WO2023103381A1 - 抬头显示系统及抬头显示系统的设计方法 - Google Patents

抬头显示系统及抬头显示系统的设计方法 Download PDF

Info

Publication number
WO2023103381A1
WO2023103381A1 PCT/CN2022/105863 CN2022105863W WO2023103381A1 WO 2023103381 A1 WO2023103381 A1 WO 2023103381A1 CN 2022105863 W CN2022105863 W CN 2022105863W WO 2023103381 A1 WO2023103381 A1 WO 2023103381A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual image
sub
wedge angle
display area
projection
Prior art date
Application number
PCT/CN2022/105863
Other languages
English (en)
French (fr)
Inventor
何长龙
关金亮
张灿忠
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Priority to PCT/CN2022/105863 priority Critical patent/WO2023103381A1/zh
Publication of WO2023103381A1 publication Critical patent/WO2023103381A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present application relates to the field of automobiles, in particular to a head-up display system and a design method of the head-up display system.
  • HUD head-up display
  • images such as driving information
  • the front windshield is usually laminated glass, and considering the complex operating conditions of the actual vehicle, different drivers have different sitting postures, and the observation position of the human eye is an enveloping space.
  • Laminated glass with a fixed wedge angle cannot well solve different observations.
  • the secondary image problem under the viewing angle, in general, different wedge angles can be set in different projection display areas on the laminated glass, that is, the laminated glass with variable wedge angle can be used to reduce the secondary image.
  • the virtual image plane of the traditional HUD image is designed to be vertical to the ground and face the driver.
  • Such a virtual image plane will cause the distribution of the theoretical wedge angle scatter points required to eliminate secondary images in different projection display areas of the laminated glass to be too discrete; in addition, the enhanced The reality head-up display (AR-HUD) will cover more lanes, provide richer information such as navigation warnings, and its field of view FOV will expand, such as 10° ⁇ 5°, or even 20° ⁇ 5°, so that the projection display area The area increases, which further exacerbates the distribution of theoretical wedge angle scatter points required to eliminate secondary images in the projection display area is too discrete, resulting in the fact that even if the projection display area with variable wedge angles is used, the problem of secondary images cannot be solved well, and then affect the driving experience.
  • AR-HUD The reality head-up display
  • the present application provides a head-up display system, the head-up display system comprising:
  • the laminated glass has at least one projection display area, each of the projection display areas has a wedge-shaped cross-sectional shape in which the thickness of the upper side of the laminated glass is greater than that of the lower side when the laminated glass is installed in a vehicle, and has a wedge angle from the a segment that continuously decreases from the lower side to the upper side;
  • a projection assembly includes at least one projection light source capable of projecting onto the at least one projection display area, the projection light emitted by the projection light source enters the projection display area to form a projection image, and the projection image has a virtual image surface ;as well as
  • an eye box having an eye box surface through which the projected image is observed through the projection display area
  • the eye box surface includes a plurality of sub-eye box surfaces
  • the virtual image surface includes a plurality of sub-virtual image surfaces corresponding to the plurality of sub-eye box surfaces
  • each sub-virtual image surface includes an upper virtual image surface and a lower virtual image surface
  • at least one of the The upper virtual image plane and/or the lower virtual image plane of the sub-virtual image planes are inclined towards the direction of observing the corresponding sub-virtual image planes from the sub-eye box plane, and the forward tilt angle thereof is greater than or equal to 45°.
  • the present application provides a design method of a head-up display system, the design method of the head-up display system includes:
  • the projection light emitted by the projection assembly is incident on at least one projection display area on the laminated glass;
  • the virtual image surface is designed to have a virtual image surface inclined towards the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface;
  • the eye box surface includes a plurality of sub-eye box surfaces
  • the virtual image surface includes a plurality of sub-virtual image surfaces, wherein each sub-virtual image surface corresponds to a sub-eye box surface, and each sub-virtual image surface includes an upper virtual image surface and a lower virtual image surface , the upper virtual image surface and/or the lower virtual image surface of at least one of the sub-virtual image surfaces is inclined towards the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface, and its forward inclination angle is greater than or equal to 45°;
  • the wedge angle value of the laminated glass in the corresponding projection display area is determined according to the first theoretical wedge angle fitting line.
  • FIG. 1 is a schematic structural diagram of a head-up display system provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of the optical path of the head-up display system provided in the embodiment of FIG. 1;
  • Fig. 3 is a schematic diagram of the head-up display system provided in the embodiment of Fig. 1 installed in a vehicle;
  • Fig. 4 is a schematic diagram of the front tilt of the upper virtual image plane and the lower virtual image of the head-up display system provided by the embodiment of Fig. 1;
  • Fig. 5 is a schematic diagram of the front tilt of the sub-virtual image of the head-up display system provided by the embodiment of Fig. 1;
  • FIG. 6 is a schematic diagram of the distribution of multiple theoretical wedge angle values required by the head-up display system provided in the embodiment of FIG. 1 to eliminate secondary images;
  • Fig. 7 is a simulation diagram of the relationship between the sub-virtual image front inclination angle and VID1/VID2 of the head-up display system provided by the embodiment of Fig. 1;
  • Fig. 8 is a schematic diagram of fitting lines of wedge angles in the section of the head-up display system provided by the embodiment of Fig. 1;
  • FIG. 9 is a schematic structural diagram of a head-up display system provided in another embodiment of the present application.
  • Fig. 10 is a schematic diagram of the optical path of the head-up display system provided by the embodiment of Fig. 9;
  • FIG. 11 is a schematic structural diagram of a head-up display system provided in another embodiment of the present application.
  • Fig. 12 is a schematic structural view of the laminated glass of the head-up display system provided in the embodiment of Fig. 1;
  • FIG. 13 is a flow chart of the design method of the head-up display system provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of the optical path of the design method of the head-up display system provided by the embodiment of Fig. 13;
  • Fig. 15 is a schematic diagram of the first theoretical wedge angle fitting line of the design method of the head-up display system provided by the embodiment of Fig. 13;
  • Fig. 16 is a schematic diagram of the adjustment of two adjacent first theoretical wedge angle fitting lines in the same type of projected display area in the design method of the head-up display system provided by the embodiment of Fig. 13;
  • Fig. 17 is a schematic diagram of adjusting two adjacent first theoretical wedge angle fitting lines of different types of projected display areas in the design method of the head-up display system provided by the embodiment of Fig. 13;
  • Fig. 18 is a schematic diagram after adjustment of two adjacent first theoretical wedge angle fitting lines of different types of projected display areas in the design method of the head-up display system provided by the embodiment of Fig. 17;
  • FIG. 19 is a schematic diagram of the design of the observation dot matrix and the virtual image dot matrix in the design method of the head-up display system provided by an embodiment of the present application;
  • Fig. 20 is a scatter diagram of theoretical wedge angle value distribution of the sub-virtual image surface without secondary images observed on the perpendicular line of the sub-eye box surface of the design method of the head-up display system provided by the embodiment of Fig. 19;
  • Fig. 21 is a theoretical wedge angle value distribution contour diagram of multiple sub-virtual image planes without secondary images observed from multiple sub-eye box surfaces in the first embodiment and the second embodiment in the design method of the head-up display system provided by the embodiment in Fig. 19;
  • Fig. 22 is a scatter diagram of the theoretical wedge angle value distribution of multiple sub-virtual image planes without secondary images observed from multiple sub-eye box planes in the first embodiment and the second embodiment in the design method of the head-up display system provided by the embodiment in Fig. 19 .
  • head-up display system 1 laminated glass 10; projected display area 11; upper side 111; lower side 112; section 113; projected image 114; Second projection display area 116; second projection image 1161; glass bottom edge 12; glass top edge 13; first transparent substrate 14; second transparent substrate 15; intermediate adhesive layer 16; projection assembly 20; projection light source 21; Projection light source 211; second projection light source 212; eye box EB1; eye box surface EB10; sub-eye box surface EB11; observation dot matrix EB111; virtual image surface TB10; Lattice TB111; actual wedge angle fitting line L0; first theoretical wedge angle fitting line L1; second theoretical wedge angle fitting line L2; third theoretical wedge angle fitting line L3.
  • the present application provides a head-up display system, the head-up display system comprising:
  • the laminated glass has at least one projection display area, each of the projection display areas has a wedge-shaped cross-sectional shape in which the thickness of the upper side of the laminated glass is greater than that of the lower side when the laminated glass is installed in a vehicle, and has a wedge angle from the a segment that continuously decreases from the lower side to the upper side;
  • a projection assembly includes at least one projection light source capable of projecting onto the at least one projection display area, the projection light emitted by the projection light source enters the projection display area to form a projection image, and the projection image has a virtual image surface ;
  • the eye box surface includes a plurality of sub-eye box surfaces
  • the virtual image surface includes a plurality of sub-virtual image surfaces corresponding to the plurality of sub-eye box surfaces
  • each sub-virtual image surface includes an upper virtual image surface and a lower virtual image surface
  • at least one of the The upper virtual image plane and/or the lower virtual image plane of the sub-virtual image planes are inclined towards the direction of observing the corresponding sub-virtual image planes from the sub-eye box plane, and the forward tilt angle thereof is greater than or equal to 45°.
  • the upper virtual image surface and/or the lower virtual image surface of at least one sub-virtual image surface is inclined towards the direction of viewing the corresponding sub-virtual image surface from the sub-eye box surface, and its forward tilt angle is greater than or equal to 75°.
  • At least one of the sub-virtual image planes is inclined toward the direction of observing the corresponding sub-virtual image plane from the sub-eye box plane, and its forward tilt angle is greater than or equal to 45°.
  • At least one of the sub-virtual image planes is inclined towards the direction of observing the corresponding sub-virtual image plane from the sub-eye box plane, and its forward tilt angle is greater than or equal to 75°.
  • the distance between the vertex of the sub-virtual image surface and the center point of the corresponding sub-eye box surface is VID1
  • the distance between the bottom point of the sub-virtual image surface and the center point of the corresponding sub-eye box surface is VID2 , VID1>VID2.
  • both the actual wedge angle fitting line and the first theoretical wedge angle fitting line conform to polynomial functions.
  • the maximum rate of change ROC of the continuously monotonically decreasing wedge angle in the section ROC ⁇ 0.3mrad/100mm; or, ROC ⁇ 0.2mrad/100mm; or, ROC ⁇ 0.1mrad/100mm; or, ROC ⁇ 0.05mrad /100mm.
  • the included angle between two adjacent sub-virtual image planes among the plurality of sub-virtual image planes is less than or equal to 15°.
  • the ratio of the length of the section to the length of the projection display area is not less than 70%.
  • the at least one projection display area includes:
  • At least one first projection display area the projection light source is incident on the first projection display area to form a first projection image, and the virtual image distance of the first projection image is 7 meters to 100 meters;
  • the projection light source is incident on the second projection display area to form a second projection image, and the virtual image distance of the second projection image is 1 meter to 6 meters.
  • the at least one projection light source includes at least one first projection light source and at least one second projection light source, the first projection light source is incident on the first projection display area, and the second projection light source is incident on the first projection display area. Two projection display areas.
  • the laminated glass includes:
  • the intermediate adhesive layer is arranged between the first transparent substrate and the second transparent substrate, and is used to bond the first transparent substrate and the second transparent substrate;
  • At least one of the first transparent substrate, the second transparent substrate and the intermediate bonding layer has a wedge angle in the projection display area.
  • the wedge angles of the first transparent substrate and the second transparent substrate in the projection display area are both 0, and the intermediate adhesive layer has a wedge angle in the projection display area, which is equal to the projection angle of the projection display area. Displays the wedge angle of the area.
  • the first transparent substrate and/or the second transparent substrate has a wedge angle in the projection display area
  • the intermediate adhesive layer has a wedge angle in the projection display area
  • the first transparent substrate And/or the sum of the wedge angle of the second transparent substrate in the projection display area and the wedge angle of the intermediate adhesive layer in the projection display area is equal to the wedge angle of the projection display area.
  • the present application provides a design method of a head-up display system, the design method of the head-up display system includes:
  • the projection light emitted by the projection assembly is incident on at least one projection display area on the laminated glass;
  • the virtual image surface is designed to have a virtual image surface inclined towards the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface;
  • the eye box surface includes a plurality of sub-eye box surfaces
  • the virtual image surface includes a plurality of sub-virtual image surfaces, wherein each sub-virtual image surface corresponds to a sub-eye box surface, and each sub-virtual image surface includes an upper virtual image surface and a lower virtual image surface
  • the upper virtual image surface and/or the lower virtual image surface of at least one of the sub-virtual image surfaces is inclined towards the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface, and its forward tilt angle is greater than or equal to 45°;
  • the "designing a virtual image surface inclined toward the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface according to the projection image observed by the observer in the vehicle through each projection display area" includes:
  • At least one of the sub-virtual image surfaces is designed to face the direction in which the corresponding sub-virtual image surface is observed from the sub-eye box surface, and its forward tilt angle is greater than or equal to 45°.
  • the "designing a virtual image surface inclined toward the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface according to the projection image observed by the observer in the vehicle through each projection display area" includes:
  • the distance between the vertex of the sub-virtual image surface and the center point of the corresponding sub-eye box surface is VID1
  • the distance between the bottom point of the sub-virtual image surface and the center point of the corresponding sub-eye box surface is VID2 .
  • said "designing a virtual image surface inclined towards the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface according to the projected image observed by the observer in the vehicle through each projection display area” includes:
  • the included angle between two adjacent sub-virtual image surfaces among the plurality of sub-virtual image surfaces is designed to be less than or equal to 15°.
  • the ratio of the maximum local extreme difference ⁇ W of the plurality of theoretical wedge angle values to the overall extreme difference ⁇ C of the plurality of theoretical wedge angle values is: ⁇ W/ ⁇ C ⁇ 0.9.
  • the at least one projection display area includes at least two first projection display areas, or at least two second projection display areas, and at least two results of the wedge angle with the distance from the incident point to the bottom edge of the glass are obtained by fitting.
  • the first theoretical wedge angle fitting line when the maximum deviation of two adjacent first theoretical wedge angle fitting lines is greater than 0.15mrad, in the "determined according to the first theoretical wedge angle fitting line"
  • the design method of the head-up display system further includes:
  • the at least one projected display area includes at least one first projected display area and at least one second projected display area, and at least two of the first two lines of the wedge angle with the distance from the incident point to the bottom edge of the glass are obtained by fitting.
  • a theoretical wedge angle fitting line when the maximum deviation of two adjacent first theoretical wedge angle fitting lines is greater than 0.2mrad, in the "according to the first theoretical wedge angle fitting line to determine the After the laminated glass corresponds to the "wedge angle value" of the projection display area, the design method of the head-up display system also includes:
  • the adjusted set of the multiple theoretical wedge angle values has the largest local range value ⁇ WU
  • the adjusted set of the multiple theoretical wedge angle values has the overall range value ⁇ CU, ⁇ WU and ⁇ CU
  • the ratio is: ⁇ WU/ ⁇ CU ⁇ 0.9.
  • the laminated glass is a transparent medium
  • the light emitted by the projection light source enters the eye box surface after being reflected by the inner surface of the laminated glass, and forms an image in front of the glass, forming the first
  • the virtual image called the main image
  • the virtual image will be reflected again on the outer surface of the laminated glass into the eye box surface, and imaged in front of the laminated glass to form a second virtual image.
  • a highly reflective medium layer in the laminated glass such as a metal coating layer containing Ag, a modified PET with high reflectivity, etc.
  • reflection will also occur and a third or even more virtual images will be generated; the second virtual image,
  • the third virtual image and even more virtual images are collectively referred to as secondary images.
  • the laminated glass 10 In order to eliminate the secondary image, the laminated glass 10 needs to be provided with a corresponding wedge angle in the projection display area 11, which can make the secondary image coincide with the main image, so that the observer can see the image without secondary image through the projection display area 11.
  • the light reflected into the eye box EB1 by the different areas of the HUD image on the projection display area 11 has different angles, and the different sitting postures of the observer in the cab will also cause the HUD image to enter the eyes.
  • Box EB1 has a different angle. Therefore, different wedge angles need to be set in different areas of the laminated glass 10 on the projection display area 11 .
  • the embodiment of the present application provides a head-up display system 1 .
  • the head-up display system 1 includes a laminated glass 10 , a projection assembly 20 and an eye box EB1 .
  • the laminated glass 10 has at least one projection display area 11, and each projection display area 11 has a wedge-shaped cross-sectional shape in which the thickness of the upper side 111 of the laminated glass 10 is greater than that of the lower side 112 when the laminated glass 10 is installed in a vehicle, and has a wedge From the lower side 112 to the upper side 111 , a section 113 in which the angle decreases continuously.
  • the projection assembly 20 includes at least one projection light source 21 capable of projecting onto the at least one projection display area 11, and the projection light emitted by the projection light source 21 enters the projection display area 11 to form a projection image 114, and the projection image 114 has a virtual image plane TB10.
  • the eye box EB1 has an eye box surface EB10 through which the projection image 114 is observed through the projection display area 11 .
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 from low to high
  • the virtual image surface TB10 includes a plurality of sub-virtual image surfaces TB11 from high to low corresponding to the multiple sub-eye box surfaces EB11, each sub-virtual image
  • the surface TB11 includes an upper virtual image surface TB112 and a lower virtual image surface TB113, and the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of at least one sub-virtual image surface TB11 are directed towards the corresponding sub-virtual image surface observed from the sub-eye box surface EB11
  • the direction of TB11 is inclined and the forward inclination angle with the vertical plane is greater than or equal to 45°.
  • FIG. 3 illustrates that one of the sub-virtual image planes TB11 is tilted toward the direction in which the corresponding sub-virtual image plane TB11 is viewed from the sub-eye box surface EB11 .
  • the vertical plane is a plane perpendicular to the ground and perpendicular to the direction in which the corresponding sub-virtual image plane TB11 is observed from the sub-eye box plane EB11 .
  • each projection display area 11 has a section 113 in which the wedge angle continuously decreases from the lower side 112 to the upper side 111 .
  • the wedge angle of the section 113 may decrease linearly/non-linearly.
  • the wedge angles of other sections in the projection display area 11 can be equal to 0, can be a constant wedge angle, can also increase linearly/nonlinearly, or decrease linearly/nonlinearly, and can also be the same as The wedge angles of the segments 113 together decrease continuously.
  • the head-up display system 1 is applied to a vehicle and realizes information display in front of the front windshield.
  • the head-up display system 1 includes a projection assembly 20, and the images projected by the projection assembly 20 to the at least one projection display area 11 include one or more types of HUD images, one or more angle HUD images and one or more At least one of the HUD images displayed in various distances enables the head-up display system 1 to display multi-information, increasing the richness of image display in the head-up display system 1 .
  • the at least one projection display area 11 is used to display HUD images, specifically, the at least one projection display area 11 can be used to set an augmented reality head up display (Augmented Reality Head Up Display, AR-HUD) or a windshield head up display ( Windshield Head Up Display, W-HUD), etc.
  • augmented reality head up display Augmented Reality Head Up Display, AR-HUD
  • windshield head up display Windshield Head Up Display, W-HUD
  • the projection assembly 20 includes at least one projection light source 21 projecting onto the at least one projection display area 11 .
  • One projection light source 21 is set corresponding to one projection display area 11 , or one projection light source 21 is set corresponding to multiple projection display areas 11 .
  • the projection light emitted by the projection light source 21 directly enters the projection display area 11 .
  • the projection light emitted by the projection light source 21 enters the projection display area 11 through a reflection device.
  • the projection light emitted by the projection light source 21 enters the projection display area 11 to form a projection image 114, and the projection image 114 is displayed in front of the laminated glass 10, and the projection image 114 has the laminated glass 10 is a virtual image surface TB10 located outside the vehicle when it is installed in the vehicle.
  • the eye box EB1 simulates the driver's eyes for viewing the projected image 114 in the vehicle cab.
  • the eye box EB1 has an eye box surface EB10 through which the projection image 114 is observed through the projection display area 11 .
  • the eye box surface EB10 is a central cross-section of the eye box EB1 perpendicular to the ground and perpendicular to the direction in which the corresponding sub-virtual image plane TB11 is observed from the sub-eye box surface EB11 .
  • the head-up display system 1 applied to a front windshield of a vehicle.
  • the projection light emitted by the projection light source 21 in the projection assembly 20 is incident on the projection display area 11 .
  • the projection display area 11 reflects at least part of the projection light into the eye box surface EB10 , forming a projection image 114 in front of the laminated glass 10 of the vehicle, and the projection image 114 has the virtual image surface TB10 .
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 from low to high.
  • the sub-eye box surface EB11 where the projected light rays forming the projected image 114 enter different positions has sub-virtual image planes TB11 at different positions.
  • the sub-virtual image plane TB11 includes a plurality of sub-virtual image planes TB11 from high to low corresponding to the multiple sub-eye box surfaces EB11 from low to high.
  • the projection display area 11 needs to set a wedge angle to eliminate the secondary image, that is, the secondary image coincides with the main image.
  • the theoretical wedge angle values required to eliminate secondary images are different when observing the same point of the projection display area 11 from different points of the eye box surface EB10 .
  • each point of the projection display area 11 has a plurality of theoretical wedge angle values for eliminating secondary images.
  • the theoretical wedge angle value is fitted to calculate the optimal wedge angle value.
  • the virtual image plane of the traditional head-up display system is approximately perpendicular to the ground, so that the discrete distribution of multiple theoretical wedge angle values of each point of the projection display area 11 to eliminate secondary images is relatively large, so that the projection The difference between the selected wedge angle value of each point in the display area 11 and the theoretical wedge angle value required to eliminate the secondary image is relatively large, which makes it difficult and ineffective for the head-up display system 1 to eliminate secondary images.
  • each sub-virtual image plane TB11 includes an upper virtual image plane TB112 and a lower virtual image plane TB113 .
  • For each sub-virtual image surface TB11 connect the center point of the sub-virtual image surface TB11 with the center point of the corresponding sub-eye box surface EB11, and pass through the center point of the sub-virtual image surface TB11 A straight line parallel to the ground and perpendicular to the direction of observing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11, with the plane formed by the connecting line and the straight line as the reference plane, the sub-virtual image surface TB11 is located at the The part above the reference plane is the upper virtual image plane TB112 , and the part of the sub-virtual image plane TB11 below the reference plane is the lower virtual image plane TB113 .
  • the upper virtual image surface TB112 in the sub-virtual image surface TB11 is tilted towards the direction in which the corresponding sub-virtual image surface TB11 is observed from the sub-eye box surface EB11, that is, the projected image 114 is locally tilted forward, and the upper virtual image surface TB112 is increased.
  • the distance between the sub-eye box surfaces EB11 corresponding to the sub-virtual image surface TB11 reduces the theoretical wedge angle value required to eliminate the secondary image corresponding to the upper virtual image surface TB112, thereby reducing the
  • the local discrete distribution of multiple theoretical wedge angle values in the projection display area 11 makes the distribution of the multiple theoretical wedge angle values converge to the actual wedge angle fitting line, that is, reduces the number of the multiple theoretical wedge angle values. local extremes.
  • the lower virtual image surface TB113 in the sub-virtual image surface TB11 is tilted towards the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface, that is, the projected image 114 is partially tilted forward, and the relationship between the lower virtual image surface TB113 and the lower virtual image surface TB113 is reduced.
  • the distance between the sub-eye box surfaces EB11 corresponding to the sub-virtual image surface TB11 increases the theoretical wedge angle value required to eliminate the secondary image corresponding to the upper virtual image surface TB112, thereby reducing the projection display
  • the local discrete distribution of multiple theoretical wedge angle values in zone 11 makes the distribution of the multiple theoretical wedge angle values converge to the actual wedge angle fitting line, that is, the local extremes of the multiple theoretical wedge angle values are reduced. difference.
  • the upper virtual image surface TB112 and the lower virtual image surface TB113 in the sub-virtual image surface TB11 are all tilted towards the direction in which the corresponding sub-virtual image surface is observed from the sub-eye box surface, that is, the projected image 114 is tilted forward as a whole, thereby reducing the
  • the overall discrete distribution of the multiple theoretical wedge angle values in the projection display area 11 makes the distribution of the multiple theoretical wedge angle values converge toward the actual wedge angle fitting line L0, that is, the multiple theoretical wedge angle values are reduced The local extreme value of .
  • the above-mentioned Head-up display system 1 eliminates the effect of secondary images.
  • the forward tilt angle can be adjusted through the projection assembly 20, for example, adjusting the tilt angle of the curved mirror and the PGU surface in the projection assembly 20 to set the forward tilt angles of the upper virtual image plane TB112 and the lower virtual image plane TB113.
  • the upper virtual image plane TB112 and/or the lower virtual image plane TB113 are inclined towards the direction of observing the corresponding sub-virtual image plane TB11 from the sub-eye box surface EB11 and the forward tilt angle is relatively large, the upper virtual image plane TB112 and/or Or the lower virtual image surface TB113 is approximately flat on the ground, so that the driver feels a better feeling of sticking to the ground and reality augmentation when viewing the projected image 114 , thereby improving the driving experience.
  • the forward tilt angle of the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of at least one sub-virtual image surface TB11 is greater than or equal to 45°, or greater than or equal to 60°, or greater than or equal to 75° °, or equal to 90° (to achieve bonding with the ground), which can significantly improve the secondary image phenomenon in the projection display area 11 .
  • the forward tilt angle of the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of at least one sub-virtual image surface TB11 is greater than 90° and less than or equal to 95°.
  • each sub-virtual image surface TB11 may be a plane (please refer to (a) in FIG. 4 ) or a curved surface (please refer to (b) and (c) in FIG. 4 ).
  • a line is connected between the center point of each sub-eye box surface EB11 and the center point of the corresponding sub-virtual image surface TB11, and the plane passing through the line and perpendicular to the ground is taken as the main optical axis plane.
  • the intersection line of the main optical axis plane and the corresponding sub-virtual image surface TB11 has a vertex and a bottom point, and the forward tilt angle ⁇ U of the upper virtual image surface TB112 is the difference between the apex and the center point of the corresponding sub-virtual image surface TB11.
  • the connection line is inclined toward the direction of observing the corresponding sub-virtual image plane TB11 from the sub-eye box surface EB11 and the angle between the vertical plane and the forward tilt angle of the lower virtual image plane TB113 is ⁇ L , which is the bottom point and the corresponding sub-virtual image plane TB11.
  • the line connecting the central points of the sub-virtual image surface TB11 is inclined towards the direction of observing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11 and is at an angle with the vertical plane.
  • the forward tilt angle ⁇ 0 of the sub-virtual image surface TB11 is given by The line connecting the apex and the bottom point is inclined toward the direction in which the corresponding sub-virtual image surface TB11 is observed from the sub-eye box surface EB11 and is at an included angle with the vertical plane.
  • the present application provides a head-up display system 1, which includes a laminated glass 10, a projection assembly 20, and an eye box EB1.
  • the projection image 114 formed by the projection light source 21 in the projection assembly 20 onto at least one projection display area 11 on the laminated glass 10 has a virtual image plane TB10, and the eye box EB1 has a
  • the eye box surface EB10 of the projected image 114, the virtual image surface TB10 has a plurality of sub-virtual image surfaces TB11 corresponding to a plurality of sub-eye box surfaces EB11 in different positions in the eye box surface EB10, each sub-virtual image surface TB11 includes an upper virtual image surface TB112 and the lower virtual image surface TB113, the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of at least one said sub-virtual image surface TB11 is inclined towards the direction of observing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11 and its The forward tilt
  • the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of the at least one sub-virtual image surface TB11 are approximately flat on the ground, so that the driver feels better when observing the projected image 114.
  • the feeling of sticking to the ground and the sense of reality augmentation further enhance the driving experience. Therefore, the head-up display system 1 provided in the present application can reduce or even eliminate the problem of projected secondary images and improve the driving experience.
  • At least one sub-virtual image surface TB11 is inclined toward the direction of viewing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11, and its forward tilt angle is greater than or equal to 45°.
  • FIG. 5 illustrates that the sub-virtual image surface TB11 is concave toward the ground. Understandably, FIG. 5 does not limit the shape of the sub-virtual image surface TB11 .
  • the forward tilt angle ⁇ 0 of at least one of the sub-virtual image planes TB11 among the plurality of sub-virtual image planes TB11 is greater than or equal to 45°, or greater than or equal to 60°, Or, it is greater than or equal to 75°, or equal to 90° (to achieve bonding with the ground), so as to realize the overall forward tilt of the projected image 114 , which can significantly improve the secondary image phenomenon in the projection display area 11 .
  • the forward tilt angle ⁇ 0 of at least one sub-virtual image plane is greater than 90° and less than or equal to 95°.
  • Fig. 6 among the plurality of sub-eye box surfaces EB11, the two sub-eye box surfaces EB11 located at the highest and the lowest and the corresponding two sub-virtual image surfaces TB11 are schematically illustrated, and the dotted line box in Fig. 6 indicates When the two sub-virtual image surfaces TB11 are not tilted forward, there are no multiple theoretical wedges of projection secondary images when observing the corresponding two sub-virtual image surfaces TB11 from the highest and lowest two sub-eye box surfaces EB11
  • the scatter point distribution outline of angle value, solid line box represents in Fig.
  • the corresponding two sub-virtual image planes TB11 are the scatter distribution profiles of multiple theoretical wedge angle values without projection secondary images.
  • the dotted line segment inside the dotted line box represents the connection line of multiple theoretical wedge angle values when observing the center point of the sub-virtual image surface TB11 from the mid-perpendicular line of the sub-eyebox surface EB11 without projected secondary images.
  • ⁇ W represents the maximum value of the local extreme difference value, wherein the local extreme difference value is the difference between the maximum value and the minimum value among multiple theoretical wedge angle values at a certain position with a distance X from the glass bottom edge 12 .
  • ⁇ W before represents the maximum value among the local range values of multiple theoretical wedge angle values when the two sub-virtual image surfaces TB11 are not tilted forward
  • ⁇ W after represents that the forward tilt angles of the two sub-virtual image surfaces TB11 are greater than or equal to 45°
  • the maximum value among the local range values of multiple theoretical wedge angle values It can be seen from Fig. 6 that the forward tilt angles of the two sub-virtual image planes TB11 are greater than or equal to 45°.
  • the maximum local extreme difference value of multiple theoretical wedge angle values for eliminating projection secondary images is reduced by ⁇ W1+ ⁇ W2, and the distribution of multiple theoretical wedge angle values for eliminating the projection secondary image converges to the dashed line segment within the dashed line frame, thereby improving the improvement effect of the projection secondary image.
  • the intersecting line of the principal optical axis plane and the corresponding sub-virtual image surface TB11 has a vertex and a bottom point, and the apex of the sub-virtual image surface TB11 and the corresponding sub-eye box surface EB11
  • the distance between the center points of the sub-virtual image surface TB11 is VID1
  • the distance between the bottom point of the sub-virtual image surface TB11 and the center point of the corresponding sub-eye box surface EB11 is VID2
  • VID1>VID2 when the sub-virtual image surface TB11 faces from the sub-eye box surface
  • the sub-virtual image surface TB11 is inclined toward the direction of viewing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11 , and VID1/VID2 ⁇ 1.5.
  • the included angle between the center point of the sub-eye box surface EB11 and the center point of the corresponding sub-virtual image surface TB11 and the ground is the downward angle of view LDA, when the central point of the sub-virtual image surface TB11 is below the central point of the sub-eye box surface EB11, the lower viewing angle LDA is a negative value, otherwise it is a positive value.
  • connection line between the center point of the sub-eye box surface EB11 and the apex of the corresponding sub-virtual image surface TB11, and the connection between the center point of the sub-eye box surface EB11 and the bottom point of the corresponding sub-virtual image surface TB11 The angle between the lines is the vertical field of view VFOV.
  • the relationship between VID1/VID2 and the forward tilt angle of the sub-virtual image plane TB11 is calculated by simulation.
  • the abscissa represents the forward tilt angle of the sub-virtual image surface TB11
  • the ordinate represents VID1/VID2
  • each line represents a situation in which one of the lower viewing angles LDA corresponds to one of the vertical field of view VFOV. It can be seen from the simulation results that when the vertical field of view VFOV is larger, the ratio of VID1 to VID2 is larger, thereby eliminating the scatter distribution of multiple theoretical wedge angle values of the projected secondary image. more obvious.
  • the forward tilt angle corresponding to the sub-virtual image surface TB11 is greater than or equal to 75°, the improvement effect of the corresponding secondary image is more obvious, and at the same time, it can bring a better sense of sticking to the ground and reality augmentation .
  • any point in the section 113 has a plurality of theoretical wedge angle values for measuring the wedge angle and eliminating secondary images, and the points at each point in the section 113 are The measured wedge angle is fitted to obtain the actual wedge angle fitting line L0, and a plurality of theoretical wedge angle values at various points in the section 113 are fitted to obtain the first theoretical wedge angle fitting line L1, and the actual wedge angle fitting line L1 is obtained.
  • the maximum deviation between the wedge angle fitting line L0 and the first theoretical wedge angle fitting line L1 is less than or equal to 0.07 mrad.
  • the first theoretical wedge angle fitting line L1 is when the eye box surface EB10 passes through the range of the segment 113 in the projection display area 11 and observes the projected image 114 without a secondary image. Lines obtained by fitting multiple theoretical wedge angle values.
  • the maximum deviation value ⁇ max between the actual wedge angle fitting line L0 and the first theoretical wedge angle fitting line L1 is less than or equal to 0.07mrad, so that the wedge angle of each point on the actual wedge angle fitting line L0
  • the deviation between the value and the theoretical wedge angle value required to eliminate secondary images is small, so that the wedge angle of the projection display area 11 can improve the projection secondary image problem of the projected image 114 observed from the eye box surface EB10.
  • both the actual wedge angle fitting line L0 and the first theoretical wedge angle fitting line L1 conform to polynomial functions.
  • the actual wedge angle fitting line L0 and the first theoretical wedge angle fitting line L1 can be a straight line, a curve, or a combination of a straight line and a curve, etc., as long as the actual wedge angle fitting line L0 and the first theoretical wedge angle fitting line L1 It is sufficient that the first theoretical wedge angle fitting line L1 conforms to the polynomial function.
  • the fitting curve of the actual wedge angle is smooth everywhere, so as to prevent the sudden change of the value of the local wedge angle from aggravating the secondary image problem.
  • the maximum rate of change ROC of the continuously monotonically decreasing wedge angle in the section 113 ROC ⁇ 0.3mrad/100mm; or, ROC ⁇ 0.2mrad/100mm; or, ROC ⁇ 0.1mrad/100mm; or, ROC ⁇ 0.05mrad/100mm.
  • L0 in FIG. 8 is a change line of the wedge angle of the segment 113 in each projection display area 11 with the distance from the glass bottom 12 of the laminated glass 10 .
  • K1 is the tangent of L0 at a certain point, and the slope of the tangent represents the absolute value of the rate of change at which the wedge angle becomes smaller at this point. If the maximum rate of change of the wedge angle in the section 113 is too high, the production difficulty and production cost of the laminated glass 10 will be increased, which is not conducive to the production efficiency of the laminated glass 10, thus affecting the production efficiency of the laminated glass 10 .
  • the maximum rate of change of the wedge angle in the section 113 is too large, which may easily lead to sudden changes in the local wedge angle and aggravate the secondary image problem. Therefore, the maximum rate of change of the wedge angle in the section 113 should not be too large.
  • the maximum rate of change ROC at which the inner wedge angle of the section 113 continuously decreases monotonically and non-linearly from the lower side 112 to the upper side 111 ROC ⁇ 0.3mrad/100mm.
  • the maximum rate of change ROC at which the inner wedge angle of the section 113 continuously decreases monotonically and non-linearly from the lower side 112 to the upper side 111 is: ROC ⁇ 0.2mrad/100mm.
  • the maximum rate of change ROC at which the inner wedge angle of the section 113 continuously decreases monotonically and non-linearly from the lower side 112 to the upper side 111 is: ROC ⁇ 0.1 mrad/100mm. More preferably, the maximum rate of change ROC at which the inner wedge angle of the section 113 continuously decreases monotonously and non-linearly from the lower side 112 to the upper side 111 is: ROC ⁇ 0.05 mrad/100mm.
  • the included angle between two adjacent sub-virtual image surfaces TB11 among the plurality of sub-virtual image surfaces TB11 is less than or equal to 15°.
  • the included angle between two adjacent sub-virtual image surfaces TB11 among the plurality of sub-virtual image surfaces TB11 is less than or equal to 15°, preferably less than or equal to 10°, more preferably less than equal to 5°, more preferably less than or equal to 2°. Because, among the plurality of sub-virtual image surfaces TB11, the sub-virtual image surface TB11 in the middle of the plurality of sub-virtual image surfaces TB11 is the interface. From the interface upwards, the plurality of sub-virtual image planes TB11 correspond to the local discrete distribution of multiple theoretical wedge angle values required to eliminate the projection secondary image in the projection display area 11 is getting larger and larger.
  • the plurality of sub-virtual image planes TB11 corresponding to the local discrete distribution of the plurality of theoretical wedge angle values required to eliminate the projection secondary image in the projection display area 11 are also getting larger and larger. Therefore, from the interface upward, the forward tilt angle of the sub-virtual image surface TB11 gradually increases, and from the interface downward, the forward tilt angle of the sub-virtual image surface TB11 gradually increases, so that the plurality of sub-virtual image surfaces TB11
  • the local discrete distribution of multiple theoretical wedge angle values required to eliminate projection secondary images in the projection display area 11 is smaller, so that the distribution of the multiple theoretical wedge angle values converges toward the actual wedge angle fitting line L0 , that is, the local extreme difference values of the plurality of theoretical wedge angle values are smaller, which can better improve the projection secondary image problem of observing the projection image 114 on the plurality of sub-eye box surfaces EB11 .
  • the included angle between two adjacent sub-virtual image planes TB11 among the plurality of sub-virtual image planes TB11 is less than or It is equal to 15°, preferably less than or equal to 10°, more preferably less than or equal to 5°, more preferably less than or equal to 2°, so as to improve the driving experience.
  • the included angle between two adjacent sub-virtual image surfaces TB11 refers to, on the main optical axis plane, the angle between one of the two adjacent sub-virtual image surfaces TB11.
  • the ratio of the length of the section 113 to the length of the projection display area 11 Not less than 70%.
  • the ratio of the length d1 of the section 113 to the length d2 of the projection display area 11 is not less than 70 %, preferably, the ratio of the length of the section 113 to the length of the projection display area 11 is not lower than 75%, or not lower than 80%, or not lower than 85%, or not lower than 90%, Or not less than 95%, or equal to 100%.
  • the length is measured in a direction from the lower side 112 to the upper side 111 .
  • the at least one projection display area 11 includes at least one first projection display area 115 and at least one second projection display area 116 .
  • the projection light source 21 is incident on the first projection display area 115 to form a first projection image 1151 , and the virtual image distance of the first projection image 1151 is 7 meters to 100 meters.
  • the projection light source 21 is incident on the second projection display area 116 to form a second projection image 1161 , and the virtual image distance of the second projection image 1161 is 1 meter to 6 meters.
  • the first projection display area 115 is used for long-distance projection display, specifically, the first projection display area 115 is used for fusion of display information and real scenes, and for projection display of objects in the real world
  • the corresponding complex graphics realize the interaction between road conditions-vehicle-driver.
  • the second projection display area 116 is used for short-distance projection display. Specifically, the second projection display area 116 is used for short-distance display of vehicle operating parameter information, which can reduce the need to look down at the instrument panel or related information, and is convenient for the driver. Switch between near and far eyes, reduce the need to look down at the dashboard, maximize the driver's attention while driving, and improve driving safety.
  • the at least one projection light source 21 includes at least one first projection light source 211 and at least one second projection light source 212.
  • the first projection light source 211 is incident on the first projection display area 115
  • the second projection light source 212 is incident to the second projection display area 116 .
  • the first projection light source 211 is used to project to the first projection display area 115 for long-distance projection display, specifically, the first projection display area 115 is used to fuse display information with the real scene , which is used to project and display complex graphics corresponding to objects in the real world, and realize the interaction between road conditions-vehicles-drivers.
  • the second projection light source 212 is used to project onto the second projection display area 116 for short-distance projection display. Specifically, the second projection display area 116 is used for short-distance display of vehicle operating parameter information, which can reduce looking down.
  • both the first projection light source 211 and the second projection light source 212 are disposed close to the bottom edge of the glass 12 .
  • the first projection light source 211 is arranged close to the glass top edge 13, so that the projection light of the first projection light source 211 incident on the first projection display area 115 can maintain an optimal incidence. horn.
  • the first projection light source 211 is installed on the inner surface of the roof of the vehicle.
  • the second projection light source 212 is disposed close to the glass bottom edge 12 , so that the projection light from the second projection light source 212 incident on the second projection display area 116 can maintain an optimal incident angle.
  • the second projection light source 212 is installed inside the dashboard of the vehicle. It should be noted that, in FIG. 11 , both the first projection light source 211 and the second projection light source 212 are set close to the glass bottom edge 12 for illustration. Understandably, FIG. 11 does not limit the first projection light source 211 It is set with the position of the second projection light source 212 .
  • the laminated glass 10 includes a first transparent substrate 14 , a second transparent substrate 15 and an intermediate adhesive layer 16 .
  • the intermediate bonding layer 16 is disposed between the first transparent substrate 14 and the second transparent substrate 15 for bonding the first transparent substrate 14 and the second transparent substrate 15 .
  • At least one of the first transparent substrate 14 , the second transparent substrate 15 and the intermediate adhesive layer 16 has a wedge angle in the projection display area 11 .
  • the wedge angle in the projection display area 11 can only be provided by the intermediate adhesive layer 16, that is, the first transparent substrate 14 and the second transparent substrate 15 in the projection display area
  • the wedge angles of 11 are all 0, and the intermediate bonding layer 16 has a wedge angle in the projection display area 11 that is equal to the wedge angle of the projection display area 11 .
  • the wedge angle in the projection display area 11 can be provided by the first transparent substrate 14 and/or the second transparent substrate 15 and the intermediate adhesive layer 16, that is, the first transparent substrate 14 and the /or the second transparent substrate 15 has a wedge angle in the projection display area 11, the intermediate adhesive layer 16 has a wedge angle in the projection display area 11, and the first transparent substrate 14 and/or the The sum of the wedge angle of the second transparent substrate 15 in the projection display area 11 and the wedge angle of the intermediate adhesive layer 16 in the projection display area 11 is equal to the wedge angle of the projection display area 11 .
  • the wedge angle of the first transparent substrate 14 and/or the second transparent substrate 15 is selected as a constant wedge angle.
  • the embodiment of the present application also provides a design method of the head-up display system 1 .
  • the design method of the head-up display system 1 includes providing a projection assembly 20 and a laminated glass 10, and the projection light emitted by the projection assembly 20 is incident on the At least one projection display area 11 on the laminated glass 10 .
  • the virtual image surface TB10 is designed to have a virtual image plane TB10 inclined toward the direction of observing the corresponding sub-virtual image plane TB11 from the sub-eye box surface EB11 .
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 from low to high
  • the virtual image surface TB10 includes a plurality of sub-virtual image surfaces TB11 from high to low, wherein each sub-virtual image surface TB11 corresponds to a sub-virtual image surface TB11.
  • each sub-virtual image surface TB11 includes an upper virtual image surface TB112 and a lower virtual image surface TB113, and the described upper virtual image surface TB112 and/or the lower virtual image surface TB113 of at least one of the sub-virtual image surfaces TB11 are directed from the sub-eye box
  • the viewing direction of the corresponding sub-virtual image plane TB11 from the plane EB11 is inclined, and its forward tilt angle is greater than or equal to 45°.
  • the multiple theoretical wedge angle values and the distance from the incident point corresponding to each theoretical wedge angle value to the glass bottom edge 12 of the laminated glass 10 fit to obtain the wedge angle along with the distance from the incident point to the glass bottom edge 12
  • the first theoretical wedge angle fitting line L1 The first theoretical wedge angle fitting line L1.
  • the laminated glass 10 is used for the front windshield of the vehicle, and is applied to the head-up display system 1 of the vehicle.
  • the design method of the laminated glass 10 includes S10, S20, S30, S40, S50, S60 and S70. S10 , S20 , S30 , S40 , S50 , S60 and S70 will be described in detail below.
  • the eye box surface EB10 includes a plurality of sub-eye box surfaces EB11 in order from low to high
  • the virtual image plane TB10 includes a plurality of sub-virtual image surfaces TB11 in order from high to low.
  • each sub-virtual image surface TB11 corresponds to a sub-eye box surface EB11.
  • the eye box surface EB10 is used to simulate the plane where the eyes of the observer sit in the cab of the vehicle.
  • the multiple sub-eye box surfaces EB11 are used to simulate the eyes of the observer at different heights, that is, the multiple sub-eye box surfaces EB11 are used to simulate different viewing angles of the observer.
  • the projection display area 11 reflects at least part of the projection light into the eye box surface EB10 , forming a projection image 114 in front of the laminated glass 10 of the vehicle, and the projection image 114 has the virtual image surface TB10 .
  • the sub-eye box surface EB11 where the projected light rays forming the projected image 114 enter different positions has sub-virtual image planes TB11 at different positions.
  • each sub-virtual image surface TB11 comprises an upper virtual image surface TB112 and a lower virtual image surface TB113, for each of the sub-virtual image surfaces TB11, the center point of the sub-virtual image surface TB11 is connected to the center of the corresponding sub-eye box surface EB11 points, and pass through the central point of the sub-virtual image surface TB11 to make a straight line parallel to the ground and perpendicular to the direction of observing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11.
  • the plane formed by the straight line is the reference plane
  • the part of the sub-virtual image surface TB11 above the reference plane is the upper virtual image surface TB112
  • the part of the sub-virtual image surface TB11 below the reference plane is the The lower virtual image plane TB113.
  • the upper virtual image surface TB112 in the sub-virtual image surface TB11 is tilted towards the direction in which the corresponding sub-virtual image surface TB11 is observed from the sub-eye box surface EB11, that is, the projected image 114 is locally tilted forward, and the upper virtual image surface TB112 is increased.
  • the distance between the sub-eye box surfaces EB11 corresponding to the sub-virtual image surface TB11 reduces the theoretical wedge angle value required to eliminate the secondary image corresponding to the upper virtual image surface TB112, thereby reducing the
  • the local discrete distribution of multiple theoretical wedge angle values in the projection display area 11 makes the distribution of the multiple theoretical wedge angle values converge to the first theoretical wedge angle fitting line L1, that is, the number of theoretical wedge angle values is reduced.
  • the local range value of the corner value is provided.
  • the lower virtual image surface TB113 in the sub-virtual image surface TB11 is tilted towards the direction of observing the corresponding sub-virtual image surface from the sub-eye box surface, that is, the projected image 114 is partially tilted forward, and the relationship between the lower virtual image surface TB113 and the lower virtual image surface TB113 is reduced.
  • the distance between the sub-eye box surfaces EB11 corresponding to the sub-virtual image surface TB11 increases the theoretical wedge angle value required to eliminate the secondary image corresponding to the upper virtual image surface TB112, thereby reducing the projection display
  • the local discrete distribution of multiple theoretical wedge angle values in zone 11 makes the distribution of the multiple theoretical wedge angle values converge to the first theoretical wedge angle fitting line L1, that is, reduces the multiple theoretical wedge angle values The local extreme value of .
  • the upper virtual image surface TB112 and the lower virtual image surface TB113 in the sub-virtual image surface TB11 are all tilted towards the direction in which the corresponding sub-virtual image surface is observed from the sub-eye box surface, that is, the projected image 114 is tilted forward as a whole, thereby reducing the
  • the overall discrete distribution of the multiple theoretical wedge angle values in the projection display area 11 makes the distribution of the multiple theoretical wedge angle values converge toward the first theoretical wedge angle fitting line L1, that is, the number of theoretical wedge angle values is reduced.
  • the local range value of the corner value is provided.
  • the above-mentioned Head-up display system 1 eliminates the effect of secondary images.
  • the forward tilt angle can be adjusted through the projection assembly 20, for example, adjusting the tilt angle of the curved mirror and the PGU surface in the projection assembly 20 to set the forward tilt angles of the upper virtual image plane TB112 and the lower virtual image plane TB113.
  • the upper virtual image plane TB112 and/or the lower virtual image plane TB113 are inclined towards the direction of observing the corresponding sub-virtual image plane TB11 from the sub-eye box surface EB11 and the forward tilt angle is relatively large, the upper virtual image plane TB112 and/or Or the lower virtual image surface TB113 is approximately flat on the ground, so that the driver feels a better feeling of sticking to the ground and reality augmentation when viewing the projected image 114 , thereby improving the driving experience.
  • the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of at least one of the sub-virtual image surfaces TB11 is inclined towards the direction of observing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11, and its forward tilt angle is greater than or Equal to 45°, or greater than or equal to 60°, or greater than or equal to 75°, or greater than or equal to 90° and less than or equal to 95°, can significantly improve the secondary image phenomenon in the projection display area 11.
  • each of the designed sub-virtual image surfaces TB11 is a plane (please refer to (a) in FIG. 4 ) or a curved surface (please refer to (b) and (c) in FIG. 4 ).
  • a line is connected between the center point of each sub-eye box surface EB11 and the center point of the corresponding sub-virtual image surface TB11, and the plane passing through the line and perpendicular to the ground is taken as the main optical axis plane.
  • the intersection line of the main optical axis plane and the corresponding sub-virtual image surface TB11 has a vertex and a bottom point, and the forward tilt angle ⁇ U of the upper virtual image surface TB112 is the difference between the apex and the center point of the corresponding sub-virtual image surface TB11.
  • the connection line is inclined toward the direction of observing the corresponding sub-virtual image plane TB11 from the sub-eye box surface EB11 and the angle between the vertical plane and the forward tilt angle of the lower virtual image plane TB113 is ⁇ L , which is the bottom point and the corresponding sub-virtual image plane TB11.
  • the line connecting the central points of the sub-virtual image surface TB11 is inclined towards the direction of observing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11 and is at an angle with the vertical plane.
  • the forward tilt angle ⁇ 0 of the sub-virtual image surface TB11 is given by
  • the line connecting the apex and the bottom point is inclined toward the direction in which the corresponding sub-virtual image surface TB11 is observed from the sub-eye box surface EB11 and is at an included angle with the vertical plane.
  • the vertical plane is a plane perpendicular to the ground and perpendicular to the direction in which the corresponding sub-virtual image plane TB11 is observed from the sub-eye box plane EB11 .
  • connection line passes through the corresponding projection display area 11 , and the intersection point of the connection line with the projection display area 11 is the incident point.
  • an observation point matrix EB111 m ⁇ n is selected on each sub-eye box surface EB11.
  • m ⁇ 1 and is a natural number
  • n ⁇ 1 and is a natural number can be, but not limited to, 3, 5 or 8, etc.
  • a virtual image dot matrix TB111: i ⁇ j is selected on each sub-virtual image plane TB11.
  • i ⁇ 1 and is a natural number
  • i can be, but not limited to, 3, 5 or 8, etc.
  • j can be, but not limited to, 3, 5 or 8, etc.
  • each point in the observation dot matrix EB111 corresponds to the position of the eyes of the simulated observer.
  • Each point in the virtual image dot matrix TB111 corresponds to a virtual image formed on the virtual image surface by simulating projection light reflected from the laminated glass 10 to a certain point on the eye box surface EB10 .
  • each point in the virtual image lattice TB111 corresponds to one or more points in the observation lattice EB111, that is, the observer can see the sub-virtual image at different positions on the sub-eye box surface EB11 Virtual image of the same position on surface TB11.
  • the observer can see virtual images at different positions on the sub-virtual image plane at the same position on the sub-eyebox surface EB11.
  • each point in the observation dot matrix EB111 is connected to each point in the virtual image dot matrix TB111 There is an intersection with the laminated glass 10 , that is, an incident point.
  • the number of incident points used for simulation calculation is the number of theoretical wedge angle values.
  • the plurality of theoretical wedge angle values and the distance from the incident point to the glass bottom edge 12 of the laminated glass 10 present a discrete distribution.
  • one sub-scatter diagram of the plurality of theoretical wedge angle values can be calculated, and the plurality of sub-scatter diagrams can be calculated.
  • the collections form a discrete graph in the same coordinate system.
  • a first theoretical wedge angle fitting line L1 is obtained by performing function fitting on the scatter diagrams of the multiple theoretical wedge angle values.
  • the function may be, but not limited to, polynomial functions such as linear, exponential, power, and logarithmic functions, and composite functions composed of them.
  • the data curve fitting process can be completed in Microsoft Excel, or WPS or MATLAB or OriginPro and other software. Since an observer can see multiple images at different distances or angles at a certain point on the laminated glass 10, the theoretical wedge angle at this point has multiple values. However, the value of the wedge angle at a certain point on the laminated glass 10 can only be one value. In addition, other points along the same distance from the bottom edge 12 of the glass to the top edge 13 of the glass have multiple theoretical wedge angle values. The wedge angle at a certain distance from the bottom edge 12 of the laminated glass Value fits into a value. Therefore, it is necessary to properly select the value of the wedge angle at each incident point on the laminated glass 10 to reduce secondary images.
  • the deviation between the wedge angle value of the laminated glass 10 on the projection display area 11 and the multiple theoretical wedge angle values can be made smaller, thereby reducing The projection secondary image phenomenon of the projection display area 11 projected onto the laminated glass 10 is reduced, so as to improve the imaging quality of the laminated glass 10 .
  • the set wedge angle (Y HUD ) varies with the distance (X) from the bottom edge 12 of the glass to the top edge
  • the mathematical expression of the set first theoretical wedge angle fitting line L1 can be:
  • different weights can be set to reflect the corresponding theoretical wedge angle scatter points.
  • the fitting weight of the theoretical wedge angle value corresponding to the multiple sub-eye box surfaces EB11 corresponding to the height distribution from high to low is set to 1:1: 1 (the sub-eye box surface EB11 of each height has the same weight), 3:2:2 (the weight of the highest sub-eye box surface EB11 is heavier), 2:2:3 (the weight of the lowest sub-eye box surface EB11 is heavier ) or 2:3:2 (the middle sub-eye box surface EB11 has a heavier weight), etc.
  • the average value of the maximum value and the minimum value among the plurality of theoretical wedge angle values corresponding to the point is selected. number, and then connect the average of the maximum and minimum values of the multiple theoretical wedge angle values at each incident point to form the first theoretical wedge angle fitting line L1.
  • the wedge angle value of the laminated glass 10 in the corresponding projection display area 11 is determined through the first theoretical wedge angle fitting line L1, so as to weaken the The projection secondary image phenomenon of the laminated glass 10 in the projection display area 11 .
  • the distribution of the multiple theoretical wedge angle values of the projection display area 11 in the laminated glass 10 can be calculated, and the corresponding wedge angle values of the projection display area 11 can be fitted.
  • the first theoretical wedge angle fits the line L1, so as to determine the wedge angle value of the laminated glass 10 in the corresponding projection display area 11.
  • the head-up display system 1 by directing the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of at least one sub-virtual image surface TB11 toward the corresponding sub-eye box surface EB11
  • the direction of the sub-virtual image plane TB11 is inclined and its forward tilt angle is greater than or equal to 45°, so that the degree of local discrete distribution of multiple theoretical wedge angle values corresponding to the elimination of secondary images in the area of the projection display area 11 is reduced, so that The distribution of the multiple theoretical wedge angle values converges to the first theoretical wedge angle fitting line L1, that is, the local extreme difference value of the multiple theoretical wedge angle values is reduced, thereby improving the head-up display system 1 Eliminate the effect of secondary images.
  • the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of the at least one sub-virtual image surface TB11 are approximately flat on the ground, so that the driver feels better when observing the projected image 114.
  • the feeling of sticking to the ground and the sense of reality augmentation further enhance the driving experience.
  • the "design the projection image 114 according to the projection image 114 observed by the observer in the vehicle through each projection display area 11 has a corresponding sub-virtual image plane viewed from the sub-eye box surface EB11.
  • the virtual image surface TB10" whose direction is inclined of TB11 includes designing at least one sub-virtual image surface TB11 to incline towards the direction of viewing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11, and its forward tilt angle is greater than or equal to 45°.
  • FIG. 5 illustrates that the sub-virtual image surface TB11 is concave toward the ground. Understandably, FIG. 5 does not limit the shape of the sub-virtual image surface TB11 .
  • the forward tilt angle ⁇ 0 of at least one of the sub-virtual image planes TB11 among the plurality of sub-virtual image planes TB11 is greater than or equal to 45°, or greater than or equal to 60°, or greater than or equal to 75° °, or equal to 90° (realize bonding with the ground), realize the overall forward tilt of the projected image 114, and can obviously improve the secondary image phenomenon in the projected display area 11.
  • the forward tilt angle ⁇ 0 of at least one sub-virtual image plane is greater than 90° and less than or equal to 95°.
  • the intersecting line of the principal optical axis plane and the corresponding sub-virtual image surface TB11 has a vertex and a bottom point, and the apex of the sub-virtual image surface TB11 and the corresponding sub-eye box surface EB11
  • the distance between the center points of the sub-virtual image surface TB11 and the center point of the corresponding sub-eye box surface EB11 is VID2.
  • the "designing a virtual image surface TB10 inclined toward the direction in which the corresponding sub-virtual image surface TB11 is observed from the sub-eye box surface EB11 according to the projected image 114 observed by the observer in the vehicle through each projection display area 11" includes when When the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of the sub-virtual image surface TB11 are tilted toward the direction of viewing the corresponding sub-virtual image surface TB11 from the sub-eye box surface EB11, VID1>VID2, thereby improving the projection secondary image.
  • the upper virtual image surface TB112 and/or the lower virtual image surface TB113 of the sub-virtual image surface TB11 are directed toward the corresponding sub-virtual image surface viewed from the sub-eye box surface EB11.
  • the direction of TB11 is inclined, and VID1/VID2 ⁇ 1.5.
  • the included angle between the center point of the sub-eye box surface EB11 and the center point of the corresponding sub-virtual image surface TB11 and the ground is the downward angle of view LDA, when the central point of the sub-virtual image surface TB11 is below the central point of the sub-eye box surface EB11, the lower viewing angle LDA is a negative value, otherwise it is a positive value.
  • connection line between the center point of the sub-eye box surface EB11 and the apex of the corresponding sub-virtual image surface TB11, and the connection between the center point of the sub-eye box surface EB11 and the bottom point of the corresponding sub-virtual image surface TB11 The angle between the lines is the vertical field of view VFOV.
  • the relationship between VID1/VID2 and the forward tilt angle of the sub-virtual image plane TB11 is calculated by simulation.
  • the abscissa represents the forward tilt angle of the sub-virtual image surface TB11
  • the ordinate represents VID1/VID2
  • each line represents a situation in which one of the lower viewing angles LDA corresponds to one of the vertical field of view VFOV. It can be seen from the simulation results that when the vertical field of view VFOV is larger, the ratio of VID1 to VID2 is larger, thereby eliminating the scatter distribution of multiple theoretical wedge angle values of the projected secondary image. more obvious.
  • the forward tilt angle corresponding to the sub-virtual image surface TB11 is greater than or equal to 75°, the improvement effect of the corresponding secondary image is more obvious, and at the same time, it can bring a better sense of sticking to the ground and reality augmentation .
  • the "design according to the projection image 114 observed by the observer in the vehicle through each projection display area 11 has a corresponding sub-virtual image plane viewed from the sub-eye box surface EB11.
  • the virtual image plane TB10 ′′ whose direction of TB11 is inclined includes designing the included angle between two adjacent sub-virtual image planes TB11 among the plurality of sub-virtual image planes TB11 to be less than or equal to 15°.
  • the included angle between two adjacent sub-virtual image surfaces TB11 among the plurality of sub-virtual image surfaces TB11 is less than or equal to 15°, preferably less than or equal to 10°, more preferably less than equal to 5°, more preferably less than or equal to 2°. Because, among the plurality of sub-virtual image surfaces TB11, the sub-virtual image surface TB11 in the middle of the plurality of sub-virtual image surfaces TB11 is the interface. From the interface upwards, the plurality of sub-virtual image planes TB11 correspond to the local discrete distribution of multiple theoretical wedge angle values required to eliminate the projection secondary image in the projection display area 11 is getting larger and larger.
  • the plurality of sub-virtual image planes TB11 corresponding to the local discrete distribution of the plurality of theoretical wedge angle values required to eliminate the projection secondary image in the projection display area 11 are also getting larger and larger. Therefore, from the interface upward, the forward tilt angle of the sub-virtual image surface TB11 gradually increases, and from the interface downward, the forward tilt angle of the sub-virtual image surface TB11 gradually increases, so that the plurality of sub-virtual image surfaces TB11 Corresponding to the local discrete distribution of multiple theoretical wedge angle values required to eliminate projection secondary images in the projection display area 11 is smaller, so that the distribution of the multiple theoretical wedge angle values is fitted to the first theoretical wedge angle
  • the convergence of the lines L1 that is, the smaller local extreme difference values of the plurality of theoretical wedge angle values, can better improve the problem of the projected secondary image of the projected image 114 observed on the plurality of sub-eye box surfaces EB11.
  • the included angle between two adjacent sub-virtual image planes TB11 among the plurality of sub-virtual image planes TB11 is less than or It is equal to 15°, preferably less than or equal to 10°, more preferably less than or equal to 5°, more preferably less than or equal to 2°, so as to improve the driving experience.
  • the included angle between two adjacent sub-virtual image surfaces TB11 refers to, on the main optical axis plane, the angle between one of the two adjacent sub-virtual image surfaces TB11.
  • the ratio of the maximum local range value ⁇ W of the multiple theoretical wedge angle values to the overall range value ⁇ C of the multiple theoretical wedge angle values is: ⁇ W / ⁇ C ⁇ 0.9.
  • the ratio of the maximum local range value ⁇ W of the multiple theoretical wedge angle values to the overall range value ⁇ C of the multiple theoretical wedge angle values is: ⁇ W/ ⁇ C ⁇ 0.9, which can make the multiple
  • the degree of dispersion of the theoretical wedge angle value is smaller to increase the smoothness of the theoretical wedge angle fitting line, that is, the slope of the theoretical wedge angle fitting line is reduced, thereby reducing the wedge angle variation of the laminated glass 10 rate, reducing the production difficulty of the laminated glass 10.
  • the maximum local range value ⁇ W of the plurality of theoretical wedge angle values refers to the maximum value of the local range values, wherein the local range value reaches the glass bottom edge 12 of the laminated glass 10
  • the overall range value ⁇ C of the plurality of theoretical wedge angle values refers to the difference between the maximum value and the minimum value among all theoretical wedge angle values.
  • the at least one projected display area 11 includes at least two first projected display areas 115, or at least two second projected display areas 116, and the fitted At least two of the first theoretical wedge angle fitting lines L1 of the wedge angle versus the distance from the incident point to the glass bottom edge 12 .
  • the design method of the head-up display system 1 further includes adjusting the distance between the eye box surface EB10 and the two adjacent first theoretical wedge angle fitting lines L1 One of the distances between the corresponding virtual image planes TB10. New multiple values of the theoretical wedge angles are obtained through recalculation.
  • the maximum deviation value ⁇ Xmax is equal to the two first theoretical wedge angle fitting lines L1 in the overlapping portion
  • the maximum value of the difference when two adjacent first theoretical wedge angle fitting lines L1 do not overlap, the maximum deviation value ⁇ Xmax is equal to the maximum value of the two first theoretical wedge angle fitting lines L1 The difference between the wedge angle values at two adjacent ends.
  • the maximum deviation value ⁇ Xmax between the designed first theoretical wedge angle fitting line L1 and the adjusted second theoretical wedge angle fitting line L2 is adjusted to be less than or equal to 0.15 mrad, or less than or equal to 0.10 mrad, or less than or equal to 0.08mrad, or less than or equal to 0.05mrad.
  • the distance between the eye box surface EB10 and the virtual image surface TB10 corresponding to one of the two adjacent first theoretical wedge angle fitting lines L1 is adjusted.
  • adjusting the distance between the eye box surface EB10 and the virtual image surface TB10 corresponding to one of the two adjacent first theoretical wedge angle fitting lines L1 can adjust the wedge angle value required to eliminate the projection secondary image .
  • the distance between the eye box surface EB10 and the virtual image surface TB10 corresponding to one of the two adjacent first theoretical wedge angle fitting lines L1 is larger, the required time for eliminating the projection secondary image The smaller the wedge angle value is.
  • the distance between the virtual image plane TB10 corresponding to one of the first theoretical wedge angle fitting lines L1 and the eye box surface EB10 can be increased, and/or the other one of the first theoretical wedge angle fitting lines L1 can be decreased.
  • the distance between the virtual image plane TB10 corresponding to the theoretical wedge angle fitting line L1 and the eye box surface EB10 makes the two adjacent first theoretical wedge angle fitting lines L1 closer to the design target.
  • the multiple theoretical wedge angle values calculated by the calculation method of the foregoing embodiment can be fitted closer to the designed The fitted line for the target.
  • the wedge angle value of the laminated glass 10 in the corresponding first projection display area 115 or the second projection display area 116 is determined according to the second theoretical wedge angle fitting line L2.
  • the at least one projection display area 11 includes at least one first projection display area 115 and at least one second projection display area 116. At least two of the first theoretical wedge angle fitting lines L1 are the distance from the incident point to the bottom edge of the glass 12 .
  • the design method of the head-up display system 1 further includes adjusting the distance between the eye box surface EB10 and the two adjacent first theoretical wedge angle fitting lines L1 One of the distances between the corresponding virtual image planes TB10. New multiple values of the theoretical wedge angles are obtained through recalculation.
  • the multiple new theoretical wedge angle values and the distance from the incident point corresponding to each theoretical wedge angle value to the bottom edge of the glass 12 fit to obtain the wedge angle along with the distance from the incident point to the bottom edge of the glass 12
  • the third theoretical wedge angle fitting line L3. judging whether the maximum deviation ⁇ Xmax between the third theoretical wedge angle fitting line L3 and the other of the two adjacent first theoretical wedge angle fitting lines L1 is less than or equal to 0.15 mrad. If not, repeat the above steps. If so, determine the wedge angle value of the laminated glass 10 in the corresponding first projection display area 115 or the second projection display area 116 according to the third theoretical wedge angle fitting line L3.
  • the maximum deviation value ⁇ Xmax is equal to the two first theoretical wedge angle fitting lines L1 in the overlapping portion
  • the maximum value of the difference when two adjacent first theoretical wedge angle fitting lines L1 do not overlap, the maximum deviation value ⁇ Xmax is equal to the maximum value of the two first theoretical wedge angle fitting lines L1 The difference between the wedge angle values at two adjacent ends.
  • the maximum deviation value ⁇ Xmax between the designed first theoretical wedge angle fitting line L1 and the adjusted second theoretical wedge angle fitting line L2 is adjusted to be less than or equal to 0.2 mrad, or less than or equal to 0.15 mrad, or less than or equal to 0.10mrad, or less than or equal to 0.08mrad, or less than or equal to 0.05mrad.
  • the distance between the eye box surface EB10 and the virtual image surface TB10 corresponding to one of the two adjacent first theoretical wedge angle fitting lines L1 is adjusted.
  • adjusting the distance between the eye box surface EB10 and the virtual image surface TB10 corresponding to one of the two adjacent first theoretical wedge angle fitting lines L1 can adjust the wedge angle value required to eliminate the projection secondary image .
  • the distance between the eye box surface EB10 and the virtual image surface TB10 corresponding to one of the two adjacent first theoretical wedge angle fitting lines L1 is larger, the required time for eliminating the projection secondary image The smaller the wedge angle value is.
  • the distance between the virtual image plane TB10 corresponding to one of the first theoretical wedge angle fitting lines L1 and the eye box surface EB10 can be increased, and/or the other one of the first theoretical wedge angle fitting lines L1 can be decreased.
  • the distance between the virtual image plane TB10 corresponding to the theoretical wedge angle fitting line L1 and the eye box surface EB10 makes the two adjacent first theoretical wedge angle fitting lines L1 closer to the design target.
  • the multiple theoretical wedge angle values calculated by the calculation method of the foregoing embodiment can be fitted closer to the designed The fitted line for the target.
  • the wedge angle value of the laminated glass 10 in the corresponding first projection display area 115 or the second projection display area 116 is determined according to the third theoretical wedge angle fitting line L3.
  • the combination of the new multiple theoretical wedge angle values and the multiple theoretical wedge angle values has the largest local range value ⁇ WU, and the new multiple theoretical wedge angle values
  • the combination of the value and the plurality of theoretical wedge angle values has an overall range value ⁇ CU, and the ratio of ⁇ WU to ⁇ CU is: ⁇ WU/ ⁇ CU ⁇ 0.9.
  • the set of the multiple theoretical wedge angle values corresponding to the first projection display area 115 and the multiple theoretical wedge angle values corresponding to the second projection display area 116 has the largest local extreme difference value ⁇ WU and the overall range value ⁇ CU, the ratio of ⁇ WU to ⁇ CU is: ⁇ WU/ ⁇ CU ⁇ 0.9.
  • the overall degree of dispersion of the adjusted theoretical wedge angle values can be made smaller, thereby increasing the smoothness of the first theoretical wedge angle fitting line L1 and the third theoretical wedge angle fitting line L3, namely The overall slope of the first theoretical wedge angle fitting line L1 and the third theoretical wedge angle fitting line L3 is reduced, thereby reducing the overall wedge angle change rate of the laminated glass 10 and reducing the interlayer The production difficulty of glass 10.
  • the collection of the plurality of theoretical wedge angle values has the largest local extreme difference value ⁇ WU refers to the maximum value of the local extreme difference values in the collection, wherein the local extreme difference value of the collection is the distance between the laminated glass 10 The difference between the maximum value and the minimum value in the collection of multiple theoretical wedge angle values at a certain position at a distance X from the glass bottom edge 12 .
  • the set of the plurality of theoretical wedge angle values has an overall extreme difference value ⁇ CU, which refers to the difference between the maximum value and the minimum value in the set of all theoretical wedge angle values.
  • the at least one projection display area 11 includes a first projection display area 115 for schematic illustration.
  • the first projection display area 115 corresponds to the AR-HUD, and the projection display distance is 10000mm.
  • the laminated glass 10 includes a first transparent substrate 14 , an intermediate bonding layer 16 and a second transparent substrate 15 .
  • the thickness of the first transparent substrate 14 is 1.8 mm
  • the minimum thickness of the intermediate bonding layer 16 is 0.76 mm
  • the thickness of the second transparent substrate 15 is 1.8 mm.
  • the installation angle is 27°.
  • the vertical curvature of the first projection display area 115 is R5400mm ⁇ R5500mm
  • the lateral curvature is R2500mm ⁇ R2550mm.
  • the size of the eye box surface EB10 is 120mm ⁇ 50mm, and the eye box surface EB10 includes three sub-eye box surfaces EB11 from high to low in order to illustrate schematically, and the three sub-eye box surfaces EB11 are adjacent to each other
  • the distance between the center points of the two sub-eye box surfaces EB11 is 40mm.
  • the lower viewing angles of the three sub-eye box surfaces EB11 from high to low are -4.2deg, -2.6deg and -1.0deg respectively, the horizontal viewing angles are all 0deg, and the viewing angles are all 10deg ⁇ 4deg.
  • the distance from the central point of the sub-eye box surface EB11 in the middle of the three sub-eye box surfaces EB11 to the intersection point of the main optical axis of the first projection light source 211 and the surface of the laminated glass 10 close to the interior of the vehicle is 826mm, and the incident angle of the first projection light source 211 is 68°.
  • the observation dot matrix EB111m ⁇ n on the three sub-eye box surfaces EB11 is a 5 ⁇ 3 dot matrix (see Figure 19), and on the three sub-virtual image planes TB11 corresponding to the three sub-eye box surfaces EB11
  • the virtual image dot matrix TB111i ⁇ j on is 5 ⁇ 3.
  • the forward tilt angle of the virtual image plane is 2.6 degrees. In the second embodiment, the forward tilt angle of the virtual image plane is 88 degrees.
  • the theoretical wedge angle values for eliminating the projection secondary image for the first projection display area 115 in the first embodiment and the second embodiment are sequentially calculated, and made as scattered points Distribution.
  • the scatter distribution diagram made by the point on the mid-perpendicular of the sub-eye box surface EB11 in the middle of the three sub-eye box surfaces EB11 corresponding to the points on the sub-virtual image surface TB11 in the first embodiment as an example (See Fig.
  • EB_Rm corresponds to the point on the mid-perpendicular line of described sub-eye box surface EB11
  • RiCj represents the point on the sub-virtual image surface TB11
  • the combination of EB_Rm and RiCj represents that there is no point at point RiCj from point RiCj.
  • the scatter distribution law of the theoretical wedge angle values of the sub-virtual image surface TB11 without secondary images observed on the perpendicular line of the sub-eye box surface EB11 is the same as that in Figure 20, and the obtained scatter can be calculated. point distribution.
  • the scatter distribution law of the theoretical wedge angle values of the virtual image surface TB10 without secondary images observed at points on the eye box surface EB10 on the line parallel to the mid-perpendicular line is approximately the same as that in Figure 20, and can be calculated as shown in the figure The scatter distribution indicated by the dotted box in 21.
  • the scatter point distribution of the theoretical wedge angle value of the sub-virtual image surface TB11 without secondary image is compared with the scatter distribution of the sub-virtual image surface TB11 from the point on the mid-perpendicular line of the sub-eye box surface EB11
  • An embodiment tends to converge towards the dashed line segment within the dashed line box.
  • the dotted line segment within the dotted line frame represents the connection line of multiple theoretical wedge angle values without secondary image observed from the point on the mid-perpendicular line of the sub-eye box surface EB11 to the central point of the sub-virtual image surface TB11.
  • the scatter distribution law of the theoretical wedge angle values of the virtual image surface TB10 without secondary images observed at points on the eye box surface EB10 on the line parallel to the mid-perpendicular line is approximately the same as that in Figure 20, and can be calculated as shown in the figure The outline of the scatter distribution indicated by the solid line box in 21.
  • ⁇ C represents the difference between the maximum value and the minimum value in the collection of multiple theoretical wedge angle values corresponding to no secondary image projected on the laminated glass 10 .
  • ⁇ C1 is the difference between the maximum value and the minimum value in the collection of multiple theoretical wedge angle values corresponding to no secondary image projected on the laminated glass 10 in the first embodiment.
  • ⁇ C2 is the difference between the maximum value and the minimum value in the collection of multiple theoretical wedge angle values corresponding to no secondary image projected on the laminated glass 10 in the second embodiment.
  • ⁇ W represents the maximum value of the set of local extreme difference values of multiple theoretical wedge angle values corresponding to no secondary image projected on the laminated glass 10 .
  • the combined local extreme difference value is the difference between the maximum value and the minimum value in the set of multiple theoretical wedge angle values at a position at a distance X from the glass bottom edge 12 of the laminated glass 10 .
  • the ⁇ W of the second embodiment has the largest difference at about 520 mm from the bottom edge of the glass 12, and the ⁇ W of the first embodiment here is named ⁇ W before , and the second embodiment ⁇ W in the examples herein is ⁇ W after .
  • the artifact value indicates how severe the artifact is, with an artifact value of 0 indicating no artifact.
  • the maximum local extreme difference value ⁇ W is proportional to the secondary image value, the smaller ⁇ W is, the smaller the secondary image value is, and the change amount of ⁇ W corresponds to the change amount of the secondary image value. It can be seen from the above table that, compared with the first embodiment, that is, after the virtual image plane TB10 is tilted forward, the variation of ⁇ W/ ⁇ C in the second embodiment is 21.1%.
  • ⁇ W/ ⁇ C reflects the improvement of the secondary image value corresponding to the fixed wedge angle by using the variable wedge angle, that is, the smaller the ratio of ⁇ W/ ⁇ C, the more suitable to use the variable wedge angle. Therefore, the variation of ⁇ W/ ⁇ C is 21.1%, which means that the second embodiment is more suitable for variable wedge angle than the first embodiment, and the improvement rate is 21.1%.
  • the improvement rate from ⁇ W before to ⁇ W after is 18.6%, indicating the degree of improvement of the maximum local extreme difference value ⁇ W after the virtual image plane TB10 is tilted forward.
  • the improvement rate from ⁇ W before / ⁇ C to ⁇ W after / ⁇ C is 20.8%, indicating the amount of improvement of the secondary image value corresponding to the fixed wedge angle using the variable wedge after the virtual image plane TB10 is tilted forward.

Abstract

一种抬头显示系统(1)及抬头显示系统(1)的设计方法,抬头显示系统(1)包括夹层玻璃(10),具有至少一个投影显示区(11),每个投影显示区(11)具有夹层玻璃(10)安装于车辆时的上侧边(111)厚度大于一个下侧边(112)的楔形剖面形状,具有楔角从下侧边(112)向上侧边(111)连续变小的区段(113);投影组件(20),包括至少一个投影光源(21),投影光源(21)发出的投影光线入射至投影显示区(11)形成具有虚像面(TB10)的投影图像(114);及眼盒(EB1),具有透过投影显示区(11)观察投影图像(114)的眼盒面(EB10);虚像面(TB10)包括多个子虚像面(TB11),每个子虚像面(TB11)包括上虚像面(TB112)和下虚像面(TB113),至少一个子虚像面(TB11)的上虚像面(TB112)和/或下虚像面(TB113)朝向从子眼盒面(EB11)观察对应的子虚像面(TB11)的方向倾斜且其前倾角大于或等于45°,抬头显示系统(1)能减弱甚至消除投影副像问题,提升乘驶体验。

Description

抬头显示系统及抬头显示系统的设计方法 技术领域
本申请涉及汽车领域,具体涉及一种抬头显示系统及抬头显示系统的设计方法。
背景技术
随着汽车智能化发展,抬头显示(Head Up Display,HUD)系统越来越多的应用在汽车上,通过抬头显示系统将影像,比如,行车信息实时显示在前挡风玻璃的前方。前挡风玻璃通常为夹层玻璃,且考虑实际车辆的复杂使用工况,不同驾驶员具有不同高度坐姿,人眼观察位是一个包络空间,采用固定楔角的夹层玻璃不能很好解决不同观察视角下的副像问题,一般情况下,可在夹层玻璃上的不同投影显示区设定不同的楔角,即采用可变楔角的夹层玻璃来减小副像。传统HUD图像的虚像面被设计为竖直于地面且面向驾驶员,这样的虚像面会导致在夹层玻璃的不同投影显示区消除副像所需的理论楔角散点的分布过于离散;另外,增强现实抬头显示(AR-HUD)将覆盖更多车道,提供更丰富的导航警示等信息,其视场角FOV会扩大,比如10°×5°,甚至20°×5°,使投影显示区的面积增大,这进一步加剧投影显示区消除副像所需的理论楔角散点的分布过于离散,导致了即使采用具有可变楔角的投影显示区也无法很好地解决副像问题,进而影响乘驾体验。
发明内容
第一方面,本申请提供了一种抬头显示系统,所述抬头显示系统包括:
夹层玻璃,所述夹层玻璃具有至少一个投影显示区,每个所述投影显示区具有所述夹层玻璃安装于车辆时的上侧边厚度大于下侧边的楔形剖面形状,且具有楔角从所述下侧边向所述上侧边连续变小的区段;
投影组件,所述投影组件包括能够投影至所述至少一个投影显示区的至少一个投影光源,所述投影光源发出的投影光线入射至所述投影显示区形成投影图像,所述投影图像具有虚像面;以及
眼盒,所述眼盒具有透过所述投影显示区观察到所述投影图像的眼盒面;
所述眼盒面包括多个子眼盒面,所述虚像面包括与所述多个子眼盒面对应的多个子虚像面,每个子虚像面包括上虚像面和下虚像面,至少一个所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于45°。
第二方面,本申请提供了一种抬头显示系统的设计方法,所述抬头显示系统的设计方法包括:
提供投影组件及夹层玻璃,所述投影组件发出的投影光线入射到所述夹层玻璃上的至少一个投影显示区;
根据车内的观察者设计位于车内的眼盒面;
根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子眼盒面观察对应的子虚像面的方向倾斜的虚像面;
其中,所述眼盒面包括多个子眼盒面,所述虚像面包括多个子虚像面,其中,每个子虚像面对应一个子眼盒面,每个子虚像面包括上虚像面和下虚像面,至少一个所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于45°;
在每个子眼盒面上选取观察点阵,且在每个子虚像面上选取虚像点阵,所述观察点阵中的点与所述虚像点阵中的点的连线穿过对应的投影显示区,所述连线与所述投影显示区的交 点为入射点;
根据所述投影组件、夹层玻璃和多条连线计算对应的入射点位置处的投影图像无副像时夹层玻璃的多个理论楔角值;
根据所述多个理论楔角值以及各个所述理论楔角值对应的入射点到夹层玻璃的玻璃底边的距离,拟合以得到楔角随着入射点到玻璃底边的距离的第一理论楔角拟合线;以及
根据所述第一理论楔角拟合线确定所述夹层玻璃在对应的所述投影显示区的楔角值。
附图说明
图1为本申请一实施方式提供的抬头显示系统的结构示意图;
图2为图1实施方式提供的抬头显示系统的光路示意图;
图3为图1实施方式提供的抬头显示系统安装于车辆的示意图;
图4为图1实施方式提供的抬头显示系统的上虚像面和下虚像面前倾的示意图;
图5为图1实施方式提供的抬头显示系统的子虚像面前倾的示意图;
图6为图1实施方式提供的抬头显示系统消除副像所需的多个理论楔角值的分布示意图;
图7为图1实施方式提供的抬头显示系统的子虚像面前倾角与VID1/VID2关系模拟图;
图8为图1实施方式提供的抬头显示系统的区段内楔角的拟合线条示意图;
图9为本申请又一实施方式提供的抬头显示系统的结构示意图;
图10为图9实施方式提供的抬头显示系统的光路示意图;
图11为本申请又一实施方式提供的抬头显示系统的结构示意图;
图12为图1实施方式提供的抬头显示系统的夹层玻璃的结构示意图;
图13为本申请实施方式提供的抬头显示系统的设计方法的流程图;
图14为图13实施方式提供的抬头显示系统的设计方法的光路示意图;
图15为图13实施方式提供的抬头显示系统的设计方法的第一理论楔角拟合线的示意图;
图16为图13实施方式提供的抬头显示系统的设计方法的同类型投影显示区的相邻两条第一理论楔角拟合线的调整示意图;
图17为图13实施方式提供的抬头显示系统的设计方法的不同类型投影显示区的相邻两条第一理论楔角拟合线的调整示意图;
图18为图17实施方式提供的抬头显示系统的设计方法的不同类型投影显示区的相邻两条第一理论楔角拟合线调整之后的示意图;
图19为本申请一实施方式提供的抬头显示系统的设计方法的观察点阵及虚像点阵的设计示意图;
图20为图19实施方式提供的抬头显示系统的设计方法的子眼盒面的中垂线上观察子虚像面无副像的理论楔角值分布散点图;
图21为图19实施方式提供的抬头显示系统的设计方法中第一实施例与第二实施例从多个子眼盒面上观察多个子虚像面无副像的理论楔角值分布轮廓图;
图22为图19实施方式提供的抬头显示系统的设计方法中第一实施例与第二实施例从多个子眼盒面上观察多个子虚像面无副像的理论楔角值分布散点图。
附图标号:抬头显示系统1;夹层玻璃10;投影显示区11;上侧边111;下侧边112;区段113;投影图像114;第一投影显示区115;第一投影图像1151;第二投影显示区116;第二投影图像1161;玻璃底边12;玻璃顶边13;第一透明基板14;第二透明基板15;中间粘结层16;投影组件20;投影光源21;第一投影光源211;第二投影光源212;眼盒EB1;眼盒面EB10;子眼盒面EB11;观察点阵EB111;虚像面TB10;子虚像面TB11;上虚像面TB112;下虚像面TB113;虚像点阵TB111;实际楔角拟合线L0;第一理论楔角拟合线L1;第二理论楔角拟合线L2;第三理论楔角拟合线L3。
具体实施方式
第一方面,本申请提供了一种抬头显示系统,所述抬头显示系统包括:
夹层玻璃,所述夹层玻璃具有至少一个投影显示区,每个所述投影显示区具有所述夹层玻璃安装于车辆时的上侧边厚度大于下侧边的楔形剖面形状,且具有楔角从所述下侧边向所述上侧边连续变小的区段;
投影组件,所述投影组件包括能够投影至所述至少一个投影显示区的至少一个投影光源,所述投影光源发出的投影光线入射至所述投影显示区形成投影图像,所述投影图像具有虚像面;
以及眼盒,所述眼盒具有透过所述投影显示区观察到所述投影图像的眼盒面;
所述眼盒面包括多个子眼盒面,所述虚像面包括与所述多个子眼盒面对应的多个子虚像面,每个子虚像面包括上虚像面和下虚像面,至少一个所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于45°。
其中,至少一个所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于75°。
其中,至少一个所述子虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于45°。
其中,至少一个所述子虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于75°。
其中,所述子虚像面的顶点与对应的子眼盒面的中心点之间的距离为VID1,所述子虚像面的底点与对应的子眼盒面的中心点之间的距离为VID2,VID1>VID2。
其中,VID1/VID2≥1.5。
其中,所述区段内的任一点位置处具有测定楔角和消除副像的多个理论楔角值,将所述区段内各点位置处的测定楔角进行拟合得到实际楔角拟合线,将所述区段内各点位置处的多个理论楔角值进行拟合得到第一理论楔角拟合线,所述实际楔角拟合线与所述第一理论楔角拟合线的最大偏差值小于或等于0.07mrad。
其中,所述实际楔角拟合线和所述第一理论楔角拟合线均符合多项式函数。
其中,所述区段内楔角连续单调变小的最大变化率ROC:ROC≤0.3mrad/100mm;或,ROC≤0.2mrad/100mm;或,ROC≤0.1mrad/100mm;或,ROC≤0.05mrad/100mm。
其中,所述多个子虚像面中相邻的两个所述子虚像面之间的夹角小于或等于15°。
其中,在所述夹层玻璃的玻璃底边指向玻璃顶边的方向上,所述区段的长度与所述投影显示区的长度之比不低于70%。
其中,所述至少一个投影显示区包括:
至少一个第一投影显示区,所述投影光源入射至所述第一投影显示区形成第一投影图像,所述第一投影图像的虚像距离为7米-100米;
以及至少一个第二投影显示区,所述投影光源入射至所述第二投影显示区形成第二投影图像,所述第二投影图像的虚像距离为1米-6米。
其中,所述至少一个投影光源包括至少一个第一投影光源和至少一个第二投影光源,所述第一投影光源入射至所述第一投影显示区,所述第二投影光源入射至所述第二投影显示区。
其中,所述夹层玻璃包括:
第一透明基板;
第二透明基板;
以及中间粘结层,所述中间粘结层设于所述第一透明基板与所述第二透明基板之间,用于粘结所述第一透明基板及所述第二透明基板;
所述第一透明基板、所述第二透明基板及所述中间粘结层中至少一者在所述投影显示区具有楔角。
其中,所述第一透明基板及所述第二透明基板的在所述投影显示区的楔角均为0,所述中间粘结层在所述投影显示区具有楔角,且等于所述投影显示区的楔角。
其中,所述第一透明基板和/或所述第二透明基板在所述投影显示区具有楔角,所述中间粘结层在所述投影显示区具有楔角,且所述第一透明基板和/或所述第二透明基板在所述投影显示区的楔角与所述中间粘结层在所述投影显示区的楔角之和等于所述投影显示区的楔角。
第二方面,本申请提供了一种抬头显示系统的设计方法,所述抬头显示系统的设计方法包括:
提供投影组件及夹层玻璃,所述投影组件发出的投影光线入射到所述夹层玻璃上的至少一个投影显示区;
根据车内的观察者设计位于车内的眼盒面;
根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子眼盒面观察对应的子虚像面的方向倾斜的虚像面;
其中,所述眼盒面包括多个子眼盒面,所述虚像面包括从多个子虚像面,其中,每个子虚像面对应一个子眼盒面,每个子虚像面包括上虚像面和下虚像面,至少一个所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于45°;
在每个子眼盒面上选取观察点阵,且在每个子虚像面上选取虚像点阵,所述观察点阵中的点与所述虚像点阵中的点的连线穿过对应的投影显示区,所述连线与所述投影显示区的交点为入射点;
根据所述投影组件、夹层玻璃和多条连线计算对应的入射点位置处的投影图像无副像时夹层玻璃的多个理论楔角值;
根据所述多个理论楔角值以及各个所述理论楔角值对应的入射点到夹层玻璃的玻璃底边的距离,拟合以得到楔角随着入射点到玻璃底边的距离的第一理论楔角拟合线;
以及根据所述第一理论楔角拟合线确定所述夹层玻璃在对应的所述投影显示区的楔角值。
其中,所述“根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子眼盒面观察对应的子虚像面的方向倾斜的虚像面”包括:
设计至少一个所述子虚像面朝向从子眼盒面观察对应的子虚像面的方向且其前倾角大于或等于45°。
其中,所述“根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子眼盒面观察对应的子虚像面的方向倾斜的虚像面”包括:
当所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜时,VID1>VID2;
其中,所述子虚像面的顶点与对应的子眼盒面的中心点之间的距离为VID1,所述子虚像面的底点与对应的子眼盒面的中心点之间的距离为VID2。
其中,VID1/VID2≥1.5。
其中,所述“根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子 眼盒面观察对应的子虚像面的方向倾斜的虚像面”包括:
设计所述多个子虚像面中相邻的两个所述子虚像面之间的夹角小于或等于15°。
其中,所述多个理论楔角值的最大局部极差值△W与所述多个理论楔角值的整体极差值△C的比值为:△W/△C≤0.9。
其中,所述至少一个投影显示区包括至少两个第一投影显示区,或者至少两个第二投影显示区,拟合得到楔角随入射点到所述玻璃底边的距离的至少两条所述第一理论楔角拟合线,当相邻两条所述第一理论楔角拟合线的最大偏差值大于0.15mrad时,在所述“根据所述第一理论楔角拟合线确定所述夹层玻璃在对应的所述投影显示区的楔角值”之后,所述抬头显示系统的设计方法还包括:
调整所述眼盒面与相邻两条所述第一理论楔角拟合线中其中一条对应的虚像面之间的距离;
重新计算得出新的多个所述理论楔角值;
根据所述新的多个理论楔角值以及各个理论楔角值对应的入射点到所述玻璃底边的距离,拟合以得到楔角随着入射点到所述玻璃底边的距离的第二理论楔角拟合线;
以及判断所述第二理论楔角拟合线与相邻两条所述第一理论楔角拟合线中的另一条的最大偏差值是否小于或等于0.15mrad;
若否,重复以上步骤;
若是,根据所述第二理论楔角拟合线确定所述夹层玻璃在对应的所述第一投影显示区或所述第二投影显示区的楔角值。
其中,所述至少一个投影显示区包括至少一个第一投影显示区及至少一个第二投影显示区,拟合得到楔角随着入射点到所述玻璃底边的距离的至少两条所述第一理论楔角拟合线,当相邻两条所述第一理论楔角拟合线的最大偏差值大于0.2mrad时,在所述“根据所述第一理论楔角拟合线确定所述夹层玻璃在对应的所述投影显示区的楔角值”之后,所述抬头显示系统的设计方法还包括:
调整所述眼盒面与相邻两条所述第一理论楔角拟合线中其中一条对应的虚像面之间的距离;
重新计算得出新的多个所述理论楔角值;
根据所述新的多个理论楔角值以及各个理论楔角值对应的入射点到所述玻璃底边的距离,拟合以得到楔角随着入射点到所述玻璃底边的距离的第三理论楔角拟合线;
以及判断所述第三理论楔角拟合线与相邻两条所述第一理论楔角拟合线中的另一条的最大偏差值是否小于或等于0.15mrad;
若否,重复以上步骤;
若是,根据所述第三理论楔角拟合线确定所述夹层玻璃在对应的所述第一投影显示区或所述第二投影显示区的楔角值。
其中,调整后的所述多个理论楔角值的合集具有最大局部极差值△WU,调整后的所述多个理论楔角值的合集具有整体极差值△CU,△WU与△CU的比值为:△WU/△CU≤0.9。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、 结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,由于所述夹层玻璃为透明介质,所述投影光源发射的光线进入所述夹层玻璃后,经过夹层玻璃的内表面反射后进入眼盒面,在玻璃前方成像,形成第1个虚像,称之为主像,还会在所述夹层玻璃的外表面再次发生反射进入眼盒面,并在所述夹层玻璃前方成像,形成第2个虚像。当夹层玻璃内有高反射介质层时,如含Ag的金属镀膜层、高反射率的改性PET等,也会发生反射并产生第3个甚至更多个虚像;所述第2个虚像、第3个虚像甚至更多个虚像统称为副像。为了消除副像,所述夹层玻璃10在所述投影显示区11需要设置相应的楔角,可以使得副像与主像重合,进而使得观察者能够通过所述投影显示区11看见无副像的抬头显示(HUD)图像,由于HUD图像在所述投影显示区11上的不同区域反射进入眼盒EB1的光具有不同的角度,且观察者在驾驶室中由于不同坐姿也会使得HUD图像进入眼盒EB1具有不同的角度。因此,所述夹层玻璃10在所述投影显示区11上不同区域需要设置不同的楔角。
本申请实施方式提供了一种抬头显示系统1。请一并参照图1、图2、图3及图4,在本实施方式中,所述抬头显示系统1包括夹层玻璃10、投影组件20及眼盒EB1。所述夹层玻璃10具有至少一个投影显示区11,每个所述投影显示区11具有所述夹层玻璃10安装于车辆时的上侧边111厚度大于下侧边112的楔形剖面形状,且具有楔角从所述下侧边112向所述上侧边111连续变小的区段113。所述投影组件20包括能够投影至所述至少一个投影显示区11的至少一个投影光源21,所述投影光源21发出的投影光线入射至所述投影显示区11形成投影图像114,所述投影图像114具有虚像面TB10。所述眼盒EB1具有透过所述投影显示区11观察到所述投影图像114的眼盒面EB10。所述眼盒面EB10包括从低到高的多个子眼盒面EB11,所述虚像面TB10包括与所述多个子眼盒面EB11对应的从高到低的多个子虚像面TB11,每个子虚像面TB11包括上虚像面TB112和下虚像面TB113,至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且与垂直面之间的前倾角大于或等于45°。
需要说明的是,图2以所述子眼盒面EB11与所述子虚像面TB11的数量均为3个进行示意,并未对所述子眼盒面EB11与所述子虚像面TB11的数量进行限定。图3以一个所述子虚像面TB11朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜进行示意。其中,垂直面为垂直于地面且垂直于从子眼盒面EB11观察对应的子虚像面TB11的方向的平面。
在本实施方式中,每个投影显示区11具有楔角从所述下侧边112向所述上侧边111连续变小的区段113。可以理解的是,在每个所述投影显示区11中,所述区段113的楔角可以是线性/非线性减小。除了所述区段113,所述投影显示区11中的其他区段的楔角可以等于0,可以为恒定楔角,也可以线性/非线性增加,或线性/非线性减小,也可以与所述区段113的楔角一起连续变小。
在本实施方式中,所述抬头显示系统1应用于车辆上并在前挡风玻璃的前方实现信息显示。所述抬头显示系统1包括投影组件20,所述投影组件20投影至所述至少一个投影显示区11的图像包括一种或多种类型HUD图像、一种或多种角度HUD图像及一种或多种显示距离HUD图像中至少一种,以使得所述抬头显示系统1具有多信息显示,增加了所述抬头显示系统1图像显示的丰富度。所述至少一个投影显示区11用于显示HUD图像,具体地,所述至少一个投影显示区11可用于设置增强现实抬头显示(Augmented Reality Head Up Display,AR-HUD)或者挡风玻璃抬头显示(Windshield Head Up Display,W-HUD)等。
在本实施方式中,所述投影组件20包括投影至所述至少一个投影显示区11的至少一个投影光源21。一个所述投影光源21对应一个所述投影显示区11设置,或者,一个投影光源21对应多个所述投影显示区11设置。在一实施方式中,所述投影光源21发出的投影光线直接入射至所述投影显示区11。在另一实施方式中,所述投影光源21发出的投影光线通过反射装置入射至所述投影显示区11。其中,所述投影光源21发出的投影光线入射至所述投影 显示区11形成投影图像114,所述投影图像114显示在所述夹层玻璃10的前方,且所述投影图像114具有所述夹层玻璃10安装于车辆时位于所述车辆外部的虚像面TB10。
在本实施方式中,所述眼盒EB1是模拟驾驶员在车辆驾驶室中用于观察所述投影图像114的眼部。所述眼盒EB1具有透过所述投影显示区11观察到所述投影图像114的眼盒面EB10。其中,所述眼盒面EB10为所述眼盒EB1垂直于地面且垂直于从子眼盒面EB11观察对应的子虚像面TB11的方向的的中心截面。
接下来,以所述抬头显示系统1应用于车辆的前挡风玻璃进行示例性说明。所述投影组件20中的投影光源21发出的投影光线入射至所述投影显示区11。所述投影显示区11反射至少部分的投影光线进入所述眼盒面EB10,在所述车辆的夹层玻璃10前方形成投影图像114,所述投影图像114具有所述虚像面TB10。根据所述眼盒EB1在所述车辆的驾驶室中位置的高低,所述眼盒面EB10包括从低到高的多个子眼盒面EB11。对应的,形成所述投影图像114的投影光线进入不同位置的所述子眼盒面EB11具有不同位置的子虚像面TB11。所述子虚像面TB11包括与所述从低到高的多个子眼盒面EB11对应的从高到低的多个子虚像面TB11。由于所述夹层玻璃10具有一定的厚度,所述投影光源21发出投影光线入射至所述投影显示区11时,所述投影光线在所述夹层玻璃10的内表面反射至所述眼盒面EB10形成投影图像114的主像,且所述投影光线在所述夹层玻璃10的外表面和/或所述夹层玻璃10内部的高反射介质层反射至所述眼盒面EB10形成一个或多个副像。因此,所述投影显示区11需要设置楔角以消除副像,即副像与主像重合。此外,从所述眼盒面EB10的不同点位观察所述投影显示区11的同一点位所需消除副像的理论楔角值不同。因此,对于所述投影显示区11的每一点位都具有消除副像的多个理论楔角值。但所述夹层玻璃10在实际制备中,在所述投影显示区11的每一点位只能有一个楔角值,因此,需要通过对所述投影显示区11的每一点位的所述多个理论楔角值进行拟合来计算最佳楔角值。
在现有技术中,传统抬头显示系统的虚像面近似垂直于地面,使得所述投影显示区11的各个点位消除副像的多个理论楔角值离散分布程度较大,从而使得所述投影显示区11中各个点位选取楔角值与消除副像所需的理论楔角值的偏差值较大,进而使得所述抬头显示系统1消除副像的难度高且效果差。
相比于现有技术,本申请提供的所述抬头显示系统1中,每个所述子虚像面TB11包括上虚像面TB112和下虚像面TB113。对于每个所述子虚像面TB11,将所述子虚像面TB11的中心点与对应的所述子眼盒面EB11的中心点进行连线,并穿过所述子虚像面TB11的中心点作一条平行于地面且垂直于从子眼盒面EB11观察对应的子虚像面TB11的方向的直线,以所述连线和所述直线构成的平面为基准面,所述子虚像面TB11的位于所述基准面上方的部分为所述上虚像面TB112,所述子虚像面TB11的位于所述基准面下方的部分为所述下虚像面TB113。
将所述子虚像面TB11中的上虚像面TB112朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜,即实现投影图像114局部前倾,则增大了所述上虚像面TB112与所述子虚像面TB11对应的所述子眼盒面EB11之间的距离,从而减小了消除所述上虚像面TB112对应的副像所需的理论楔角值,进而减小了所述投影显示区11中的多个理论楔角值的局部离散分布,使所述多个理论楔角值的分布向实际楔角拟合线汇集,即减小了所述多个理论楔角值的局部极差值。
将所述子虚像面TB11中的下虚像面TB113朝向从子眼盒面观察对应的子虚像面的方向倾斜,即实现投影图像114局部前倾,则减小了所述下虚像面TB113与所述子虚像面TB11对应的所述子眼盒面EB11之间的距离,从而增大了消除所述上虚像面TB112对应的副像所需的理论楔角值,进而减小了所述投影显示区11中的多个理论楔角值的局部离散分布,使所述多个理论楔角值的分布向实际楔角拟合线汇集,即减小了所述多个理论楔角值的局部极差值。
将所述子虚像面TB11中的上虚像面TB112和下虚像面TB113均朝向从子眼盒面观察对应的子虚像面的方向倾斜,即实现投影图像114整体前倾,从而可以减小所述投影显示区11 中的多个理论楔角值的整体离散分布,使所述多个理论楔角值的分布向实际楔角拟合线L0汇集,即减小了所述多个理论楔角值的局部极差值。
因此,通过将所述子虚像面TB11中的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜,最终提升了所述抬头显示系统1消除副像的效果。
其中,所述上虚像面TB112和所述下虚像面TB113的前倾角越大,所述投影显示区11消除副像所需的多个理论楔角值的离散分布程度越小。此外,所述前倾角可以通过投影组件20进行调整,例如调节投影组件20中的曲面反射镜及PGU面的倾角等来设置所述上虚像面TB112和所述下虚像面TB113的前倾角。
此外,所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且前倾角较大时,使得所述上虚像面TB112和/或所述下虚像面TB113近似于平铺于地面,从而使得驾驶员观察所述投影图像114时感到更好的贴地感及现实增强感,进而提升了驾驶体验。
具体地,至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113的前倾角大于或等于45°,或者,大于或等于60°,或者,大于或等于75°,或者,等于90°(实现与地面贴合),能够明显改善在所述投影显示区11中的副像现象。此外,在一些特殊场景中,至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113的前倾角大于90°且小于或等于95°。
需要说明的是,每个所述子虚像面TB11可能为平面(请参见图4中的(a))或者曲面(请参见图4中的(b)和(c))。将每个所述子眼盒面EB11的中心点与对应的所述子虚像面TB11的中心点连线,将经过所述连线且垂直于地面的平面作为主光轴平面。所述主光轴平面与对应的所述子虚像面TB11的相交线具有顶点和底点,上虚像面TB112的前倾角α U为所述顶点与对应的所述子虚像面TB11的中心点的连线朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且与所述垂直面之间的夹角,下虚像面TB113的前倾角为α L为所述底点与对应的所述子虚像面TB11的中心点的连线朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且与所述垂直面之间的夹角,子虚像面TB11的前倾角α0为所述顶点与所述底点的连线朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且与所述垂直面之间的夹角。
此外,在所述多个子虚像面TB11中,前倾角大于或等于45°的上虚像面TB112和下虚像面TB113的数量越多,所述抬头显示系统1能够在所述多个子眼盒面EB11消除副像的效果越好,即,驾驶员在驾驶室内在各个高度上观察所述投影图像114越清晰,从而提高了驾驶体验。
综上所述,本申请提供了一种抬头显示系统1,所述抬头显示系统1包括夹层玻璃10、投影组件20及眼盒EB1。所述投影组件20中的投影光源21投影至所述夹层玻璃10上至少一个投影显示区11形成的投影图像114具有虚像面TB10,所述眼盒EB1具有透过所述投影显示区11观察到投影图像114的眼盒面EB10,所述虚像面TB10具有与所述眼盒面EB10中处于不同位置的多个子眼盒面EB11对应的多个子虚像面TB11,每个子虚像面TB11包括上虚像面TB112和下虚像面TB113,至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且其前倾角大于或等于45°,使得对应在所述投影显示区11的区域消除副像所需的多个理论楔角值局部离散分布程度减小,从而使所述多个理论楔角值的分布向实际楔角拟合线汇集,即减小了所述多个理论楔角值的局部极差值,进而提升了所述抬头显示系统1消除副像的效果。此外,所述至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113近似于平铺于地面,从而使得驾驶员观察所述投影图像114时感到更好的贴地感及现实增强感,进而提升了驾驶体验。因此,本申请提供的抬头显示系统1能够减弱甚至消除投影副像问题,提升乘驶体验。
请参照图5及图6,在本实施方式中,至少一个所述子虚像面TB11朝向从子眼盒面EB11 观察对应的子虚像面TB11的方向倾斜且其前倾角大于或等于45°。图5以所述子虚像面TB11朝向地面下凹进行示意,可以理解地,图5并未对所述子虚像面TB11的形状进行限定。
在所述主光轴平面上(请参见图5),在所述多个子虚像面TB11中至少一个所述子虚像面TB11的前倾角α0大于或等于45°,或者,大于或等于60°,或者,大于或等于75°,或者,等于90°(实现与地面贴合),实现投影图像114整体前倾,能够明显改善在所述投影显示区11中的副像现象。此外,在一些特殊场景中,至少一个所述子虚像面的前倾角α0大于90°且小于或等于95°。
具体地,图6以所述多个子眼盒面EB11中位于最高及最低的两个所述子眼盒面EB11及相对应的两个所述子虚像面TB11进行示意,图6中虚线框表示两个所述子虚像面TB11不前倾时,从位于最高及最低的两个所述子眼盒面EB11观察相对应的两个所述子虚像面TB11时无投影副像的多个理论楔角值的散点分布轮廓,图6中实线框表示两个所述子虚像面TB11的前倾角大于或等于45°时,从位于最高及最低的两个所述子眼盒面EB11观察相对应的两个所述子虚像面TB11时无投影副像的多个理论楔角值的散点分布轮廓。位于虚线框内的虚线段表示从所述子眼盒面EB11的中垂线上观察所述子虚像面TB11的中心点无投影副像时的多个理论楔角值的连线。△W表示局部极差值中的最大值,其中,局部极差值为到所述玻璃底边12距离为X的某一位置处的多个理论楔角值中最大值与最小值之差。△W before表示两个所述子虚像面TB11不前倾时多个理论楔角值的局部极差值中的最大值,△W after表示两个所述子虚像面TB11的前倾角大于或等于45°多个理论楔角值的局部极差值中的最大值。由图6可以看出两个所述子虚像面TB11的前倾角大于或等于45°相比于不前倾,消除投影副像的多个理论楔角值的最大局部极差值减小了△W1+△W2,且消除投影副像的多个理论楔角值的分布向所述位于虚线框内的虚线段汇集,从而提高了投影副像的改善效果。
请再次参照图3,在本实施方式中,主光轴平面与对应的所述子虚像面TB11的相交线具有顶点和底点,所述子虚像面TB11的顶点与对应的子眼盒面EB11的中心点之间的距离为VID1,所述子虚像面TB11的底点与对应的子眼盒面EB11的中心点之间的距离为VID2,当所述子虚像面TB11朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜时,VID1>VID2,从而改善投影副像。
请再次参照图3及图7,在本实施方式中,所述子虚像面TB11朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜,且VID1/VID2≥1.5。
在所述主光轴平面上(请参见图3),所述子眼盒面EB11的中心点与对应的所述子虚像面TB11的中心点的连线与地面之间的夹角为下视角LDA,所述子虚像面TB11的中心点位于所述子眼盒面EB11的中心点的下方时,所述下视角LDA为负值,反之为正值。所述子眼盒面EB11的中心点与对应的所述子虚像面TB11的顶点的连线,与所述子眼盒面EB11的中心点与对应的所述子虚像面TB11的底点的连线之间的夹角为垂直视场角VFOV。
以所述下视角LDA=-1.5/-2.5/-3.5/-4.5deg,所述垂直视场角VFOV=2.5/3.0/3.5/4.0/4.5/5.0/5.5/6.0deg为例进行示意(请参见图7),模拟计算出VID1/VID2与所述子虚像面TB11的前倾角之间的关系。其中,横坐标表示所述子虚像面TB11的前倾角,纵坐标表示VID1/VID2,每一根线条代表着一个所述下视角LDA对应与一个所述垂直视场角VFOV的情形。由模拟结果可以看出所述垂直视场角VFOV越大时,VID1与VID2的比值越大,从而消除投影副像的多个理论楔角值的散点分布越汇集,对应副像的改善效果越明显。
此外,在所述下视角LDA恒定时,所述子虚像面TB11的前倾角越大,VID1/VID2的比值越大,对应副像的改善效果越明显。
此外,当VID1/VID2≥1.5时,对应所述子虚像面TB11的前倾角大于或等于75°,对应副像的改善效果越明显,同时还能够带来更好的贴地感及现实增强感。
请参照图8,在本实施方式中,所述区段113内的任一点位置处具有测定楔角和消除副像的多个理论楔角值,将所述区段113内各点位置处的测定楔角进行拟合得到实际楔角拟合线L0,将所述区段113内各点位置处的多个理论楔角值进行拟合得到第一理论楔角拟合线 L1,所述实际楔角拟合线L0与所述第一理论楔角拟合线L1的最大偏差值小于或等于0.07mrad。
在本实施方式中,所述第一理论楔角拟合线L1为所述眼盒面EB10透过所述投影显示区11中区段113范围内观察所述投影图像114无投影副像时的多个理论楔角值拟合所得的线条。所述实际楔角拟合线L0与所述第一理论楔角拟合线L1的最大偏差值△αmax小于或等于0.07mrad,使得所述实际楔角拟合线L0上各点位的楔角值与消除副像所需的理论楔角值的偏差较小,从而使得所述投影显示区11的楔角能够改善从所述眼盒面EB10观察所述投影图像114投影副像问题。
请再次参照图8,在本实施方式中,所述实际楔角拟合线L0和所述第一理论楔角拟合线L1均符合多项式函数。
在本实施方式中,所述实际楔角拟合线L0和所述第一理论楔角拟合线L1可以为直线、曲线或者直线与曲线的组合等,只要实际楔角拟合线L0和所述第一理论楔角拟合线L1均符合多项式函数即可。其中,所述实际楔角拟合曲线各处平滑,防止局部楔角值突变加重投影副像问题。
请再次参照图8,在本实施方式中,所述区段113内楔角连续单调变小的最大变化率ROC:ROC≤0.3mrad/100mm;或,ROC≤0.2mrad/100mm;或,ROC≤0.1mrad/100mm;或,ROC≤0.05mrad/100mm。
在本实施方式中,图8中的L0为每个所述投影显示区11中所述区段113区域的楔角随着到所述夹层玻璃10的玻璃底边12的距离的变化线。K1为L0在某一点处的切线,切线的斜率表示在该点位置处楔角变小的变化率的绝对值。所述区段113内的楔角的最大变化率过大会增加所述夹层玻璃10的生产制备难度及生产成本,不利于所述夹层玻璃10的生产效率,从而影响所述夹层玻璃10的生产效率。此外,所述区段113内的楔角的最大变化率过大,容易导致局部楔角突变而加重投影副像问题。因此,所述区段113内的楔角最大变化率不宜过大。具体地,所述区段113内楔角从所述下侧边112向所述上侧边111连续非线性单调变小的最大变化率ROC:ROC≤0.3mrad/100mm。优选地,所述区段113内楔角从所述下侧边112向所述上侧边111连续非线性单调变小的最大变化率ROC:ROC≤0.2mrad/100mm。更优选的,所述区段113内楔角从所述下侧边112向所述上侧边111连续非线性单调变小的最大变化率ROC:ROC≤0.1mrad/100mm。更优选的,所述区段113内楔角从所述下侧边112向所述上侧边111连续非线性单调变小的最大变化率ROC:ROC≤0.05mrad/100mm。
请再次参照图2,在本实施方式中,所述多个子虚像面TB11中相邻的两个所述子虚像面TB11之间的夹角小于或等于15°。
在本实施方式中,所述多个子虚像面TB11中相邻的两个所述子虚像面TB11之间的夹角小于或等于15°,优选地,小于或等于10°,更优选地,小于等于5°,更优选地,小于或等于2°。由于,所述多个子虚像面TB11中,以处于所述多个子虚像面TB11正中间的子虚像面TB11为界面。由于从所述界面往上,所述多个子虚像面TB11对应在所述投影显示区11消除投影副像所需的多个理论楔角值的局部离散分布越来越大,从所述界面往下,所述多个子虚像面TB11对应在所述投影显示区11消除投影副像所需的多个理论楔角值的局部离散分布也越来越大。因此,从所述界面往上,所述子虚像面TB11的前倾角逐渐增大,从所述界面往下,所述子虚像面TB11的前倾角逐渐增大,使得所述多个子虚像面TB11对应在所述投影显示区11消除投影副像所需的多个理论楔角值的局部离散分布更小,使所述多个理论楔角值的分布向所述实际楔角拟合线L0汇集,即,所述多个理论楔角值的局部极差值更小,能够更好的改善在所述多个子眼盒面EB11观察所述投影图像114的投影副像问题。为了使得驾驶员在驾驶室内不同高度上观察所述投影图像114时能够有一致的成像感受,所述多个子虚像面TB11中相邻的两个所述子虚像面TB11之间的夹角小于或等于15°,优选地,小于或等于10°,更优选地,小于等于5°,更优选地,小于或等于2°,从而提高乘驶体验。
其中,相邻的两个所述子虚像面TB11之间的夹角是指,在所述主光轴平面上,相邻的两个所述子虚像面TB11中一个所述子虚像面TB11的顶点与底点的连线的延长线,与另一个 所述子虚像面TB11的顶点与底点的连线的延长线的夹角。
请再次参照图1,在本实施方式中,在所述夹层玻璃10的玻璃底边12指向玻璃顶边13的方向上,所述区段113的长度与所述投影显示区11的长度之比不低于70%。
在本实施方式中,在所述夹层玻璃10的玻璃底边12指向玻璃顶边13的方向上,所述区段113的长度d1与所述投影显示区11的长度d2之比不低于70%,优选地,所述区段113的长度与所述投影显示区11的长度之比不低于75%、或不低于80%、或不低于85%、或不低于90%、或不低于95%、或等于100%。其中,所述长度是在从所述下侧边112向所述上侧边111前进方向上测量得到的。
请参照图9及图10,在本实施方式中,所述至少一个投影显示区11包括至少一个第一投影显示区115及至少一个第二投影显示区116。所述投影光源21入射至所述第一投影显示区115形成第一投影图像1151,所述第一投影图像1151的虚像距离为7米-100米。所述投影光源21入射至所述第二投影显示区116形成第二投影图像1161,所述第二投影图像1161的虚像距离为1米-6米。
在本实施方式中,所述第一投影显示区115用于远距离投影显示,具体地,所述第一投影显示区115用于显示信息与真实场景融合,用于投影显示现实世界中的对象相对应的复杂图形,实现路况-车辆-驾驶员之间的交互。所述第二投影显示区116用于近距离投影显示,具体地,所述第二投影显示区116用于近距离显示车辆运行参数信息,可以减少低头看仪表板或相关信息,方便驾驶员人眼远近切换,减少低头查看仪表板,最大程度的集中驾驶员行车时的注意力,提升行车安全性。
请参照图11,在本实施方式中,所述至少一个投影光源21包括至少一个第一投影光源211和至少一个第二投影光源212,所述第一投影光源211入射至所述第一投影显示区115,所述第二投影光源212入射至所述第二投影显示区116。
在本实施方式中,所述第一投影光源211用于投影至所述第一投影显示区115进行远距离投影显示,具体地,所述第一投影显示区115用于显示信息与真实场景融合,用于投影显示现实世界中的对象相对应的复杂图形,实现路况-车辆-驾驶员之间的交互。所述第二投影光源212用于投影至所述第二投影显示区116进行近距离投影显示,具体地,所述第二投影显示区116用于近距离显示车辆运行参数信息,可以减少低头看仪表板或相关信息,方便驾驶员人眼远近切换,减少低头查看仪表板,最大程度的集中驾驶员行车时的注意力,提升行车安全性。在一实施方式中,所述第一投影光源211与所述第二投影光源212均靠近所述玻璃底边12设置。在另一实施方式中,所述第一投影光源211靠近所述玻璃顶边13设置,使得所述第一投影光源211入射至所述第一投影显示区115的投影光线能够保持最佳的入射角。具体地,所述第一投影光源211安装在车辆顶内表面。所述第二投影光源212靠近所述玻璃底边12设置,使得所述第二投影光源212入射至所述第二投影显示区116的投影光线能够保持最佳的入射角。具体地,所述第二投影光源212安装在车辆的仪表台内部。需要说明的是,图11以所述第一投影光源211与所述第二投影光源212均靠近所述玻璃底边12设置进行示意,可以理解地,图11未限定所述第一投影光源211与所述第二投影光源212的位置设置。
请参照图12,在本实施方式中,所述夹层玻璃10包括第一透明基板14、第二透明基板15以及中间粘结层16。所述中间粘结层16设于所述第一透明基板14与所述第二透明基板15之间,用于粘结所述第一透明基板14及所述第二透明基板15。所述第一透明基板14、所述第二透明基板15及所述中间粘结层16中至少一者在所述投影显示区11具有楔角。
在一实施方式中,所述投影显示区11中的楔角可以仅由中间粘结层16提供,即,所述第一透明基板14及所述第二透明基板15的在所述投影显示区11的楔角均为0,所述中间粘结层16在所述投影显示区11具有楔角,且等于所述投影显示区11的楔角。
在另一实施方式中,所述投影显示区11中的楔角可以由第一透明基板14和/或第二透明基板15与中间粘结层16提供,即,所述第一透明基板14和/或所述第二透明基板15在所述投影显示区11具有楔角,所述中间粘结层16在所述投影显示区11具有楔角,且所述第一透明基板14和/或所述第二透明基板15在所述投影显示区11的楔角与所述中间粘结层16在所 述投影显示区11的楔角之和等于所述投影显示区11的楔角。其中,考虑到第一透明基板14和/或第二透明基板15的生产难度,选用第一透明基板14和/或第二透明基板15的楔角为恒定楔角。
本申请实施方式还提供了一种抬头显示系统1的设计方法。请参照图4、图13、图14及图15,在本实施方式中,所述抬头显示系统1的设计方法包括提供投影组件20及夹层玻璃10,所述投影组件20发出的投影光线入射到所述夹层玻璃10上的至少一个投影显示区11。根据车内的观察者设计位于车内的眼盒面EB10。根据车内的观察者透过每个投影显示区11观察到的投影图像114设计具有朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜的虚像面TB10。其中,所述眼盒面EB10包括依次从低到高的多个子眼盒面EB11,所述虚像面TB10包括依次从高到低的多个子虚像面TB11,其中,每个子虚像面TB11对应一个子眼盒面EB11,每个子虚像面TB11包括上虚像面TB112和下虚像面TB113,至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且其前倾角大于或等于45°。在每个子眼盒面EB11上选取观察点阵EB111,且在每个子虚像面TB11上选取虚像点阵TB111,所述观察点阵EB111中的点与所述虚像点阵TB111中的点的连线穿过对应的投影显示区11,所述连线与所述投影显示区11的交点为入射点。根据所述投影组件20、夹层玻璃10和多条连线计算对应的入射点位置处的投影图像114无副像时夹层玻璃10的多个理论楔角值。根据所述多个理论楔角值以及各个所述理论楔角值对应的入射点到夹层玻璃10的玻璃底边12的距离,拟合以得到楔角随着入射点到玻璃底边12的距离的第一理论楔角拟合线L1。以及根据所述第一理论楔角拟合线L1确定所述夹层玻璃10在对应的所述投影显示区11的楔角值。
在本实施方式中,所述夹层玻璃10用于车辆的前挡风玻璃,且应用于车辆的抬头显示系统1中。所述夹层玻璃10的设计方法包括S10、S20、S30、S40、S50、S60及S70。以下将S10、S20、S30、S40、S50、S60及S70进行详细说明。
S10,提供投影组件20及夹层玻璃10,所述投影组件20发出的投影光线入射到所述夹层玻璃10上的至少一个投影显示区11。
S20,根据车内的观察者设计位于车内的眼盒面EB10。
S30,根据车内的观察者透过每个投影显示区11观察到的投影图像114设计具有朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜的虚像面TB10。
在本实施方式中,眼盒面EB10包括依次从低到高的多个子眼盒面EB11,虚像面TB10包括依次从高到低的多个子虚像面TB11。其中,每个子虚像面TB11对应一个子眼盒面EB11。具体地,所述眼盒面EB10用于模拟观察者坐在车辆的驾驶室中时眼睛所处平面。其中,所述多个子眼盒面EB11用于模拟观察者的眼睛处于不同的高度,即所述多个子眼盒面EB11用于模拟观察者不同的视角。所述投影显示区11反射至少部分的投影光线进入所述眼盒面EB10,在所述车辆的夹层玻璃10前方形成投影图像114,所述投影图像114具有所述虚像面TB10。形成所述投影图像114的投影光线进入不同位置的所述子眼盒面EB11具有不同位置的子虚像面TB11。
其中,每个子虚像面TB11包括上虚像面TB112和下虚像面TB113,对于每个所述子虚像面TB11,将所述子虚像面TB11的中心点与对应的所述子眼盒面EB11的中心点进行连线,并穿过所述子虚像面TB11的中心点作一条平行于地面且垂直于从子眼盒面EB11观察对应的子虚像面TB11的方向的直线,以所述连线和所述直线构成的平面为基准面,所述子虚像面TB11的位于所述基准面上方的部分为所述上虚像面TB112,所述子虚像面TB11的位于所述基准面下方的部分为所述下虚像面TB113。
将所述子虚像面TB11中的上虚像面TB112朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜,即实现投影图像114局部前倾,则增大了所述上虚像面TB112与所述子虚像面TB11对应的所述子眼盒面EB11之间的距离,从而减小了消除所述上虚像面TB112对应的副像所需的理论楔角值,进而减小了所述投影显示区11中的多个理论楔角值的局部离散分布,使所述多个理论楔角值的分布向第一理论楔角拟合线L1汇集,即减小了所述多个理 论楔角值的局部极差值。
将所述子虚像面TB11中的下虚像面TB113朝向从子眼盒面观察对应的子虚像面的方向倾斜,即实现投影图像114局部前倾,则减小了所述下虚像面TB113与所述子虚像面TB11对应的所述子眼盒面EB11之间的距离,从而增大了消除所述上虚像面TB112对应的副像所需的理论楔角值,进而减小了所述投影显示区11中的多个理论楔角值的局部离散分布,使所述多个理论楔角值的分布向第一理论楔角拟合线L1汇集,即减小了所述多个理论楔角值的局部极差值。
将所述子虚像面TB11中的上虚像面TB112和下虚像面TB113均朝向从子眼盒面观察对应的子虚像面的方向倾斜,即实现投影图像114整体前倾,从而可以减小所述投影显示区11中的多个理论楔角值的整体离散分布,使所述多个理论楔角值的分布向第一理论楔角拟合线L1汇集,即减小了所述多个理论楔角值的局部极差值。
因此,通过将所述子虚像面TB11中的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜,最终提升了所述抬头显示系统1消除副像的效果。
其中,所述上虚像面TB112和所述下虚像面TB113的前倾角越大,所述投影显示区11消除副像所需的多个理论楔角值的离散分布程度越小。此外,所述前倾角可以通过投影组件20进行调整,例如调节投影组件20中的曲面反射镜及PGU面的倾角等来设置所述上虚像面TB112和所述下虚像面TB113的前倾角。
此外,所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且前倾角较大时,使得所述上虚像面TB112和/或所述下虚像面TB113近似于平铺于地面,从而使得驾驶员观察所述投影图像114时感到更好的贴地感及现实增强感,进而提升了驾驶体验。
具体地,至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且其前倾角大于或等于45°,或者,大于或等于60°,或者,大于或等于75°,或者,大于或等于90°且小于或等于95°,能够明显改善在所述投影显示区11中的副像现象。
需要说明的是,设计的每个所述子虚像面TB11为平面(请参见图4中的(a))或者曲面(请参见图4中的(b)和(c))。将每个所述子眼盒面EB11的中心点与对应的所述子虚像面TB11的中心点连线,将经过所述连线且垂直于地面的平面作为主光轴平面。所述主光轴平面与对应的所述子虚像面TB11的相交线具有顶点和底点,上虚像面TB112的前倾角α U为所述顶点与对应的所述子虚像面TB11的中心点的连线朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且与所述垂直面之间的夹角,下虚像面TB113的前倾角为α L为所述底点与对应的所述子虚像面TB11的中心点的连线朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且与所述垂直面之间的夹角,子虚像面TB11的前倾角α0为所述顶点与所述底点的连线朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且与所述垂直面之间的夹角。其中,垂直面为垂直于地面且垂直于从子眼盒面EB11观察对应的子虚像面TB11的方向的平面。
S40,在每个子眼盒面EB11上选取观察点阵EB111,且在每个子虚像面TB11上选取虚像点阵TB111,所述观察点阵EB111中的点与所述虚像点阵TB111中的点的连线穿过对应的投影显示区11,所述连线与所述投影显示区11的交点为入射点。
在本实施方式中,在每个子眼盒面EB11上选取观察点阵EB111:m×n。其中,m≥1且为自然数,n≥1且为自然数。举例而言,m可以但不限于为3、5或8等,n可以但不限于为3、5或8等。在每个子虚像面TB11上选取虚像点阵TB111:i×j。其中,i≥1且为自然数,j≥1且为自然数。举例而言,i可以但不限于为3、5或8等,j可以但不限于为3、5或8等。
在本实施方式中,所述观察点阵EB111中每一个点对应模拟观察者的眼睛的位置。所述虚像点阵TB111中每一个点对于模拟投影光线在所述夹层玻璃10反射至所述眼盒面EB10上某一点上并在所述虚像面上形成的的虚像。具体的,所述虚像点阵TB111中每一个点对于所 述观察点阵EB111中一个或多个点,即,观察者在所述子眼盒面EB11上的不同位置可以看到所述子虚像面TB11上同一位置的虚像。此外,观察者在所述子眼盒面EB11上同一位置可以看到所述子虚像面上不同位置的虚像。
S50,根据所述投影组件20、夹层玻璃10和多条连线计算对应的入射点位置处的投影图像114无副像时夹层玻璃10的多个理论楔角值。
在本实施方式中,在每一个对应设置的所述子眼盒面EB11与所述子虚像面TB11中,所述观察点阵EB111中每一个点与所述虚像点阵TB111中每一个点连接与所述夹层玻璃10存在交点,即入射点。通过计算所述观察点阵EB111中每一点处观察者看到处于所述子虚像面上的虚像无反射副像时,所述入射点处的理论楔角值。用于模拟计算的所述入射点的数量即为所述理论楔角值的数量。
S60,根据所述多个理论楔角值以及各个所述理论楔角值对应的入射点到夹层玻璃10的玻璃底边12的距离,拟合以得到楔角随着入射点到玻璃底边12的距离的第一理论楔角拟合线L1。
在本实施方式中,所述多个理论楔角值与所述入射点到所述夹层玻璃10的玻璃底边12的距离呈现离散分布。具体地,在一实施方式中,针对每个对应的所述子眼盒面EB11与所述子虚像面TB11可以计算出一个所述多个理论楔角值的子离散图,将多个子离散图集合在同一坐标系中形成离散图。通过对所述多个理论楔角值的离散图进行函数拟合出第一理论楔角拟合线L1。举例而言,所述函数可以但不限于为一次、二次、三次等多项式函数或者线性函数、指数函数、幂函数、对数函数等基本函数以及它们组成的复合函数。数据曲线拟合处理可在Microsoft Excel,或WPS或MATLAB或OriginPro等软件中完成。由于观察者在所述夹层玻璃10上某一点可以看到多个不同距离或角度的像,因此该点处所述理论楔角值具有多个。但所述夹层玻璃10上某一点的楔角值只能为一个值。此外,与该点沿从玻璃底边12到玻璃顶边13方向上同一距离的其它点,理论楔角值也具有多个,所述夹层玻璃10上到玻璃底边12某一距离的楔角值适合为一个值。因此,需要对所述夹层玻璃10上每一所述入射点处的楔角值进行适当选取,以减弱副像现象。通过对所述多个理论楔角值进行函数拟合,可以使得所述夹层玻璃10在所述投影显示区11上的楔角值与所述多个理论楔角值的偏差更小,从而减小了投影至所述夹层玻璃10上的所述投影显示区11的投影副像现象,以提高所述夹层玻璃10的成像质量。
具体地,设定楔角(Y HUD)随着从沿玻璃底边12到顶边距离(X)变化而变化,所设定的所述第一理论楔角拟合线L1的数学表达式可以为多种形式,例如,Y HUD=A n×X^ n+A (n-1)×X^ (n-1)+…+A 1×X+B(B为X=0时的楔角值)。一般设定n=1~4即可,即为1~4阶函数。此外,针对不同身高、坐姿的人群的分布比重或者某些特定点位,可以设定不同的权重以反映到对应的理论楔角散点上。例如,以所述多个子眼盒面EB11的数量为3个进行示例,对应高度分布从高到低的所述多个子眼盒面EB11对应的理论楔角值拟合权重设为1:1:1(各个高度的子眼盒面EB11权重相同)、3:2:2(高度最高的子眼盒面EB11权重更重)、2:2:3(高度最低的子眼盒面EB11权重更重)或者2:3:2(中间的子眼盒面EB11权重更重)等。
在另一实施方式中,针对每一所述入射点处对应的所述多个理论楔角值,选取该点处对应的所述多个理论楔角值中极大值与极小值的平均数,然后将每一所述入射点处的所述多个理论楔角值的极大值与极小值的平均数连接起来形成所述第一理论楔角拟合线L1。
S70,根据所述第一理论楔角拟合线L1确定所述夹层玻璃10在对应的所述投影显示区11的楔角值。
在本实施方式中,通过所述第一理论楔角拟合线L1确定所述夹层玻璃10在对应的所述投影显示区11的楔角值,以减弱在所述眼盒面EB10观察所述夹层玻璃10在所述投影显示区11的投影副像现象。具体地,通过所述虚像面TB10的选取设计,可以计算出所述夹层玻璃10中投影显示区11的所述多个理论楔角值的分布,并拟合出所述投影显示区11对应的所述第一理论楔角拟合线L1,从而确定所述夹层玻璃10在对应的所述投影显示区11的楔角值。
本申请实施方式提供的抬头显示系统1的设计方法,通过将至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且其前倾角大于或等于45°,使得对应在所述投影显示区11的区域消除副像所需的多个理论楔角值的局部离散分布程度减小,从而使所述多个理论楔角值的分布向所述第一理论楔角拟合线L1汇集,即减小了所述多个理论楔角值的局部极差值,进而提升了所述抬头显示系统1消除副像的效果。此外,所述至少一个所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113近似于平铺于地面,从而使得驾驶员观察所述投影图像114时感到更好的贴地感及现实增强感,进而提升了驾驶体验。
请再次参照图5,在本实施方式中,所述“根据车内的观察者透过每个投影显示区11观察到的投影图像114设计具有朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜的虚像面TB10”包括设计至少一个所述子虚像面TB11朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜且其前倾角大于或等于45°。图5以所述子虚像面TB11朝向地面下凹进行示意,可以理解地,图5并未对所述子虚像面TB11的形状进行限定。
在所述主光轴平面上,在所述多个子虚像面TB11中至少一个所述子虚像面TB11的前倾角α0大于或等于45°,或者,大于或等于60°,或者,大于或等于75°,或者,等于90°(实现与地面贴合),实现所述投影图像114整体前倾,能够明显改善在所述投影显示区11中的副像现象。此外,在一些特殊场景中,至少一个所述子虚像面的前倾角α0大于90°且小于或等于95°。
请再次参照图3,在本实施方式中,主光轴平面与对应的所述子虚像面TB11的相交线具有顶点和底点,所述子虚像面TB11的顶点与对应的子眼盒面EB11的中心点之间的距离为VID1,所述子虚像面TB11的底点与对应的子眼盒面EB11的中心点之间的距离为VID2。所述“根据车内的观察者透过每个投影显示区11观察到的投影图像114设计具有朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜的虚像面TB10”包括当所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜时,VID1>VID2,从而改善投影副像。
请再次参照图3及图7,在本实施方式中,所述子虚像面TB11的所述上虚像面TB112和/或所述下虚像面TB113朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜,且VID1/VID2≥1.5。
在所述主光轴平面上(请参见图3),所述子眼盒面EB11的中心点与对应的所述子虚像面TB11的中心点的连线与地面之间的夹角为下视角LDA,所述子虚像面TB11的中心点位于所述子眼盒面EB11的中心点的下方时,所述下视角LDA为负值,反之为正值。所述子眼盒面EB11的中心点与对应的所述子虚像面TB11的顶点的连线,与所述子眼盒面EB11的中心点与对应的所述子虚像面TB11的底点的连线之间的夹角为垂直视场角VFOV。
以所述下视角LDA=-1.5/-2.5/-3.5/-4.5deg,所述垂直视场角VFOV=2.5/3.0/3.5/4.0/4.5/5.0/5.5/6.0deg为例进行示意(请参见图7),模拟计算出VID1/VID2与所述子虚像面TB11的前倾角之间的关系。其中,横坐标表示所述子虚像面TB11的前倾角,纵坐标表示VID1/VID2,每一根线条代表着一个所述下视角LDA对应与一个所述垂直视场角VFOV的情形。由模拟结果可以看出所述垂直视场角VFOV越大时,VID1与VID2的比值越大,从而消除投影副像的多个理论楔角值的散点分布越汇集,对应副像的改善效果越明显。
此外,在所述下视角LDA恒定时,所述子虚像面TB11的前倾角越大,VID1/VID2的比值越大,对应副像的改善效果越明显。
此外,当VID1/VID2≥1.5时,对应所述子虚像面TB11的前倾角大于或等于75°,对应副像的改善效果越明显,同时还能够带来更好的贴地感及现实增强感。
请再次参照图14,在本实施方式中,所述“根据车内的观察者透过每个投影显示区11观察到的投影图像114设计具有朝向从子眼盒面EB11观察对应的子虚像面TB11的方向倾斜的虚像面TB10”包括设计所述多个子虚像面TB11中相邻的两个所述子虚像面TB11之间的夹角小于或等于15°。
在本实施方式中,所述多个子虚像面TB11中相邻的两个所述子虚像面TB11之间的夹角小于或等于15°,优选地,小于或等于10°,更优选地,小于等于5°,更优选地,小于或等于2°。由于,所述多个子虚像面TB11中,以处于所述多个子虚像面TB11正中间的子虚像面TB11为界面。由于从所述界面往上,所述多个子虚像面TB11对应在所述投影显示区11消除投影副像所需的多个理论楔角值的局部离散分布越来越大,从所述界面往下,所述多个子虚像面TB11对应在所述投影显示区11消除投影副像所需的多个理论楔角值的局部离散分布也越来越大。因此,从所述界面往上,所述子虚像面TB11的前倾角逐渐增大,从所述界面往下,所述子虚像面TB11的前倾角逐渐增大,使得所述多个子虚像面TB11对应在所述投影显示区11消除投影副像所需的多个理论楔角值的局部离散分布程度更小,使所述多个理论楔角值的分布向所述第一理论楔角拟合线L1汇集,即,所述多个理论楔角值的局部极差值更小,能够更好的改善在所述多个子眼盒面EB11观察所述投影图像114的投影副像问题。为了使得驾驶员在驾驶室内不同高度上观察所述投影图像114时能够有一致的成像感受,所述多个子虚像面TB11中相邻的两个所述子虚像面TB11之间的夹角小于或等于15°,优选地,小于或等于10°,更优选地,小于等于5°,更优选地,小于或等于2°,从而提高乘驶体验。
其中,相邻的两个所述子虚像面TB11之间的夹角是指,在所述主光轴平面上,相邻的两个所述子虚像面TB11中一个所述子虚像面TB11的顶点与底点的连线的延长线,与另一个所述子虚像面TB11的顶点与底点的连线的延长线的夹角。
请再次参照图15,在本实施方式中,所述多个理论楔角值的最大局部极差值△W与所述多个理论楔角值的整体极差值△C的比值为:△W/△C≤0.9。
所述多个理论楔角值的最大局部极差值△W与所述多个理论楔角值的整体极差值△C的比值为:△W/△C≤0.9,可以使得所述多个理论楔角值的离散程度更小以增加所述理论楔角拟合线的平滑程度,即降低了所述理论楔角拟合线的斜率,从而减小了所述夹层玻璃10的楔角变化率,降低了所述夹层玻璃10的生产难度。需要说明的是,所述多个理论楔角值的最大局部极差值△W是指局部极差值中的最大值,其中,局部极差值为到所述夹层玻璃10的玻璃底边12距离为X的某一位置处的多个理论楔角值中最大值与最小值之差。所述多个理论楔角值的整体极差值△C是指所有理论楔角值中最大值与最小值之差。
请参照图9、图13及图16,在本实施方式中,所述至少一个投影显示区11包括至少两个第一投影显示区115,或者至少两个第二投影显示区116,拟合得到楔角随入射点到所述玻璃底边12的距离的至少两条所述第一理论楔角拟合线L1。当相邻两条所述第一理论楔角拟合线L1的最大偏差值△Xmax大于0.15mrad时,在所述“根据所述第一理论楔角拟合线L1确定所述夹层玻璃10在对应的所述投影显示区11的楔角值”之后,所述抬头显示系统1的设计方法还包括调整所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中其中一条对应的虚像面TB10之间的距离。重新计算得出新的多个所述理论楔角值。根据所述新的多个理论楔角值以及各个理论楔角值对应的入射点到所述玻璃底边12的距离,拟合以得到楔角随着入射点到所述玻璃底边12的距离的第二理论楔角拟合线L2。以及判断所述第二理论楔角拟合线L2与相邻两条所述第一理论楔角拟合线L1中的另一条的最大偏差值△Xmax是否小于或等于0.15mrad。若否,重复以上步骤。若是,根据所述第二理论楔角拟合线L2确定所述夹层玻璃10在对应的所述第一投影显示区115或所述第二投影显示区116的楔角值。
在本实施方式中,当相邻两条所述第一理论楔角拟合线L1具有重叠部分时,最大偏差值△Xmax等于重叠部分中的两条所述第一理论楔角拟合线L1的差值中的最大值;当相邻两条所述第一理论楔角拟合线L1没有重叠部分时,最大偏差值△Xmax等于两条所述第一理论楔角拟合线L1的最相邻两端的楔角值之差。
当最大偏差值△Xmax大于0.15mrad时,需要调整所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中任一条对应的虚像面TB10之间的距离,以将设计的所述第一理论楔角拟合线L1和调整后得到的所述第二理论楔角拟合线L2之间的最大偏差值△Xmax调整到小于或等于0.15mrad,或者小于或等于0.10mrad,或者小于或等于0.08mrad,或者小于或等于0.05mrad。
具体地,在所述“根据所述第一理论楔角拟合线L1确定所述夹层玻璃10在对应的所述投影显示区11的楔角值”之后,需要对相邻两条所述第一理论楔角拟合线L1中至少一条进行调整。
调整所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中其中一条对应的虚像面TB10之间的距离。
其中,调整所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中其中一条对应的虚像面TB10之间的距离,可以调整消除投影副像所需的楔角值。相同条件下,当所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中其中一条对应的虚像面TB10之间的距离越大时,消除投影副像所需的楔角值越小。在本实施方式中,可以增大其中一条所述第一理论楔角拟合线L1对应的虚像面TB10与所述眼盒面EB10之间的距离,和/或减小另一条所述第一理论楔角拟合线L1对应的虚像面TB10与所述眼盒面EB10之间的距离,使相邻两条所述第一理论楔角拟合线L1更加靠近设计目标。
重新计算得出新的多个所述理论楔角值。
在本实施方式中,调整所述虚像面TB10与所述眼盒面EB10之间的距离之后,通过前述实施方式的计算方法计算出来的所述多个理论楔角值能够拟合出更加靠近设计目标的拟合线。
根据所述新的多个理论楔角值以及各个理论楔角值对应的入射点到所述玻璃底边12的距离,拟合以得到楔角随着入射点到所述玻璃底边12的距离的第二理论楔角拟合线L2。
判断所述第二理论楔角拟合线L2与相邻两条所述第一理论楔角拟合线L1中的另一条的最大偏差值△Xmax是否小于或等于0.15mrad。
在本实施方式中,判断所述第二理论楔角拟合线L2与相邻两条所述第一理论楔角拟合线L1中的另一条的最大偏差值△Xmax是否小于或等于0.15mrad。若否,则重复调整上述步骤。若是,则进行楔角值的选取。
根据所述第二理论楔角拟合线L2确定所述夹层玻璃10在对应的所述第一投影显示区115或所述第二投影显示区116的楔角值。
请参照图9、图13及图17,在本实施方式中,所述至少一个投影显示区11包括至少一个第一投影显示区115及至少一个第二投影显示区116,拟合得到楔角随着入射点到所述玻璃底边12的距离的至少两条所述第一理论楔角拟合线L1。当相邻两条所述第一理论楔角拟合线L1的最大偏差值△Xmax大于0.2mrad时,在所述“根据所述第一理论楔角拟合线L1确定所述夹层玻璃10在对应的所述投影显示区11的楔角值”之后,所述抬头显示系统1的设计方法还包括调整所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中其中一条对应的虚像面TB10之间的距离。重新计算得出新的多个所述理论楔角值。根据所述新的多个理论楔角值以及各个理论楔角值对应的入射点到所述玻璃底边12的距离,拟合以得到楔角随着入射点到所述玻璃底边12的距离的第三理论楔角拟合线L3。以及判断所述第三理论楔角拟合线L3与相邻两条所述第一理论楔角拟合线L1中的另一条的最大偏差值△Xmax是否小于或等于0.15mrad。若否,重复以上步骤。若是,根据所述第三理论楔角拟合线L3确定所述夹层玻璃10在对应的所述第一投影显示区115或所述第二投影显示区116的楔角值。
在本实施方式中,当相邻两条所述第一理论楔角拟合线L1具有重叠部分时,最大偏差值△Xmax等于重叠部分中的两条所述第一理论楔角拟合线L1的差值中的最大值;当相邻两条所述第一理论楔角拟合线L1没有重叠部分时,最大偏差值△Xmax等于两条所述第一理论楔角拟合线L1的最相邻两端的楔角值之差。
当最大偏差值△Xmax大于0.2mrad时,需要调整所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中任一条对应的虚像面TB10之间的距离,以将设计的所述第一理论楔角拟合线L1和调整后得到的所述第二理论楔角拟合线L2之间的最大偏差值△Xmax调整到小于或等于0.2mrad,或者小于或等于0.15mrad,或者小于或等于0.10mrad,或者小于或等于0.08mrad,或者小于或等于0.05mrad。
具体地,在所述“根据所述第一理论楔角拟合线L1确定所述夹层玻璃10在对应的所述投 影显示区11的楔角值”之后,需要对相邻两条所述第一理论楔角拟合线L1中至少一条进行调整。
调整所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中其中一条对应的虚像面TB10之间的距离。
其中,调整所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中其中一条对应的虚像面TB10之间的距离,可以调整消除投影副像所需的楔角值。相同条件下,当所述眼盒面EB10与相邻两条所述第一理论楔角拟合线L1中其中一条对应的虚像面TB10之间的距离越大时,消除投影副像所需的楔角值越小。在本实施方式中,可以增大其中一条所述第一理论楔角拟合线L1对应的虚像面TB10与所述眼盒面EB10之间的距离,和/或减小另一条所述第一理论楔角拟合线L1对应的虚像面TB10与所述眼盒面EB10之间的距离,使相邻两条所述第一理论楔角拟合线L1更加靠近设计目标。
重新计算得出新的多个所述理论楔角值。
在本实施方式中,调整所述虚像面TB10与所述眼盒面EB10之间的距离之后,通过前述实施方式的计算方法计算出来的所述多个理论楔角值能够拟合出更加靠近设计目标的拟合线。
根据所述新的多个理论楔角值以及各个理论楔角值对应的入射点到所述玻璃底边12的距离,拟合以得到楔角随着入射点到所述玻璃底边12的距离的第三理论楔角拟合线L3。
判断所述第三理论楔角拟合线L3与相邻两条所述第一理论楔角拟合线L1中的另一条的最大偏差值△Xmax是否小于或等于0.2mrad。
在本实施方式中,判断所述第三理论楔角拟合线L3与相邻两条所述第一理论楔角拟合线L1中的另一条的最大偏差值△Xmax是否小于或等于0.2mrad。若否,则重复调整上述步骤。若是,则进行楔角值的选取。
根据所述第三理论楔角拟合线L3确定所述夹层玻璃10在对应的所述第一投影显示区115或所述第二投影显示区116的楔角值。
请参照图18,在本实施方式中,所述新的多个理论楔角值与所述多个理论楔角值的合集具有最大局部极差值△WU,所述新的多个理论楔角值与所述多个理论楔角值的合集具有整体极差值△CU,△WU与△CU的比值为:△WU/△CU≤0.9。
在本实施方式中,调整后,所述第一投影显示区115对应的多个理论楔角值与所述第二投影显示区116对应的多个理论楔角值的合集具有最大局部极差值△WU以及整体极差值△CU,△WU与△CU的比值为:△WU/△CU≤0.9。可以使得调整后的所述多个理论楔角值的整体离散程度更小,从而增加所述第一理论楔角拟合线L1与所述第三理论楔角拟合线L3的平滑程度,即降低了所述第一理论楔角拟合线L1与所述第三理论楔角拟合线L3的整体斜率,从而减小了所述夹层玻璃10的整体楔角变化率,降低了所述夹层玻璃10的生产难度。需要说明的是,所述多个理论楔角值的合集具有最大局部极差值△WU是指合集局部极差值中的最大值,其中,合集局部极差值为到所述夹层玻璃10的玻璃底边12距离为X的某一位置处的多个理论楔角值的合集中最大值与最小值之差。所述多个理论楔角值的合集具有整体极差值△CU是指所有理论楔角值的合集中最大值与最小值之差。
请参照图19、图20、图21及图22。在本申请一实施方式中,以所述至少一个投影显示区11包括一个第一投影显示区115进行示意性说明。其中,所述第一投影显示区115对应AR-HUD,投影显示距离为10000mm。
所述夹层玻璃10包括第一透明基板14、中间粘结层16及第二透明基板15。其中,所述第一透明基板14的厚度为1.8mm,所述中间粘结层16的最小厚度为0.76mm,所述第二透明基板15的厚度为1.8mm。所述夹层玻璃10安装于车辆的前挡风玻璃时的装车角度为27°。所述第一投影显示区115的竖向曲率为R5400mm~R5500mm,横向曲率为R2500mm~R2550mm。
所述眼盒面EB10的尺寸为120mm×50mm,以所述眼盒面EB10包括依次从高到低的三个子眼盒面EB11为例进行示意性说明,所述三个子眼盒面EB11相邻设置的两个所述子眼盒 面EB11的中心点间距为40mm。其中,从高到低的三个所述子眼盒面EB11的下视角分别为-4.2deg、-2.6deg和-1.0deg,水平视角均为0deg,视场角均为10deg×4deg。其中,所述三个子眼盒面EB11中处于中间的所述子眼盒面EB11的中心点到第一投影光源211的主光轴与所述夹层玻璃10靠近车内的表面的交点的距离为826mm,且所述第一投影光源211的入射角为68°。
在所述三个子眼盒面EB11上的观察点阵EB111m×n均为5×3点阵(见图19),在与所述三个子眼盒面EB11对应的三个所述子虚像面TB11上的虚像点阵TB111i×j均为5×3。
在第一实施例中,所述虚像面的前倾角为2.6deg。在第二实施例中,所述虚像面的前倾角为88deg。
根据前述实施方式中所述抬头显示系统1的设计方法,依次计算出对于第一实施例及第二实施例中第一投影显示区115消除投影副像的理论楔角值,并制作为散点分布图。以第一实施例中所述三个子眼盒面EB11中位于中间的所述子眼盒面EB11的中垂线上的点对应所述子虚像面TB11上的点制作的散点分布图为例(见图20),图中EB_Rm对应所述子眼盒面EB11的中垂线上的点,RiCj表示子虚像面TB11上的点,EB_Rm与RiCj相组合表示从点RiCj处观察点RiCj处无副像时的理论楔角值。其中,m=1,2,3,4,5。其中,i=1,2,3,4,5;j=1,2,3。此外,第一实施例中其它所述子眼盒面EB11的中垂线上观察所述子虚像面TB11无副像的理论楔角值的散点分布规律与图20相同,可以计算得到的散点分布。此外,所述眼盒面EB10上与中垂线平行的线上的点处观察所述虚像面TB10无副像的理论楔角值的散点分布规律与图20近似相同,可以计算得到如图21中虚线框所示意的散点分布。
在第二实施例中(见图21),从所述子眼盒面EB11的中垂线上的点观察所述子虚像面TB11无副像的理论楔角值的散点分布相较于第一实施例更趋于向所述位于虚线框内的虚线段汇集。其中,位于虚线框内的虚线段表示从所述子眼盒面EB11的中垂线上的点观察所述子虚像面TB11的中心点无副像的多个理论楔角值的连线。此外,所述眼盒面EB10上与中垂线平行的线上的点处观察所述虚像面TB10无副像的理论楔角值的散点分布规律与图20近似相同,可以计算得到如图21中实线框所示意的散点分布的轮廓。
最终第一实施例及第二实施例一共可以计算出1350个理论楔角值(请参见图22)。具体对比如下表。
Figure PCTCN2022105863-appb-000001
表中△C表示所述夹层玻璃10上投影无副像对应的多个理论楔角值的合集中最大值与最小值之差。△C1为第一实施例中所述夹层玻璃10上投影无副像对应的多个理论楔角值的合集中最大值与最小值之差。△C2为第二实施例中所述夹层玻璃10上投影无副像对应的多个理论楔角值的合集中最大值与最小值之差。△W表示所述夹层玻璃10上投影无副像对应的多个理论楔角值的合集局部极差值中的最大值。其中,合集局部极差值为到所述夹层玻璃10的玻璃底边12距离为X的某一位置处的多个理论楔角值的合集中最大值与最小值之差。此外,第二实施例相较于第一实施例,在离所述玻璃底边12约520mm处△W具有最大差值,命名第一实施例在此处的△W为△W before,第二实施例在此处的△W为△W after
对于HUD,副像值表示投影副像的严重程度,副像值为0表示无投影副像。最大局部极差值△W与副像值呈正比,△W越小,副像值越小,△W的改变量对应副像值的变化量。由上表可以看出,第二实施例相较于第一实施例,即虚像面TB10前倾后,△W/△C的变动量为21.1%。其中,△W/△C反映了采用可变楔角相对固定楔角对应的副像值的改善量,即,△W/△C比值越小,越适合采用可变楔角。因此,△W/△C的变动量为21.1%,即,表示第二实施例相较于第一实施例更适合采用可变楔角,且改善率为21.1%。
此外,△W before到△W after的改善率为18.6%,表示所述虚像面TB10前倾后最大局部极差值△W的改善程度。
此外,△W before/△C到△W after/△C的改善率为20.8%,表示所述虚像面TB10前倾后,使用可变楔形相对固定楔角对应的副像值的改善量。
综上所述,对比第二实施例与第一实施例,可以得出,从多个指标可以看到,虚像面TB10前倾设定,夹层玻璃10采用可变楔角,可以带来更大幅度的副像改善。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (25)

  1. 一种抬头显示系统,其特征在于,所述抬头显示系统包括:
    夹层玻璃,所述夹层玻璃具有至少一个投影显示区,每个所述投影显示区具有所述夹层玻璃安装于车辆时的上侧边厚度大于下侧边的楔形剖面形状,且具有楔角从所述下侧边向所述上侧边连续变小的区段;
    投影组件,所述投影组件包括能够投影至所述至少一个投影显示区的至少一个投影光源,所述投影光源发出的投影光线入射至所述投影显示区形成投影图像,所述投影图像具有虚像面;以及
    眼盒,所述眼盒具有透过所述投影显示区观察到所述投影图像的眼盒面;
    所述眼盒面包括多个子眼盒面,所述虚像面包括与所述多个子眼盒面对应的多个子虚像面,每个子虚像面包括上虚像面和下虚像面,至少一个所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于45°。
  2. 如权利要求1所述的抬头显示系统,其特征在于,至少一个所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于75°。
  3. 如权利要求1所述的抬头显示系统,其特征在于,至少一个所述子虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于45°。
  4. 如权利要求1所述的抬头显示系统,其特征在于,至少一个所述子虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于75°。
  5. 如权利要求1所述的抬头显示系统,其特征在于,所述子虚像面的顶点与对应的子眼盒面的中心点之间的距离为VID1,所述子虚像面的底点与对应的子眼盒面的中心点之间的距离为VID2,VID1>VID2。
  6. 如权利要求5所述的抬头显示系统,其特征在于,VID1/VID2≥1.5。
  7. 如权利要求1所述的抬头显示系统,其特征在于,所述区段内的任一点位置处具有测定楔角和消除副像的多个理论楔角值,将所述区段内各点位置处的测定楔角进行拟合得到实际楔角拟合线,将所述区段内各点位置处的多个理论楔角值进行拟合得到第一理论楔角拟合线,所述实际楔角拟合线与所述第一理论楔角拟合线的最大偏差值小于或等于0.07mrad。
  8. 如权利要求7所述的抬头显示系统,其特征在于,所述实际楔角拟合线和所述第一理论楔角拟合线均符合多项式函数。
  9. 如权利要求8所述的抬头显示系统,其特征在于,所述区段内楔角连续单调变小的最大变化率ROC:ROC≤0.3mrad/100mm;或,ROC≤0.2mrad/100mm;或,ROC≤0.1mrad/100mm;或,ROC≤0.05mrad/100mm。
  10. 如权利要求1所述的抬头显示系统,其特征在于,所述多个子虚像面中相邻的两个所述子虚像面之间的夹角小于或等于15°。
  11. 如权利要求1所述的抬头显示系统,其特征在于,在所述夹层玻璃的玻璃底边指向玻璃顶边的方向上,所述区段的长度与所述投影显示区的长度之比不低于70%。
  12. 如权利要求1所述的抬头显示系统,其特征在于,所述至少一个投影显示区包括:
    至少一个第一投影显示区,所述投影光源入射至所述第一投影显示区形成第一投影图像,所述第一投影图像的虚像距离为7米-100米;以及
    至少一个第二投影显示区,所述投影光源入射至所述第二投影显示区形成第二投影图像,所述第二投影图像的虚像距离为1米-6米。
  13. 如权利要求12所述的抬头显示系统,其特征在于,所述至少一个投影光源包括至少一个第一投影光源和至少一个第二投影光源,所述第一投影光源入射至所述第一投影显示区,所述第二投影光源入射至所述第二投影显示区。
  14. 如权利要求1所述的抬头显示系统,其特征在于,所述夹层玻璃包括:
    第一透明基板;
    第二透明基板;以及
    中间粘结层,所述中间粘结层设于所述第一透明基板与所述第二透明基板之间,用于粘结所述第一透明基板及所述第二透明基板;
    所述第一透明基板、所述第二透明基板及所述中间粘结层中至少一者在所述投影显示区具有楔角。
  15. 如权利要求14所述的抬头显示系统,其特征在于,所述第一透明基板及所述第二透明基板的在所述投影显示区的楔角均为0,所述中间粘结层在所述投影显示区具有楔角,且等于所述投影显示区的楔角。
  16. 如权利要求14所述的抬头显示系统,其特征在于,所述第一透明基板和/或所述第二透明基板在所述投影显示区具有楔角,所述中间粘结层在所述投影显示区具有楔角,且所述第一透明基板和/或所述第二透明基板在所述投影显示区的楔角与所述中间粘结层在所述投影显示区的楔角之和等于所述投影显示区的楔角。
  17. 一种抬头显示系统的设计方法,其特征在于,所述抬头显示系统的设计方法包括:
    提供投影组件及夹层玻璃,所述投影组件发出的投影光线入射到所述夹层玻璃上的至少一个投影显示区;
    根据车内的观察者设计位于车内的眼盒面;
    根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子眼盒面观察对应的子虚像面的方向倾斜的虚像面;
    其中,所述眼盒面包括多个子眼盒面,所述虚像面包括多个子虚像面,其中,每个子虚像面对应一个子眼盒面,每个子虚像面包括上虚像面和下虚像面,至少一个所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜且其前倾角大于或等于45°;
    在每个子眼盒面上选取观察点阵,且在每个子虚像面上选取虚像点阵,所述观察点阵中的点与所述虚像点阵中的点的连线穿过对应的投影显示区,所述连线与所述投影显示区的交点为入射点;
    根据所述投影组件、夹层玻璃和多条连线计算对应的入射点位置处的投影图像无副像时夹层玻璃的多个理论楔角值;
    根据所述多个理论楔角值以及各个所述理论楔角值对应的入射点到夹层玻璃的玻璃底边的距离,拟合以得到楔角随着入射点到玻璃底边的距离的第一理论楔角拟合线;以及
    根据所述第一理论楔角拟合线确定所述夹层玻璃在对应的所述投影显示区的楔角值。
  18. 如权利要求17所述的抬头显示系统的设计方法,其特征在于,所述“根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子眼盒面观察对应的子虚像面的方向倾斜的虚像面”包括:
    设计至少一个所述子虚像面朝向从子眼盒面观察对应的子虚像面的方向且其前倾角大于或等于45°。
  19. 如权利要求17所述的抬头显示系统的设计方法,其特征在于,所述“根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子眼盒面观察对应的子虚像面的方向倾斜的虚像面”包括:
    当所述子虚像面的所述上虚像面和/或所述下虚像面朝向从子眼盒面观察对应的子虚像面的方向倾斜时,VID1>VID2;
    其中,所述子虚像面的顶点与对应的子眼盒面的中心点之间的距离为VID1,所述子虚像面的底点与对应的子眼盒面的中心点之间的距离为VID2。
  20. 如权利要求19所述的抬头显示系统的设计方法,其特征在于,VID1/VID2≥1.5。
  21. 如权利要求17所述的抬头显示系统的设计方法,其特征在于,所述“根据车内的观察者透过每个投影显示区观察到的投影图像设计具有朝向从子眼盒面观察对应的子虚像面的方向倾斜的虚像面”包括:
    设计所述多个子虚像面中相邻的两个所述子虚像面之间的夹角小于或等于15°。
  22. 如权利要求17所述的抬头显示系统的设计方法,其特征在于,所述多个理论楔角值 的最大局部极差值△W与所述多个理论楔角值的整体极差值△C的比值为:△W/△C≤0.9。
  23. 如权利要求17所述的抬头显示系统的设计方法,其特征在于,所述至少一个投影显示区包括至少两个第一投影显示区,或者至少两个第二投影显示区,拟合得到楔角随入射点到所述玻璃底边的距离的至少两条所述第一理论楔角拟合线,当相邻两条所述第一理论楔角拟合线的最大偏差值大于0.15mrad时,在所述“根据所述第一理论楔角拟合线确定所述夹层玻璃在对应的所述投影显示区的楔角值”之后,所述抬头显示系统的设计方法还包括:
    调整所述眼盒面与相邻两条所述第一理论楔角拟合线中其中一条对应的虚像面之间的距离;
    重新计算得出新的多个所述理论楔角值;
    根据所述新的多个理论楔角值以及各个理论楔角值对应的入射点到所述玻璃底边的距离,拟合以得到楔角随着入射点到所述玻璃底边的距离的第二理论楔角拟合线;以及
    判断所述第二理论楔角拟合线与相邻两条所述第一理论楔角拟合线中的另一条的最大偏差值是否小于或等于0.15mrad;
    若否,重复以上步骤;
    若是,根据所述第二理论楔角拟合线确定所述夹层玻璃在对应的所述第一投影显示区或所述第二投影显示区的楔角值。
  24. 如权利要求17所述的抬头显示系统的设计方法,其特征在于,所述至少一个投影显示区包括至少一个第一投影显示区及至少一个第二投影显示区,拟合得到楔角随着入射点到所述玻璃底边的距离的至少两条所述第一理论楔角拟合线,当相邻两条所述第一理论楔角拟合线的最大偏差值大于0.2mrad时,在所述“根据所述第一理论楔角拟合线确定所述夹层玻璃在对应的所述投影显示区的楔角值”之后,所述抬头显示系统的设计方法还包括:
    调整所述眼盒面与相邻两条所述第一理论楔角拟合线中其中一条对应的虚像面之间的距离;
    重新计算得出新的多个所述理论楔角值;
    根据所述新的多个理论楔角值以及各个理论楔角值对应的入射点到所述玻璃底边的距离,拟合以得到楔角随着入射点到所述玻璃底边的距离的第三理论楔角拟合线;以及
    判断所述第三理论楔角拟合线与相邻两条所述第一理论楔角拟合线中的另一条的最大偏差值是否小于或等于0.15mrad;
    若否,重复以上步骤;
    若是,根据所述第三理论楔角拟合线确定所述夹层玻璃在对应的所述第一投影显示区或所述第二投影显示区的楔角值。
  25. 如权利要求17所述的抬头显示系统的设计方法,其特征在于,调整后的所述多个理论楔角值的合集具有最大局部极差值△WU,调整后的所述多个理论楔角值的合集具有整体极差值△CU,△WU与△CU的比值为:△WU/△CU≤0.9。
PCT/CN2022/105863 2022-07-15 2022-07-15 抬头显示系统及抬头显示系统的设计方法 WO2023103381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105863 WO2023103381A1 (zh) 2022-07-15 2022-07-15 抬头显示系统及抬头显示系统的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105863 WO2023103381A1 (zh) 2022-07-15 2022-07-15 抬头显示系统及抬头显示系统的设计方法

Publications (1)

Publication Number Publication Date
WO2023103381A1 true WO2023103381A1 (zh) 2023-06-15

Family

ID=86729575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105863 WO2023103381A1 (zh) 2022-07-15 2022-07-15 抬头显示系统及抬头显示系统的设计方法

Country Status (1)

Country Link
WO (1) WO2023103381A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059323A1 (de) * 2007-12-07 2009-06-10 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Windschutzscheibe mit einem HUD-Sichtfeld
CN110073274A (zh) * 2017-06-08 2019-07-30 Jvc 建伍株式会社 虚像显示装置、中间像形成部以及图像显示光生成单元
CN213987029U (zh) * 2020-08-21 2021-08-17 未来(北京)黑科技有限公司 双层成像抬头显示装置、抬头显示系统及交通设备
CN113968053A (zh) * 2021-09-27 2022-01-25 福耀玻璃工业集团股份有限公司 用于抬头显示的夹层玻璃及抬头显示系统
CN114200675A (zh) * 2021-12-09 2022-03-18 奇瑞汽车股份有限公司 显示方法、装置、抬头显示系统和车辆
CN114740627A (zh) * 2022-05-25 2022-07-12 福耀玻璃工业集团股份有限公司 抬头显示系统及其设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059323A1 (de) * 2007-12-07 2009-06-10 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Windschutzscheibe mit einem HUD-Sichtfeld
CN110073274A (zh) * 2017-06-08 2019-07-30 Jvc 建伍株式会社 虚像显示装置、中间像形成部以及图像显示光生成单元
CN213987029U (zh) * 2020-08-21 2021-08-17 未来(北京)黑科技有限公司 双层成像抬头显示装置、抬头显示系统及交通设备
CN113968053A (zh) * 2021-09-27 2022-01-25 福耀玻璃工业集团股份有限公司 用于抬头显示的夹层玻璃及抬头显示系统
CN114200675A (zh) * 2021-12-09 2022-03-18 奇瑞汽车股份有限公司 显示方法、装置、抬头显示系统和车辆
CN114740627A (zh) * 2022-05-25 2022-07-12 福耀玻璃工业集团股份有限公司 抬头显示系统及其设计方法

Similar Documents

Publication Publication Date Title
US10705334B2 (en) Display device, display method and display medium
US9557813B2 (en) Method for reducing perceived optical distortion
US11327304B2 (en) Windshield head-up display, and method for suppressing ghost image
JP2017502124A (ja) 垂直方向でセクションごとに非線形に連続する楔形挿入部材を含む、積層ガラスパネル用の熱可塑性フィルム
CN107238927A (zh) 车辆用投影显示设备
US11300787B2 (en) Visual field display device for a motor vehicle
JP2004062099A (ja) 視認性向上シートおよびこれを用いたディスプレイおよび透過型投影スクリーン
WO2020241075A1 (ja) 情報表示システムとそれを利用した車両用情報表示システム
JPS62225429A (ja) 車載用ヘツドアツプデイスプレイ装置
WO2021197190A1 (zh) 基于增强现实的信息显示方法、系统、装置及投影设备
WO2023103381A1 (zh) 抬头显示系统及抬头显示系统的设计方法
CN112444974A (zh) 一种抬头显示设备、成像系统和车辆
CN211375182U (zh) 一种抬头显示设备、成像系统和车辆
US20230288699A1 (en) Interlayers having enhanced optical performance
CN114815263B (zh) 抬头显示系统及设计方法
CN108407580A (zh) 机动车及其挡风玻璃
JP3210705U (ja) 狭隅角拡散片ヘッドアップディスプレイデバイス
CN114740627B (zh) 抬头显示系统及其设计方法
WO2023071169A1 (zh) 抬头显示系统及抬头显示系统的设计方法
JPH08227464A (ja) 疑似立体動画像の生成方法
WO2020032095A1 (ja) ヘッドアップディスプレイ
US20110228414A1 (en) Reflecting device with wide vision angle, reduced distortion and anamorphosis and reduced doubling of reflected images, particularly for vehicles
JP2018025722A (ja) 表示装置
WO2023071170A1 (zh) 抬头显示系统及其设计方法
CN107966816A (zh) 一种装调方法以及装调的分体式抬头显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902816

Country of ref document: EP

Kind code of ref document: A1