WO2023071192A1 - 一种并行穿插超分辨高速激光直写光刻的方法与装置 - Google Patents

一种并行穿插超分辨高速激光直写光刻的方法与装置 Download PDF

Info

Publication number
WO2023071192A1
WO2023071192A1 PCT/CN2022/096829 CN2022096829W WO2023071192A1 WO 2023071192 A1 WO2023071192 A1 WO 2023071192A1 CN 2022096829 W CN2022096829 W CN 2022096829W WO 2023071192 A1 WO2023071192 A1 WO 2023071192A1
Authority
WO
WIPO (PCT)
Prior art keywords
writing
beams
light
parallel
speed
Prior art date
Application number
PCT/CN2022/096829
Other languages
English (en)
French (fr)
Inventor
匡翠方
王洪庆
王子昂
杨臻垚
汤孟博
詹兰馨
张晓依
温积森
刘旭
Original Assignee
之江实验室
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 之江实验室, 浙江大学 filed Critical 之江实验室
Publication of WO2023071192A1 publication Critical patent/WO2023071192A1/zh
Priority to US18/404,934 priority Critical patent/US20240176244A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • G03F7/70366Rotary scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/70391Addressable array sources specially adapted to produce patterns, e.g. addressable LED arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning

Definitions

  • the invention belongs to the field of two-photon laser direct writing lithography, in particular to a method and device for parallel interspersed super-resolution high-speed laser direct writing lithography.
  • Two-photon laser direct writing can realize the processing of mm-cm level mesoscopic size objects while maintaining nm-um level high precision. This ability allows people to realize micron-scale or even nano-scale functional features on mesoscopic objects, which is especially important in the research fields of high-precision new complex devices and structures, such as on-chip integrated systems, micro-nano optics, metamaterials, etc.
  • the two-photon laser direct writing lithography technology there are still some problems in the two-photon laser direct writing lithography technology. Among them, the difficulty in achieving high-speed writing on the mesoscopic scale is the main factor restricting its further promotion, mainly due to insufficient scanning speed and imperfect writing strategy.
  • the rotating mirror can only scan in one direction, so it is not flexible enough to use.
  • the combination of edge light suppression technology and rotating mirror for multi-beam parallel laser direct writing is often relatively simple, and it is difficult to truly take advantage of the advantages of multi-beam rotating mirror scanning.
  • the purpose of the present invention is to provide a parallel interleaved super-resolution high-speed laser direct writing lithography method and device for the deficiencies of the prior art.
  • a method for parallel interspersed super-resolution high-speed laser direct writing lithography comprising the following steps:
  • the translation platform moves at a constant speed until the writing of a whole column of areas is completed, the optical switch is turned off, and the translation platform performs a stepping movement;
  • Steps e)-j) are repeated until all graphics are written.
  • the optical diffraction device based on writing light generates multiple beams propagating in different diffraction directions, including: using a spatial light modulator to load a multi-point pattern hologram to generate multiple writing beams, or using a diffractive optical element DOE to generate multiple writing beams .
  • the suppressed light-based optical diffraction device generates multiple beams propagating in different diffraction directions, including: using a spatial light modulator to load a multi-point pattern hologram to generate multiple solid spot beams, and further superimposing 0-2 ⁇ vortex phases to generate Multiple hollow suppressor beams.
  • the image-based rotator modulates the arrangement direction of multiple beams after beam combining, and the modulation angle ⁇ r satisfies:
  • the modulation angle ⁇ r is defined as the angle between the scanning direction of the rotating mirror and the arrangement direction of the multi-beams; ⁇ d represents the line spacing (resolution/um); n is an integer, indicating that the first beam reaches the specified position after n times of scanning , the distance between this position and the first writing position of the last beam of the multi-beam is ⁇ d; N beams indicates the number of beams, which is an integer; D indicates the distance between two adjacent beams of the multi-beam; L max indicates that the rotating mirror is single in the focal plane of the objective lens The maximum length a scan can achieve.
  • the uniform longitudinal motion based on the displacement platform is perpendicular to the scanning direction of the rotating mirror, and the motion speed V s satisfies:
  • v PLS represents the scanning speed of the rotating mirror.
  • the multi-channel high-speed optical switch is used to output multi-channel writing waveforms, the output multi-channel writing waveforms meet the parallel interleaving algorithm, and the writing light and suppressing light waveforms are output synchronously, including the steps of:
  • a device for interleaving super-resolution high-speed laser direct writing lithography in parallel used to implement the above method, comprising:
  • Writing optical laser which generates a femtosecond laser beam for two-photon laser direct writing
  • Suppressed light laser which generates a beam of continuous laser light to form vortex light to suppress two-photon direct writing
  • optical group velocity dispersion compensation unit to perform negative group velocity dispersion pre-compensation for 800nm femtosecond pulses, which is used to offset the positive group velocity dispersion generated in the subsequent optical path propagation;
  • Writing light/inhibiting light beam expansion and shaping device used to generate high-quality beam expansion, collimated writing light/inhibiting light
  • Writing light/suppression light multi-channel high-speed optical switch device used to independently control the on-off of each sub-beam in the high-throughput parallel writing light beam/suppression light beam;
  • a rotator device Like a rotator device, it is used to continuously adjust the arrangement direction of the multi-beams and the scanning direction of the rotating mirror;
  • the sample translation movement mechanism is used to move the lithographic sample vertically and in three dimensions in a large range.
  • the laser uses a 780nm femtosecond laser.
  • the suppressed light laser uses a 532nm continuous laser.
  • the group velocity dispersion compensating unit includes a group velocity dispersion compensating element, several mirrors and a one-dimensional translation stage. After the femtosecond laser is incident, it is guided by the reflectors and repeatedly passes through the group velocity dispersion compensating element for a total of 4 times. The compensation amount can be adjusted by adjusting the distance between the first incident and the second incident through a one-dimensional translation stage.
  • the group velocity dispersion compensation element includes but not limited to the following elements: grating, prism.
  • the compensation amount is calculated with reference to Kim, D.U., et al., Two-photon microscopy using an Yb(3+)-doped fiber laser with variable pulse widths.Opt Express, 2012.20(11):p.12341 -9.
  • the calculation method of the positive group velocity dispersion generated in the subsequent optical path propagation is as follows:
  • the optical diffractive device includes but not limited to the following devices: spatial light modulator SLM, diffractive optical element DOE.
  • the multi-channel high-speed optical switch uses a multi-channel acousto-optic modulator.
  • the beam expander includes two lenses, and the focal points of the two lenses placed front and back coincide, and the following relationship exists between the focal lengths f 1 , f 2 and the incident/exit spot size D 1 , D 2 :
  • the shaping device places a pinhole at the focal point where the two lenses overlap, and the size D of the pinhole is determined by the following formula: ⁇ represents the wavelength, f represents the focal length of the incident lens, and r represents the radius at 1/e 2 of the incident beam energy.
  • the image rotation device includes, but is not limited to, the following devices: Dove prisms and three-sided mirrors.
  • the scanning lens system includes a scanning lens, a field lens and an objective lens.
  • the scanning lens and the field lens form a 4f system, which is placed between the rotating mirror and the objective lens, and the rotating mirror and the objective lens are respectively placed at the front and rear focal planes of the 4f system.
  • the sample translational movement mechanism includes but not limited to the following devices: piezoelectric displacement stage, air bearing displacement stage, mechanical electric displacement stage, manual displacement stage, and a combination of at least one of the above devices.
  • the present invention provides a set of high-speed parallel laser direct writing system device, which uses an image rotator to rotate the arrangement direction of multiple beams, and continuously adjusts the modulation angle ⁇ r through the image rotator, so that high-speed parallel interpolation can be realized Writing method. Solved the problem of slow writing speed due to the simple scanning strategy in the traditional rotating mirror laser direct writing system;
  • the present invention proposes a high-speed parallel rotating mirror scanning method, which uses an image rotator to adjust the angle between the arrangement direction of multiple beams and the scanning direction of the rotating mirror, and uses a parallel interspersed algorithm for scanning, which can realize the most efficient scanning .
  • the present invention introduces multi-beam suppressing light, modulates the solid spot into a hollow spot by adding 0-2 ⁇ vortex light phase, suppresses the writing light based on the edge light suppression effect, and realizes the improvement of writing resolution. Compared with traditional two-photon writing, it has higher resolution and writing accuracy.
  • Fig. 1 is the schematic diagram of the device of parallel interspersed super-resolution high-speed laser direct writing lithography of the present invention; wherein: 1, 780nm femtosecond laser; 2, 780nm half-wave plate; 3-4, mirror; 5-6, diffraction grating; 7. Roof reflector; 8. Reflector; 9-10, 4f beam expander lens group; 11-12. Reflector; 13. 780nm spatial light modulator; 14. Reflector; 15. Lens; 16. 780nm multi-channel Acousto-optic modulator; 17. Lens; 18. Dichroic mirror; 19. Image rotator; 20. Mirror; 21. Rotating mirror; 22. Scanning lens; 23. Field mirror; 24.
  • Dichroic mirror 25 , high NA objective lens; 26, photoresist sample; 27, piezoelectric stage; 28, air bearing stage; 29, imaging lens; 30, equal ratio beam splitter; 31, condenser lens; 32, aperture; 33 , lighting source; 34, camera; 35, computer; 36, 532nm continuous light laser; 37-38, 4f beam expander lens group; 39-40, reflector; 41, 532nm spatial light modulator; 42, reflector; 43 , lens; 44, 532nm multi-channel acousto-optic modulator; 45, lens;
  • Fig. 2 is a schematic diagram of the realization of the method of parallel interspersed super-resolution high-speed laser direct writing lithography according to the present invention; wherein, the hollow arrow indicates the writing direction;
  • Fig. 3 is the schematic diagram of image rotator device among the present invention. Wherein: 46, reflection prism; 47, reflection mirror;
  • Fig. 4 is the experimental imaging diagram of the solid 6 light beams produced by the 780nm spatial light modulator at the focal plane of the objective lens;
  • Fig. 5 is an experimental imaging diagram of the hollow 6-beam generated by the 532nm spatial light modulator at the focal plane of the objective lens.
  • the present invention is a parallel super-resolution high-speed laser direct writing lithography device, which consists of a writing light laser, a writing light group velocity dispersion compensation unit, a writing light/suppressing light beam expanding/shaping device, and a writing light/suppressing light optical diffraction device , Write light/suppress light multi-channel high-speed optical switch device, image rotator device, high-speed rotating mirror, scanning lens system, and sample translational movement mechanism.
  • an embodiment of the present invention is specifically: a 780nm femtosecond laser 1 (writing optical laser) generates a beam of 780nm femtosecond laser, and adjusts the polarization direction through a 780nm half-wave plate 2 . After adjusting the direction of the laser beam through the reflector 3-4, the light beam passes through the diffraction grating 5-6, and then the height of the light beam is raised by the roof reflector 7, and returns to the original path to the diffraction grating 6-5.
  • the reflector 3 is selected as a D-type reflector, and the light beam returned from the diffraction grating 5 is reflected by the reflector 4, propagates from above the reflector 3 (that is, crosses the reflector 3), and is reflected by the reflector 8 and enters the beam expander lens group 9- 10. Complete beam expansion. Then the beam direction is adjusted by the mirrors 11-12 and then enters the 780nm spatial light modulator 13, and the single beam is modulated into multiple beams by loading a hologram on the spatial light modulator 13. After being reflected by the mirror 14, the hologram is Fourier transformed through the lens 15, and multi-focus is generated at the focal plane of the lens 15.
  • the 780nm multi-channel acousto-optic modulator 16 is placed at the focal plane of the lens 15, and each channel passes through a focal point to realize independent modulation of each beam of light. Then the divergent light is re-collimated by the lens 17, passes through the dichroic mirror 18, and enters the image rotator 19.
  • the 532nm continuous light laser 36 (suppression light laser) generates a beam of 532nm continuous laser light, which passes through the beam expander lens group 37-38 to complete the beam expansion.
  • the direction of the light beam is adjusted by the mirrors 39-40 and then enters the 532nm spatial light modulator 41.
  • the single beam is modulated into multiple beams.
  • the multiple beams are solid spots, and the 0-2 ⁇ vortex light phase is superimposed on the hologram to modulate the solid spots into hollow spots, thereby generating hollow spots. of suppressed light.
  • the hologram After being reflected by the mirror 42, the hologram is Fourier transformed by the lens 43, and a hollow suppressed light multi-focus is generated at the focal plane of the lens 43.
  • the 532nm multi-channel acousto-optic modulator 44 is placed at the focal plane of the lens 43, and each channel passes through a focal point to realize independent modulation of each beam of light.
  • the divergent light is then re-collimated by the lens 45 , combined with the writing light through the dichroic mirror 18 , and enters the image rotator 19 together.
  • the writing light and suppressing light are modulated by the image rotator 19 , reflected by the mirror 20 and enter the rotating mirror 21 .
  • the multi-beams are reflected by the scanning lens 22 and the field lens 23, then reflected by the dichroic mirror 24, enter the high NA objective lens 25, and focus on the photoresist sample 26.
  • the piezoelectric displacement stage 27 and the air bearing displacement stage 28 drive the photoresist sample 26 to perform scanning motion under program control.
  • the illuminating light source 33 adopts an LED lamp, and the illuminating light emitted passes through the diaphragm 32 and is converted into parallel light by the condenser lens 31, and then reflected by the equal-proportion beam splitter 30, then passes through the imaging lens 29 and the dichroic mirror 24 in sequence, and is focused to Entrance pupil of high NA objective 25.
  • the image of the photoresist sample 26 is sequentially imaged to the camera 34 through the high NA objective lens 25, the dichroic mirror 24, the imaging lens 29, and the equal-proportion beam splitter 30 for inscription observation.
  • FIG 4 it is the solid spot imaging diagram of the six-beam writing light measured at the focal plane of the high NA objective lens 25 in the experiment; Spot imaging diagram.
  • the present invention provides a method for parallel interleaving super-resolution high-speed laser direct writing lithography, which provides an innovative scanning method — interspersed scanning.
  • the three beams in the figure are taken as an example for illustration. 1, 2, and 3 in the figure represent the initial three beams, where the light spot is composed of the concentric superposition of the solid writing light spot and the hollow suppression light spot.
  • 1 * , 2 * means the second scan
  • 1 ** means the third scan.
  • a core idea here is that three beams of light form a scanning unit, but the three beams of light in this scanning unit are not at the same time in time, such as 1 ** of the third scan and 2 * of the second scan and The 3 of the first scan constitutes a scanning unit, and we refer to this scanning method as interpolation scanning here. In actual situations, from 1 to 1 * is often not completed at one time.
  • the formula that needs to be satisfied here is:
  • ⁇ d represents the line spacing (parallel to the scanning direction of the translation stage), resolution/um; n is an integer, indicating that the beam 1 reaches the 1 * position after n times of scanning, where the 1 * position is defined as the distance between the beam 2 and ⁇ d position; N beams represents the number of beams, which is an integer; D represents the distance between the starting points of two adjacent beams (as shown in the figure, the distance between the black spots of beams 1 and 2); ⁇ r represents the distance between the direction of multi-beam arrangement and the scanning direction of the rotating mirror Angle; L max represents the maximum length that the rotating mirror can achieve in a single scan on the focal plane of the objective lens.
  • the translation stage moves at a constant speed until the writing of the entire column on the left is completed, the optical switch is turned off, and then the translation stage performs a stepwise movement as shown by the arrow at the bottom of Figure 2.
  • the arrow in the figure is the image plane.
  • (b), (c), and (d) in Figure 3 are the simulation results of (a); the simulation results show the rotation of the arrangement direction of multiple beams on the image plane as the image rotator rotates.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本发明公开了一种并行穿插超分辨高速激光直写光刻的方法与装置。本发明方法使用并行穿插算法,首先基于刻写光空间光调制器产生刻写用多光束实心光斑;基于抑制光空间光调制器产生抑制用多光束空心光斑;然后将多光束实心光斑与多光束空心光斑合束产生调制后的多光束光斑;再基于多通道声光调制器输出刻写波形,位移台匀速移动直到完成一整列区域刻写,关闭光开关,位移台进行一次步进移动;直到所有图形刻写完成。本发明装置基于并行穿插扫描策略,有效解决了现有并行转镜激光直写光刻系统由于扫描策略过于简单而导致刻写效率低下的问题。同时,基于边缘光抑制原理获得超分辨效果,提升了现有双光子激光直写光刻的刻写精度。

Description

一种并行穿插超分辨高速激光直写光刻的方法与装置 技术领域
本发明属于双光子激光直写光刻领域,尤其涉及一种并行穿插超分辨高速激光直写光刻的方法与装置。
背景技术
双光子激光直写可以在保持nm-um级高精度的同时,实现mm-cm级介观尺寸物体的加工。这一能力允许人们在介观尺寸物体上实现微米级甚至纳米级的功能特征,这在高精度新型复杂器件与结构研究领域显得尤其重要,例如片上集成系统,微纳光学,超材料等。现阶段,双光子激光直写光刻技术依然存在一些问题,其中难以实现介观尺度的高速刻写是制约其进一步推广的主要因素,以扫描速度不足与刻写策略不完善为主要原因。
使用更高速的扫描元件对传统振镜进行替换,例如多面体扫描镜(PLS),又称转镜,或者声光偏转器(AOD)可有效提高刻写速度。另一方面,使用多光束同步扫描也是提升刻写速度的有效方法。如何将两者有效结合,是目前双光子激光直写光刻发展的一个主流方向。目前,AOD因为对光入射角要求高以及群速度色散等问题,难以与多光束扫描相结合,而转镜,可以达到与AOD同等级的扫描速度,并且易于和多光束扫描相结合。但是转镜只能沿同一个方向扫描,因此它在使用上不够灵活。目前使用边缘光抑制技术与转镜结合进行多光束并行激光直写的方法往往比较简单,难以真正发挥多光束转镜扫描的优势。
发明内容
本发明的目的在于针对现有技术的不足,提供一种并行穿插超分辨高速激光直写光刻的方法与装置。
本发明的目的是通过以下技术方案来实现的:一种并行穿插超分辨高速激光直写光刻的方法,包括以下步骤:
a)基于刻写光激光器产生一束刻写激光;
b)基于刻写光光学衍射器件产生不同衍射方向传播的多路光束;
c)基于抑制光激光器产生一束抑制激光;
d)基于抑制光光学衍射器件产生不同衍射方向传播的多路光束;
e)基于二向色镜对刻写光与抑制光进行合束,形成调制后的多光束;
f)基于像旋转器对合束后多光束排布方向进行调制;
g)基于位移台匀速纵向运动;
h)基于转镜对合束后多光束进行高速横向扫描;
i)基于多通道高速光开关,输出多通道刻写波形;
j)位移台匀速移动直到完成一整列区域刻写,关闭光开关,位移台进行一次步进移动;
k)重复步骤e)-j),直到所有图形刻写完成。
优选地,所述基于刻写光光学衍射器件产生不同衍射方向传播多路光束,包括:使用空间光调制器加载多点图案全息图产生多路刻写光束,或者使用衍射光学元件DOE产生多路刻写光束。
优选地,所述基于抑制光光学衍射器件产生不同衍射方向传播多路光束,包括:使用空间光调制器加载多点图案全息图产生多路实心光斑光束,并进一步叠加0-2π涡旋相位产生多路空心抑制光束。
进一步地,所述基于像旋转器对合束后多光束排布方向进行调制,调制角度θ r满足:
n×N beams×δd+δd=D|sinθ r|+D|cosθ r|·δd/L max
其中,调制角度θ r被定义为转镜扫描方向与多光束排列方向的夹角;δd表示线条间距(分辨率/um);n为整数,表示经过n次扫描后第一束光束到达指定位置,该位置与多光束最后一束第一次刻写位置相距δd;N beams表示光束数,为整数;D表示多光束相邻的两光束之间的间距;L max表示转镜在物镜焦平面单次扫描可达到的最大长度。
进一步地,所述基于位移台匀速纵向运动,运动方向与转镜扫描方向垂直,运动速度v s满足:
v s=δd/L max×v PLS
其中,v PLS表示转镜扫描速度。
进一步地,所述基于多通道高速光开关,输出多通道刻写波形,输出的多通道刻写波形满足并行穿插算法,刻写光与抑制光波形同步输出,包括步骤:
a)首先只输出第N beams束光的刻写波形;
b)经过n次扫描后开始输出第N beams-1束光的刻写波形;
c)再经过n次扫描后开始输出第N beams-2束光的刻写波形;
d)重复步骤b)-c)直到所有光束波形都开始输出。
进一步地,所述位移台进行一次步进移动,位移台移动方向平行于转镜刻写方向。移动距离L step为:L step=L max-L useless,其中L useless表示无效刻写区域,L useless=L out+D×N beams|cosθ r|,其中第一项L out表示转镜边缘由于切到光斑而产生的无效刻写长度,第二项表示由于多光束倾斜而导致的无效刻写长度。
一种并行穿插超分辨高速激光直写光刻的装置,用于实现上述方法,包括:
刻写光激光器,产生一束飞秒激光束用于双光子激光直写;
抑制光激光器,产生一束连续激光用于形成涡旋光对双光子直写进行抑制;
刻写光群速度色散补偿单元,对800nm飞秒脉冲进行负的群速度色散预补偿,用于抵消后续光路传播中所产生的正群速度色散;
刻写光/抑制光扩束整形装置,用于产生高质量的扩束、准直刻写光/抑制光;
刻写光/抑制光光学衍射器件,用于产生高通量并行刻写光束/抑制光束;
刻写光/抑制光多通道高速光开关装置,用于独立控制高通量并行刻写光束/抑制光束中各子光束的通断;
像旋转器装置,用于将多光束排布方向与转镜扫描方向进行连续调节;
高速转镜,用于实现高通量并行刻写光束的水平并行扫描;
扫描透镜系统,用于将高通量并行刻写光束聚焦在光刻样品上;
样品平移运动机构,用于将光刻样品垂直步进移动和大范围三维移动。
优选地,所述激光器使用780nm飞秒激光器。
优选地,所述抑制光激光器使用532nm连续激光器。
优选地,所述群速度色散补偿单元包括群速度色散补偿元件,若干反射镜以及一维位移台,飞秒激光入射后经过反射镜引导反复通过群速度色散补偿元件,共计4次。通过一维位移台调节第一次入射和第二次入射之间的距离可调节补偿量。
优选地,所述群速度色散补偿元件包括但不限于以下元件:光栅,棱镜。
优选地,所述补偿量计算方式参考文献Kim,D.U.,et al.,Two-photon microscopy using an Yb(3+)-doped fiber laser with variable pulse widths.Opt Express,2012.20(11):p.12341-9。
优选地,所述后续光路传播中所产生的正群速度色散的计算方法如下:
a)确定系统中所有可产生群速度色散的光学元件;
b)确定以上各个元件所使用的材料;
c)在文献或在线数据库中查询各个材料的群速度色散GVD大小;
d)确定各个元件的厚度d;
e)根据公式GDD=∑GVD i×d i,i=1,2,3…确定系统总的群速度延迟GDD,公式中i表示第i个元件。
优选地,所述光学衍射器件包括但不限于以下器件:空间光调制器SLM、衍射光学元件DOE。
优选地,所述多通道高速光开关使用多通道声光调制器。
优选地,所述扩束装置包括两个透镜,前后摆放的两个透镜焦点重合,焦距f 1,f 2与入射/ 出射光斑大小之间D 1,D 2存在以下关系:
Figure PCTCN2022096829-appb-000001
优选地,所述整形装置在扩束装置的基础上,在两个透镜重合的焦点位置放置一个针孔,针孔大小D由以下公式确定:
Figure PCTCN2022096829-appb-000002
λ表示波长,f表示入射透镜焦距,r表示入射光束能量1/e 2处半径。
优选地,所述像旋转装置,包括但不限于以下器件:道威棱镜、三面反射镜。
优选地,所述扫描透镜系统,包括一个扫描透镜,一个场镜以及一个物镜。扫描透镜与场镜组成4f系统,放置于转镜与物镜之间,转镜与物镜分别置于4f系统的前后焦平面处。
优选地,所述样品平移运动机构包括但不限于以下器件:压电位移台、空气轴承位移台、机械电动位移台、手动位移台,以及至少含有一种上述器件的组合。
本发明的有益效果如下:
(1)本发明提供了一套高速并行激光直写系统装置,使用像旋转器对多光束的排列方向进行旋转操作,通过像旋转器对调制角度θ r进行连续调节,可实现高速并行插空刻写方法。解决了传统转镜激光直写系统中由于扫描策略简单导致刻写速度慢的问题;
(2)本发明提出了一种高速并行转镜扫描方法,该方法利用像旋转器调节多光束排布方向与转镜扫描方向的夹角,使用并行穿插算法进行扫描,可以实现最高效的扫描。解决了传统转镜激光直写系统由于扫描策略简单的问题,可有效提高刻写效率;
(3)本发明引入多光束抑制光,通过添加0-2π涡旋光相位将实心光斑调制为空心光斑,基于边缘光抑制效应,对刻写光进行抑制,实现刻写分辨率提升。相较于传统双光子刻写具有更高的分辨率和刻写精度。
附图说明
图1为本发明并行穿插超分辨高速激光直写光刻的装置的示意图;其中:1、780nm飞秒激光器;2、780nm半波片;3-4、反射镜;5-6、衍射光栅;7、屋脊反射镜;8、反射镜;9-10、4f扩束透镜组;11-12、反射镜;13、780nm空间光调制器;14、反射镜;15、透镜;16、780nm多通道声光调制器;17、透镜;18、二向色镜;19、像旋转器;20、反射镜;21、转镜;22、扫描透镜;23、场镜;24、二向色镜;25、高NA物镜;26、光刻胶样品;27、压电位移台;28、空气轴承位移台;29、成像透镜;30、等比例分光片;31、聚光透镜;32、光阑;33、照明光源;34、相机;35、计算机;36、532nm连续光激光器;37-38、4f扩束透镜组;39-40、反射镜;41、532nm空间光调制器;42、反射镜;43、透镜;44、532nm多通道声光调制器;45、透镜;
图2为本发明并行穿插超分辨高速激光直写光刻的方法实现的示意图;其中,空心箭头表示刻写方向;
图3为本发明中像旋转器装置的示意图;其中:46、反射棱镜;47、反射镜;
图4为780nm空间光调制器产生的实心6光束在物镜焦平面处的实验成像图;
图5为532nm空间光调制器产生的空心6光束在物镜焦平面处的实验成像图。
具体实施方式
为了更加清楚地阐释本发明的目的、技术方案及优点,以下结合实施例及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。本领域技术人员在理解本发明的技术方案基础上进行修改或等同替换,而未脱离本发明技术方案的原理和精神,均应涵盖在本发明的保护范围内。
本发明一种并行穿插超分辨高速激光直写光刻的装置,由刻写光激光器、刻写光群速度色散补偿单元、刻写光/抑制光的扩束/整形装置、刻写光/抑制光光学衍射器件、刻写光/抑制光多通道高速光开关装置、像旋转器装置、高速转镜、扫描透镜系统、样品平移运动机构组成。
如图1所示,本发明一种实施例,具体为:780nm飞秒激光器1(刻写光激光器)产生一束780nm飞秒激光,透过780nm半波片2进行偏振方向调整。经过反射镜3-4调整激光方向后,透过衍射光栅5-6,再由屋脊反射镜7对光束进行高度提升后,原路返回衍射光栅6-5。反射镜3选择为D型反射镜,从衍射光栅5返回的光束经反射镜4反射,从反射镜3上方传播(即越过反射镜3),并由反射镜8反射进入扩束透镜组9-10,完成扩束。再由反射镜11-12调整光束方向后入射到780nm空间光调制器13,通过在空间光调制器13上加载全息图将单光束调制为多光束。再经过反射镜14反射,通过透镜15对全息图进行傅里叶变换,在透镜15焦平面处产生多焦点。780nm多通道声光调制器16放置在透镜15焦平面处,每个通道通过一个焦点,以实现对每一束光的独立调制。再由透镜17对发散光重新准直,经过二向色镜18,进入像旋转器19。
此外,532nm连续光激光器36(抑制光激光器)产生一束532nm连续激光,经过扩束透镜组37-38,完成扩束。再由反射镜39-40调整光束方向后入射到532nm空间光调制器41。通过在空间光调制器41上加载全息图将单光束调制为多光束,此时多光束为实心光斑,在全息图上叠加0-2π涡旋光相位将实心光斑调制为空心光斑,从而产生空心光斑的抑制光。再经过反射镜42反射,通过透镜43对全息图进行傅里叶变换,在透镜43焦平面处产生空心抑制光多焦点。532nm多通道声光调制器44放置在透镜43焦平面处,每个通道通过一个焦点,以实现对每一束光的独立调制。再由透镜45对发散光重新准直,经过二向色镜18与刻写光完成合束,共同进入像旋转器19。
刻写光和抑制光经过像旋转器19调制后,经反射镜20反射后进入转镜21。多光束通过 转镜21反射后经扫描透镜22、场镜23,再由二向色镜24反射后进入高NA物镜25,并聚焦到光刻胶样品26上。压电位移台27和空气轴承位移台28在程序控制下带动光刻胶样品26进行扫描运动。照明光源33采用LED灯,发出的照明光通过光阑32后被聚光透镜31转化为平行光,再经过等比例分光片30反射后,依次经过成像透镜29、二向色镜24,聚焦到高NA物镜25的入瞳处。此外,光刻胶样品26处图像依次经过高NA物镜25、二向色镜24、成像透镜29、等比例分光片30成像到相机34处,用于刻写观察。如图4所示为实验中在高NA物镜25焦平面测到的六光束刻写光实心光斑成像图;如图5所示为实验中在高NA物镜25焦平面测到的六光束抑制光空心光斑成像图。
如图2所示,本发明一种并行穿插超分辨高速激光直写光刻的方法,提供了一种具有创新性的扫描方式——插空扫描,以图中三光束为例进行说明。图中1,2,3表示初始的三光束,此处光斑由实心刻写光光斑与空心抑制光光斑同心叠加组成。为了方便表述,我们先认为1 *,2 *表示第2次扫描,1 **表示第3次扫描。这里的一个核心思想是三束光组成一个扫描单元,但这个扫描单元里的三束光在时间上并不是同一时刻的,比如第三次扫描的1 **和第二次扫描的2 *与第一次扫描的3组成了一个扫描单元,我们这里将这种扫描方式称为插空扫描。实际情况中,从1到1 *往往不是一次完成的,这里需要满足的公式是:
n×N beams×δd+δd=D|sinθ r|+D|cosθ r|·δd/L max
其中,δd表示线条间距(平行于位移台扫描方向),分辨率/um;n为整数,表示经过n次扫描后光束1到达1 *位置,这里1 *位置被定义为距离光束2为δd的位置;N beams表示光束数,为整数;D表示相邻两光束起始点之间的间距(如图中光束1和2黑点间距);θ r表示多光束排布方向与转镜扫描方向夹角;L max表示转镜在物镜焦平面单次扫描可达到的最大长度。位移台匀速移动直到完成左边一整列区域的刻写,关闭光开关,然后位移台按照图2下方箭头所示进行一次步进移动。
如图3(a)所示,本发明一种像旋转器装置的设计方案,具体为:反射棱镜36顶角为120°,顶角距离反射镜37的距离H与斜边L满足L=2H;图中箭头所指为像平面。图3中的(b)、(c)、(d)为(a)的模拟仿真结果;仿真结果显示的为像平面上多光束的排列方向随像旋转器旋转而产生的旋转。(b)为像旋转器0°,此时多光束竖直排列;(c)为像旋转器22.5°,此时多光束旋转45°排列;(d)为像旋转器45°,此时多光束旋转90°,水平排列。

Claims (8)

  1. 一种并行穿插超分辨高速激光直写光刻的方法,其特征在于,包括步骤:
    a)基于刻写光激光器产生一束刻写激光;
    b)基于刻写光光学衍射器件产生不同衍射方向传播的多路刻写光束;
    c)基于抑制光激光器产生一束抑制激光;
    d)基于抑制光光学衍射器件产生不同衍射方向传播的多路抑制光束;
    e)基于二向色镜对刻写光与抑制光进行合束,形成调制后的多光束;
    f)基于像旋转器对多光束排布方向进行调制;
    g)基于位移台匀速纵向运动;
    h)基于转镜对多光束进行高速横向扫描;
    i)基于多通道高速光开关,输出多通道刻写波形;
    j)位移台匀速移动直到完成一整列区域刻写,关闭光开关,位移台进行一次步进移动;
    k)重复步骤e)-j),直到所有图形刻写完成。
  2. 如权利要求1所述并行穿插超分辨高速激光直写光刻的方法,其特征在于,步骤f)中,调制角度θ r满足:
    n×N beams×δd+δd=D|sinθ r|+D|cosθ r|·δd/L max
    其中,调制角度θ r被定义为转镜扫描方向与多光束排列方向的夹角;n为整数,表示经过n次扫描后第一束光束到达指定位置,该位置与多光束最后一束第一次刻写位置相距δd;δd表示线条间距;N beams表示光束数,为整数;D表示多光束相邻的两光束之间的间距;L max表示转镜在物镜焦平面单次扫描可达到的最大长度。
  3. 如权利要求1所述并行穿插超分辨高速激光直写光刻的方法,其特征在于,步骤g)中,运动方向与转镜扫描方向垂直,运动速度v s满足:
    v s=δd/L max·v PLS
    其中,v PLS表示转镜扫描速度。
  4. 如权利要求1所述并行穿插超分辨高速激光直写光刻的方法,其特征在于,步骤i)中,输出的多通道刻写波形满足并行穿插算法,包括步骤:
    i1)首先只输出第N beams束光的刻写波形;
    i2)经过n次扫描后开始输出第N beams-1束光的刻写波形;
    i3)再经过n次扫描后开始输出第N beams-2束光的刻写波形;
    i4)重复步骤i2)-i3)直到所有光束波形都开始输出。
  5. 如权利要求1所述并行穿插超分辨高速激光直写光刻的方法,其特征在于,步骤j)中,位移台进行一次步进移动的移动方向平行于转镜刻写方向;移动距离L step为:
    L step=L max-L useless
    L useless=L out+D×N beams|cosθ r|
    其中,L useless表示无效刻写区域;第一项L out表示转镜边缘由于切到光斑而产生的无效刻写长度,第二项D×N beams|cosθ r|表示由于多光束倾斜而导致的无效刻写长度。
  6. 一种用于实现权利要求1所述方法的装置,其特征在于,包括:
    刻写光激光器,用于发出刻写激光;
    刻写光群速度色散补偿单元,用于抵消刻写光在后续光路传播中所产生的正群速度色散;
    刻写光扩束整形装置,用于产生高质量的扩束、准直刻写光;
    刻写光光学衍射器件,用于产生高通量并行刻写光束;
    刻写光多通道高速光开关装置,用于独立控制高通量并行刻写光束中各子光束的通断;
    抑制光激光器,用于发出抑制激光;
    抑制光扩束整形装置,用于产生高质量的扩束、准直抑制光;
    抑制光光学衍射器件,用于产生高通量并行抑制光束;
    抑制光多通道高速光开关装置,用于独立控制高通量并行抑制光束中各子光束的通断;
    像旋转器装置,用与将多光束排布方向与转镜扫描方向进行连续调节;
    高速转镜,用于实现高通量并行刻写光束的水平并行扫描;
    扫描透镜系统,用于将高通量并行刻写光束聚焦在光刻样品上;
    样品平移运动机构,用于将光刻样品垂直步进移动和大范围三维移动。
  7. 如权利要求6所述装置,其特征在于,所述群速度色散补偿单元包括群速度色散补偿元件,若干反射镜以及一维位移台;所述光学衍射器件包括空间光调制器SLM、数字微镜器件DMD、衍射光学元件DOE;所述多通道高速光开关装置为多通道声光调制器;所述扫描透镜系统包括但不限于以下器件:扫描透镜、场镜和物镜,以及至少含有一种上述器件的组合;所述样品平移运动机构包括但不限于以下器件:压电位移台、空气轴承位移台、机械电动位移台、手动位移台,以及至少含有一种上述器件的组合;所述像旋转装置包括道威棱镜、三面反射镜。
  8. 如权利要求7所述装置,其特征在于,所述群速度色散补偿元件包括但不限于以下元件:光栅,棱镜。
PCT/CN2022/096829 2021-10-26 2022-06-02 一种并行穿插超分辨高速激光直写光刻的方法与装置 WO2023071192A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/404,934 US20240176244A1 (en) 2021-10-26 2024-01-05 Method and apparatus for direct writing photoetching by parallel interpenetrating super-resolution high-speed laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111248686.2A CN113960891B (zh) 2021-10-26 2021-10-26 一种并行穿插超分辨高速激光直写光刻的方法与装置
CN202111248686.2 2021-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/404,934 Continuation US20240176244A1 (en) 2021-10-26 2024-01-05 Method and apparatus for direct writing photoetching by parallel interpenetrating super-resolution high-speed laser

Publications (1)

Publication Number Publication Date
WO2023071192A1 true WO2023071192A1 (zh) 2023-05-04

Family

ID=79467377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096829 WO2023071192A1 (zh) 2021-10-26 2022-06-02 一种并行穿插超分辨高速激光直写光刻的方法与装置

Country Status (3)

Country Link
US (1) US20240176244A1 (zh)
CN (1) CN113960891B (zh)
WO (1) WO2023071192A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960891B (zh) * 2021-10-26 2024-02-09 之江实验室 一种并行穿插超分辨高速激光直写光刻的方法与装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076655A1 (en) * 1999-07-29 2002-06-20 Borrelli Nicholas F. Direct writing of optical devices in silica-based glass using femtosecond pulse lasers
CN103984211A (zh) * 2014-05-08 2014-08-13 中国科学院光电技术研究所 一种基于双光束聚合引发以及抑制的高分辨成像光刻方法
CN109491214A (zh) * 2018-12-04 2019-03-19 中国科学院上海光学精密机械研究所 集成化超分辨激光直写装置及直写方法
CN113515017A (zh) * 2021-04-12 2021-10-19 之江实验室 一种基于aod扫描的双光束高速激光直写方法与装置
CN113960891A (zh) * 2021-10-26 2022-01-21 之江实验室 一种并行穿插超分辨高速激光直写光刻的方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957532B2 (ja) * 2002-03-11 2007-08-15 富士フイルム株式会社 画像記録方法および画像記録装置
JP2003203853A (ja) * 2002-01-09 2003-07-18 Nikon Corp 露光装置及び方法並びにマイクロデバイスの製造方法
JP2007035709A (ja) * 2005-07-22 2007-02-08 Canon Inc 露光装置及びそれを用いたデバイス製造方法
CN112068400A (zh) * 2020-09-01 2020-12-11 浙江大学 一种实现高通量并行激光扫描直写超分辨光刻的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076655A1 (en) * 1999-07-29 2002-06-20 Borrelli Nicholas F. Direct writing of optical devices in silica-based glass using femtosecond pulse lasers
CN103984211A (zh) * 2014-05-08 2014-08-13 中国科学院光电技术研究所 一种基于双光束聚合引发以及抑制的高分辨成像光刻方法
CN109491214A (zh) * 2018-12-04 2019-03-19 中国科学院上海光学精密机械研究所 集成化超分辨激光直写装置及直写方法
CN113515017A (zh) * 2021-04-12 2021-10-19 之江实验室 一种基于aod扫描的双光束高速激光直写方法与装置
CN113960891A (zh) * 2021-10-26 2022-01-21 之江实验室 一种并行穿插超分辨高速激光直写光刻的方法与装置

Also Published As

Publication number Publication date
US20240176244A1 (en) 2024-05-30
CN113960891A (zh) 2022-01-21
CN113960891B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN113960892B (zh) 可连续像旋转调制的高速并行激光直写光刻的方法与装置
CN113985708B (zh) 可连续像旋转调制的超分辨高速并行激光直写方法与装置
CN2432001Y (zh) 一种激光干涉光刻系统
JP6450497B2 (ja) クロススケール構造の協同的な作業におけるマスクレスフォトリソグラフィーシステム
CN112859538B (zh) 一种基于声光偏转器的双光子聚合激光直写加工系统
JP5496846B2 (ja) 干渉型リソグラフィ装置
JP5139077B2 (ja) 単一波長誘導放出制御顕微鏡法
US20240176244A1 (en) Method and apparatus for direct writing photoetching by parallel interpenetrating super-resolution high-speed laser
JP2006113185A (ja) レーザ加工装置
CN112666804B (zh) 基于干涉点阵和dmd的边缘光抑制阵列并行直写装置
JP6768067B2 (ja) 幾何要素のアレイを印刷するための方法およびシステム
WO2015032263A1 (zh) 一种光学加工系统和方法
US10101665B2 (en) Illumination unit and device for lithographic exposure
CN113059807B (zh) 基于均匀活性光片的高轴向分辨率三维打印方法和装置
CN109343162A (zh) 基于超透镜的激光直写装置及其激光直写方法
WO2024007674A1 (zh) 一种实现超高速结构光照明显微成像的方法和装置
WO2015032266A1 (zh) 一种反射式分光光栅及干涉光刻系统
CN113909698B (zh) 一种并行穿插高速激光直写光刻的方法与装置
CN113515016B (zh) 一种基于dmd数字掩膜的双光束激光直写方法与装置
CN114019765A (zh) 一种基于边缘光抑制的共路相位调制激光直写方法与装置
WO2012160061A1 (en) Illumination optical unit for projection lithography
CN114918532B (zh) 一种快速扫描式纳米级三维激光加工装置及方法
US6657756B2 (en) Method and apparatus for increasing the effective efficiency of holograms
CN217493057U (zh) 一种快速扫描式纳米级三维激光加工装置
EP3781989A1 (en) Methods and systems for printing large periodic patterns by overlapping exposure fields

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885102

Country of ref document: EP

Kind code of ref document: A1