WO2024103421A1 - Yb3+掺杂cspbbr3 pmscs及其制备方法和应用 - Google Patents

Yb3+掺杂cspbbr3 pmscs及其制备方法和应用 Download PDF

Info

Publication number
WO2024103421A1
WO2024103421A1 PCT/CN2022/133034 CN2022133034W WO2024103421A1 WO 2024103421 A1 WO2024103421 A1 WO 2024103421A1 CN 2022133034 W CN2022133034 W CN 2022133034W WO 2024103421 A1 WO2024103421 A1 WO 2024103421A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmscs
doped
cspbbr
doped cspbbr
solvent
Prior art date
Application number
PCT/CN2022/133034
Other languages
English (en)
French (fr)
Inventor
薛冬峰
徐珂
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2022/133034 priority Critical patent/WO2024103421A1/zh
Publication of WO2024103421A1 publication Critical patent/WO2024103421A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead

Definitions

  • the present invention belongs to the technical field of photoelectric material preparation, and in particular relates to Yb 3+ -doped CsPbBr 3 PMSCs and a preparation method and application thereof.
  • PMSCs Low-dimensional perovskite magic-sized clusters
  • PMSCs materials have unique properties such as small size ( ⁇ 2nm), narrow fluorescence half-width (FWHM ⁇ 15nm), significant quantum confinement effect, high specific surface area and more surface defects, so the structure and performance of PMSCs materials can be modified.
  • the research on CsPbBr 3 PMSCs mainly focuses on the unique size, composition, stability and photoelectric properties.
  • CsPbBr 3 PMSCs it has been possible to prepare samples with high fluorescence quantum yield, transition metal Mn 2+ doping and small size ( ⁇ 2nm), but the existing technology of doping PMSCs has not yet broken through the technical bottleneck of near-infrared luminescence.
  • Lanthanide rare earth ion-doped low-dimensional PMSCs materials not only have the excellent physical and chemical properties inherent to PMSCs materials, but also the special 4f valence electron configuration of lanthanide rare earth ions gives PMSCs materials excellent optical, electrical, magnetic and catalytic properties. At the same time, they can create new emission characteristics, enhance stability, reduce defect state density, etc. Therefore, the synergistic effect of lanthanide rare earth ions and PMSCs materials can design and prepare new optoelectronic functional materials with excellent optoelectronic properties and stability. This study focuses on CsPbBr 3 PMSCs.
  • CsPbBr 3 PMSCs In terms of composition, the structure of CsPbBr 3 PMSCs is composed of Cs + , Pb 2+ and halogen ion Br - .
  • lanthanide rare earth ions are usually introduced into the A, B or B position of perovskite to broaden the luminescence spectrum of CsPbBr 3 PMSCs from the original ultraviolet region to the ultraviolet-near infrared region, thereby improving the optoelectronic application range of the material.
  • CsPbBr 3 PMSCs with quantum confinement effect have larger exciton binding energy.
  • inorganic CsPbBr 3 PMSCs have stronger stability to temperature, H 2 O and O 2 due to the absence of organic components. Therefore, the preparation and synthesis process of inorganic CsPbBr 3 PMSCs has a very broad market prospect for promoting its application in the field of new optoelectronic devices.
  • Lanthanide rare earth ions have extremely rich energy levels and 4f electron transition effects, which enable rare earth doped materials to exhibit quantum behaviors and optoelectronic properties with a wide spectral range and rich connotations.
  • CsPbBr 3 PMSCs can achieve absorption and emission in the ultraviolet and near-infrared regions, thereby effectively improving and expanding its optoelectronic applications.
  • doping substitution strategies there are no reports on the relevant research on lanthanide rare earth doped PMSCs.
  • lanthanide rare earth ion-doped PMSCs have important research significance and practical value for the preparation of high-quality perovskite-type upconversion nanomaterial devices.
  • the present invention aims to solve the defects in the prior art and provide a Yb 3+ doped CsPbBr 3 PMSCs with high efficiency dual emission, high fluorescence quantum yield and excellent stability and a preparation method and application thereof, so as to realize the stable storage of CsPbBr 3 PMSCs in the external environment and the stable luminescence in the near-infrared light region, thereby achieving the goal of generating CsPbBr 3 PMSCs with excellent reaction stability and optical properties.
  • the present invention provides a method for preparing Yb 3+ doped CsPbBr 3 PMSCs, comprising the following steps:
  • the precursor solution is injected into an anti-solvent to obtain a Yb 3+ -doped CsPbBr 3 PMSCs solution;
  • the Yb 3+ -doped CsPbBr 3 PMSCs solution is purified by high-speed centrifugation washing to obtain Yb 3+ -doped CsPbBr 3 PMSCs.
  • the molar ratio of CsBr and PbBr2 is (0.5-1.2):1
  • the solvent is dimethyl sulfoxide or N,N-dimethylformamide
  • the ratio of the added amount of PbBr2 and the solvent is 0.02mmol:(0.1-1.1)mL.
  • the molar ratio of oleic acid to PbBr2 is (0.2-0.8):1, and the molar ratio of oleylamine to PbBr2 is (0.1-0.6):1.
  • the molar ratio of the compound containing lanthanide rare earth Yb 3+ and PbBr 2 is (0.04-0.1):1.
  • the anti-solvent is any one of n-hexane, toluene, dichloromethane and chloroform, and the volume ratio of the precursor solution to the anti-solvent is (0.1-0.5):(2-10).
  • the speed of high-speed centrifugation is 6000-12000 r/min, and the high-speed centrifugation is repeated for multiple times, each time for 15-20 min. After each high-speed centrifugation, the supernatant is taken to obtain the separated and purified Yb 3+ -doped CsPbBr 3 PMSCs, which are stored in a refrigerator at 0-5°C.
  • the dissolution treatment is stirring dissolution at room temperature;
  • the compound containing Yb 3+ is one or a mixture of two of Yb(NO 3 ) 3 ⁇ 5H 2 O, Yb 2 (SO 4 ) 3 , YbBr 3 , YbCl 3 and YbI 3 .
  • the present invention also provides Yb 3+ -doped CsPbBr 3 PMSCs prepared by the above preparation method.
  • the present invention also provides Yb 3+ doped CsPbBr 3 PMSCs prepared by the above preparation method or the use of the above Yb 3+ doped CsPbBr 3 PMSCs in the field of near-infrared luminescence.
  • the present invention further provides a photoelectric device, wherein the photoelectric device comprises the Yb 3+ -doped CsPbBr 3 PMSCs prepared by the above preparation method, or the Yb 3+ -doped CsPbBr 3 PMSCs as described above.
  • the preparation method of Yb 3+ doped CsPbBr 3 PMSCs of the present invention adopts the technical process of ligand assisted reprecipitation (LAPR) at room temperature, takes CsBr and PbBr 2 as raw materials, oleic acid and oleylamine as surface passivation ligands, and the compound containing lanthanide rare earth Yb 3+ as doping compound.
  • LAPR ligand assisted reprecipitation
  • the addition of oleic acid -COO - can effectively passivate Cs + and Pb 2+
  • the addition of oleylamine -NH 3 + can effectively passivate Br -
  • the compound doped with lanthanide rare earth ion Yb 3+ can effectively replace Pb 2+ in the structure of CsPbBr 3 PMSCs.
  • oleic acid and oleylamine ligands can not only passivate surface defects to stabilize CsPbBr 3 PMSCs, but also control the growth rate of CsPbBr 3 PMSCs and inhibit cluster nucleation; by finely regulating the addition amount of ligands and Yb 3+ -containing compounds and the anti-solvent addition time, the reaction is controlled to generate Yb 3+ -doped CsPbBr 3 PMSCs with good stability and optical properties; the preparation method of the invention is simple and easy to operate, and has the characteristics of solution processing.
  • lanthanide rare earth ions have rich 4f energy levels and electronic configurations, and are doped into the PMSCs structure, which can significantly improve the stability and photoelectric performance of the PMSCs. These characteristics are mainly due to the electrons in the 4f shell being effectively shielded by the electrons in the outer 5s and 5p shells. Moreover, the emission peak half-peak width of the rare earth ion luminescence is narrow, and the luminescence decay life is long and can reach several microseconds, which can effectively broaden the luminescence range of the PMSCs, thereby improving the optical performance of the PMSCs.
  • the Pb2 + present in the PMSCs is a toxic heavy metal ion, which is irreversible for environmental pollution.
  • the present invention mainly adopts Yb3+ to have a strong light absorption advantage for near-infrared light. Based on the smaller ion radius of Yb3 + than that of Pb2 +, it can effectively dope and replace Pb2 + to cause the PMSCs structure to shrink, so that the binding energy between the anion and the cation in the structure becomes larger, thereby effectively regulating the intrinsic luminescence enhancement of the PMSCs, improving the stability of the PMSCs structure, reducing the toxicity of the lead element and broadening the spectral application range.
  • the present invention can effectively realize the efficient luminescence of CsPbBr 3 PMSCs in the near-infrared band by doping Yb 3+ lanthanide rare earth ions based on the f ⁇ f transition of rare earth ions, can be applied in the field of near-infrared luminescence, and also provide new methods and new ideas for the design and development of efficient and multifunctional perovskite cluster-based optoelectronic devices.
  • FIG1 is a graph showing the test results of the ultraviolet absorption spectrum and fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 PMSCs in Example 1 of the present invention, wherein (a) is the ultraviolet absorption spectrum and fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 PMSCs in the ultraviolet-visible range, and (b) is the fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 PMSCs in the near-infrared range;
  • FIG2 is a graph showing the test results of ultraviolet absorption spectrum and fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 perovskite quantum dots (PQDs) in the wavelength range of 350-650nm in Comparative Example 1 of the present invention;
  • FIG3 is a graph showing the test results of the ultraviolet absorption spectrum and fluorescence emission spectrum of undoped CsPbBr 3 PMSCs in Comparative Example 2 of the present invention within the wavelength range of 350-650 nm;
  • the present invention provides a method for preparing Yb 3+ -doped CsPbBr 3 PMSCs, comprising the following steps:
  • the Yb 3+ -doped CsPbBr 3 PMSCs solution is purified by high-speed centrifugation washing to obtain Yb 3+ -doped CsPbBr 3 PMSCs.
  • the molar ratio of CsBr to PbBr 2 is (0.5-1.2):1, preferably 0.8-1.1.
  • the solvent is dimethyl sulfoxide (DMSO) or N,N-dimethylformamide (DMF), and the ratio of the added amount of PbBr 2 to the solvent is 0.02mmol:(0.1-1.1)mL.
  • the added volume of the solvent is preferably 0.1mL, 0.3mL, 0.5mL, 0.7mL, 0.9mL or 1.1mL, and more preferably 0.3mL, 0.5mL and 0.7mL.
  • the dissolution of CsBr and PbBr 2 is stirring dissolution at room temperature, and the stirring time is about 20min.
  • the molar ratio of oleic acid to PbBr 2 is (0.2-0.8): 1, preferably (0.4-0.7): 1; the molar ratio of oleylamine to PbBr 2 is (0.1-0.6): 1, preferably (0.2-0.4): 1.
  • the dissolution of oleic acid and oleylamine is carried out by stirring at room temperature, and the stirring time is about 30 minutes.
  • the molar ratio of the compound containing lanthanide rare earth Yb 3+ to PbBr 2 is (0.04-0.1):1, preferably (0.05-0.08):1.
  • the compound containing Yb 3+ can be selected from one or a mixture of two of Yb(NO 3 ) 3 ⁇ 5H 2 O, Yb 2 (SO 4 ) 3 , YbBr 3 , YbCl 3 and YbI 3.
  • the dissolution of the compound containing Yb 3+ is rapid stirring dissolution at room temperature, and the stirring time is about 10 minutes.
  • the anti-solvent is any one of n-hexane, toluene, dichloromethane and chloroform, preferably toluene or dichloromethane.
  • the volume ratio of the precursor solution to the anti-solvent is (0.1-0.5):(2-10), preferably (0.2-0.5):(4-8).
  • the precursor solution is injected into the anti-solvent as follows: a glass bottle of the anti-solvent with a stirrer is placed on a stirring table and stirred, and then the precursor solution is measured with a pipette and quickly injected into the anti-solvent at one time, and quickly stirred at room temperature for 5-10 minutes.
  • the speed of high-speed centrifugation is 6000-12000 r/min, preferably 8000-10000 r/min.
  • the high-speed centrifugation is repeated for 15-20 min each time.
  • the supernatant is taken after each high-speed centrifugation to obtain the separated and purified Yb 3+ -doped CsPbBr 3 PMSCs, which are stored in a refrigerator at 0-5°C.
  • the present invention also provides Yb 3+ -doped CsPbBr 3 PMSCs prepared by the above preparation method.
  • the present invention also provides Yb 3+ doped CsPbBr 3 PMSCs prepared by the above preparation method or the use of the above Yb 3+ doped CsPbBr 3 PMSCs in the field of near-infrared luminescence.
  • the present invention further provides a photoelectric device, wherein the photoelectric device comprises the Yb 3+ -doped CsPbBr 3 PMSCs prepared by the above preparation method, or the Yb 3+ -doped CsPbBr 3 PMSCs as described above.
  • CsBr cesium bromide
  • PbBr 2 lead bromide
  • organic carboxylic acid oleic acid (OA) and organic amine oleylamine (OAm) are added to the mixed solution 1 in sequence and stirred rapidly until dissolved, wherein the molar ratio of the added amount of oleic acid (OA) to the PbBr 2 is 0.5:1, and the molar ratio of the added amount of the organic amine oleylamine (OAm) to the PbBr 2 is 0.3:1, to obtain a mixed solution 2;
  • a certain amount of Yb3+ -containing rare earth compound YbBr3 is added to the mixed solution 2 and quickly stirred until dissolved, wherein the amount ratio of YbBr3 added to PbBr2 is 15:1, to obtain a precursor solution;
  • the precursor solution is quickly injected into the rapidly stirred dichloromethane anti-solvent, wherein the volume of the anti-solvent dichloromethane is 5 mL; the reaction is stirred for 5-10 minutes at room temperature with a cover, and a Yb 3+ -doped CsPbBr 3 PMSCs solution is obtained;
  • the Yb 3+ doped CsPbBr 3 PMSCs solution obtained by the reaction was centrifuged and washed for purification at a rotation speed of 10000 r/min, and the supernatant was taken after each centrifugation for 10 minutes.
  • the purified Yb 3+ doped CsPbBr 3 PMSCs were separated and finally stored in a refrigerator at 0-5°C.
  • a Yb 3+ -doped CsPbBr 3 PMSCs the preparation process of which is different from that in Example 1 only in that the solvent is N,N-dimethylformamide (DMF), the anti-solvent is toluene, and other process controls are the same.
  • DMF N,N-dimethylformamide
  • a Yb 3+ doped CsPbBr 3 PMSCs the preparation process of which is different from that in Example 1 only in that the molar ratio of the added amount of organic amine (OAm) to the amount of PbBr 2 is 0.4:1, and other process controls are the same.
  • a Yb 3+ doped CsPbBr 3 PMSCs the preparation process of which is different from that in Example 1 only in that the molar ratio of the added amount of YbBr 3 to that of PbBr 2 is 10:1, and other process controls are the same.
  • a Yb 3+ -doped CsPbBr 3 PQDs the preparation process of which is different from that in Example 1 only in that the organic carboxylic acid oleic acid (OA) is not added, and other process controls are the same.
  • the preparation process of undoped CsPbBr 3 PMSCs is different from that in Example 1 only in that the compound containing Yb 3+ is Yb(NO 3 ) 3 ⁇ 5H 2 O, and other process controls are the same.
  • a Yb 3+ -doped CsPbBr 3 PQDs the preparation process of which is different from that in Example 1 only in that organic amine oleylamine (OAm) is not added, and other process controls are the same.
  • Example 1 The ultraviolet absorption spectrum and fluorescence emission spectrum of the products prepared in Example 1, Comparative Example 1 and Comparative Example 2 were tested using an ultraviolet-visible-near infrared spectrophotometer and a fluorescence spectrophotometer.
  • FIG1 is a graph showing the test results of the ultraviolet absorption spectrum and fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 PMSCs in Example 1, wherein (a) shows the ultraviolet absorption spectrum and fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 PMSCs in the ultraviolet-visible range, and (b) shows the fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 PMSCs in the near-infrared range. It can be seen from the figure that the characteristic peaks of the ultraviolet absorption spectrum and fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 PMSCs in Example 1 are 418nm and 420/978nm, respectively.
  • FIG2 is a graph showing the test results of the ultraviolet absorption spectrum and fluorescence emission spectrum of Yb 3+ doped CsPbBr 3 PQDs in Comparative Example 1 within the wavelength range of 350-650 nm. It can be seen from the figure that the characteristic peaks of the ultraviolet absorption spectrum and the fluorescence emission spectrum are 508 nm and 519 nm, respectively.
  • FIG3 is a graph showing the test results of the ultraviolet absorption spectrum and fluorescence emission spectrum of the undoped CsPbBr 3 PMSCs in Comparative Example 2 within the wavelength range of 350-650 nm. It can be seen from the figure that the characteristic peaks of the ultraviolet absorption spectrum and the fluorescence emission spectrum are 510 nm and 515 nm, respectively.
  • FIG4 The curves of the fluorescence quantum yield of the stability of the products prepared in Examples 1-4 and Comparative Examples 1-3 over time are shown in FIG4 , wherein (a) shows that the initial values of the fluorescence quantum yield of the Yb 3+ doped CsPbBr 3 PMSCs prepared in Examples 1 to 4 after one month (30 days) of testing decreased from the initial 90%, 89%, 87% and 85% to 88%, 87%, 85% and 80%, respectively, showing good stability.
  • Example 1 The products prepared in Example 1 and Comparative Example 2 were tested for stability in a polar solvent, isopropanol, wherein the volume ratio of the sample solution to the isopropanol was 1:1.
  • the stability analysis results show that the initial values of the fluorescence quantum yield of the samples of Example 1 and Comparative Example 2 were reduced from 90% and 76% to 82% and 21%, respectively.
  • the stability and optical properties of the Yb 3+ doped CsPbBr 3 PMSCs sample in Example 1 are significantly better than those of the undoped CsPbBr 3 PMSCs sample, indicating that lanthanide rare earth Yb 3+ doping can effectively improve the stability and optical properties of CsPbBr 3 PMSCs.
  • the preparation method of Yb3 + doped CsPbBr3 PMSCs of the present invention adopts the technical process of ligand assisted reprecipitation (LAPR) at room temperature, takes CsBr and PbBr2 as raw materials, oleic acid (OA) and oleylamine (OAm) as surface passivation ligands, and the compound containing Yb3 + is a rare earth doping compound.
  • LAPR ligand assisted reprecipitation
  • oleic acid -COO- can effectively passivate Cs + and Pb2 +
  • the addition of oleylamine -NH3 + can effectively passivate Br-
  • the doping compound containing Yb3 + can effectively replace Pb2 + in the structure of CsPbBr3 PMSCs.
  • the oleic acid and oleylamine ligands can not only passivate surface defects to stabilize PMSCs, but also control the growth rate of PMSCs, inhibit cluster nucleation, and stabilize the structure of PMSCs.
  • the Yb3 + doped CsPbBr3 with good stability and optical properties is generated by reaction.
  • PMSCs; the preparation method of the present invention is simple and easy to operate, and has the characteristics of being processable by solution.
  • lanthanide rare earth ions have rich 4f energy levels and electronic configurations, and are doped into the PMSCs structure, which can significantly improve the stability and photoelectric performance of the PMSCs. These characteristics are mainly due to the effective shielding effect of the electrons in the 4f shell by the electrons in the external 5s and 5p shells.
  • the emission peak half-peak width of the rare earth ion luminescence is narrow, and the luminescence decay life is long and can reach several microseconds, which can effectively broaden the luminescence range of the PMSCs, thereby improving the fluorescence quantum yield of the PMSCs.
  • the Pb2 + present in the PMSCs is a toxic heavy metal ion, which is irreversible for environmental pollution.
  • the present invention mainly adopts Yb3 + to have a strong light absorption advantage for near-infrared light. Based on the smaller ion radius of Yb3 + than that of Pb2+ , it can effectively dope and replace Pb2 + to cause the PMSCs structure to shrink, so that the binding energy between the anion and the cation in the structure becomes larger, thereby effectively regulating the intrinsic luminescence enhancement of the PMSCs, improving the stability of the PMSCs structure, reducing the toxicity of the lead element and broadening the spectral application range.
  • the present invention can effectively realize the efficient luminescence of PMSCs in the near-infrared band by doping with Yb3 + lanthanide rare earth ions based on the f ⁇ f transition of rare earth ions, can be applied in the field of near-infrared luminescence, and also provides a new method and new idea for the design and development of efficient and multifunctional perovskite cluster-based optoelectronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明的Yb3+掺杂CsPbBr3PMSCs及其制备方法和应用,属于光电材料制备技术领域。本发明的制备方法包括以下步骤:按比例称取CsBr和PbBr2后将其溶解于溶剂中,得到混合溶液1;将油酸和油胺按比例依次加入混合溶液1中,溶解后得到混合溶液2;按比例称取含Yb3+的化合物并加入到混合溶液2中,溶解后得到前驱体溶液;取前驱体溶液注入反溶剂中,得到Yb3+掺杂CsPbBr3PMSCs溶液;高速离心洗涤纯化Yb3+掺杂CsPbBr3PMSCs溶液。本发明的Yb3+掺杂CsPbBr3PMSCs,具有高效双发射、荧光量子产率高、稳定性优异的优点,可应用于近红外发光领域和光电器件中。

Description

Yb3+掺杂CsPbBr3 PMSCs及其制备方法和应用 技术领域
本发明属于光电材料制备技术领域,尤其涉及一种Yb 3+掺杂CsPbBr 3 PMSCs及其制备方法和应用。
背景技术
低维钙钛矿魔幻尺寸团簇(PMSCs,Perovskite Magic-Sized Clusters)材料具有发光颜色可调、电荷传输性能优异、窄带发射色纯度高和光量子效应显著等独特优点而在生物荧光成像、细胞标记、超高清显示、生物化学传感器和光催化等领域极具发展潜力。然而,PMSCs由于较大比表面积引起较多的表面缺陷在环境中稳定性存储性能差、含有毒重金属铅元素和光谱范围仅能覆盖可见光区的不足,基于此,这对今后设计、开发和应用PMSCs基光电器件面临严峻挑战。
在结构和性能上,PMSCs材料具有小尺寸(~2nm)、窄的荧光半峰宽(FWHM<15nm)、显著的量子限域效应、较高比表面积和较多的表面缺陷等独特性质,因而能够对PMSCs材料进行结构性能改性。目前,关于CsPbBr 3 PMSCs的相关研究主要集中在独特的尺寸、组分、稳定性和光电性质的相关研究。通过对CsPbBr 3 PMSCs进行改性研究,已经能够制备出荧光量子产率较高、过渡金属Mn 2+掺杂和小尺寸(~2nm)样品,但是现有掺杂PMSCs的技术尚未突破近红外发光的技术瓶颈。
镧系稀土离子掺杂低维PMSCs材料不仅具有PMSCs材料本征优异的物理化学性质,而且镧系稀土离子特殊4f价电子构型赋予PMSCs材料优异的光、电、磁和催化等独特性能,同时能够创造新的发射特性、增强稳定性、降低缺陷态密度等,故镧系稀土离子与PMSCs材料协同作用能够设计制备出光电性能和稳定性优异的新型光电功能材料。本研究聚焦CsPbBr 3 PMSCs进行研究,在组成上,CsPbBr 3 PMSCs的结构由Cs +、Pb 2+和卤素离子Br -组成;在结构上,通常将镧系稀土离子引入到钙钛矿的A、B位或者B位,拓宽CsPbBr 3 PMSCs 的发光光谱范围从原来的紫外光区到紫外-近红外光区,提高材料的光电应用范围;在物理化学性质上,与大尺寸的钙钛矿块体和钙钛矿薄膜相比,具有量子限域效应的CsPbBr 3 PMSCs材料因存在更大的激子结合能,结合表面钝化策略和掺杂取代策略能够有效减少表面缺陷,有效改善材料的稳定性、毒性和光电性能。此外,与有机-无机杂化钙钛矿相比,无机CsPbBr 3 PMSCs由于不存在有机组分使其具备对温度、H 2O和O 2更强的稳定性。因而,无机CsPbBr 3 PMSCs的制备合成工艺对促进在新型光电器件领域的应用具有十分广阔的市场前景。镧系稀土离子具有极为丰富的能级和4f电子跃迁效应促使稀土掺杂材料表现出光谱范围宽且内涵丰富的量子行为和光电特性。通过掺杂取代策略,CsPbBr 3 PMSCs能够实现紫外区和近红外区的吸收和发射,进而有效提升并拓展其光电应用。然而,目前关于镧系稀土掺杂PMSCs的相关研究还未有相关报道。
因此,镧系稀土离子掺杂PMSCs对制备高品质钙钛矿型上转换纳米材料器件具有重要的研究意义和实用价值。
发明内容
本发明旨在解决现有技术中的缺陷,提供一种高效双发射、荧光量子产率高、稳定性优异的Yb 3+掺杂CsPbBr 3 PMSCs及其制备方法和应用,实现CsPbBr 3 PMSCs在外界环境中的稳定存储和近红外光区的稳定性发光,从而达到反应生成稳定性和光学性能优异的CsPbBr 3 PMSCs的目标。
为实现上述目的,本发明提供一种Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,包括以下步骤:
按比例称取CsBr和PbBr 2后将其溶解于溶剂中,得到混合溶液1;
将油酸和油胺按比例依次加入所述混合溶液1中,溶解后得到混合溶液2;
按比例称取含Yb 3+的化合物并加入到所述混合溶液2中,溶解后得到前驱体溶液;
取所述前驱体溶液注入反溶剂中,得到Yb 3+掺杂CsPbBr 3 PMSCs溶液;
高速离心洗涤纯化所述Yb 3+掺杂CsPbBr 3 PMSCs溶液得到Yb 3+掺杂 CsPbBr 3 PMSCs。
优选地,CsBr和PbBr 2的物质的量比为(0.5~1.2):1,所述溶剂为二甲基亚砜或N,N-二甲基甲酰胺,PbBr 2和溶剂的添加量之比为0.02mmol:(0.1~1.1)mL。
优选地,油酸和PbBr 2的物质的量之比为(0.2~0.8):1,油胺和PbBr 2的物质的量之比为(0.1~0.6):1。
优选地,含镧系稀土Yb 3+的化合物和PbBr 2的物质的量之比为(0.04~0.1):1。
优选地,所述反溶剂为正己烷、甲苯、二氯甲烷和三氯甲烷中的任意一种,所述前驱体溶液和反溶剂的体积比为(0.1~0.5):(2~10)。
优选地,高速离心的转速为6000~12000r/min,经多次高速离心,每次15-20min,每次高速离心后取上清液,得到分离纯化后的Yb 3+掺杂CsPbBr 3 PMSCs,置于0-5℃的冰箱内存储。
优选地,溶解处理均为常温搅拌溶解;含Yb 3+的化合物为Yb(NO 3) 3·5H 2O、Yb 2(SO 4) 3、YbBr 3、YbCl 3和YbI 3中的一种或两种的混合物。
本发明还提供一种采用上述制备方法制备得到的Yb 3+掺杂CsPbBr 3 PMSCs。
本发明还提供一种如上述制备方法制备的Yb 3+掺杂CsPbBr 3 PMSCs或者如上述Yb 3+掺杂CsPbBr 3 PMSCs在近红外发光领域中的应用。
本发明还提供一种光电器件,所述光电器件中包含有如上所述制备方法制备的Yb 3+掺杂CsPbBr 3 PMSCs,或者如上所述的Yb 3+掺杂CsPbBr 3 PMSCs。
本发明采用上述技术方案的优点是:
本发明的Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,采用常温下的配体辅助再沉淀(LAPR)的技术工艺,以CsBr和PbBr 2为原材料,油酸和油胺为表面钝化配体,含镧系稀土Yb 3+的化合物为掺杂化合物。其中,油酸的添加-COO -能够有效钝化Cs +和Pb 2+,油胺的添加-NH 3 +能够有效钝化Br -,掺杂含镧系稀土离子Yb 3+的化合物能够有效取代CsPbBr 3 PMSCs结构中的Pb 2+。而且,油酸和油胺配体不仅能够钝化表面缺陷起到稳定CsPbBr 3 PMSCs的作用,还可以控制CsPbBr 3 PMSCs的生长速度,抑制团簇成核;通过对配体及含Yb 3+的 化合物加入量和反溶剂滴加时间的精细调控,从而控制反应生成稳定性和光学性能良好的Yb 3+掺杂的CsPbBr 3 PMSCs;本发明的制备方法工艺简单易操作,具备可溶液加工的特点。
本发明的Yb 3+掺杂CsPbBr 3 PMSCs,镧系稀土离子因具有丰富的4f能级和电子组态,将其掺杂进入PMSCs结构,能够显著提升PMSCs的稳定性和光电性能,这些特性主要是由于4f壳层中的电子被外部5s和5p壳层中的电子有效地屏蔽。而且,稀土离子发光的发射峰半峰宽较窄,发光衰减寿命较长能够达到几微秒,可以有效拓宽PMSCs的发光范围,进而改善PMSCs的光学性能。PMSCs中存在的Pb 2+是有毒重金属离子,对于环境污染不可逆转,本发明主要采用Yb 3+对近红外光具有较强的光吸收优势,基于Yb 3+比Pb 2+离子半径小,能够有效掺杂和替代Pb 2+引起PMSCs结构收缩致使结构内阴、阳离子之间的结合能变大,从而有效调控PMSCs的本征发光增强,改善PMSCs结构的稳定性,降低含铅元素毒性并拓宽光谱应用范围。
本发明通过Yb 3+镧系稀土离子的掺杂,基于稀土离子的f→f跃迁能够有效实现CsPbBr 3 PMSCs在近红外波段的高效发光,可应用于近红外发光领域中,还为高效多功能钙钛矿团簇基光电器件的设计和开发提供新方法和新思路。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例1中Yb 3+掺杂CsPbBr 3 PMSCs的紫外吸收光谱和荧光发射光谱测试结果图,其中,(a)图为Yb 3+掺杂CsPbBr 3 PMSCs在紫外-可见光范围内的紫外吸收光谱和荧光发射光谱,(b)图为Yb 3+掺杂CsPbBr 3 PMSCs在近红外范围内的荧光发射光谱;
图2为本发明对比例1中Yb 3+掺杂CsPbBr 3钙钛矿量子点(PQDs)在波长范围350-650nm内的紫外吸收光谱和荧光发射光谱测试结果图;
图3为本发明对比例2中未掺杂的CsPbBr 3 PMSCs在波长范围350-650nm内的紫外吸收光谱和荧光发射光谱测试结果图;
图4为本发明实施例1-4和对比例1-3制备产品的稳定性的荧光量子产率随时间的变化曲线,其中,(a)图对应实施例1~4制备的Yb 3+掺杂CsPbBr 3 PMSCs,(b)图对应对比例1~3制备的产品。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明提供一种Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,包括以下步骤:
按比例称取CsBr和PbBr 2后将其溶解于溶剂中,得到混合溶液1;
将油酸和油胺按比例依次加入所述混合溶液1中,溶解后得到混合溶液2;
按比例称取含Yb 3+的化合物并加入到所述混合溶液2中,溶解后得到前驱体溶液;
取所述前驱体溶液注入反溶剂中,得到Yb 3+掺杂CsPbBr 3 PMSCs溶液;
高速离心洗涤纯化所述Yb 3+掺杂CsPbBr 3 PMSCs溶液得到Yb 3+掺杂CsPbBr 3 PMSCs。
其中,CsBr和PbBr 2的物质的量比为(0.5~1.2):1,优选为0.8~1.1。所述 溶剂为二甲基亚砜(DMSO)或N,N-二甲基甲酰胺(DMF),PbBr 2和溶剂的添加量之比为0.02mmol:(0.1~1.1)mL,当PbBr 2的物质的量为0.02mmol时,溶剂添加体积优选为0.1mL、0.3mL、0.5mL、0.7mL、0.9mL或1.1mL,更优选为0.3mL、0.5mL和0.7mL。CsBr和PbBr 2的溶解为常温搅拌溶解,搅拌时间大约为20min。
油酸和PbBr 2的物质的量之比为(0.2~0.8):1,优选为(0.4~0.7):1;油胺和PbBr 2的物质的量之比为(0.1~0.6):1,优选为(0.2~0.4):1。油酸和油胺的溶解为常温搅拌溶解,搅拌时间大约为30min。
含镧系稀土Yb 3+的化合物和PbBr 2的物质的量之比为(0.04~0.1):1,优选为(0.05~0.08):1。含Yb 3+的化合物可选择为Yb(NO 3) 3·5H 2O、Yb 2(SO 4) 3、YbBr 3、YbCl 3和YbI 3中的一种或两种的混合物。含Yb 3+的化合物的溶解为常温快速搅拌溶解,搅拌时间大约为10min。
所述反溶剂为正己烷、甲苯、二氯甲烷和三氯甲烷中的任意一种,优选为甲苯或二氯甲烷。所述前驱体溶液和反溶剂的体积比为(0.1~0.5):(2~10),优选为(0.2~0.5):(4~8)。取所述前驱体溶液注入反溶剂中具体为:将放有搅拌子的反溶剂的玻璃瓶置于搅拌台上搅拌,然后将前驱体溶液用移液器量取后一次性快速注入到反溶剂中,常温下快速搅拌5~10min。
高速离心的转速为6000~12000r/min,优选为8000~10000r/min,经多次高速离心,每次15-20min,每次高速离心后取上清液,得到分离纯化后的Yb 3+掺杂CsPbBr 3 PMSCs,置于0-5℃的冰箱内存储。
本发明还提供一种采用上述的制备方法制备得到的Yb 3+掺杂CsPbBr 3 PMSCs。
本发明还提供一种如上述制备方法制备的Yb 3+掺杂CsPbBr 3 PMSCs或者 如上述Yb 3+掺杂CsPbBr 3 PMSCs在近红外发光领域中的应用。
本发明还提供一种光电器件,所述光电器件中包含有如上所述制备方法制备的Yb 3+掺杂CsPbBr 3 PMSCs,或者如上所述的Yb 3+掺杂CsPbBr 3 PMSCs。
实施例1
一种Yb 3+掺杂CsPbBr 3 PMSCs,制备过程如下:
在手套箱内分别称取物质的量比为1:1的溴化铯(CsBr)和溴化铅(PbBr 2),然后将其转移在盛有二甲基亚砜(DMSO)溶剂中并快速搅拌至完全溶解,其中,PbBr 2物质的量为0.02mmol,二甲基亚砜(DMSO)溶剂体积为0.5mL,得到混合溶液1;
然后,依次迅速向该混合溶液1中添加有机羧酸油酸(OA)和有机胺油胺(OAm)并快速搅拌至溶解,其中,油酸(OA)的添加量与PbBr 2物质的量比为0.5:1,有机胺油胺(OAm)的添加量与PbBr 2物质的量比为0.3:1,得到混合溶液2;
随后,将一定量含Yb 3+稀土化合物YbBr 3加入上述混合溶液2中并快速搅拌至溶解,其中,YbBr 3的添加量与PbBr 2物质的量比为15:1,得到前驱体溶液;
按上述前驱体溶液与反溶剂二氯甲烷体积比为1:5,将该前驱体溶液快速注入正在快速搅拌的二氯甲烷反溶剂中,其中反溶剂二氯甲烷的体积为5mL;室温下加盖搅拌反应5-10min,即可得到Yb 3+掺杂CsPbBr 3 PMSCs溶液;
将反应得到的Yb 3+掺杂CsPbBr 3 PMSCs溶液在转速为10000r/min的条件下进行离心洗涤纯化处理,每次离心10min取上清液,离心3次,即可分离获得纯化后的Yb 3+掺杂CsPbBr 3 PMSCs,最后将其置于0-5℃的冰箱内存储。
实施例2
一种Yb 3+掺杂CsPbBr 3 PMSCs,其制备过程与实施例1中的区别仅在于:溶剂为N,N-二甲基甲酰胺(DMF),反溶剂为甲苯,其他过程控制均相同。
实施例3
一种Yb 3+掺杂CsPbBr 3 PMSCs,其制备过程与实施例1中的区别仅在于:有机胺(OAm)的添加量与PbBr 2物质的量比为0.4:1,其他过程控制均相同。
实施例4
一种Yb 3+掺杂CsPbBr 3 PMSCs,其制备过程与实施例1中的区别仅在于:YbBr 3的添加量与PbBr 2物质的量比为10:1,其他过程控制均相同。
对比例1
一种Yb 3+掺杂CsPbBr 3 PQDs,其制备过程与实施例1中的区别仅在于:未添加有机羧酸油酸(OA),其他过程控制均相同。
对比例2
一种未掺杂的CsPbBr 3 PMSCs,其制备过程与实施例1中的区别仅在于:含Yb 3+的化合物为Yb(NO 3) 3·5H 2O,其他过程控制均相同。
对比例3
一种Yb 3+掺杂CsPbBr 3 PQDs,其制备过程与实施例1中的区别仅在于:未添加有机胺油胺(OAm),其他过程控制均相同。
性能测试及结果如下:
(1)采用紫外-可见-近红外分光度计和荧光分光光度计仪器对实施例1、对比例1和对比例2制备的产品进行紫外吸收光谱和荧光发射光谱测试。
图1为实施例1中Yb 3+掺杂CsPbBr 3 PMSCs的紫外吸收光谱和荧光发射光谱测试结果图,其中,(a)图为Yb 3+掺杂CsPbBr 3 PMSCs在紫外-可见光范围内的紫外吸收光谱和荧光发射光谱,(b)图为Yb 3+掺杂CsPbBr 3 PMSCs在 近红外范围内的荧光发射光谱。从图中可以看出,实施例1中Yb 3+掺杂CsPbBr 3 PMSCs的紫外吸收光谱和荧光发射光谱的特征峰分别为418nm和420/978nm。
图2为对比例1中Yb 3+掺杂CsPbBr 3 PQDs在波长范围350-650nm内的紫外吸收光谱和荧光发射光谱测试结果图,从图中可以看出,其紫外吸收光谱和荧光发射光谱的特征峰分别为508nm和519nm。
图3为对比例2中未掺杂的CsPbBr 3 PMSCs在波长范围350-650nm内的紫外吸收光谱和荧光发射光谱测试结果图,从图中可以看出,其紫外吸收光谱和荧光发射光谱的特征峰分别为510nm和515nm。
(2)采用荧光分光光度计测试实施例1-4和对比例1-3制备产品的稳定性的荧光量子产率,稳定性的实验条件为:室温下相对空气湿度为80%。表1统计了实施例1-4和对比例1-3制备产品的稳定性的荧光量子产率的初始值和一个月(30天)后的值。
表1实施例1-4和对比例1-3制备产品的稳定性的荧光量子产率测试结果
  荧光量子产率初始值% 一个月后的荧光量子产率%
实施例1 90% 88%
实施例2 89% 87%
实施例3 87% 85%
实施例4 85% 80%
对比例1 8% 1%
对比例2 76% 28%
对比例3 12% 3%
实施例1-4和对比例1-3制备产品的稳定性的荧光量子产率随时间的变化曲线如图4所示,其中,(a)图为实施例1~4制备的Yb 3+掺杂CsPbBr 3 PMSCs 测试一个月(30天)的荧光量子产率初始值分别由初始的90%、89%、87%和85%降为88%、87%、85%和80%,展现出良好的稳定性。(b)图为对比例1~3制备的CsPbBr 3 PQDs测试一个月(30天)的荧光量子产率初始值分别由初始的8%、76%和12%降为1%、28%和3%,稳定性不佳易分解。对比例1和对比例3的制备过程中由于分别未添加配体油酸(OA)和油胺(OAm),没有配体的协同作用钝化表面缺陷仅存在单一配体钝化表面缺陷,样品难以控制合成CsPbBr 3 PMSCs而生成稳定性不佳的CsPbBr 3 PQDs。对比例2由于将含Yb 3+化合物YbBr 3替换为Yb(NO 3) 3·5H 2O,反应生成了未掺杂的CsPbBr 3 PMSCs,表面配体虽然钝化了表面缺陷,起到了一定的表面包覆稳定效果,但是未能合成出Yb 3+掺杂CsPbBr 3 PMSCs。
(3)对实施例1和对比例2制备的产品进行了在极性溶剂异丙醇中的稳定性测试,其中样品溶液体积与异丙醇的体积比为1:1。
稳定性分析结果,实施例1和对比例2样品的荧光量子产率初始值分别由原来的90%和76%降为82%和21%。实施例1中Yb 3+掺杂CsPbBr 3 PMSCs样品稳定性和光学性质显著优于未掺杂CsPbBr 3 PMSCs样品,表明镧系稀土Yb 3+掺杂能够有效改善CsPbBr 3 PMSCs的稳定性和光学性质。
本发明采用上述技术方案的优点是:
本发明的Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,采用常温下的配体辅助再沉淀(LAPR)的技术工艺,以CsBr和PbBr 2为原材料,油酸(OA)和油胺(OAm)为表面钝化配体,含Yb 3+的化合物为稀土掺杂化合物,油酸的添加-COO -能够有效钝化Cs +和Pb 2+,油胺的添加-NH 3 +能够有效钝化Br -,掺杂含Yb 3+的化合物能够有效取代CsPbBr 3 PMSCs结构中的Pb 2+,油酸和油胺配体不仅能够钝化表面缺陷起到稳定PMSCs的目的,还可以控制PMSCs的生长 速度,抑制团簇成核起到稳定PMSCs结构的作用;通过对配体及含Yb 3+的化合物加入量和反溶剂滴加时间的精细调控,从而反应生成稳定性和光学性能良好的Yb 3+掺杂CsPbBr 3 PMSCs;本发明的制备方法工艺简单易操作,具备可溶液加工的特点。
本发明的Yb 3+掺杂CsPbBr 3 PMSCs,镧系稀土离子因具有丰富的4f能级和电子组态,将其掺杂进入PMSCs结构,能够显著提升PMSCs的稳定性和光电性能,这些特性主要是由于4f壳层中的电子被外部5s和5p壳层中的电子有效的屏蔽作用。而且,稀土离子发光的发射峰半峰宽较窄,发光衰减寿命较长能够达到几微秒,可以有效拓宽PMSCs的发光范围,进而改善PMSCs的荧光量子产率。PMSCs中存在的Pb 2+是有毒重金属离子,对于环境污染不可逆转,本发明主要采用Yb 3+对近红外光具有较强的光吸收优势,基于Yb 3+比Pb 2+离子半径小,能够有效掺杂和替代Pb 2+引起PMSCs结构收缩致使结构内阴、阳离子之间的结合能变大,从而有效调控PMSCs的本征发光增强,改善PMSCs结构的稳定性,降低含铅元素毒性并拓宽光谱应用范围。
本发明通过Yb 3+镧系稀土离子的掺杂,基于稀土离子的f→f跃迁能够有效实现PMSCs在近红外波段的高效发光,可应用于近红外发光领域中,还为高效多功能钙钛矿团簇基光电器件的设计和开发提供了新方法和新思路。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,其特征在于,包括以下步骤:
    按比例称取CsBr和PbBr 2后将其溶解于溶剂中,得到混合溶液1;
    将油酸和油胺按比例依次加入所述混合溶液1中,溶解后得到混合溶液2;
    按比例称取含Yb 3+的化合物并加入到所述混合溶液2中,溶解后得到前驱体溶液;
    取所述前驱体溶液注入反溶剂中,得到Yb 3+掺杂CsPbBr 3 PMSCs溶液;
    高速离心洗涤纯化所述Yb 3+掺杂CsPbBr 3 PMSCs溶液得到Yb 3+掺杂CsPbBr 3 PMSCs。
  2. 根据权利要求1所述的Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,其特征在于,CsBr和PbBr 2的物质的量比为(0.5~1.2):1,所述溶剂为二甲基亚砜或N,N-二甲基甲酰胺,PbBr 2和溶剂的添加量之比为0.02mmol:(0.1~1.1)mL。
  3. 根据权利要求1所述的Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,其特征在于,油酸和PbBr 2的物质的量之比为(0.2~0.8):1,油胺和PbBr 2的物质的量之比为(0.1~0.6):1。
  4. 根据权利要求1所述的Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,其特征在于,含Yb 3+的化合物和PbBr 2的物质的量之比为(0.04~0.1):1。
  5. 根据权利要求1所述的Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,其特征在于,所述反溶剂为正己烷、甲苯、二氯甲烷和三氯甲烷中的任意一种,所述前驱体溶液和反溶剂的体积比为(0.1~0.5):(2~10)。
  6. 根据权利要求1所述的Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,其特征在于,高速离心的转速为6000~12000r/min,经多次高速离心,每次15-20min, 每次高速离心后取上清液,得到分离纯化后的Yb 3+掺杂CsPbBr 3 PMSCs,置于0-5℃的冰箱内存储。
  7. 根据权利要求1所述的Yb 3+掺杂CsPbBr 3 PMSCs的制备方法,其特征在于,溶解处理均为常温搅拌溶解;含Yb 3+的化合物为Yb(NO 3) 3·5H 2O、Yb 2(SO 4) 3、YbBr 3、YbCl 3和YbI 3中的一种或两种的混合物。
  8. 采用权利要求1-7任意一项所述的制备方法制备得到的Yb 3+掺杂CsPbBr 3 PMSCs。
  9. 一种如权利要求1-7任一项所述制备方法制备的Yb 3+掺杂CsPbBr 3 PMSCs或者如权利要求8所述的Yb 3+掺杂CsPbBr 3 PMSCs在近红外发光领域中的应用。
  10. 一种光电器件,其特征在于:所述光电器件中包含有如权利要求1-7任一项所述制备方法制备的Yb 3+掺杂CsPbBr 3 PMSCs,或者如权利要求8所述的Yb 3+掺杂CsPbBr 3 PMSCs。
PCT/CN2022/133034 2022-11-19 2022-11-19 Yb3+掺杂cspbbr3 pmscs及其制备方法和应用 WO2024103421A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133034 WO2024103421A1 (zh) 2022-11-19 2022-11-19 Yb3+掺杂cspbbr3 pmscs及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133034 WO2024103421A1 (zh) 2022-11-19 2022-11-19 Yb3+掺杂cspbbr3 pmscs及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024103421A1 true WO2024103421A1 (zh) 2024-05-23

Family

ID=91083578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133034 WO2024103421A1 (zh) 2022-11-19 2022-11-19 Yb3+掺杂cspbbr3 pmscs及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2024103421A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887466A (zh) * 2017-12-01 2018-04-06 吉林大学 一种稀土掺杂无机钙钛矿量子点复合硅太阳能电池及其制备方法
CN110002762A (zh) * 2019-04-16 2019-07-12 武汉理工大学 一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃、其制备方法和应用
CN113980670A (zh) * 2021-10-29 2022-01-28 中国科学院深圳先进技术研究院 固态钙钛矿团簇及其制备方法、光电器件
CN114085665A (zh) * 2021-10-29 2022-02-25 中国科学院深圳先进技术研究院 钙钛矿团簇溶液及其制备方法、光电器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887466A (zh) * 2017-12-01 2018-04-06 吉林大学 一种稀土掺杂无机钙钛矿量子点复合硅太阳能电池及其制备方法
CN110002762A (zh) * 2019-04-16 2019-07-12 武汉理工大学 一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃、其制备方法和应用
CN113980670A (zh) * 2021-10-29 2022-01-28 中国科学院深圳先进技术研究院 固态钙钛矿团簇及其制备方法、光电器件
CN114085665A (zh) * 2021-10-29 2022-02-25 中国科学院深圳先进技术研究院 钙钛矿团簇溶液及其制备方法、光电器件

Similar Documents

Publication Publication Date Title
Orooji et al. Gd2ZnMnO6/ZnO nanocomposites: green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water
Li et al. Stabilizing perovskite precursor by synergy of functional groups for NiOx‐based inverted solar cells with 23.5% efficiency
Wang et al. Characterization of [Li+ O] centers in lithium-doped magnesium oxide catalysts
Wu et al. A favored crystal orientation for efficient printable mesoscopic perovskite solar cells
Tan et al. Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical properties
CN111081816A (zh) 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
Gao et al. Combustion Synthesis and Enhancement of Bi OC l by Doping Eu3+ for Photodegradation of Organic Dye
Kanji Patel et al. Local Environments Around Eu3+ and Eu2+ Ions in Dual Light‐Emitting BaSnO3: Eu Nanomaterials
Liu et al. High visible light photocatalytic activity of SnO2‐x nanocrystals with rich oxygen vacancy
Atourki et al. MAPbI2. 9-xBrxCl0. 1 hybrid halide perovskites: Shedding light on the effect of chloride and bromide ions on structural and photoluminescence properties
Pu et al. Visible‐Light‐Induced Degradation of Methylene Blue by SrBi3VO8 Nanoparticles
Wang et al. Fabrication of Direct Z‐scheme α‐Fe2O3/FeVO4 Nanobelts with Enhanced Photoelectrochemical Performance
CN115394927A (zh) 钙钛矿薄膜、晶种辅助成膜方法、钙钛矿太阳能电池
Zou et al. Preparation and luminescence properties of ZnWO4: Eu3+, Tb3+ phosphors
WO2024103421A1 (zh) Yb3+掺杂cspbbr3 pmscs及其制备方法和应用
Lin et al. Epitaxial Growth of Lead‐Free Double Perovskite Shell for CsPbX3/Cs2SnX6 (X= Cl, Br, and I) Core/Shell Perovskite Nanocrystals with Enhanced Photoelectric Properties and Stability
Pangul et al. Enhanced photoluminescence properties of electrospun Dy3+‐doped ZnO nanofibres for white lighting devices
Rodrigues et al. Impact of Tb3+ ion concentration on the morphology, structure and photoluminescence of Gd2O2SO4: Tb3+ phosphor obtained using thermal decomposition of sulfate hydrate
Muthukumaran et al. Optical, structural, morphological and photocatalytic characters of Mn-doped Cd0. 9Zn0. 1S quantum dots
Jia et al. Sol–gel deposition and luminescent properties of LaMgAl11O19: Ce3+/Tb3+ phosphor films
Zhang et al. Enhanced visible‐light‐driven photocatalytic activities of LiInO2 by Mo6+‐doping strategy
Liu et al. Introducing Cations (Zn2+, Sn2+ and Mg2+) and Anions (Cl−) to Tune Mn Photoluminescence Intensity of Doped Perovskite Nanocrystals (CsPbCl3)
Shi et al. Study on luminescent properties of orange phosphor NaCaPO4: Eu3+
CN115710502B (zh) Yb3+掺杂CsPbBr3PMSCs及其制备方法和应用
CN109880624A (zh) 超小型PbSe量子点的制备方法