WO2023071041A1 - 一种轴结构、风力发电机组轴系和风力发电机组 - Google Patents

一种轴结构、风力发电机组轴系和风力发电机组 Download PDF

Info

Publication number
WO2023071041A1
WO2023071041A1 PCT/CN2022/083673 CN2022083673W WO2023071041A1 WO 2023071041 A1 WO2023071041 A1 WO 2023071041A1 CN 2022083673 W CN2022083673 W CN 2022083673W WO 2023071041 A1 WO2023071041 A1 WO 2023071041A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
shaft
bearing
shaft structure
stress
Prior art date
Application number
PCT/CN2022/083673
Other languages
English (en)
French (fr)
Inventor
马加伟
方涛
李会勋
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2023071041A1 publication Critical patent/WO2023071041A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the technical field of wind power generation, in particular to a shaft structure, a shaft system of a wind power generator set and a wind power generator set.
  • the bearing structure includes the bearing and the bearing bearing structure, both of which need to have sufficient load bearing capacity. Among them, when the bearing bearing structure is applied, due to the complexity of its structure, there is usually a problem of relatively concentrated stress at the shaft shoulder, and the shaft shoulder is not enough to bear the load at the corresponding position, resulting in its extremely easy damage or unqualified quality. .
  • part of the bearing bearing structure is transitioned by designing the shaft shoulder as a large arc or ellipse.
  • this implementation method can reduce the stress concentration problem at the shaft shoulder, it will cause the shaft shoulder to be unable to directly contact with the shaft shoulder.
  • the bearing is matched, only a transition ring can be added to connect the shaft shoulder and the bearing end face, which greatly increases the cost of the bearing structure and the assembly time; some bearing structures add grooves to the shaft shoulder to relieve stress concentration, but due to the ability to process The size of the groove produced is limited, which can only reduce the stress concentration in a small range, and cannot solve the overall stress concentration problem at the shaft shoulder, and the groove will also be called a fatigue hot spot of the overall bearing structure.
  • the purpose of this application is to provide a bearing structure of a wind power generating set that can solve the problem of stress concentration at the shaft shoulder.
  • the application provides a shaft structure
  • the shaft structure is a cylindrical structure as a whole, which includes a bearing fitting section, a shaft shoulder section and a stress buffer section connected in sequence, and the bearing fitting section is used for installation
  • the outer surface of the stress buffering section is a curved surface concave inward
  • the minimum outer diameter of the stress buffering section is smaller than the outer diameter of the bearing fitting section and larger than the inner diameter of the bearing fitting section.
  • the stress buffer section at the back of the shaft shoulder section, the stress originally acting on the corner of the shaft shoulder section can be buffered by the stress buffer section and dispersed to other positions far away from the shaft shoulder section, which can effectively prevent the shaft shoulder Stress concentration occurs in the section.
  • the curvature from the front end of the stress buffer section to its minimum outer diameter position is greater than the curvature from the minimum outer diameter position to the rear end of the stress buffer section.
  • the difference between the minimum outer diameter of the stress buffering section and the inner diameter of the bearing fitting section is not less than 20mm.
  • the shaft structure further includes a second transition section connected to the stress buffer section, the second transition section is a trumpet-shaped structure with a smooth diameter from one end connecting the stress buffer section to the other end increase.
  • the shaft structure further includes a connection section connected to the second transition section; and/or, the shaft structure further includes a first transition section connected to the bearing matching section.
  • the outer diameter of the connecting section is larger than the outer diameter of the bearing matching section.
  • the outer diameter of the shoulder section is larger than the inner diameter of the bearing.
  • chamfers are provided at the corners of the shaft shoulder section towards the bearing fitting section.
  • the chamfer is an arc chamfer with a diameter between 8-12mm.
  • the present application also provides a shafting system of a wind power generating set, including several bearings, a first shaft and the shaft structure described above; the first shaft and the shaft structure are rotationally connected through at least one of the bearings.
  • the present application also provides a wind power generating set, including a hub and a fan base, and also includes a wind generating set shafting arranged between the hub and the fan base, and the wind generating set shafting is as described above shafting of wind turbines.
  • Fig. 1 is a sectional view of the shaft structure provided by the embodiment of the present application.
  • Fig. 2 is a sectional view of the shafting of the wind power generating set provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the stress flow direction of the shaft structure provided by the embodiment of the present application at the position of the shaft shoulder;
  • Fig. 4 is a schematic diagram of the stress flow direction of the shaft structure at the position of the shaft shoulder section in the prior art
  • Fig. 5 is an enlarged schematic view of the shaft shoulder section and the stress buffer section in Fig. 1 .
  • the embodiment of the present application provides a shaft structure, which is specifically used to install the bearing 7 of the wind power generating set. Please refer to Figure 1.
  • the shaft structure is a cylindrical structure as a whole, specifically a cylindrical structure.
  • the bearing fitting section 2 is used to install the bearing 7, and its length can be determined according to the axial length of the bearing 7 in practical applications, specifically, it can be slightly longer than the length of the bearing 7, so as to better install the bearing 7; its outer diameter can be determined according to In actual application, it depends on the inner diameter of the bearing 7, which may be slightly smaller than or equal to the inner diameter of the bearing 7 specifically.
  • M in FIG. 1 is the outer diameter of the bearing fitting section 2
  • m is the inner diameter of the bearing fitting section 2 .
  • the shaft shoulder section 3 is used for axially limiting the bearing 7 , and its outer diameter is larger than the inner diameter of the bearing 7 .
  • the axial length and radial width of the shaft shoulder section 3 can be selected according to actual needs. It can be a simple raised structure that acts solely as a limiter, or it can be fixed and integrated with other structures, such as by integrating other fixed support components, In order to play the role of fixing and supporting other structures, the overall layout of the wind power generating set is more convenient.
  • the outer surface of the stress buffer section 4 is a curved surface concave inward, and the minimum outer diameter of the stress buffer section 4 is smaller than the outer diameter of the bearing fitting section 2 and larger than the inner diameter of the bearing fitting section 2 .
  • the stress buffer section 4 at the rear side of the shaft shoulder section 3, the concentrated stress originally acting on the corner of the shaft shoulder section 3 can be buffered by the stress buffer section 4 and dispersed to other positions away from the shaft shoulder section 3 , can effectively prevent the phenomenon of stress concentration in the shaft shoulder section 3 .
  • FIG. 4 the stress flow direction of the shaft shoulder section 01 of the shaft structure where the wind turbine bearing is installed is shown by the arrow in Fig. 4. Since the structure of the rear end of the shaft shoulder section 01 extends radially outward, so The distribution trend of stress in the shaft shoulder section 01 is also radially outward. At this time, the overall distribution trend of the stress flow of the shaft structure from front to back is gradually expanding, and the stress flow is distributed to the corner 02 of the shaft shoulder section 01, as shown in Figure 4 At the position marked by the middle circle, due to the sudden change in the shape of 02 at the corner, the stress concentration problem occurs at this position.
  • the rear end of the shaft shoulder section 3 is connected with a stress buffer section 4, and the stress buffer section 4 adopts the above size. Since the stress buffer section 4 is first recessed radially inward, and then extends radially outward, the stress buffering section 4 is delayed. Radial outer conduction, the overall distribution of stress flow is more uniform, and the minimum outer diameter of the stress buffer section 4 is smaller than the outer diameter of the bearing fitting section 2 and larger than the inner diameter of the bearing fitting section 2, so that the stress distribution is as close to the inner side of the shaft structure as possible. Move the outer surface of the bearing mating section 2.
  • the minimum outer diameter position of the stress buffer section 4 is identified as O, of course, this position can be a point position, or a section, as mentioned earlier, the overall outer surface of the stress buffer section 4 If it is a curved surface, the change of its outer diameter has a certain curvature.
  • the curvature from the front end of the stress buffer section 4 to its minimum outer diameter position is greater than the curvature from the minimum outer diameter position to the rear end of the stress buffer section 4, as shown in Fig. 5 , the front end of the stress buffer section 4 is marked as P, and the rear end is marked as Q.
  • the curved surface from P to O is steeper, while the curved surface from O to Q is gentler, and PO is steeper and easier to realize as soon as possible.
  • the stress flow is lowered to reduce the distribution of stress flow to the position of the shaft shoulder section 3, and the OQ is more gentle, which is conducive to the uniform distribution of stress and the smooth connection with the second transition section 5 behind.
  • the front end is the left end in Figure 1
  • the rear end is the right end in Figure 1
  • the axial direction is the left and right direction in Figure 1
  • the radial direction is the up and down in Figure 1 direction.
  • the first transition section 1 of the shaft structure in the embodiment of this solution is arranged at the front end, and can be used to carry other structures at the front end of the bearing 7. As shown in FIG. 2, the first transition section 1 can be installed with the front end bearing 7.
  • the specific length of the first transition section 1 can be determined according to specific needs in practical applications, and its shape can be a planar structure or a curved surface structure, which is not limited in this application.
  • the stress buffer section 4 is used to buffer the stress at the corner of the shaft shoulder section 3 and disperse it to other positions away from the shaft shoulder section 3 to prevent stress concentration on the shaft shoulder section 3 .
  • N in Fig. 1 is the minimum outer diameter of the outer surface of the stress buffer section 4.
  • the minimum outer diameter of the stress buffer section 4 is smaller than the outer diameter of the bearing fitting section 2 and larger than the inner diameter of the bearing fitting section 2, namely m ⁇ N ⁇ M, when the minimum outer diameter of the stress buffering section 4 is within this range, the stress buffering effect is better; the longer the axial length of the stress buffering section 4 is, the better the stress buffering effect is.
  • the difference between the minimum outer diameter of the stress buffering section 4 and the inner diameter of the bearing fitting section 2 is not less than 20 mm.
  • the minimum outer diameter of the stress buffering section 4 is within the above-mentioned range, its The effect of buffering stress is better.
  • the second transition section 5 is arranged at the rear end of the stress buffer section 4, which is a trumpet-shaped structure, and the diameter of the second transition section 5 increases smoothly from the end connecting the stress buffer section 4 to the end connecting the connecting section 6, that is, it increases from the front end
  • the diameter of the rear end increases smoothly, and the turning curve of the bell mouth is in the shape of a circular arc or an elliptical arc.
  • the connecting section 6 is used to connect the shaft structure and other components, for example, the shaft structure can be fixed to the base of the wind power generating set, and the axial length of the connecting end 6 can be determined according to the length of the fastener used for connection in practical applications.
  • the present application does not limit this, and its outer diameter is larger than the outer diameter of the bearing fitting section 2 , and there may be a large difference, and the inner diameter and the outer diameter of the bearing 7 may be equal to or close to.
  • a chamfer 31 may be provided at the corner of the front end of the shaft shoulder section 3 to further reduce possible stress concentration. Since the stress buffer section 4 is provided in this embodiment, the stress concentration phenomenon is improved, and the chamfer 31 here can be made very small, such as between 8-12 mm, and an arc chamfer with a diameter of 10 mm can be selected in this embodiment , so that it can be better limited fit with the bearing 7.
  • the present application also provides a wind turbine shaft system, please refer to Fig. 2, including several bearings 7, the first shaft 8 and the shaft structure described above, since the shaft structure already has the above technical effect, the shaft structure is included
  • the shafting of the wind power generating set should also have the same technical effect, so it will not be repeated here.
  • the first shaft 8 and the shaft structure are rotationally connected through a plurality of bearings 7, and the two can rotate relatively through a plurality of bearings 7 to drive the generator rotor and the generator stator to rotate mutually to generate electricity.
  • the shaft structure in the present application is used as an inner shaft or an outer shaft, nor is it limited as a rotating shaft or a fixed shaft.
  • the bearing 7 in this embodiment includes a front bearing arranged at the front end of the first transition section 1 and a rear bearing arranged at the bearing matching section 2 .
  • the present application also protects a wind power generating set, including a hub and a fan base, and a wind generating set shafting arranged between the hub and the fan base, and the wind generating set shafting is the above-mentioned wind generating set shafting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种轴结构、风力发电机组轴系和风力发电机组,所述轴结构整体为筒形结构,其包括依次相接的轴承配合段(2)、轴肩段(3)和应力缓冲段(4),所述轴承配合段(2)用于安装轴承(7),所述应力缓冲段(4)的外表面为向内侧凹陷的曲面,所述应力缓冲段(4)的最小外径小于所述轴承配合段(2)的外径,且大于所述轴承配合段(2)的内径。采用如上结构,通过在轴肩段(3)后侧位置设置应力缓冲段(4),原本作用于轴肩段(3)拐角处的应力便能够被应力缓冲段(4)缓冲,分散至远离轴肩段(3)的其他位置,能够有效防止轴肩段(3)出现应力集中的现象。

Description

一种轴结构、风力发电机组轴系和风力发电机组
本申请要求于2021年10月29日提交中国专利局、申请号为202111275634.4、发明名称为“一种轴结构、风力发电机组轴系和风力发电机组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及风力发电技术领域,具体涉及一种轴结构、风力发电机组轴系和风力发电机组。
背景技术
随风力发电的大力发展,风力发电机组的发电功率逐渐增大,其受到的载荷也随之逐渐增大,风力发电机组的轴承结构需要能够承受更大的载荷,以完成风力发电机组的发电需求。
轴承结构包括轴承和轴承承载结构,二者均需要具有足够的载荷承受能力。其中,轴承承载结构在应用时,由于其结构的复杂性,轴肩处通常存在应力较为集中的问题,轴肩处不足以承受对应位置的载荷,导致其极易损坏或出现质量不合格等情况。
现有技术中部分轴承承载结构通过将轴肩处设计为大圆弧或椭圆等形状以进行过度,该种实施方式虽然能够降低轴肩处的应力集中问题,但会导致轴肩处无法直接与轴承相配合,只能额外设置过渡环连接轴肩处和轴承端面,使轴承结构的成本以及装配时间大幅增加;部分轴承承载结构通过在轴肩处增加凹槽以缓解应力集中,但由于能够加工出的凹槽尺寸有限,其只能在较小范围内降低应力集中,无法解决轴肩处整体的应力集中问题,而且该凹槽还会称为整体轴承结构的疲劳热点。
因此,如何提供一种能够解决轴肩处应力集中问题的风力发电机组轴承承载结构,是本领域技术人员亟待解决的技术问题。
发明内容
本申请的目的是提供一种能够解决轴肩处应力集中问题的风力发电机组轴承承载结构。
为解决上述技术问题,本申请提供一种轴结构,所述轴结构整体为筒形结构,其包括依次相接的轴承配合段、轴肩段和应力缓冲段,所述轴承配合段用于安装轴承,所述应力缓冲段的外表面为向内侧凹陷的曲面,所述应力缓冲段的最小外径小于所述轴承配合段的外径,且大于所述轴承配合段的内径。
采用如上结构,通过在轴肩段后侧位置设置应力缓冲段,原本作用于轴肩段拐角处的应力便能够被应力缓冲段缓冲,分散至远离轴肩段的其他位置,能够有效防止轴肩段出现应力集中的现象。
可选地,所述应力缓冲段的前端至其最小外径位置的曲率,大于所述最小外径位置至所述应力缓冲段的后端的曲率。
可选地,所述应力缓冲段的最小外径与所述轴承配合段的内径之间的差值不小于20毫米。
可选地,所述轴结构还包括与所述应力缓冲段相接的第二过渡段,所述第二过渡段为喇叭口形结构,其从连接所述应力缓冲段的一端至另一端直径平滑增大。
可选地,所述轴结构还包括与所述第二过渡段相接的连接段;和/或,所述轴结构还包括与所述轴承配合段相连的第一过渡段。
可选地,所述连接段的外径大于所述轴承配合段的外径。
可选地,所述轴肩段的外径大于轴承的内径。
可选地,所述轴肩段朝向所述轴承配合段的拐角处设有倒角。
可选地,所述倒角为圆弧倒角,直径在8-12mm之间。
本申请还提供一种风力发电机组轴系,包括若干轴承、第一轴和上文所描述的轴结构;所述第一轴和所述轴结构通过至少一个所述轴承转动连接。
本申请还提供一种风力发电机组,包括轮毂和风机底座,还包括设置在所述轮毂和所述风机底座之间的风力发电机组轴系,所述风力发电机组轴系即为上文所描述的风力发电机组轴系。
附图说明
图1是本申请实施例所提供轴结构的剖面图;
图2是本申请实施例所提供风力发电机组轴系的剖面图;
图3是本申请实施例所提供轴结构在轴肩段位置的应力流向示意图;
图4是现有技术中轴结构在轴肩段位置的应力流向示意图;
图5是图1中轴肩段和应力缓冲段的放大示意图。
图1-5中的附图标记说明如下:
1第一过度段、2轴承配合段、3轴肩段、31倒角、4应力缓冲段、5第二过渡段、6连接段、7轴承、8第一轴、01轴肩段、02拐角。
具体实施方式
为了使本领域的技术人员更好地理解本申请的技术方案,下面结合附图和具体实施例对本申请作进一步的详细说明。
本申请实施例提供一种轴结构,具体用于安装风力发电机组的轴承7,请参考图1,该轴结构整体为筒形结构,具体为圆筒形结构,从前端至后端依次设置有第一过渡段1、与轴承7配合的轴承配合段2、轴肩段3、应力缓冲段4、第二过渡段5和连接段6。
其中,轴承配合段2用于安装轴承7,其长度可根据实际应用中轴承7的轴向长度而定,具体可略大于轴承7的长度,以更好的安装轴承7;其外径可根据实际应用中轴承7的内径而定,具体可略小于或等于轴承7的内径。如图1所示,图1中的M即为轴承配合段2的外径,m即为轴承配合段2的内径。
轴肩段3用于对轴承7进行轴向限位,其外径大于轴承7的内径。轴肩段3的轴向长度和径向宽度可根据实际需要选择,其可以是单独起到限位作用的简单凸起结构,也可以与其他结构固定、集成,例如通过集成其他固定支撑部件,以起到固定、支撑其他结构的作用,使风力发电机组的整体布局更为方便。
需要特别说明的是,应力缓冲段4的外表面为向内侧凹陷的曲面,应力缓冲段4的最小外径小于轴承配合段2的外径,且大于轴承配合段2的内径。
采用如上结构,通过在轴肩段3后侧位置设置应力缓冲段4,原本作 用于轴肩段3拐角处的集中应力便能够被应力缓冲段4缓冲,分散至远离轴肩段3的其他位置,能够有效防止轴肩段3出现应力集中的现象。
请参考图4,现有技术中安装风力发电机组轴承的轴结构的轴肩段01位置应力流向如图4中箭头所示,由于轴肩段01后端的结构向径向外侧延伸渐扩,因此应力在轴肩段01的分布趋势也是向径向外侧,此时,轴结构的应力流由前至后整体分布趋势为渐扩,应力流分布到轴肩段01的拐角处02,即图4中圆圈标出的位置时,由于拐角处02形状突变,导致该位置产生应力集中问题。
本实施例中轴肩段3后端连有应力缓冲段4,且应力缓冲段4采用如上的尺寸,由于应力缓冲段4先向径向内侧凹陷,再向径向外侧延伸,延缓了应力向径向外侧的传导,应力流整体分布更加均匀,且应力缓冲段4的最小外径小于轴承配合段2的外径、大于轴承配合段2的内径,使得应力分布尽量向轴结构内侧靠近而偏移轴承配合段2的外表面。此时,请参考图3,图3中圆圈标出的轴肩段拐角处位置,由于应力流位置的偏移(相对于图4具有一定偏移量),应力受到形状突变的影响降低,从而可减缓或者防止该位置出现应力集中。
请继续参考图5,更具体地,将应力缓冲段4的最小外径位置标识为O,当然该位置可以是点位置,也可以是一段,如前所述,应力缓冲段4的外表面整体是曲面,则其外径变化具有一定的曲率,本实施例中应力缓冲段4的前端至其最小外径位置的曲率,大于最小外径位置至应力缓冲段4的后端的曲率,图5中,应力缓冲段4的前端标识为P,后端标识为Q,可以看出,由P至O的曲面更为陡峭,而O至Q的曲面更为平缓,PO更为陡峭易于实现尽快地将应力流拉低,减少应力流分布到轴肩段3的位置,OQ更为平缓,有利于应力的均匀分布,以及与后面的第二过渡段5平缓地衔接。
需要说明,请参考图1,文中前端即为图1中的左端,后端即为图1中的右端,轴向方向即为图1中的左右方向,径向方向即为图1中的上下方向。
本方案实施例中轴结构的第一过渡段1设置于最前端,可用于承载轴承7前端的其他结构,如图2所示,第一过渡段1可以安装前端的轴承7。 第一过渡段1的具体长度可根据实际应用中的具体需要而定,其形状可以是平面结构也可以是曲面结构,本申请对此均不做限定。
应力缓冲段4如前所述,用于缓冲轴肩段3拐角处的应力,分散至远离轴肩段3的其他位置,防止轴肩段3出现应力集中现象。图1中的N即为应力缓冲段4外表面的最小外径,本实施例中应力缓冲段4的最小外径小于轴承配合段2的外径,且大于轴承配合段2的内径,即m<N<M,当应力缓冲段4的最小外径在该范围内时,其缓冲应力的效果较好;应力缓冲段4的轴向长度越长,则其缓冲应力的效果越好。
进一步地,本实施例中应力缓冲段4的最小外径与轴承配合段2的内径之间的差值不小于20毫米,当应力缓冲段4的最小外径处于如上所述的范围时,其缓冲应力的效果较佳。
第二过渡段5设置于应力缓冲段4的后端,其为喇叭口形结构,第二过渡段5从连接应力缓冲段4的一端至连接连接段6的一端直径平滑增大,即其从前端到后端直径平滑增大,喇叭口的回转曲线为圆弧或者椭圆弧等形状,如此设置,其能够与应力缓冲段4配合,更好的缓冲轴肩段3的应力,防止轴肩段3出现应力集中现象。
连接段6用于连接轴结构与其他部件,例如可以将轴结构固定到风力发电机组的底座上,连接端6的轴向长度可根据实际应用中用于连接的紧固件的长度而定,本申请对此不做限定,其外径大于轴承配合段2的外径,且可以相差较多,内径与轴承7的外径可相等或接近。
另外,轴肩段3前端拐角处可以设置倒角31,以进一步减少可能的应力集中。由于本实施例设置有应力缓冲段4,改善了应力集中现象,此处的倒角31可以做到很小,比如在8-12mm之间,本实施例中可选用直径10mm的圆弧倒角,从而可更好地与轴承7进行限位配合。
本申请还提供一种风力发电机组轴系,请参考图2,包括若干轴承7、第一轴8和上文所描述的轴结构,由于轴结构已经具有如上的技术效果,那么包含该轴结构的风力发电机组轴系也应具有相同的技术效果,故在此不再赘述。
第一轴8和轴结构通过若干轴承7转动连接,二者可通过若干轴承7相对转动,以带动发电机转子和发电机定子相互转动进行发电。其中,不 限定本申请中的轴结构是作为内轴还是外轴,也不限定作为转动轴还是定轴。如图2所示,本实施例中的轴承7包括设置于第一过渡段1前端的前轴承和设置于轴承配合段2的后轴承。
本申请还保护一种风力发电机组,包括轮毂和风机底座,还包括设置在轮毂和风机底座之间的风力发电机组轴系,风力发电机组轴系为上述的风力发电机组轴系。
以上仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (11)

  1. 一种轴结构,其特征在于:所述轴结构整体为筒形结构,其包括依次相接的轴承配合段(2)、轴肩段(3)和应力缓冲段(4),所述轴承配合段(2)用于安装轴承(7),所述应力缓冲段(4)的外表面为向内侧凹陷的曲面,所述应力缓冲段(4)的最小外径小于所述轴承配合段(2)的外径,且大于所述轴承配合段(2)的内径。
  2. 根据权利要求1所述的轴结构,其特征在于:所述应力缓冲段(4)的前端至其最小外径位置的曲率,大于所述最小外径位置至所述应力缓冲段(4)的后端的曲率。
  3. 根据权利要求1所述的轴结构,其特征在于:所述应力缓冲段(4)的最小外径与所述轴承配合段(2)的内径之间的差值不小于20毫米。
  4. 根据权利要求1-3任一项所述的轴结构,其特征在于:所述轴结构还包括与所述应力缓冲段(4)相接的第二过渡段(5),所述第二过渡段(5)为喇叭口形结构,其从连接所述应力缓冲段(4)的一端至另一端直径平滑增大。
  5. 根据权利要求4所述的轴结构,其特征在于:所述轴结构还包括与所述第二过渡段(5)相接的连接段(6);
    和/或,所述轴结构还包括与所述轴承配合段(2)相连的第一过渡段(1)。
  6. 根据权利要求5所述的轴结构,其特征在于:所述连接段(6)的外径大于所述轴承配合段(2)的外径。
  7. 根据权利要求1-3任一项所述的轴结构,其特征在于:所述轴肩段(3)的外径大于轴承(7)的内径。
  8. 根据权利要求1-3任一项所述的轴结构,其特征在于:所述轴肩段(3)朝向所述轴承配合段(2)的拐角处设有倒角(31)。
  9. 根据权利要求8所述的轴结构,其特征在于:所述倒角(31)为圆弧倒角,直径在8-12mm之间。
  10. 一种风力发电机组轴系,其特征在于:包括若干轴承(7)、第一轴(8)和权利要求1-9中任一项所述的轴结构;
    所述第一轴(8)和所述轴结构通过至少一个所述轴承(7)转动连接。
  11. 一种风力发电机组,包括轮毂和风机底座,其特征在于:还包括设置在所述轮毂和所述风机底座之间的风力发电机组轴系,所述风力发电机组轴系为权利要求10所述的风力发电机组轴系。
PCT/CN2022/083673 2021-10-29 2022-03-29 一种轴结构、风力发电机组轴系和风力发电机组 WO2023071041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111275634.4A CN113883021A (zh) 2021-10-29 2021-10-29 一种轴结构、风力发电机组轴系和风力发电机组
CN202111275634.4 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071041A1 true WO2023071041A1 (zh) 2023-05-04

Family

ID=79015111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083673 WO2023071041A1 (zh) 2021-10-29 2022-03-29 一种轴结构、风力发电机组轴系和风力发电机组

Country Status (2)

Country Link
CN (1) CN113883021A (zh)
WO (1) WO2023071041A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113883021A (zh) * 2021-10-29 2022-01-04 新疆金风科技股份有限公司 一种轴结构、风力发电机组轴系和风力发电机组

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040063506A1 (en) * 2002-09-30 2004-04-01 Toyoda Koki Kabushiki Kaisha Shaft and manufacturing method thereof
CN101868635A (zh) * 2007-11-21 2010-10-20 罗伯特·博世有限公司 用于无级变速器皮带轮的轴与法兰构件
WO2014023850A1 (de) * 2012-08-10 2014-02-13 Suzlon Energy Gmbh Rotorwelle für eine windturbine
CN207349031U (zh) * 2017-10-26 2018-05-11 新疆金风科技股份有限公司 风力发电机组的轴系及风力发电机组
CN109060339A (zh) * 2018-09-05 2018-12-21 中国航发动力股份有限公司 一种试验装置及方法
CN109667725A (zh) * 2017-10-17 2019-04-23 中车株洲电力机车研究所有限公司 一种带锁紧螺纹的风力发电机主轴及主轴系统
CN209621531U (zh) * 2019-03-22 2019-11-12 中车株洲电力机车研究所有限公司 一种风力发电机主轴及主轴结构
CN111523267A (zh) * 2020-04-21 2020-08-11 重庆邮电大学 一种基于参数化有限元模型的风机主轴结构优化方法
CN113883021A (zh) * 2021-10-29 2022-01-04 新疆金风科技股份有限公司 一种轴结构、风力发电机组轴系和风力发电机组
CN215927661U (zh) * 2021-10-28 2022-03-01 中国船舶重工集团海装风电股份有限公司 风力发电机组齿轮箱输入轴

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743890B2 (ja) * 2007-01-12 2011-08-10 Ntn株式会社 車輪用軸受装置
CN106907304A (zh) * 2017-04-01 2017-06-30 许继集团有限公司 一种抗疲劳风机主轴及使用该风机主轴的风力发电机
CN111075663B (zh) * 2019-12-20 2021-07-09 太原重工股份有限公司 风力发电机组主轴

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040063506A1 (en) * 2002-09-30 2004-04-01 Toyoda Koki Kabushiki Kaisha Shaft and manufacturing method thereof
CN101868635A (zh) * 2007-11-21 2010-10-20 罗伯特·博世有限公司 用于无级变速器皮带轮的轴与法兰构件
WO2014023850A1 (de) * 2012-08-10 2014-02-13 Suzlon Energy Gmbh Rotorwelle für eine windturbine
CN109667725A (zh) * 2017-10-17 2019-04-23 中车株洲电力机车研究所有限公司 一种带锁紧螺纹的风力发电机主轴及主轴系统
CN207349031U (zh) * 2017-10-26 2018-05-11 新疆金风科技股份有限公司 风力发电机组的轴系及风力发电机组
CN109060339A (zh) * 2018-09-05 2018-12-21 中国航发动力股份有限公司 一种试验装置及方法
CN209621531U (zh) * 2019-03-22 2019-11-12 中车株洲电力机车研究所有限公司 一种风力发电机主轴及主轴结构
CN111523267A (zh) * 2020-04-21 2020-08-11 重庆邮电大学 一种基于参数化有限元模型的风机主轴结构优化方法
CN215927661U (zh) * 2021-10-28 2022-03-01 中国船舶重工集团海装风电股份有限公司 风力发电机组齿轮箱输入轴
CN113883021A (zh) * 2021-10-29 2022-01-04 新疆金风科技股份有限公司 一种轴结构、风力发电机组轴系和风力发电机组

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BAI, RU ET AL.: "Research about Structure Optimization on Main Shaft of MW Wind Turbine", MODERN MANUFACTURING ENGINEERING, no. 3, 31 March 2020 (2020-03-31), XP009545314, ISSN: 1671-3133 *
CHENG JUN; HE CUNFU; LYU YAN; ZHENG YANG; XIE LONGYANG; WU LONG: "Ultrasonic inspection of the surface crack for the main shaft of a wind turbine from the end face", NDT&E INTERNATIONAL, vol. 114, 14 May 2020 (2020-05-14), AMSTERDAM, NL , XP086182328, ISSN: 0963-8695, DOI: 10.1016/j.ndteint.2020.102283 *
LI, XIUZHEN ET AL.: "Research on Parameter Optimization of Main Shaft of Wind Turbine Based on Isight", WIND ENERGY, no. 3, 31 March 2019 (2019-03-31), XP009545971, ISSN: 1674-9219 *
LYU, XINGMEI ET AL.: "Strength Analysis on Mainshaft of MW Wind Turbine", JOURNAL OF MECHANICAL TRANSMISSION, vol. 37, no. 2, 28 February 2013 (2013-02-28), XP009545311, ISSN: 1004-2539 *
WENG, HAIPING ET AL.: "Research on Fatigue Analysis Methods of Wind Turbine Shaft", ACTA ENERGIAE SOLARIS SINICA, vol. 34, no. 10, 31 October 2013 (2013-10-31), pages 1714 - 1719, XP009545315, ISSN: 0254-0096 *
ZHAO, BAIYU ET AL.: "Strength Analysis and Optimization on Main Shaft of MW Wind Turbine", JOURNAL OF MECHANICAL & ELECTRICAL ENGINEERING, vol. 38, no. 7, 31 July 2021 (2021-07-31), XP009545312, ISSN: 1671-3133 *

Also Published As

Publication number Publication date
CN113883021A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
JP5546638B2 (ja) 遊星歯車機構、及び風力発電装置
USRE48269E1 (en) Thrust foil bearing
WO2023071041A1 (zh) 一种轴结构、风力发电机组轴系和风力发电机组
WO2019119973A1 (zh) 一种磁悬浮轴承、磁悬浮转子支承组件和压缩机
US8100638B2 (en) Centering device
US8202003B2 (en) Compliant spherical bearing mount
US8998493B2 (en) Split combo bearing
JP2005220906A (ja) 第1および第2の軸受に支持される駆動シャフトと一体化したファンを有するターボジェットエンジン
US9689277B2 (en) Gas turbine engine and foil bearing system
JP2019019751A (ja) ガスタービンロータ及びガスタービン発電機
TWI709689B (zh) 交通載具的風力發電設備
US11480159B2 (en) Mainframe for wind turbines
US20190368502A1 (en) System having machine and fan
WO2017057993A1 (ko) 가스터빈 디스크
US20130300124A1 (en) Profiled Air Cap on Direct Drive Wind Turbine Generator
CN113898414A (zh) 一种燃气轮机高压转子防热振动变形的补强结构
EP1114947B1 (en) Assembly of one-way clutch and bearing
CN115324911A (zh) 超临界二氧化碳压气机以及同轴发电系统
CN105386794A (zh) 涡轮盘刚度自增强的涡轮结构
CN109751193B (zh) 风力发电机组
JP2015227651A (ja) 風力発電装置
JP4001403B2 (ja) 真空ポンプのロータを支持するための回転組立体
JP2007132418A (ja) 風力発電機主軸支持構造
CN112628281B (zh) 一种气浮轴承转子系统及电机
JP2907086B2 (ja) 遠心形圧縮機または遠心形タービンのインペラの固定機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884958

Country of ref document: EP

Kind code of ref document: A1