WO2023070866A1 - 钙钛矿团簇溶液及其制备方法、光电器件 - Google Patents

钙钛矿团簇溶液及其制备方法、光电器件 Download PDF

Info

Publication number
WO2023070866A1
WO2023070866A1 PCT/CN2021/137621 CN2021137621W WO2023070866A1 WO 2023070866 A1 WO2023070866 A1 WO 2023070866A1 CN 2021137621 W CN2021137621 W CN 2021137621W WO 2023070866 A1 WO2023070866 A1 WO 2023070866A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
cluster
solution
rare earth
acid
Prior art date
Application number
PCT/CN2021/137621
Other languages
English (en)
French (fr)
Inventor
薛冬峰
徐珂
王晓明
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023070866A1 publication Critical patent/WO2023070866A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7732Halogenides
    • C09K11/7733Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the application belongs to the field of optoelectronic technology, and in particular relates to a perovskite cluster solution, a preparation method thereof, and an optoelectronic device.
  • Nanoclusters are relatively stable microscopic or submicroscopic aggregates of atoms or molecules bonded together by physical or chemical forces. Because of its small size and surface plasticity, it has become a research hotspot in the fields of self-assembly materials, optoelectronic devices, biomarkers, medical treatment and solar cells. The morphology of nanoclusters has a great influence on its electronic structure and optical properties. By adjusting the microstructure of semiconductor nanoclusters, materials with specific properties can be designed. At the same time, nanoclusters can be used as building blocks, and superstructure materials with good symmetry and geometry can be prepared through conventional chemical routes or other self-assembly strategies, and can be further transformed into nanomaterials with special structures.
  • Perovskite clusters as multinuclear aggregates between the microstructure (atoms, molecules) and macroscopic matter (quantum dots, thin films, and bulk) of perovskite materials, are ideal models for linking the two. Perovskite clusters have attracted much attention due to their unique physical and chemical properties such as quantum effect, high specific surface area (S/V), tunable size and composition, and easy functionalization of surface defects. Perovskite clusters exhibit unique optoelectronic properties of quantum materials, and have broad application prospects in both basic research and applications, especially as larger nanostructures, such as perovskite quantum dots or perovskite Nanocrystals, etc., are used in biological imaging, blue light-emitting diodes (LEDs) and sensors. Therefore, understanding the new optical properties and evolution mechanism of perovskite materials during the evolution process from perovskite clusters can provide reference and theoretical basis for the design and manufacture of perovskite quantum functional devices with excellent performance.
  • LEDs blue light-emitting
  • the reaction system is controlled to form perovskite clusters during the process of molecular aggregation and bond formation, but
  • the generated perovskite clusters are easy to agglomerate perovskite clusters due to a large number of surface defects and ligand dangling bonds, which is not conducive to the reaction to form perovskite clusters with uniform components.
  • perovskite clusters cannot exist stably in solvents for a long time, and are easy to agglomerate and degrade or continue to grow into larger perovskite nanocrystals.
  • perovskite clusters are highly sensitive to the environment and are very unstable in natural environments, especially to H2O . As a result, the photoluminescence quantum yield of perovskite clusters is low.
  • the purpose of this application is to provide a perovskite cluster solution and its preparation method, as well as a photoelectric device, which aims to solve the problem that the existing perovskite clusters are easy to agglomerate and degrade, have poor stability, and cannot be stored in a solvent for a long time. stability problems.
  • the present application provides a method for preparing a perovskite cluster solution, comprising the following steps:
  • the precursor solution and the anti-solvent are mixed and purified to obtain a perovskite cluster solution.
  • the present application provides a perovskite cluster solution, in which the surface of the perovskite clusters in the perovskite cluster solution is combined with organic carboxylic acid and organic amine ligands, and lanthanide rare earth metal salt hydrate The molecular coating formed.
  • the present application provides a photoelectric device, which contains the perovskite cluster solution prepared by the above method, or the above-mentioned perovskite cluster solution.
  • the lanthanide rare earth metal salt hydrate, the organic carboxylic acid and the organic amine ligand are simultaneously added to the perovskite precursor solution, wherein the organic carboxylic acid
  • the strong coordination between the carbonyl group and the octahedral central cation, as well as the intermolecular force between the carboxylic acid alkyl chains, can reduce the driving force for [BX 6 ] octahedral aggregation, inhibit the rapid aggregation of octahedrons, and passivate Cation defects on the surface of perovskite clusters.
  • Organic amine ligands can bond with anions on the edge of the octahedron through electrostatic attraction, passivate the anion defects on the surface of the perovskite cluster, and form an organic spacer layer, so that the dielectric constant of the spacer layer does not match the octahedron sheet, Therefore, the [BX 6 ] octahedral layer forms a natural quantum well, which improves the carrier transfer efficiency in the perovskite cluster.
  • the lanthanide rare earth metal ions in the lanthanide rare earth metal salt hydrate can combine with the halide ion defects on the surface of the perovskite clusters, and the acid radical ions can combine with the metal ion defects on the surface of the perovskite clusters, and in the perovskite clusters
  • a planar molecular covering layer with lanthanide rare earth metal ions, acid ions, water molecules and hydroxide ions is formed on the surface. It not only further passivates the surface defects of perovskite clusters, but also inhibits the aggregation and growth of perovskite clusters; and the formed molecular coating layer can effectively block the invasion of external water molecules through crystal water molecules.
  • perovskite clusters This not only improves the aggregation phenomenon of perovskite clusters, inhibits the rapid agglomeration of perovskite clusters to grow into perovskite materials such as perovskite quantum dots, films or blocks of larger size, but also improves the perovskite cluster performance.
  • the surface of the perovskite cluster is bound with an organic carboxylic acid and an organic amine ligand, and a molecular coating layer formed by a lanthanide rare earth metal salt hydrate; wherein, the organic Carboxylic acid passivates cationic defects on the surface of perovskite clusters, organic amine ligands passivate anion defects on the surface of perovskite clusters, and lanthanide rare earth metal ions in lanthanide rare earth metal salt hydrates can interact with perovskite clusters Halogen ion defects on the surface combine, and acid radical ions can combine with metal ion defects on the surface of perovskite clusters, and form a complex with lanthanide rare earth metal ions, acid radical ions, water molecules and hydroxide ions on the surface of perovskite clusters.
  • Planar molecular coating Through the synergistic effect between the lanthanide rare earth metal salt hydrate, organic carboxylic acid and organic amine ligands, the surface defects of perovskite clusters can be effectively passivated, the aggregation growth rate of perovskite clusters can be regulated, and the calcium Stability of titanite clusters in a solution environment, resulting in perovskite clusters with small size, strong stability, and high fluorescence quantum yield.
  • the photoelectric device provided by the third aspect of the present application contains the above-mentioned perovskite cluster solution, wherein the surface of the perovskite cluster is bound with organic carboxylic acid and organic amine ligands, and molecules formed by lanthanide rare earth metal salt hydrate
  • the coating layer improves the stability and fluorescence quantum yield of perovskite clusters, improves the agglomeration phenomenon, improves the adaptability of perovskite clusters in the solution storage environment, and stabilizes the perovskite clusters in the solution
  • the size is small and the size distribution is highly uniform.
  • the small-sized perovskite clusters have a discrete energy level structure, which improves the color purity and optical stability of the perovskite clusters, and improves the photoluminescence quantum of the perovskite clusters. yield, thereby improving the optoelectronic performance of optoelectronic devices.
  • Fig. 1 is the schematic flow chart of the preparation method of the perovskite cluster solution provided by the embodiment of the present application;
  • Fig. 2 is a schematic structural diagram of a perovskite cluster in a perovskite cluster solution provided in an embodiment of the present application;
  • Fig. 3 is the ultraviolet absorption spectrum and the fluorescence emission spectrum of the perovskite cluster solution provided in Example 1 of the present application;
  • Fig. 4 is the electron microscope topography figure (left) and particle size distribution histogram (right) of the perovskite cluster solution provided by Example 2 of the present application;
  • Example 5 is a fluorescence emission spectrum intensity diagram of the perovskite cluster solution provided in Example 3 of the present application and the perovskite material provided in Comparative Example 1;
  • Fig. 6 is a diagram of the fluorescence quantum yield of the perovskite cluster solution provided in Example 1 of the present application and the perovskite material provided in Comparative Example 1.
  • the term "and/or” describes the association relationship of associated objects, indicating that there may be three relationships, for example, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone Condition. Among them, A and B can be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or" relationship.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one (one) of a, b or c or “at least one (one) of a, b and c” can mean: a, b, c, a-b (that is, a and b), a-c, b-c, or a-b-c, wherein a, b, and c can be single or multiple.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and some or all steps may be executed in parallel or sequentially, and the execution order of each process shall be based on its functions and The internal logic is determined and should not constitute any limitation to the implementation process of the embodiment of the present application.
  • the amount of the relevant components mentioned in the description of the embodiment of the application can not only refer to the specific content of each component, but also represent the proportional relationship between the amounts of each component.
  • the scaling up or down of the content of the fraction is within the scope disclosed in the description of the embodiments of the present application.
  • first and second are only used for descriptive purposes to distinguish objects such as substances from each other, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • first XX can also be called the second XX
  • second XX can also be called the first XX.
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the first aspect of the embodiment of the present application provides a method for preparing a perovskite cluster solution, comprising the following steps:
  • the lanthanide rare earth metal salt hydrate, the organic carboxylic acid and the organic amine ligand are simultaneously added to the perovskite precursor solution, wherein the organic
  • the strong coordination between the carbonyl group in the carboxylic acid and the central cation of the octahedron, as well as the intermolecular force between the alkyl chains of the carboxylic acid, can reduce the driving force for [BX 6 ] octahedral aggregation and inhibit the rapid aggregation of the octahedron. Passivation of cationic defects on the surface of perovskite clusters.
  • Organic amine ligands can bond with anions on the edge of the octahedron through electrostatic attraction, passivate the anion defects on the surface of the perovskite cluster, and form an organic spacer layer, so that the dielectric constant of the spacer layer does not match the octahedron sheet, Therefore, the [BX 6 ] octahedral layer forms a natural quantum well, which improves the carrier transfer efficiency in the perovskite cluster.
  • the lanthanide rare earth metal ions in the lanthanide rare earth metal salt hydrate can combine with the halide ion defects on the surface of the perovskite clusters, and the acid radical ions can combine with the metal ion defects on the surface of the perovskite clusters, and in the perovskite clusters
  • a planar molecular covering layer with lanthanide rare earth metal ions, acid ions, water molecules and hydroxide ions is formed on the surface. It not only further passivates the surface defects of perovskite clusters, but also inhibits the aggregation and growth of perovskite clusters; and the formed molecular coating layer can effectively block the invasion of external water molecules through crystal water molecules.
  • perovskite clusters This not only improves the aggregation phenomenon of perovskite clusters, inhibits the rapid agglomeration of perovskite clusters to grow into perovskite materials such as perovskite quantum dots, films or blocks of larger size, but also improves the perovskite cluster performance.
  • the perovskite cluster solution prepared in the examples of the present application can effectively passivate the surface defects of the perovskite cluster through the synergistic effect between the lanthanide rare earth metal salt hydrate, the organic carboxylic acid and the organic amine ligand , regulate the aggregation growth rate of perovskite clusters, and improve the stability of perovskite clusters in the solution environment.
  • the perovskite clusters in the perovskite cluster solution can stably exist in the solution system, and the size of the perovskite clusters is small, about 1-3 nm, and the size distribution is highly uniform.
  • small-sized perovskite clusters Compared with large-sized perovskite materials, small-sized perovskite clusters have discrete energy level structures, which can exhibit unique optoelectronic properties such as blue-shifted absorption and emission spectra, which improve the color of perovskite clusters.
  • the purity and optical stability improve the photoluminescence quantum yield of perovskite clusters, which is expected to open up its potential applications in the fields of ultra-micro optoelectronic devices, biological imaging, fluorescent labeling and a new generation of high-quality catalysts.
  • the lanthanide rare earth metal salt hydrate, the organic carboxylic acid, the organic amine ligand and the perovskite raw material are configured into a precursor solution, wherein the perovskite raw material includes a divalent metal halide and organic ammonium halides or alkali metal halides.
  • the perovskite clusters prepared in the examples of this application are composed of three ions A, B and X in the perovskite raw materials participating in the synthesis, wherein the A site is usually at least one of inorganic or organic cations, such as Cs + or monovalent inorganic cations such as Rb + , and methylamine (MA + , CH 3 NH 3 + ), ethylamine (EA + , CH 3 CH 2 NH 3 + ) or formamidine (FA + , CH (NH 2 ) At least one of monovalent organic cations such as 2 + ) ions; the B site is usually a divalent metal cation, such as Pb 2+ , Sn 2+ , Ge 2+ , Ga 2+ , Cu 2+ , Ni 2+ , Co 2+ and Mn 2+ , etc.; the X position is usually a monovalent halogen, such as I - , Br - , Cl - , F -, etc.
  • the divalent metal cations at the B site coordinate with the halogen ions at the X site to form a [BX 6 ] octahedron, and the inorganic or organic cations at the A site are distributed in the gaps generated by the octahedral common top connection, with a coordination number of 12.
  • the lanthanide rare earth metal salt hydrate is selected from: trivalent lanthanide rare earth metal hydrated nitrate, which can be represented by the general chemical formula M(NO 3 ) 3 ⁇ XH 2 O, wherein M is trivalent lanthanide Rare earth metal, X is crystal water number.
  • Trivalent lanthanide rare earth metal ions have better binding properties with halogen defects on the surface of perovskite clusters, and nitrate ions have better binding properties with metal ion defects on the surface of perovskite clusters.
  • the passivation effect of metal ions and other acid ions on perovskite clusters is not good, which will lead to the aggregation of clusters to form perovskite quantum dots.
  • the trivalent lanthanide rare earth metal hydrated nitrates include ytterbium(III) nitrate pentahydrate Yb(NO 3 ) 3 .5H 2 O, dysprosium(III) nitrate hexahydrate Dy(NO 3 ) 3 .
  • trivalent lanthanide rare earth metal hydrated nitrates trivalent lanthanide rare earth metal ions such as Yb 3+ , Dy 3+ , Eu 3+ , Sm 3+ , and Pr 3+ can interact with I - on the surface of perovskite clusters.
  • nitrate ions can combine with Pb 2+ , Sn 2+ , Ge 2+ , Ga on the surface of perovskite clusters 2+ , Cu 2+ , Ni 2+ , Co 2+ and Mn 2+ and other metal ions are combined with defects, and form trivalent lanthanide rare earth metal ions, nitrate ions, water molecules and hydrogen on the surface of perovskite clusters. Planar molecular coating of oxygen ions.
  • perovskite clusters It not only further passivates the surface defects of perovskite clusters, but also inhibits the aggregation and growth of perovskite clusters; and the formed molecular coating layer can effectively block the invasion of external water molecules through crystal water molecules.
  • This not only improves the aggregation phenomenon of perovskite clusters, inhibits the rapid agglomeration of perovskite clusters to grow into perovskite materials such as perovskite quantum dots, films or blocks of larger size, but also improves the perovskite cluster performance.
  • the resistance of clusters to inherent instability factors such as water, oxygen, and light in the environment.
  • the molar ratio of the added amount of the lanthanide rare earth metal salt hydrate to the divalent metal halide is (1-2): (3-10), which effectively ensures that the lanthanide rare earth metal salt hydrate
  • the passivation and stabilization of the surface of the perovskite clusters make the perovskite clusters exist stably in a small size form in the solution, which is beneficial to the subsequent application of the perovskite clusters.
  • the addition amount of lanthanide rare earth metal salt hydrate is too low, it is not conducive to passivation and stabilization of perovskite clusters, and perovskite clusters are easy to agglomerate into perovskite quantum dots, films or blocks and other large-sized perovskites Mining materials, and poor stability, easy to decompose and deteriorate under the influence of water, oxygen and other factors in the environment. If the addition of lanthanide rare earth metal salt hydrate is too high, a large amount of water molecules will be introduced into the system, which is not conducive to the formation of perovskite clusters. In addition, too much lanthanide rare earth metal salt hydrate cannot be completely dissolved in the system.
  • Precursor solvents are also unfavorable for obtaining high-purity perovskite clusters.
  • the molar ratio of the added amount of the lanthanide rare earth metal salt hydrate to the divalent metal halide includes but is not limited to 1:(3 ⁇ 10), 1:(4 ⁇ 9), 1:(5 ⁇ 8 ), 1: (6 ⁇ 7), 2: (3 ⁇ 10), 2: (4 ⁇ 9), 2: (5 ⁇ 8), 2: (6 ⁇ 7), etc.
  • the organic carboxylic acid includes at least one of propionic acid, n-butyric acid, n-valeric acid, octadecenoic acid, octadecenoic acid, benzoic acid, and phenylacetic acid, more preferably octadecenoic acid Or phenylacetic acid, or octadecenoic acid and phenylacetic acid.
  • the organic carboxylic acids added in the precursor solution in the embodiment of the present application contain carbonyl groups, which can form a strong coordination with the octahedral central cation, and there are also intermolecular forces between the carboxylic acid alkyl chains, thus reducing [BX 6 ]
  • the ratio of the amount of organic carboxylic acid added in the precursor solution to the molar amount of divalent metal halide in the perovskite raw material is (2-10): 1, and this ratio can not only effectively passivate the perovskite On the surface of ore clusters, regulate the agglomeration rate of perovskite clusters, so that the perovskite in the solution maintains the cluster shape; and make the solution system have a suitable pH value, the pH value is about 5, which is beneficial to the lanthanide rare earth metal brine
  • the complex forms a planar molecular coating layer of lanthanide rare earth metal ions, acid ions, water molecules and hydroxide ions on the surface of perovskite clusters.
  • the ratio of the amount of organic carboxylic acid added in the precursor solution to the molar amount of divalent metal halide in the perovskite raw material includes but is not limited to (2-10):1, (3-9):1 , (4-8): 1, (5-7): 1, (3-6): 1, ((6-9): 1, etc., preferably (4-8): 1.
  • the organic amine ligands include at least one of octadecylamine, octadecylamine, benzylamine, and phenethylamine, more preferably octadecylamine or phenethylamine, or preferably For octadecylamine and phenethylamine.
  • the organic ligands added in the precursor solution in the embodiment of the present application can bond with the anions on the edge of the octahedron through electrostatic attraction, passivate the anion defects on the surface of the perovskite cluster, and further regulate the density of the perovskite cluster.
  • the molar ratio of the organic amine ligand to the divalent metal halide is (1-10): 1; the dosage ratio of the organic amine ligand can effectively regulate the perovskite structure and cluster aggregation at the same time. growth rate. If the amount of organic amine ligands added in the precursor solution is too low, it is not conducive to the adjustment of the perovskite structure and the aggregation rate of clusters; if the amount of organic amine ligands added in the precursor solution is too high, it is also unfavorable for the perovskite Cluster formation.
  • the molar ratio of the organic amine ligand to the divalent metal halide includes but is not limited to (1-10):1, (2-9):1, (3-8):1, (4-7 ): 1, (5 ⁇ 6): 1, etc., preferably (2 ⁇ 8): 1.
  • the divalent metal halides include at least one of lead halides, tin halides, germanium halides, gallium halides, nickel halides, manganese halides, cobalt halides, and copper halides; Or self-assembly of alkali metal halides, introducing divalent metal ions such as lead, tin, germanium, gallium, nickel, cobalt, manganese, and copper into the perovskite cluster structure.
  • the divalent metal halide is at least one selected from lead halide and tin halide, such as lead chloride, lead bromide, lead iodide, tin chloride, tin bromide, tin iodide and the like.
  • the organic ammonium halides include CH 3 NH 3 Cl, CH 3 NH 3 Br, CH 3 NH 3 I, CH 2 ( NH 3 ) 2 Cl, CH 2 ( NH 3 ) 2 Br, CH 2 (NH 3 ) At least one of 2 I, CH 3 CH 2 NH 3 Cl, CH 3 CH 2 NH 3 Br, CH 3 CH 2 NH 3 I; these organic ammonium halide salts can be formed by self-assembly with divalent metal halides Perovskite materials, the introduction of organic ammonium ions such as CH 3 NH 3 + , CH 2 (NH 3 ) 2 + , CH 2 CH 2 NH 3 + into perovskite materials can effectively improve the thermal stability of perovskite materials.
  • the alkali metal halide includes at least one of CsCl, CsBr, CsI, RbCl, RbBr, and RbI; these alkali metal halides can form perovskite materials after self-assembly with divalent metal halides, perovskite
  • alkali metal ions such as Cs + , Rb + into the material can effectively improve the thermal stability of perovskite materials.
  • the organic solvent includes at least one of dimethyl sulfoxide and N,N-dimethylformamide, and these solvents are relatively sensitive to organic carboxylic acids, organic amine ligands, and perovskite raw materials. Good dissolution and dispersion.
  • dimethyl sulfoxide and N,N-dimethylformamide are included in the organic solvent, and further, the volume ratio of dimethyl sulfoxide and N,N-dimethylformamide is (1 ⁇ 9): (1 ⁇ 9).
  • the mixed organic solvent used in the embodiment of the present application not only has a good dissolving effect on the various raw material components, but also facilitates the contact reaction between the various components; it is also beneficial to control the growth rate and orientation of the perovskite.
  • the volume ratio of dimethyl sulfoxide and N,N-dimethylformamide includes but is not limited to 9:1, 4:1, 7:3, 3:2, 1:1, 2 :3, 3:7, 1:4, 1:9, etc., preferably 2:3, 1:1 or 1:4.
  • the step of configuring the precursor solution includes: after dissolving the perovskite raw material in an organic solvent, mixing and stirring at room temperature for 10 to 30 minutes, adding lanthanide rare earth metal salt hydrate, organic carboxylic acid and organic amine complex body, stirred at 30-55°C for 0.5-2 hours, fully dissolved to obtain a precursor solution.
  • the ratio of the amount of divalent metal halide and organic ammonium halide or alkali metal halide in the perovskite raw material can be 1: (0.2-5), more preferably 1: (0.5 ⁇ 3).
  • the initial concentration of the divalent metal halide in the organic solvent is preferably 0.03-0.1 mol/L.
  • the precursor solution and the anti-solvent are mixed for 1 to 3 minutes, and the perovskite clusters are synergistically regulated by organic carboxylic acids, organic amine ligands and lanthanide rare earth metal salt hydrates
  • the aggregation rate that is, the generation of perovskite clusters with small size and high uniformity of particle size distribution in the solution.
  • the anti-solvent includes at least one of n-hexane, toluene, methylene chloride, and chloroform, more preferably toluene or chloroform, or preferably toluene and chloroform; these anti-solvents can promote The perovskite raw material components in the precursor solution react with each other to form microscopic perovskite materials, which continue to grow through the microscopic perovskite materials to form perovskite clusters of multi-nuclear aggregates, and the surface of the clusters is bound to organic ligands, organic carboxyl Acid, and lanthanide rare earth metal salt hydrate form a planar molecular coating layer with lanthanide rare earth metal ions, acid ions, water molecules and hydroxide ions, and the perovskite clusters have good stability.
  • the volume ratio of the precursor solution to the anti-solvent is (0.2-4):(5-35); further, (0.5-3):(10-20).
  • the size and number of perovskite materials can be changed by changing the volume ratio of precursor solution and anti-solvent to achieve different supersaturation, and the reaction system can be controlled to slowly generate small-sized perovskite clusters.
  • the purification step includes: centrifuging the mixed solution after the mixing treatment.
  • a series of impurities in the solution can be removed, such as: unreacted perovskite raw components, organic amine, organic carboxylic acid and lanthanide rare earth metal salt hydrate, and collecting the supernatant to obtain a perovskite cluster solution.
  • the mixed solution after the mixing treatment is centrifuged 3 to 4 times under the condition of centrifugation speed of 2000-12000r/min, and the product collected by each centrifugation is the supernatant, more preferably the speed is 6000r/min. ⁇ 10000r/min, and store the obtained perovskite cluster solution in a refrigerator at low temperature (0-5°C).
  • the second aspect of the embodiment of the present application provides a perovskite cluster solution in which organic carboxylic acid and organic amine ligands are bound to the surface of the perovskite cluster solution, and The lanthanide rare earth metal salt hydrate forms a molecular coating.
  • the surface of the perovskite cluster is bound with an organic carboxylic acid and an organic amine ligand, and a molecular coating layer formed by a lanthanide rare earth metal salt hydrate; wherein , Organic carboxylic acid passivates cationic defects on the surface of perovskite clusters, organic amine ligands passivate anion defects on the surface of perovskite clusters, lanthanide rare earth metal ions in lanthanide rare earth metal salt hydrates can interact with perovskite Halogen ion defects on the surface of the cluster combine, and the acid ion can combine with the metal ion defect on the surface of the perovskite cluster, and form a complex with lanthanide rare earth metal ions, acid ion, water molecules and hydroxide on the surface of the perovskite cluster.
  • a planar molecular coating of ions Through the synergistic effect between the lanthanide rare earth metal salt hydrate, organic carboxylic acid and organic amine ligands, the surface defects of perovskite clusters can be effectively passivated, the aggregation growth rate of perovskite clusters can be regulated, and the calcium Stability of titanite clusters in a solution environment, resulting in perovskite clusters with small size, strong stability, and high fluorescence quantum yield.
  • the perovskite cluster solutions in the examples of the present application can be prepared by the methods in the above examples.
  • the particle size of the perovskite clusters in the perovskite cluster solution is 1-3 nm, and this size range can basically be determined as pure perovskite clusters, too small to form, and too large Then it is easy to generate quantum dots with large flake or spherical size.
  • the perovskite clusters in the perovskite cluster solution in the embodiment of the present application can stably exist in the solution system.
  • the size of the perovskite clusters is small, and the size distribution is highly uniform, which ensures the strong ionicity of the perovskite clusters, High surface energy, high quantum effect and other optical properties.
  • small-sized perovskite clusters Compared with large-sized perovskite materials, small-sized perovskite clusters have discrete energy level structures, which can exhibit unique optoelectronic properties such as blue-shifted absorption and emission spectra, which improve the color of perovskite clusters.
  • the purity and optical stability are expected to open up its potential applications in the fields of ultra-micro optoelectronic devices, biological imaging, fluorescent labeling and a new generation of high-quality catalysts.
  • the particle size of the perovskite cluster solution may be 1nm-2nm, 2-3nm, etc.
  • the organic ligand includes at least one of octadecylamine, octadecenylamine, benzylamine, and phenethylamine.
  • the lanthanide rare earth metal salt hydrate includes Yb(NO 3 ) 3 .5H 2 O, Dy(NO 3 ) 3 .6H 2 O, Eu(NO 3 ) 3 .5H 2 O, Sm(OH ) 3 ⁇ 6H 2 O, Pr(NO 3 ) 3 ⁇ 6H 2 O at least one trivalent lanthanide rare earth metal hydrated nitrate; in these lanthanide rare earth metal salt hydrates, trivalent lanthanide rare earth metal ions and Halogen defects on the surface of perovskite clusters have better binding properties, and nitrate ions have better binding properties to metal ion defects on the surface of perovskite clusters.
  • the organic carboxylic acid includes at least one of propionic acid, n-butyric acid, n-valeric acid, octadecanoic acid, octadecenoic acid, benzoic acid, and phenylacetic acid; these organic carboxylic acids can be combined with octahedral
  • the central cation forms a strong coordination effect, and there is also an intermolecular force between the carboxylic acid alkyl chains, which can reduce the driving force of [BX 6 ] octahedral aggregation, inhibit the rapid aggregation of octahedron, and passivate the perovskite cluster
  • the cation defects on the surface of the clusters inhibit the rapid agglomeration of perovskite clusters and grow into perovskite materials such as perovskite quantum dots, films or blocks of larger size.
  • the third aspect of the embodiment of the present application provides an optoelectronic device, comprising the perovskite cluster solution prepared by the above method, or the above perovskite cluster solution.
  • the photoelectric device provided by the third aspect of the embodiment of the present application contains the above-mentioned perovskite cluster solution, wherein the surface of the perovskite cluster is bound with organic carboxylic acid and organic amine ligands, and the formation of lanthanide rare earth metal salt hydrate
  • the molecular coating layer improves the stability and fluorescence quantum yield of perovskite clusters, improves the agglomeration phenomenon, improves the adaptability of perovskite clusters in the solution storage environment, and stabilizes the perovskite in the solution.
  • the cluster size is small and the size distribution is highly uniform.
  • the small-sized perovskite clusters have a discrete energy level structure, which improves the color purity and optical stability of the perovskite clusters, and improves the photoinduced Luminescence quantum yield, thereby improving the optoelectronic performance of optoelectronic devices.
  • optoelectronic devices include, but are not limited to, perovskite solar cells, light emitting diodes (LEDs), photodetectors, visible light communication devices, and the like.
  • a kind of perovskite cluster solution, its preparation comprises steps:
  • a kind of perovskite cluster solution, its preparation comprises steps:
  • a kind of perovskite cluster solution, its preparation comprises steps:
  • a kind of perovskite cluster solution, its preparation comprises steps:
  • a kind of perovskite material solution, its preparation comprises steps:
  • a kind of perovskite material solution, its preparation comprises steps:
  • a kind of perovskite material solution, its preparation comprises steps:
  • a kind of perovskite material solution, its preparation comprises steps:
  • the stability test was carried out under the conditions of air temperature of 25°C and relative humidity of 60%, and prepared by adding Yb(NO 3 ) 3 ⁇ 5H 2 O to Examples 1-4 through the integrating sphere of the fluorescence spectrophotometer tester
  • the fluorescence quantum yield of the perovskite cluster solution and the perovskite material prepared in Comparative Example 1 without adding lanthanide rare earth metal salt hydrate (M(NO 3 ) 3 XH 2 O) were tested, and the test results are shown in Fig. Table 1 below.
  • the perovskite clusters prepared by adding Yb(NO 3 ) 3 ⁇ 5H 2 O in Examples 1 to 4 show a higher initial value of fluorescence quantum yield, and still have higher fluorescence after 72 hours Quantum yield, showing good stability.
  • the perovskite material prepared without adding lanthanide rare earth metal salt hydrate (M(NO 3 ) 3 ⁇ XH 2 O) had a low fluorescence quantum yield and was easily quenched.
  • Example 1 the test diagram of Example 1 is shown in Figure 6, and the test results show that with the 72-hour fluorescence quantum yield test, the perovskite clusters of Example 1 (with M(NO 3 ) 3 ⁇ XH 2 O) The fluorescence quantum yield decreased from the original 91% to 87%, showing good stability and luminescent performance. And comparative example 1 (without M(NO 3 ) 3 ⁇ XH 2 O) the fluorescence quantum yield of the perovskite material without M(NO 3 ) 3 ⁇ XH 2 O is reduced from the original 65% to 0%. basically quenched.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请属于光电技术领域,尤其涉及一种钙钛矿团簇溶液及其制备方法,以及一种光电器件。其中,钙钛矿团簇溶液的制备方法,包括以下步骤:将镧系稀土金属盐水合物、有机羧酸、有机胺配体与钙钛矿原材料配置成前驱体溶液;将所述前驱体溶液与反溶剂进行混合处理,纯化得到钙钛矿团簇溶液。本申请钙钛矿团簇溶液的制备方法,通过镧系稀土金属盐水合物、有机羧酸和有机胺配体三者之间的协同作用,有效钝化了钙钛矿团簇的表面缺陷,调控钙钛矿团簇的聚集生长速率,提高了钙钛矿团簇在溶液环境中的稳定性,得到小尺寸、强稳定性、高荧光量子产率的钙钛矿团簇。

Description

钙钛矿团簇溶液及其制备方法、光电器件 技术领域
本申请属于光电技术领域,尤其涉及一种钙钛矿团簇溶液及其制备方法,以及一种光电器件。
背景技术
纳米团簇是通过物理或化学作用力键合在一起的、相对稳定的微观或亚微观原子或分子聚集体。因其小尺寸和表面可塑性,在自组装材料、光电器件、生物标记、医疗及太阳能电池等领域成为研究的热点。纳米团簇的形貌对其电子结构和光学性质有很大的影响,通过调节半导体纳米团簇的微观结构,可设计出具有特定性能的材料。同时,纳米团簇可以作为构筑单元,通过常规的化学路线或其他自组装策略可制备出良好对称性和几何形状的超结构材料,并可进一步转化为具有特殊结构的纳米材料。
钙钛矿团簇作为介于钙钛矿材料微观结构(原子、分子)与宏观物质(量子点、薄膜和块体)之间的多核聚集体,是关联两者之间的理想模型。钙钛矿团簇具有量子效应、比表面积(S/V)高、尺寸和组分可调、易于对表面缺陷进行功能化处理等独特的理化性质而备受关注。钙钛矿团簇表现出量子材料独特的光电性质,在基础研究和应用中都有着广泛的应用前景,特别是可以作为制作成更大尺寸的纳米结构,如钙钛矿量子点或钙钛矿纳米晶等,应用于生物成像、蓝色发光二极管(LEDs)和传感器等方面。因此,理解钙钛矿材料从钙钛矿团簇演变过程中呈现的新的光学性质及演变过程机理,能够为设计和制造具有优良性能的钙钛矿量子功能器件提供借鉴和理论依据。
目前,在实验方案设计上,通过对钙钛矿原材料、表面钝化有机配体、溶剂、反溶剂的选择和调控,控制反应体系在分子聚集成键的过程中生成钙钛矿团簇,但是生成的钙钛矿团簇由于表面大量缺陷和配体悬挂键容易致使钙钛矿 团簇的团聚,不利于反应生成组分均一的钙钛矿团簇。目前合成的钙钛矿团簇不能长期在溶剂中稳定存在,容易团聚降解或继续生长成尺寸较大的钙钛矿纳米晶。另外,钙钛矿团簇对环境高度敏感,在自然环境中非常不稳定,尤其是对H 2O具有很强的不稳定性。从而导致钙钛矿团簇的光致发光量子产率较低。
发明内容
本申请的目的在于提供一种钙钛矿团簇溶液及其制备方法,以及一种光电器件,旨在一定程度上解决现有钙钛矿团簇容易团聚降解,稳定性差,不能长期在溶剂中稳定存在的问题。
为实现上述申请目的,本申请采用的技术方案如下:
第一方面,本申请提供一种钙钛矿团簇溶液的制备方法,包括以下步骤:
将镧系稀土金属盐水合物、有机羧酸、有机胺配体与钙钛矿原材料配置成前驱体溶液;
将所述前驱体溶液与反溶剂进行混合处理,纯化得到钙钛矿团簇溶液。
第二方面,本申请提供一种钙钛矿团簇溶液,所述钙钛矿团簇溶液中钙钛矿团簇表面结合有有机羧酸和有机胺配体,以及镧系稀土金属盐水合物形成的分子包覆层。
第三方面,本申请提供一种光电器件,所述光电器件中包含有上述方法制备的钙钛矿团簇溶液,或者上述的钙钛矿团簇溶液。
本申请第一方面提供的钙钛矿团簇溶液的制备方法,在配制钙钛矿前驱体溶液中同时添加镧系稀土金属盐水合物、有机羧酸和有机胺配体,其中,有机羧酸中羰基与八面体中心阳离子存在的强烈配位作用,以及羧酸烷基链之间的分子间作用力,可降低[BX 6]八面体聚集的驱动力,抑制八面体的快速聚集,钝化钙钛矿团簇表面的阳离子缺陷。有机胺配体,能够通过静电引力与八面体边缘的阴离子键合,钝化钙钛矿团簇表面的阴离子缺陷,形成有机间隔层,使得间隔层的介电常数与八面体片层失配,从而使[BX 6]八面体层形成天然的量子阱, 提高钙钛矿团簇中载流子的迁移效率。镧系稀土金属盐水合物中镧系稀土金属离子可与钙钛矿团簇表面的卤素离子缺陷结合,酸根离子可与钙钛矿团簇表面的金属离子缺陷结合,并在钙钛矿团簇表面形成具有镧系稀土金属离子、酸根离子、水分子和氢氧根离子的平面型分子包覆层。不但进一步钝化了钙钛矿团簇的表面缺陷,抑制钙钛矿团簇聚集生长;而且形成的分子包覆层通过结晶水分子可有效阻隔外界水分子的入侵。从而既改善了钙钛矿团簇的聚集现象,抑制钙钛矿团簇快速团聚生长成较大尺寸的钙钛矿量子点、薄膜或块体等钙钛矿材料,又提高了钙钛矿团簇对环境中水、氧、光照等固有不稳定性因素的抵抗能力。
本申请第二方面提供的钙钛矿团簇溶液中,钙钛矿团簇表面结合有有机羧酸和有机胺配体,以及镧系稀土金属盐水合物形成的分子包覆层;其中,有机羧酸钝化钙钛矿团簇表面的阳离子缺陷,有机胺配体钝化钙钛矿团簇表面的阴离子缺陷,镧系稀土金属盐水合物中镧系稀土金属离子可与钙钛矿团簇表面的卤素离子缺陷结合,酸根离子可与钙钛矿团簇表面的金属离子缺陷结合,并在钙钛矿团簇表面形成具有镧系稀土金属离子、酸根离子、水分子和氢氧根离子的平面型分子包覆层。通过镧系稀土金属盐水合物、有机羧酸和有机胺配体三者之间的协同作用,有效钝化钙钛矿团簇的表面缺陷,调控钙钛矿团簇的聚集生长速率,提高钙钛矿团簇在溶液环境中的稳定性,得到小尺寸、强稳定性、高荧光量子产率的钙钛矿团簇。
本申请第三方面提供的光电器件,由于包含有上述钙钛矿团簇溶液,其中钙钛矿团簇表面结合有有机羧酸和有机胺配体,以及镧系稀土金属盐水合物形成的分子包覆层,提高钙钛矿团簇的稳定性和荧光量子产率,改善团聚现象,提高了钙钛矿团簇在溶液存放环境中的适应能力,稳定存在于溶液中的钙钛矿团簇尺寸小且尺寸分布高度均匀,小尺寸的钙钛矿团簇具有离散的能级结构,提高了钙钛矿团簇的色纯度和光学稳定性,提高了钙钛矿团簇的光致发光量子产率,从而提高了光电器件的光电性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的钙钛矿团簇溶液的制备方法的流程示意图;
图2是本申请实施例提供的钙钛矿团簇溶液中钙钛矿团簇的结构示意图;
图3是本申请实施例1提供的钙钛矿团簇溶液的紫外吸收光谱和荧光发射光谱;
图4是本申请实施例2提供的钙钛矿团簇溶液的电镜形貌图(左)和粒径尺寸分布直方图(右);
图5是本申请实施例3提供的钙钛矿团簇溶液和对比例1提供的钙钛矿材料的荧光发射光谱强度图;
图6是本申请实施例1提供的钙钛矿团簇溶液和对比例1提供的钙钛矿材料的荧光量子产率图。
具体实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以 下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b或c中的至少一项(个)”,或,“a,b和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请实施例说明书中所提到的相关成分的量不仅仅可以指代各组分的具体含量,也可以表示各组分间量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。
术语“第一”、“第二”仅用于描述目的,用来将目的如物质彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施例范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
如附图1所示,本申请实施例第一方面提供一种钙钛矿团簇溶液的制备方法,包括以下步骤:
S10.将镧系稀土金属盐水合物、有机羧酸、有机胺配体与钙钛矿原材料配置成前驱体溶液;
S20.将前驱体溶液与反溶剂进行混合处理,纯化得到钙钛矿团簇溶液。
本申请实施例第一方面提供的钙钛矿团簇溶液的制备方法,在配制钙钛矿 前驱体溶液中同时添加镧系稀土金属盐水合物、有机羧酸和有机胺配体,其中,有机羧酸中羰基与八面体中心阳离子存在的强烈配位作用,以及羧酸烷基链之间的分子间作用力,可降低[BX 6]八面体聚集的驱动力,抑制八面体的快速聚集,钝化钙钛矿团簇表面的阳离子缺陷。有机胺配体,能够通过静电引力与八面体边缘的阴离子键合,钝化钙钛矿团簇表面的阴离子缺陷,形成有机间隔层,使得间隔层的介电常数与八面体片层失配,从而使[BX 6]八面体层形成天然的量子阱,提高钙钛矿团簇中载流子的迁移效率。镧系稀土金属盐水合物中镧系稀土金属离子可与钙钛矿团簇表面的卤素离子缺陷结合,酸根离子可与钙钛矿团簇表面的金属离子缺陷结合,并在钙钛矿团簇表面形成具有镧系稀土金属离子、酸根离子、水分子和氢氧根离子的平面型分子包覆层。不但进一步钝化了钙钛矿团簇的表面缺陷,抑制钙钛矿团簇聚集生长;而且形成的分子包覆层通过结晶水分子可有效阻隔外界水分子的入侵。从而既改善了钙钛矿团簇的聚集现象,抑制钙钛矿团簇快速团聚生长成较大尺寸的钙钛矿量子点、薄膜或块体等钙钛矿材料,又提高了钙钛矿团簇对环境中水、氧、光照等固有不稳定性因素的抵抗能力。本申请实施例制备的钙钛矿团簇溶液,通过镧系稀土金属盐水合物、有机羧酸和有机胺配体三者之间的协同作用,有效钝化了钙钛矿团簇的表面缺陷,调控钙钛矿团簇的聚集生长速率,提高了钙钛矿团簇在溶液环境中的稳定性。钙钛矿团簇溶液中钙钛矿团簇可稳定存在于溶液体系中,钙钛矿团簇尺寸小,约1~3nm,且尺寸分布高度均匀。相对于大尺寸的钙钛矿材料,小尺寸的钙钛矿团簇具有离散的能级结构,可表现出蓝移的吸收和发射光谱等独特的光电性质,提高了钙钛矿团簇的色纯度和光学稳定性,提高了钙钛矿团簇的光致发光量子产率,有望开拓其在超微光电器件、生物成像、荧光标记和新一代高性质催化剂等领域的潜在应用。
在一些实施例中,上述步骤S10中,将镧系稀土金属盐水合物、有机羧酸、有机胺配体与钙钛矿原材料配置成前驱体溶液,其中,钙钛矿原材料包括卤化二价金属和有机卤化铵或者卤化碱金属。本申请实施例制备的钙钛矿团簇是由 参与合成的钙钛矿原材料中A、B和X三种离子组成,其中,A位通常是无机或有机阳离子中的至少一种,如Cs +或Rb +等一价无机阳离子,以及如甲基胺(MA +,CH 3NH 3 +)、乙基胺(EA +,CH 3CH 2NH 3 +)或甲脒(FA +,CH(NH 2) 2 +)离子等一价有机阳离子中的至少一种;B位通常是二价金属阳离子,如Pb 2+、Sn 2+、Ge 2+、Ga 2+、Cu 2+、Ni 2+、Co 2+和Mn 2+等;X位通常是一价卤素,如I -、Br -、Cl -、F -等,也可以是假卤素阴离子,如SCN -和BF 4 -等,钙钛矿团簇的精确结构组成还尚不明确。B位的二价金属阳离子与X位的卤素离子通过配位形成[BX 6]八面体,A位无机或有机阳离子分布在八面体共顶连接产生的空隙中,配位数为12。
在一些实施例中,镧系稀土金属盐水合物选自:三价镧系稀土金属水合硝酸盐,可用化学通式M(NO 3) 3·XH 2O表示,其中,M为三价镧系稀土金属,X为结晶水数。三价镧系稀土金属离子与钙钛矿团簇表面的卤素缺陷有更好的结合性能,硝酸根离子与钙钛矿团簇表面的金属离子缺陷有更好的结合性能,一价、二价等金属离子,以及其他酸根离子对钙钛矿团簇的钝化效果不佳,会导致团簇聚集团聚形成钙钛矿量子点。
在一些实施例中,三价镧系稀土金属水合硝酸盐包括硝酸镱(III)五水合物Yb(NO 3) 3·5H 2O、硝酸镝(III)六水合物Dy(NO 3) 3·6H 2O、硝酸铕(III)六水合物Eu(NO 3) 3·5H 2O、硝酸钐(III)六水合物Sm(OH) 3·6H 2O、硝酸镨(III)六水合物Pr(NO 3) 3·6H 2O中的至少一种,进一步优选硝酸镱(III)五水合物Yb(NO 3) 3·5H 2O、硝酸铕(III)六水合物Eu(NO 3) 3·5H 2O、硝酸钐(III)六水合物Sm(OH) 3·6H 2O等。这些三价镧系稀土金属水合硝酸盐中,Yb 3+、Dy 3+、Eu 3+、Sm 3+、Pr 3+等三价镧系稀土金属离子可与钙钛矿团簇表面的I -、Br -、Cl -、F -卤素离子或者是SCN -和BF 4 -假卤素阴离子缺陷结合,硝酸根离子可与钙钛矿团簇表面的Pb 2+、Sn 2+、Ge 2+、Ga 2+、Cu 2+、Ni 2+、Co 2+和Mn 2+等金属离子缺陷结合,并在钙钛矿团簇表面形成具有三价镧系稀土金属离子、硝酸根离子、水分子和氢氧根离子的平面型分子包覆层。不但进一步钝化了钙钛矿团簇的表面缺陷,抑制钙钛矿团簇 聚集生长;而且形成的分子包覆层通过结晶水分子可有效阻隔外界水分子的入侵。从而既改善了钙钛矿团簇的聚集现象,抑制钙钛矿团簇快速团聚生长成较大尺寸的钙钛矿量子点、薄膜或块体等钙钛矿材料,又提高了钙钛矿团簇对环境中水、氧、光照等固有不稳定性因素的抵抗能力。
在一些实施例中,镧系稀土金属盐水合物的添加量与卤化二价金属的摩尔比为(1~2):(3~10),该添加量有效确保了镧系稀土金属盐水合物对钙钛矿团簇表面的钝化及稳定作用,使得钙钛矿团簇在溶液中以小尺寸形式稳定存在,有利于钙钛矿团簇的后续应用。若镧系稀土金属盐水合物添加量过低,则不利于钝化并稳定性钙钛矿团簇,钙钛矿团簇容易团聚成钙钛矿量子点、薄膜或块体等大尺寸钙钛矿材料,且稳定性差,受环境中水、氧等因素的影响容易分解变质。若镧系稀土金属盐水合物添加量过高,则会在体系中引入大量的水分子也不利于钙钛矿团簇的生成,此外过多的镧系稀土金属盐水合物也不能完全溶解在前驱体溶剂中,同样不利于得到高纯度的钙钛矿团簇。在一些实施例中,镧系稀土金属盐水合物的添加量与卤化二价金属的摩尔比包括但不限于1:(3~10)、1:(4~9)、1:(5~8)、1:(6~7)、2:(3~10)、2:(4~9)、2:(5~8)、2:(6~7)等。
在一些实施例中,有机羧酸包括丙酸、正丁酸、正戊酸、十八碳酸、十八碳烯酸、苯甲酸、苯乙酸中的至少一种,进一步优选为十八碳烯酸或苯乙酸,或者十八碳烯酸和苯乙酸。本申请实施例在前驱体溶液中添加的这些有机羧酸含有羰基,可与八面体中心阳离子形成强烈配位作用,同时羧酸烷基链之间也存在分子间作用力,因而可降低[BX 6]八面体聚集的驱动力,抑制八面体的快速聚集,钝化钙钛矿团簇表面的阳离子缺陷,抑制钙钛矿团簇快速团聚生长成较大尺寸的钙钛矿量子点、薄膜或块体等钙钛矿材料。
在一些实施例中,前驱体溶液中有机羧酸的添加量与钙钛矿原材料中卤化二价金属的摩尔量之比为(2~10):1,该配比不但可有效钝化钙钛矿团簇表面,调控钙钛矿团簇的团聚速率,使溶液中钙钛矿维持团簇形态;而且使得溶液体 系中有合适的pH值,pH值约为5,有利于镧系稀土金属盐水合物在钙钛矿团簇表面形成镧系稀土金属离子、酸根离子、水分子和氢氧根离子的平面型分子包覆层。若前驱体溶液中有机羧酸的添加量过多,则会破坏反应体系的酸碱平衡,过度抑制钙钛矿团簇形成,致使反应较难生成钙钛矿团簇,溶液中钙钛矿材料维持在分子或原子的微观结构;若前驱体溶液中有机羧酸的添加量过少,则不利于钝化钙钛矿团簇表面,钙钛矿团簇容易快速团聚生长成较大尺寸的钙钛矿量子点、薄膜或块体等宏观结构,从而无法获得钙钛矿团簇。在一些实施例中,前驱体溶液中有机羧酸的添加量与钙钛矿原材料中卤化二价金属的摩尔量之比包括但不限于(2~10):1、(3~9):1、(4~8):1、(5~7):1、(3~6):1、((6~9):1等,优选(4~8):1。
在一些实施例中,有机胺配体包括十八碳胺、十八碳烯胺、苯甲胺、苯乙胺中的至少一种,进一步优选为十八碳烯胺或苯乙胺,或者优选为十八碳烯胺和苯乙胺。本申请实施例在前驱体溶液中添加的这些有机配体,既能够通过静电引力与八面体边缘的阴离子键合,钝化钙钛矿团簇表面的阴离子缺陷,进一步调控钙钛矿团簇的聚集生长速率,同时形成有机间隔层,使得间隔层的介电常数与八面体片层失配,从而使[BX 6]八面体层形成天然的量子阱,提高钙钛矿团簇中载流子的迁移效率。
在一些实施例中,有机胺配体与卤化二价金属的摩尔比为(1~10):1;有机胺配体的该用量配比,便能同时有效调控钙钛矿结构、团簇聚集生长速率。若前驱体溶液中有机胺配体添加量过低,则不利于调节钙钛矿结构及团簇的聚集速率;若前驱体溶液中有机胺配体添加量过高,则同样不利于钙钛矿团簇形成。在一些实施例中,有机胺配体与卤化二价金属的摩尔比包括但不限于(1~10):1、(2~9):1、(3~8):1、(4~7):1、(5~6):1等,优选(2~8):1。
在一些实施例中,卤化二价金属包括卤化铅、卤化锡、卤化锗、卤化镓、卤化镍、卤化锰、卤化钴、卤化铜中的至少一种;这些卤化二价金属可与有机卤化铵或者卤化碱金属自组装,将铅、锡、锗、镓、镍、钴、锰、铜等二价金 属离子引入到钙钛矿团簇结构中。在一些优选实施例中,卤化二价金属选自卤化铅、卤化锡中的至少一种,如氯化铅、溴化铅、碘化铅、氯化锡、溴化锡、碘化锡等。
在一些实施例中,有机卤化铵包括CH 3NH 3Cl、CH 3NH 3Br、CH 3NH 3I、CH 2(NH 3) 2Cl、CH 2(NH 3) 2Br、CH 2(NH 3) 2I、CH 3CH 2NH 3Cl、CH 3CH 2NH 3Br、CH 3CH 2NH 3I中的至少一种;这些有机卤化铵盐通过与卤化二价金属自组装后可形成钙钛矿材料,钙钛矿材料中引入CH 3NH 3 +、CH 2(NH 3) 2 +、CH 2CH 2NH 3 +等有机铵根离子可有效提高钙钛矿材料的热稳定性能。
在一些实施例中,卤化碱金属包括CsCl、CsBr、CsI、RbCl、RbBr、RbI中的至少一种;这些卤化碱金属通过与卤化二价金属自组装后可形成钙钛矿材料,钙钛矿材料中引入Cs +、Rb +等碱金属离子可有效提高钙钛矿材料的热稳定性能。
在一些实施例中,有机溶剂包括二甲基亚砜、N,N-二甲基甲酰胺中的至少一种,这些溶剂对有机羧酸、有机胺配体与钙钛矿原材料等均有较好的溶解分散作用。在一些实施例中,有机溶剂中包括二甲基亚砜和N,N-二甲基甲酰胺,进一步地,二甲基亚砜和N,N-二甲基甲酰胺的体积比为(1~9):(1~9)。本申请实施例采用的混合有机溶剂,不但对各原料组分溶解效果好,有利于各组分之间相互接触反应;而且有利于调控钙钛矿的生长速率和取向。具体地,二甲基亚砜中的S=O键易于与钙钛矿中B位阳离子配位,形成中间体,防止钙钛矿[BX 6]八面体如[PbI 6]等的快速聚集。而N,N-二甲基甲酰胺是钙钛矿前驱体的良溶剂,其作用与二甲基亚砜相似,但其中C=O与B位阳离子的作用弱,且沸点低,对对钙钛矿团簇的生成效果不佳。因此,采用二甲基亚砜和N,N-二甲基甲酰胺的混合溶剂。在一些具体实施例中,二甲基亚砜和N,N-二甲基甲酰胺的体积比包括但不限于9:1、4:1、7:3、3:2、1:1、2:3、3:7、1:4、1:9等,优选2:3、1:1或1:4。
在一些实施例中,配置前驱体溶液的步骤包括:将钙钛矿原材料溶解于有机溶剂后,室温下混合搅拌10~30分钟,添加镧系稀土金属盐水合物、有机羧酸和有机胺配体,在30~55℃下搅拌0.5~2h,充分溶解得到前驱体溶液。在一些实施例中,配制前驱体溶液时,钙钛矿原材料中卤化二价金属和有机卤化铵或者卤化碱金属的物质的量之比可以是1:(0.2~5),进一步优选为1:(0.5~3)。在一些实施例中,卤化二价金属在有机溶剂中的初始浓度优选为0.03~0.1mol/L。
在一些实施例中,上述步骤S20中,将前驱体溶液与反溶剂进行混合处理1~3分钟,通过有机羧酸、有机胺配体和镧系稀土金属盐水合物协同调控钙钛矿团簇的聚集速率,即在溶液中生成尺寸小且粒径分布均一度高的钙钛矿团簇。
在一些实施例中,反溶剂包括正己烷、甲苯、二氯甲烷、三氯甲烷中的至少一种,进一步优选为甲苯或者三氯甲烷,或者优选为甲苯和三氯甲烷;这些反溶剂可促使前驱体溶液中钙钛矿原料组分相互反应形成微观钙钛矿材料,通过微观钙钛矿材料继续生长,形成多核聚集体的钙钛矿团簇,且团簇表面结合有机配体,有机羧酸,以及镧系稀土金属盐水合物形成的具有镧系稀土金属离子、酸根离子、水分子和氢氧根离子的平面型分子包覆层,钙钛矿团簇稳定性好。
在一些实施例中,前驱体溶液与反溶剂的体积比为(0.2~4):(5~35);进一步地为,(0.5~3):(10~20)。通过不同前驱体溶液与反溶剂的体积比实现不同的过饱和度从而改变钙钛矿材料生成的尺寸与数目,控制反应体系缓慢生成小尺寸的钙钛矿团簇。
在一些实施例中,纯化的步骤包括:对混合处理后的混合溶液进行离心处理,通过选择合适的离心转速,可去除溶液中的一系列杂质,如:未反应的钙钛矿原组分、有机胺、有机羧酸和镧系稀土金属盐水合物,收集上清液,得到钙钛矿团簇溶液。在一些实施例中,对混合处理后的混合溶液在离心分离的转速为2000~12000r/min的条件下离心3~4次,每次离心收集产物均为上清液,进 一步优选地转速为6000~10000r/min,将所得的钙钛矿团簇溶液置于冰箱中低温(0~5℃)存储。
如附图2所示,本申请实施例第二方面提供一种钙钛矿团簇溶液,该钙钛矿团簇溶液中钙钛矿团簇表面结合有有机羧酸和有机胺配体,以及镧系稀土金属盐水合物形成分子包覆层。
本申请实施例第二方面提供的钙钛矿团簇溶液中,钙钛矿团簇表面结合有有机羧酸和有机胺配体,以及镧系稀土金属盐水合物形成的分子包覆层;其中,有机羧酸钝化钙钛矿团簇表面的阳离子缺陷,有机胺配体钝化钙钛矿团簇表面的阴离子缺陷,镧系稀土金属盐水合物中镧系稀土金属离子可与钙钛矿团簇表面的卤素离子缺陷结合,酸根离子可与钙钛矿团簇表面的金属离子缺陷结合,并在钙钛矿团簇表面形成具有镧系稀土金属离子、酸根离子、水分子和氢氧根离子的平面型分子包覆层。通过镧系稀土金属盐水合物、有机羧酸和有机胺配体三者之间的协同作用,有效钝化钙钛矿团簇的表面缺陷,调控钙钛矿团簇的聚集生长速率,提高钙钛矿团簇在溶液环境中的稳定性,得到小尺寸、强稳定性、高荧光量子产率的钙钛矿团簇。
本申请实施例钙钛矿团簇溶液可通过上述实施例方法制得。
在一些实施例中,钙钛矿团簇溶液中钙钛矿团簇的粒径大小为1~3nm,该尺寸范围基本上可确定为纯的钙钛矿团簇,过小无法生成,过大则容易生成片状或球型尺寸较大的量子点。本申请实施例钙钛矿团簇溶液中钙钛矿团簇可稳定存在于溶液体系中,钙钛矿团簇尺寸小,且尺寸分布高度均匀,确保了钙钛矿团簇的强离子性、高表面能、高量子效应等光学特性。相对于大尺寸的钙钛矿材料,小尺寸的钙钛矿团簇具有离散的能级结构,可表现出蓝移的吸收和发射光谱等独特的光电性质,提高了钙钛矿团簇的色纯度和光学稳定性,有望开拓其在超微光电器件、生物成像、荧光标记和新一代高性质催化剂等领域的潜在应用。在一些具体实施例中,钙钛矿团簇溶液的粒径大小可以是1nm~2nm、2~3nm等。
在一些实施例中,有机配体包括十八碳胺、十八碳烯胺、苯甲胺、苯乙胺中的至少一种,通过选择合适有机配体,能够钝化减少了钙钛矿团簇表面卤素阴离子缺陷,抑制钙钛矿团簇聚集生长,使溶液中钙钛矿维持团簇状态。
在一些实施例中,镧系稀土金属盐水合物包括Yb(NO 3) 3·5H 2O、Dy(NO 3) 3·6H 2O、Eu(NO 3) 3·5H 2O、Sm(OH) 3·6H 2O、Pr(NO 3) 3·6H 2O中的至少一种三价镧系稀土金属水合硝酸盐;这些镧系稀土金属盐水合物中,三价镧系稀土金属离子与钙钛矿团簇表面的卤素缺陷有更好的结合性能,硝酸根离子与钙钛矿团簇表面的金属离子缺陷有更好的结合性能。
在一些实施例中,有机羧酸包括丙酸、正丁酸、正戊酸、十八碳酸、十八碳烯酸、苯甲酸、苯乙酸中的至少一种;这些有机羧酸可与八面体中心阳离子形成强烈配位作用,同时羧酸烷基链之间也存在分子间作用力,因而可降低[BX 6]八面体聚集的驱动力,抑制八面体的快速聚集,钝化钙钛矿团簇表面的阳离子缺陷,抑制钙钛矿团簇快速团聚生长成较大尺寸的钙钛矿量子点、薄膜或块体等钙钛矿材料。
本申请实施例第三方面提供一种光电器件,包含有上述方法制备的钙钛矿团簇溶液,或者上述的钙钛矿团簇溶液。
本申请实施例第三方面提供的光电器件,由于包含有上述钙钛矿团簇溶液,其中钙钛矿团簇表面结合有有机羧酸和有机胺配体,以及镧系稀土金属盐水合物形成的分子包覆层,提高钙钛矿团簇的稳定性和荧光量子产率,改善团聚现象,提高了钙钛矿团簇在溶液存放环境中的适应能力,稳定存在于溶液中的钙钛矿团簇尺寸小且尺寸分布高度均匀,小尺寸的钙钛矿团簇具有离散的能级结构,提高了钙钛矿团簇的色纯度和光学稳定性,提高了钙钛矿团簇的光致发光量子产率,从而提高了光电器件的光电性能。
在一些实施例中,光电器件包括但不限于钙钛矿太阳能电池、发光二极管(LEDs)、光电探测器、可见光通信器件等。
为使本申请上述实施细节和操作能清楚地被本领域技术人员理解,以及本申请实施例钙钛矿团簇溶液及其制备方法的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
一种钙钛矿团簇溶液,其制备包括步骤:
①按物质的量比为1:1将溴化铯(CsBr)和溴化铅(PbBr 2)溶解在二甲基亚砜(DMSO)溶剂中搅拌至完全溶解;溴化铅的初始浓度为0.04mol/L,其中溶剂的体积为1.0mL;然后,添加Yb(NO 3) 3·5H 2O、十八碳烯酸和十八碳烯胺并在30℃下搅拌1h,其中,Yb(NO 3) 3·5H 2O的添加量与溴化铅物质的量比为1:1,十八碳烯胺的添加量与溴化铅物质的量比为2:1,十八碳烯酸的添加量与溴化铅物质的量比为4:1,制得钙钛矿团簇的前驱体溶液;
②按体积比为0.5:10,将钙钛矿团簇前驱体溶液注入甲苯中,室温下快速搅拌约2分钟后,混合溶液以10000r/min的速度离心10min,离心3次,每次离心收集产物均为上清液,得到钙钛矿团簇溶液,最后将所得的钙钛矿团簇溶液置于冰箱中低温(0~5℃)存储备用,其中,钙钛矿团簇的粒径为1.5~2.5nm。
实施例2
一种钙钛矿团簇溶液,其制备包括步骤:
①按物质的量比为1:1将溴化铯(CsBr)和溴化铅(PbBr 2)溶解在N,N-二甲基甲酰胺(DMF)溶剂中搅拌至完全溶解;溴化铅的初始浓度为0.04mol/L,其中溶剂的体积为1.0mL;然后,添加Yb(NO 3) 3·5H 2O、苯乙酸和苯乙胺并在30℃下搅拌1h,其中,Yb(NO 3) 3·5H 2O的添加量与溴化铅物质的量比为1:1,苯乙胺的添加量与溴化铅物质的量比为2:1,苯乙酸的添加量与溴化铅物质的量比为4:1,制得钙钛矿团簇的前驱体溶液;
②按体积比为0.5:10,将钙钛矿团簇前驱体溶液注入甲苯中,室温下快速搅拌约2分钟后,混合溶液以10000r/min的速度离心10min,离心3次,每次离心收集产物均为上清液,得到钙钛矿团簇溶液,最后将所得的钙钛矿团簇溶 液置于冰箱中低温(0~5℃)存储备用,其中,钙钛矿团簇的粒径为1.7~2.1nm。
实施例3
一种钙钛矿团簇溶液,其制备包括步骤:
①按物质的量比为1:1将溴化铯(CsBr)和溴化铅(PbBr 2)溶解在体积比为1:1的二甲基亚砜(DMSO)和N,N-二甲基甲酰胺(DMF)的混合溶剂中搅拌至完全溶解;溴化铅的初始浓度为0.04mol/L,其中溶剂的体积为1.0mL;然后,添加Yb(NO 3) 3·5H 2O、十八碳烯酸和十八碳烯胺并在30℃下搅拌1h,其中,Yb(NO 3) 3·5H 2O的添加量与溴化铅物质的量比为1:1,十八碳烯胺的添加量与溴化铅物质的量比为2:1,十八碳烯酸的添加量与溴化铅物质的量比为4:1,制得钙钛矿团簇的前驱体溶液;
②按体积比为3:20,将钙钛矿团簇前驱体溶液注入三氯甲烷中,室温下快速搅拌约2分钟后,混合溶液以10000r/min的速度离心10min,离心3次,每次离心收集产物均为上清液,得到钙钛矿团簇溶液,最后将所得的钙钛矿团簇溶液置于冰箱中低温(0~5℃)存储备用,其中,钙钛矿团簇的粒径为2.0~3.0nm。
实施例4
一种钙钛矿团簇溶液,其制备包括步骤:
①按物质的量比为1:1将溴化铯(CsBr)和溴化铅(PbBr 2)溶解在二甲基亚砜(DMSO)溶剂中搅拌至完全溶解;溴化铅的初始浓度为0.04mol/L,其中溶剂的体积为1.0mL;然后,添加Eu(NO 3) 3·5H 2O、十八碳烯酸和十八碳烯胺并在30℃下搅拌1h,其中,Eu(NO 3) 3·5H 2O的添加量与溴化铅物质的量比为8:1,十八碳烯胺的添加量与溴化铅物质的量比为2:1,十八碳烯酸的添加量与溴化铅物质的量比为4:1,制得钙钛矿团簇的前驱体溶液;
②按体积比为0.5:10,将钙钛矿团簇前驱体溶液注入甲苯中,室温下快速搅拌约2分钟后,混合溶液以10000r/min的速度离心10min,离心3次,每次离心收集产物均为上清液,得到钙钛矿团簇溶液,最后将所得的钙钛矿团簇溶 液置于冰箱中低温(0~5℃)存储备用,其中,钙钛矿团簇的粒径为1.0~2.0nm。
对比例1
一种钙钛矿材料溶液,其制备包括步骤:
①按物质的量比为1:1将溴化铯(CsBr)和溴化铅(PbBr 2)溶解在体积比为1:1的二甲基亚砜(DMSO)和N,N-二甲基甲酰胺(DMF)的混合溶剂中搅拌至完全溶解;溴化铅的初始浓度为0.5mol/L,其中溶剂的体积为0.4mL;然后,添加十八碳烯酸和十八碳烯胺并搅拌溶解,其中,十八碳烯胺的添加量与溴化铅物质的量比为0.6~1,十八碳烯酸的添加量与溴化铅物质的量比为0.3:1,制得钙钛矿团簇的前驱体溶液;
②按体积比为0.5:10,将钙钛矿团簇前驱体溶液注入甲苯中,室温下快速搅拌约2分钟后,混合溶液以10000r/min的速度离心10min,离心3次,每次离心收集产物均为上清液,溶液中无法形成钙钛矿团簇。
对比例2
一种钙钛矿材料溶液,其制备包括步骤:
①按物质的量比为1:1将溴化铯(CsBr)和溴化铅(PbBr 2)溶解在二甲基亚砜(DMSO)溶剂中搅拌至完全溶解;溴化铅的初始浓度为0.04mol/L,其中溶剂的体积为1.0mL;然后,添加Yb(NO 3) 3·5H 2O和十八碳烯胺并在30℃下搅拌1h,其中,Yb(NO 3) 3·5H 2O的添加量与溴化铅物质的量比为1:1,十八碳烯胺的添加量与溴化铅物质的量比为2:1,制得钙钛矿团簇的前驱体溶液;
②按体积比为0.5:10,将钙钛矿团簇前驱体溶液注入甲苯中,室温下快速搅拌约2分钟后,混合溶液以10000r/min的速度离心10min,离心3次,每次离心收集产物均为上清液,溶液中无法形成钙钛矿团簇。
对比例3
一种钙钛矿材料溶液,其制备包括步骤:
①按物质的量比为1:1将溴化铯(CsBr)和溴化铅(PbBr 2)溶解在二甲基亚砜(DMSO)溶剂中搅拌至完全溶解;溴化铅的初始浓度为0.04mol/L, 其中溶剂的体积为1.0mL;然后,添加Yb(NO 3) 3·5H 2O和十八碳烯酸并在30℃下搅拌1h,其中,Yb(NO 3) 3·5H 2O的添加量与溴化铅物质的量比为1:1,十八碳烯酸的添加量与溴化铅物质的量比为4:1,制得钙钛矿团簇的前驱体溶液;
②按体积比为0.5:10,将钙钛矿团簇前驱体溶液注入甲苯中,室温下快速搅拌约2分钟后,混合溶液以10000r/min的速度离心10min,离心3次,每次离心收集产物均为上清液,溶液中无法形成钙钛矿团簇。
对比例4
一种钙钛矿材料溶液,其制备包括步骤:
①按物质的量比为1:1将溴化铯(CsBr)和溴化铅(PbBr 2)溶解在二甲基亚砜(DMSO)溶剂中搅拌至完全溶解;溴化铅的初始浓度为0.04mol/L,其中溶剂的体积为1.0mL;然后,添加Yb(NO 3) 3·5H 2O并在30℃下搅拌1h,其中,Yb(NO 3) 3·5H 2O的添加量与溴化铅物质的量比为1:1,制得钙钛矿团簇的前驱体溶液;
②按体积比为0.5:10,将钙钛矿团簇前驱体溶液注入甲苯中,室温下快速搅拌约2分钟后,混合溶液以10000r/min的速度离心10min,离心3次,每次离心收集产物均为上清液,溶液中无法形成钙钛矿团簇。
进一步的,为了验证本申请实施例的进步性,对实施例进行了如下性能测试:
1、通过紫外可见分光度计和荧光分光光度计测试仪器,对实施例1制备的钙钛矿团簇溶液的紫外吸收光谱和荧光发射光谱的特征峰进行了测试,测试结果如附图3所示,其中,对应的特征峰分别为393nm和397nm。
2、通过高分辨透射电子显微镜测试仪器,对实施例2制备的钙钛矿团簇溶液的形貌尺寸进行了测试,测试结果如附图4所示,测试结果表明该钙钛矿团簇为球型,平均尺寸为1.90±0.2nm。
3、通过荧光分光光度计测试仪器,对实施例3添加Yb(NO 3) 3·5H 2O制备的 钙钛矿团簇溶液和对比例1未添加镧系稀土金属盐水合物(M(NO 3) 3·XH 2O)制备的钙钛矿材料的荧光发射光谱强度进行了对比测试,测试结果如附图5所示,测试结果表明实施例1(有M(NO 3) 3·XH 2O)添加M(NO 3) 3·XH 2O的钙钛矿团簇的荧光发射光谱强度显著增强,发光性能改善。而对比例1(无M(NO 3) 3·XH 2O)未添加M(NO 3) 3·XH 2O的钙钛矿材料的荧光发射光谱强度弱。
4、在空气温度为25℃,相对湿度60%的条件中进行稳定性测试,通过荧光分光光度计测试仪的积分球,对实施例1~4添加Yb(NO 3) 3·5H 2O制备的钙钛矿团簇溶液和对比例1未添加镧系稀土金属盐水合物(M(NO 3) 3·XH 2O)制备的钙钛矿材料的荧光量子产率进行了测试,测试结果图下表1所示。可见,实施例实施例1~4添加Yb(NO 3) 3·5H 2O制备的钙钛矿团簇表现出较高的荧光量子产率初始值,且在72小时后仍有较高的荧光量子产率,表现出较好的稳定性。而对比例1未添加镧系稀土金属盐水合物(M(NO 3) 3·XH 2O)制备的钙钛矿材料,荧光量子产率低,容易淬灭。
其中,实施例1的测试图如附图6所示,测试结果表明随着72小时的荧光量子产率测试,实施例1(有M(NO 3) 3·XH 2O)钙钛矿团簇的荧光量子产率由原来的91%降为87%,表现出良好的稳定性和发光性能。而对比例1(无M(NO 3) 3·XH 2O)未添加M(NO 3) 3·XH 2O的钙钛矿材料的荧光量子产率由原来的65%降为0%,应该基本被淬灭。
表1
  荧光量子产率初始值% 72小时后的荧光量子产率%
实施例1 91% 87%
实施例2 87% 82%
实施例3 89% 84%
实施例4 90% 84%
对比例1 65% 0
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种钙钛矿团簇溶液的制备方法,其特征在于:包括以下步骤:
    将镧系稀土金属盐水合物、有机羧酸、有机胺配体与钙钛矿原材料配置成前驱体溶液;
    将所述前驱体溶液与反溶剂进行混合处理,纯化得到钙钛矿团簇溶液。
  2. 如权利要求1所述的钙钛矿团簇溶液的制备方法,其特征在于:所述钙钛矿原材料包括卤化二价金属和有机卤化铵或者卤化碱金属;
    和/或,配置所述前驱体溶液的步骤包括:将所述钙钛矿原材料溶解于有机溶剂混合处理10~30分钟后,添加所述镧系稀土金属盐水合物、所述有机羧酸和所述有机胺配体,在30~55℃下搅拌0.5~2h,得到所述前驱体溶液。
  3. 如权利要求2所述的钙钛矿团簇溶液的制备方法,其特征在于:所述镧系稀土金属盐水合物选自:三价镧系稀土金属水合硝酸盐;
    和/或,所述镧系稀土金属盐水合物的添加量与所述卤化二价金属的摩尔比为(1~2):(3~10)。
  4. 如权利要求3所述的钙钛矿团簇溶液的制备方法,其特征在于:所述三价镧系稀土金属水合硝酸盐包括Yb(NO 3) 3·5H 2O、Dy(NO 3) 3·6H 2O、Eu(NO 3) 3·5H 2O、Sm(OH) 3·6H 2O、Pr(NO 3) 3·6H 2O中的至少一种。
  5. 如权利要求2~4任一项所述的钙钛矿团簇溶液的制备方法,其特征在于:所述前驱体溶液与所述反溶剂的体积比为(0.2~4):(5~35);
    和/或,所述反溶剂包括正己烷、甲苯、二氯甲烷、三氯甲烷中的至少一种;
    和/或,所述混合处理的时间为1~3分钟。
  6. 如权利要求2~4任一项所述的钙钛矿团簇溶液的制备方法,其特征在于:所述有机羧酸与所述卤化二价金属的摩尔比为(2~10):1;
    和/或,所述有机胺配体与所述卤化二价金属的摩尔比为(1~10):1;
    和/或,所述纯化的步骤包括:对所述混合处理后的混合溶液进行离心处理,收集上清液,得到所述钙钛矿团簇溶液。
  7. 如权利要求6所述的钙钛矿团簇溶液的制备方法,其特征在于:所述有 机羧酸包括丙酸、正丁酸、正戊酸、十八碳酸、十八碳烯酸、苯甲酸、苯乙酸中的至少一种;
    和/或,所述有机胺配体包括十八碳胺、十八碳烯胺、苯甲胺、苯乙胺中的至少一种;
    和/或,所述卤化二价金属包括卤化铅、卤化锡、卤化锗、卤化镓、卤化镍、卤化锰、卤化钴、卤化铜中的至少一种;
    和/或,所述有机卤化铵包括CH 3NH 3Cl、CH 3NH 3Br、CH 3NH 3I、CH 2(NH 3) 2Cl、CH 2(NH 3) 2Br、CH 2(NH 3) 2I、CH 3CH 2NH 3Cl、CH 3CH 2NH 3Br、CH 3CH 2NH 3I中的至少一种;
    和/或,所述卤化碱金属包括CsCl、CsBr、CsI、RbCl、RbBr、RbI中的至少一种;
    和/或,所述有机溶剂包括二甲基亚砜、N,N-二甲基甲酰胺中的至少一种。
  8. 一种钙钛矿团簇溶液,其特征在于:所述钙钛矿团簇溶液中钙钛矿团簇表面结合有有机羧酸和有机胺配体,以及镧系稀土金属盐水合物形成的分子包覆层。
  9. 如权利要求8所述的钙钛矿团簇溶液,其特征在于:所述钙钛矿团簇溶液中钙钛矿团簇的粒径大小为1~3nm;
    和/或,所述镧系稀土金属盐水合物包括Yb(NO 3) 3·5H 2O、Dy(NO 3) 3·6H 2O、Eu(NO 3) 3·5H 2O、Sm(OH) 3·6H 2O、Pr(NO 3) 3·6H 2O中的至少一种三价镧系稀土金属水合硝酸盐;
    和/或,所述有机羧酸包括丙酸、正丁酸、正戊酸、十八碳酸、十八碳烯酸、苯甲酸、苯乙酸中的至少一种;
    和/或,所述有机胺配体包括十八碳胺、十八碳烯胺、苯甲胺、苯乙胺中的至少一种。
  10. 一种光电器件,其特征在于:所述光电器件中包含有如权利要求1~7任一项所述方法制备的钙钛矿团簇溶液,或者如权利要求8~9任一项所述的钙 钛矿团簇溶液。
PCT/CN2021/137621 2021-10-29 2021-12-13 钙钛矿团簇溶液及其制备方法、光电器件 WO2023070866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276301.3A CN114085665B (zh) 2021-10-29 2021-10-29 钙钛矿团簇溶液及其制备方法、光电器件
CN202111276301.3 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023070866A1 true WO2023070866A1 (zh) 2023-05-04

Family

ID=80298332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137621 WO2023070866A1 (zh) 2021-10-29 2021-12-13 钙钛矿团簇溶液及其制备方法、光电器件

Country Status (2)

Country Link
CN (1) CN114085665B (zh)
WO (1) WO2023070866A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116904187A (zh) * 2023-07-21 2023-10-20 重庆邮电大学 一种苯甲酸改性的无铅金属卤化物钙钛矿微米晶材料的制备方法及其产品和应用
CN117102493A (zh) * 2023-07-18 2023-11-24 深圳大学 一种异金属金铜簇合物及其制备方法与应用
CN118006325A (zh) * 2024-01-23 2024-05-10 河南德熙生物研发科技有限公司 一种稀土掺杂钙钛矿纳米晶体及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103421A1 (zh) * 2022-11-19 2024-05-23 深圳先进技术研究院 Yb3+掺杂cspbbr3 pmscs及其制备方法和应用
CN115710502B (zh) * 2022-11-19 2024-01-02 深圳先进技术研究院 Yb3+掺杂CsPbBr3PMSCs及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170233645A1 (en) * 2014-11-04 2017-08-17 Shenzhen Tcl New Technology Co., Ltd Perovskite quantum dot material and preparation method thereof
CN110156071A (zh) * 2019-04-26 2019-08-23 复旦大学 一种高度有序的全无机钙钛矿纳米团簇组装体的制备方法
CN112484851A (zh) * 2021-01-06 2021-03-12 福州大学 一种钙钛矿镧系复合纳米材料及其制备方法和在宽波段光电探测器中的应用
CN113105894A (zh) * 2021-04-16 2021-07-13 江西理工大学 一种稀土金属有机框架包覆钙钛矿量子点复合发光材料及其制备方法
CN113318725A (zh) * 2021-06-22 2021-08-31 电子科技大学长三角研究院(湖州) 一种碱土金属氧化物亚纳米团簇的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170233645A1 (en) * 2014-11-04 2017-08-17 Shenzhen Tcl New Technology Co., Ltd Perovskite quantum dot material and preparation method thereof
CN110156071A (zh) * 2019-04-26 2019-08-23 复旦大学 一种高度有序的全无机钙钛矿纳米团簇组装体的制备方法
CN112484851A (zh) * 2021-01-06 2021-03-12 福州大学 一种钙钛矿镧系复合纳米材料及其制备方法和在宽波段光电探测器中的应用
CN113105894A (zh) * 2021-04-16 2021-07-13 江西理工大学 一种稀土金属有机框架包覆钙钛矿量子点复合发光材料及其制备方法
CN113318725A (zh) * 2021-06-22 2021-08-31 电子科技大学长三角研究院(湖州) 一种碱土金属氧化物亚纳米团簇的制备方法及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117102493A (zh) * 2023-07-18 2023-11-24 深圳大学 一种异金属金铜簇合物及其制备方法与应用
CN116904187A (zh) * 2023-07-21 2023-10-20 重庆邮电大学 一种苯甲酸改性的无铅金属卤化物钙钛矿微米晶材料的制备方法及其产品和应用
CN118006325A (zh) * 2024-01-23 2024-05-10 河南德熙生物研发科技有限公司 一种稀土掺杂钙钛矿纳米晶体及其制备方法

Also Published As

Publication number Publication date
CN114085665B (zh) 2023-11-14
CN114085665A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2023070866A1 (zh) 钙钛矿团簇溶液及其制备方法、光电器件
Guo et al. Coordination modulation induced synthesis of nanoscale Eu1-xTbx-metal-organic frameworks for luminescent thin films
US10512900B2 (en) Method for making LaCO3OH nanoparticles from aqueous salt solutions
WO2023070876A1 (zh) 固态钙钛矿团簇及其制备方法、光电器件
WO2016155313A1 (zh) 一种高容量镍钴基锂离子正极材料及其制备方法
WO2023087449A1 (zh) 锰掺杂有机钙钛矿团簇材料及其制备方法
Chen et al. Ligand molecules regulate the size and morphology of Cu2O nanocrystals
Dai et al. Controlled synthesis of calcite/vaterite/aragonite and their applications as red phosphors doped with Eu 3+ ions
CN110003884A (zh) 掺杂量子点及其制备方法、量子点光电器件
Wu et al. Low-temperature preparation of monodispersed Eu-doped CaTiO 3 LED phosphors with controllable morphologies
CN112758995A (zh) 一种三元正极前驱体及其制备方法和用途
Jia et al. Metal cyanamides: Open-framework structure and energy conversion/storage applications
CN105199735A (zh) 一种固态量子点的制备方法
CN108395643B (zh) 用于pvc热稳定剂的改性水铝钙石及其清洁制备方法
Agrahari et al. Structural, optical and dilute magnetic semiconducting properties of Gd doped SnO2 nanoparticles
CN116002749B (zh) 镧系稀土掺杂氧化铟锌纳米粉体的制备方法
CN102923757B (zh) 氧化锌纳米棒的制备方法
Djurisic et al. Hydrothermal synthesis of nanostructures
CN115449369B (zh) 钙钛矿纳米材料及其制备方法和应用
CN105419795B (zh) 一种掺杂镨或镨锌的钛酸锶纳米红色荧光粉体及制备方法
Wang et al. Solvent-assisted selective synthesis of NaLaF4 and LaF3 fluorescent nanocrystals via a facile solvothermal approach
Zahir et al. CaO‐containing La CO 3 OH nanogears and their luminescence and de‐NO x properties
CN115109588A (zh) 一种稀土掺杂水滑石纳米光肥及其制备方法和应用
Fang et al. Molten salt synthesis and luminescent properties of YVO4: Eu nanocrystalline phosphors
Wang et al. Structure and luminescent properties of CaCO3: Eu3+ phosphors prepared in ethylene glycol-water mixed solvent

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE