WO2023070890A1 - 一种穿戴设备的工作模式控制方法、穿戴设备及介质 - Google Patents

一种穿戴设备的工作模式控制方法、穿戴设备及介质 Download PDF

Info

Publication number
WO2023070890A1
WO2023070890A1 PCT/CN2021/138618 CN2021138618W WO2023070890A1 WO 2023070890 A1 WO2023070890 A1 WO 2023070890A1 CN 2021138618 W CN2021138618 W CN 2021138618W WO 2023070890 A1 WO2023070890 A1 WO 2023070890A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
signal
working mode
temperature
heart rate
Prior art date
Application number
PCT/CN2021/138618
Other languages
English (en)
French (fr)
Inventor
梁晨红
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023070890A1 publication Critical patent/WO2023070890A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wearable devices, and in particular to a method for controlling a working mode of a wearable device, a wearable device and a medium.
  • the purpose of this application is to provide a working mode control method of a wearable device, a wearable device and a medium, so as to improve the battery life of the wearable device.
  • the present application provides a method for controlling the working mode of a wearable device, including:
  • the physiological sign signal collected by the sensor in the current wearable device at least includes a temperature signal
  • the mode is a low power consumption mode, wherein the working mode includes a normal working mode and a low power consumption mode, and the number of devices in the working state in the low power consumption mode is less than that in the working state in the normal working mode.
  • the physiological sign signal also includes a heart rate signal
  • the first preset condition also includes a pulse in which the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold and the heart rate signal occurs within the first preset time
  • the signal presents an interrupted condition.
  • the heart rate signal is acquired again to determine whether the pulse signal that appears within the first preset time is interrupted. Condition.
  • it also includes:
  • the working mode of the current wearable device is controlled to be the normal working mode, wherein the second preset condition includes at least the absolute value of the temperature difference corresponding to two adjacent temperature signals greater than second threshold.
  • the physiological sign signal also includes a heart rate signal
  • the second preset condition also includes a pulse in which the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than a second threshold and the heart rate signal occurs within a second preset time The signal does not appear to be interrupted.
  • the heart rate signal is acquired again to determine whether the pulse signal that does not appear within the second preset time is interrupted Case.
  • the present application also provides a wearable device, including:
  • An acquisition module configured to acquire physiological sign signals collected by sensors in the current wearable device, where the physiological sign signals include at least temperature signals;
  • a judging module configured to judge whether the physiological sign signal satisfies a first preset condition, wherein the first preset condition at least includes that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, and if so, enter control module;
  • the control module is used to control the working mode of the current wearable device to be a low power consumption mode, wherein the working mode includes a normal working mode and a low power consumption mode, and the number of devices in the working state in the low power consumption mode is less than that in the normal working mode state of the device.
  • the present application also provides a wearable device, including:
  • the processor is configured to implement the steps of the above method for controlling the working mode of the wearable device when executing the computer program.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned working mode control method of the wearable device are realized.
  • the present application provides a method for controlling the working mode of a wearable device, which obtains the physiological sign signal collected by the sensor in the current wearable device, the physiological sign signal includes at least a temperature signal, and judges whether the physiological sign signal satisfies the first preset condition, wherein, the first A preset condition at least includes that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, and if so, control the current working mode of the wearable device to be a low power consumption mode, wherein the working mode includes a normal working mode and low-power mode, in which fewer devices are active than in normal operating mode.
  • this method determines and controls the current working mode of the wearable device by changing the software method, and adopts the judgment method of temperature difference to avoid the problem of misjudgment caused by the method of temperature threshold.
  • the adoption of this technical solution not only increases the battery life of the wearable device, but also avoids changing hardware and reduces the risk of misjudgment, thereby improving user experience.
  • the present application also provides a wearable device and a medium, which have the same beneficial effects as the above-mentioned working mode control method of the wearable device.
  • FIG. 1 is a flow chart of a method for controlling a working mode of a wearable device provided in an embodiment of the present application
  • FIG. 2 is a structural diagram of a wearable device provided by an embodiment of the present application.
  • FIG. 3 is a structural diagram of another wearable device provided by an embodiment of the present application.
  • Fig. 4 is a flow chart of another method for controlling the working mode of a wearable device provided by an embodiment of the present application.
  • the core of the present application is to provide a working mode control method of a wearable device, a wearable device and a medium, so as to improve the battery life of the wearable device.
  • the wearable device involved in this application can be headphones, true wireless stereo (True Wireless Stereo, TWS) earphones, smart bracelets, smart glasses, smart sports watches, etc.
  • the working mode control method is to control the working mode of the wearable device through software to reduce power consumption so as to improve battery life.
  • Fig. 1 is a flowchart of a method for controlling a working mode of a wearable device provided in an embodiment of the present application. As shown in Fig. 1 , the present application provides a method for controlling a working mode of a wearable device, and the method includes:
  • S11 Acquire physiological sign signals collected by sensors in the current wearable device, where the physiological sign signals at least include temperature signals.
  • the wearable device includes a signal collection module, a signal processing module and a signal identification module, and the signal collection module is collected by the sensor.
  • the collected signal is transmitted to the signal processing module, the collected signal is converted into an electrical signal, and the converted electrical signal is converted into a digital signal corresponding to the control working mode by the signal identification module for identification.
  • the physiological sign signal collected by the sensor in the current wearable device is a signal unique to living organisms, including four major signs of body temperature, pulse, blood pressure and respiration.
  • the heart rate is the frequency of the heart beat
  • the pulse is the frequency of the pulsation of blood vessels. Under normal circumstances, the pulse is consistent with the heart rate. Every time the heart beats, the blood that pops out hits the wall of the blood vessel, forming a change in pressure, which is the pulse that is touched on the body surface.
  • the wearable device is a smart sports watch, which is worn on the user's wrist.
  • the sensor of the wearable device collects the pulse signal as a normal heart rate signal, so this application only considers the normal situation.
  • the physiological sign signal includes at least a temperature signal, which can be one or more different types of signals. For example, it only includes a temperature signal or includes a temperature signal based on matching with a heart rate signal.
  • the sensor that collects the temperature signal can be It is a body temperature negative temperature system sensor (Negative Temperature Coefficient, NTC). As the temperature rises, the resistance value decreases, and it can change its resistance value as the temperature changes.
  • NTC body temperature negative temperature system sensor
  • A/D Analog to Digital
  • the electrical signal is converted into a digital signal, and then the relevant algorithm of the software is used to obtain the current temperature value through self-calibration and self-compensation to determine the user's body temperature state.
  • A/D Analog to Digital
  • the sensor that collects physiological sign signals is different from the sensor that collects other signals.
  • the sensor that collects physiological sign signals can be a temperature sensor, heart rate sensor, pressure sensor, respiration sensor, etc., and the sensor that collects other signals is, for example, an infrared sensor. Only infrared is used for data processing and non-contact temperature measurement. In addition to living organisms, other inanimate objects can be analyzed, such as gas composition analysis, so physiological signs are not suitable for infrared sensor collection.
  • the physiological sign signals are obtained by filtering and preprocessing in the signal processing module.
  • the physiological sign signals include different types of signals, so the processed physiological sign signals are stored in the storage unit of the wearable device for easy recall.
  • the processed physiological sign signal and call different types of physiological sign signals in the storage unit of the wearable device for identification processing. If the physiological sign signal only calls a temperature signal, it will directly identify and control the working mode of the wearable device. If calling Two different types of signals, such as temperature and breathing signals, can be obtained by setting priority or identifying and processing at the same time. After one or two conditions are met, the working mode of the wearable device is controlled. Set according to the actual situation. This application No specific requirements are required. What needs to be explained is that the physiological sign signals are collected and processed at the same time and put into the database for calling according to the actual situation. This application only obtains the physiological sign signals collected by the sensors in the current wearable device.
  • step S12 Judging whether the physiological sign signal satisfies the first preset condition, wherein the first preset condition at least includes that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, and if so, then Go to step S13.
  • the first preset condition is set for the physiological sign signal, which can be the basic value of the temperature signal, the difference before and after the temperature signal, and the basic value of the respiratory rate.
  • the heart rate signal can be interrupted if the pulse signal is not continuous, etc.
  • set the basic value of the temperature signal which is suitable for human body temperature.
  • his body temperature will often be lower than 36°C, which is easy to meet the preset conditions. He frequently controls the working mode of the wearable device.
  • the physiological sign signal includes at least a temperature signal
  • the first preset condition includes at least the absolute value of a temperature difference corresponding to two adjacent temperature signals being greater than a first threshold.
  • the temperature difference between the temperature signal of the next 1s and the first 1s is -4°C, for If the temperature difference takes the form of an absolute value, it is 4°C, if it is greater than the first threshold, then the temperature signal meets the first preset condition, then controls the current working mode of the wearable device to be a low power consumption mode, otherwise it does not meet the first preset condition Conditions, maintain the current working status.
  • the temperature difference corresponding to two adjacent temperature signals is based on the time sequence, the temperature difference obtained by subtracting the temperature signal collected later from the temperature signal collected first, and then obtains its absolute value and compares it with the first threshold value, The collected temperature signal is obtained according to the set interval time, and the first threshold value is set according to the actual situation, and this application does not make specific requirements.
  • the physiological sign signal can also be a temperature signal and a heart rate signal
  • the first preset condition further includes that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold and the heart rate signal The pulse signal occurring within the first preset time presents an interruption.
  • the first preset condition can be set according to the actual situation, including at least one type of signal of the temperature signal, and can also include two different types of signals of the temperature signal and the heart rate signal.
  • the preset condition can also set the preset condition for matching the temperature signal and the heart rate signal, without specific setting.
  • S13 Control the current working mode of the wearable device to be a low-power mode, wherein the working mode includes a normal working mode and a low-power mode, and the devices in the working state in the low-power mode are less than the devices in the working state in the normal working mode .
  • the working mode of the current wearable device includes normal working mode and low power consumption mode.
  • the normal working mode is that all the devices in the current wearable device are working normally
  • the low power consumption mode is that the current working devices in the wearable device are less than the normal working mode. device in working condition.
  • different wearable devices contain different components, but they all need to contain sensors for collecting physiological sign signals.
  • the device currently in the working state of the wearable device may include sensors that collect physiological sign signals.
  • the physiological sign signals include temperature signals and heart rate signals.
  • both the temperature sensor and the heart rate sensor In the working state it may also include devices other than sensors for collecting physiological sign signals. It should be noted that the foregoing content is only a specific embodiment.
  • all devices can also be turned off, that is, shut down.
  • the sensor and microcontroller unit MCU
  • MCU microcontroller Unit
  • the current low power consumption mode is automatically switched to the normal power consumption mode, as described below for details.
  • the devices that are in the off state there is no limitation on the devices that are in the off state.
  • the devices that can be turned off are acceleration sensors, voice acquisition modules, etc.
  • the current working mode of the wearable device is controlled to be a low power consumption mode, which is divided into two types, one is to adjust the normal working mode to a low power consumption mode, and the other is to adjust the normal working mode to a low power consumption mode. If it is a low power consumption mode, it will continue to maintain a low power consumption mode.
  • the current wearable device can maintain the current working mode or control the current working mode of the wearable device to be a normal working mode. Therefore, controlling the working mode of the current wearable device is based on the first preset condition.
  • the specific content of the setting conditions is implemented. The content of different types of signals in the first preset condition is different, resulting in different working modes. It can be set according to the actual situation, and this application does not make specific requirements.
  • the switch When the working mode of the current wearable device is the low power consumption mode, if it is switched from the low power consumption mode to the normal working mode, the switch can be automatically adjusted according to the vital sign signal to meet another preset condition, or it can be adjusted according to the needs of the user.
  • a button is set in the device to manually adjust the working mode of the current wearable device through the button. This application does not make specific requirements.
  • the present application provides a method for controlling the working mode of a wearable device, which obtains the physiological sign signal collected by the sensor in the current wearable device, the physiological sign signal includes at least a temperature signal, and judges whether the physiological sign signal satisfies the first preset condition, wherein, the first A preset condition at least includes that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, and if so, control the current working mode of the wearable device to be a low power consumption mode, wherein the working mode includes a normal working mode and low-power mode, in which fewer devices are active than in normal operating mode.
  • the physiological sign signal includes a temperature signal, and also includes a heart rate signal.
  • the sensor for collecting the heart rate signal is a photoelectric sensor. After sending a beam of light with a certain wavelength to irradiate the skin surface, the photoelectric sensor receives the returned light intensity. The heart rate signal is detected.
  • the physiological sign signal is a temperature signal and a heart rate signal, and the corresponding first preset condition is specifically:
  • the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, and the pulse signal of the heart rate signal within the first preset time is interrupted.
  • the preset conditions of the temperature signal have been described in detail in the above embodiments, and will not be repeated here.
  • the acquisition mode of the heart rate signal is the same as the acquisition mode of the temperature signal. According to the acquisition of the first timing time, the detected pulse signal of the collected heart rate signal within the first preset time presents an interruption. If it occurs within the first preset time is an interrupted pulse signal, it means that the current wearable device is not worn on the user's wrist.
  • the heart rate signal is acquired once a minute according to the first timing time, and the pulse signal of the heart rate signal is detected within 30 minutes of the first preset time. If there are continuous pulse signals in the first 5 minutes within 30 minutes, then If a continuous pulse signal appears from the 7th minute to the 30th minute, but an interruption occurs between the 5th minute and the 7th minute, then the pulse signal occurring within the first preset time presents an interruption.
  • the collection of the first timing time of the heart rate signal and the specific value of the first preset time are set according to the actual situation, and no specific requirements are set.
  • the first preset condition for the heart rate signal is set when the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, and if the temperature signal satisfies the If the temperature difference is greater than the first threshold, the heart rate signal detection based on the first timing time shows that the pulse signal that appears within the first preset time is interrupted, and if the temperature signal and the heart rate signal meet the first preset condition, then control
  • the current working mode of the wearable device is a low power consumption mode. When only one of the temperature signal and the heart rate signal satisfies the preset condition corresponding to the first preset condition, the current wearable device continues to maintain the original working mode without any change.
  • the senor that collects the physiological sign signal is always in the collection work, and the signal processing module and the signal identification module extract the physiological sign signal according to the actual situation, and the extracted physiological sign signal is extracted according to different timing intervals. There are no specific requirements for the application.
  • the first preset condition provided by this application is that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold and the heart rate signal appears interrupted within the first preset time.
  • the working mode of the current wearable device is controlled to be a low power consumption mode, and the working mode of the current wearable device is further accurately controlled to reduce power consumption, so as to increase the battery life of the wearable device. Improve user experience.
  • the physiological sign signal includes a temperature signal and a heart rate signal, and its specific examples are:
  • the heart rate signal is acquired again to determine whether the pulse signal occurring within the first preset time is interrupted.
  • the heart rate signal is further obtained, and it is judged whether the pulse signal that appears in the heart rate signal within the first preset time is interrupted . It should be noted that when the temperature signal satisfies that the absolute value of the temperature difference is greater than the first threshold, the heart rate sensor is turned on to obtain the heart rate signal, and it is judged whether the pulse signal that appears within the first preset time is interrupted. When the temperature signal is used, only the temperature signal is obtained, and the heart rate signal is obtained when the temperature signal meets certain conditions.
  • the current working mode of the wearable device is controlled to be a low power consumption mode, that is, the remaining sensors except the sensor for collecting physiological sign signals are turned off.
  • the working mode of the current wearable device is the low power consumption mode, it is necessary to turn off the remaining sensors except the sensor for collecting the physiological sign signal, and if the physiological sign signal is a temperature signal, turn off the remaining sensor except the body temperature NTC, if When the physiological sign signal is a temperature signal and a heart rate signal, turn off the remaining sensors except the body temperature NTC and the heart rate sensor.
  • the low power consumption mode is to keep the sensor that collects the physiological sign signal, and turn off the remaining sensors.
  • PMIC power management integrated circuit
  • the controller of the wearable device sends work instructions to the power manager PMIC through the serial port bus internal integrated circuit (Inter-Integrated Circuit, I2C) protocol to close the rest of the sensors except the sensor that collects the physiological sign signal.
  • I2C Inter-Integrated Circuit
  • the present application provides that when the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, the heart rate signal is acquired again to determine whether the heart rate signal appears within the first preset time.
  • the pulse signal presents an interruption Case.
  • the temperature signal meets the conditions, turn on the heart rate sensor, and then judge whether the pulse signal of the heart rate signal is interrupted within the first preset time.
  • the signal meets the conditions, turn on the heart rate sensor and judge whether the heart rate signal meets the conditions, further accurately control the current working mode of the wearable device, and reduce power consumption to improve the battery life of the wearable device.
  • the wearable device After the current working mode of the wearable device is low power consumption mode, it also includes:
  • the working mode of the current wearable device is controlled to be the normal working mode, wherein the second preset condition includes at least the absolute value of the temperature difference corresponding to two adjacent temperature signals greater than second threshold.
  • the physiological sign signal includes at least a temperature signal, and the collection of the temperature signal has also been described in detail in the above-mentioned embodiments, and will not be repeated here.
  • the second preset condition includes at least that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the second threshold.
  • the temperature values corresponding to the temperature signal in the next 1s are 32°C and 36°C respectively, and the temperature difference is -4°C obtained by subtracting the temperature value 36°C corresponding to the next 1s from the temperature value 32°C corresponding to the first 1s, Its absolute value is 4°C, and the second threshold is set at 3°C, which means that the absolute value of 4°C of the temperature difference corresponding to two adjacent temperature signals is greater than the second threshold of 3°C.
  • the temperature difference corresponding to two adjacent temperature signals is based on the time sequence, and the absolute value obtained by subtracting the temperature signal collected first from the temperature signal collected later is compared with the second threshold , the collected temperature signal is obtained according to the set interval time, the second threshold may be the same as the first threshold, or may be set according to the actual situation.
  • the working mode of the current wearable device is low power consumption mode.
  • the sensor currently working in the wearable device is a sensor for collecting physiological sign signals. Therefore, when the physiological sign signal meets the second preset condition, the current wearable device is controlled.
  • the mode is the normal working mode. Its normal working mode is a mode in which the sensors collecting physiological sign signals in the current wearable device and the rest of the sensors are in a normal working state.
  • the second preset condition is set for the physiological sign signal, which can be a temperature signal, or two types of signals, a temperature signal and a heart rate signal, or two types of signals.
  • the physiological sign signal can be a temperature signal, or two types of signals, a temperature signal and a heart rate signal, or two types of signals.
  • the above types of signals are compatible, and no specific requirements are made.
  • the physiological sign signal does not meet the first preset condition, it does not mean that the second preset condition can be met, and it needs to be set according to specific actual conditions.
  • the sensor for collecting physiological sign signals and the remaining sensors are turned on to work, and its power manager supplies power to the sensors of the current wearable device.
  • a prompt message can be set, and the prompt message type can be a voice message broadcast to inform the user, or can be displayed on the wearable device.
  • a flashing device is set on the display screen, and the vibration module can also be activated to remind the user, increasing the user experience effect.
  • the present application provides that when the physiological sign signal satisfies the second preset condition, the current working mode of the wearable device is controlled to be the normal working mode, and the current working mode of the wearable device is controlled through software to improve user experience.
  • the acquired physiological sign signals include temperature signals and heart rate signals.
  • the acquisition of the temperature signals and heart rate signals has been described in detail in the above embodiments, and will not be repeated here.
  • the second preset condition is:
  • the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the second threshold, and the pulse signal of the heart rate signal within the second preset time does not appear to be interrupted.
  • the absolute value of the temperature difference corresponding to two adjacent temperature signals being greater than the second threshold has been described in detail in the above embodiment, and will not be repeated here.
  • the present application does not make specific requirements on acquiring the temperature signal and the heart rate signal, the first threshold and the second threshold at set intervals.
  • the heart rate signal is collected according to the second timing time, and it is detected that the pulse signal of the collected heart rate signal within the second preset time does not appear to be interrupted, that is, the heart rate signal is a continuous pulse signal, for example, the second The timing time is 5s once, and the pulse signal of the heart rate signal is detected within 2 minutes of the second preset time. If there is no interrupted continuous pulse signal within 2 minutes, that is, it is from the 0th minute to the 2nd minute. If the continuous continuous pulse signal appears, there is no interruption, indicating that the current wearable device is worn on the user's wrist.
  • the heart rate signal in the first preset condition is collected according to the first timing time
  • the heart rate signal in the second preset condition is collected according to the second timing time, wherein the first timing time is greater than the second timing time
  • the first preset condition is to control the working mode of the current wearable device to be a low-power consumption mode.
  • the first timing time setting is longer to ensure precise control of the low-power consumption mode.
  • the second preset condition is to control the current working mode of the wearable device to the normal working mode.
  • the second timing setting is relatively short.
  • the physiological sign signals in this embodiment are temperature signals and heart rate signals.
  • the physiological sign signals in the above-mentioned embodiments are temperature signals
  • the second preset condition is the temperature difference corresponding to two adjacent temperature signals. The absolute value of is greater than the second threshold, which will not be repeated here.
  • the second preset condition provided by the present application is that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the second threshold and the pulse signal of the heart rate signal does not appear to be interrupted within the second preset time.
  • the current working mode of the wearable device is controlled to be the normal working mode, further accurately controlling the current working mode of the wearable device, and improving user experience.
  • the physiological sign signal includes a temperature signal and a heart rate signal, and specific examples thereof are:
  • the heart rate signal is acquired again to determine whether the pulse signal that occurs within the second preset time does not appear to be interrupted.
  • the heart rate signal is further obtained, and it is judged whether the pulse signal that appears in the heart rate signal within the second preset time does not appear to be interrupted Condition. It should be noted that when the temperature signal satisfies that the absolute value of the temperature difference is greater than the second threshold, the heart rate sensor is turned on to obtain the heart rate signal, and it is judged whether the pulse signal that appears within the second preset time does not appear to be interrupted. When obtaining the temperature signal, only the temperature signal is obtained, and the heart rate signal is obtained after the temperature signal meets certain conditions.
  • the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the second threshold and the heart rate signal does not appear to be interrupted within the second preset time.
  • the present application provides that when the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the second threshold value, the heart rate signal is acquired again to determine whether the heart rate signal appears within the second preset time.
  • the pulse signal does not appear interruption situation.
  • turn on the heart rate sensor and then judge whether the pulse signal of the heart rate signal within the second preset time is not interrupted.
  • the signal meets the conditions turn on the heart rate sensor and judge whether the heart rate signal meets the conditions, further accurately control the current working mode of the wearable device, and reduce power consumption to improve the battery life of the wearable device.
  • the physiological sign signal is a temperature signal and a heart rate signal, which control the first preset time in the first preset condition when the current wearable device's working mode is the low power consumption mode and the current wearable device's first preset time.
  • the second preset time is set in the second preset condition when the working mode is the normal working mode, and the first preset time is longer than the second preset time.
  • the first preset time is set for a longer time in order to obtain more accurately Know the wearing status of the current wearable device, so as to control the working mode of the current wearable device according to the wearing status.
  • the second preset time is set to be shorter than the first preset time Short, to prevent the user who has worn the current wearable device but the second preset time set by the wearable device is longer, resulting in a longer detection time and affecting the user's experience.
  • this embodiment is not applicable when the vital sign signal is only a temperature signal.
  • the first preset time is greater than the second preset time, and the specific values of the first preset time and the second preset time are not specifically required in this application and are set according to actual conditions.
  • the first preset time provided by the present application is longer than the second preset time, so that the wearing status of the current wearable device can be known more accurately and in a timely manner so as to control the working mode of the current wearable device more efficiently and improve user experience.
  • FIG. 2 is a structural diagram of a wearable device provided by the embodiment of the present application. .
  • wearable devices include:
  • the acquisition module 11 is configured to acquire the physiological sign signal collected by the sensor in the current wearable device, the physiological sign signal at least includes a temperature signal;
  • Judging module 12 configured to judge whether the physiological sign signal satisfies the first preset condition, wherein the first preset condition at least includes that the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, and if so, then Enter the control module 13;
  • the control module 13 is used to control the working mode of the current wearable device to be a low power consumption mode, wherein the working mode includes a normal working mode and a low power consumption mode, and the devices in the working state in the low power consumption mode are less than those in the normal working mode. device in working condition.
  • a wearable device obtained by the present application obtains the physiological sign signal collected by the sensor in the current wearable device, the physiological sign signal includes at least a temperature signal, and judges whether the physiological sign signal satisfies the first preset condition, wherein the first preset condition is at least Including the absolute value of the temperature difference corresponding to two adjacent temperature signals greater than the first threshold, if so, then control the current working mode of the wearable device to be a low power consumption mode, wherein the working mode includes a normal working mode and a low power consumption mode , fewer devices are active in low-power mode than in normal operating mode.
  • the device determines and controls the working mode of the current wearable device by changing the software, and uses the temperature difference judgment method to make judgments, which can avoid the problem of misjudgment caused by the temperature threshold method.
  • the adoption of this technical solution not only increases the battery life of the wearable device, but also avoids changing hardware and reduces the risk of misjudgment, thereby improving user experience.
  • FIG. 3 a structural diagram of another wearable device provided by the embodiment of the present application. As shown in FIG. 3, the device includes:
  • Memory 21 used to store computer programs
  • the processor 22 is configured to implement the steps of the method for controlling the working mode of the wearable device when executing the computer program.
  • the wearable device provided in this embodiment may include but not limited to headphones, TWS earphones, smart bracelets, smart sports watches, and the like.
  • the processor 22 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • Processor 22 can adopt at least one hardware form in Digital Signal Processing (Digital Signal Processing, DSP), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA), Programmable Logic Array (Programmable Logic Array, PLA) accomplish.
  • Processor 22 may also include a main processor and a coprocessor, the main processor is a processor for processing data in a wake-up state, and is also called a central processing unit (Central Processing Unit, CPU); the coprocessor is Low-power processor for processing data in standby state.
  • CPU Central Processing Unit
  • the processor 22 may be integrated with a graphics processor (Graphics Processing Unit, GPU), and the GPU is used for rendering and drawing the content that needs to be displayed on the display screen.
  • the processor 22 may also include an artificial intelligence (Artificial Intelligence, AI) processor, which is used to process computing operations related to machine learning.
  • AI Artificial Intelligence
  • Memory 21 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 21 may also include high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the memory 21 is at least used to store the following computer program 201, wherein, after the computer program is loaded and executed by the processor 22, it can realize the relevant steps of the method for controlling the working mode of the wearable device disclosed in any of the foregoing embodiments.
  • the resources stored in the memory 21 may also include an operating system 202 and data 203, etc., and the storage method may be temporary storage or permanent storage.
  • the operating system 202 may include Windows, Unix, Linux and so on.
  • the data 203 may include but not limited to the data related to the working mode control method of the wearable device and the like.
  • the wearable device may further include a display screen 23 , an input/output interface 24 , a communication interface 25 , a power supply 26 and a communication bus 27 .
  • FIG. 3 is a structural diagram of another wearable device provided by an embodiment of the present application.
  • the structure shown in FIG. 3 does not constitute a limitation to the wearable device, and may include more or less components than those shown in the illustration.
  • the processor 22 calls the instructions stored in the memory 21 to implement the method for controlling the working mode of the wearable device provided in any one of the above embodiments.
  • a wearable device obtained by the present application obtains the physiological sign signal collected by the sensor in the current wearable device, the physiological sign signal includes at least a temperature signal, and judges whether the physiological sign signal satisfies the first preset condition, wherein the first preset condition is at least Including the absolute value of the temperature difference corresponding to two adjacent temperature signals greater than the first threshold, if so, then control the current working mode of the wearable device to be a low power consumption mode, wherein the working mode includes a normal working mode and a low power consumption mode , fewer devices are active in low-power mode than in normal operating mode.
  • the device determines and controls the working mode of the current wearable device by changing the software method, and uses the temperature difference judgment method to make judgments, which can avoid the problem of misjudgment caused by the temperature threshold method.
  • the adoption of this technical solution not only increases the battery life of the wearable device, but also avoids changing hardware and reduces the risk of misjudgment, thereby improving user experience.
  • FIG. 4 is a flow chart of another working mode control method of a wearable device provided in the embodiment of the present application.
  • its physiological sign signal is temperature Signal and heart rate signal
  • the heart rate signal is obtained, and continue to detect whether the preset conditions of the heart rate signal are met, until the preset conditions of the two types of signals are met
  • the working mode of the wearable device can be controlled It is a low power consumption mode, which specifically includes:
  • step S22 Judging whether the absolute value of the temperature difference corresponding to two adjacent temperature signals is greater than the first threshold, if yes, proceed to step S23, if not, proceed to step S24;
  • step S23 Judging whether the pulse signal of the heart rate signal within the first preset time is interrupted, if yes, proceed to step S25, if not, proceed to step S24;
  • the current working mode of the wearable device is switched from the normal working mode to the low power consumption mode when the preset condition of the temperature signal in step S22 is met and then the preset condition of the heart rate signal in step S23 is met.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by the processor 22, the steps of the above-mentioned method for controlling the working mode of the wearable device are implemented.
  • the methods in the above embodiments are implemented in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , executing all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • a working mode control method of a wearable device, a wearable device and a medium provided in the present application have been introduced in detail above.
  • Each embodiment in the description is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part. It should be pointed out that for those skilled in the art, without departing from the principle of the application, several improvements and modifications can be made to the application, and these improvements and modifications also fall within the protection scope of the claims of the application.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种穿戴设备的工作模式控制方法、穿戴设备及介质,应用于穿戴设备技术领域。获取当前穿戴设备中的传感器采集的生理体征信号,生理体征信号至少包括温度信号(S11),判断生理体征信号是否满足第一预设条件,其中,第一预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值(S12),若是,则控制当前穿戴设备的工作模式为低功耗模式(S13)。控制方法通过改变软件的方式控制当前穿戴设备的工作模式,且采用温度差值的判断方式进行判断,能够避免采用温度阈值的方式所带来的误判的问题,不仅增加了穿戴设备的续航时间,同时避免改变硬件以及降低误判的风险,提高用户的体验效果。

Description

一种穿戴设备的工作模式控制方法、穿戴设备及介质
本申请要求于2021年10月31日提交中国专利局、申请号为202111278699.4、发明名称为“一种穿戴设备的工作模式控制方法、穿戴设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及穿戴设备技术领域,特别是涉及一种穿戴设备的工作模式控制方法、穿戴设备及介质。
背景技术
现如今的手表等智能穿戴设备随着本身设备功能的不断增加,其用来检测各种数据的各类传感器也不断应用在穿戴设备中,使得穿戴设备的待机时长明显减少,当传感器在工作时,传感器的自我唤醒也会导致穿戴设备的续航时间减少,因此影响用户体验。
为解决穿戴设备的续航时间问题,通常情况下通过硬件的方式改善,例如,选用低功耗元器件替代原高功耗元器件进行工作,进而达到降低功耗的目的,但是该种方式一方面需要更换硬件,另一方面对于硬件的要求也会相应提高,增加了研发成本。
因此,如何提高续航能力是本领域技术人员亟需要解决的。
发明内容
本申请的目的是提供一种穿戴设备的工作模式控制方法、穿戴设备及介质,提高穿戴设备的续航能力。
为解决上述技术问题,本申请提供一种穿戴设备的工作模式控制方法,包括:
获取当前穿戴设备中的传感器采集的生理体征信号,生理体征信号至少包括温度信号;
判断生理体征信号是否满足第一预设条件,其中,第一预设条件至少包 括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值;若是,则控制当前穿戴设备的工作模式为低功耗模式,其中,工作模式包括正常工作模式和低功耗模式,低功耗模式下处于工作状态的器件少于正常工作模式下处于工作状态的器件。
优选地,生理体征信号还包括心率信号,第一预设条件还包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值且心率信号在第一预设时间内出现的脉冲信号呈现中断的情况。
优选地,在相邻的两个温度信号对应的温度差值的绝对值大于第一阈值的情况下,再获取心率信号以判断心率信号是否在第一预设时间内出现的脉冲信号呈现中断的情况。
优选地,还包括:
当生理体征信号满足第二预设条件时,则控制当前穿戴设备的工作模式为正常工作模式,其中,第二预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第二阈值。
优选地,生理体征信号还包括心率信号,第二预设条件还包括相邻的两个温度信号对应的温度差值的绝对值大于第二阈值且心率信号在第二预设时间内出现的脉冲信号未呈现中断的情况。
优选地,在相邻的两个温度信号对应的温度差值的绝对值大于第二阈值的情况下,再获取心率信号以判断心率信号是否在第二预设时间内未出现的脉冲信号呈现中断的情况。
为解决上述技术问题,本申请还提供一种穿戴设备,包括:
获取模块,用于获取当前穿戴设备中的传感器采集的生理体征信号,生理体征信号至少包括温度信号;
判断模块,用于判断生理体征信号是否满足第一预设条件,其中,第一预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值,若是,则进入控制模块;
控制模块,用于控制当前穿戴设备的工作模式为低功耗模式,其中,工作模式包括正常工作模式和低功耗模式,低功耗模式下处于工作状态的器件少于正常工作模式下处于工作状态的器件。
为解决上述技术问题,本申请还提供一种穿戴设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行计算机程序时实现如上述穿戴设备的工作模式控制方法的步骤。
为解决上述技术问题,本申请还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上述穿戴设备的工作模式控制方法的步骤。
本申请提供的一种穿戴设备的工作模式控制方法,获取当前穿戴设备中的传感器采集的生理体征信号,生理体征信号至少包括温度信号,判断生理体征信号是否满足第一预设条件,其中,第一预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值,若是,则控制当前穿戴设备的工作模式为低功耗模式,其中,工作模式包括正常工作模式和低功耗模式,低功耗模式下处于工作状态的器件少于正常工作模式下处于工作状态的器件。由此可见,该方法通过改变软件方式确定控制当前穿戴设备的工作模式,且采用温度差值的判断方式进行判断,能够避免采用温度阈值的方式所带来的误判的问题。综上所述,采用本技术方案不仅增加了穿戴设备的续航时间,同时避免改变硬件以及降低误判的风险,提高用户的体验效果。
另外,本申请还提供了一种穿戴设备及介质,具有如上述穿戴设备的工作模式控制方法相同的有益效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种穿戴设备的工作模式控制方法的流程图;
图2为本申请实施例提供的一种穿戴设备的结构图;
图3为本申请实施例提供的另一种穿戴设备的结构图;
图4为本申请实施例提供的另一种穿戴设备的工作模式控制方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的核心是提供一种穿戴设备的工作模式控制方法、穿戴设备及介质,提高穿戴设备的续航能力。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
需要说明的是,本申请涉及的穿戴设备可以是头戴耳机,真正无线立体声(True Wireless Stereo,TWS)耳机、智能手环、智能眼镜、智能运动手表等,本申请提出的一种穿戴设备的工作模式控制方法,是通过软件方式控制穿戴设备的工作模式减少耗电量以达到提高续航的目的。
图1为本申请实施例提供的一种穿戴设备的工作模式控制方法的流程图,如图1所示,本申请提供一种穿戴设备的工作模式控制方法,该方法包括:
S11:获取当前穿戴设备中的传感器采集的生理体征信号,生理体征信号至少包括温度信号。
可以理解的是,本申请通过软件方式控制穿戴设备的工作模式,其根据传感器采集的信号作为依据,穿戴设备包括信号采集模块、信号处理模块和信号识别模块,其信号采集模块为传感器进行采集,将采集到的信号传输至信号处理模块中,将采集信号转化为电信号,通过信号识别模块对转化的电信号转化为相应控制工作模式的数字信号进行识别工作。
当前穿戴设备中的传感器采集的生理体征信号,其生理体征信号为活的生物上特有的信号,其包括体温、脉搏、血压和呼吸四大体征,需要说明的是,心率是心脏搏动的频率,脉搏是作为血管搏动的频率,正常情况下,脉搏和心率一致,心脏每次跳动蹦出的血液冲击血管壁,形成压力的变化即为体表触摸到的脉搏。例如,穿戴设备为智能运动手表,其佩戴在用户的腕部,穿戴设备的传感器采集的是脉搏信号以作为正常心率信号,故本申请只考虑 正常情况。
需要说明的是,生理体征信号至少包括温度信号,可以为一种或多种不同类型的信号,例如,仅包括温度信号或者包括温度信号的基础上与心率信号相配合,采集温度信号的传感器可以为体温负温度系统传感器(Negative Temperature Coefficient,NTC),随着温度的升高电阻值下降,能够随着温度的变化改变其阻值,通过模数转换器(Analog to Digital,A/D)由电信号转化为数字信号,再利用软件的相关算法通过自校准、自我补偿得到当前的温度值来确定用户的体温状态。具体实施方式参见下文描述。另外,采集生理体征信号的传感器区别于采集其他信号的传感器,采集生理体征信号的传感器对应可以为温度传感器、心率传感器、压力传感器、呼吸传感器等,采集其他信号的传感器例如为红外传感器,红外传感器只是利用红外线进行数据处理,无接触温度测量,除了活的生物还有可以分析其他无生命的物体,例如气体成分分析等,因此生理体征信号不适用红外传感器采集。
对于采集生理体征信号,由于传感器采集原始的生理体征信号会有毛刺,杂讯等信号,因此在信号处理模块中进行过滤和预处理得到生理体征信号。生理体征信号包括不同类型的信号,因此将处理后的生理体征信号储存至穿戴设备的存储单元以方便调用。
获取处理后的生理体征信号,在该穿戴设备的存储单元中调用不同类型的生理体征信号进行识别处理,若生理体征信号只调用一种温度信号则直接识别进而控制穿戴设备的工作模式,若调用两种不同类型信号,例如温度、呼吸两种信号,可以设置优先级或者同时进行识别处理得到,其满足一种或者两种条件后进行控制穿戴设备的工作模式,根据实际情况进行设置,本申请不做具体要求,需要说明的是,其生理体征信号同时采集处理后放入数据库中根据实际情况进行调用,本申请只获取当前穿戴设备中的传感器采集的生理体征信号。
S12:判断生理体征信号是否满足第一预设条件,其中,所述第一预设条件至少包括相邻的两个所述温度信号对应的温度差值的绝对值大于第一阈值,若是,则进入步骤S13。
根据获取的生理体征信号判断是否满足第一预设条件,其第一预设条件针对生理体征信号进行设定,可以是温度信号的基础值,温度信号的前后差 值,呼吸频率的基础值也可以为心率信号出现的脉冲信号未连续即呈现中断的情况等,例如,设置温度信号的基础值,适用于人的体温正常值为36℃-37.2℃,其基础值设置为36℃,当冬季用户在外部环境时其体温会常低于36℃,很容易满足预设条件,其频繁控制穿戴设备的工作模式,由于人体温度会恒温保持一段时间,若当前穿戴设备为正常工作模式,一旦体温低于36℃时,则会误操作控制当前穿戴设备为低功耗模式,由于误操作可能导致增加耗电量,甚至影响用户体验。
生理体征信号至少包括温度信号,其第一预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值。
在采集的温度信号中获取相邻的两个温度信号,其温度信号根据一定的时间进行采集,例如:根据1s采集一次温度信号,相邻的两个温度信号为前后1s,也就是前1s与后1s的温度信号对应的温度值(36℃与32℃),其温度差值是利用前1s对应的温度值36℃减去后1s对应的温度值32℃得到的温度差值4℃,设定第一阈值为3℃,其得到相邻的两个温度信号对应的温度差值的绝对值4℃大于第一阈值,若后1s与前1s的温度信号温度差值为-4℃,对于温度差值采取绝对值形式,则为4℃,则大于第一阈值,则温度信号满足第一预设条件,则控制当前穿戴设备的工作模式为低功耗模式,则不满足第一预设条件,维持当前工作状态。
需要说明的是,相邻的两个温度信号对应的温度差值是根据时间顺序,先采集的温度信号减去后采集的温度信号得到的温度差值进而获取其绝对值与第一阈值比较,其采集的温度信号根据设定的间隔时间获取,第一阈值根据实际情况进行设定,本申请不做具体要求。
另外,生理体征信号还可以为温度信号和心率信号,其第一预设条件还包括相邻的两个所述温度信号对应的温度差值的绝对值大于所述第一阈值且所述心率信号在第一预设时间内出现的脉冲信号呈现中断的情况。
因此,第一预设条件可根据实际情况进行设定,至少包括温度信号一种类型的信号,还可以包括温度信号和心率信号两种不同类型的信号相配合,可以设定仅为温度信号的预设条件,还可以设定温度信号与心率信号相配合的预设条件,不做具体设定。
S13:控制当前穿戴设备的工作模式为低功耗模式,其中,工作模式包括 正常工作模式和低功耗模式,低功耗模式下处于工作状态的器件少于正常工作模式下处于工作状态的器件。
当前穿戴设备的工作模式包括正常工作模式和低功耗模式,正常工作模式是当前穿戴设备内的器件全部正常工作,低功耗模式是当前穿戴设备内处于工作状态的器件少于正常工作模式下处于工作状态的器件。可以理解的是,穿戴设备不同,所包含的器件不同,但需要都包含采集生理体征信号的传感器。在低功耗模式下,当前穿戴设备处于工作状态的器件可以包含采集生理体征信号的传感器,例如,生理体征信号包括温度信号和心率信号,则在低功耗模式下,温度传感器和心率传感器均处于工作状态,也可以包含除采集生理体征信号的传感器之外的器件。需要说明的是,前述内容仅仅是一种具体实施例,在其它实施例中,在低功耗模式下,还可以关闭所有器件(包括采集生理体征信号的传感器),即关机。考虑到方便用户使用,通常情况下,最少要保留采集生理体征信号的传感器和微控制单元(Microcontroller Unit,MCU),以便于在所采集的生理体征信号满足后文所提到的第二预设条件时,由当前的低功耗模式自动切换至正常功耗模式,详见下文描述。另外,在低功耗模式下,处于关闭状态的器件也不作限定,例如,对于手环来说,可以关闭的器件为加速度传感器、语音采集模块等。
当生理体征信号满足第一预设条件时,则控制当前穿戴设备的工作模式为低功耗模式,其分为两种,一种是将正常工作模式调整为低功耗模式,一种是原本为低功耗模式则继续维持低功耗模式。
另外,当生理体征信号不满足第一预设条件时,当前穿戴设备可以维持当前工作模式或者控制当前穿戴设备的工作模式为正常工作模式,因此,控制当前穿戴设备的工作模式是依据第一预设条件的具体内容实施,第一预设条件内不同类型信号的内容不同导致工作模式也不尽相同,可根据具体实际情况进行设定,本申请不做具体要求。
当前穿戴设备的工作模式为低功耗模式时,若由低功耗模式切换为正常工作模式,可以根据生命体征信号满足另一种预设条件自动调整切换,也可以根据用户的需求,在穿戴设备中设置一个按键,人为通过按键调整当前穿戴设备的工作模式,本申请不做具体要求。
本申请提供的一种穿戴设备的工作模式控制方法,获取当前穿戴设备中 的传感器采集的生理体征信号,生理体征信号至少包括温度信号,判断生理体征信号是否满足第一预设条件,其中,第一预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值,若是,则控制当前穿戴设备的工作模式为低功耗模式,其中,工作模式包括正常工作模式和低功耗模式,低功耗模式下处于工作状态的器件少于正常工作模式下处于工作状态的器件。由此可见,该方法通过改变软件方式确定控制当前穿戴设备的工作模式,且采用温度差值的判断方式进行判断,能够避免采用温度阈值的方式所带来的误判的问题。综上所述,采用本技术方案不仅增加了穿戴设备的续航时间,同时避免改变硬件以及降低误判的风险,提高用户的体验效果。在上述实施例的基础上,生理体征信号包括温度信号,还包括心率信号,采集心率信号的传感器为光电传感器,通过发送一定波长的光束照射到皮肤表面后,利用光电传感器接收返回的光照强度来进行心率信号的检测,在此过程中光照会经过皮肤肌肉和血液的吸收发生衰减,随着心脏收缩心率信号会呈现连续的脉冲信号。生理体征信号为温度信号和心率信号,对应第一预设条件具体为:
相邻的两个温度信号对应的温度差值的绝对值大于第一阈值且心率信号在第一预设时间内出现的脉冲信号呈现中断的情况。
关于温度信号的预设条件在上述实施例中已详细说明,在此不再赘述。对于心率信号的采集与温度信号的采集模式相同,根据第一定时时间采集,检测采集的心率信号在第一预设时间内出现的脉冲信号呈现中断的情况,若在第一预设时间内出现的脉冲信号为中断的脉冲信号,则说明当前穿戴设备没有在用户的腕部佩戴。
例如,心率信号根据第一定时时间1分钟一次获取,在第一预设时间30分钟内检测心率信号出现的脉冲信号的情况,若在30分钟内的前5分钟为连续的脉冲信号,在第7分钟到第30分钟出现连续的脉冲信号,但是在第5分钟到第7分钟之间出现中断,则第一预设时间内出现的脉冲信号呈现中断情况。对于心率信号的第一定时时间的采集以及第一预设时间的具体值根据实际情况设定,不做具体要求。
需要说明的是,对于心率信号的第一预设条件是在相邻的两个温度信号对应的温度差值大于第一阈值上设定,温度信号若满足在相邻的两个温度信 号对应的温度差值大于第一阈值,则提取根据第一定时时间的心率信号检测在第一预设时间内出现的脉冲信号呈现中断的情况,若温度信号和心率信号满足第一预设条件,则控制当前穿戴设备的工作模式为低功耗模式。当只有温度信号和心率信号其中一种信号满足第一预设条件对应的预设条件时,则当前穿戴设备继续维持原工作模式,不会发生变化。
在具体实施例中,采集生理体征信号的传感器一直处于采集工作,在信号处理模块以及信号识别模块中根据实际情况进行提取生理体征信号,其提取生理体征信号根据不同的定时时间间隔进行提取,本申请不做具体要求。
本申请提供的第一预设条件为相邻的两个温度信号对应的温度差值的绝对值大于第一阈值且心率信号在第一预设时间内出现的脉冲信号呈现中断的情况,当温度信号和心率信号满足第一预设条件时,则控制当前穿戴设备的工作模式为低功耗模式,进一步准确控制当前穿戴设备的工作模式,减少耗电量,以达到增加穿戴设备的续航时间,提高用户体验效果。
在上述实施例的基础上,生理体征信号包括温度信号和心率信号,其具体实施例为:
在相邻的两个温度信号对应的温度差值的绝对值大于第一阈值的情况下,再获取心率信号以判断心率信号是否在第一预设时间内出现的脉冲信号呈现中断的情况。
当获取相邻的两个温度信号其对应的温度差值的绝对值大于第一阈值的情况下,进而获取心率信号,判断心率信号是否在第一预设时间内出现的脉冲信号呈现中断的情况。需要说明的是,当温度信号满足温度差值绝对值大于第一阈值时,打开心率传感器获取心率信号,并判断心率信号是否在第一预设时间内出现的脉冲信号呈现中断的情况,在获取温度信号时只获取温度信号,当温度信号满足一定条件后再获取心率信号。
另外,心率信号的获取、相邻的两个温度信号对应的温度差值的绝对值大于第一阈值与心率信号在第一预设时间内出现的脉冲信号呈现中断的情况其具体实施例在上述已详细说明,在此不再赘述。
当温度信号与心率信号都满足预设条件时,则控制当前穿戴设备的工作模式为低功耗模式,即关闭除采集生理体征信号的传感器之外的剩余传感器。 当前穿戴设备的工作模式为低功耗模式时,则需要关闭除采集生理体征信号的传感器之外的剩余传感器,若生理体征信号为温度信号时,则关闭除体温NTC之外的剩余传感器,若生理体征信号为温度信号和心率信号时,则关闭除体温NTC和心率传感器之外的剩余传感器,低功耗模式是保留采集生理体征信号的传感器,剩余传感器关闭。
通过电源管理集成电路(power management Integrated Circuit,PMIC)作为电源管理器将剩余传感器关闭,PMIC对当前穿戴设备的传感器进行供电,其具有体积小,应用效率高等特点,本申请使用PMIC作为电源管理器仅是一种优选地实施例。
当前穿戴设备的控制器通过串口总线内集成电路(Inter-Integrated Circuit,I2C)协议对电源管理器PMIC发送工作指令关闭除采集生理体征信号的传感器之外的剩余传感器,本申请使用I2C协议作为串口总线通信仅是一种优选地实施例。
本申请提供的在相邻的两个温度信号对应的温度差值的绝对值大于第一阈值的情况下,再获取心率信号以判断心率信号是否在第一预设时间内出现的脉冲信号呈现中断的情况。当温度信号满足条件时再打开心率传感器,进而判断心率信号是否在第一预设时间内出现的脉冲信号呈现中断的情况,若是,则控制当前穿戴设备的工作模式为低功耗模式,当温度信号满足条件时再打开心率传感器并判断心率信号是否满足条件,进一步准确控制当前穿戴设备的工作模式,减少功耗已达到提高穿戴设备的续航时间。
在当前穿戴设备的工作模式为低功耗模式后,还包括:
当生理体征信号满足第二预设条件时,则控制当前穿戴设备的工作模式为正常工作模式,其中,第二预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第二阈值。
生理体征信号至少包括温度信号,对于温度信号的采集在上述实施例中也详细说明,不再赘述。其第二预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第二阈值。在采集的温度信号中获取相邻的两个温度信号,其温度信号根据一定的时间进行采集,例如:根据1s采集一次温度信号,相邻的两个温度信号为前后1s,也就是前1s与后1s的温度信号对应 的温度值分别为32℃与36℃,其温度差值是利用前1s对应的温度值32℃减去后1s对应的温度值36℃得到的温度差值-4℃,其绝对值为4℃,设定第二阈值为3℃,其得到相邻的两个温度信号对应的温度差值的绝对值4℃大于第二阈值3℃。
需要说明的是,相邻的两个温度信号对应的温度差值是根据时间顺序,先采集的温度信号减去后采集的温度信号得到的温度差值其得到的绝对值与第二阈值进行比较,其采集的温度信号根据设定的间隔时间获取,第二阈值可以与第一阈值相同,也可以根据实际情况进行设定。
当前穿戴设备的工作模式为低功耗模式,此时当前穿戴设备中工作的传感器为采集生理体征信号的传感器,因此,当生理体征信号满足第二预设条件时,则控制当前穿戴设备的工作模式为正常工作模式。其正常工作模式为当前穿戴设备中采集生理体征信号的传感器和剩余传感器都处于正常工作状态的模式。
根据获取的生理体征信号满足第二预设条件,其第二预设条件针对生理体征信号进行设定,可以为一种温度信号,也可以为温度信号与心率信号两种类型的信号或者两种以上类型信号相配合,不做具体要求。
需要说明的是,在上述实施例的基础上,当生理体征信号不满足第一预设条件并不意味着可以满足第二预设条件,需要根据具体实际情况进行设定。
当前穿戴设备的工作模式为正常工作模式时,则开启采集生理体征信号的传感器和剩余传感器进行工作,其电源管理器对当前穿戴设备的传感器进行供电。可以理解的是,当低功耗模式切换为正常工作模式或者正常工作模式切换为低功耗模式时,可以设置提示信息,其提示信息类型可以为语音信息播报告知用户,也可以在穿戴设备的显示屏处设置闪动装置,还可以启动振动模块提醒用户,增加用户体验效果。
本申请提供的当生理体征信号满足第二预设条件时,则控制当前穿戴设备的工作模式为正常工作模式,通过软件方式控制当前穿戴设备的工作模式,提高用户的体验效果。
在上述实施例的基础上,获取的生理体征信号包括温度信号和心率信号,其温度信号和心率信号的采集在上述实施例中已详细说明,在此不再赘述。 第二预设条件为:
相邻的两个温度信号对应的温度差值的绝对值大于第二阈值且心率信号在第二预设时间内出现的脉冲信号未呈现中断的情况。
对于相邻的两个温度信号对应的温度差值的绝对值大于第二阈值在上述实施例中已详细说明,在此不再赘述。本申请对按照设定的间隔时间获取温度信号与心率信号、第一阈值与第二阈值不做具体要求。
在此基础上,心率信号根据第二定时时间采集,检测采集的心率信号在第二预设时间内出现的脉冲信号未呈现中断的情况,也就是心率信号为连续的脉冲信号,例如,第二定时时间为5s一次获取,在第二预设时间2分钟内检测心率信号出现的脉冲信号的情况,若在2分钟内未出现中断的连续脉冲信号,也就是第0分钟到第2分钟内是持续的连续脉冲信号出现,则未呈现中断情况,说明当前穿戴设备在用户的腕部佩戴。
可以理解的是,在第一预设条件内的心率信号根据第一定时时间采集,第二预设条件内的心率信号根据第二定时时间采集,其中第一定时时间大于第二定时时间,为更加准确控制当前穿戴设备的工作模式,第一预设条件为控制当前穿戴设备的工作模式为低功耗模式的预设条件,其第一定时时间设置较长确保精准控制低功耗模式,第二预设条件为控制当前穿戴设备的工作模式为正常工作模式的预设条件,第二定时时间设置较短,一旦心率信号出现连续的脉冲信号,立即控制转为正常工作模式保证用户的体验感,其第一定时时间与第二定时时间本申请不做具体要求,根据实际情况进行设定。
另外,本实施例中的生理体征信号为温度信号和心率信号,对应上述实施例中的生理体征信号为温度信号时,则第二预设条件为相邻的两个温度信号对应的温度差值的绝对值大于第二阈值,在此不再赘述。
本申请提供的第二预设条件为相邻的两个温度信号对应的温度差值的绝对值大于第二阈值且心率信号在第二预设时间内出现的脉冲信号未呈现中断的情况。当温度信号和心率信号满足第二预设条件时,则控制当前穿戴设备的工作模式为正常工作模式,进一步准确控制当前穿戴设备的工作模式,提高用户体验效果。
在上述实施例中,生理体征信号包括温度信号和心率信号,其具体实施 例为:
在相邻的两个温度信号对应的温度差值的绝对值大于第二阈值的情况下,再获取心率信号以判断心率信号是否在第二预设时间内出现的脉冲信号未呈现中断的情况。
当获取相邻的两个温度信号其对应的温度差值的绝对值大于第二阈值的情况下,进而获取心率信号,判断心率信号是否在第二预设时间内出现的脉冲信号未呈现中断的情况。需要说明的是,当温度信号满足温度差值绝对值大于第二阈值时,打开心率传感器获取心率信号,并判断心率信号是否在第二预设时间内出现的脉冲信号未呈现中断的情况,在获取温度信号时只获取温度信号,当温度信号满足一定条件后再获取心率信号。
另外,心率信号的获取、相邻的两个温度信号对应的温度差值的绝对值大于第二阈值与心率信号在第二预设时间内出现的脉冲信号未呈现中断的情况其具体实施例在上述已详细说明,在此不再赘述。
本申请提供的在相邻的两个温度信号对应的温度差值的绝对值大于第二阈值的情况下,再获取心率信号以判断心率信号是否在第二预设时间内出现的脉冲信号未呈现中断的情况。当温度信号满足条件时再打开心率传感器,进而判断心率信号是否在第二预设时间内出现的脉冲信号呈现未中断的情况,若是,则控制当前穿戴设备的工作模式为正常工作模式,当温度信号满足条件时再打开心率传感器并判断心率信号是否满足条件,进一步准确控制当前穿戴设备的工作模式,减少功耗已达到提高穿戴设备的续航时间。
在上述实施例的基础上,生理体征信号为温度信号和心率信号,其控制当前穿戴设备的工作模式为低功耗模式时的第一预设条件中的第一预设时间与当前穿戴设备的工作模式为正常工作模式时的第二预设条件中的第二预设时间设置,第一预设时间大于第二预设时间。
当温度信号满足第一预设条件时,则提取心率信号并检测在第一预设时间内出现的脉冲信号呈现中断的情况,在此第一预设时间设置较长时间,是为了更加准确得知当前穿戴设备的佩戴状况,从而根据佩戴状况控制当前穿戴设备的工作模式。
当温度信号满足第二预设条件时,则提取心率信号并检测在第二预设时 间内出现的脉冲信号未呈现中断的情况,在此第二预设时间设置得比第一预设时间较短,防止用户已经佩戴当前穿戴设备但穿戴设备设定的第二预设时间较长而导致检测时间较长影响用户的体验效果。需要说明的是,当生命体征信号仅为温度信号时,本实施例不适用。第一预设时间大于第二预设时间,其第一预设时间与第二预设时间的具体值在本申请中不做具体要求,根据实际情况设定。
本申请提供的第一预设时间大于第二预设时间,更加准确并及时得知当前穿戴设备的佩戴状况以便更高效率控制当前穿戴设备的工作模式进行工作,提高用户的体验效果。
上述详细描述了穿戴设备的工作模式控制方法对应的各个实施例,在此基础上,本申请还公开与上述方法对应的穿戴设备,图2为本申请实施例提供的一种穿戴设备的结构图。如图2所示,穿戴设备包括:
获取模块11,用于获取当前穿戴设备中的传感器采集的生理体征信号,生理体征信号至少包括温度信号;
判断模块12,用于判断生理体征信号是否满足第一预设条件,其中,第一预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值,若是,则进入控制模块13;
控制模块13,用于控制当前穿戴设备的工作模式为低功耗模式,其中,工作模式包括正常工作模式和低功耗模式,低功耗模式下处于工作状态的器件少于正常工作模式下处于工作状态的器件。
由于装置部分的实施例与上述的实施例相互对应,因此装置部分的实施例请参照上述方法部分的实施例描述,在此不再赘述。
本申请提供的一种穿戴设备,获取当前穿戴设备中的传感器采集的生理体征信号,生理体征信号至少包括温度信号,判断生理体征信号是否满足第一预设条件,其中,第一预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值,若是,则控制当前穿戴设备的工作模式为低功耗模式,其中,工作模式包括正常工作模式和低功耗模式,低功耗模式下处于工作状态的器件少于正常工作模式下处于工作状态的器件。由此可见,该设备通过改变软件方式确定控制当前穿戴设备的工作模式,且采用温度差值 的判断方式进行判断,能够避免采用温度阈值的方式所带来的误判的问题。综上所述,采用本技术方案不仅增加了穿戴设备的续航时间,同时避免改变硬件以及降低误判的风险,提高用户的体验效果。
请参照图3为本申请实施例提供的另一种穿戴设备的结构图,如图3所示,该设备包括:
存储器21,用于存储计算机程序;
处理器22,用于执行计算机程序时实现穿戴设备的工作模式控制方法的步骤。
本实施例提供的穿戴设备可以包括但不限于头戴耳机,TWS耳机,智能手环、智能运动手表等。
其中,处理器22可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器22可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器22也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称中央处理器(Central Processing Unit,CPU);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器22可以在集成有图像处理器(Graphics Processing Unit,GPU),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器22还可以包括人工智能(Artificial Intelligence,AI)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器21可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器21还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。本实施例中,存储器21至少用于存储以下计算机程序201,其中,该计算机程序被处理器22加载并执行之后,能够实现前述任一实施例公开的穿戴设备的工作模式控制方法的相关步骤。另外,存储器21所存储的资源还可以包括操作系统202和数据203等,存储方式可以是短暂存储或者永久存储。其中,操作系统202可以包括Windows、Unix、Linux等。数据203可以包括但不限于穿戴设备的工作模 式控制方法所涉及到的数据等等。
在一些实施例中,穿戴设备还可包括有显示屏23、输入输出接口24、通信接口25、电源26以及通信总线27。
领域技术人员可以理解,图3为本申请实施例提供的另一种穿戴设备的结构图。图3中示出的结构并不构成对穿戴设备的限定,可以包括比图示更多或更少的组件。
处理器22通过调用存储于存储器21中的指令以实现上述任一实施例所提供的穿戴设备的工作模式控制方法。
本申请提供的一种穿戴设备,获取当前穿戴设备中的传感器采集的生理体征信号,生理体征信号至少包括温度信号,判断生理体征信号是否满足第一预设条件,其中,第一预设条件至少包括相邻的两个温度信号对应的温度差值的绝对值大于第一阈值,若是,则控制当前穿戴设备的工作模式为低功耗模式,其中,工作模式包括正常工作模式和低功耗模式,低功耗模式下处于工作状态的器件少于正常工作模式下处于工作状态的器件。由此可见,该设备通过改变软件方式确定控制当前穿戴设备的工作模式,且采用温度差值的判断方式进行判断,能够避免采用温度阈值的方式所带来的误判的问题。综上所述,采用本技术方案不仅增加了穿戴设备的续航时间,同时避免改变硬件以及降低误判的风险,提高用户的体验效果。
结合上述的实施例,图4为本申请实施例提供的另一种穿戴设备的工作模式控制方法的流程图,如图4所示,当穿戴设备的正常工作模式时,其生理体征信号为温度信号和心率信号,当满足温度信号的预设条件时,获取心率信号,继续检测是否满足心率信号的预设条件,直到两种类型信号的预设条件都满足,方可控制穿戴设备的工作模式为低功耗模式,其具体包括:
S21:获取当前穿戴设备中的温度传感器和心率传感器对应采集的温度信号和心率信号;
S22:判断相邻的两个温度信号对应的温度差值的绝对值是否大于第一阈值,若是,则进入步骤S23,若否,则进入步骤S24;
S23:判断心率信号在第一预设时间内是否出现的脉冲信号呈现中断的情况,若是,则进入步骤S25,若否,则进入步骤S24;
S24:控制当前穿戴设备的工作模式为正常工作模式;
S25:控制当前穿戴设备的工作模式为低功耗模式。
需要说明的是,本实施例中当前穿戴设备的工作模式由正常工作模式切换为低功耗模式是在满足步骤S22温度信号的预设条件的情况下进而满足步骤S23心率信号的预设条件。
上文通过对本申请实施例提供的另一种穿戴设备的工作模式控制方法的流程图进行了介绍,具有与上述提到的穿戴设备的工作模式控制方法具有相同的有益效果。
进一步的,本申请还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器22执行时实现如上述穿戴设备的工作模式控制方法的步骤。
可以理解的是,如果上述实施例中的方法以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
对于本申请提供的一种计算机可读存储介质的介绍请参照上述方法实施例,本申请在此不再赘述,其具有上述穿戴设备的工作模式控制方法相同的有益效果。
以上对本申请所提供的一种穿戴设备的工作模式控制方法、穿戴设备及介质进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的 保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种穿戴设备的工作模式控制方法,其特征在于,包括:
    获取当前穿戴设备中的传感器采集的生理体征信号,所述生理体征信号至少包括温度信号;
    判断所述生理体征信号是否满足第一预设条件,其中,所述第一预设条件至少包括相邻的两个所述温度信号对应的温度差值的绝对值大于第一阈值;若是,则控制所述当前穿戴设备的工作模式为低功耗模式,其中,所述工作模式包括正常工作模式和所述低功耗模式,所述低功耗模式下处于工作状态的器件少于所述正常工作模式下处于工作状态的器件。
  2. 根据权利要求1所述的穿戴设备的工作模式控制方法,其特征在于,所述生理体征信号还包括心率信号,所述第一预设条件还包括相邻的两个所述温度信号对应的温度差值的绝对值大于所述第一阈值且所述心率信号在第一预设时间内出现的脉冲信号呈现中断的情况。
  3. 根据权利要求2所述的穿戴设备的工作模式控制方法,其特征在于,在相邻的两个所述温度信号对应的温度差值的绝对值大于所述第一阈值的情况下,再获取所述心率信号以判断所述心率信号是否在所述第一预设时间内出现的脉冲信号呈现中断的情况。
  4. 根据权利要求1所述的穿戴设备的工作模式控制方法,其特征在于,还包括:
    当所述生理体征信号满足第二预设条件时,则控制所述当前穿戴设备的工作模式为所述正常工作模式,其中,所述第二预设条件至少包括相邻的两个所述温度信号对应的温度差值的绝对值大于第二阈值。
  5. 根据权利要求4所述的穿戴设备的工作模式控制方法,其特征在于,所述生理体征信号还包括所述心率信号,所述第二预设条件还包括相邻的两个所述温度信号对应的温度差值的绝对值大于所述第二阈值且所述心率信号在第二预设时间内出现的所述脉冲信号未呈现中断的情况。
  6. 根据权利要求5所述的穿戴设备的工作模式控制方法,其特征在于,在相邻的两个所述温度信号对应的温度差值的绝对值大于所述第二阈值的情况下,再获取所述心率信号以判断所述心率信号是否在所述第二预设时间内 出现的所述脉冲信号未呈现中断的情况。
  7. 根据权利要求5或6所述的穿戴设备的工作模式控制方法,其特征在于,所述第一预设时间大于所述第二预设时间。
  8. 一种穿戴设备,其特征在于,包括:
    获取模块,用于获取当前穿戴设备中的传感器采集的生理体征信号,所述生理体征信号至少包括温度信号;
    判断模块,用于判断所述生理体征信号是否满足第一预设条件,其中,所述第一预设条件至少包括相邻的两个所述温度信号对应的温度差值的绝对值大于第一阈值,若是,则进入控制模块;
    所述控制模块,用于控制所述当前穿戴设备的工作模式为低功耗模式,其中,所述工作模式包括正常工作模式和所述低功耗模式,所述低功耗模式下处于工作状态的器件少于所述正常工作模式下处于工作状态的器件。
  9. 一种穿戴设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至6任一项所述的穿戴设备的工作模式控制方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述的穿戴设备的工作模式控制方法的步骤。
PCT/CN2021/138618 2021-10-31 2021-12-16 一种穿戴设备的工作模式控制方法、穿戴设备及介质 WO2023070890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111278699.4A CN113995390B (zh) 2021-10-31 2021-10-31 一种穿戴设备的工作模式控制方法、穿戴设备及介质
CN202111278699.4 2021-10-31

Publications (1)

Publication Number Publication Date
WO2023070890A1 true WO2023070890A1 (zh) 2023-05-04

Family

ID=79925783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138618 WO2023070890A1 (zh) 2021-10-31 2021-12-16 一种穿戴设备的工作模式控制方法、穿戴设备及介质

Country Status (2)

Country Link
CN (1) CN113995390B (zh)
WO (1) WO2023070890A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116959728A (zh) * 2023-08-09 2023-10-27 华至云链科技(苏州)有限公司 工厂管理系统数据处理方法及平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106293071A (zh) * 2016-07-28 2017-01-04 宇龙计算机通信科技(深圳)有限公司 一种穿戴设备的模式切换方法及穿戴设备
CN107643787A (zh) * 2016-07-21 2018-01-30 联想(新加坡)私人有限公司 可穿戴计算机
CN108628217A (zh) * 2018-05-30 2018-10-09 努比亚技术有限公司 穿戴设备功耗控制方法、穿戴设备及计算机可读存储介质
CN109316181A (zh) * 2018-10-19 2019-02-12 深圳市瑞康宏业科技开发有限公司 心电信号采集设备控制方法、装置、设备和存储介质
WO2020230927A1 (ko) * 2019-05-15 2020-11-19 엘지전자 주식회사 웨어러블 디바이스 및 그 제어 방법
CN113057602A (zh) * 2021-03-16 2021-07-02 歌尔科技有限公司 一种佩戴状态检测方法、装置、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103371807A (zh) * 2012-04-12 2013-10-30 夏普株式会社 确定参考体温的方法和设备
CN104887194A (zh) * 2015-06-25 2015-09-09 京东方科技集团股份有限公司 一种生理指标的检测方法及装置
CN105758452B (zh) * 2016-02-04 2018-05-15 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和装置
CN107495950A (zh) * 2017-08-07 2017-12-22 康丰生 一种智能设备的心率监测方法
CN109189200A (zh) * 2018-07-17 2019-01-11 歌尔科技有限公司 一种可穿戴设备及其功耗控制方法
CN112445279A (zh) * 2019-09-02 2021-03-05 中移物联网有限公司 可穿戴设备的控制方法、可穿戴设备、服务器及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643787A (zh) * 2016-07-21 2018-01-30 联想(新加坡)私人有限公司 可穿戴计算机
CN106293071A (zh) * 2016-07-28 2017-01-04 宇龙计算机通信科技(深圳)有限公司 一种穿戴设备的模式切换方法及穿戴设备
CN108628217A (zh) * 2018-05-30 2018-10-09 努比亚技术有限公司 穿戴设备功耗控制方法、穿戴设备及计算机可读存储介质
CN109316181A (zh) * 2018-10-19 2019-02-12 深圳市瑞康宏业科技开发有限公司 心电信号采集设备控制方法、装置、设备和存储介质
WO2020230927A1 (ko) * 2019-05-15 2020-11-19 엘지전자 주식회사 웨어러블 디바이스 및 그 제어 방법
CN113057602A (zh) * 2021-03-16 2021-07-02 歌尔科技有限公司 一种佩戴状态检测方法、装置、设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116959728A (zh) * 2023-08-09 2023-10-27 华至云链科技(苏州)有限公司 工厂管理系统数据处理方法及平台
CN116959728B (zh) * 2023-08-09 2024-04-19 华至云链科技(苏州)有限公司 工厂管理系统数据处理方法及平台

Also Published As

Publication number Publication date
CN113995390A (zh) 2022-02-01
CN113995390B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US20200022599A1 (en) Energy-saving switching method and a smart watch with heart rate detection function
US20190318617A1 (en) Electronic device and control method thereof
CN106556424B (zh) 一种智能可穿戴设备及其节能运行方法
US20160051184A1 (en) System and method for providing sleep recommendations using earbuds with biometric sensors
CN107277989A (zh) 智能家居照明控制方法及装置
WO2018223395A1 (zh) 一种可穿戴智能设备的管理方法及装置
CN109189200A (zh) 一种可穿戴设备及其功耗控制方法
US20190175016A1 (en) Calculate Physiological State and Control Smart Environments via Wearable Sensing Elements
EP3067780A1 (en) Method for controlling terminal device, and wearable electronic device
CN103637782B (zh) 一种基于智能终端的人体健康监控系统及方法
WO2023070890A1 (zh) 一种穿戴设备的工作模式控制方法、穿戴设备及介质
CN103876720A (zh) 检测人体与环境信息的方法及系统
US20230160922A1 (en) Methods and apparatus for detecting individual health related events
CN108652592A (zh) 一种睡眠检测的方法、装置及终端设备
WO2015169242A1 (zh) 一种能够自动调度测量设备电源的方法及设备
CN113693565A (zh) 一种可穿戴设备及其佩戴检测方法
CN108601559A (zh) 一种数据同步方法、装置以及终端设备
CN105771058A (zh) 一种家用型噩梦唤醒系统及其工作方法
CN117179706A (zh) 一种基于穿戴设备的科学睡眠监测的方法及装置
EP4275591A1 (en) Heart rhythm detection method and electronic device
US20170281012A1 (en) Opportunistic measurements and processing of user's context
WO2019090613A1 (zh) 一种智能终端的闹钟的响铃方法及响铃系统
CN109462882A (zh) 终端的控制方法、装置和终端
CN103654744A (zh) 一种睡眠质量监测方法及系统
CN113520339B (zh) 睡眠数据有效性分析方法、装置及可穿戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962233

Country of ref document: EP

Kind code of ref document: A1