WO2023071170A1 - 抬头显示系统及其设计方法 - Google Patents

抬头显示系统及其设计方法 Download PDF

Info

Publication number
WO2023071170A1
WO2023071170A1 PCT/CN2022/095074 CN2022095074W WO2023071170A1 WO 2023071170 A1 WO2023071170 A1 WO 2023071170A1 CN 2022095074 W CN2022095074 W CN 2022095074W WO 2023071170 A1 WO2023071170 A1 WO 2023071170A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge angle
virtual image
sub
laminated glass
projection
Prior art date
Application number
PCT/CN2022/095074
Other languages
English (en)
French (fr)
Inventor
何长龙
关金亮
李炜军
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Priority to PCT/CN2022/095074 priority Critical patent/WO2023071170A1/zh
Publication of WO2023071170A1 publication Critical patent/WO2023071170A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present application relates to the field of automobiles, in particular to a head-up display system and a design method thereof.
  • HUD head-up display
  • images such as driving information
  • the front windshield is usually laminated glass, and it is necessary to set an intermediate bonding layer with a wedge angle to eliminate the secondary image generated by the projection onto the front windshield.
  • a highly reflective medium layer in the front windshield such as a metal coating layer containing Ag, a modified PET with high reflectivity, etc., reflection will also occur and more secondary images will be generated.
  • the driver sees two or more shifted images at the same time, the images observed by human eyes will be blurred, causing dizziness and poor experience.
  • the middle bonding layer pair with a single wedge angle value weakens the projection onto the front windshield.
  • the secondary image does not work well, resulting in a poor quality HUD image projected onto the windshield.
  • the present application discloses a head-up display system, which can solve the technical problem that the quality of the head-up display image projected onto the front windshield is not high.
  • the present application provides a head-up display system, the head-up display system includes laminated glass and a projection assembly;
  • the laminated glass includes:
  • a first transparent substrate having a first surface and a second surface
  • a second transparent substrate having a third surface and a fourth surface
  • the intermediate adhesive layer is disposed between the first transparent substrate and the second transparent substrate, and is used for bonding the second surface and the third surface;
  • the laminated glass has at least one projection display area, the projection display area has a wedge-shaped cross-sectional shape in which the thickness of the upper side of the laminated glass is greater than the thickness of the lower side when the laminated glass is installed in a vehicle, and the projection display area has a wedge angle from the A section in which the lower side becomes continuously nonlinear and monotonously smaller toward the upper side, and the ratio of the length of the section to the length of the projected display area is not less than 70%;
  • the projection assembly includes at least one projection light source capable of projecting onto the at least one projection display area, and projection light emitted by the projection light source enters the projection display area to form a projection image.
  • the present application also provides a design method of a head-up display system, the design method of the head-up display system includes:
  • the projection light emitted by the projection assembly is incident on at least one projection display area on the laminated glass;
  • the eye box surface includes a plurality of sub-eye box surfaces sequentially from high to low
  • the virtual image surface includes a plurality of sub-virtual image surfaces sequentially from low to high, wherein each sub-virtual image surface corresponds to a sub-eye box surface
  • the wedge angle value of the laminated glass in the corresponding projection display area is determined according to the first variation curve.
  • the head-up display system provided by the present application includes a laminated glass and a projection assembly, and the laminated glass can have a thickness of the upper side greater than a thickness of the lower side and the wedge angle becomes continuously non-linear and monotonously smaller from the lower side to the upper side
  • the wedge-shaped cross-sectional shape weakens or even eliminates the secondary image of each head-up display image formed through multiple projection display areas, thereby improving the quality of the head-up display image projected onto the laminated glass, and is also beneficial to the driver in multiple head-up display areas. Switch between displayed images for observation, further improving driving safety and comfort. Therefore, the head-up display system provided by the present application can improve the image quality of the head-up display.
  • FIG. 1 is a schematic structural diagram of a head-up display system provided by an embodiment of the present application.
  • Fig. 2 is a schematic cross-sectional view of the laminated glass along line A-A in the head-up display system provided by the embodiment of Fig. 1 .
  • FIG. 3 is a schematic diagram of imaging of a first projected image in the head-up display system provided in the embodiment of FIG. 1 .
  • FIG. 4 is a curve of wedge angle variation of laminated glass in the head-up display system provided by the embodiment of FIG. 1 .
  • FIG. 5 is a schematic structural diagram of an intermediate adhesive layer in the head-up display system provided in the embodiment of FIG. 1 .
  • FIG. 6 is a schematic structural diagram of a head-up display system provided in another embodiment of the present application.
  • Fig. 7 is a schematic diagram for calculating the wedge angle value at any point of a laminated glass according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a combination of a sub-eye box plane and a sub-virtual image plane provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a first change curve provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a fitting curve provided by another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a fitting curve provided by another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a head-up display system provided in another embodiment of the present application.
  • FIG. 13 is a schematic diagram of projection to the second projection display area in the head-up display system provided by the embodiment of FIG. 12 .
  • FIG. 14 is a schematic structural diagram of a head-up display system provided in another embodiment of the present application.
  • FIG. 15 is a structural schematic diagram of another viewing angle of the head-up display system provided by the embodiment of FIG. 14 .
  • FIG. 16 is a schematic diagram of projection imaging in an embodiment of the head-up display system provided by the embodiment in FIG. 12 .
  • FIG. 17 is a schematic diagram of projection imaging in another embodiment of the head-up display system provided by the embodiment in FIG. 12 .
  • FIG. 18 is a schematic diagram of projection imaging in another embodiment of the head-up display system provided by the embodiment in FIG. 12 .
  • FIG. 19 is a schematic diagram of a wedge angle scatter data set provided by an embodiment of the present application.
  • Fig. 20 is a schematic cross-sectional view of a laminated glass provided in an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a wedge angle scatter data set provided by another embodiment of the present application.
  • Fig. 22 is a schematic diagram of curves showing the variation of wedge angle with virtual image distance under different longitudinal curvature radii according to an embodiment of the present application.
  • Fig. 23 is a schematic diagram of the variation of the wedge angle with the first lower viewing angle under different longitudinal curvature radii and different virtual image distances according to an embodiment of the present application.
  • FIG. 24 is a flowchart of a design method of a head-up display system provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of the design method of the head-up display system provided by the embodiment of FIG. 24 .
  • FIG. 26 is a schematic diagram of a first change curve in the design method of the head-up display system provided by the embodiment of FIG. 24 .
  • FIG. 27 is a schematic diagram of the eye box plane and the first virtual image plane in the design method of the head-up display system provided by the embodiment of FIG. 24 .
  • FIG. 28 is a schematic diagram of a first change curve calculated by the method for designing a head-up display system provided in an embodiment of the present application.
  • FIG. 29 is a schematic diagram of the optimal design of two first change curves in the design method of the head-up display system provided by an embodiment of the present application.
  • FIG. 30 is a schematic diagram of a second change curve calculated by the design method of the head-up display system provided in an embodiment of the present application.
  • FIG. 31 is a schematic diagram of the optimization of the first change curve and the second change curve provided by an embodiment of the present application.
  • head-up display system 1 head-up display system 1; laminated glass 10; projection assembly 20; first transparent substrate 100; first surface 110; second surface 120; second transparent substrate 200; third surface 210; fourth surface 220; Middle adhesive layer 300; top side 10a; bottom side 10b; projection light source 201; first projection light source 211; second projection light source 212; folding mirror 230; aspheric mirror 240; projection display area 410; lower side 420; upper side Side 430; first projected display area 411; second projected display area 412; first projected image 4111; second projected image 4121; first left projected image 4111L; first right projected image 4111R; second left projected image 4121L; Second right projection image 4121R; eye box surface EB10; first virtual image surface TB20; second virtual image surface TB30; sub-eye box surface EB11; first sub-eye box surface EB12; second sub-eye box surface EB13; third sub-eye Box surface EB14; first sub virtual image surface TB21; first low virtual image surface TB22; first
  • FIG. 1 is a schematic structural diagram of a head-up display system provided in an embodiment of the present application
  • Fig. 2 is a view of the laminated glass along line A-A in the head-up display system provided in the embodiment of Fig. 1 Schematic cross-sectional view
  • FIG. 3 is a schematic diagram of imaging of the first projected image in the head-up display system provided by the embodiment of FIG. 1
  • FIG. 4 is a wedge angle change curve of laminated glass in the head-up display system provided by the embodiment of FIG. 1.
  • the head-up display system 1 includes a laminated glass 10 and a projection assembly 20 .
  • the laminated glass 10 includes a first transparent substrate 100 , a second transparent substrate 200 and an intermediate bonding layer 300 .
  • the first transparent substrate 100 has a first surface 110 and a second surface 120 .
  • the second transparent substrate 200 has a third surface 210 and a fourth surface 220 .
  • the intermediate bonding layer 300 is disposed between the first transparent substrate 100 and the second transparent substrate 200 and is used for bonding the second surface 120 and the third surface 210 .
  • the laminated glass 10 has at least one projection display area 410 .
  • the projection display area 410 has a wedge-shaped cross-sectional shape in which the thickness of the upper side 430 of the laminated glass 10 is greater than that of the lower side 420 when the laminated glass 10 is installed in a vehicle.
  • the projection display area 410 has a section in which the wedge angle continuously decreases nonlinearly and monotonously from the lower side 420 to the upper side 430 , and the length of the section is the same as the length of the projection display area 410
  • the ratio is not less than 70%. It can be understood that, in the projection display area 410, except for the segment, the wedge angles of other segments may be equal to 0, may be a constant wedge angle, may also increase or decrease linearly, or may be the same as the segment The wedge angles of the segments decrease monotonously together continuously and non-linearly.
  • the ratio of the length of the section to the length of the projection display area 410 is not lower than 75%, or not lower than 80%, or not lower than 85%, or not lower than 90%, or not lower At 95%, or equal to 100%.
  • the wedge angle of each projected display area 410 decreases continuously nonlinearly and monotonously from the lower side 420 to the upper side 430 .
  • the length is measured in a direction from the lower side 420 to the upper side 430 .
  • the projection display area 410 includes at least one first projection display area 411 .
  • the projection assembly 20 includes at least one projection light source 201 projecting onto the plurality of projection display areas 410 , and the projection light source 201 is incident on the first projection display area 411 to form a first projection image 4111 .
  • the head-up display system 1 is applied to display information on the front windshield of the vehicle.
  • the head-up display system 1 includes a projection assembly 20, and the images projected by the projection assembly 20 to the plurality of projection display areas 410 include at least one of various types of HUD images, various angle HUD images, and various display distance HUD images.
  • the richness of the image display of the head-up display system 1 is increased.
  • the plurality of projection display areas 410 are used to display HUD images, specifically, the plurality of projection display areas 410 can be used to set an augmented reality head up display (Augmented Reality Head Up Display, AR-HUD) or a windshield head up display ( Windshield Head Up Display, W-HUD), etc.
  • augmented reality head up display Augmented Reality Head Up Display, AR-HUD
  • windshield head up display Windshield Head Up Display, W-HUD
  • the projection assembly 20 includes at least one projection light source 201 projecting onto the plurality of projection display areas 410 .
  • One projection light source 201 is set corresponding to one projection display area 410 , or one projection light source 201 is set corresponding to multiple projection display areas 410 .
  • the light emitted by the projection light source 201 is directly projected onto the projection display area 410 .
  • the light emitted by the projection assembly 20 is projected to the projection display area 410 through a reflection device.
  • the wedge angles of the laminated glass 10 in the plurality of projection display areas 410 are used to eliminate side effects when the light emitted by the projection assembly 20 enters the plurality of projection display areas 410 to form projected images. picture.
  • the application of the laminated glass 10 to a vehicle is exemplified.
  • the projection assembly 20 projects the light forming the first projected image 4111 to the projection display area 410
  • the laminated glass 10 has a certain thickness, the light is reflected on the first transparent substrate 100 to There is a secondary image between the image of the observer's eye E10 located in the driver's cab and the image of the light reflected on the second transparent substrate 200 to the observer's eye E10 .
  • the laminated glass 10 When the laminated glass 10 is further provided with a highly reflective medium layer, such as a metal coating layer containing Ag, modified PET with high reflectivity, etc., reflection will also occur and more secondary images will be generated.
  • the laminated glass 10 In order to eliminate secondary images, the laminated glass 10 needs to be provided with corresponding wedge angles in the plurality of projection display areas 410, so that the secondary images can coincide with the main images, so that observers can see the secondary images through the projection display areas 410.
  • the first projected image 4111 of the image is provided with corresponding wedge angles in the plurality of projection display areas 410, so that the secondary images can coincide with the main images, so that observers can see the secondary images through the projection display areas 410.
  • the first projected image 4111 is reflected from different areas on the plurality of projected display areas 410, the light entering the observer’s eyes E10 has different angles, and the observer’s different sitting postures in the driver’s cab will also make the first projected image 4111 A projected image 4111 enters the observer's eye E10 at different angles. Therefore, different wedge angle values need to be set for different areas of the laminated glass 10 on the plurality of projection display areas 410 .
  • each of the projection display areas 410 has a thickness of the upper side 430 greater than the thickness of the lower side 420 when the laminated glass 10 is installed in the vehicle, and the wedge angle is from the lower side.
  • the side 420 has a continuous non-linear monotonously smaller wedge-shaped cross-sectional shape toward the upper side 430 .
  • the wedge angle of each of the projection display areas 410 of the laminated glass 10 exhibits a second-order to fifth-order nonlinear function that gradually decreases in a direction from the lower side 420 to the upper side 430 .
  • FIG. 4 is a graph showing the change of the wedge angle with the distance from the bottom edge 10 b of the laminated glass 10 in one of the projected display areas 410 .
  • the wedge angle of the laminated glass 10 corresponding to each of the projection display areas 410 gradually decreases nonlinearly in the direction from the lower side 420 to the upper side 430, so as to weaken or even eliminate the wedge angle in each of the projection display areas 410.
  • a ghosting problem with the heads-up display image in the display area 410 is a graph showing the change of the wedge angle with the distance from the bottom edge 10 b of the laminated glass 10 in one of the projected display areas 410 .
  • the change of the wedge angle of the laminated glass 10 in the plurality of projection display areas 410 is only a few wedge angle values for straight line segment splicing design, or based on this at the bend of the spliced straight line segment A simple arc transition cannot satisfy the secondary image problem of the heads-up display images in multiple areas in the multiple projection display areas 410 .
  • the embodiment of the present application provides a head-up display system.
  • the head-up display system 1 includes a laminated glass 10 and a plurality of projection components 20.
  • the thickness of the laminated glass 10 can be greater than that of the bottom side 430
  • the wedge-shaped cross-sectional shape in which the thickness of the side 420 and the wedge angle continuously decreases monotonously and non-linearly from the lower side 420 to the upper side 430 weakens or even eliminates the effect of each head-up display image formed through at least one projection display area 410
  • the secondary image improves the quality of the head-up display image projected onto the laminated glass 10, and is also beneficial for the driver to switch and observe between multiple head-up display images, further improving driving safety and comfort.
  • the head-up display system provided by the present application can improve the image quality of the head-up display.
  • the maximum rate of change ROC of the continuous nonlinear monotonically decreasing wedge angle in the projection display area 410 is: ROC ⁇ 0.3mrad/100mm. Or, ROC ⁇ 0.2mrad/100mm. Or, ROC ⁇ 0.1mrad/100mm. Or, ROC ⁇ 0.05mrad/100mm.
  • L1 in FIG. 4 is a variation curve of the wedge angle of the laminated glass 10 in each projection display area 410 with the distance from the bottom edge 10 b of the laminated glass 10 .
  • K1 is the tangent of L1 at a certain point, and the slope of the tangent represents the absolute value of the rate of change of the wedge angle at this point. If the maximum rate of change of the wedge angle of the laminated glass 10 is too high, the production difficulty and production cost of the laminated glass 10 will be increased, which is not conducive to the production efficiency of the laminated glass 10 , thereby affecting the production efficiency of the laminated glass 10 . Therefore, the maximum rate of change of the wedge angle of the laminated glass 10 should not be too large.
  • the maximum rate of change ROC of the continuous nonlinear monotonous decrease of the wedge angle from the lower side 420 to the upper side 430 in the plurality of projection display areas 410 ROC ⁇ 0.3mrad/100mm.
  • the maximum rate of change ROC of the continuous non-linear monotonically decreasing wedge angle from the lower side 420 to the upper side 430 in the plurality of projection display areas 410 ROC ⁇ 0.2mrad/100mm.
  • the maximum rate of change ROC of the continuous non-linear monotonous decrease of the wedge angle from the lower side 420 to the upper side 430 in the plurality of projection display areas 410 ROC ⁇ 0.1 mrad/100mm.
  • the maximum rate of change ROC of the continuous non-linear monotonically decreasing wedge angle from the lower side 420 to the upper side 430 in the plurality of projection display areas 410 ROC ⁇ 0.05mrad/100mm.
  • the maximum wedge angle ⁇ in the plurality of projection display areas 410 ⁇ 0.8 mrad.
  • ⁇ in FIG. 4 is the maximum wedge angle value of the laminated glass 10 in the plurality of projection display areas 410 . If the wedge angle value of the laminated glass 10 is too large, the partial area of the laminated glass 10 will be too thick, which will increase the difficulty of eliminating secondary images of the heads-up display images on the plurality of projection display areas 410. In addition, if the value of the wedge angle of the laminated glass 10 is too large, the rate of change of the wedge angle of the laminated glass 10 will be too large, thereby increasing the difficulty of production and preparation of the laminated glass 10 and the production cost, which is not conducive to the production of the laminated glass 10. production efficiency. Therefore, the wedge angle of the laminated glass 10 should not be too large. Specifically, the maximum wedge angle ⁇ of the laminated glass 10 in the plurality of projection display areas 410: ⁇ 0.8 mrad.
  • the wedge angles in the plurality of projection display areas 410 can be provided only by the intermediate adhesive layer 300, that is, both the first transparent substrate 100 and the second transparent substrate 200 are of equal thickness (the wedge angle is equal to 0).
  • the wedge angle of the projection display area 410 is equal to the wedge angle of the intermediate adhesive layer 300; not limited thereto, the wedge angles in the plurality of projection display areas 410 may also be determined by the intermediate adhesive layer 300 and the first transparent substrate 100 and/or Or the second transparent substrate 200 is provided, that is, the first transparent substrate 100 and/or the second transparent substrate 200 are also wedge-shaped, considering the production difficulty of the first transparent substrate 100 and/or the second transparent substrate 200, the first transparent substrate
  • the wedge angle of the substrate 100 and/or the second transparent substrate 200 is a constant wedge angle
  • the wedge angle of the projection display area 410 is equal to the wedge angle of the intermediate adhesive layer 300 and the wedge angle of the first transparent substrate 100 and/or the second transparent substrate 200 sum of angles.
  • FIG. 5 is a schematic structural diagram of the middle adhesive layer in the head-up display system provided by the embodiment of FIG. 1 .
  • the maximum thickness h of the intermediate adhesive layer 300 is: 0.38mm ⁇ h ⁇ 1.6mm.
  • the thickness of the laminated glass 10 is related to the thickness of the intermediate bonding layer 300 , that is, the thicker the intermediate bonding layer 300 is, the thicker the laminated glass 10 is. Since the laminated glass 10 is thicker, the secondary images formed by the heads-up display images projected to the plurality of projection display areas 410 are more serious, thereby increasing the risk of weakening the formation of the heads-up display images projected to the plurality of projection display areas 410 The production of secondary images is difficult, therefore, the laminated glass 10 should not be too thick, that is, the maximum thickness of the intermediate bonding layer 300 should not be too thick. Specifically, the maximum thickness h of the intermediate bonding layer 300: h ⁇ 1.6mm.
  • the laminated glass 10 needs to meet the penetration resistance and impact resistance requirements in the regulations, that is, the maximum thickness of the intermediate adhesive film should not be too thin.
  • the maximum thickness h of the intermediate bonding layer 300 h ⁇ 0.38 mm. Therefore, the thickness h of the intermediate adhesive layer 300 is: 0.38mm ⁇ h ⁇ 1.6mm.
  • the measured wedge angle at any point in the section there is a measured wedge angle at any point in the section, and the measured wedge angle at each point in the section is fitted to obtain an actual wedge angle fitting curve, and the projection display area
  • the maximum deviation between the fitting curve and the corresponding part of the first variation curve L1 is less than or equal to 0.15 mrad.
  • FIG. 6 is a schematic structural diagram of a head-up display system provided in another embodiment of the present application.
  • the projection assembly 20 further includes a folding mirror 230 and an aspheric mirror 240 .
  • the first projection light source 211 converts information such as vehicle speed, navigation, etc.
  • a virtual image surface TB20 forms an image to form the first virtual image, which is called the main image.
  • the virtual image plane includes at least the first virtual image plane TB20.
  • the virtual image plane may also include the second virtual image plane TB30.
  • the virtual image plane includes the first virtual image plane.
  • the virtual image plane TB20 is taken as an example to illustrate, and the situation of multiple virtual image planes can refer to the characteristics and derivation of the first virtual image plane TB20.
  • the optical path of each light emitted by the first projection light source 211 is unique, that is to say, when observed at different positions of the same eye box surface EB10, the observed first projection light source 211 emits
  • the light paths of the light rays are different, and the projection area of these light rays on the laminated glass 10 may be equal to the first projection display area 411 of the laminated glass 10 .
  • the laminated glass 10 is a transparent medium, after the light emitted by the first projection light source 211 enters the laminated glass 10, it will be reflected again on the outer surface of the laminated glass 10 and enter the eyes.
  • the box surface EB10 is imaged in front of the laminated glass 10 to form a second virtual image.
  • a highly reflective medium layer such as a metal coating layer containing Ag, a modified PET with high reflectivity, etc.
  • reflection will also occur and a third or even more virtual images will be generated; the first The 2 virtual images, the third virtual image and even more virtual images are collectively referred to as secondary images.
  • a corresponding wedge angle is set in the laminated glass 10 so that the secondary image can completely overlap the main image, that is, the theoretical wedge angle value.
  • the light emitted by the first projection light source 211 is different, and the theoretical wedge angle value required to eliminate the secondary image is also different, so it is necessary to set different wedge angles at different positions in the laminated glass 10, that is, At any position on the laminated glass 10 away from the bottom edge 10b, the theoretical wedge angle value for eliminating secondary images is within a certain interval, and there is a maximum theoretical wedge angle and a minimum theoretical wedge angle.
  • FIG. 8 is a schematic diagram of a sub-eye box surface-sub-virtual image surface combination provided in an embodiment of the present application.
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 from high to low
  • the first virtual image surface TB20 includes a plurality of first sub-virtual image surfaces TB21 from low to high, wherein each first sub-surface
  • the virtual image plane TB21 corresponds to a sub-eye box plane EB11.
  • connection line of the points in TB211 passes through the corresponding first projection display area 411 , and the intersection point of the connection line with the first projection display area 411 is the incident point.
  • the laminated glass 10 and the multiple connecting lines calculate multiple first theoretical wedge angle values of the laminated glass 10 when the first projected image 4111 at the corresponding incident point has no secondary image.
  • the wedge angle value of the laminated glass 10 in the corresponding first projection display area 411 can be determined according to the first variation curve L1.
  • the eye box surface EB10 is used to simulate the position where the human eye or the visual system observes the projected picture
  • the first virtual image plane TB20 represents the imaging position of the light emitted by the first projection light source 211
  • the width*height is usually used to represent the first
  • the standard size of the virtual image plane TB20 is, for example, 400mm*200mm. Since each person's height and sitting posture may be different, this application analyzes the positions of the upper (Tall), middle (Mid) and lower (Short) sub-eye box surface EB11 respectively, and there will be three lower, middle and upper positions.
  • a sub-virtual image surface TB21 corresponds to the upper, middle and lower sub-eye box surfaces EB11 respectively, to form the first sub-virtual image surface TB21 on the lower sub-eye box surface EB11-, the first sub-virtual image surface TB21 in the neutron eye box surface EB11- and Three combinations of the upper sub-eye box surface EB11-the lower first sub-virtual image surface TB21. It can be understood that the optical path connecting two points on the corresponding sub-eye box surface EB11 and the corresponding first sub-virtual image surface TB21 will also form three different areas in the first projection display area 411 .
  • FIG. 9 is a schematic diagram of a first change curve provided in an embodiment of the present application.
  • several corresponding sample points are respectively selected on the sub-eye box surface EB11 and the corresponding first sub-virtual image surface TB21.
  • the common way is to divide the sub-eye box surface EB11 and the first sub-virtual image surface TB21 into Grid lattices m*n and i*j are equally spaced, for example: the sub-eye box surface EB11 is divided into 5*3 dot matrix, and the first sub-virtual image surface TB21 is also divided into 5*3 dot matrix.
  • the sub-eye box surface EB11 intersects the optical path corresponding to the line connecting two points on the first sub-virtual image surface TB21 in the area corresponding to the first projection display area 411 to obtain data points.
  • CAD software can be used to solve the problem.
  • the common ones are ANSYS SPEOS, ZEMAX and other professional optical simulation software, or DASSAULT SYSTEM CATIA, which can simulate and calculate the theoretical wedge angle value required for the data point to eliminate secondary images for any single beam of light. .
  • the wedge angle scatter point data set shown in 9 wherein the Tall wedge angle scatter point data set corresponds to the combination of the upper sub-eye box surface EB11-lower first sub-virtual image surface TB21, and the Mid wedge angle scatter point data set corresponds to the described The combination of the first sub-virtual image surface TB21 in the neutron eyebox surface EB11-, the Short wedge angle scatter data set corresponds to the combination of the first sub-virtual image surface TB21 on the lower sub-eyebox surface EB11-.
  • the theoretical wedge angle values required to eliminate secondary images in each area of each wedge angle scatter point data set are in a discrete state with a certain regularity.
  • different light rays correspond to different required wedge angle values, for example, at a distance of 420mm from the bottom edge 10b, the required value of the wedge angle Between 0.30mrad and 0.50mrad.
  • variable wedge angle curve can be fitted, which runs through the wedge angle scatter point data set, and is characterized as a section of continuous nonlinear monotone The wedge angle value for the drop change.
  • the maximum deviation between the actual wedge angle fitting curve and the corresponding part of the first change curve L1 is less than or equal to 0.15 mrad, specifically Examples include ⁇ 0.15mrad, ⁇ 0.14mrad, ⁇ 0.13mrad, ⁇ 0.12mrad, ⁇ 0.11mrad, ⁇ 0.10mrad, ⁇ 0.09mrad, ⁇ 0.08mrad, ⁇ 0.17mrad, ⁇ 0.06mrad, ⁇ 0.05mrad, etc.
  • the fitting of the whole section of the first change curve L1 from the bottom edge 10b to the top edge 10a of the laminated glass 10 it is possible to make appropriate fine-tuning within the tolerance range based on each section of the first change curve L1, and then fit a complete The first change curve L1, that is to say, the final complete first change curve L1 may not completely coincide with the best variable wedge angle fitting curve of each segment.
  • both the fitting curve of the actual wedge angle and the first variation curve L1 conform to a 2-5 order function.
  • the actual wedge angle fitting curve is obtained by fitting the measured wedge angle at each point position with a 2-5 order function, and the maximum theoretical wedge angle at each point position, the minimum theoretical The wedge angle is fitted with a 2-5 order function to obtain the first change curve L1, so that the maximum deviation between the actual wedge angle fitting curve and the corresponding part of the first change curve L1 is less than or equal to 0.15mrad, Therefore, the technical problem of excessive difference in wedge angle values at different positions of the laminated glass 10 is improved.
  • FIG. 10 is a schematic diagram of a fitting curve provided in another embodiment of the present application.
  • the slope of the tangent line at any point on the fitting curve decreases continuously from the lower side 420 to the upper side 430 .
  • the slope of the tangent line at any point on the fitting curve represents the absolute value of the change rate at which the wedge angle becomes smaller at this point. It can be understood that according to the above-mentioned wedge angle scatter point data set, the fitting curve as shown in FIG. 10 can be fitted, that is, the concave curve, so as to manufacture the laminated glass 10 of different specifications and be adapted to be installed in different vehicles. This application is not limited to this.
  • FIG. 11 is a schematic diagram of a fitting curve provided in another embodiment of the present application.
  • the slope of the tangent line at any point on the fitting curve increases continuously from the lower side 420 to the upper side 430 .
  • the slope of the tangent line at any point on the fitting curve represents the absolute value of the rate of change at which the wedge angle becomes smaller at this point.
  • the slope of the tangent line at any point on the fitting curve first continuously increases and then continuously decreases from the lower side 420 to the upper side 430 .
  • the slope of the tangent line at any point on the fitting curve represents the absolute value of the change rate at which the wedge angle becomes smaller at this point.
  • the ratio of the maximum local range value ⁇ W of the multiple theoretical wedge angle values to the overall range value ⁇ C of the multiple theoretical wedge angle values is: ⁇ W/ ⁇ C ⁇ 0.9.
  • the laminated glass 10 has a fixed wedge angle
  • the wedge angle values at different positions of the laminated glass 10 are the same, for example, 0.38mrad is selected as the fixed wedge angle value.
  • the local extreme difference value is a certain distance X from the lower side 420 of the laminated glass 10.
  • the difference between the maximum theoretical wedge angle and the minimum theoretical wedge angle at a position, and the maximum local range value ⁇ W refers to the maximum value in the local range value.
  • the overall range value ⁇ C of the plurality of theoretical wedge angle values refers to the difference between the maximum value and the minimum value among all the theoretical wedge angle values in the scatter distribution diagram.
  • the maximum local range value of the wedge angle scatter point data set at the corresponding position of the laminated glass 10 is smaller than the maximum overall range value of the wedge angle scatter point data set, that is, when d2+d2' ⁇ d1+d1', the The performance of the secondary image of the laminated glass 10 with a variable wedge angle is better than that of the secondary image with a fixed wedge angle of the laminated glass 10 .
  • the ratio of the maximum local range value ⁇ W of the wedge angle scatter point data set at the corresponding position of the laminated glass 10 to the overall range value ⁇ C of the wedge angle scatter point data set is less than or equal to 0.9, That is, ⁇ W/ ⁇ C ⁇ 0.9, specifically 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, etc. It can be understood that based on this, the present application improves the discretization state of the wedge angle scatter point data set, and reduces the maximum local extreme difference value of the wedge angle scatter point data set at the corresponding position of the laminated glass 10, which can improve the laminated glass. 10 secondary image performance.
  • the projection display area 410 includes at least one first projection display area 411 .
  • the virtual image distance of the first projection image 4111 formed by the light emitted by the projection assembly 20 incident on the first projection display area 411 is 7 meters to 100 meters, that is, the distance between the first projection image 4111 and the observer's eye box
  • the distance of the surface EB10 is 7 meters to 100 meters.
  • the first projection display area 411 is used for AR-HUD image display.
  • FIG. 12 is a schematic structural diagram of a head-up display system provided in another embodiment of the present application
  • FIG. 13 is a schematic diagram of projection to the second projection display area in the head-up display system provided in the embodiment of FIG. 12
  • the multiple projection display areas 410 further include at least one second projection display area 412 .
  • the light emitted by the projection light source 201 enters the second projection display area 412 to form a second projection image 4121 , and the virtual image distance of the second projection image 4121 is 1 meter to 6 meters.
  • the first projection display area 411 is used for long-distance projection display, specifically, the first projection display area 411 is used for fusion of display information and real scenes, and for projection display of objects in the real world
  • the corresponding complex graphics realize the interaction between road conditions-vehicle-driver.
  • the second projection display area 412 is used for short-distance projection display. Specifically, the second projection display area 412 is used for short-distance display of vehicle operating parameter information, which can reduce the need to look down at the instrument panel or related information, and is convenient for the driver. Switch between near and far eyes, reduce the need to look down at the dashboard, maximize the driver's attention while driving, and improve driving safety.
  • FIG. 14 is a schematic structural diagram of a head-up display system provided in another embodiment of the present application.
  • the multiple projection assemblies 20 include at least one first projection light source 211 and at least one second projection light source 212 .
  • the first projection light source 211 is incident to the first projection display area 411 .
  • the second projection light source 212 is incident to the second projection display area 412 .
  • the first projection light source 211 is used to project to the first projection display area 411 for long-distance projection display, specifically, the first projection display area 411 is used to fuse display information with the real scene , which is used to project and display complex graphics corresponding to objects in the real world, and realize the interaction between road conditions-vehicles-drivers.
  • the second projection light source 212 is used to project onto the second projection display area 412 for short-distance projection display.
  • the second projection display area 412 is used for short-distance display of vehicle operating parameter information, which can reduce looking down.
  • the instrument panel or related information is convenient for the driver to switch between far and near, reducing the need to look down at the instrument panel, maximizing the concentration of the driver's attention while driving, and improving driving safety.
  • FIG. 15 is a structural schematic diagram of another viewing angle of the head-up display system provided by the embodiment of FIG. 14 .
  • the first projection light source 211 is disposed close to the top edge 10a of the laminated glass 10
  • the second projection light source 212 is disposed close to the bottom edge 10b of the laminated glass 10.
  • the first projection light source 211 is arranged close to the top edge 10a of the laminated glass 10, so that the projection light of the first projection light source 211 incident on the first projection display area 411 can be kept optimal. angle of incidence.
  • the first projection light source 211 is installed on the inner surface of the roof of the vehicle.
  • the second projection light source 212 is disposed close to the bottom edge 10 b of the laminated glass 10 , so that the projection light from the second projection light source 212 incident on the second projection display area 412 can maintain an optimal incident angle.
  • the second projection light source 212 is installed inside the dashboard of the vehicle.
  • FIG. 16 is a schematic diagram of projection imaging in an embodiment of the head-up display system provided by the embodiment in FIG. 12 .
  • the first projected image 4111 has a first lower viewing angle LDA1 and a first virtual image distance VID1
  • the second projected image 4121 has a second lower viewing angle LDA2 and a second virtual image distance VID2.
  • LDA1 and LDA2 satisfy: 2° ⁇ LDA1-LDA2 ⁇ 4.5°, or, 2.5° ⁇ LDA1-LDA2 ⁇ 3.5°
  • VID1 and VID2 satisfy: 2 ⁇ VID1/VID2 ⁇ 50, or, 2.5 ⁇ VID1/VID2 ⁇ 10.
  • the observer's eyes when the observer is driving the car, the observer's eyes usually need to switch between the first projection display area 411 and the second projection display area 412 . If the connection line between the first projected image 4111 and the observer’s eye E10 and the first lower angle of view LDA1 on the horizontal plane and the connection line between the second projected image 4121 and the observer’s eye E10 and the second lower angle of view LDA2 on the horizontal plane If the gap is too large, the viewer's eyes will need to rotate too much to switch between the first projected image 4111 and the second projected image 4121 , so that the viewer will turn in the first projected image many times. Switching between the image 4111 and the second projected image 4121 causes eye fatigue, thereby affecting driving.
  • the first lower viewing angle LDA1 and the second lower viewing angle LDA2 are negative values. If the connection line between the first projected image 4111 and the observer’s eye E10 and the first lower angle of view LDA1 on the horizontal plane and the connection line between the second projected image 4121 and the observer’s eye E10 and the second lower angle of view LDA2 on the horizontal plane If the gap is too small, the first projected image 4111 and the second projected image 4121 will have too much overlap, thereby interfering with the information contained in the first projected image 4111 and the second projected image 4121 The information is displayed, which in turn affects the driving of the observer.
  • the gap between the first lower viewing angle LDA1 and the second lower viewing angle LDA2 should not be too large, specifically, 2° ⁇ LDA1-LDA2 ⁇ 4.5°, for example, 2°, 2.5°, 2.8°, 3°, 3.2°, 3.5°, 3.8°, 4.0°, 4.5°, etc.
  • 2.5° ⁇ LDA1-LDA2 ⁇ 3.5° specifically 2.5°, 2.6°, 2.7°, 2.8°, 2.9°, 3°, 3.1°, 3.2°, 3.3°, 3.4°, 3.5°, etc. .
  • the difference between the first virtual image distance VID1 between the first projected image 4111 and the observer's eye E10 and the second virtual image distance VID2 between the second projected image 4121 and the observer's eye E10 The ratio between them needs to maintain a certain range. If the ratio between the first virtual image distance VID1 and the second virtual image distance VID2 is too small, the design difficulty will increase, and it will be more difficult to eliminate the difference between the first projected image 4111 and the second projected image 4121 at the same time. secondary image. If the ratio between the first virtual image distance VID1 and the second virtual image distance VID2 is too large, the production difficulty of the intermediate bonding layer and laminated glass will increase.
  • the gap between the first virtual image distance VID1 and the second virtual image distance VID2 needs to maintain a certain range, specifically, the relationship between the first virtual image distance VID1 and the second virtual image distance VID2 is: 2 ⁇ VID1/VID2 ⁇ 50, preferably, 2.5 ⁇ VID1/VID2 ⁇ 10.
  • the angle between the line connecting the virtual image formed on the laminated glass 10 and the viewer's eyes E10 and the horizontal plane will affect the direction of the virtual image projected on the laminated glass 10 in front of the vehicle.
  • the first lower viewing angle LDA1 needs to maintain an appropriate angle. Specifically, the first lower viewing angle LDA1: -6° ⁇ LDA1 ⁇ 0°.
  • the second lower viewing angle LDA2 if the second lower viewing angle LDA2 is too small, the second projected image 4121 will overlap with the body part of the vehicle in front of the laminated glass 10, so that the second projected image 4121 will fall into the vehicle , affecting observers' observation of the second projected image 4121. If the second lower viewing angle LDA2 is too large, the second projected image 4121 and the first projected image 4111 will overlap too much, making it difficult for the first projected image 4111 to be interactively displayed with the entity information outside the vehicle, and The information transmission quality of the second projected image 4121 is affected. Therefore, the second lower viewing angle LDA2 needs to maintain an appropriate angle. Specifically, the second lower viewing angle LDA2: -8° ⁇ LDA1 ⁇ -3°.
  • FIG. 17 is a schematic diagram of projection imaging in another embodiment of the head-up display system provided by the embodiment in FIG. 12 .
  • the multiple projection display areas 410 include at least two first projection display areas 411 .
  • a first left projected image 4111L and a first right projected image 4111R are respectively formed in the two first projected display areas 411 arranged adjacently in the horizontal direction, and the first left projected image 4111L has a first lower left angle of view LDA11 and a first left projected image 4111R.
  • a left virtual image distance VID11, the first right projection image 4111R has a first lower right angle of view LDA12 and a first right virtual image distance VID12, LAD11 and LDA12 satisfy: 0° ⁇
  • the observer's eyes when there are two adjacently arranged first projection display areas 411 in the horizontal direction, the observer's eyes usually need the two adjacently arranged first projection display areas 411 during the process of driving the car.
  • a projection display area 411 is switched. If the line connecting the first left projected image 4111L and the observer’s eye E10 and the first lower left angle of view LDA11 of the horizontal plane and the line connecting the first right projected image 4111R and the observer’s eye E10 and the first right angle of the horizontal plane If the difference of the lower viewing angle LDA12 is too large, the viewer's eyes will need to turn too much to switch between the first left projected image 4111L and the first right projected image 4111R, so that the After switching between the first left projection image 4111L and the first right projection image 4111R, eye fatigue is caused, thereby affecting driving.
  • the first left projected image 4111L and the observer determines whether the line connecting the first left projected image 4111L and the observer’s eye E10 and the first lower left angle of view LDA11 of the horizontal plane and the line connecting the first right projected image 4111R and the observer’s eye E10 and the first right angle of the horizontal plane. If the difference between the lower viewing angle LDA12 is too small, the first left projected image 4111L and the first right projected image 4111R will have too much overlap, thereby interfering with the first left projected image 4111L and the first right projected image 4111L.
  • the display of information contained in the projected image 4111R further affects the driving of the observer.
  • the difference between the first lower left viewing angle LDA11 and the first lower right viewing angle LDA12 should not be too large, specifically, 0° ⁇
  • the first end refers to an end of the laminated glass 10 that is close to the driver's seat in the vehicle.
  • the first left virtual image distance VID11 between the first left projection image 4111L and the observer's eye E10 is the first right distance between the first right projection image 4111R and the observer's eye E10.
  • the gap between the virtual image distance VID12 needs to maintain a certain range. If the difference between the first left virtual image distance VID11 and the first right virtual image distance VID12 is too large, the eyes E10 of the observer will be separated between the first left projected image 4111L and the first right projected image 4111R. Switching between them is abrupt and prone to eye fatigue.
  • the gap between the first left virtual image distance VID11 and the first right virtual image distance VID12 is too large, the two first projection displays adjacent to each other in the horizontal direction of the laminated glass 10 will If the wedge angle difference in the region 411 is too large, it will increase the difficulty of designing and manufacturing the laminated glass 10 . Therefore, the gap between the first left virtual image distance VID11 and the first right virtual image distance VID12 needs to maintain a certain range, specifically, the difference between the first left virtual image distance VID11 and the first right virtual image distance VID12 The relationship is: 0.5 ⁇ VID11/VID12 ⁇ 2, preferably, 0.8 ⁇ VID11/VID12 ⁇ 1.2.
  • FIG. 18 is a schematic diagram of projection imaging in another embodiment of the head-up display system provided by the embodiment in FIG. 12 .
  • the plurality of projection display areas 410 further include at least two second projection display areas 412, and two second projection display areas 412 adjacently arranged in the horizontal direction form a second projection display area 412 respectively.
  • a left projected image 4121L and a second right projected image 4121R the second left projected image 4121L has a second lower left angle of view LDA21 and a second left virtual image distance VID21
  • the second right projected image 4121R has a second lower right angle of view LDA22 and
  • the second right virtual image distance VID22, LDA21 and LDA22 satisfy: 0° ⁇ LDA21-LDA22 ⁇ 1°, the relationship between VID21 and VID22 is: 0.5 ⁇ VID21/VID22 ⁇ 2, or, 0.8 ⁇ VID21/VID22 ⁇ 1.2.
  • the observer's eyes when there are two adjacently arranged second projection display areas 412 in the horizontal direction, the observer's eyes generally need the two adjacently arranged second projection display areas 412 during the process of driving the car. Switch between the two projection display areas 412 . If the line connecting the second left projected image 4121L and the observer’s eye E10 and the second lower left angle of view LDA21 on the horizontal plane and the line connecting the second right projected image 4121R and the observer’s eye E10 and the second right angle on the horizontal plane If the difference in the lower viewing angle LDA22 is too large, the viewer's eyes will need to rotate too much to switch between the second left projected image 4121L and the second right projected image 4121R, so that the After switching between the second left projection image 4121L and the second right projection image 4121R, eye fatigue is caused, thereby affecting driving.
  • the difference between the second lower left angle of view LDA21 and the second lower right angle of view LDA22 is too small, the second left projected image 4121L and the second right projected image 4121R will have too much overlap, thereby interfering with The information contained in the second left projection image 4121L and the second right projection image 4121R is displayed, thereby affecting the driving of the observer. Therefore, the difference between the second lower left viewing angle LDA21 and the second lower right viewing angle LDA22 should not be too large, specifically, 0° ⁇
  • the first end refers to an end of the laminated glass 10 that is close to the driver's seat in the vehicle.
  • the second left virtual image distance VID21 between the second left projection image 4121L and the observer's eye E10 is the second right distance between the second right projection image 4121R and the observer's eye E10.
  • the gap between the virtual image distances VID22 needs to maintain a certain range. If the gap between the second left virtual image distance VID21 and the second right virtual image distance VID22 is too large, the observer's eyes E10 will be separated between the second left projected image 4121L and the second right projected image 4121R. Switching between them is abrupt and prone to eye fatigue.
  • the gap between the second left virtual image distance VID21 and the second right virtual image distance VID22 is too large, the two second projection displays adjacent to each other in the horizontal direction of the laminated glass 10 will If the wedge angle difference in the region 412 is too large, it will increase the design and manufacturing difficulty of the laminated glass 10 . Therefore, the gap between the second left virtual image distance VID21 and the second right virtual image distance VID22 needs to maintain a certain range, specifically, the difference between the second left virtual image distance VID21 and the second right virtual image distance VID22 The relationship is: 0.5 ⁇ VID21/VID22 ⁇ 2, preferably, 0.8 ⁇ VID21/VID22 ⁇ 1.2.
  • the plurality of projection display areas 410 are arranged separately or partially overlapped.
  • the plurality of projection display areas 410 may be arranged separately, so as to ensure that information transmission between the plurality of projection display areas 410 is more independent and clear.
  • the adjacent projection display areas 410 may be partially overlapped, so as to increase the number of projection display areas 410 .
  • the partially overlapping arrangement of the adjacent projection display areas 410 can also increase the linkage of information transmission between the adjacent projection display areas 410, thereby increasing the diversity of the head-up display system 1 .
  • the wedge angle of the first projection display area 411 ranges from 0 mrad to 0.5 mrad
  • the wedge angle of the second projection display area 412 ranges from 0.1 mrad to 0.8 mrad.
  • the value of the wedge angle of the first projection display area 411 may be 0.1mrad, 0.18mrad, 0.23mrad, 0.47mrad, etc.
  • the value of the wedge angle of the second projection display area 412 may be 0.16mrad , 0.25mrad, 0.38mrad, 0.44mrad, 0.68mrad, etc., which are not limited in this application.
  • the head-up display system 1 further includes a virtual eye box surface EB10 located inside the vehicle and at least one virtual virtual image surface located outside the vehicle (i.e. the first virtual image surface TB20),
  • Each of the first projection display areas 411 corresponds to a first virtual image plane TB20, and the ratio of the height to the width of the first virtual image plane TB20 is less than or equal to 0.5.
  • the wedge angle scatter point data group composed of the data points of the theoretical wedge angle value required to eliminate the secondary image is taken as an example for illustration.
  • Label the points on the neutron eye box surface EB11 for example, the mid-perpendicular line of the neutron eye box surface EB11 can be expressed as the connection line between point EB_R1C2 and point EB_R5C2, where EB (Eye Box) represents the sub-eye box surface EB11 , R stands for row (Row), C stands for column (Column).
  • the height of the first sub-virtual image surface TB21 can be expressed as the distance between point TB_R1C2 and point TB_R5C2, where TB (Target Image Box) represents the first The sub-virtual image surface TB21.
  • FIG. 19 is a schematic diagram of a wedge angle scatter point data set provided by an embodiment of the present application.
  • the first connection line and the laminated glass have a first intersection point
  • the line connecting the vertex on the vertical line and the point TB_R5C2 is a second line
  • the second line has a second intersection point with the laminated glass
  • the first intersection point and the second intersection point are from the bottom edge 10b to the top
  • the length in the direction of the side 10a is Wm_C1.
  • the point TB_R1C2 has R1C2 in the wedge angle scatter point data set corresponding to the vertex on the mid-perpendicular line of the neutron eye box surface EB11, and the point TB_R5C2 has the midpoint of the neutron eye box surface EB11.
  • the vertex on the vertical line corresponds to R5C2 in the wedge angle scatter data set, and the value of Wm_C1 is equal to the difference between the X value of R1C2 and the X value of R5C2.
  • the heights of the upper first sub-virtual image surface TB21 and the lower first sub-virtual image surface TB21 correspond to the lengths of the wedge angle scatter point data set blocks as Wt_C and Ws_C, respectively.
  • the X axis is defined as the direction going from the bottom edge 10b to the top edge 10a of the laminated glass.
  • FIG. 20 is a schematic cross-sectional view of a laminated glass provided in an embodiment of the present application.
  • FIG. 20 is a schematic cross-sectional view of the laminated glass 10 viewed from the outside of the vehicle to the inside of the vehicle, wherein i represents the number of label lines corresponding to the points on the first sub-virtual image surface TB21, and j represents the first sub-virtual image surface TB21. The number of label columns corresponding to the points on the virtual image surface TB21. As shown in FIG.
  • the projection of the width of the first sub-virtual image surface TB21 on the laminated glass 10 has a vertical length, that is, the width of the first sub-virtual image surface TB21 corresponds to the length of the wedge angle scatter data block.
  • the second connection line and the laminated glass have a second intersection point, and take the middle line of the neutron eye box surface EB11
  • the point TB_R5C3 connecting the vertex on the vertical line and the point TB_R5C3 in the lower right corner of the first sub-virtual image surface TB21 (viewed from the inside of the car to the outside of the car) is the third connecting line, and the third connecting line and the laminated glass have a third intersection point.
  • the length of the second intersection point and the third intersection point in the direction from the bottom edge 10b to the top edge 10a is Wm_R1.
  • the point TB_R5C2 has R5C2 in the wedge angle scatter point data set corresponding to the vertex on the mid-perpendicular line of the neutron eye box surface EB11, and the point TB_R5C3 has the midpoint of the neutron eye box surface EB11.
  • the vertex on the vertical line corresponds to R5C3 in the wedge angle scatter data set, and the value of Wm_R1 is equal to the difference between the X value of R5C2 and the X value of R5C3.
  • the first connection line and the laminated glass have a first intersection point, and take the middle line of the neutron eye box surface EB11
  • the vertex on the vertical line and the point TB_R1C1 in the upper left corner of the first sub-virtual image surface TB21 (viewed from the inside of the car) is the fourth connection line, and the fourth connection line has a fourth intersection point with the laminated glass.
  • the length of the first intersection point and the fourth intersection point in the direction from the bottom edge 10b to the top edge 10a is Wm_L1.
  • the point TB_R1C2 has R1C2 in the wedge angle scatter point data set corresponding to the vertex on the mid-perpendicular line of the neutron eye box surface EB11, and the point TB_R1C1 has the midpoint of the neutron eye box surface EB11.
  • the vertex on the vertical line corresponds to R1C1 in the wedge angle scatter data set, and the value of Wm_L1 is equal to the difference between the X value of R1C1 and the X value of R1C2.
  • the width of the first sub-virtual image surface TB21 corresponds to Wm_R1-Wm_R5 and Wm_L1-Wm_L5, which are simplified as Wm_R and Wm_L hereinafter.
  • the projected lengths of the widths of the upper first sub-virtual image plane TB21 and the lower first sub-virtual image plane TB21 onto the section line of the laminated glass 10 are Ws_R, Ws_L and Wt_R, Wt_L, respectively.
  • the projection lengths of the upper, middle and lower first sub-virtual image planes TB21 along the extending direction of the laminated glass 10 are respectively:
  • Wm Wm_C+Wm_R+Wm_L
  • the height and width of the first sub-virtual image surface TB21 all affect the size of the block of the wedge angle scatter point data set, and reducing the height and width of the first virtual image surface TB20 can reduce the wedge angle scatter point data set
  • the size of the block forms a narrow and long block of the wedge-angle scatter-point data set, thereby improving the discrete state of the wedge-angle scatter-point data set and obtaining a better variable wedge-angle curve fitting effect.
  • Wm_C has the largest proportion, that is, among the two factors affecting the narrow and long effect of the scatter data distribution graph, the height and width of the first sub-virtual image surface TB21, the height of the first sub-virtual image surface TB21
  • the change of can more easily achieve the effect of making the scatter distribution graph narrow and long, so set the aspect ratio to be less than or equal to 0.5.
  • the height and width of the first sub-virtual image surface TB21 are usually measured by the field of view (Field of View, FOV), such as 7°*5°, 9°*4°, 20°*5°, FOV
  • FOV Field of View
  • the height and width preset thresholds of the first sub-virtual image surface TB21 can be determined, so that the height and width of the first sub-virtual image surface TB21 are respectively smaller than the preset thresholds, so as to improve the dispersion of the wedge angle scatter data set purpose of the state.
  • the ratio of the height to the width of the first virtual image plane TB20 is less than or equal to 0.5, that is, the ratio of the height to the width of the first sub-virtual image plane TB21 is less than or equal to 0.5.
  • the ratio of the height to the width of the first virtual image surface TB20 is less than or equal to 0.5.
  • the height and width of the first virtual image plane TB20 both have an influence on the wedge-shaped cross-sectional shape at different positions in the first projection display area 411, and the first virtual image plane TB20 The height of the height has a greater influence on the wedge-shaped cross-sectional shape at different positions in the first projection display area 411. Since the ratio of the height to the width of the first virtual image plane TB20 is less than or equal to 0.5, it greatly reduces the The height ratio of the first virtual image plane TB20 improves the discretization state of the wedge angle scatter data set.
  • Partial smooth transition as shown in Figure 9, also extends a certain length from both ends of the variable wedge angle curve to both sides as the transition section of the first change curve L1, which can be divided into the ways of extending within the segment and extending outside the segment , that is, set the extension start point within the range of the wedge angle scatter point data set, or set the extension start point outside the range of the wedge angle scatter point data set.
  • the maximum wedge angle value of the wedge angle scatter point data set can be made smaller, from the bottom edge 10b of the laminated glass 10 to the maximum wedge angle
  • the rate of change of the wedge angle at the value position is more gentle, so that the manufacture of the laminated glass 10 is easier, and the effect of reducing the overall thickness of the laminated glass 10 can also be achieved.
  • the entire laminated glass 10 has a variable wedge-shaped cross-sectional shape, so as to improve the secondary image of the main image and the secondary image when the human eye or visual system is located outside the above-mentioned eye box surface EB10 Condition.
  • a single beam of light emitted from the first projection light source 211 is reflected on the mirror surface of the projector and the inner surface of the laminated glass 10. After entering the eye box surface EB10, this light is unique; similarly, the single beam of light emitted from the first projection light source 211 is reflected on the mirror surface of the projector and the medium of the laminated glass 10 through the reflective surface, and passes through the laminated glass. 10
  • the inner surface is refracted into the eye box surface EB10, and this ray is unique, and there is an angle between the two rays, which is the secondary image angle or secondary image.
  • the secondary image can be divided into horizontal and vertical directions. The component of the secondary image and the main image along the vertical direction is called the vertical secondary image, and the component of the secondary image and the main image along the left and right directions is called the horizontal secondary image. picture.
  • variable wedge angle mentioned in this application includes the variable wedge angle in the vertical direction, the variable wedge angle in the horizontal direction, and the variable wedge angle in two-way compounding.
  • this application only describes the secondary image in the vertical direction and the corresponding wedge angle.
  • the secondary image in the horizontal direction and the corresponding wedge angle can also be designed with reference to the secondary image in the vertical direction and the corresponding wedge angle. repeat.
  • the ratio of the height to the width of the first virtual image plane TB20 is 0.05 ⁇ 0.4.
  • the ratio of the height to the width of the first virtual image plane TB20 may be 0.1, 0.13, 0.17, 0.28, 0.37, etc., which is not limited in the present application.
  • the included angle between the first virtual image plane TB20 and the eye box surface EB10 is ⁇ 10°.
  • the angle between the first virtual image plane TB20 and the eye box plane EB10 refers to the angle formed by the overlapping of two planes, which represents the inclination of the projection image formed by the first projection light source 211 on the laminated glass 10 degree.
  • the angle between the first virtual image surface TB20 and the eye box surface EB10 is ⁇ 5°; further, the angle between the first virtual image surface TB20 and the eye box surface EB10 is 0°, so that the eye box surface EB10 can Observing the projected image on the laminated glass 10 at a good angle.
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 from high to low in sequence
  • the first virtual image surface TB20 includes a plurality of first sub-eye box surfaces from low to high in sequence.
  • Sub-virtual image surface TB21 each of the first sub-virtual image surface TB21 corresponds to a sub-eye box surface EB11
  • the connecting line between the midpoint of the sub-eye box surface EB11 and the midpoint of the corresponding first sub-virtual image surface TB21 is the main optical axis , the intersection of the main optical axes corresponding to any two adjacent sub-eye box surfaces EB11 is located outside the vehicle.
  • the first sub-virtual image surface TB21 on the surface EB11- intersects with the main optical axis of the first sub-virtual image surface TB21 in the neutron eye box surface EB11- to form an intersection point b, that is, any adjacent two sub-eye box surfaces EB11, or any adjacent
  • the two first sub-virtual image surfaces TB21 at least partially overlap, as shown in FIG.
  • the stagger distance is not large.
  • each wedge-angle scatter-point data set block presents an approximate rhombus shape with high left and right-low slope, thus forming a narrower and longer wedge-angle scatter-point data set block.
  • each parameter in the projection assembly 20 will directly affect the change of the light, thereby affecting the wedge angle value required to eliminate the secondary image at the corresponding position of the laminated glass 10 .
  • the corresponding position of the laminated glass 10 The maximum local range value for the wedge angle scatter data set is reduced.
  • the difference between the maximum theoretical wedge angle and the minimum theoretical wedge angle corresponding to any position in the first projection display area 411 from the lower side of the laminated glass 10 is called a local pole. difference, and the maximum local range refers to the maximum value among the local range values. Reducing the maximum local extreme value of the wedge angle scatter point data set shows that the range of the wedge angle scatter point data set is more "long and narrow" in Fig. 9, that is, the degree of dispersion of the wedge angle values at different positions of the laminated glass 10 is reduced , and also reduces the manufacturing difficulty of the laminated glass 10 to a certain extent.
  • the maximum local extreme difference value of the wedge angle scatter point data set at the corresponding position of the laminated glass 10 is reduced, that is, In other words, the degree of difference in wedge angle values at different positions of the laminated glass 10 is reduced, the difficulty of manufacturing the laminated glass 10 is reduced, and the effect of eliminating secondary images is good.
  • variable wedge angle related to the first projection display area 411 has been described above, and it can be understood that the features such as the variable wedge angle related to the second projection display area 412 Features such as the variable wedge angle related to a projection display area 411 are similar, and the present application will not repeat them here.
  • the distance from the intersection of the principal optical axes corresponding to any two adjacent sub-eye box surfaces EB11 to the first surface 110 of the laminated glass 10 is 10 mm to 1000 mm.
  • the distance from the intersection point of the principal optical axes corresponding to any two adjacent sub-eye box surfaces EB11 to the first surface 110 of the laminated glass 10 may also be 40 mm to 800 mm; further, any adjacent two The distance from the intersection point of the principal optical axis corresponding to the eye box surface EB11 to the first surface 110 of the laminated glass 10 may also be 100 mm to 600 mm, which is not limited in the present application.
  • the distance between the intersection point where the main optical axis intersects the surface of the laminated glass 10 and the midpoint of the corresponding sub-eye box surface EB11 is 0.4m ⁇ 1.2m.
  • the distance between the intersection point where the main optical axis intersects the surface of the laminated glass 10 and the midpoint of the corresponding sub-eye box surface EB11 affects the design of the head-up display system 1. Too large or too small a distance will make the head-up display system 1 The application effect becomes worse. In order to more reasonably apply the head-up display system 1 on the vehicle, in this embodiment, the distance between the intersection point where the main optical axis intersects the surface of the laminated glass 10 and the midpoint of the corresponding sub-eye box surface EB11 is 0.4m to 1.2m m.
  • the height of the sub-eye box surface EB11 is 40 mm to 60 mm.
  • the sub-eye box surface EB11 is used to simulate the human eye or visual system, combined with SAE J941, SAE J1757-2 and other standards, taking into account the distribution range of the human eye of the applicable population and the manufacturing/assembly tolerance of the head-up display system, etc., In order to more reasonably apply the head-up display system on the vehicle, it can be properly adjusted to 40mm ⁇ 60mm.
  • the distance between the midpoint of the eye box surface EB10 and the midpoint of the first virtual image surface TB20 is the virtual image distance, and when the virtual image distance is 2m-6m, The value range of the wedge angle of the first projection display area 411 is 0.3mrad ⁇ 0.7mrad.
  • Fig. 19 observe the central point of the first sub-virtual image surface TB21 from the mid-perpendicular line of the neutron eye box surface EB11, that is, point TB_R3C2, it can be seen that the height of the neutron eye box surface EB11 Corresponding to the length of the block of the wedge angle scatter point data set is L_mid, understandably, the inclination of L_mid also reflects the inclination of the block of the wedge angle scatter point data set. According to the following calculation formula:
  • L_VID is the length of the virtual image distance
  • L_G is the length from the intersection point of the main optical axis and the laminated glass 10 to the center point of the neutron eye box surface EB11
  • H_EB is the height value of the neutron eye box surface EB11
  • is The included angle between the main optical axis of the neutron eye box surface EB11 and the first sub-virtual image surface TB21 in the plane of the main optical axis and the laminated glass 10 .
  • the value range of L_VID is 2.0m to 15m
  • the value range of L_G is 0.4m-1.2m
  • the value range of H_EB is 40mm-60mm
  • the length range of L_mid projected on the x-axis is generally At 16/sin ⁇ 58/sin ⁇ .
  • FIG. 21 is a schematic diagram of a wedge angle scatter data set provided in another embodiment of the present application.
  • the lengths of L_tall and L_short corresponding to the upper sub-eye box surface EB11-the lower first sub-virtual image surface TB21 and the lower sub-eye box surface EB11-upper first sub-virtual image surface TB21 can be calculated according to the above method, and also meet the requirements of the sub-eye box When the height of the surface EB11 is constant and the position is fixed, that is, when H_EB and L_G are constant, and ⁇ is constant, the longer the virtual image distance is, the longer L_tall and L_short are.
  • the longer the length of L_tall/L_mid/L_short the longer the length of L_tall/L_mid/L_short reflects that the corresponding wedge angle scatter point data block is narrower and longer, and its inclination is smaller, which is more suitable for designing Head-up display system with variable wedge angle.
  • the virtual image distance is 2m-6m, and optionally, the virtual image distance may be 2m-4.5m, which is not limited in the present application.
  • the distance between the midpoint of the eye box surface EB10 and the midpoint of the first virtual image surface TB20 is the virtual image distance
  • the value range of the wedge angle in zone 411 is 0.1mrad ⁇ 0.3mrad.
  • the relationship between the virtual image distance and the value of the wedge angle of the first projection display area 411 please refer to the description of the previous embodiment, which will not be repeated here.
  • the virtual image distance is 7m-100m, and optionally, the virtual image distance may be 7m-75m, which is not limited in the present application.
  • the vehicle body coordinates, and the XY plane, XZ plane and XY plane of the vehicle body coordinates are all formulated according to the national standard GB9656-2003.
  • the radius of curvature R along the longitudinal direction and/or transverse direction in the projection display area 410 changes monotonously, and the rate of change of the radius of curvature R is -20% to +20%.
  • the rate of change of the radius of curvature R may be, but not limited to, -20%, -18%, -16%, -14%, -12%, -10%, -8%, -6%, - 4%, -2%, 0%, 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%;
  • the longitudinal curvature radius R appears to a certain extent
  • the rate of change is high, the corresponding wedge angle value that can avoid secondary images at different positions on the projection display area 410 will also fluctuate, which will easily lead to a larger discrete state of the wedge angle scatter point data set, resulting in the laminated glass described in this application.
  • the projection display area 410 of the present application reduces the difference between the wedge angle values at different positions in the projection display area 410 through the preset wedge angle parameters and change trends, and makes the rate of change of the wedge angle values Showing a non-linear decreasing change trend, the laminated glass 10 described in the present application is less difficult to manufacture, and at the same time ensures a good effect of eliminating secondary images.
  • FIG. 22 is a schematic diagram of curves showing wedge angle values varying with virtual image distances under different longitudinal curvature radii according to an embodiment of the present application.
  • the glass loading angle is 26.1deg; specifically, a point of the eye box surface EB10 and the first virtual image surface TB20 is used to show the schematic diagram of the projection light path and the influence of glass surface curvature and other parameters on the secondary image.
  • the eye box surface in the projection light path EB10/first virtual image surface TB20 when the nominal thickness of the glass, glass loading angle, lateral curvature radius, downward viewing angle, horizontal viewing angle, and field of view are all the same, simulated according to different longitudinal curvature radii R and different virtual image distances VID
  • the wedge angle value of the secondary image can be avoided; as shown in Figure 22, when the virtual image distance VID of the laminated glass 10 is the same, as the longitudinal curvature radius R increases, the images viewed by a plurality of the eye box surfaces EB10 have no secondary The wedge angle value of the image decreases accordingly.
  • the wedge angle value for eliminating secondary images can be reduced, and the discrete state of the wedge angle scatter point data set can be improved.
  • the glass installation angle is a parameter of the degree of inclination of the glass, and the glass is often a curved surface when applied to a vehicle, and the included angle between the chord line of the intersection line of the XZ plane and the glass surface in the vehicle body coordinates and the horizontal plane is, Mount the corners for the glass.
  • the relationship between the lateral curvature radius R and the wedge angle value for eliminating secondary images can refer to the relationship between the longitudinal curvature radius R and the wedge angle value for eliminating secondary images, and the present application will not repeat them here.
  • the radius of curvature R along the longitudinal direction is greater than or equal to 5000 mm.
  • the radius of curvature R along the longitudinal direction in this application may be, but not limited to, 5000mm, 5100mm, 5200mm, 5300mm, 5400mm, 5500mm, 5600mm, 5700mm, 5800mm, 5900mm, 6000mm; in one embodiment, the The curvature radius R along the transverse direction is 1500mm-4000mm.
  • the radius of curvature R along the transverse direction in this application may be, but not limited to, 1500mm, 1800mm, 2100mm, 2400mm, 2700mm, 3000mm, 3300mm, 3600mm, 3900mm, 4000mm; when the laminated glass 10 is used as a vehicle For windshield glass, the laminated glass 10 has a radius of curvature R in the longitudinal direction from the bottom edge 10b to the top edge 10a, and a radius of curvature R in the transverse direction from the side edge of the glass to the other side edge.
  • the value of the radius of curvature at a position has a certain influence on the imaging of the projection display area 410 at this position, so the wedge angle value set for the projection display area 410 at this position to eliminate secondary images
  • the longitudinal radius of curvature R is the same and the longitudinal radius of curvature R ⁇ 5000mm
  • the transverse radius of curvature R is the same and the transverse curvature
  • the influence of the wedge angle value for eliminating secondary images in the projection display area 410 gradually decreases.
  • the corresponding wedge angle change rate when the virtual image distance VID is the same, as the longitudinal curvature radius R of the glass surface increases, the corresponding wedge angle change rate is not obvious, and the change rate is approximately constant when R ⁇ 5000mm; at the same longitudinal curvature radius At R, as the virtual image distance VID increases, the corresponding wedge angle growth rate gradually decreases.
  • the wedge angle change rate is greater than -0.2mrad/1000mm; increasing the virtual image distance VID increases the wedge angle The rate is smoother, thus improving the discretization state of the wedge angle scatter data set. If the slope of the first change curve L1 is too large, the production process will be difficult. Therefore, a gentle wedge angle growth rate is better.
  • the wedge angle growth rate is greater than or equal to -0.5mrad/1000mm; preferably, the wedge angle growth rate K is greater than or equal to -0.2mrad/1000mm.
  • FIG. 23 is a schematic diagram of the variation of the wedge angle with the first lower viewing angle under different longitudinal curvature radii and different virtual image distances according to an embodiment of the present application.
  • the glass loading angle is 26.1deg; as shown in Figure 23, it is the relationship between the wedge angle and the first lower viewing angle LDA1, wherein the first lower viewing angle LDA1 is each of the sub-eye boxes observed from the eye box surface EB10 The angle between the line connecting the center point of the surface EB11 and the center point of each corresponding first sub-virtual image surface TB21 and the XY plane of the vehicle body coordinates, wherein downward (-Z axis) is a negative value, otherwise it is positive;
  • the longitudinal curvature radius R and the virtual image distance VID of the laminated glass 10 are constant, as the first lower viewing angle LDA1 increases, the images viewed by the plurality of sub-eye box surfaces EB10 have no secondary image wedges. The angle value increases accordingly.
  • the first lower viewing angle LDA1 of the first sub-eye box surface EB12, the second sub-eye box surface EB13, and the third sub-eye box surface EB14 of the same group shows an increasing trend
  • the wedge angle value of eliminating secondary images also shows an increasing trend , that is, the wedge angle of the light path of the first sub-eye box surface EB12 ⁇ the wedge angle of the light path of the second sub-eye box surface EB13 ⁇ the wedge angle of the light path of the third sub-eye box surface EB14; when the third sub-eye box surface EB14 and the first sub-eye box surface EB14
  • the difference of the wedge angle is about 0.1mrad
  • the value range is -8° ⁇ LDA ⁇ 0° to ensure that the wedge angle value increases slowly, thereby improving the discrete state of the wedge angle scatter data set.
  • the value range of the second lower viewing angle LDA2 may also refer to the value range of the first lower viewing angle LDA1 , which will not be repeated in this application.
  • the laminated glass 10 has a functional area for signal transmission of the sensor, and the functional area has a wedge-shaped cross-sectional shape with a fixed wedge angle or a linearly changing wedge angle.
  • the sensor can be, for example, a camera, a laser radar, etc.
  • a wedge-shaped intermediate adhesive layer can also be used to optimize the transmission ghosting problem of the corresponding sensor.
  • the wedge-shaped intermediate bonding layer in the functional area has a fixed wedge angle or a wedge angle with a fixed slope.
  • the wedge angle is a fixed value or a change curve of a simple function of the first order, so that the production control of the wedge angle is easy.
  • a thermal barrier coating is provided on the second surface 120 and/or the third surface 210, the thermal barrier coating includes at least one metal layer and at least two dielectric layers, each metal layer located between two adjacent dielectric layers.
  • the thermal insulation coating can be used to prevent external heat from entering the vehicle by reflecting infrared rays outside the vehicle, thereby better controlling the temperature inside the vehicle. It can be understood that, in other possible implementation manners, the heat-shielding coating can also be disposed on other positions of the laminated glass 10 , which is not limited in the present application.
  • a first bus bar and a second bus bar electrically connected to the heat insulating coating are further arranged, and the heat insulating coating
  • the layer has a heating power density of at least 600 W/m2 between said first busbar and said second busbar.
  • the first busbar and the second busbar are respectively electrically connected to the thermal insulation coating, and when the first busbar and the second busbar are energized, the thermal insulation coating generates heat and can A heating power density of at least 600W/m2 is achieved, so as to heat the laminated glass 10 to remove frost, fog, snow, etc., so as to ensure a clear vision of the driver in bad weather.
  • an anti-reflection coating or an anti-fingerprint coating is disposed on the fourth surface 220 . It can be understood that since the fourth surface 220 is close to the inside of the vehicle, the anti-reflection coating prevents the laminated glass 10 from producing an obvious reflection of the instrument panel, so that when people in the vehicle look from the inside of the vehicle to the outside of the vehicle, It can be observed more clearly; the anti-fingerprint coating can ensure the cleanliness of the laminated glass 10, and it is not easy to leave stains such as fingerprints, thereby ensuring a clear view of the driver.
  • Fig. 24 is a flow chart of the design method of the head-up display system provided by an embodiment of the present application
  • Fig. 25 is a schematic diagram of the design method of the head-up display system provided by the embodiment of Fig. 24
  • FIG. 26 is a schematic diagram of the first change curve in the design method of the head-up display system provided by the embodiment of FIG. 24 .
  • the design method of the head-up display system 1 includes designing the eye box surface EB10 located in the vehicle according to the observers in the vehicle.
  • the first projection display area 411 will be described as an example below, and the virtual image surface will be designed according to the projection image (first projection image 4111) observed by the observer in the vehicle through each projection display area 410 (first projection display area 411) (the first virtual image plane TB20).
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 from high to low
  • the first virtual image surface TB20 includes a plurality of sub-virtual image surfaces (the first sub-virtual image surface TB21) from low to high in order, wherein , each first sub-virtual image surface TB21 corresponds to a sub-eye box surface EB11.
  • the connection line of the points in the first virtual image dot matrix TB211 passes through the corresponding first projection display area 411 , and the intersection of the connection line and the first projection display area 411 is the incident point.
  • the projection assembly 20 the laminated glass 10 and the multiple connecting lines, calculate multiple first theoretical wedge angle values of the laminated glass 10 when the first projected image 4111 at the corresponding incident point has no secondary image.
  • the multiple first theoretical wedge angle values and the distance from the incident point corresponding to each of the first theoretical wedge angle values to the bottom edge 10b of the laminated glass fit to obtain the wedge angle as the incident point reaches the bottom edge 10b of the laminated glass
  • the first variation curve L1 of the distance fit to obtain the wedge angle as the incident point reaches the bottom edge 10b of the laminated glass
  • the first variation curve L1 of the distance determines the wedge angle value of the laminated glass 10 in the corresponding first projection display area 411 according to the first variation curve L1.
  • the laminated glass 10 is used for the front windshield of the vehicle, and is applied to the head-up display system 1 of the vehicle.
  • the design method of the laminated glass 10 includes S11, S12, S13, S14, S15, S16 and S17. S11 , S12 , S13 , S14 , S15 , S16 and S17 will be described in detail below.
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 from high to low
  • the first virtual image surface TB20 includes a plurality of first sub-virtual image surfaces TB21 from low to high.
  • each first sub-virtual image surface TB21 corresponds to a sub-eye box surface EB11.
  • the eye box surface EB10 is used to simulate the plane where the eyes of the observer sit in the cab of the vehicle.
  • the multiple sub-eye box surfaces EB11 are used to simulate the eyes of the observer at different heights, that is, the multiple sub-eye box surfaces EB11 are used to simulate different viewing angles of the observer.
  • the first virtual image surface TB20 is used for simulating the virtual image formed on the other side of the laminated glass 10 by projected light reflected from the laminated glass 10 to the eye box surface EB10 .
  • the plurality of sub-eye box surfaces EB11 are used to simulate virtual images formed on the other side of the laminated glass 10 by projected light on the plurality of sub-eye box surfaces EB11 reflected to different positions by the laminated glass 10 .
  • the plurality of sub-eye box surfaces EB11 and the plurality of first sub-virtual image surfaces TB21 present a centrosymmetric relationship in height correspondence, that is, the sub-eye box surface EB11 with the highest height corresponds to the first sub-virtual image surface with the lowest height.
  • the sub-virtual image surface TB21, the sub-eye box surface EB11 with the lowest height corresponds to the first sub-virtual image surface TB21 with the highest height.
  • each point in the observation dot matrix EB111 corresponds to the position of the eyes of the simulated observer.
  • Each point in the first virtual image dot matrix TB211 is a virtual image formed on the first virtual image surface TB20 by simulating projected light reflected from the laminated glass 10 to a certain point on the eye box surface EB10 .
  • each point in the first virtual image lattice TB211 corresponds to one or more points in the observation lattice EB111, that is, the observer can see the first virtual image at different positions on the eye box surface EB10.
  • the observer can see virtual images at different positions on the first virtual image plane TB20 at the same position on the eye box plane EB10 .
  • each point in the observation dot matrix EB111 and the first virtual image dot matrix TB211 has an intersection with the laminated glass 10 , that is, an incident point.
  • the number of incident points used for simulation calculation is the number of the first theoretical wedge angle values.
  • the plurality of first theoretical wedge angle values and the distance from the incident point to the bottom edge 10b of the laminated glass present a discrete distribution.
  • one sub-scatter diagram T11 of the plurality of first theoretical wedge angle values can be calculated,
  • a plurality of sub-scattergrams T11 are assembled in the same coordinate system to form a first scattergram T10.
  • the first variation curve L1 is obtained by performing function fitting on the first scatter diagram T10 of the plurality of first theoretical wedge angle values.
  • the function may be, but not limited to, cubic, quartic, quintic polynomial functions or basic functions such as exponential functions, power functions, logarithmic functions, and composite functions composed of them.
  • the data curve fitting process can be completed in Microsoft Excel, or WPS or MATLAB or OriginPro and other software. Since an observer can see multiple images at different distances or angles at a certain point on the laminated glass 10, the first theoretical wedge angle value at this point has multiple values. However, the value of the wedge angle at a certain point on the laminated glass 10 can only be one value.
  • first theoretical wedge angle values there are multiple first theoretical wedge angle values at other points along the same distance from the bottom edge of the glass to the top edge of the point, and the wedge angle value at a certain distance from the bottom edge on the laminated glass 10 is suitable for one value . Therefore, it is necessary to properly select the value of the wedge angle at each incident point on the laminated glass 10 to reduce secondary images.
  • the wedge angle value of the laminated glass 10 on the first projection display area 411 can be compared with the value of the plurality of first theoretical wedge angle values. The deviation is smaller, thereby reducing the secondary image phenomenon projected onto the first projection display area 411 on the laminated glass 10 , so as to improve the imaging quality of the laminated glass 10 .
  • the maximum value and the extreme value of the plurality of first theoretical wedge angle values corresponding to the point are selected.
  • the average of the small values and then connect the average of the maximum value and the minimum value of the plurality of first theoretical wedge angle values at each incident point to form the first variation curve L1.
  • the wedge angle value of the laminated glass 10 in the corresponding first projection display area 411 is determined through the first change curve L1, so as to weaken the display of the laminated glass 10 in the first projection display area.
  • the secondary image phenomenon of the area 411. Specifically, through the selected design of the first virtual image plane TB20, the distribution of the multiple first theoretical wedge angle values of the first projection display area 411 in the laminated glass 10 can be calculated, and the The first variation curve L1 corresponding to the first projection display area 411 is used to determine the wedge angle value of the laminated glass 10 in the corresponding first projection display area 411 .
  • FIG. 27 is a schematic diagram of the eye box plane and the first virtual image plane in the design method of the head-up display system provided by the embodiment of FIG. 24 .
  • the eye box surface EB10 includes a first sub-eye box surface EB12 , a second sub-eye box surface EB13 , and a third sub-eye box surface EB14 in descending order.
  • the plurality of first sub-virtual image surfaces TB21 includes a first low virtual image surface TB22 , a first middle virtual image surface TB23 , and a first high virtual image surface TB24 in order from low to high.
  • the "select observation dot matrix EB111 on each sub-eye box surface EB11, and select virtual image dot matrix on each sub-virtual image plane" includes selecting the first sub-observation dot matrix EB121 on the first sub-eye box surface EB12: m1*n1, select the second sub-observation dot matrix EB131: m2*n2 on the second sub-eye box surface EB13, select the third sub-observation dot matrix EB141: m3* on the third sub-eye box surface EB14 n3, wherein, m1, m2, m3 ⁇ 1 and are natural numbers, and n1, n2, n3 ⁇ 1 and are natural numbers.
  • the first high virtual image lattice TB241 is selected on the first high virtual image surface TB24: i3*j3, wherein i1, i2, i3 ⁇ 1 and are natural numbers, j1, j2, j3 ⁇ 1 and are natural numbers.
  • the eye box surface EB10 includes the first sub-eye box surface EB12, the second sub-eye box surface EB13, and the third sub-eye box surface EB14 from high to low, that is, the observer will
  • the positions of the eyes in the room are simplified to three high, middle and low height positions, thereby simplifying the design method of the head-up display system 1 .
  • selecting more positions of the eye box surface EB10 can increase the accuracy of calculation, more eye box surfaces EB10 will also increase the number of sub-scatter diagrams T11 of the plurality of first theoretical wedge angle values , thereby increasing the calculation amount and difficulty of fitting the first variation curve L1.
  • step S14 in the above embodiment specifically includes S141 and S142. Next, steps S141 and S142 will be described in detail.
  • the first observation sub-matrix EB121: m1*n1 is selected on the first sub-eye box surface EB12.
  • m1 ⁇ 1 and n1 ⁇ 1 and is a natural number can be, but not limited to, 3, 5 or 8, etc.
  • n1 can be, but not limited to, 3, 5 or 8, etc.
  • m2 can be but not limited to 3, 5 or 8, etc.
  • n2 can be but not limited to 3, 5 or 8 and so on.
  • m2 is the same as or different from m1
  • n2 is the same as or different from n1.
  • m3 ⁇ 1 and is a natural number
  • m3 can be but not limited to 3, 5 or 8, etc.
  • n3 can be but not limited to 3, 5 or 8 and so on.
  • m3 is the same as or different from m1 and m2, and n3 is the same as or different from n1 and n2.
  • the first high virtual image lattice TB241 is selected on the first high virtual image surface TB24: i3*j3, wherein i1, i2, i3 ⁇ 1 and are natural numbers, j1, j2, j3 ⁇ 1 and are natural numbers.
  • the first low virtual image lattice TB221: i1*j1 is selected on the first low virtual image plane TB22.
  • j1 ⁇ 1 and is a natural number can be, but not limited to, 3, 5 or 8, etc.
  • j1 can be, but not limited to, 3, 5 or 8, etc.
  • i2 can be, but not limited to, 3, 5 or 8, etc.
  • j2 can be, but not limited to, 3, 5 or 8, etc.
  • i2 is the same as or different from i1
  • j2 is the same as or different from j1.
  • i3 can be, but not limited to, 3, 5 or 8, etc.
  • j3 can be, but not limited to, 3, 5 or 8, etc.
  • i3 is the same as or different from i1 and i2, and j3 is the same as or different from j1 and j2. It should be noted that i1*j1 is the same or different from m1*n1, i2*j2 is the same or different from m2*n2, and i3*j3 is the same or different from m3*n3.
  • FIG. 28 is a schematic diagram of the first variation curve calculated by the design method of the head-up display system provided in an embodiment of the present application.
  • the "calculate multiple first theoretical wedge angle values of the laminated glass when the projected image at the corresponding incident point position has no secondary image according to the projection assembly 20, the laminated glass 10 and multiple connecting lines" includes Each point in the projection assembly 20, the laminated glass 10, and the first sub-observation dot matrix EB121 is connected with each point of the first low virtual image dot matrix TB221, and the position of the incident point corresponding to the connection line is calculated. Multiple first sub-theoretical wedge angle values of the laminated glass 10 when the first projected image 4111 has no secondary image.
  • the laminated glass 10, and the second sub-observation dot matrix EB131 with each point of the first middle virtual image dot matrix TB231 calculate the incident point position corresponding to the connection line A plurality of second sub-theoretical wedge angle values of the laminated glass 10 when the first projected image 4111 at the position has no secondary image.
  • the laminated glass 10, and the third sub-observation dot matrix EB141 with each point of the first high virtual image dot matrix TB241 calculate the incident point corresponding to the connection line A plurality of third sub-theoretical wedge angle values of the laminated glass 10 when the first projected image 4111 at the position has no secondary image.
  • step S15 in the foregoing embodiments specifically includes S151, S152, and S153. Next, steps S151, S152 and S153 will be described in detail.
  • a first sub-scatter diagram T12 of the plurality of first sub-theoretical wedge angle values and the distance from the bottom edge 10b of the laminated glass can be obtained according to the plurality of first sub-theoretical wedge angle values.
  • a second sub-scatter diagram T13 of the plurality of second sub-theoretical wedge angle values and the distance from the bottom edge 10b of the laminated glass can be obtained according to the plurality of second sub-theoretical wedge angle values.
  • a third sub-scatter diagram T14 of the multiple third sub-theoretical wedge angle values and the distance from the bottom edge 10b of the laminated glass can be obtained.
  • the first sub-scattergram T12, the second sub-scattergram T13, and the third sub-scattergram T14 are calculated first, and then the first sub-scattergram T12, the second sub-scattergram
  • the sub-scatter diagram T13 and the third sub-scatter diagram T14 are aggregated into the first sub-scatter diagram T10, which can be used for the first sub-scatter diagram T12, the second sub-scatter diagram T13 and the third sub-scatter diagram T14 performs targeted optimization respectively, so as to optimize the first scatter graph T10.
  • the second sub-eyebox surface EB13 corresponding to the second sub-discrete graph T13 is used for simulating the viewing angle plane where the eyes of the observer are at the mid-height of the cab.
  • the height in the driver's cab is the most common height, so the second sub-eyebox surface EB13 is the eyebox surface EB10 that most needs to eliminate projected secondary images. Therefore, targeted optimization can be performed on the second sub-discrete graph T13, so that the selection of the wedge angle value corresponding to the second sub-eye box surface EB13 at the laminated glass 10 is more accurate.
  • the ratio of the maximum local range value ⁇ W of the plurality of first theoretical wedge angle values to the overall range value ⁇ C of the plurality of first theoretical wedge angle values For: ⁇ W/ ⁇ C ⁇ 0.9.
  • the ratio of the maximum local extreme difference ⁇ W of the plurality of first theoretical wedge angle values to the overall extreme difference ⁇ C of the plurality of first theoretical wedge angle values is: ⁇ W/ ⁇ C ⁇ 0.9, which can make the degree of dispersion of the plurality of first theoretical wedge angle values smaller, thereby making the degree of dispersion of the first scatter diagram T10 smaller, so as to increase the smoothness of the first change curve L1, That is, the slope of the first change curve L1 is reduced, thereby reducing the rate of change of the wedge angle of the laminated glass 10 and reducing the production difficulty of the laminated glass 10 .
  • the maximum local range value ⁇ W of the plurality of first theoretical wedge angle values refers to the maximum value of the local range values, wherein the local range value is the distance from the bottom edge 10b of the laminated glass is the difference between the maximum value and the minimum value among multiple first theoretical wedge angle values at a certain position of X.
  • the overall extreme difference ⁇ C of the plurality of first theoretical wedge angle values refers to the difference between the maximum value and the minimum value among all the first theoretical wedge angle values.
  • the ratio of the maximum local extreme difference ⁇ W1 of the plurality of first sub-theoretical wedge angle values to the overall extreme difference ⁇ C of the plurality of first theoretical wedge angle values is: ⁇ W1/ ⁇ C ⁇ 0.9 .
  • the ratio of the maximum local extreme difference ⁇ W2 of the plurality of second sub-theoretical wedge angle values to the overall extreme difference ⁇ C of the plurality of first theoretical wedge angle values is: ⁇ W2/ ⁇ C ⁇ 0.9.
  • the ratio of the maximum local extreme difference ⁇ W3 of the plurality of third sub-theoretical wedge angle values to the overall extreme difference ⁇ C of the plurality of first theoretical wedge angle values is: ⁇ W3/ ⁇ C ⁇ 0.9.
  • the degree of dispersion of the first scatter diagram T10 is smaller, so as to increase the smoothness of the first change curve L1, that is, reduce the slope of the first change curve L1, thereby reducing the thickness of the laminated glass 10.
  • the rate of change of the wedge angle reduces the production difficulty of the laminated glass 10 .
  • the ratio of the maximum local range value ⁇ W1 of the plurality of first sub-theoretical wedge angle values to the overall range value ⁇ C of the plurality of first theoretical wedge angle values is: ⁇ W1/ ⁇ C ⁇ 0.9, which can make the discrete degree of the plurality of first sub-theoretical wedge angle values smaller.
  • the maximum local extreme difference ⁇ W1 of the plurality of first sub-theoretical wedge angle values refers to the maximum value of the first sub-local extreme difference, and the first sub-local extreme difference is the distance from the bottom edge 10b of the laminated glass is the difference between the maximum value and the minimum value among multiple first sub-theoretical wedge angle values at a certain position of X1.
  • the ratio of the maximum local range value ⁇ W2 of the multiple second theoretical wedge angle values to the overall range value ⁇ C of the multiple first theoretical wedge angle values is: ⁇ W2/ ⁇ C ⁇ 0.9, which can make the discrete degree of the plurality of second sub-theoretical wedge angle values smaller.
  • the maximum local range value ⁇ W2 of the multiple second sub-theoretical wedge angle values refers to the maximum value of the second sub-local range values, and the second sub-local range value is the distance from the bottom edge 10b of the laminated glass is the difference between the maximum value and the minimum value among multiple second sub-theoretical wedge angle values at a certain position of X2.
  • the ratio of the maximum local range value ⁇ W3 of the plurality of third sub-theoretical wedge angle values to the overall range value ⁇ C of the plurality of first theoretical wedge angle values is: ⁇ W3/ ⁇ C ⁇ 0.9, which can make the discrete degree of the plurality of third sub-theoretical wedge angle values smaller.
  • the maximum local extreme difference value ⁇ W3 of the multiple third sub-theoretical wedge angle values refers to the maximum value of the third sub-local extreme difference value
  • the third sub-local extreme difference value is the distance from the bottom edge 10b of the laminated glass is the difference between the maximum value and the minimum value among multiple third sub-theoretical wedge angle values at a certain position of X3.
  • the distance between the multiple virtual image planes (the first virtual image plane TB20 ) and the eye box surface EB10 increases gradually in the direction from the bottom edge 10 b to the top edge 10 a of the laminated glass 10 .
  • the distance between the plurality of first virtual image planes TB20 and the eye box surface EB10 increases gradually in the direction between the bottom edge 10b and the top edge 10a of the laminated glass 10, and the interlayer A plurality of the first projection display areas 411 are correspondingly designed on the glass 10 , so that the eyes of the observer sitting in the driver's cab can switch between the plurality of the first projection display areas 411 more smoothly.
  • FIG. 29 is a schematic diagram of the optimal design of two first change curves in the design method of the head-up display system provided by an embodiment of the present application.
  • the projection display area 410 includes at least two first projection display areas 411, at least two first variation curves L1 of the wedge angle with the distance from the incident point to the bottom edge 10b of the laminated glass are obtained by fitting,
  • the maximum deviation value ⁇ Xmax between two adjacent first change curves L1 is greater than 0.15mrad
  • the design method of the head-up display system 1 further includes adjusting the distance between the eye box surface EB10 and the virtual image surface (the first virtual image surface TB20) corresponding to one of the two adjacent first change curves L1.
  • New multiple values of the first theoretical wedge angles are obtained through recalculation. According to the new multiple first theoretical wedge angle values, and the distance from the incident point corresponding to each of the first theoretical wedge angle values to the bottom edge 10b of the laminated glass, to obtain the wedge angle from the incident point to the bottom edge of the laminated glass 10b is the distance from the new first variation curve L1. And judging whether the maximum deviation ⁇ Xmax between the new first change curve L1 and the other of the two adjacent first change curves L1 is greater than 0.15 mrad. If yes, repeat the above steps. If not, determine the wedge angle value of the laminated glass 10 in the corresponding first projection display area 411 according to the new first variation curve L1.
  • the maximum deviation value ⁇ Xmax is equal to the maximum value of the difference between the two first change curves L1 in the overlapping portion;
  • the maximum deviation value ⁇ Xmax is equal to the difference between the wedge angle values at the two most adjacent ends of the two first change curves L1.
  • the maximum deviation value ⁇ Xmax is greater than 0.15mrad, it is necessary to adjust the distance between the eye box surface EB10 and the first virtual image surface TB20 corresponding to any one of the two adjacent first change curves L1, so that the designed two
  • the maximum deviation value ⁇ Xmax of the first variation curve L1 is adjusted to be less than or equal to 0.15 mrad, or less than or equal to 0.10 mrad, or less than or equal to 0.08 mrad, or less than or equal to 0.05 mrad.
  • the design method of the laminated glass 10 further includes S18 , S19, S20, S21 and S22. Next, steps S18, S19, S20, S21 and S22 will be described in detail.
  • adjusting the distance between the eye box surface EB10 and the first virtual image surface TB20 corresponding to one of the two adjacent first change curves L1 can adjust the wedge angle value required for eliminating secondary images.
  • the wedge angle value required to eliminate secondary images is smaller .
  • the distance between the first virtual image plane TB20 corresponding to one of the first change curves L1 please refer to L11 in FIG. 27
  • the eye box surface EB10 can be increased, and/or the other one can be decreased.
  • the distance between the first virtual image plane TB20 corresponding to the first change curve L1 please refer to L12 in FIG. 27 ) and the eye box surface EB10 makes two adjacent first change curves L1 closer to the design target.
  • the multiple first theoretical wedge angle values calculated by the calculation method of the foregoing embodiment can fit The first change curve L1 that is closer to the design target is obtained.
  • FIG. 30 is a schematic diagram of the second variation curve calculated by the design method of the head-up display system provided in an embodiment of the present application.
  • the multiple projection display areas 410 include at least one second projection display area 412, and the second projection image 4121 observed by the observer in the vehicle through each second projection display area 412 is designed according to the second projection display area 412.
  • the second virtual image M30 surface includes a plurality of second sub-virtual image surfaces TB31 sequentially from low to high. Wherein, each second sub-virtual image surface TB31 corresponds to a sub-eye box surface EB11.
  • the plurality of second theoretical wedge angle values and the distance from the incident point corresponding to each of the second theoretical wedge angle values to the bottom edge 10b of the laminated glass, fit to obtain the wedge angle as the incident point to the bottom edge of the laminated glass
  • the second variation curve L2 of the distance of 10b and determine the wedge angle value of the laminated glass 10 in the corresponding second projection display area 412 according to the second variation curve L2.
  • the set of the plurality of first theoretical wedge angle values and the plurality of second theoretical wedge angle values has the largest local range value ⁇ WU
  • the plurality of first theoretical wedge angle values and the plurality of second theoretical wedge angle values The collection of two theoretical wedge angle values has an overall range value ⁇ CU, and the ratio of ⁇ WU to ⁇ CU is: ⁇ WU/ ⁇ CU ⁇ 0.9.
  • the overall degree of dispersion of the set of the plurality of first theoretical wedge angle values and the plurality of second theoretical wedge angle values can be made smaller, thereby increasing the difference between the first variation curve L1 and the second variation curve L2 smoothness, that is, the overall slope of the first change curve L1 and the second change curve L2 is reduced, thereby reducing the overall wedge angle change rate of the laminated glass 10 and reducing the production rate of the laminated glass 10 difficulty.
  • the collection of the plurality of first theoretical wedge angle values and the plurality of second theoretical wedge angle values has the largest local extreme difference value ⁇ WU refers to the maximum value in the local extreme difference values of the collection, wherein, The combined local extreme difference value is the maximum value and the minimum value in the collection of multiple first theoretical wedge angle values and the multiple second theoretical wedge angle values at a certain position with a distance of X from the bottom edge 10b of the laminated glass Difference.
  • the collection of the plurality of first theoretical wedge angle values and the plurality of second theoretical wedge angle values has an overall range value ⁇ CU refers to the collection of all first theoretical wedge angle values and all second theoretical wedge angle values The difference between the maximum and minimum values.
  • the wedge angle value of the second projection display area 412 different from the first projection display area 411 is designed.
  • the first projection display area 411 is used for AR-HUD
  • the The second projection display area 412 is used for W-HUD.
  • the design method of the head-up display system 1 further includes S31, S32, S33, S34, S35 and S36. Next, steps S31 , S32 , S33 , S34 , S35 and S36 will be described in detail.
  • the multiple projection display areas 410 include at least one second projection display area 412, and design the second virtual image plane TB30 according to the second projection image 4121 observed by the observer in the vehicle through each second projection display area 412 .
  • the height of the second virtual image plane TB30 is lower than that of the first virtual image plane TB20.
  • the second virtual image M30 surface includes a plurality of second sub-virtual image surfaces TB31 in order from low to high.
  • each second sub-virtual image surface TB31 corresponds to a sub-eye box surface EB11.
  • the second virtual image surface TB30 is closer to the eye box surface EB10 than the first virtual image surface TB20, and the second virtual image surface TB30 The downward viewing angle is smaller.
  • the second virtual image M30 plane includes a plurality of second sub-virtual image planes TB31 in sequence from low to high.
  • each second sub-virtual image surface TB31 corresponds to a sub-eye box surface EB11.
  • the plurality of sub-eye box surfaces EB11 and the plurality of second sub-virtual image surfaces TB31 present a centrally symmetrical relationship in height correspondence, that is, the sub-eye box surface EB11 with the highest height corresponds to the sub-eye box surface EB11 with the lowest height.
  • the second sub-virtual image surface TB31, the sub-eye box surface EB11 with the lowest height corresponds to the second sub-virtual image surface TB31 with the lowest height.
  • connection line of the points in the dot matrix TB311 passes through the corresponding second projection display area 412 , and the intersection point of the connection line with the second projection display area 412 is the incident point.
  • each point in the observation dot matrix EB111 corresponds to the position of the eyes of the simulated observer.
  • Each point in the second virtual image dot matrix TB311 simulates a virtual image formed on the second virtual image surface TB30 by simulating projection light reflected from the laminated glass 10 to a certain point on the eye box surface EB10 .
  • each point in the second virtual image lattice TB311 corresponds to one or more points in the observation lattice EB111, that is, the observer can see the first The virtual image of the same position on the two virtual image planes TB30.
  • the observer can see virtual images at different positions on the second virtual image plane TB30 at the same position on the eye box plane EB10 .
  • each point in the observation dot matrix EB111 and the second virtual image dot matrix TB311 has an intersection with the laminated glass 10 , that is, an incident point.
  • the number of incident points used for simulation calculation is the number of the second theoretical wedge angle values.
  • the wedge angle value of the laminated glass 10 in the corresponding second projection display area 412 is determined through the second change curve L2, so as to weaken the display of the laminated glass 10 in the second projection display area.
  • the imaging ghost phenomenon of area 412. Specifically, through the selected design of the second virtual image plane TB30, the distribution of the multiple second theoretical wedge angle values of the second projection display area 412 in the laminated glass 10 can be calculated, and the The second change curve L2 corresponding to the second projection display area 412 is used to determine the wedge angle value of the laminated glass 10 in the corresponding second projection display area 412 .
  • FIG. 31 is a schematic diagram of optimization of the first change curve and the second change curve provided by an embodiment of the present application.
  • the maximum deviation between the adjacent first change curve L1 and the second change curve L2 is greater than 0.2mrad
  • the first difference between the eye box surface EB10 and the first change curve L1 is reduced.
  • the maximum deviation value ⁇ Xmax is equal to the first variation curve L1 and the second variation curve L1 in the overlapping portion.
  • the maximum deviation value ⁇ Xmax is greater than 0.2mrad, it is necessary to adjust the distance between the eye box surface EB10 and the first virtual image plane TB20 corresponding to the adjacent first change curve L1, and/or the eye box surface
  • the distance between EB10 and the second virtual image plane TB30 corresponding to the second change curve L2 is used to adjust the maximum deviation ⁇ Xmax between the designed adjacent first change curve L1 and the second change curve L2 To less than or equal to 0.2mrad, or less than or equal to 0.15mrad, or less than or equal to 0.10mrad, or less than or equal to 0.08mrad, or less than or equal to 0.05mrad.
  • the designed multiple first theoretical wedge angle values become larger, so that Make the first change curve L1 closer to the second change curve L2, thereby reducing the maximum deviation between the first change curve L1 and the second change curve L2, so that the adjacent first change curve The curve L1 and the second variation curve L2 are closer to the design target.
  • the designed values of the plurality of second theoretical wedge angle values become smaller, thereby make the second change curve L2 closer to the first change curve L1, thereby reducing the maximum deviation between the first change curve L1 and the second change curve L2, so that the adjacent first change curve The curve L1 and the second variation curve L2 are closer to the design target.
  • the distance between the first virtual image plane TB20 and the eye box surface EB10 is reduced, and the distance between the second virtual image plane TB30 and the eye box surface EB10 is increased, Therefore, the designed multiple first theoretical wedge angle values become larger, and the designed multiple second theoretical wedge angle values become smaller, so that the adjacent first variation curve L1 and The second change curves L2 are close to each other, so that the adjacent first change curve L1 and the second change curve L2 are closer to the design target.
  • the "designing the virtual image plane according to the projected image observed by the observer in the vehicle through each projection display area 410" includes: setting the height of the virtual image plane (the first virtual image plane TB20) and The width ratio is less than or equal to 0.5.
  • the height and width of the first virtual image plane TB20 both have an influence on the wedge-shaped cross-sectional shape at different positions in the first projection display area 411, and the first virtual image plane TB20 The height of the height has a greater influence on the wedge-shaped cross-sectional shape at different positions in the first projection display area 411. Since the ratio of the height to the width of the first virtual image plane TB20 is less than or equal to 0.5, it greatly reduces the The height ratio of the first virtual image plane TB20 improves the discretization state of the wedge angle scatter data set.
  • the design method of the head-up display system further includes: plotting in XY according to the plurality of theoretical wedge angle values and the distance from the incident point corresponding to each theoretical wedge angle value to the bottom edge 10b of the laminated glass 10
  • the scatter distribution diagram of the theoretical wedge angle value in the coordinate system There is an inclined median line in the scatter distribution diagram, and the projection length of the median line on the X axis is L, and in the scatter distribution diagram It also has a projection length W of the height and width of the virtual image plane (the first virtual image plane TB20 ) on the X axis, W/L ⁇ 1.2.
  • W is the sum of Wm_C, Wm_L and Wm_R
  • L is the projected length of the corresponding L_mid or L_tall or L_short on the X axis. From the perspective of each wedge angle scatter point data set block, the block width perpendicular to the L_mid, L_tall, L_short directions is smaller, so that the maximum local pole of the wedge angle scatter point data set at the corresponding position of the laminated glass 10 The difference is smaller.
  • the projected length of the first virtual image plane TB20 on the laminated glass 10 and the median line of the corresponding wedge angle scatter point data block are at The smaller the ratio of the projection length on the X-axis, the better, that is, the smaller the W/L, the better.
  • the ratio W/ L ⁇ 1.2.
  • the value of W/L may be even smaller, which is not limited by the present application.
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 from high to low
  • the first virtual image surface TB20 includes a plurality of first sub-virtual image surfaces TB21 from low to high
  • each The first sub-virtual image surface TB21 corresponds to a sub-eye box surface EB11
  • the line connecting the midpoint of the sub-eye box surface EB11 and the corresponding first sub-virtual image surface TB21 midpoint is the main optical axis
  • any adjacent two The intersection of the main optical axes corresponding to the sub-eyebox surfaces EB11 is located outside the vehicle.
  • the distance from the intersection of the principal optical axes corresponding to any two adjacent sub-eye box surfaces EB11 to the first surface 110 of the laminated glass 10 is 10 mm to 1000 mm.
  • the distance from the intersection point of the principal optical axes corresponding to any two adjacent sub-eye box surfaces EB11 to the first surface 110 of the laminated glass 10 is 10 mm to 1000 mm;
  • the distance from the intersection point of the main optical axis corresponding to each sub-eye box surface EB11 to the first surface 110 of the laminated glass 10 is 40 mm to 800 mm; further, the main light corresponding to any two adjacent sub-eye box surfaces EB11
  • the distance from the intersection of the axes to the first surface 110 of the laminated glass 10 is 100 mm to 600 mm, which is not limited in the present application.
  • the design method of the head-up display system further includes: setting the curvature radius R along the vertical or horizontal direction in the projection display area 410 of the laminated glass 10 to change monotonously, and the change of the curvature radius R The rate is -20% to +20%.
  • the wedge angle value of images viewed by the multiple eye-box surfaces EB10 without secondary images decreases accordingly.
  • the wedge angle value for eliminating secondary images can be reduced, which can improve the discretization state of the wedge angle scatter point data set.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

本申请提供了一种抬头显示系统及其设计方法,抬头显示系统包括夹层玻璃及投影组件;夹层玻璃包括:第一透明基板,具有第一表面和第二表面;第二透明基板,具有第三表面和第四表面;以及中间粘结层,中间粘结层设于第一透明基板及第二透明基板之间,且用于粘结第二表面及第三表面;夹层玻璃具有至少一个投影显示区,投影显示区具有夹层玻璃安装于车辆时的上侧边厚度大于下侧边厚度的楔形剖面形状,投影显示区具有楔角从下侧边向上侧边连续非线性单调变小的区段,区段的长度与投影显示区的长度之比不低于70%;投影组件包括能够投影至至少一个投影显示区的至少一个投影光源,投影光源发出的投影光线入射至投影显示区形成投影图像。

Description

抬头显示系统及其设计方法 技术领域
本申请涉及汽车领域,具体涉及一种抬头显示系统及其设计方法。
背景技术
随着汽车智能化发展,抬头显示(Head Up Display,HUD)系统越来越多的应用在汽车上,通过抬头显示系统将影像,比如,行车信息实时显示在前挡风玻璃的前方。前挡风玻璃通常为夹层玻璃,需要设置具有楔角的中间粘结层以消除投影至前挡风玻璃上产生的副像。当前挡风玻璃内设有高反射介质层时,如含Ag的金属镀膜层、高反射率的改性PET等,也会发生反射并产生更多个副像。当驾驶员同时看到两幅或多幅偏移的图像时,会导致人眼观察的图像模糊,有眩晕感,体验不佳。由于每个驾驶员的身高不同以及越来越多的汽车上设置有多个不同显示距离或功能的HUD,从而导致具有单一楔角值的中间粘结层对减弱投影至前挡风玻璃上的副像的效果不好,从而导致投影至前挡风玻璃上的抬头显示图像的质量不高。
发明内容
本申请公开了一种抬头显示系统,能够解决投影至前挡风玻璃上的抬头显示图像的质量不高的技术问题。
第一方面,本申请提供了一种抬头显示系统,所述抬头显示系统包括夹层玻璃及投影组件;
所述夹层玻璃包括:
第一透明基板,具有第一表面和第二表面;
第二透明基板,具有第三表面和第四表面;以及
中间粘结层,所述中间粘结层设于所述第一透明基板及所述第二透明基板之间,且用于粘结所述第二表面及所述第三表面;
所述夹层玻璃具有至少一个投影显示区,所述投影显示区具有所述夹层玻璃安装于车辆时的上侧边厚度大于下侧边厚度的楔形剖面形状,所述投影显示区具有楔角从所述下侧边向所述上侧边连续非线性单调变小的区段,所述区段的长度与所述投影显示区的长度之比不低于70%;
所述投影组件包括能够投影至所述至少一个投影显示区的至少一个投影光源,所述投影光源发出的投影光线入射至所述投影显示区形成投影图像。
第二方面,本申请还提供了一种抬头显示系统的设计方法,所述抬头显示系统的设计方法包括:
提供投影组件及夹层玻璃,所述投影组件发出的投影光线入射到所述夹层玻璃上的至少一个投影显示区;
根据车内的观察者设计位于车内的眼盒面;
根据车内的观察者透过每个投影显示区观察到的投影图像设计虚像面;
其中,所述眼盒面包括依次从高到低的多个子眼盒面,所述虚像面包括依次从低到高的 多个子虚像面,其中,每个子虚像面对应一个子眼盒面;
在每个子眼盒面上选取观察点阵,且在每个子虚像面上选取虚像点阵,所述观察点阵中的点与所述虚像点阵中的点的连线穿过对应的投影显示区,所述连线与所述投影显示区的交点为入射点;
根据所述投影组件、夹层玻璃和多条连线计算对应的入射点位置处的投影图像无副像时夹层玻璃的多个第一理论楔角值;
根据所述多个第一理论楔角值以及各个所述第一理论楔角值对应的入射点到夹层玻璃底边的距离,拟合以得到楔角随着入射点到夹层玻璃底边的距离的第一变化曲线;以及
根据所述第一变化曲线确定所述夹层玻璃在对应的所述投影显示区的楔角值。
本申请提供的抬头显示系统包括夹层玻璃和投影组件,所述夹层玻璃能够通过上侧边厚度大于下侧边厚度且楔角从所述下侧边向所述上侧边连续非线性单调变小的楔形剖面形状减弱甚至消除透过多个投影显示区形成的每个抬头显示图像的副像,从而提高投影至所述夹层玻璃上的抬头显示图像的质量,还有利于驾驶员在多个抬头显示图像之间切换观察,进一步提高驾驶安全性和舒适性。因此,本申请提供的抬头显示系统能够提高抬头显示图像质量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的抬头显示系统的结构示意图。
图2为图1实施方式提供的抬头显示系统中夹层玻璃沿A-A线的剖面示意图。
图3为图1实施方式提供的抬头显示系统中第一投影图像的成像示意图。
图4为图1实施方式提供的抬头显示系统中夹层玻璃的楔角变化曲线。
图5为图1实施方式提供的抬头显示系统中中间粘结层的结构示意图。
图6为本申请又一实施方式提供的抬头显示系统的结构示意图。
图7为本申请一实施方式提供的夹层玻璃任意点楔角值计算示意图。
图8为本申请一实施方式提供的子眼盒面-子虚像面组合示意图。
图9为本申请一实施方式提供的第一变化曲线示意图。
图10为本申请另一实施方式提供的拟合曲线示意图。
图11为本申请另一实施方式提供的拟合曲线示意图。
图12为本申请又一实施方式提供的抬头显示系统的结构示意图。
图13为图12实施方式提供的抬头显示系统中投影至第二投影显示区的示意图。
图14为本申请又一实施方式提供的抬头显示系统的结构示意图。
图15为图14实施方式提供的抬头显示系统另一视角的结构示意图。
图16为图12实施方式提供的抬头显示系统中一实施方式的投影成像示意图。
图17为图12实施方式提供的抬头显示系统中另一实施方式的投影成像示意图。
图18为图12实施方式提供的抬头显示系统中又一实施方式的投影成像示意图。
图19为本申请一实施方式提供的楔角散点数据组示意图。
图20为本申请一实施方式提供的夹层玻璃剖线示意图。
图21为本申请另一实施方式提供的楔角散点数据组示意图。
图22为本申请一实施方式提供的不同纵向曲率半径下楔角值随着虚像距离变化的曲线示 意图。
图23为本申请一实施方式提供的不同纵向曲率半径以及不同虚像距离下楔角值随着第一下视角变化的示意图。
图24为本申请一实施方式提供的抬头显示系统的设计方法的流程图。
图25为图24实施方式提供的抬头显示系统的设计方法的示意图。
图26为图24实施方式提供的抬头显示系统的设计方法中第一变化曲线的示意图。
图27为图24实施方式提供的抬头显示系统的设计方法中眼盒面与第一虚像面的示意图。
图28为本申请一实施方式提供的抬头显示系统的设计方法计算出的第一变化曲线的示意图。
图29为本申请一实施方式提供的抬头显示系统的设计方法中两条第一变化曲线优化设计的示意图。
图30为本申请一实施方式提供的抬头显示系统的设计方法计算出来的第二变化曲线的示意图。
图31为本申请一实施方式提供的第一变化曲线与第二变化曲线优化的示意图。
附图标号说明:抬头显示系统1;夹层玻璃10;投影组件20;第一透明基板100;第一表面110;第二表面120;第二透明基板200;第三表面210;第四表面220;中间粘结层300;顶边10a;底边10b;投影光源201;第一投影光源211;第二投影光源212;折叠镜230;非球面镜240;投影显示区410;下侧边420;上侧边430;第一投影显示区411;第二投影显示区412;第一投影图像4111;第二投影图像4121;第一左投影图像4111L;第一右投影图像4111R;第二左投影图像4121L;第二右投影图像4121R;眼盒面EB10;第一虚像面TB20;第二虚像面TB30;子眼盒面EB11;第一子眼盒面EB12;第二子眼盒面EB13;第三子眼盒面EB14;第一子虚像面TB21;第一低虚像面TB22;第一中虚像面TB23;第一高虚像面TB24;观察点阵EB111;第一子观察点阵EB121;第二子观察点阵EB131;第三子观察点阵EB141;第一虚像点阵TB211;第一低虚像点阵TB221;第一中虚像点阵TB231;第一高虚像点阵TB241;第二子虚像面TB31;第二虚像点阵TB311;观察者眼部E10;第一变化曲线L1;第二变化曲线L2;第一离散图T10;子离散图T11;第一子离散图T12;第二子离散图T13;第三子离散图T14。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人 员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请一实施方式提供了一种抬头显示系统1。请参照图1、图2、图3及图4,图1为本申请一实施方式提供的抬头显示系统的结构示意图;图2为图1实施方式提供的抬头显示系统中夹层玻璃沿A-A线的剖面示意图;图3为图1实施方式提供的抬头显示系统中第一投影图像的成像示意图;图4为图1实施方式提供的抬头显示系统中夹层玻璃的楔角变化曲线。所述抬头显示系统1包括夹层玻璃10及投影组件20。所述夹层玻璃10包括第一透明基板100、第二透明基板200以及中间粘结层300。所述第一透明基板100具有第一表面110和第二表面120。所述第二透明基板200具有第三表面210和第四表面220。所述中间粘结层300设于所述第一透明基板100及所述第二透明基板200之间,且用于粘结所述第二表面120及所述第三表面210。所述夹层玻璃10具有至少一个投影显示区410。所述投影显示区410具有所述夹层玻璃10安装于车辆时的上侧边430厚度大于下侧边420厚度的楔形剖面形状。
其中,所述投影显示区410具有楔角从所述下侧边420向所述上侧边430连续非线性单调变小的区段,所述区段的长度与所述投影显示区410的长度之比不低于70%。可以理解地是,在所述投影显示区410中,除了所述区段,其他区段的楔角可以等于0,可以为恒定楔角,也可以线性增加或线性减小,也可以与所述区段的楔角一起连续非线性单调变小。优选地,所述区段的长度与所述投影显示区410的长度之比不低于75%、或不低于80%、或不低于85%、或不低于90%、或不低于95%、或等于100%。优选地,每个投影显示区410的楔角从所述下侧边420向所述上侧边430连续非线性单调变小。其中,所述长度是在从所述下侧边420向所述上侧边430前进方向上测量得到的。
举例而言,所述投影显示区410包括至少一个第一投影显示区411。所述投影组件20包括投影至所述多个投影显示区410的至少一个投影光源201,所述投影光源201入射至所述第一投影显示区411形成第一投影图像4111。
在本实施方式中,所述抬头显示系统1应用于车辆的前挡风玻璃上的信息显示。所述抬头显示系统1包括投影组件20,所述投影组件20投影至所述多个投影显示区410的图像包括多种类型HUD图像、多种角度HUD图像及多种显示距离HUD图像中至少一种,以使得所述抬头显示系统1具有多信息显示,增加了所述抬头显示系统1图像显示的丰富度。所述多个投影显示区410用于显示HUD图像,具体地,所述多个投影显示区410可用于设置增强现实抬头显示(Augmented Reality Head Up Display,AR-HUD)或者挡风玻璃抬头显示(Windshield Head Up Display,W-HUD)等。
在本实施方式中,所述投影组件20包括投影至所述多个投影显示区410的至少一个投影光源201。一个所述投影光源201对应一个所述投影显示区410设置,或者,一个投影光源201对应多个所述投影显示区410设置。在一实施方式中,所述投影光源201发出光线直接投影至所述投影显示区410。在另一实施方式中,所述投影组件20发出的光线通过反射装置投影至所述投影显示区410。
在本实施方式中,所述夹层玻璃10在所述多个投影显示区410的楔角用于消除所述投影组件20发出的光线入射至所述多个投影显示区410形成投影图像时的副像。具体地,以所述夹层玻璃10应用于车辆进行示例性说明。所述投影组件20将形成所述第一投影图像4111的光线投射至所述投影显示区410时,由于所述夹层玻璃10具有一定厚度,所述光线在所述第一透明基板100上反射至位于驾驶室的观察者眼部E10的像与所述光线在所述第二透明基板200上反射至观察者眼部E10的像存在副像。当所述夹层玻璃10内还设有高反射介质层时,如含Ag的金属镀膜层、高反射率的改性PET等,也会发生反射并产生更多个副像。为了消 除副像,所述夹层玻璃10在所述多个投影显示区410需要设置相应的楔角,可以使得副像与主像重合,进而使得观察者能够通过所述投影显示区410看见无副像的所述第一投影图像4111。由于所述第一投影图像4111在所述多个投影显示区410上不同区域反射进入观察者眼部E10的光具有不同的角度,且观察者在驾驶室中由于不同坐姿也会使得所述第一投影图像4111进入观察者眼部E10具有不同的角度。因此,所述夹层玻璃10在所述多个投影显示区410上不同区域需要设置不同的楔角值。
在本实施方式中(请参照图4),每个所述投影显示区410具有所述夹层玻璃10安装于车辆时的上侧边430厚度大于下侧边420厚度且楔角从所述下侧边420向所述上侧边430连续非线性单调变小的楔形剖面形状。举例而言,所述夹层玻璃10在每个所述投影显示区410的楔角在所述下侧边420指向所述上侧边430方向上呈现二阶到五阶函数非线性逐渐变小。图4中第一变化曲线L1为所述夹层玻璃10在一个所述投影显示区410中,楔角随着到所述夹层玻璃10的底边10b的距离的变化曲线图。所述夹层玻璃10对应在每个所述投影显示区410的楔角在所述下侧边420指向所述上侧边430方向上非线性逐渐变小,以减弱甚至消除在每个所述投影显示区410中抬头显示图像的副像问题。
在现有技术中,所述夹层玻璃10在所述多个投影显示区410中的楔角变化只是将几个楔角值进行直线段拼接设计,亦或基于此在拼接的直线段折弯处进行简单弧形过渡,无法满足所述多个投影显示区410中多个区域抬头显示图像的副像问题。
相比于现有技术,本申请实施方式提供了一种抬头显示系统,所述抬头显示系统1包括夹层玻璃10及多个投影组件20,所述夹层玻璃10能够通过上侧边430厚度大于下侧边420厚度且楔角从所述下侧边420向所述上侧边430连续非线性单调变小的楔形剖面形状减弱甚至消除透过至少一个投影显示区410形成的每个抬头显示图像的副像,从而提高投影至所述夹层玻璃10上的抬头显示图像的质量,还有利于驾驶员在多个抬头显示图像之间切换观察,进一步提高驾驶安全性和舒适性。本申请提供的抬头显示系统能够提高抬头显示图像质量。
请再次参照图4,在本实施方式中,所述投影显示区410中的楔角连续非线性单调变小的最大变化率ROC:ROC≤0.3mrad/100mm。或,ROC≤0.2mrad/100mm。或,ROC≤0.1mrad/100mm。或,ROC≤0.05mrad/100mm。
在本实施方式中,图4中的L1为每个所述投影显示区410中所述夹层玻璃10的楔角随着到所述夹层玻璃10的底边10b的距离的变化曲线。K1为L1在某一点处的切线,切线的斜率表示在该点位置处楔角变小的变化率的绝对值。所述夹层玻璃10的楔角的最大变化率过大会增加所述夹层玻璃10的生产制备难度及生产成本,不利于所述夹层玻璃10的生产效率,从而影响所述夹层玻璃10的生产效率。因此,所述夹层玻璃10的楔角最大变化率不宜过大。具体地,所述多个投影显示区410中楔角从所述下侧边420向所述上侧边430连续非线性单调变小的最大变化率ROC:ROC≤0.3mrad/100mm。优选地,所述多个投影显示区410中楔角从所述下侧边420向所述上侧边430连续非线性单调变小的最大变化率ROC:ROC≤0.2mrad/100mm。更优选的,所述多个投影显示区410中楔角从所述下侧边420向所述上侧边430连续非线性单调变小的最大变化率ROC:ROC≤0.1mrad/100mm。更优选的,所述多个投影显示区410中楔角从所述下侧边420向所述上侧边430连续非线性单调变小的最大变化率ROC:ROC≤0.05mrad/100mm。
请再次参照图4,在本实施方式中,所述多个投影显示区410中的楔角最大值α:α≤0.8mrad。
在本实施方式中,图4中的α为所述多个投影显示区410中所述夹层玻璃10的最大楔角值。所述夹层玻璃10的楔角值过大会导致所述夹层玻璃10的局部区域过厚,增加消除所述 多个投影显示区410上抬头显示图像的副像难度。此外,所述夹层玻璃10的楔角值过大易导致所述夹层玻璃10的楔角变化率过大,从而增加所述夹层玻璃10的生产制备难度及生产成本,不利于所述夹层玻璃10的生产效率。因此,所述夹层玻璃10的楔角不宜过大。具体地,所述夹层玻璃10在所述多个投影显示区410中的楔角最大值α:α≤0.8mrad。
在本申请中,所述多个投影显示区410中的楔角可以仅由中间粘结层300提供,即第一透明基板100和第二透明基板200均为等厚形状(楔角等于0),投影显示区410的楔角等于中间粘结层300的楔角;不限于此,所述多个投影显示区410中的楔角也可以由中间粘结层300与第一透明基板100和/或第二透明基板200提供,即第一透明基板100和/或第二透明基板200也为楔形形状,考虑到第一透明基板100和/或第二透明基板200的生产难度,选用第一透明基板100和/或第二透明基板200的楔角为恒定楔角,投影显示区410的楔角等于中间粘结层300的楔角与第一透明基板100和/或第二透明基板200的楔角之和。
请参照图5,图5为图1实施方式提供的抬头显示系统中中间粘结层的结构示意图。在本实施方式中,所述中间粘结层300的最大厚度h:0.38mm≤h≤1.6mm。
在本实施方式中,所述夹层玻璃10的厚度与所述中间粘结层300的厚度相关,即所述中间粘结层300的厚度越厚,所述夹层玻璃10的厚度越厚。由于所述夹层玻璃10越厚,投影至所述多个投影显示区410的抬头显示图像形成的副像越严重,从而增加了减弱投影至所述多个投影显示区410的抬头显示图像形成的副像的生产难度,因此,所述夹层玻璃10不宜太厚,即所述中间粘结层300的最大厚度不宜过厚。具体地,所述中间粘结层300的最大厚度h:h≤1.6mm。此外,所述夹层玻璃10需要满足法规要求中的抗穿透性及抗冲击性要求,即所述中间粘结膜的最大厚度不宜太薄。具体地,所述中间粘结层300的最大厚度h:h≥0.38mm。因此,所述中间粘结层300的厚度h:0.38mm≤h≤1.6mm。
在一实施方式中,所述区段的任一点位置处具有测定楔角,将所述区段内各点位置处的测定楔角进行拟合得到实际楔角拟合曲线,所述投影显示区的任一点位置处具有消除副像的多个理论楔角值,将所述投影显示区内各点位置处的多个理论楔角值进行拟合得到第一变化曲线L1,所述实际楔角拟合曲线与所述第一变化曲线L1的对应部分的最大偏差值小于或等于0.15mrad。
具体地,请参照图6,图6为本申请又一实施方式提供的抬头显示系统的结构示意图。所述投影组件20还包括折叠镜230及非球面镜240。当所述第一投影光源211工作时,所述第一投影光源211将诸如仪表信号的车速、导航等信息转化成光信号,并发射所述光信号通过所述折叠镜230及所述非球面镜240入射至所述夹层玻璃10的所述第二透明基板200的所述第四表面220,经过所述夹层玻璃10的反射至对应的眼盒面EB10,以在所述夹层玻璃10前方的第一虚像面TB20成像,形成第1个虚像,称之为主像。
需要说明的是,所述虚像面至少包括第一虚像面TB20,当存在多个投影显示区410时,所述虚像面还可以包括第二虚像面TB30,本申请以所述虚像面包括第一虚像面TB20为例进行示意,多个所述虚像面的情况可以参照第一虚像面TB20的特征以及推导。
可以理解地,所述第一投影光源211发射的每条光线的光路是唯一的,也就是说,在同一个眼盒面EB10的不同位置观察时,观察到的所述第一投影光源211发射的光线的光路是不同的,这些光线在所述夹层玻璃10上的投影区域可以等同于所述夹层玻璃10的所述第一投影显示区411。
在本实施方式中,由于所述夹层玻璃10为透明介质,所述第一投影光源211发射的光线进入所述夹层玻璃10后,还会在所述夹层玻璃10的外表面再次发生反射进入眼盒面EB10, 并在所述夹层玻璃10前方成像,形成第2个虚像。当所述夹层玻璃10内设有高反射介质层时,如含Ag的金属镀膜层、高反射率的改性PET等,也会发生反射并产生第3个甚至更多个虚像;所述第2个虚像、第3个虚像甚至更多个虚像统称为副像。为了消除副像,在所述夹层玻璃10内设置相应的楔角,可以使得副像与主像完全重叠,即理论楔角值。可以理解地,所述第一投影光源211发射的光线不同,消除副像所需的理论楔角值也不同,则需要在所述夹层玻璃10内不同位置设置不同的楔角,也就是说,在所述夹层玻璃10上距离底边10b的任意位置处,消除副像的理论楔角值位于某个区间数值内,存在最大理论楔角和最小理论楔角。
请一并参照图7,图7为本申请一实施方式提供的夹层玻璃任意点楔角值计算示意图。可以理解地,所述夹层玻璃10任意点的楔角值反应了所述夹层玻璃10在该点的厚度变化率。如图7所示,设所述夹层玻璃10某一点的位置的厚度为t1,沿所述夹层玻璃10的所述底边10b向所述夹层玻璃10的所述顶边10a延伸方向上,与该点距离H的位置处的厚度为t2,则可以根据公式计算得出该点的楔角值β=arctan((t2-t1)/H),其中,H趋于无限小。
在本实施方式中,请一并参照图8,图8为本申请一实施方式提供的子眼盒面-子虚像面组合示意图。所述眼盒面EB10包括依次从高到低的多个子眼盒面EB11,所述第一虚像面TB20包括依次从低到高的多个第一子虚像面TB21,其中,每个第一子虚像面TB21对应一个子眼盒面EB11。在每个子眼盒面EB11上选取观察点阵EB111,且在每个第一子虚像面TB21上选取第一虚像点阵TB211,所述观察点阵EB111中的点与所述第一虚像点阵TB211中的点的连线穿过对应的第一投影显示区411,所述连线与所述第一投影显示区411的交点为入射点。根据投影组件20、夹层玻璃10和多条连线计算对应的入射点位置处的第一投影图像4111无副像时夹层玻璃10的多个第一理论楔角值。根据所述多个第一理论楔角值以及各个所述第一理论楔角值对应的入射点到夹层玻璃底边10b的距离,拟合以得到楔角随着入射点到夹层玻璃底边10b的距离的第一变化曲线L1。进而,可以根据所述第一变化曲线L1确定所述夹层玻璃10在对应的第一投影显示区411的楔角值。
可以理解地,眼盒面EB10用于模拟人眼或视觉系统观察投影画面的位置,第一虚像面TB20表示所述第一投影光源211发出的光线成像的位置,通常用宽*高代表第一虚像面TB20的规格尺寸,例如400mm*200mm。由于每个人的身高、坐姿可能不同,本申请分别以上(Tall)、中(Mid)、下(Short)3个子眼盒面EB11的位置举例进行分析,则会有下、中、上3个第一子虚像面TB21分别与上、中、下子眼盒面EB11相对应,以形成下子眼盒面EB11-上第一子虚像面TB21、中子眼盒面EB11-中第一子虚像面TB21和上子眼盒面EB11-下第一子虚像面TB21的3个组合。可以理解地,在对应的子眼盒面EB11与对应的第一子虚像面TB21上两点连线的光路,在所述第一投影显示区411内也会形成3个不同的区域。
具体地,请一并参照图9,图9为本申请一实施方式提供的第一变化曲线示意图。在本实施方式中,在子眼盒面EB11及对应的第一子虚像面TB21上分别选取对应的若干样本点,常见的方式为在子眼盒面EB11及第一子虚像面TB21分别划分为等间距的网格点阵m*n及i*j,例如:子眼盒面EB11划分为5*3点阵,第一子虚像面TB21也划分为5*3点阵。
具体地,子眼盒面EB11与对应第一子虚像面TB21上的对应两点连线的光路,在所述第一投影显示区411对应的区域内相交,以得到数据点。可采用CAD软件进行求解,常见的有ANSYS SPEOS、ZEMAX等专业光学仿真软件,或DASSAULT SYSTEM CATIA,可以对其中任意的单束光线模拟计算出所述数据点消除副像所需的理论楔角值。可以理解地,根据不同所述第一投影显示区411中的所述数据点到所述夹层玻璃10的所述底边10b的距离以及消 除副像所需的理论楔角值,可以建立如图9所示的楔角散点数据组,其中,Tall楔角散点数据组对应所述上子眼盒面EB11-下第一子虚像面TB21的组合,Mid楔角散点数据组对应所述中子眼盒面EB11-中第一子虚像面TB21的组合,Short楔角散点数据组对应所述下子眼盒面EB11-上第一子虚像面TB21的组合。
由图9所示可以看出,每个楔角散点数据组中的各区域内消除副像所需的理论楔角值呈一定规律的离散状态。在距离所述夹层玻璃10的所述底边10b的某个位置时,不同的光线对应所需的楔角值是不同的,例如在距离所述底边10b的420mm处,楔角的需求值在0.30mrad到0.50mrad之间。显然,在同一位置所述夹层玻璃10的楔角值只能有一个,消除副像所需的理论楔角值将介于该位置的楔角散点数据组的范围内。根据楔角散点数据组中所述夹层玻璃10各个位置对应的理论楔角值,可以拟合出一条可变楔角曲线,该曲线贯穿楔角散点数据组,表征为一段连续非线性单调下降变化的楔角值。
在本实施方式中,为了保证楔角消除副像的效果,可以理解地,所述实际楔角拟合曲线与所述第一变化曲线L1的对应部分的最大偏差值小于或等于0.15mrad,具体可举例为≤0.15mrad、≤0.14mrad、≤0.13mrad、≤0.12mrad、≤0.11mrad、≤0.10mrad、≤0.09mrad、≤0.08mrad、≤0.17mrad、≤0.06mrad、≤0.05mrad等。进一步的,在从所述夹层玻璃10底边10b到顶边10a的整段第一变化曲线L1的拟合中,可以基于各段第一变化曲线L1在公差范围内适当微调,进而拟合出完整的第一变化曲线L1,也就是说,最终完整的第一变化曲线L1可以与各分段的最佳可变楔角拟合的曲线不完全重合。
在一实施方式中,所述实际楔角拟合曲线与所述第一变化曲线L1均符合2-5阶函数。
可以理解地,在本实施方式中,通过将各点位置处的测定楔角用2-5阶函数进行拟合得到实际楔角拟合曲线,将各点位置处的最大理论楔角、最小理论楔角用2-5阶函数进行拟合得到所述第一变化曲线L1,使得所述实际楔角拟合曲线与所述第一变化曲线L1的对应部分的最大偏差值小于或等于0.15mrad,从而改善所述夹层玻璃10不同位置的楔角值相差过大的技术问题。
在一实施方式中,请一并参阅图10,图10为本申请另一实施方式提供的拟合曲线示意图。所述拟合曲线上任一点的切线的斜率从所述下侧边420向所述上侧边430连续变小。所述拟合曲线上任一点的切线的斜率表示在该点位置处楔角变小的变化率的绝对值。可以理解地,根据上述楔角散点数据组,可以拟合出如图10所示的拟合曲线,即内凹曲线,以制造不同规格的所述夹层玻璃10,适应安装于不同的车辆,本申请对此不加以限制。
在一实施方式中,请一并参阅图11,图11为本申请另一实施方式提供的拟合曲线示意图。所述拟合曲线上任一点的切线的斜率从所述下侧边420向所述上侧边430连续变大。述拟合曲线上任一点的切线的斜率表示在该点位置处楔角变小的变化率的绝对值。可以理解地,根据上述楔角散点数据组,可以拟合出如图11所示的拟合曲线,即外凸曲线,以制造不同规格的所述夹层玻璃10,适应安装于不同的车辆,本申请对此不加以限制。
在一实施方式中,请再次参阅图9,所述拟合曲线上任一点的切线的斜率从所述下侧边420向所述上侧边430先连续变大后连续变小。所述拟合曲线上任一点的切线的斜率表示在该点位置处楔角变小的变化率的绝对值。可以理解地,根据上述楔角散点数据组,可以拟合出如图9所示的拟合曲线,即S型曲线,以制造不同规格的所述夹层玻璃10,适应安装于不同的车辆,本申请对此不加以限制。
在一实施方式中,多个理论楔角值的最大局部极差值△W与多个理论楔角值的整体极差值△C的比值为:△W/△C≤0.9。
具体地,请再次参阅图9,当所述夹层玻璃10为固定楔角时,即所述夹层玻璃10的不同位置的楔角值相同时,例如选取0.38mrad作为固定楔角值。在本实施方式中,需要说明的是,在理论楔角值的散点分布图,楔角散点数据组中,局部极差值为到所述夹层玻璃10下侧边420距离为X的某一位置处的最大理论楔角与最小理论楔角之差,而最大局部极差值△W是指局部极差值中的最大值。其中,所述多个理论楔角值的整体极差值△C是指散点分布图中所有的理论楔角值中最大值与最小值之差。
当所述夹层玻璃10对应位置处的楔角散点数据组的最大局部极差值小于楔角散点数据组的最大整体极差值时,即d2+d2’<d1+d1’时,所述夹层玻璃10为可变楔角的副像表现优于所述夹层玻璃10为固定楔角的副像表现。
可选的,在所述夹层玻璃10对应位置处的楔角散点数据组的最大局部极差值△W,与楔角散点数据组的整体极差值△C的比值小于或等于0.9,即△W/△C≤0.9,具体可举例为0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.1等。可以理解地,基于此,本申请改善楔角散点数据组的离散状态,减小所述夹层玻璃10对应位置处的楔角散点数据组的最大局部极差值,可以改善所述夹层玻璃10的副像表现。
在本实施方式中,请再次参照图6,所述投影显示区410中包括至少一个第一投影显示区411。所述投影组件20发出的光线入射至所述第一投影显示区411形成的第一投影图像4111的虚像距离为7米-100米,即,所述第一投影图像4111与观察者的眼盒面EB10的距离为7米-100米。具体地,所述第一投影显示区411用于AR-HUD图像显示。
请参照图12及图13,图12为本申请又一实施方式提供的抬头显示系统的结构示意图;图13为图12实施方式提供的抬头显示系统中投影至第二投影显示区的示意图。在本实施方式中,所述多个投影显示区410还包括至少一个第二投影显示区412。所述投影光源201发出的光线入射至所述第二投影显示区412形成第二投影图像4121,所述第二投影图像4121的虚像距离为1米-6米。
在本实施方式中,所述第一投影显示区411用于远距离投影显示,具体地,所述第一投影显示区411用于显示信息与真实场景融合,用于投影显示现实世界中的对象相对应的复杂图形,实现路况-车辆-驾驶员之间的交互。所述第二投影显示区412用于近距离投影显示,具体地,所述第二投影显示区412用于近距离显示车辆运行参数信息,可以减少低头看仪表板或相关信息,方便驾驶员人眼远近切换,减少低头查看仪表板,最大程度的集中驾驶员行车时的注意力,提升行车安全性。
请参照图14,图14为本申请又一实施方式提供的抬头显示系统的结构示意图。在本实施方式中,所述多个投影组件20包括至少一个第一投影光源211和至少一个第二投影光源212。所述第一投影光源211入射至所述第一投影显示区411。所述第二投影光源212入射至所述第二投影显示区412。
在本实施方式中,所述第一投影光源211用于投影至所述第一投影显示区411进行远距离投影显示,具体地,所述第一投影显示区411用于显示信息与真实场景融合,用于投影显示现实世界中的对象相对应的复杂图形,实现路况-车辆-驾驶员之间的交互。所述第二投影光源212用于投影至所述第二投影显示区412进行近距离投影显示,具体地,所述第二投影显示区412用于近距离显示车辆运行参数信息,可以减少低头看仪表板或相关信息,方便驾驶员人眼远近切换,减少低头查看仪表板,最大程度的集中驾驶员行车时的注意力,提升行车安全性。
请参照图15,图15为图14实施方式提供的抬头显示系统另一视角的结构示意图。在本 实施方式中,所述第一投影光源211靠近所述夹层玻璃10的顶边10a设置,所述第二投影光源212靠近所述夹层玻璃10的底边10b设置。
在本实施方式中,所述第一投影光源211靠近所述夹层玻璃10的顶边10a设置,使得所述第一投影光源211入射至所述第一投影显示区411的投影光线能够保持最佳的入射角。具体地,所述第一投影光源211安装在车辆顶内表面。所述第二投影光源212靠近所述夹层玻璃10的底边10b设置,使得所述第二投影光源212入射至所述第二投影显示区412的投影光线能够保持最佳的入射角。具体地,所述第二投影光源212安装在车辆的仪表台内部。
请参照图12及图16,图16为图12实施方式提供的抬头显示系统中一实施方式的投影成像示意图。在本实施方式中,所述第一投影图像4111具有第一下视角LDA1和第一虚像距离VID1,所述第二投影图像4121具有第二下视角LDA2和第二虚像距离VID2,当所述第一投影显示区411与所述第二投影显示区412在所述底边10b指向所述顶边10a的方向上邻近设置时,LDA1与LDA2满足:2°≤LDA1-LDA2≤4.5°,或者,2.5°≤LDA1-LDA2≤3.5°,VID1与VID2满足:2≤VID1/VID2≤50,或者,2.5≤VID1/VID2≤10。
在本实施方式中,观察者在驾驶汽车的过程中,观察者的眼睛通常需要在所述第一投影显示区411与所述第二投影显示区412之间进行切换。倘若所述第一投影图像4111与观察者眼部E10的连线与水平面的第一下视角LDA1与所述第二投影图像4121与观察者眼部E10的连线与水平面的第二下视角LDA2差距过大,会使得观察者的眼睛在所述第一投影图像4111与所述第二投影图像4121之间的切换所需要转动的角度过大,从而使得观察者多次在所述第一投影图像4111与所述第二投影图像4121之间的切换之后造成眼部疲劳,从而影响驾驶。其中,当所述第一投影图像4111、所述第二投影图像4121的中点低于观察者的眼睛时,第一下视角LDA1、第二下视角LDA2为负值。倘若所述第一投影图像4111与观察者眼部E10的连线与水平面的第一下视角LDA1与所述第二投影图像4121与观察者眼部E10的连线与水平面的第二下视角LDA2差距过小,会使得所述第一投影图像4111与所述第二投影图像4121具有过多的重叠部分,从而干扰了所述第一投影图像4111与所述第二投影图像4121中所包含的信息显示,进而影响了观察者的驾驶。因此所述第一下视角LDA1与所述第二下视角LDA2之间的差距不宜过大,具体地,2°≤LDA1-LDA2≤4.5°,具体可举例为2°、2.5°、2.8°、3°、3.2°、3.5°、3.8°、4.0°、4.5°等。优选的,2.5°≤LDA1-LDA2≤3.5°,具体可举例为2.5°、2.6°、2.7°、2.8°、2.9°、3°、3.1°、3.2°、3.3°、3.4°、3.5°等。
在本实施方式中,所述第一投影图像4111与观察者眼部E10之间的第一虚像距离VID1与所述第二投影图像4121与观察者眼部E10之间的第二虚像距离VID2之间的比值需要保持一定的幅度。倘若所述第一虚像距离VID1与所述第二虚像距离VID2之间的比值过小,会导致设计难度增大,更加难以同时消除所述第一投影图像4111和所述第二投影图像4121的副像。倘若所述第一虚像距离VID1与所述第二虚像距离VID2之间的比值过大,会导致中间粘结层和夹层玻璃的生产难度增大。因此,所述第一虚像距离VID1与所述第二虚像距离VID2之间的差距需要保持一定的幅度,具体地,所述第一虚像距离VID1与所述第二虚像距离VID2的关系为:2≤VID1/VID2≤50,优选的,2.5≤VID1/VID2≤10。
请再次参照图16,在本实施方式中,-6°≤LDA1≤0°,-8°≤LDA2≤-3°。
在本实施方式中,投影至所述夹层玻璃10上形成的虚像与观察者眼部E10的连线与水平面的夹角的大小会影响投影至所述夹层玻璃10上形成的虚像在车辆前方的位置。具体地,第一下视角LDA1越大,所述第一投影图像4111的虚像越靠近车辆上方,第一虚像距离VID1越大。因此,倘若所述第一下视角LDA1过小,会导致所述第一投影图像4111与车辆在所述 夹层玻璃10前方的车身部分重合,使得所述第一投影图像4111陷入车辆中,影响观察者对所述第一投影图像4111的观察。倘若第一下视角LDA1过大,会使得所述第一投影图像4111显示在天空中,使得所述第一投影图像4111难以与车辆外界的实体信息交互显示,从而降低了所述第一投影图像4111的信息传达质量。因此,所述第一下视角LDA1需要保持适宜的角度。具体地,所述第一下视角LDA1:-6°≤LDA1≤0°。
在本实施方式中,倘若所述第二下视角LDA2过小,会导致所述第二投影图像4121与车辆在所述夹层玻璃10前方的车身部分重合,使得所述第二投影图像4121陷入车辆中,影响观察者对所述第二投影图像4121的观察。倘若第二下视角LDA2过大,会使得所述第二投影图像4121与所述第一投影图像4111有过多重合,使得所述第一投影图像4111难以与车辆外界的实体信息交互显示,且影响所述第二投影图像4121的信息传达质量。因此,所述第二下视角LDA2需要保持适宜的角度。具体地,所述第二下视角LDA2:-8°≤LDA1≤-3°。
请参照图12及图17,图17为图12实施方式提供的抬头显示系统中另一实施方式的投影成像示意图。在本实施方式中,所述多个投影显示区410包括至少两个所述第一投影显示区411。在水平方向上邻近设置的两个所述第一投影显示区411中分别形成第一左投影图像4111L和第一右投影图像4111R,所述第一左投影图像4111L具有第一左下视角LDA11和第一左虚像距离VID11,所述第一右投影图像4111R具有第一右下视角LDA12和第一右虚像距离VID12,LAD11与LDA12满足:0°≤|LDA11-LDA12|≤1°,VID11与VID12满足:0.5≤VID11/VID12≤2,或者,0.8≤VID11/VID12≤1.2。
在本实施方式中,当水平方向上具有邻近设置的两个所述第一投影显示区411时,观察者在驾驶汽车的过程中,观察者的眼睛通常需要在邻近设置的两个所述第一投影显示区411之间进行切换。倘若所述第一左投影图像4111L与观察者眼部E10的连线与水平面的第一左下视角LDA11与所述第一右投影图像4111R与观察者眼部E10的连线与水平面的第一右下视角LDA12差距过大,会使得观察者的眼睛在所述第一左投影图像4111L与所述第一右投影图像4111R之间的切换所需要转动的角度过大,从而使得观察者多次在所述第一左投影图像4111L与所述第一右投影图像4111R之间的切换之后造成眼部疲劳,从而影响驾驶。倘若所述第一左投影图像4111L与观察者眼部E10的连线与水平面的第一左下视角LDA11与所述第一右投影图像4111R与观察者眼部E10的连线与水平面的第一右下视角LDA12差距过小,会使得所述第一左投影图像4111L与所述第一右投影图像4111R具有过多的重叠部分,从而干扰了所述第一左投影图像4111L与所述第一右投影图像4111R中所包含的信息显示,进而影响了观察者的驾驶。因此所述第一左下视角LDA11与所述第一右下视角LDA12之间的差距不宜过大,具体地,0°≤|LDA11-LDA12|≤1°。其中,需要说明的是,所述第一端是指所述夹层玻璃10在车辆中靠近驾驶座位的一端。
在本实施方式中,所述第一左投影图像4111L与观察者眼部E10之间的第一左虚像距离VID11与所述第一右投影图像4111R与观察者眼部E10之间的第一右虚像距离VID12之间的差距需要保持一定的幅度。倘若所述第一左虚像距离VID11与所述第一右虚像距离VID12之间的差距过大,会使得观察者眼部E10在所述第一左投影图像4111L与所述第一右投影图像4111R之间切换时比较突兀且容易产生用眼疲劳。此外,倘若所述第一左虚像距离VID11与所述第一右虚像距离VID12之间的差距过大,会使得所述夹层玻璃10在水平方向上相邻设置的两个所述第一投影显示区411中的楔角差异过大,会增加所述夹层玻璃10的设计和生产制造难度。因此,所述第一左虚像距离VID11与所述第一右虚像距离VID12之间的差距需要保持一定的幅度,具体地,所述第一左虚像距离VID11与所述第一右虚像距离VID12的关系 为:0.5≤VID11/VID12≤2,优选的,0.8≤VID11/VID12≤1.2。
请参照图12及图18,图18为图12实施方式提供的抬头显示系统中又一实施方式的投影成像示意图。在本实施方式中,所述多个投影显示区410还包括至少两个所述第二投影显示区412,在水平方向上邻近设置的两个所述第二投影显示区412中分别形成第二左投影图像4121L和第二右投影图像4121R,所述第二左投影图像4121L具有第二左下视角LDA21和第二左虚像距离VID21,所述第二右投影图像4121R具有第二右下视角LDA22和第二右虚像距离VID22,LDA21与LDA22满足:0°≤LDA21-LDA22≤1°,VID21与VID22的关系为:0.5≤VID21/VID22≤2,或者,0.8≤VID21/VID22≤1.2。
在本实施方式中,当水平方向上具有邻近设置的两个所述第二投影显示区412时,观察者在驾驶汽车的过程中,观察者的眼睛通常需要在邻近设置的两个所述第二投影显示区412之间进行切换。倘若所述第二左投影图像4121L与观察者眼部E10的连线与水平面的第二左下视角LDA21与所述第二右投影图像4121R与观察者眼部E10的连线与水平面的第二右下视角LDA22差距过大,会使得观察者的眼睛在所述第二左投影图像4121L与所述第二右投影图像4121R之间的切换所需要转动的角度过大,从而使得观察者多次在所述第二左投影图像4121L与所述第二右投影图像4121R之间的切换之后造成眼部疲劳,从而影响驾驶。倘若所述第二左下视角LDA21与所述第二右下视角LDA22差距过小,会使得所述第二左投影图像4121L与所述第二右投影图像4121R具有过多的重叠部分,从而干扰了所述第二左投影图像4121L与所述第二右投影图像4121R中所包含的信息显示,进而影响了观察者的驾驶。因此所述第二左下视角LDA21与所述第二右下视角LDA22之间的差距不宜过大,具体地,0°≤|LDA21-LDA22|≤1°。其中,需要说明的是,所述第一端是指所述夹层玻璃10在车辆中靠近驾驶座位的一端。
在本实施方式中,所述第二左投影图像4121L与观察者眼部E10之间的第二左虚像距离VID21与所述第二右投影图像4121R与观察者眼部E10之间的第二右虚像距离VID22之间的差距需要保持一定的幅度。倘若所述第二左虚像距离VID21与所述第二右虚像距离VID22之间的差距过大,会使得观察者眼部E10在所述第二左投影图像4121L与所述第二右投影图像4121R之间切换时比较突兀且容易产生用眼疲劳。此外,倘若所述第二左虚像距离VID21与所述第二右虚像距离VID22之间的差距过大,会使得所述夹层玻璃10在水平方向上相邻设置的两个所述第二投影显示区412中的楔角差异过大,会增加所述夹层玻璃10的设计和生产制造难度。因此,所述第二左虚像距离VID21与所述第二右虚像距离VID22之间的差距需要保持一定的幅度,具体地,所述第二左虚像距离VID21与所述第二右虚像距离VID22的关系为:0.5≤VID21/VID22≤2,优选的,0.8≤VID21/VID22≤1.2。
请再次参照图1,在本实施方式中,所述多个投影显示区410之间分离设置或者部分重叠设置。
在一实施方式中,所述多个投影显示区410之间可以分离设置,以保证所述多个投影显示区410之间的信息传递更加独立清晰。在另一实施方式中,所述多个投影显示区410中相邻设置的所述投影显示区410之间可以部分重叠设置,以增加所述投影显示区410的设置数量。此外,相邻设置的所述投影显示区410之间部分重叠设置,还可以增加相邻设置的所述投影显示区410之间信息传递的联动性,从而增加所述抬头显示系统1的多样性。
在一实施方式中,所述第一投影显示区411的楔角的取值范围为0mrad~0.5mrad,所述第二投影显示区412的楔角的取值范围为0.1mrad至0.8mrad。具体地,所述第一投影显示区411的楔角的取值可以是0.1mrad、0.18mrad、0.23mrad、0.47mrad等;所述第二投影显示区412 的楔角的取值可以是0.16mrad、0.25mrad、0.38mrad、0.44mrad、0.68mrad等,本申请对此不加以限制。
请再次参照图6,在本实施方式中,所述抬头显示系统1还包括位于车辆内侧的虚拟的眼盒面EB10和至少一个位于车辆外侧的虚拟的虚像面(即第一虚像面TB20),每个所述第一投影显示区411对应一个第一虚像面TB20,所述第一虚像面TB20的高度与宽度的比值小于或等于0.5。
在本实施方式中,以5*3的中子眼盒面EB11-中第一子虚像面TB21的组合,在沿着所述夹层玻璃10的所述底边10b到所述顶边10a的方向上,消除副像所需理论楔角值的数据点构成的楔角散点数据组为例进行说明。对中子眼盒面EB11上的点进行标号,例如,中子眼盒面EB11的中垂线可以表示为点EB_R1C2与点EB_R5C2的连线,其中,EB(Eye Box)代表子眼盒面EB11,R代表行(Row),C代表列(Column)。同理,对中第一子虚像面TB21上的点进行标号,中第一子虚像面TB21的高度可以表示为点TB_R1C2与点TB_R5C2之间的距离,其中,TB(Target Image Box)代表第一子虚像面TB21。
请一并参照图19,图19为本申请一实施方式提供的楔角散点数据组示意图。以中子眼盒面EB11的中垂线上的顶点与所述点TB_R1C2连线为第一连线,所述第一连线与夹层玻璃具有第一交点,以中子眼盒面EB11的中垂线上的顶点与所述点TB_R5C2连线为第二连线,所述第二连线与夹层玻璃具有第二交点,所述第一交点与所述第二交点在从底边10b至顶边10a的方向上的长度为Wm_C1。在图19中,所述点TB_R1C2具有与中子眼盒面EB11的中垂线上的顶点对应的楔角散点数据组中的R1C2,所述点TB_R5C2具有与中子眼盒面EB11的中垂线上的顶点对应的楔角散点数据组中的R5C2,Wm_C1的值等于R1C2的X值与R5C2的X值之差。
以中子眼盒面EB11的中垂线上的顶点的位置观察所述点TB_R1C2到所述点TB_R5C2具有X轴方向上的对应的长度为Wm_C1,以中子眼盒面EB11的中垂线上的底点的位置观察所述点TB_R1C2到所述点TB_R5C2具有X轴方向上的对应的长度为Wm_C5,依次类推,可以从顶点和底点之间取其他三点的位置观察所述点TB_R1C2到所述点TB_R5C2具有X轴方向上的对应的长度依次为Wm_C2、Wm_C3、Wm_C4,由此得到中第一子虚像面TB21的高度对应到楔角散点数据组区块的长度为Wm_C1-Wm_C5,以下简化为Wm_C。同理,上第一子虚像面TB21及下第一子虚像面TB21的高度对应到楔角散点数据组区块的长度分别为Wt_C及Ws_C。在本申请中,X轴定义为从夹层玻璃的底边10b至顶边10a前进的方向。
在本实施方式中,请一并参照图20,图20为本申请一实施方式提供的夹层玻璃剖线示意图。需要说明的是,图20为由车辆外侧看向车辆内侧视角下的所述夹层玻璃10的剖线示意图,其中,i代表第一子虚像面TB21对应点的标号行数,j代表第一子虚像面TB21对应点的标号列数。如图20所示,第一子虚像面TB21的宽度在所述夹层玻璃10上的投影有竖向长度,即第一子虚像面TB21的宽度对应到楔角散点数据组区块的长度。以中子眼盒面EB11的中垂线上的顶点与所述点TB_R5C2连线为第二连线,所述第二连线与夹层玻璃具有第二交点,以中子眼盒面EB11的中垂线上的顶点与中第一子虚像面TB21右下角(从车内向车外观察)的点TB_R5C3连线为第三连线,所述第三连线与夹层玻璃具有第三交点,所述第二交点与所述第三交点在从底边10b至顶边10a的方向上的长度为Wm_R1。在图19中,所述点TB_R5C2具有与中子眼盒面EB11的中垂线上的顶点对应的楔角散点数据组中的R5C2,所述点TB_R5C3具有与中子眼盒面EB11的中垂线上的顶点对应的楔角散点数据组中的R5C3,Wm_R1的值等于R5C2的X值与R5C3的X值之差。以中子眼盒面EB11的中垂线上的顶点 与所述点TB_R1C2连线为第一连线,所述第一连线与夹层玻璃具有第一交点,以中子眼盒面EB11的中垂线上的顶点与中第一子虚像面TB21左上角(从车内向车外观察)的点TB_R1C1连线为第四连线,所述第四连线与夹层玻璃具有第四交点,所述第一交点与所述第四交点在从底边10b至顶边10a的方向上的长度为Wm_L1。在图19中,所述点TB_R1C2具有与中子眼盒面EB11的中垂线上的顶点对应的楔角散点数据组中的R1C2,所述点TB_R1C1具有与中子眼盒面EB11的中垂线上的顶点对应的楔角散点数据组中的R1C1,Wm_L1的值等于R1C1的X值与R1C2的X值之差。依次类推,中第一子虚像面TB21的宽度对应有Wm_R1-Wm_R5以及Wm_L1-Wm_L5,以下简化为Wm_R及Wm_L。同理,上第一子虚像面TB21及下第一子虚像面TB21的宽度投影到所述夹层玻璃10剖面线上的长度分别为Ws_R、Ws_L以及Wt_R、Wt_L。则上、中、下第一子虚像面TB21在沿所述夹层玻璃10的延伸方向上的投影长度分别为:
Wt=Wt_C+Wt_R+Wt_L
Wm=Wm_C+Wm_R+Wm_L
Ws=Ws_C+Ws_R+Ws_L
由上述内容可知,第一子虚像面TB21的高度及宽度均影响楔角散点数据组区块的大小,而减小第一虚像面TB20的高度及宽度,可以减小楔角散点数据组区块的大小,形成狭长的楔角散点数据组区块,从而改善楔角散点数据组的离散状态,得到更好的可变楔角曲线拟合效果。由于Wm_C、Wm_L和Wm_R三者之中,Wm_C的占比最大,即在第一子虚像面TB21高度和宽度这两个影响散点数据分布图狭长效果的因素中,第一子虚像面TB21高度的改变能够更加容易地达到使散点分布图狭长的效果,因此设定高宽比小于等于0.5。
需要说明的是,通常以视野范围(Field of View,FOV)来衡量第一子虚像面TB21的高度与宽度,例如7°*5°、9°*4°、20°*5°,FOV的度数与第一子虚像面TB21的规格数值之间具有一定的换算公式,本申请在此不进行详细阐述。根据FOV的选择,可以确定第一子虚像面TB21的高度与宽度预设阈值,从而使得第一子虚像面TB21的高度和宽度分别小于所述预设阈值,达到改善楔角散点数据组离散状态的目的。
在本实施方式中,第一虚像面TB20的高度与宽度的比值小于或等于0.5,即第一子虚像面TB21的高度与宽度的比值小于或等于0.5。具体地,从第一虚像面TB20的高度与宽度的比例关系来看,第一虚像面TB20的高度与宽度的比值越小越好,同时,考虑到本申请的应用场景为车辆上的所述夹层玻璃10,以及FOV内显示内容的布局,“宽窄”形式的显示画面更加合适。因此,第一虚像面TB20的高度与宽度的比值小于或等于0.5。
可以理解地,在本实施方式中,所述第一虚像面TB20的高度及宽度均对所述第一投影显示区411内不同位置处的楔形剖面形状有影响,且所述第一虚像面TB20的高度对所述第一投影显示区411内不同位置处的楔形剖面形状的影响更大,由于所述第一虚像面TB20的高度与宽度的比值小于或等于0.5,较大程度地减小了所述第一虚像面TB20的高度占比,从而改善楔角散点数据组的离散状态。
可以理解地,对于所述夹层玻璃10中所述第一投影显示区411之外的区域来说,为了使所述夹层玻璃10的所述第一投影显示区411与其他相连的功能区域或者边界部分平滑的过度,如图9所示,还从可变楔角曲线的两端向两边延伸一定长度作为第一变化曲线L1的过渡段,其中,可以分为段内延伸和段外延伸的方式,即在楔角散点数据组范围内设定延伸起始点,或者在楔角散点数据组范围外设定延伸起始点。
通常情况下,采用段内延伸更佳,如图9所示,可以使得楔角散点数据组的最大楔角值 更小,从所述夹层玻璃10的所述底边10b到该最大楔角值位置处的楔角变化率更平缓,从而使得所述夹层玻璃10的制造更容易,也可以达到降低所述夹层玻璃10整体厚度的效果。
进一步的,在从所述夹层玻璃10的所述底边10b到所述顶边10a的整段可变楔角曲线的拟合中,可以基于各段可变楔角曲线在公差范围内适当微调,进而拟合出完整的可变楔角曲线,也就是说,最终完整的可变楔角曲线可以与各分段的最佳可变楔角拟合的曲线不完全重合。可以理解地,在本实施方式中,整个所述夹层玻璃10均具有可变的楔形剖面形状,以改善人眼或视觉系统位于上述眼盒面EB10之外时的主像与副像的副像情况。
需要说明的是,在既定的所述投影组件20布置规格下,按照光的反射定律,从所述第一投影光源211发射的单束光线在投影仪镜面及所述夹层玻璃10的内表面反射后进入眼盒面EB10,此光线唯一;同样的,从所述第一投影光源211发射的单束光线在投影仪镜面及所述夹层玻璃10介质内并经过反射面反射,经由所述夹层玻璃10内表面折射进入眼盒面EB10,此光线也唯一,且两根光线存在一个夹角,这就是副像角或者副像。可以理解地,副像可以分为水平及垂直方向,副像与主像在沿着上下方向的分量称之为垂直副像,副像与主像在沿着左右方向的分量称之为水平副像。
本申请中所述的可变楔角包括垂直方向的可变楔角,也包括水平方向的可变楔角,以及双向复合的可变楔角。为方便理解,本申请仅阐述沿垂直方向的副像及对应的楔角,水平方向的副像及对应的楔角也可以参照垂直方向的副像及对应的楔角来设计,在此不再赘述。
在一实施方式中,所述第一虚像面TB20的高度与宽度的比值为0.05~0.4。
具体地,所述第一虚像面TB20的高度与宽度的比值可以为0.1、0.13、0.17、0.28、0.37等,本申请对此不加以限制。
在一实施方式中,所述第一虚像面TB20与所述眼盒面EB10的夹角≤10°。
具体地,第一虚像面TB20与眼盒面EB10的夹角是指两个平面交叠形成的夹角,代表了所述第一投影光源211在所述夹层玻璃10上形成的投影图像的倾斜程度。可选的,第一虚像面TB20与眼盒面EB10的夹角≤5°;进一步的,第一虚像面TB20与眼盒面EB10的夹角为0°,以使得眼盒面EB10能够以最佳角度观察所述夹层玻璃10上的投影图像。
在一实施方式中,请再次参照图8,所述眼盒面EB10包括依次从高到低的多个子眼盒面EB11,所述第一虚像面TB20包括依次从低到高的多个第一子虚像面TB21,每个所述第一子虚像面TB21对应一个子眼盒面EB11,所述子眼盒面EB11的中点与对应第一子虚像面TB21中点的连线为主光轴,任意相邻的两个所述子眼盒面EB11所对应的主光轴的交点位于车辆外侧。
具体地,如图8所示,上子眼盒面EB11-下第一子虚像面TB21与中子眼盒面EB11-中第一子虚像面TB21的主光轴相交形成交点a,下子眼盒面EB11-上第一子虚像面TB21与中子眼盒面EB11-中第一子虚像面TB21的主光轴相交形成交点b,即任意相邻的两个子眼盒面EB11,或者任意相邻的两个第一子虚像面TB21至少部分重叠,结合图9所示,从而使得不同的楔角散点数据组区块之间在横坐标方向上的分布相应有较大区域相互重合,且相互错开的距离不大。
可以理解地,当所述交点a和所述交点b在车辆外侧,且距离所述夹层玻璃10越来越远时,相邻的第一子虚像面TB21对应的楔角散点数据组的重叠部分则越来越小,每个楔角散点数据组区块呈现左高右低倾斜的近似菱形形状,从而形成更狭长的楔角散点数据组区块。
可以理解地,所述投影组件20中的各个参数将直接影响光线的变化,从而影响所述夹层玻璃10对应位置处消除副像所需的楔角值。为了降低所述夹层玻璃10的制造难度,且在保 证所述第一投影光源211成像质量的前提下,通过改变所述投影组件20中的各个参数,使得在所述夹层玻璃10对应位置处的楔角散点数据组的最大局部极差值减小。
具体地,在楔角散点数据组中,所述第一投影显示区411内距离夹层玻璃10下侧边的任意位置处所对应的最大理论楔角和最小理论楔角的差值称为局部极差值,而最大局部极差值是指局部极差值中的最大值。减小楔角散点数据组的最大局部极差值,表现为楔角散点数据组的范围在图9中更加“狭长”,即降低了所述夹层玻璃10不同位置的楔角值离散程度,并且在一定程度上还降低了所述夹层玻璃10的制造难度。
可以理解地,在本实施方式中,通过改变所述投影组件20中的各个参数,使得在所述夹层玻璃10对应位置处的楔角散点数据组的最大局部极差值减小,也就是说,减小了位于所述夹层玻璃10不同位置的楔角值的相差程度,降低了所述夹层玻璃10制造难度,且消除副像效果良好。
需要说明的是,上文描述了所述第一投影显示区411相关的可变楔角等特征,可以理解地,所述第二投影显示区412相关的可变楔角等特征与所述第一投影显示区411相关的可变楔角等特征类似,本申请在此不再赘述。
在一实施方式中,任意相邻的两个所述子眼盒面EB11对应的主光轴的交点至夹层玻璃10第一表面110的距离为10mm~1000mm。
具体地,任意相邻的两个所述子眼盒面EB11对应的主光轴的交点至夹层玻璃10第一表面110的距离还可以为40mm~800mm;进一步的,任意相邻的两个所述子眼盒面EB11对应的主光轴的交点至夹层玻璃10第一表面110的距离还可以为100mm~600mm,本申请对此不加以限制。
在一实施方式中,所述主光轴与所述夹层玻璃10表面相交的交点与对应子眼盒面EB11中点的距离为0.4m~1.2m。
具体地,所述主光轴与所述夹层玻璃10表面相交的交点与对应子眼盒面EB11中点的距离影响抬头显示系统1的设计,距离过大或过小都会使抬头显示系统1的应用效果变差。为了在车辆上更合理地应用抬头显示系统1,在本实施方式中,所述主光轴与所述夹层玻璃10表面相交的交点与对应子眼盒面EB11中点的距离为0.4m~1.2m。
在一实施方式中,所述子眼盒面EB11的高度为40mm~60mm。
具体地,所述子眼盒面EB11用于模拟人眼或视觉系统,结合SAE J941、SAE J1757-2等标准,考虑到适用人群人眼的分布范围及抬头显示系统的制造/装配公差等,为了在车辆上更合理地应用抬头显示系统,可适当调整为40mm~60mm。
在一实施方式中,请再次参照图6,所述眼盒面EB10的中点至所述第一虚像面TB20的中点之间的距离为虚像距离,所述虚像距离为2m~6m时,所述第一投影显示区411的楔角的取值范围为0.3mrad~0.7mrad。
在本实施方式中,请再次参照图19,从中子眼盒面EB11的中垂线来观测中第一子虚像面TB21的中心点,即点TB_R3C2可以看出,中子眼盒面EB11的高度对应到楔角散点数据组区块的长度为L_mid,可以理解地,L_mid的倾斜程度也反映了楔角散点数据组区块的倾斜程度。根据如下计算公式:
L_mid在x轴上投影的长度≈(L_VID-L_G)/(L_VID)*(H_EB)/sinα
其中,L_VID为虚像距离的长度,L_G为所述主光轴与所述夹层玻璃10的交点至中子眼盒面EB11中心点的长度,H_EB为中子眼盒面EB11的高度值,α为主光轴平面内中子眼盒面EB11和中第一子虚像面TB21的主光轴与所述夹层玻璃10的夹角。
当中子眼盒面EB11的高度不变且位置固定时,即H_EB及L_G不变,α不变时,则虚像距离的长度越长,L_mid越长。具体地,例如,L_VID的取值范围为2.0m至15m,L_G的取值范围为0.4m-1.2m,H_EB的取值范围为40mm-60mm,则L_mid在x轴上投影的长度范围值一般在16/sinα~58/sinα。当α=30deg时,L_mid在x轴上投影的长度范围为32mm-108mm。
同理,请一并参照图21,图21为本申请另一实施方式提供的楔角散点数据组示意图。可以根据如上方式计算得出上子眼盒面EB11-下第一子虚像面TB21及下子眼盒面EB11-上第一子虚像面TB21对应的L_tall及L_short的长度,并且也满足当子眼盒面EB11的高度不变且位置固定时,即H_EB及L_G不变,α不变时,虚像距离的长度越长,L_tall及L_short越长。
可以理解地,在其他条件相同的情况下,L_tall/L_mid/L_short的长度越长,反映了对应的楔角散点数据组区块越狭长,且其倾斜程度越小,更适合于设计具有可变楔角的抬头显示系统。
在本实施方式中,所述虚像距离为2m~6m,可选的,所述虚像距离还可以为2m~4.5m,本申请对此不加以限制。
在一实施方式中,所述眼盒面EB10的中点至所述第一虚像面TB20的中点之间的距离为虚像距离,所述虚像距离为7m~100m时,所述第一投影显示区411的楔角的取值范围为0.1mrad~0.3mrad。具体地,所述虚像距离与所述第一投影显示区411的楔角取值的关系请参照上一实施方式的描述,在此不再赘述。
在本实施方式中,所述虚像距离为7m~100m,可选的,所述虚像距离还可以为7m~75m,本申请对此不加以限制。
在本申请中所述车身坐标,以及所述车身坐标的XY平面、XZ平面以及XY平面,皆根据国标GB9656-2003制定。
在一实施方式中,所述投影显示区410内沿着纵向和/或横向的曲率半径R呈单调变化,所述曲率半径R的变化率为-20%至+20%。
具体地,所述曲率半径R的变化率可以为但不限于为-20%、-18%、-16%、-14%、-12%、-10%、-8%、-6%、-4%、-2%、0%、2%、4%、6%、8%、10%、12%、14%、16%、18%、20%;其中,纵向曲率半径R出现一定程度的变化率时,对应的能让所述投影显示区410上不同位置的避免副像的楔角值也将出现波动,容易导致楔角散点数据组离散状态变大,导致本申请所述夹层玻璃10的制备难度、工艺成本大幅增加,其中,在投影光源201所发射的投影光线有效区内的曲率半径R变化率=(最大半径-最小半径)/最小半径×100%。本申请所述投影显示区410通过预设的楔角参数以及变化趋势,使得所述投影显示区410中对不同位置的楔角值的相差程度减小,并且使所述楔角值的变化率呈现非线性减小的变化趋势,本申请所述夹层玻璃10制造难度低,同时保证消除副像效果良好。
请一并参照图22,图22为本申请一实施方式提供的不同纵向曲率半径下楔角值随着虚像距离变化的曲线示意图。其中玻璃装车角为26.1deg;具体地,为采用眼盒面EB10和第一虚像面TB20的一点来展示投影光路及玻璃面曲率等参数对副像影响的示意图,投影光路中的眼盒面EB10/第一虚像面TB20;玻璃的名义厚度、玻璃装车角、横向曲率半径、下视角、水平视角、视野范围均相同的情况下,按照不同的纵向曲率半径R及不同虚像距离VID模拟的能避免副像的楔角值;如图22所示,所述夹层玻璃10的虚像距离VID相同时,随着纵向曲率半径R的增大,多个所述眼盒面EB10观看的图像无副像的楔角值随之减小。通过增大纵向曲率半径R,都能让消除副像的楔角值降低,可以改善楔角散点数据组离散状态。
其中,所述玻璃装车角为玻璃的倾斜程度的参数,所述玻璃应用于车辆时常为曲面,所 述车身坐标中XZ平面与玻璃面的交线的弦线,与水平面的夹角,即为玻璃装车角。
可以理解地,横向曲率半径R与消除副像的楔角值的关系可以参照纵向曲率半径R与消除副像的楔角值的关系,本申请在此不再赘述。
请再次参照图22,在一实施方式中,所述沿着纵向的曲率半径R大于等于5000mm。可选地,本申请所述沿着纵向的曲率半径R可以为但不限于为5000mm、5100mm、5200mm、5300mm、5400mm、5500mm、5600mm、5700mm、5800mm、5900mm、6000mm;在一实施方式中,所述沿着横向的曲率半径R为1500mm~4000mm。可选的,本申请所述沿着横向的曲率半径R可以为但不限于为1500mm、1800mm、2100mm、2400mm、2700mm、3000mm、3300mm、3600mm、3900mm、4000mm;当所述夹层玻璃10用作车辆风挡玻璃时,所述夹层玻璃10具有沿从底边10b到顶边10a方向的纵向方向的曲率半径R,及玻璃侧边到另一侧边横向方向的曲率半径R,所述夹层玻璃10上某一位置处的所述曲率半径的取值,对该位置处所述投影显示区410的成像具有一定影响,故对该位置处所述投影显示区410为消除副像而设定的楔角值存在影响,在一些实施方式中,所述夹层玻璃10的第一变化曲线L1上,当纵向曲率半径R相同且纵向曲率半径R≥5000mm时,和/或,当横向曲率半径R相同且横向曲率半径R为1500mm~4000mm时,投影显示区410中消除副像的楔角值的影响逐渐降低。
在一实施方式中,在相同虚像距离VID时,随着玻璃面纵向曲率半径R增大,对应的楔角变化率并不明显,在R≥5000mm时变化率近似不变;在相同纵向曲率半径R时,随着虚像距离VID的增大,对应的楔角增长率逐渐减小,当虚像距离VID≥5000mm时,楔角变化率大于-0.2mrad/1000mm;增大虚像距离VID,楔角增长率更平缓,从而改善楔角散点数据组的离散状态。第一变化曲线L1斜率过大,会导致生产工艺难度高。因此,平缓的楔角增长率更好,可选的,楔角增长率大于或等于-0.5mrad/1000mm;优选的,楔角增长率K大于或等于-0.2mrad/1000mm。
在一实施方式中,请参照图23,图23为本申请一实施方式提供的不同纵向曲率半径以及不同虚像距离下楔角值随着第一下视角变化的示意图。其中玻璃装车角为26.1deg;如图23所示为楔角随着第一下视角LDA1的关系,其中,所述第一下视角LDA1为从眼盒面EB10观察的各个所述子眼盒面EB11中心点与对应的各个第一子虚像面TB21中心点的连线与车身坐标XY平面的夹角,其中向下(-Z轴)为负值,反之为正;
在一实施方式中,所述夹层玻璃10的纵向曲率半径R和虚像距离VID不变时,随着第一下视角LDA1增大,所述多个子眼盒面EB10观看的图像无副像的楔角值随之增大。同理,同组的第一子眼盒面EB12、第二子眼盒面EB13、第三子眼盒面EB14的第一下视角LDA1呈递增趋势,消除副像的楔角值也呈递增趋势,即第一子眼盒面EB12光路的楔角<第二子眼盒面EB13光路的楔角<第三子眼盒面EB14光路的楔角;当第三子眼盒面EB14和第一子眼盒面EB12的第一下视角之差△LDA1=6deg时(按R=10000mm,VID=2000mm),楔角的差值约为0.1mrad;因此,本申请通过限定第一下视角LDA1的取值范围为-8°≤LDA≤0°,来保证楔角值的呈递增趋势缓慢,从而改善楔角散点数据组的离散状态。
同理,所述第二下视角LDA2的取值范围也可以参照所述第一下视角LDA1的取值范围,本申请在此不再赘述。
在一实施方式中,所述夹层玻璃10具有用于传感器的信号透过的功能区域,所述功能区域具有楔角固定或楔角线性变化的楔形剖面形状。
所述传感器可以举例为相机、激光雷达等,在相机、激光雷达等传感器的信号透过的功能区域内,也可以采用楔形中间粘结层,用来优化相应传感器的透射重影问题,所述功能区 域内的楔形中间粘结层具有固定的楔角或固定斜率的楔角,此段楔角为固定值或采用1阶简单函数的变化曲线,从而能够易于楔角的生产管控。
在一实施方式中,在所述第二表面120和/或第三表面210上设置有隔热涂层,所述隔热涂层包括至少一个金属层和至少两个介质层,每个金属层位于相邻两个介质层之间。
具体地,所述隔热涂层可以通过反射车辆外部的红外线,用于隔绝外部热量进入车内,从而较好的控制车辆内的温度。可以理解地,在其他可能的实施方式中,所述隔热涂层还可以设置于所述夹层玻璃10的其他位置,本申请对此不加以限制。
在一实施方式中,在所述第二表面120和所述第三表面210之间还设置有与所述隔热涂层电连接的第一汇流母线和第二汇流母线,所述隔热涂层在所述第一汇流母线和所述第二汇流母线之间具有至少600W/m2的加热功率密度。
所述第一汇流母线和所述第二汇流母线分别电连接所述隔热涂层,当所述第一汇流母线和所述第二汇流母线通电时,所述隔热涂层发热,且能够达到至少600W/m2的加热功率密度,从而对所述夹层玻璃10进行加热,以去除霜,雾,雪等,实现在恶劣天气下保障驾驶员的视野清晰。
在一实施方式中,在所述第四表面220上设置有减反射涂层或抗指纹涂层。可以理解地,由于所述第四表面220靠近车辆内,所述减反射涂层使得所述夹层玻璃10上不产生明显的仪表台倒影,从而使得车辆内人员由车辆内看向车辆外时,可以观察的更加清晰;所述抗指纹涂层可以保障所述夹层玻璃10的洁净,不容易留下指纹等污渍痕迹,从而保障驾驶员的视野清晰。
请一并参照图24、图25及图26,图24为本申请一实施方式提供的抬头显示系统的设计方法的流程图;图25为图24实施方式提供的抬头显示系统的设计方法的示意图;图26为图24实施方式提供的抬头显示系统的设计方法中第一变化曲线的示意图。在本实施方式中,所述抬头显示系统1的设计方法包括根据车内的观察者设计位于车内的眼盒面EB10。以下对第一投影显示区411为例进行说明,根据车内的观察者透过每个投影显示区410(第一投影显示区411)观察到的投影图像(第一投影图像4111)设计虚像面(第一虚像面TB20)。
其中,所述眼盒面EB10包括依次从高到低的多个子眼盒面EB11,所述第一虚像面TB20包括依次从低到高的多个子虚像面(第一子虚像面TB21),其中,每个第一子虚像面TB21对应一个子眼盒面EB11。在每个子眼盒面EB11上选取观察点阵EB111,且在每个第一子虚像面TB21上选取虚像点阵(第一虚像点阵TB211),所述观察点阵EB111中的点与所述第一虚像点阵TB211中的点的连线穿过对应的第一投影显示区411,所述连线与所述第一投影显示区411的交点为入射点。根据投影组件20、夹层玻璃10和多条连线计算对应的入射点位置处的第一投影图像4111无副像时夹层玻璃10的多个第一理论楔角值。根据所述多个第一理论楔角值以及各个所述第一理论楔角值对应的入射点到夹层玻璃底边10b的距离,拟合以得到楔角随着入射点到夹层玻璃底边10b的距离的第一变化曲线L1。以及根据所述第一变化曲线L1确定所述夹层玻璃10在对应的第一投影显示区411的楔角值。
在本实施方式中,所述夹层玻璃10用于车辆的前挡风玻璃,且应用于车辆的抬头显示系统1中。所述夹层玻璃10的设计方法包括S11、S12、S13、S14、S15、S16及S17。以下将S11、S12、S13、S14、S15、S16及S17进行详细说明。
S11,提供投影组件20及夹层玻璃10,所述投影组件20发出的投影光线入射到所述夹层玻璃10上的至少一个投影显示区410。
S12,根据车内的观察者设计位于车内的眼盒面EB10。
S13,根据车内的观察者透过每个投影显示区410观察到的投影图像设计虚像面。
在本实施方式中,所述眼盒面EB10包括依次从高到低的多个子眼盒面EB11,所述第一虚像面TB20包括依次从低到高的多个第一子虚像面TB21。其中,每个第一子虚像面TB21对应一个子眼盒面EB11。具体地,所述眼盒面EB10用于模拟观察者坐在车辆的驾驶室中时眼睛所处平面。其中,所述多个子眼盒面EB11用于模拟观察者的眼睛处于不同的高度,即所述多个子眼盒面EB11用于模拟观察者不同的视角。所述第一虚像面TB20用于模拟投影光线在所述夹层玻璃10反射至所述眼盒面EB10上在所述夹层玻璃10的另一侧所形成的虚像。所述多个子眼盒面EB11用于模拟投影光线在所述夹层玻璃10反射至不同位置的所述多个子眼盒面EB11上在所述夹层玻璃10的另一侧所形成的虚像。具体地,所述多个子眼盒面EB11与所述多个第一子虚像面TB21在高度对应上呈现中心对称关系,即高度最高的所述子眼盒面EB11对应高度最低的所述第一子虚像面TB21,高度最低的所述子眼盒面EB11对应高度最高的所述第一子虚像面TB21。
S14,在每个子眼盒面EB11上选取观察点阵EB111,且在每个子虚像面上选取虚像点阵,所述观察点阵EB111中的点与所述虚像点阵中的点的连线穿过对应的投影显示区410,所述连线与所述投影显示区410的交点为入射点。
在本实施方式中,所述观察点阵EB111中每一个点对应模拟观察者的眼睛的位置。所述第一虚像点阵TB211中每一个点对于模拟投影光线在所述夹层玻璃10反射至所述眼盒面EB10上某一点上并在所述第一虚像面TB20上形成的虚像。具体地,所述第一虚像点阵TB211中每一个点对于所述观察点阵EB111中一个或多个点,即,观察者在所述眼盒面EB10上的不同位置可以看到所述第一虚像面TB20上同一位置的虚像。此外,观察者在所述眼盒面EB10上同一位置可以看到所述第一虚像面TB20上不同位置的虚像。
S15,根据投影组件20、夹层玻璃10和多条连线计算对应的入射点位置处的投影图像无副像时夹层玻璃的多个第一理论楔角值。
在本实施方式中,在每一个对应设置的所述子眼盒面EB11与所述第一子虚像面TB21中,所述观察点阵EB111中每一个点与所述第一虚像点阵TB211中每一个点连接与所述夹层玻璃10存在交点,即入射点。通过计算所述观察点阵EB111中每一点处观察者看到处于所述第一子虚像面TB21上的虚像无副像时,所述入射点处的第一理论楔角值。用于模拟计算的所述入射点的数量即为所述第一理论楔角值的数量。
S16,根据所述多个第一理论楔角值以及各个所述第一理论楔角值对应的入射点到夹层玻璃底边10b的距离,拟合以得到楔角随着到夹层玻璃底边10b的距离的第一变化曲线L1。
在本实施方式中,所述多个第一理论楔角值与所述入射点到所述夹层玻璃底边10b的距离呈现离散分布。具体地,在一实施方式中,针对每个对应的所述子眼盒面EB11与所述第一子虚像面TB21可以计算出一个所述多个第一理论楔角值的子离散图T11,将多个子离散图T11集合在同一坐标系中形成第一离散图T10。通过对所述多个第一理论楔角值的第一离散图T10进行函数拟合出所述第一变化曲线L1。举例而言,所述函数可以但不限于为三次、四次、五次多项式函数或者指数函数、幂函数、对数函数等基本函数以及它们组成的复合函数。数据曲线拟合处理可在Microsoft Excel,或WPS或MATLAB或OriginPro等软件中完成。由于观察者在所述夹层玻璃10上某一点可以看到多个不同距离或角度的像,因此该点处所述第一理论楔角值具有多个。但所述夹层玻璃10上某一点的楔角值只能为一个值。此外,与该点沿从玻璃底边到顶边方向上同一距离的其它点,第一理论楔角值也具有多个,所述夹层玻璃10 上到底边某一距离的楔角值适合为一个值。因此需要对所述夹层玻璃10上每一所述入射点处的楔角值进行适当选取,以减弱副像现象。通过对所述多个第一理论楔角值进行函数拟合,可以使得所述夹层玻璃10在所述第一投影显示区411上的楔角值与所述多个第一理论楔角值的偏差更小,从而减小了投影至所述夹层玻璃10上的所述第一投影显示区411的副像现象,以提高所述夹层玻璃10的成像质量。在另一实施方式中,针对每一所述入射点处对应的所述多个第一理论楔角值,选取该点处对应的所述多个第一理论楔角值中极大值与极小值的平均数,然后将每一所述入射点处的所述多个第一理论楔角值的极大值与极小值的平均数连接起来形成所述第一变化曲线L1。
S17,根据所述第一变化曲线L1确定所述夹层玻璃10在对应的所述投影显示区410的楔角值。
在本实施方式中,通过所述第一变化曲线L1确定所述夹层玻璃10在对应的所述第一投影显示区411的楔角值,以减弱所述夹层玻璃10在所述第一投影显示区411的副像现象。具体地,通过所述第一虚像面TB20的选取设计,可以计算出所述夹层玻璃10中第一投影显示区411的所述多个第一理论楔角值的分布,并拟合出所述第一投影显示区411对应的所述第一变化曲线L1,从而确定所述夹层玻璃10在对应的所述第一投影显示区411的楔角值。
请参照图27,图27为图24实施方式提供的抬头显示系统的设计方法中眼盒面与第一虚像面的示意图。在本实施方式中,所述眼盒面EB10包括依次从高到低的第一子眼盒面EB12、第二子眼盒面EB13及第三子眼盒面EB14。所述多个第一子虚像面TB21包括依次从低到高的第一低虚像面TB22、第一中虚像面TB23及第一高虚像面TB24。所述“在每个子眼盒面EB11上选取观察点阵EB111,且在每个子虚像面上选取虚像点阵”包括在所述第一子眼盒面EB12上选取第一子观察点阵EB121:m1*n1,在所述第二子眼盒面EB13上选取第二子观察点阵EB131:m2*n2,在所述第三子眼盒面EB14上选取第三子观察点阵EB141:m3*n3,其中,m1,m2,m3≥1且为自然数,n1,n2,n3≥1且为自然数。以及在所述第一低虚像面TB22上选取第一低虚像点阵TB221:i1*j1,在所述第一中虚像面TB23上选取第一中虚像点阵TB231:i2*j2,在所述第一高虚像面TB24上选取第一高虚像点阵TB241:i3*j3,其中,i1,i2,i3≥1且为自然数,j1,j2,j3≥1且为自然数。
在本实施方式中,所述眼盒面EB10包括依次从高到低的第一子眼盒面EB12、第二子眼盒面EB13及第三子眼盒面EB14,即,将观察者在驾驶室中眼部的位置简化为高、中及低三个高度位置,从而简化了所述抬头显示系统1的设计方法。固然选取更多位置的所述眼盒面EB10能够增加计算的准确性,但更多的所述眼盒面EB10也会增加所述多个第一理论楔角值的子离散图T11的个数,从而增加了拟合出所述第一变化曲线L1的计算量及难度。
在本实施方式中,上述实施方式中步骤S14具体包括S141及S142。接下来对步骤S141及S142进行详细说明。
S141,在所述第一子眼盒面EB12上选取第一子观察点阵EB121:m1*n1,在所述第二子眼盒面EB13上选取第二子观察点阵EB131:m2*n2,在所述第三子眼盒面EB14上选取第三子观察点阵EB141:m3*n3,其中,m1,m2,m3≥1且为自然数,n1,n2,n3≥1且为自然数。
在本实施方式中,在第一子眼盒面EB12上选取第一子观察点阵EB121:m1*n1。其中,m1≥1且为自然数,n1≥1且为自然数。举例而言,m1可以但不限于为3、5或8等,n1可以但不限于为3、5或8等。在第二子眼盒面EB13上选取第二子观察点阵EB131:m2*n2。其中,m2≥1且为自然数,n2≥1且为自然数。举例而言,m2可以但不限于为3、5或8等,n2可以但不限于为3、5或8等。其中,m2与m1相同或不同,n2与n1相同或不同。在第三子 眼盒面EB14上选取第三子观察点阵EB141:m3*n3。其中,m3≥1且为自然数,n3≥1且为自然数。举例而言,m3可以但不限于为3、5或8等,n3可以但不限于为3、5或8等。m3与m1、m2相同或不同,n3与n1、n2相同或不同。
S142,在所述第一低虚像面TB22上选取第一低虚像点阵TB221:i1*j1,在所述第一中虚像面TB23上选取第一中虚像点阵TB231:i2*j2,在所述第一高虚像面TB24上选取第一高虚像点阵TB241:i3*j3,其中,i1,i2,i3≥1且为自然数,j1,j2,j3≥1且为自然数。
在本实施方式中,在第一低虚像面TB22上选取第一低虚像点阵TB221:i1*j1。其中,i1≥1且为自然数,j1≥1且为自然数。举例而言,i1可以但不限于为3、5或8等,j1可以但不限于为3、5或8等。在第一中虚像面TB23上选取第一中虚像点阵TB231:i2*j2。其中,i2≥1且为自然数,j2≥1且为自然数。举例而言,i2可以但不限于为3、5或8等,j2可以但不限于为3、5或8等。其中,i2与i1相同或不同,j2与j1相同或不同。在第一高虚像面TB24上选取第一高虚像点阵TB241:i3*j3。其中,i3≥1且为自然数,j3≥1且为自然数。举例而言,i3可以但不限于为3、5或8等,j3可以但不限于为3、5或8等。i3与i1、i2相同或不同,j3与j1、j2相同或不同。需要说明的是,i1*j1与m1*n1相同或不同,i2*j2与m2*n2相同或不同,i3*j3与m3*n3相同或不同。
请参照图28,图28为本申请一实施方式提供的抬头显示系统的设计方法计算出的第一变化曲线的示意图。在本实施方式中,所述“根据投影组件20、夹层玻璃10和多条连线计算对应的入射点位置处的投影图像无副像时夹层玻璃的多个第一理论楔角值”包括根据投影组件20、夹层玻璃10和所述第一子观察点阵EB121中的每一个点与所述第一低虚像点阵TB221的每一个点连线,计算所述连线对应的入射点位置处的第一投影图像4111无副像时夹层玻璃10的多个第一子理论楔角值。根据投影组件20、夹层玻璃10和所述第二子观察点阵EB131中的每一个点与所述第一中虚像点阵TB231的每一个点连线,计算所述连线对应的入射点位置处的第一投影图像4111无副像时夹层玻璃10的多个第二子理论楔角值。以及根据投影组件20、夹层玻璃10和所述第三子观察点阵EB141中的每一个点与所述第一高虚像点阵TB241的每一个点连线,计算所述连线对应的入射点位置处的第一投影图像4111无副像时夹层玻璃10的多个第三子理论楔角值。
在本实施方式中,前述实施方式中步骤S15具体包括S151、S152及S153。接下来对步骤S151、S152及S153进行详细说明。
S151,根据投影组件20、夹层玻璃10和所述第一子观察点阵EB121中的每一个点与所述第一低虚像点阵TB221的每一个点连线,计算所述连线对应的入射点位置处的投影图像无副像时夹层玻璃10的多个第一子理论楔角值。
在本实施方式中,根据所述多个第一子理论楔角值可以得到所述多个第一子理论楔角值与距离所述夹层玻璃底边10b距离的第一子离散图T12。
S152,根据投影组件20、夹层玻璃10和所述第二子观察点阵EB131中的每一个点与所述第一中虚像点阵TB231的每一个点连线,计算所述连线对应的入射点位置处的投影图像无副像时夹层玻璃10的多个第二子理论楔角值。
在本实施方式中,根据所述多个第二子理论楔角值可以得到所述多个第二子理论楔角值与距离所述夹层玻璃底边10b距离的第二子离散图T13。
S153,根据投影组件20、夹层玻璃10和所述第三子观察点阵EB141中的每一个点与所述第一高虚像点阵TB241的每一个点连线,计算所述连线对应的入射点位置处的投影图像无副像时夹层玻璃10的多个第三子理论楔角值。
在本实施方式中,根据所述多个第三子理论楔角值可以得到所述多个第三子理论楔角值与距离所述夹层玻璃底边10b距离的第三子离散图T14。
在本实施方式中,先计算出所述第一子离散图T12、所述第二子离散图T13及所述第三子离散图T14再将所述第一子离散图T12、所述第二子离散图T13及所述第三子离散图T14集合为所述第一离散图T10,可以针对所述第一子离散图T12、所述第二子离散图T13及所述第三子离散图T14分别进行针对性优化,从而对所述第一离散图T10进行优化。举例而言,第二子离散图T13对应的第二子眼盒面EB13用于模拟观察者的眼部处于驾驶室中等高度的视角面,通常所述第二子眼盒面EB13对于观察者坐在驾驶室中的高度为最为通用的高度,因此所述第二子眼盒面EB13为最需要消除投影副像的眼盒面EB10。因此,可以针对所述第二子离散图T13进行针对性的优化,从而使得所述第二子眼盒面EB13对应在所述夹层玻璃10处的楔角值选取更为准确,举例而言,增加所述第二子观察点阵EB131和/或所述第一中虚像点阵TB231中点的选取数量,以提高所述第二子离散图T13中所述第三子理论楔角值的数量,从而提高拟合所述第一变化曲线L1的准确度。
请再次参照图28,在本实施方式中,所述多个第一理论楔角值的最大局部极差值△W与所述多个第一理论楔角值的整体极差值△C的比值为:△W/△C≤0.9。
在本实施方式中,所述多个第一理论楔角值的最大局部极差值△W与所述多个第一理论楔角值的整体极差值△C的比值为:△W/△C≤0.9,可以使得所述多个第一理论楔角值的离散程度更小,从而使得所述第一离散图T10的离散程度更小,以增加所述第一变化曲线L1的平滑程度,即降低了所述第一变化曲线L1的斜率,从而减小了所述夹层玻璃10的楔角变化率,降低了所述夹层玻璃10的生产难度。需要说明的是,所述多个第一理论楔角值的最大局部极差值△W是指局部极差值中的最大值,其中,局部极差值为到所述夹层玻璃底边10b距离为X的某一位置处的多个第一理论楔角值中最大值与最小值之差。所述多个第一理论楔角值的整体极差值△C是指所有第一理论楔角值中最大值与最小值之差。
其中,所述多个第一子理论楔角值的最大局部极差值△W1与所述多个第一理论楔角值的整体极差值△C的比值为:△W1/△C≤0.9。所述多个第二子理论楔角值的最大局部极差值△W2与所述多个第一理论楔角值的整体极差值△C的比值为:△W2/△C≤0.9。所述多个第三子理论楔角值的最大局部极差值△W3与所述多个第一理论楔角值的整体极差值△C的比值为:△W3/△C≤0.9。从而使得所述第一离散图T10的离散程度更小,以增加所述第一变化曲线L1的平滑程度,即降低了所述第一变化曲线L1的斜率,从而减小了所述夹层玻璃10的楔角变化率,降低了所述夹层玻璃10的生产难度。
在本实施方式中,所述多个第一子理论楔角值的最大局部极差值△W1与所述多个第一理论楔角值的整体极差值△C的比值为:△W1/△C≤0.9,可以使得所述多个第一子理论楔角值的离散程度更小。所述多个第一子理论楔角值的最大局部极差值△W1是指第一子局部极差值中的最大值,第一子局部极差值为到所述夹层玻璃底边10b距离为X1的某一位置处的多个第一子理论楔角值中最大值与最小值之差。
在本实施方式中,所述多个第二子理论楔角值的最大局部极差值△W2与所述多个第一理论楔角值的整体极差值△C的比值为:△W2/△C≤0.9,可以使得所述多个第二子理论楔角值的离散程度更小。所述多个第二子理论楔角值的最大局部极差值△W2是指第二子局部极差值中的最大值,第二子局部极差值为到所述夹层玻璃底边10b距离为X2的某一位置处的多个第二子理论楔角值中最大值与最小值之差。
在本实施方式中,所述多个第三子理论楔角值的最大局部极差值△W3与所述多个第一理 论楔角值的整体极差值△C的比值为:△W3/△C≤0.9,可以使得所述多个第三子理论楔角值的离散程度更小。所述多个第三子理论楔角值的最大局部极差值△W3是指第三子局部极差值中的最大值,第三子局部极差值为到所述夹层玻璃底边10b距离为X3的某一位置处的多个第三子理论楔角值中最大值与最小值之差。
在一实施方式中,多个所述虚像面(第一虚像面TB20)与所述眼盒面EB10之间的距离在所述夹层玻璃10的底边10b到顶边10a之间的方向上递增。
在本实施方式中,多个所述第一虚像面TB20与所述眼盒面EB10之间的距离在所述夹层玻璃10的底边10b到顶边10a之间的方向上递增,在所述夹层玻璃10上对应设计出多个所述第一投影显示区411,可以使得观察者坐在驾驶室中眼部在多个所述第一投影显示区411之间切换得更加顺畅。
请参照图29,图29为本申请一实施方式提供的抬头显示系统的设计方法中两条第一变化曲线优化设计的示意图。在本实施方式中,所述投影显示区410包括至少两个第一投影显示区411,拟合得到楔角随着入射点到夹层玻璃底边10b的距离的至少两条第一变化曲线L1,当相邻两条第一变化曲线L1的最大偏差值△Xmax大于0.15mrad时,在所述“根据所述第一变化曲线L1确定所述夹层玻璃10在对应的所述第一投影显示区411的楔角值”之后,所述抬头显示系统1的设计方法还包括调整所述眼盒面EB10与相邻两条第一变化曲线L1中其中一条对应的虚像面(第一虚像面TB20)之间的距离。重新计算得出新的多个所述第一理论楔角值。根据新的所述多个第一理论楔角值、以及各个所述第一理论楔角值对应的入射点到夹层玻璃底边10b的距离,以得到楔角随着入射点到夹层玻璃底边10b的距离新的第一变化曲线L1。以及判断新的第一变化曲线L1与相邻两条第一变化曲线L1中的另一条的最大偏差值△Xmax是否大于0.15mrad。若是,重复以上步骤。若否,根据新的所述第一变化曲线L1确定所述夹层玻璃10在对应的所述第一投影显示区411的楔角值。
在本实施方式中,当相邻两条第一变化曲线L1具有重叠部分时,最大偏差值△Xmax等于重叠部分中的两条第一变化曲线L1的差值中的最大值;当相邻两条第一变化曲线L1没有重叠部分时,最大偏差值△Xmax等于两条第一变化曲线L1的最相邻两端的楔角值之差。
当最大偏差值△Xmax大于0.15mrad时,需要调整所述眼盒面EB10与相邻两条第一变化曲线L1中任一条对应的第一虚像面TB20之间的距离,以将设计的两条所述第一变化曲线L1的最大偏差值△Xmax调整到小于或等于0.15mrad,或者小于或等于0.10mrad,或者小于或等于0.08mrad,或者小于或等于0.05mrad。
具体地,在所述“根据所述第一变化曲线L1确定所述夹层玻璃10在对应的所述第一投影显示区411的楔角值”之后,所述夹层玻璃10的设计方法还包括S18、S19、S20、S21及S22。接下来对步骤S18、S19、S20、S21及S22进行详细说明。
S18,调整所述眼盒面EB10与相邻两条第一变化曲线L1中其中一条对应的虚像面之间的距离。
其中,调整所述眼盒面EB10与相邻两条第一变化曲线L1中其中一条对应的第一虚像面TB20之间的距离,可以调整消除副像所需的楔角值。相同条件下,当所述眼盒面EB10与相邻两条第一变化曲线L1中其中一条对应的第一虚像面TB20之间的距离越大时,消除副像所需的楔角值越小。在本实施方式中,可以增大其中一条第一变化曲线L1(请参见图27中L11)对应的第一虚像面TB20与所述眼盒面EB10之间的距离,和/或减小另一条第一变化曲线L1(请参见图27中L12)对应的第一虚像面TB20与所述眼盒面EB10之间的距离,使相邻两条第一变化曲线L1更加靠近设计目标。
S19,重新计算得出新的多个所述第一理论楔角值。
在本实施方式中,调整所述第一虚像面TB20与所述眼盒面EB10之间的距离之后,通过前述实施方式的计算方法计算出来的所述多个第一理论楔角值能够拟合出更加靠近设计目标的第一变化曲线L1。
S20,根据新的所述多个第一理论楔角值、以及各个所述第一理论楔角值对应的入射点到夹层玻璃底边10b的距离,拟合以得到楔角随着入射点到夹层玻璃10底边的距离的新的第一变化曲线L1。
S21,判断新的第一变化曲线L1与相邻两条第一变化曲线L1中的另一条的最大偏差值△Xmax是否大于0.15mrad。
在本实施方式中,判断新的第一变化曲线L1与相邻两条第一变化曲线L1中的另一条的最大偏差值△Xmax是否大于0.15mrad。若是,这重复步骤S18到S21。若否,则进行步骤S22。
S22,根据新的所述第一变化曲线L1确定所述夹层玻璃10在对应的所述第一投影显示区411的楔角值。
请参照图30,图30为本申请一实施方式提供的抬头显示系统的设计方法计算出来的第二变化曲线的示意图。在本实施方式中,所述多个投影显示区410包括至少一个第二投影显示区412,根据车内的观察者透过每个第二投影显示区412观察到的第二投影图像4121设计第二虚像面TB30。所述第二虚像M30面包括依次从低到高的多个第二子虚像面TB31。其中,每个第二子虚像面TB31对应一个子眼盒面EB11。在每个子眼盒面EB11上选取观察点阵EB111,且在每个第二子虚像面TB31上选取第二虚像点阵TB311,所述观察点阵EB111中的点与所述第二虚像点阵TB311中的点的连线穿过对应的第二投影显示区412,所述连线与所述第二投影显示区412的交点为入射点。根据投影组件20、夹层玻璃10和多条连线计算对应的入射点位置处的第二投影显示区412无副像时夹层玻璃10的多个第二理论楔角值。根据所述多个第二理论楔角值、以及各个所述第二理论楔角值对应的入射点到夹层玻璃底边10b的距离,拟合以得到楔角随着入射点到夹层玻璃底边10b的距离的第二变化曲线L2。以及根据所述第二变化曲线L2确定所述夹层玻璃10在对应的所述第二投影显示区412的楔角值。
其中,所述多个第一理论楔角值和所述多个第二理论楔角值的合集具有最大局部极差值△WU,所述多个第一理论楔角值和所述多个第二理论楔角值的合集具有整体极差值△CU,△WU与△CU的比值为:△WU/△CU≤0.9。可以使得所述多个第一理论楔角值和所述多个第二理论楔角值的合集的整体离散程度更小,从而增加所述第一变化曲线L1和所述第二变化曲线L2的平滑程度,即降低了所述第一变化曲线L1和所述第二变化曲线L2的整体斜率,从而减小了所述夹层玻璃10的整体楔角变化率,降低了所述夹层玻璃10的生产难度。需要说明的是,所述多个第一理论楔角值和所述多个第二理论楔角值的合集具有最大局部极差值△WU是指合集局部极差值中的最大值,其中,合集局部极差值为到所述夹层玻璃底边10b距离为X的某一位置处的多个第一理论楔角值和所述多个第二理论楔角值的合集中最大值与最小值之差。所述多个第一理论楔角值和所述多个第二理论楔角值的合集具有整体极差值△CU是指所有第一理论楔角值和所有第二理论楔角值的合集中最大值与最小值之差。
在本实施方式中,设计出区别于所述第一投影显示区411的第二投影显示区412的楔角值,举例而言,所述第一投影显示区411用于AR-HUD,所述第二投影显示区412用于W-HUD。具体地,所述抬头显示系统1的设计方法还包括S31、S32、S33、S34、S35及S36。接下来针对步骤S31、S32、S33、S34、S35及S36进行详细说明。
S31,所述多个投影显示区410包括至少一个第二投影显示区412,根据车内的观察者透 过每个第二投影显示区412观察到的第二投影图像4121设计第二虚像面TB30。
在本实施方式中,所述第二虚像面TB30高度低于所述第一虚像面TB20。
S32,所述第二虚像M30面包括依次从低到高的多个第二子虚像面TB31。其中,每个第二子虚像面TB31对应一个子眼盒面EB11。
在本实施方式中,所述第二虚像面TB30相对于所述第一虚像面TB20,所述第二虚像面TB30距离所述眼盒面EB10的距离更近,且所述第二虚像面TB30的下视角更小。
S33,所述第二虚像M30面包括依次从低到高的多个第二子虚像面TB31。其中,每个第二子虚像面TB31对应一个子眼盒面EB11。
在本实施方式中,所述多个子眼盒面EB11与所述多个第二子虚像面TB31在高度对应上呈现中心对称关系,即高度最高的所述子眼盒面EB11对应高度最低的所述第二子虚像面TB31,高度最低的所述子眼盒面EB11对应高度最低的所述第二子虚像面TB31。
S34,在每个子眼盒面EB11上选取观察点阵EB111,且在每个第二子虚像面TB31上选取第二虚像点阵TB311,所述观察点阵EB111中的点与所述第二虚像点阵TB311中的点的连线穿过对应的第二投影显示区412,所述连线与所述第二投影显示区412的交点为入射点。
在本实施方式中,所述观察点阵EB111中每一个点对应模拟观察者的眼睛的位置。所述第二虚像点阵TB311中每一个点对于模拟投影光线在所述夹层玻璃10反射至所述眼盒面EB10上某一点上并在所述第二虚像面TB30上形成的虚像。具体地,所述第二虚像点阵TB311中每一个点对于所述观察点阵EB111中一个或多个点,即,观察者在所述眼盒面EB10上的不同位置可以看到所述第二虚像面TB30上同一位置的虚像。此外,观察者在所述眼盒面EB10上同一位置可以看到所述第二虚像面TB30上不同位置的虚像。
S35,根据投影组件20、夹层玻璃10和多条连线计算对应的所述入射点位置处的第二投影图像4121无副像时夹层玻璃10的多个第二理论楔角值。
在本实施方式中,在每一个对应设置的所述子眼盒面EB11与所述第二子虚像面TB31中,所述观察点阵EB111中每一个点与所述第二虚像点阵TB311中每一个点连接与所述夹层玻璃10存在交点,即入射点。通过计算所述观察点阵EB111中每一点处观察者看到处于所述第二子虚像面TB31上的虚像无副像时,所述入射点处的第二理论楔角值。用于模拟计算的所述入射点的数量即为所述第二理论楔角值的数量。
S36,根据所述第二变化曲线L2确定所述夹层玻璃10在对应的所述第二投影显示区412的楔角值。
在本实施方式中,通过所述第二变化曲线L2确定所述夹层玻璃10在对应的所述第二投影显示区412的楔角值,以减弱所述夹层玻璃10在所述第二投影显示区412的成像副像现象。具体地,通过所述第二虚像面TB30的选取设计,可以计算出所述夹层玻璃10中第二投影显示区412的所述多个第二理论楔角值的分布,并拟合出所述第二投影显示区412对应的所述第二变化曲线L2,从而确定所述夹层玻璃10在对应的所述第二投影显示区412的楔角值。
请参照图31,图31为本申请一实施方式提供的第一变化曲线与第二变化曲线优化的示意图。在本实施方式中,当相邻的第一变化曲线L1与第二变化曲线L2的最大偏差值大于0.2mrad时,减小所述眼盒面EB10与所述第一变化曲线L1对应的第一虚像面TB20之间的距离,和/或增大所述眼盒面EB10与所述第二变化曲线L2对应的第二虚像面TB30之间的距离。
在本实施方式中,当相邻的第一变化曲线L1与所述第二变化曲线L2具有重叠部分时,最大偏差值△Xmax等于重叠部分中的所述第一变化曲线L1与所述第二变化曲线L2的差值中的最大值;当相邻的第一变化曲线L1与所述第二变化曲线L2没有重叠部分时,最大偏差值 △Xmax等于所述第一变化曲线L1与所述第二变化曲线L2的最相邻两端的楔角值之差。
当最大偏差值△Xmax大于0.2mrad时,需要调整所述眼盒面EB10与相邻的所述第一变化曲线L1对应的第一虚像面TB20之间的距离,和/或所述眼盒面EB10与所述第二变化曲线L2对应的第二虚像面TB30之间的距离,以将设计的相邻的所述第一变化曲线L1与所述第二变化曲线L2的最大偏差值△Xmax调整到小于或等于0.2mrad,或者小于或等于0.15mrad,或者小于或等于0.10mrad,或者小于或等于0.08mrad,或者小于或等于0.05mrad。
具体地,在一实施方式中,通过减小所述第一虚像面TB20与所述眼盒面EB10之间的距离,从而使得设计出来的所述多个第一理论楔角值变大,从而使得所述第一变化曲线L1更靠近所述第二变化曲线L2,从而降低所述第一变化曲线L1与所述第二变化曲线L2的最大偏差值,以使得相邻的所述第一变化曲线L1和所述第二变化曲线L2更加靠近设计目标。在另一实施方式中,通过增大所述第二虚像面TB30与所述眼盒面EB10之间的距离,从而使得设计出来的所述多个第二理论楔角值的值变小,从而使得所述第二变化曲线L2更靠近所述第一变化曲线L1,从而降低所述第一变化曲线L1与所述第二变化曲线L2的最大偏差值,以使得相邻的所述第一变化曲线L1和所述第二变化曲线L2更加靠近设计目标。在又一实施方式中,减小所述第一虚像面TB20与所述眼盒面EB10之间的距离,且增大所述第二虚像面TB30与所述眼盒面EB10之间的距离,从而使得设计出来的所述多个第一理论楔角值变大,且设计出来的所述多个第二理论楔角值的值变小,从而使得相邻的所述第一变化曲线L1与所述第二变化曲线L2相互靠近,以使得相邻的所述第一变化曲线L1和所述第二变化曲线L2更加靠近设计目标。
在一实施方式中,所述“根据车内的观察者透过每个投影显示区410观察到的投影图像设计虚像面”包括:设定所述虚像面(第一虚像面TB20)的高度与宽度的比值小于或等于0.5。
可以理解地,在本实施方式中,所述第一虚像面TB20的高度及宽度均对所述第一投影显示区411内不同位置处的楔形剖面形状有影响,且所述第一虚像面TB20的高度对所述第一投影显示区411内不同位置处的楔形剖面形状的影响更大,由于所述第一虚像面TB20的高度与宽度的比值小于或等于0.5,较大程度地减小了所述第一虚像面TB20的高度占比,从而改善楔角散点数据组的离散状态。
在一实施方式中,所述抬头显示系统的设计方法还包括:根据所述多个理论楔角值以及各个所述理论楔角值对应的入射点到夹层玻璃10底边10b的距离绘制在XY坐标系中的理论楔角值的散点分布图;所述散点分布图中具有倾斜的中位线,所述中位线在X轴上的投影长度为L,所述散点分布图中还具有虚像面(第一虚像面TB20)的高度和宽度在X轴上的投影长度W,W/L≤1.2。
在本实施方式中,W即Wm_C、Wm_L和Wm_R三者之和,L则是对应的L_mid或L_tall或L_short在X轴上的投影长度。从每个楔角散点数据组区块来看,垂直于L_mid、L_tall、L_short方向的区块宽度越小,使得在所述夹层玻璃10对应位置处的楔角散点数据组的最大局部极差值越小。那么,在沿着所述夹层玻璃10所述底边10b向上的方向上,第一虚像面TB20在所述夹层玻璃10上的投影长度与对应的楔角散点数据区块的中位线在X轴上的投影长度的比值越小越好,即W/L越小越好。
可以理解地,在本实施方式中,第一虚像面TB20在所述夹层玻璃10上的投影长度与对应的楔角散点数据区块的中位线在X轴上的投影长度的比值W/L≤1.2。在其他可能的实施方式中,W/L的值还可以更小,本申请对此不加以限制。
在一实施方式中,所述眼盒面EB10包括依次从高到低的多个子眼盒面EB11,所述第一 虚像面TB20包括依次从低到高的多个第一子虚像面TB21,每个所述第一子虚像面TB21对应一个子眼盒面EB11,所述子眼盒面EB11的中点与对应第一子虚像面TB21中点的连线为主光轴,任意相邻的两个所述子眼盒面EB11所对应的主光轴的交点位于车辆外侧。
具体地,任意相邻的两个所述子眼盒面EB11所对应的主光轴的交点对所述夹层玻璃10不同位置处的楔角值的影响,请参照上文描述,在此不再赘述。
在一实施方式中,任意相邻的两个所述子眼盒面EB11对应的主光轴的交点至夹层玻璃10第一表面110的距离为10mm~1000mm。
在本实施方式中,任意相邻的两个所述子眼盒面EB11对应的主光轴的交点至夹层玻璃10第一表面110的距离为10mm~1000mm;可选的,任意相邻的两个所述子眼盒面EB11对应的主光轴的交点至夹层玻璃10第一表面110的距离为40mm~800mm;进一步的,任意相邻的两个所述子眼盒面EB11对应的主光轴的交点至夹层玻璃10第一表面110的距离为100mm~600mm,本申请对此不加以限制。
在一实施方式中,所述抬头显示系统的设计方法还包括:设定所述夹层玻璃10的投影显示区410内沿着纵向或横向的曲率半径R呈单调变化,所述曲率半径R的变化率为-20%至+20%。
可以理解地,随着纵向或横向的曲率半径R的增大,多个所述眼盒面EB10观看的图像无副像的楔角值随之减小。通过增大纵向或横向的曲率半径R,都能让消除副像的楔角值降低,可以改善楔角散点数据组离散状态。
尽管上面已经示出和描述了本申请的实施例,可以理解地是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (30)

  1. 一种抬头显示系统,其特征在于,所述抬头显示系统包括夹层玻璃及投影组件;
    所述夹层玻璃包括:
    第一透明基板,具有第一表面和第二表面;
    第二透明基板,具有第三表面和第四表面;以及
    中间粘结层,所述中间粘结层设于所述第一透明基板及所述第二透明基板之间,且用于粘结所述第二表面及所述第三表面;
    所述夹层玻璃具有至少一个投影显示区,所述投影显示区具有所述夹层玻璃安装于车辆时的上侧边厚度大于下侧边厚度的楔形剖面形状,所述投影显示区具有楔角从所述下侧边向所述上侧边连续非线性单调变小的区段,所述区段的长度与所述投影显示区的长度之比不低于70%;
    所述投影组件包括能够投影至所述至少一个投影显示区的至少一个投影光源,所述投影光源发出的投影光线入射至所述投影显示区形成投影图像。
  2. 如权利要求1所述的抬头显示系统,其特征在于,所述投影显示区中的楔角连续非线性单调变小的最大变化率ROC:ROC≤0.3mrad/100mm;或,ROC≤0.2mrad/100mm;或,ROC≤0.1mrad/100mm;或,ROC≤0.05mrad/100mm。
  3. 如权利要求1所述的抬头显示系统,其特征在于,所述区段的任一点位置处具有测定楔角,将所述区段内各点位置处的测定楔角进行拟合得到实际楔角拟合曲线,所述投影显示区的任一点位置处具有消除副像的多个理论楔角值,将所述投影显示区内各点位置处的多个理论楔角值进行拟合得到第一变化曲线,所述实际楔角拟合曲线与所述第一变化曲线的对应部分的最大偏差值小于或等于0.15mrad。
  4. 如权利要求3所述的抬头显示系统,其特征在于,所述实际楔角拟合曲线与所述第一变化曲线均符合2-5阶函数。
  5. 如权利要求3所述的抬头显示系统,其特征在于,所述实际楔角拟合曲线上任一点的切线的斜率从所述下侧边向所述上侧边连续变小。
  6. 如权利要求3所述的抬头显示系统,其特征在于,所述实际楔角拟合曲线上任一点的切线的斜率从所述下侧边向所述上侧边连续变大。
  7. 如权利要求3所述的抬头显示系统,其特征在于,所述实际楔角拟合曲线上任一点的切线的斜率从所述下侧边向所述上侧边先连续变大后连续变小。
  8. 如权利要求3所述的抬头显示系统,其特征在于,多个理论楔角值的最大局部极差值△W与多个理论楔角值的整体极差值△C的比值为:△W/△C≤0.9。
  9. 如权利要求1所述的抬头显示系统,其特征在于,所述夹层玻璃具有多个投影显示区,所述多个投影显示区中包括至少一个第一投影显示区,所述投影光源发出的投影光线入射至所述第一投影显示区形成第一投影图像,所述第一投影图像的虚像距离VID1为7米-100米。
  10. 如权利要求9所述的抬头显示系统,其特征在于,所述多个投影显示区还包括至少一个第二投影显示区,所述投影光源入射至所述第二投影显示区形成第二投影图像,所述第二投影图像的虚像距离VID2为1米-6米。
  11. 如权利要求10所述的抬头显示系统,其特征在于,所述第一投影图像具有第一下视 角LDA1和第一虚像距离VID1,所述第二投影图像具有第二下视角LDA2和第二虚像距离VID2,当所述第一投影显示区与所述第二投影显示区在所述底边指向所述顶边的方向上邻近设置时,LDA1与LDA2满足:2°≤LDA1-LDA2≤4.5°,或者,2.5°≤LDA1-LDA2≤3.5°,VID1与VID2满足:2≤VID1/VID2≤50,或者,2.5≤VID1/VID2≤10。
  12. 如权利要求10所述的抬头显示系统,其特征在于,所述第一投影显示区的楔角的取值范围为0mrad~0.5mrad,所述第二投影显示区的楔角的取值范围为0.1mrad至0.8mrad。
  13. 如权利要求9所述的抬头显示系统,其特征在于,所述抬头显示系统还包括位于车辆内侧的虚拟的眼盒面和至少一个位于车辆外侧的虚拟的虚像面,每个所述投影显示区对应一个虚像面,所述虚像面的高度与宽度的比值小于或等于0.5。
  14. 如权利要求13所述的抬头显示系统,其特征在于,所述虚像面与所述眼盒面的夹角≤10°。
  15. 如权利要求13所述的抬头显示系统,其特征在于,所述眼盒面包括依次从高到低的多个子眼盒面,所述虚像面包括依次从低到高的多个子虚像面,每个所述子虚像面对应一个子眼盒面,所述子眼盒面的中点与对应第一子虚像面中点的连线为主光轴,任意相邻的两个所述子眼盒面所对应的主光轴的交点位于车辆外侧。
  16. 如权利要求15所述的抬头显示系统,其特征在于,任意相邻的两个所述子眼盒面对应的主光轴的交点至夹层玻璃第一表面的距离为10mm~1000mm。
  17. 如权利要求1所述的抬头显示系统,其特征在于,所述投影显示区内沿着纵向和/或横向的曲率半径R呈单调变化,所述曲率半径R的变化率为-20%至+20%。
  18. 根据权利要求16所述的抬头显示系统,其特征在于,所述沿着纵向的曲率半径R大于等于5000mm,所述沿着横向的曲率半径R为1500mm~4000mm。
  19. 如权利要求1所述的抬头显示系统,其特征在于,所述夹层玻璃具有用于传感器的信号透过的功能区域,所述功能区域具有楔角固定或楔角线性变化的楔形剖面形状。
  20. 一种抬头显示系统的设计方法,其特征在于,所述抬头显示系统的设计方法包括:
    提供投影组件及夹层玻璃,所述投影组件发出的投影光线入射到所述夹层玻璃上的至少一个投影显示区;
    根据车内的观察者设计位于车内的眼盒面;
    根据车内的观察者透过每个投影显示区观察到的投影图像设计虚像面;
    其中,所述眼盒面包括依次从高到低的多个子眼盒面,所述虚像面包括依次从低到高的多个子虚像面,其中,每个子虚像面对应一个子眼盒面;
    在每个子眼盒面上选取观察点阵,且在每个子虚像面上选取虚像点阵,所述观察点阵中的点与所述虚像点阵中的点的连线穿过对应的投影显示区,所述连线与所述投影显示区的交点为入射点;
    根据所述投影组件、夹层玻璃和多条连线计算对应的入射点位置处的投影图像无副像时夹层玻璃的多个第一理论楔角值;
    根据所述多个第一理论楔角值以及各个所述第一理论楔角值对应的入射点到夹层玻璃底边的距离,拟合以得到楔角随着入射点到夹层玻璃底边的距离的第一变化曲线;以及
    根据所述第一变化曲线确定所述夹层玻璃在对应的所述投影显示区的楔角值。
  21. 如权利要求20所述的抬头显示系统的设计方法,其特征在于,所述眼盒面包括依次从高到低的第一子眼盒面、第二子眼盒面及第三子眼盒面;所述多个子虚像面包括依次从低到高的第一低虚像面、第一中虚像面及第一高虚像面;
    所述“在每个子眼盒面上选取观察点阵,且在每个子虚像面上选取虚像点阵”包括:
    在所述第一子眼盒面上选取第一子观察点阵m1*n1,在所述第二子眼盒面上选取第二子观察点阵m2*n2,在所述第三子眼盒面上选取第三子观察点阵m3*n3,其中,m1,m2,m3≥1且为自然数,n1,n2,n3≥1且为自然数;以及
    在所述第一低虚像面上选取第一低虚像点阵i1*j1,在所述第一中虚像面上选取第一中虚像点阵i2*j2,在所述第一高虚像面上选取第一高虚像点阵i3*j3,其中,i1,i2,i3≥1且为自然数,j1,j2,j3≥1且为自然数。
  22. 如权利要求21所述的抬头显示系统的设计方法,其特征在于,所述“根据所述投影组件、夹层玻璃和多条连线计算对应的入射点位置处的投影图像无副像时夹层玻璃的多个第一理论楔角值”包括:
    根据投影组件、夹层玻璃和所述第一子观察点阵中的每一个点与所述第一低虚像点阵的每一个点连线,计算所述连线对应的入射点位置处的投影图像无副像时夹层玻璃的多个第一子理论楔角值;
    根据投影组件、夹层玻璃和所述第二子观察点阵中的每一个点与所述第一中虚像点阵的每一个点连线,计算所述连线对应的入射点位置处的投影图像无副像时夹层玻璃的多个第二子理论楔角值;以及
    根据投影组件、夹层玻璃和所述第三子观察点阵中的每一个点与所述第一高虚像点阵的每一个点连线,计算所述连线对应的入射点位置处的投影图像无副像时夹层玻璃的多个第三子理论楔角值。
  23. 如权利要求20所述的抬头显示系统的设计方法,其特征在于,所述多个第一理论楔角值的最大局部极差值△W与所述多个第一理论楔角值的整体极差值△C的比值为:△W/△C≤0.9。
  24. 如权利要求20所述的抬头显示系统的设计方法,其特征在于,多个所述虚像面与所述眼盒面之间的距离在所述夹层玻璃的底边到顶边之间的方向上递增。
  25. 如权利要求20所述的抬头显示系统的设计方法,其特征在于,所述投影显示区包括至少两个第一投影显示区,拟合得到楔角随着入射点到夹层玻璃底边的距离的至少两条第一变化曲线,当相邻两条第一变化曲线的最大偏差值大于0.15mrad时,在所述“根据所述第一变化曲线确定所述夹层玻璃在对应的第一投影显示区的楔角值”之后,所述抬头显示系统的设计方法还包括:
    调整所述眼盒面与相邻两条第一变化曲线中其中一条对应的虚像面之间的距离;
    重新计算得出新的多个所述第一理论楔角值;
    根据新的所述多个第一理论楔角值、以及各个所述第一理论楔角值对应的入射点到夹层玻璃底边的距离,拟合以得到楔角随着入射点到夹层玻璃底边的距离的新的第一变化曲线;以及
    判断新的第一变化曲线与相邻两条第一变化曲线中的另一条的最大偏差值是否大于 0.15mrad;
    若是,重复以上步骤;
    若否,根据新的所述第一变化曲线确定所述夹层玻璃在对应的所述投影显示区的楔角值。
  26. 如权利要求20所述的抬头显示系统的设计方法,其特征在于,所述“根据车内的观察者透过每个投影显示区观察到的投影图像设计虚像面”包括:
    设定所述虚像面的高度与宽度的比值小于或等于0.5。
  27. 如权利要求20所述的抬头显示系统的设计方法,其特征在于,所述抬头显示系统的设计方法还包括:
    根据所述多个第一理论楔角值以及各个所述第一理论楔角值对应的入射点到夹层玻璃下侧边的距离绘制在XY坐标系中的理论楔角值的散点分布图;
    所述散点分布图中具有倾斜的中位线,所述中位线在X轴上的投影长度为L,所述散点分布图中还具有虚像面的高度和宽度在X轴上的投影长度W,W/L≤1.2。
  28. 如权利要求20所述的抬头显示系统的设计方法,其特征在于,所述子眼盒面的中点与对应子虚像面中点的连线为主光轴,任意相邻的两个所述子眼盒面所对应的主光轴的交点位于车辆外侧。
  29. 如权利要求28所述的抬头显示系统的设计方法,其特征在于,任意相邻的两个所述子眼盒面对应的主光轴的交点至夹层玻璃第一表面的距离为10mm~1000mm。
  30. 如权利要求20所述的抬头显示系统的设计方法,其特征在于,所述抬头显示系统的设计方法还包括:
    设定所述夹层玻璃的投影显示区内沿着纵向或横向的曲率半径R呈单调变化,所述曲率半径R的变化率为-20%至+20%。
PCT/CN2022/095074 2022-05-25 2022-05-25 抬头显示系统及其设计方法 WO2023071170A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095074 WO2023071170A1 (zh) 2022-05-25 2022-05-25 抬头显示系统及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095074 WO2023071170A1 (zh) 2022-05-25 2022-05-25 抬头显示系统及其设计方法

Publications (1)

Publication Number Publication Date
WO2023071170A1 true WO2023071170A1 (zh) 2023-05-04

Family

ID=86160463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095074 WO2023071170A1 (zh) 2022-05-25 2022-05-25 抬头显示系统及其设计方法

Country Status (1)

Country Link
WO (1) WO2023071170A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888927A (zh) * 2007-12-07 2010-11-17 法国圣戈班玻璃厂 由夹层玻璃制成的弧形机动车挡风玻璃
CN106489096A (zh) * 2015-06-11 2017-03-08 法国圣戈班玻璃厂 用于平视显示器(hud)的投影装置
CN107703633A (zh) * 2017-10-30 2018-02-16 苏州车萝卜汽车电子科技有限公司 风挡式抬头显示装置以及削弱重影的方法
CN113968053A (zh) * 2021-09-27 2022-01-25 福耀玻璃工业集团股份有限公司 用于抬头显示的夹层玻璃及抬头显示系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888927A (zh) * 2007-12-07 2010-11-17 法国圣戈班玻璃厂 由夹层玻璃制成的弧形机动车挡风玻璃
CN106489096A (zh) * 2015-06-11 2017-03-08 法国圣戈班玻璃厂 用于平视显示器(hud)的投影装置
CN107703633A (zh) * 2017-10-30 2018-02-16 苏州车萝卜汽车电子科技有限公司 风挡式抬头显示装置以及削弱重影的方法
CN113968053A (zh) * 2021-09-27 2022-01-25 福耀玻璃工业集团股份有限公司 用于抬头显示的夹层玻璃及抬头显示系统

Similar Documents

Publication Publication Date Title
US10234681B2 (en) Thermoplastic film for a laminated-glass pane having a non-linear continuous wedge insert in the vertical and horizontal direction in some sections
CN106489095B (zh) 用于接触模拟平视显示器(hud)的投影装置
JP2017502124A (ja) 垂直方向でセクションごとに非線形に連続する楔形挿入部材を含む、積層ガラスパネル用の熱可塑性フィルム
CN108713163B (zh) 具有方向性的漫反射的透明层状元件
CN109643018A (zh) 信息显示装置
US20230288700A1 (en) Head-up display system
CN111176016B (zh) 一种背光模组和显示装置
US20210263311A1 (en) Visual Field Display Device for a Motor Vehicle
JP2020528039A (ja) 積層ガラスペインのための熱可塑性フィルム
WO2023071170A1 (zh) 抬头显示系统及其设计方法
CN211375182U (zh) 一种抬头显示设备、成像系统和车辆
CN114815263B (zh) 抬头显示系统及设计方法
CN114740627B (zh) 抬头显示系统及其设计方法
WO2020031654A1 (ja) 情報表示装置および情報表示方法
CN116137836A (zh) 具有增强的光学性能的夹层
US20170153452A1 (en) Reflecting plate for display, optical system for projecting display light and method of producing windshield
WO2023071169A1 (zh) 抬头显示系统及抬头显示系统的设计方法
CN112198661A (zh) 用于车辆抬头显示器的光学扩展器
WO2020026841A1 (ja) 情報表示装置および情報表示方法
US11866062B2 (en) Vehicle display device
WO2023103381A1 (zh) 抬头显示系统及抬头显示系统的设计方法
CN114839780B (zh) 抬头显示系统及抬头显示系统的设计方法
CN215153953U (zh) 一种应用于汽车上的单屏双距离ar-hud显示装置
CN210222362U (zh) 一种显示装置及系统
CN116413908A (zh) 显示装置、抬头显示器以及交通设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885080

Country of ref document: EP

Kind code of ref document: A1