-09-28 2019-05-31 武汉光迅科技股份有限公司 A kind of optical module test macro
CN112448772A (en) * 2019-08-29 2021-03-05 北京京东尚科信息技术有限公司 Method and device for automatically adjusting compensation parameters

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100609703B1 (en) * 2004-09-02 2006-08-09 한국전자통신연구원 Apparatus for determining remote fault isolation of subscriber terminals and Method thereof
CN104601228A (en) * 2015-02-04 2015-05-06 苏州萤石光电科技有限公司 System and method for positioning PON network optical fiber link failures
US10313629B2 (en) * 2015-04-30 2019-06-04 Sony Olympus Medical Solutions Inc. Medical observation device
CN110661569B (en) * 2018-06-28 2022-08-02 中兴通讯股份有限公司 Method, device and storage medium for optical fiber fault location
CN110719128A (en) * 2019-09-30 2020-01-21 安徽问天量子科技股份有限公司 Device and method for detecting sensible positioning of optical fiber eavesdropping

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162944A (en) * 2006-10-13 2008-04-16 中兴通讯股份有限公司 Method of implementing automatic detection optical module parameter
US20120099867A1 (en) * 2009-03-03 2012-04-26 Atsuya Hotta Wavelength multiplexing optical communication device and optical dispersion compensation method
CN102223175A (en) * 2011-06-13 2011-10-19 烽火通信科技股份有限公司 Method for optimizing receiving parts of high-speed optical module
CN102684781A (en) * 2012-04-17 2012-09-19 华为技术有限公司 Method and device for optimizing performance of optical module
CN106936510A (en) * 2015-12-30 2017-07-07 华为技术有限公司 The method of regulating optical power, the network equipment and Network Management Equipment
CN108900251A (en) * 2018-06-21 2018-11-27 青岛海信宽带多媒体技术有限公司 A kind of optimization method, device and the optical module of optical module balance parameters
CN208924244U (en) * 2018-09-28 2019-05-31 武汉光迅科技股份有限公司 A kind of optical module test macro
CN112448772A (en) * 2019-08-29 2021-03-05 北京京东尚科信息技术有限公司 Method and device for automatically adjusting compensation parameters

Also Published As

Publication number Publication date
CN116032378A (en) 2023-04-28
CN116032357A (en) 2023-04-28
CN116032356A (en) 2023-04-28
CN116032355A (en) 2023-04-28
WO2023071326A1 (en) 2023-05-04
CN116032368A (en) 2023-04-28
CN116032377A (en) 2023-04-28
CN116032362A (en) 2023-04-28

Similar Documents

Publication Publication Date Title
KR101682384B1 (en) Method and apparatus for optimizing radio frequency transmission performance according to network
JP3413304B2 (en) Hybrid SCM optical transmission device
US8249447B2 (en) Systems and methods for optical receiver decision threshold optimization
US8229375B2 (en) Transmitting device, transmit power control method and control device thereof in microwave system
WO2023071325A1 (en) Method for determining configuration parameter of optical transmission apparatus, optical transmission apparatus, and communication device
US20130073749A1 (en) Backchannel communication between host and interface module
AU2012220249A1 (en) Method and apparatus for implementing digital baseband predistortion
US20140185704A1 (en) Hitless Modulation Changes in Double Capacity Links Using Adaptive Coding Modulation (ACM)
US20240323064A1 (en) Optimizing transmitter settings for in-band electrical interface between host device and optical module using out-of-band electrical interface
CN101141202B (en) DPSK light modulation signal receiving device and method thereof
US6882944B2 (en) Threshold setting apparatus for adjustably setting a threshold for use in identifying serial data from a baseband signal
WO2021213360A1 (en) Optical module and parameter transmission method, detection method and control method therefor, and forward transmission system
WO2021254281A1 (en) Optical signal processing method, control unit, optical transmission unit and storage medium
CA2956317C (en) Hybrid laser anti-clipping for fiber-coaxial networks
US20240297715A1 (en) Linear-drive pluggable optics transceiver
CN111436012B (en) Signal processing system, switch, and optical module
CN102386969B (en) A kind of optical communication system receptivity optimization method and device
JP2001197004A (en) Optical transmission system and optical transmitter used for the system
JP2003528542A (en) Apparatus and method for adjusting input gain for multiple signal formats in a data network
WO2006058459A1 (en) Adaptive optical receiving device and the method thereof
EP4087147A1 (en) Channel compensation method and communication apparatus
CN102055406B (en) Method and device for processing time sequence difference of driver
CN112650378A (en) Electronic device, power consumption optimization method for electronic device, and storage medium
WO2023109476A1 (en) Communication apparatus and method
JPH11122190A (en) Optical transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE