WO2023070783A1 - 电源电路、电源电路的工作方法及照明装置 - Google Patents

电源电路、电源电路的工作方法及照明装置 Download PDF

Info

Publication number
WO2023070783A1
WO2023070783A1 PCT/CN2021/132145 CN2021132145W WO2023070783A1 WO 2023070783 A1 WO2023070783 A1 WO 2023070783A1 CN 2021132145 W CN2021132145 W CN 2021132145W WO 2023070783 A1 WO2023070783 A1 WO 2023070783A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
power supply
circuit
capacitor
eighty
Prior art date
Application number
PCT/CN2021/132145
Other languages
English (en)
French (fr)
Inventor
黄毅
周向军
谢奕
童鹍
Original Assignee
深圳市爱图仕影像器材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱图仕影像器材有限公司 filed Critical 深圳市爱图仕影像器材有限公司
Publication of WO2023070783A1 publication Critical patent/WO2023070783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/207Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage also responsive to under-voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/24Circuit arrangements for protecting against overvoltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present application relates to the technical field of power supply, in particular to a power supply circuit, a working method of the power supply circuit, and a lighting device.
  • the power circuit in the traditional technical solution usually does not have the function of undervoltage protection and overvoltage protection, even if it has the function of undervoltage protection and/or overvoltage protection, the traditional technical solution of independent undervoltage protection function and overvoltage protection function , both undervoltage protection detection and overvoltage protection detection are required, which requires a long undervoltage protection detection time and overvoltage protection detection time, which seriously affects the timeliness of power circuit protection.
  • the present application provides a power supply circuit, a working method of the power supply circuit and a lighting device, so as to alleviate the technical problem of slow action of overvoltage protection and undervoltage protection in the power supply circuit.
  • the present application provides a power supply circuit 1000, the power supply circuit 1000 includes at least one power supply sub-circuit, wherein the first power supply sub-circuit 100 includes a first overvoltage protection module 120, a first undervoltage protection module 130, a first The drive module 140 and the first switch module 150, the input terminal of the first overvoltage protection module 120 is connected to the input terminal of the first power supply sub-circuit 100, and is used to output the first control signal; the first undervoltage protection module 130 The input end is connected to the input end of the first power supply sub-circuit 100, and the second input end of the first undervoltage protection module 130 is connected to the output end of the first overvoltage protection module 120, and is used to control the power supply according to the first control signal and/or the second
  • the power supply voltage of a power supply sub-circuit 100 outputs a second control signal; the input terminal of the first drive module 140 is connected to the output terminal of the first undervoltage protection module 130 to access the second control signal; and the first switch module 150
  • the present application provides a working method of the power supply circuit 1000, which includes: configuring at least one power supply sub-circuit in the power supply circuit 1000, the first power supply sub-circuit 100 of the at least one power supply sub-circuit includes a first overvoltage protection module 120.
  • the present application provides a lighting device, which includes the power supply circuit 1000 and the light emitting module 2000 in any one of the above implementation manners, and the light emitting module 2000 is electrically connected to the power supply circuit 1000 .
  • the power supply circuit 1000, the working method of the power supply circuit 1000 and the lighting device provided in this application control the first switch module 150 through the cascade output result of the first overvoltage protection module 120 and the first undervoltage protection module 130, and then can be turned on and off.
  • Control the first power supply sub-circuit 100 that is, when the first power supply sub-circuit 100 is overvoltage, the first undervoltage protection module 130 can directly output the undervoltage result without performing undervoltage protection detection, which can save the undervoltage protection detection time , improving the timeliness of the overvoltage protection and undervoltage protection of the power supply circuit 1000.
  • FIG. 1 is a schematic structural diagram of a power supply circuit 1000 provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the first input module 110 provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the first overvoltage protection module 120 provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the first undervoltage protection module 130 provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the first driving module 140 provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of the first switch module 150 provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of the second input module 210 provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of the second overvoltage protection module 220 provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of the second undervoltage protection module 230 provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of the second driving module 240 provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a second switch module 250 provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a third input module 310 provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a third overvoltage protection module 320 provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a third undervoltage protection module 330 provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a third driving module 340 provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a third switch module 350 provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a first switching module 400 provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a second switching module 500 provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an output module 600 provided by an embodiment of the present application.
  • Fig. 20 is a schematic structural diagram of a lighting device provided by an embodiment of the present application.
  • this embodiment provides a power supply circuit 1000, the power supply circuit 1000 includes at least one power supply sub-circuit, wherein the first power supply sub-circuit 100 includes a first overvoltage protection module 120, the first undervoltage protection module 130, the first drive module 140 and the first switch module 150, the input terminal of the first overvoltage protection module 120 is connected with the input terminal of the first power supply sub-circuit 100, and is used to output the first Control signal; the first input terminal of the first undervoltage protection module 130 is connected to the input terminal of the first power supply sub-circuit 100, and the second input terminal of the first undervoltage protection module 130 is connected to the output terminal of the first overvoltage protection module 120 connected to output the second control signal according to the first control signal and/or the supply voltage of the first power supply sub-circuit 100; the input end of the first drive module 140 is connected to the output end of the first undervoltage protection module 130 to connect input the second control signal; and the control terminal of the first switch module 150
  • the first overvoltage module 120 is set with a preset upper limit voltage (for example, it may be the maximum voltage allowed to be input by the power supply circuit 1000), and the first undervoltage protection module is set with The preset lower limit voltage (for example, it may be the minimum voltage allowed to be input by the power supply circuit 100), by dividing the input voltage of the power supply circuit 1000 from the preset upper limit voltage in the first overvoltage protection module 120 and the preset upper limit voltage of the first undervoltage module 130 Set the lower limit voltage comparison, the first switch module 150 is controlled by the cascade output result of the first overvoltage protection module 120 and the first undervoltage protection module 130, and the first switch module 150 can be controlled to be turned on or off to realize the first On-off control of the input and output of the power supply sub-circuit 100 .
  • a preset upper limit voltage for example, it may be the maximum voltage allowed to be input by the power supply circuit 1000
  • the preset lower limit voltage for example, it may be the minimum voltage allowed to be input by the power supply circuit 100
  • the first overvoltage protection module 120 detects that a signal can be obtained and pulls the output of the first overvoltage protection module 120 to ground, because the first undervoltage protection
  • the module 130 is connected to the output terminal of the first overvoltage protection module 120, so the first input terminal of the first undervoltage protection module 130 and the input voltage of the first power supply sub-circuit 100 are directly pulled down to the ground.
  • the protection module 130 can directly output the undervoltage result without performing undervoltage protection detection, which can save the detection time of the undervoltage protection and improve the timeliness of the overvoltage protection and undervoltage protection of the power supply circuit 1000 .
  • the preset upper limit voltage and the preset lower limit voltage here may be fixed values, or may be floating in a certain range of values.
  • the first overvoltage protection module 120 can output a control signal (such as a high level signal) to pull down the output of the first overvoltage protection module 120 and the input connected to the connection of the first undervoltage protection module 130 by the first overvoltage protection module 120 (such as are all pulled to the ground), at this time, the voltage input from the first power supply sub-circuit 100 to the first input terminal of the first undervoltage module 130 is also pulled down to the ground, so that the first undervoltage protection module 130 outputs a control signal (for example, low Level signal) to the first driving module 140, and the first driving module 140 sends a control signal (for example, a low level signal) to make the first switch module 150 open (that is, not closed, not conducting).
  • a control signal such as a high level signal
  • the first overvoltage protection The module 120 can output a control signal (such as a low-level signal) so that the first overvoltage protection module 120 and the first undervoltage protection module 130 are disconnected (that is, non-conductive).
  • a control signal such as a low-level signal
  • the first power supply sub-circuit 100 inputs The divided voltage to the first input terminal of the first undervoltage module 130 is still less than the preset lower limit voltage of the first undervoltage protection module 130, so that the first undervoltage protection module 130 outputs a control signal (such as a low level signal) to the first driving module 140 to the first undervoltage protection module 130, and the first driving module 140 sends a control signal (such as a low level signal) to turn off the first switch module 150.
  • a control signal such as a low level signal
  • the first overvoltage protection module 120 can correspondingly output a first control signal (such as a low potential signal) so that the first overvoltage protection module 120 and the first The undervoltage protection modules 130 are disconnected (that is, not conducted).
  • a first control signal such as a low potential signal
  • the first under-voltage protection module 130 can output a second high-potential control signal according to the first high-potential control signal (that is, the first under-voltage protection module 130 compares and outputs the second high-potential control signal according to its own resistance voltage division), at this time
  • the divided voltage input from the first power supply sub-circuit 100 to the first input terminal of the first undervoltage module 130 is greater than the preset lower limit voltage of the first undervoltage protection module 130, so that the first undervoltage protection module 130 outputs A control signal (such as a high-level signal) is sent to the first drive module 140 to the first undervoltage protection module 130, and the first drive module 140 sends a control signal (such as a high-level signal) to make the first switch module 150 conduct.
  • the first power supply sub-circuit 100 can normally supply power to the back-end load.
  • the positions of the first overvoltage protection module 120 and the first undervoltage protection module 130 can also be exchanged, or only one of the protection modules is used in order to realize one of the functions of overvoltage or undervoltage.
  • the first power supply sub-circuit 100 further includes a first input module 110, the input terminal of the first input module 110 is used to access a voltage input, for example, it may be the first direct current voltage DC1, and the first input module 110
  • the output terminal of the first overvoltage protection module 120, the first input terminal of the first undervoltage protection module 130 and the input terminal of the first switch module 150 are connected to maintain the potential of the first direct current voltage DC1, and The first DC voltage DC1 is filtered.
  • the first input module 110 may include a thirty-eighth capacitor C21, a thirty-ninth capacitor C22, and a second bidirectional voltage regulator diode D7, and the first input terminal J1 and the third One end of the eighteenth capacitor C21, one end of the thirty-ninth capacitor C22, one end of the second bidirectional voltage regulator diode D7, and one end of the first resistor R21 are connected, wherein the thirty-eighth capacitor C21 can be used for low-frequency filtering, and the third The nineteenth capacitor C22 can be used for high-frequency filtering, the second bidirectional voltage regulator diode D7 can be used for clamping the first DC voltage DC1, the second input terminal J2 is connected to the other end of the thirty-eighth capacitor C21, the thirty-ninth capacitor C22 The other end of the second bidirectional voltage regulator diode D7 is connected to the other end and grounded.
  • the first overvoltage protection module 120 may include a first resistor R21, a second resistor R26, a third resistor R34, a fourth resistor R32, a first capacitor C32, a first computing Amplifier U2B, fifth resistor R36, sixth resistor R27, second capacitor C29, seventh resistor R18, eighth resistor R19, ninth resistor R20, tenth resistor R28 and first transistor Q7.
  • One end of the first resistor R21 is connected to the input end of the first power supply sub-circuit 100, one end of the second resistor R26 is connected to the other end of the first resistor R21, one end of the third resistor R34 is connected to the other end of the second resistor R26, The other end of the third resistor R34 is grounded, one end of the fourth resistor R32 is connected to one end of the third resistor R34, one end of the first capacitor C32 is connected to one end of the fourth resistor R32, the other end of the first capacitor C32 is grounded, the first The non-inverting input end of the operational amplifier U2B is connected to the other end of the fourth resistor R32, which can be used to obtain the real-time voltage of the first direct current voltage DC1.
  • One end of the fifth resistor R36 is connected to the non-inverting input end of the first operational amplifier U2B, and the other end of the fifth resistor R36 is connected to the output end of the first operational amplifier U2B. It should be noted that this structure can constitute the first operational amplifier
  • the non-inverting feedback of U2B enables the first overvoltage protection module 120 to have a hysteresis function, which can prevent it from malfunctioning near the overvoltage threshold.
  • One end of the sixth resistor R27 is connected to the inverting input end of the first operational amplifier U2B, one end of the second capacitor C29 is connected to the other end of the sixth resistor R27, the other end of the second capacitor C29 is grounded, and one end of the seventh resistor R18 It is connected with one end of the second capacitor C29, the other end of the seventh resistor R18 is grounded, one end of the eighth resistor R19 is connected with one end of the seventh resistor R18, one end of the ninth resistor R20 is connected with the other end of the eighth resistor R19, and the other end of the eighth resistor R19 is connected.
  • the other end of the nine resistors R20 is used to connect to the DC power supply VCC for setting the preset upper limit voltage.
  • One end of the tenth resistor R28 is connected to the output end of the first operational amplifier U2B; the base of the first transistor Q7 is connected to the other end of the tenth resistor R28, and the emitter of the first transistor Q7 is grounded. It can be understood that when the power supply voltage of the first power supply sub-circuit 100 is greater than or equal to the preset upper limit voltage, the collector of the first triode Q7 can output the first control signal; otherwise, the collector of the first triode Q7 A first high potential control signal may be output.
  • the triode in the present application may also be an N-channel field effect transistor with corresponding parameters.
  • the first overvoltage protection module 120 may include one of the first resistor R21 or the second resistor R26, which may also constitute a voltage division detection circuit.
  • the first overvoltage protection module 120 may also include one of the eighth resistor R19 or the ninth resistor R20 , which can also realize the divided voltage supply of the DC power supply VCC.
  • the first undervoltage protection module 130 may include an eleventh resistor R14, a twelfth resistor R25, a thirteenth resistor R33, a fourteenth resistor R30, and a third capacitor C31 , the second operational amplifier U2A, the fifteenth resistor R37, the sixteenth resistor R24, the fourth capacitor C28, the seventeenth resistor R15, the eighteenth resistor R16, the nineteenth resistor R17, the fifth capacitor C24, the sixth capacitor C27, the twentieth resistor R29 and the first diode D10.
  • One end of the eleventh resistor R14 is connected to one end of the first resistor R21, one end of the twelfth resistor R25 is connected to the other end of the eleventh resistor R14, and the other end of the twelfth resistor R25 is connected to the first triode Q7.
  • Collector connection one end of the thirteenth resistor R33 is connected to the other end of the twelfth resistor R25, the other end of the thirteenth resistor R33 is grounded, one end of the fourteenth resistor R30 is connected to one end of the thirteenth resistor R33, and the other end of the thirteenth resistor R33 is connected.
  • One end of the third capacitor C31 is connected to one end of the fourteenth resistor R30, the other end of the third capacitor C31 is grounded, and the non-inverting input end of the second operational amplifier U2A is connected to the other end of the fourteenth resistor R30 for real-time reception of the first An output result of the overvoltage protection module 120 and/or a real-time voltage of the first direct current voltage DC1.
  • the negative power terminal of the second operational amplifier U2A is grounded, and the positive power terminal of the second operational amplifier U2A is connected to the DC power supply VCC.
  • One end of the fifteenth resistor R37 is connected to the non-inverting input end of the second operational amplifier U2A, and the other end of the fifteenth resistor R37 is connected to the output end of the second operational amplifier U2A, thus forming the positive phase feedback of the second operational amplifier U2A , so that the first undervoltage protection module 130 has a hysteresis function, which can prevent the first undervoltage protection module 130 from malfunctioning near its undervoltage threshold.
  • One end of the sixteenth resistor R24 is connected to the inverting input end of the second operational amplifier U2A, one end of the fourth capacitor C28 is connected to the other end of the sixteenth resistor R24, and the other end of the fourth capacitor C28 is grounded; the seventeenth resistor One end of R15 is connected to one end of the fourth capacitor C28, the other end of the seventeenth resistor R15 is grounded, one end of the eighteenth resistor R16 is connected to one end of the seventeenth resistor R15, and one end of the nineteenth resistor R17 is connected to the eighteenth resistor R17.
  • the other end of the resistor R16 is connected, and the other end of the nineteenth resistor R17 is connected to the DC power supply VCC.
  • One end of the fifth capacitor C24 is connected to the other end of the nineteenth resistor R17, the other end of the fifth capacitor C24 is grounded, one end of the sixth capacitor C27 is connected to the other end of the nineteenth resistor R17, and the other end of the sixth capacitor C27 grounded.
  • One end of the twentieth resistor R29 is connected to the output end of the second operational amplifier U2A.
  • the cathode of the first diode D10 is connected to one end of the twentieth resistor R29, the anode of the first diode D10 is connected to the other end of the twentieth resistor R29, and the first diode D10 is used to form a fast discharge path .
  • the first undervoltage protection module 130 may include one of the eleventh resistor R14 or the twelfth resistor R25 .
  • the first undervoltage protection module 130 may include one of the seventeenth resistor R15 or the eighteenth resistor R16.
  • the first undervoltage protection module 130 may not include the fifth capacitor C24 and/or the sixth capacitor C27, wherein the fifth capacitor C24 may be used as one of the low-frequency filter capacitor or the high-frequency filter capacitor, and the sixth capacitor C27 may be used as a low-frequency filter capacitor. capacitor or another one of the high-frequency filter capacitors.
  • the first undervoltage protection module 130 may further include a fourteenth diode D21, which may be used to limit the directional flow of electrical signals.
  • the first driving module 140 may include a first field effect transistor Q8A, a second field effect transistor Q8B, a seventh capacitor C26, an eighth capacitor C30, a ninth capacitor C23, a Twenty-first resistor R22, second diode D9, twenty-second resistor R23, first optocoupler PH1, twenty-third resistor R13, tenth capacitor C25, third diode D12, twenty-fourth resistor R39, the eleventh capacitor C33, the twenty-fifth resistor R40, the second optocoupler PH2, and the twenty-sixth resistor R35.
  • the gate of the first field effect transistor Q8A is connected to the other end of the twentieth resistor R29, the drain of the first field effect transistor Q8A is connected to the DC power supply VCC; the drain of the second field effect transistor Q8B is connected to the first field effect transistor
  • the source of Q8A is connected, the gate of the second field effect transistor Q8B is connected with the gate of the first field effect transistor Q8A, and the first field effect transistor Q8A and the second field effect transistor Q8B can form a push-pull output circuit to increase the current Drive capability.
  • One end of the seventh capacitor C26 is connected to the drain of the first field effect transistor Q8A, the other end of the seventh capacitor C26 is grounded, one end of the eighth capacitor C30 is connected to the drain of the first field effect transistor Q8A, and the eighth capacitor C30 The other end is grounded, one end of the ninth capacitor C23 is connected to the drain of the second field effect transistor Q8B, one end of the twenty-first resistor R22 is connected to one end of the ninth capacitor C23, and the other end of the twenty-first resistor R22 is connected to the second field effect transistor Q8B.
  • the other end of the ninth capacitor C23 is connected, the cathode of the second diode D9 is connected to the other end of the twenty-first resistor R22, the anode of the second diode D9 is grounded, and one end of the twenty-second resistor R23 is connected to the second end of the second two
  • the cathode of the pole tube D9 is connected, the first pin of the first optocoupler PH1 is connected to the other end of the twenty-second resistor R23, the second pin of the first optocoupler PH1 is grounded, and one end of the twenty-third resistor R13 is connected to the other end of the twenty-second resistor R23.
  • the fourth pin of the first optocoupler PH1 is connected, the other end of the twenty-third resistor R13 is used to connect the DC bias power supply Bais, one end of the tenth capacitor C25 is connected to one end of the twenty-third resistor R13, and the tenth capacitor The other end of C25 is grounded, and the first optocoupler PH1 can be used to isolate the voltage before and after coupling.
  • the anode of the third diode D12 is connected to one end of the twenty-first resistor R22; one end of the twenty-fourth resistor R39 is connected to the cathode of the third diode D12, and the other end of the twenty-fourth resistor R39 is connected to the DC power supply VCC is connected; one end of the eleventh capacitor C33 is connected to one end of the twenty-fourth resistor R39, and the other end of the eleventh capacitor C33 is connected to the DC power supply VCC; one end of the twenty-fifth resistor R40 is connected to the eleventh capacitor C33 One end is connected; the first pin of the second optocoupler PH2 is connected to the other end of the twenty-fifth resistor R40, and the second pin of the second optocoupler PH2 is connected to the anode of the third diode D12; the twenty-sixth One end of the resistor R35 is connected to the third pin of the first optocoupler PH1 and the fourth pin of the second opt
  • the first driving module 140 may not include the first field effect transistor Q8A, the second field effect transistor Q8B, the seventh capacitor C26, the eighth capacitor C30, the ninth capacitor C23, the The twenty-first resistor R22, the second diode D9, and the twenty-second resistor R23.
  • the first undervoltage protection module 130 can be directly electrically connected to the first pin of the first optocoupler PH1 and the second pin of the second optocoupler PH2.
  • the first switch module 150 includes a second field effect transistor Q5 and a third field effect transistor Q6, the drain of the second field effect transistor Q5 is connected to one end of the eleventh resistor R14 connected, the gate of the second field effect transistor Q5 is connected to the other end of the twenty-sixth resistor R35; the gate of the third field effect transistor Q6 is connected to the gate of the second field effect transistor Q5, and the third field effect transistor Q6
  • the source of the second field effect transistor Q5 is connected to the source.
  • the first switch module 150 may include a first field effect transistor Q3, a second field effect transistor Q5, a third field effect transistor Q6, a fourth field effect transistor Q4, a twenty-seventh resistor R12 and a second field effect transistor.
  • a Zener diode D8 the drain of the first field effect transistor Q3 is connected to one end of the eleventh resistor R14; the drain of the second field effect transistor Q5 is connected to the drain of the first field effect transistor Q3, and the second field effect The gate of the transistor Q5 is connected to the other end of the twenty-sixth resistor R35; the gate of the third field effect transistor Q6 is connected to the gate of the second field effect transistor Q5, and the source of the third field effect transistor Q6 is connected to the first The source of the field effect transistor Q3 is connected to the source of the second field effect transistor Q5; the gate of the fourth field effect transistor Q4 is connected to the gate of the third field effect transistor Q6, and the source of the fourth field effect transistor Q4 is connected to the The source of the third field effect transistor Q6 is connected, the drain of the fourth field effect transistor Q4 is connected to the drain of the third field effect transistor Q6; one end of the twenty-seventh resistor R12 is connected to the gate of the fourth field effect transistor Q4 connected, the other end of
  • At least one of the first field effect transistor Q3, the second field effect transistor Q5, the third field effect transistor Q6, and the fourth field effect transistor Q4 can be an N-channel field effect transistor, and when the gate of the N-channel field effect transistor When the potential is greater than a certain value of the source potential of the N-channel field effect transistor, the N-channel field effect transistor will be turned on; otherwise, it will be turned off.
  • the first switch module 150 provided in this embodiment can reduce the heat generated by the corresponding field effect transistors during operation, and can improve the stability and reliability of the entire power supply circuit 1000 .
  • the power supply circuit 1000 may include N+1 power supply sub-circuits and N switching modules, where N is a positive integer; N switching modules are electrically connected to the N+1 power supply sub-circuits, and N switching modules The module is used to determine the priority order of the N+1 power supply sub-circuits, and at the same time switch the power supply sub-circuit with the highest priority and whose supply voltage is between the preset upper limit voltage and the preset lower limit voltage to be in an on state.
  • a plurality of power supply sub-circuits can be included, such as the first power supply sub-circuit 100, the second power supply sub-circuit 200, the third power supply sub-circuit 300, etc.
  • the switching module can include a plurality of switching modules, but the number is smaller than that of the power supply The number of sub-circuits is less than 1.
  • the switching module can include the first switching module 400, the second switching module 500, etc. It can be understood that the output terminals of each high-priority undervoltage protection module are connected to the corresponding switching modules in the back from top to bottom.
  • the first undervoltage protection module 120 needs to be electrically connected to the first switching module 400 and the second switching module 500 (if there are multiple channels later, it needs to be connected to the corresponding switching module), the second undervoltage module 230 It is electrically connected to the second switching module 500 (if there are multiple channels later, it needs to be connected to the corresponding switching module).
  • the switching module is located between two adjacent power supply sub-circuits, and each switching module is also electrically connected between the undervoltage protection module and the first driving module of the two adjacent power supply sub-circuits, for example, the first
  • the switching module 400 is electrically connected between the first undervoltage protection module 130 and the first driving module 140
  • the first switching module 400 is electrically connected between the second undervoltage protection module 230 and the second driving module 240 .
  • the high-priority switching module is also electrically connected to the switching modules of each subsequent stage.
  • the switching module is also electrically connected to the corresponding driving module, for example, the first switching module 400 is electrically connected to the first driving module 140 and the second driving module 240 .
  • the first switch module 150 is turned on, and a control signal is sent to the first switch module 400 through the first undervoltage protection module 130, so that The first switch module 400 remains off without controlling the second switch module 250 to turn on or off, and the first undervoltage protection module 130 also sends a control signal to the second switch module 500, so that the second switch module 500 does not control
  • the second switch module 500 controls the third switch module 350 to be turned on. Only when the voltage input of this channel meets the requirements can the corresponding switch module be turned on to allow it to work. Therefore, when the high priority meets the requirements, the pair can be released.
  • the control right of the low-priority power supply sub-circuit that is, when the high-priority voltage meets the requirements, if the low-priority power supply sub-circuit meets the requirements, the high priority will not affect the work of the low-priority circuit. And if the input voltage of the first power supply subcircuit 100 does not meet the preset upper limit voltage or the preset lower limit voltage, and the second power supply subcircuit meets the requirement, then the second power supply subcircuit supplies power.
  • the first switch module 400 will control the second switch module 250 to be disconnected, that is, the low priority circuits that originally met the preset upper and lower limit voltage requirements are disconnected, and the circuit that meets the preset upper and lower limit voltage requirements is turned off again. The required high priority circuit is turned on.
  • N+1 power supply subcircuits may include the second power supply subcircuit 200
  • N switching modules may include the first switching module 400
  • the second power supply subcircuit 200 may adopt the same circuit topology as that of the first power supply subcircuit 100
  • the second power supply sub-circuit 200 may include a second input module 210 , a second overvoltage protection module 220 , a second undervoltage protection module 230 , a second driving module 240 and a second switch module 250 .
  • the second input module 210 may include a fortieth capacitor C35 , a forty-first capacitor C36 and a third bidirectional voltage regulator diode D15 .
  • the second input module 210 may have the same circuit topology as the first input module 110 .
  • the second overvoltage protection module 220 may include a twenty-eighth resistor R55, a twenty-ninth resistor R63, a thirtieth resistor R71, a thirty-first resistor R69, a Twelfth capacitor C46, third operational amplifier U3B, thirty-second resistor R73, thirty-third resistor R64, thirteenth capacitor C43, thirty-fourth resistor R56, thirty-fifth resistor R57, thirty-sixth resistor R58, the thirty-seventh resistor R65 and the second transistor Q17.
  • the second overvoltage protection module 220 may have the same circuit topology as the first overvoltage protection module 120 .
  • the second undervoltage protection module 230 may include a thirty-eighth resistor R51, a thirty-ninth resistor R62, a fortieth resistor R70, a forty-first resistor R67, a Fourteenth capacitor C45, fourth operational amplifier U3A, forty-second resistor R74, forty-third resistor R61, fifteenth capacitor C42, forty-fourth resistor R52, forty-fifth resistor R53, forty-sixth resistor R54, the sixteenth capacitor C38, the seventeenth capacitor C41, the forty-seventh resistor R66 and the fourth diode D18.
  • the second undervoltage protection module 230 may have the same circuit topology as the first undervoltage protection module 130 .
  • the second driving module 240 may include a third field effect transistor Q18A, a fourth field effect transistor Q18B, an eighteenth capacitor C40, a nineteenth capacitor C44, a twentieth capacitor C37, the forty-eighth resistor R59, the fifth diode D17, the forty-ninth resistor R60, the third optocoupler PH3, the fiftieth resistor R50, the twenty-first capacitor C39, the sixth diode D20, the Fifty-first resistor R76, twenty-second capacitor C47, fifty-second resistor R77, fourth optocoupler PH4, and fifty-third resistor R72.
  • the second driving module 240 may have the same circuit topology as the first driving module 140 .
  • the second switch module 250 may include a fifth field effect transistor Q12, a sixth field effect transistor Q15, a seventh field effect transistor Q16, an eighth field effect transistor Q13, a fifth Fourteen resistors R49 and a second Zener diode D16.
  • the second switch module 250 may have the same circuit topology as the first switch module 150 .
  • the N+1 power supply subcircuits may further include the third power supply subcircuit 300
  • the N switching modules may further include the second switching module 500
  • the third power supply subcircuit 300 may adopt the same circuit topology as that of the first power supply subcircuit 100 .
  • the third power supply sub-circuit 300 may include a third input module 310 , a third overvoltage protection module 320 , a third undervoltage protection module 330 , a third driving module 340 and a third switch module 350 .
  • the third input module 310 may include a forty-second capacitor C49 , a forty-third capacitor C50 and a fourth bidirectional voltage regulator diode D22 . Wherein, the third input module 310 may also have the same circuit topology as the first input module 110 .
  • the third overvoltage protection module 320 includes a fifty-fifth resistor R95, a fifty-sixth resistor R100, a fifty-seventh resistor R108, a fifty-eighth resistor R106, a Twenty-third capacitor C62, fifth operational amplifier U4B, fifty-ninth resistor R110, sixtieth resistor R101, twenty-fourth capacitor C57, sixty-first resistor R92, sixty-second resistor R93, sixty-third The resistor R94, the sixty-fourth resistor R102 and the third transistor Q27.
  • the third overvoltage protection module 320 may also have the same circuit topology as the first overvoltage protection module 120 .
  • the third undervoltage protection module 330 includes a sixty-fifth resistor R88, a sixty-sixth resistor R99, a sixty-seventh resistor R107, a sixty-eighth resistor R104, a sixth Twenty-fifth capacitor C61, sixth operational amplifier U4A, sixty-ninth resistor R111, seventieth resistor R98, twenty-sixth capacitor C56, seventy-first resistor R89, seventy-second resistor R90, seventy-third The resistor R91, the twenty-seventh capacitor C52, the twenty-eighth capacitor C55, the seventy-fourth resistor R103, and the seventh diode D26.
  • the third undervoltage protection module 330 may also have the same circuit topology as the first undervoltage protection module 130 .
  • the third driving module 340 includes a fifth field effect transistor Q28A, a sixth field effect transistor Q28B, a twenty-ninth capacitor C54, a thirtieth capacitor C58, a thirty-first Capacitor C51, seventy-fifth resistor R96, eighth diode D24, seventy-sixth resistor R97, fifth optocoupler PH5, seventy-seventh resistor R87, thirty-second capacitor C53, ninth diode D27 , the seventy-eighth resistor R113, the thirty-third capacitor C63, the seventy-ninth resistor R114, the sixth optocoupler PH6, and the eightieth resistor R109.
  • the third driving module 340 may also have the same circuit topology as the first driving module 140 .
  • the third switch module 350 includes a ninth field effect transistor Q22, a tenth field effect transistor Q25, an eleventh field effect transistor Q26, a twelfth field effect transistor Q23, a Eighty-one resistors R86 and a third Zener diode D23.
  • the third switch module 350 may also have the same circuit topology as the first switch module 150 . As shown in FIG.
  • the first switching module 400 may include a tenth diode D11, an eighty-second resistor R46, a thirty-fourth capacitor C34, a fourth transistor Q14, an eighth Thirteenth resistor R44, fifth transistor Q11, eighty-fourth resistor R47, eighty-fifth resistor R48, sixth transistor Q10, eighty-sixth resistor R41, eighty-seventh resistor R43, eleventh The diode D13, the twelfth diode D14, the eighty-eighth resistor R42, the eighty-ninth resistor R45, and the seventh transistor Q9.
  • the anode of the tenth diode D11 is connected to the output end of the second operational amplifier U2A, one end of the eighty-second resistor R46 is connected to the cathode of the tenth diode D11, one end of the thirty-fourth capacitor C34 is connected to the twelfth
  • the negative pole of the transistor D11 is connected, the other end of the thirty-fourth capacitor C34 is grounded, the base of the fourth triode Q14 is connected to the other end of the eighty-second resistor R46, and the emitter of the fourth triode Q14 is grounded.
  • the collector of the fourth transistor Q14 is connected to the other end of the forty-seventh resistor R66 , such a configuration can be used to determine that the priority of the first power supply subcircuit 100 is higher than that of the second power supply subcircuit 200 .
  • One end of the eighty-third resistor R44 is connected to the DC power supply VCC
  • the collector of the fifth triode Q11 is connected to the other end of the eighty-third resistor R44
  • the emitter of the fifth triode Q11 is grounded
  • the eighty-fourth triode Q11 is connected to the ground.
  • One end of the resistor R47 is connected to the base of the fifth triode Q11, the other end of the eighty-fourth resistor R47 is connected to one end of the forty-eighth resistor R59, one end of the eighty-fifth resistor R48 is connected to the eighty-fourth resistor One end of R47 is connected, the other end of the eighty-fifth resistor R48 is grounded, the base of the sixth triode Q10 is connected to the other end of the eighty-third resistor R44, the emitter of the sixth triode Q10 is grounded, and the eighth triode Q10 is grounded.
  • One end of the sixteenth resistor R41 is connected to the collector of the sixth triode Q10, one end of the eighty-seventh resistor R43 is connected to the collector of the sixth triode Q10, and the other end of the eighty-seventh resistor R43 is connected to the eighth transistor Q10.
  • the other end of the sixteenth resistor R41 is connected to the source of the fifth field effect transistor Q12, so that when the second power supply sub-circuit 200 performs overvoltage protection and/or undervoltage protection, the second switch module 250 can be disconnected reliably .
  • the anode of the eleventh diode D13 is connected to the source of the ninth field effect transistor Q22, the anode of the twelfth diode D14 is connected to the source of the fifth field effect transistor Q12, and one end of the eighty-eighth resistor R42 It is connected with the cathode of the eleventh diode D13 and the cathode of the twelfth diode D14, one end of the eighty-ninth resistor R45 is connected with the other end of the eighty-eighth resistor R42, and the other end of the eighty-ninth resistor R45 One end is grounded, the gate of the seventh triode Q9 is connected to one end of the eighty-ninth resistor R45, the emitter of the seventh triode Q9 is grounded, the collector of the seventh triode Q9 is connected to the twentieth resistor R29 The other end is connected, and such a structure can ensure that the first power supply subcircuit 100 will start to supply power normally when the second power supply
  • the second switching module 500 may include a thirteenth diode D19, a fourteenth diode D21, a ninetieth resistor R83, a thirty-fifth capacitor C48, an eighth transistor Q24, The ninety-first resistor R81, the ninth triode Q21, the ninety-second resistor R84, the ninety-third resistor R85, the thirteenth transistor Q20, the ninety-fourth resistor R78, the ninety-fifth resistor R80, The ninety-sixth resistor R79, the ninety-seventh resistor R82, and the eleventh triode Q19.
  • Such a configuration can be used to determine the power supply priority of the first power supply subcircuit 100 and the power supply priority of the second power supply subcircuit 200 are higher than the power supply priority of the third power supply subcircuit 300 .
  • the anode of the thirteenth diode D19 is connected to the output terminal of the fourth operational amplifier U3A
  • the anode of the fourteenth diode D21 is connected to the output terminal of the second operational amplifier U2A
  • one end of the ninetieth resistor R83 is connected to the tenth operational amplifier U2A.
  • the cathode of the third diode D19 is connected to the cathode of the fourteenth diode D21, one end of the thirty-fifth capacitor C48 is connected to one end of the ninetieth resistor R83, the other end of the thirty-fifth capacitor C48 is grounded, and the eighth The base of the transistor Q24 is connected to the other end of the ninetieth resistor R83, the emitter of the eighth transistor Q24 is connected to the ground, and the collector of the eighth transistor Q24 is connected to the other end of the seventy-fourth resistor R103.
  • One end of the ninety-first resistor R81 is connected to the DC power supply VCC, the collector of the ninth triode Q21 is connected to the other end of the ninety-first resistor R81, and the emitter of the ninth triode Q21 is grounded.
  • One end of the resistor R84 is connected to the base of the ninth transistor Q21, the other end of the ninety-second resistor R84 is connected to one end of the seventy-fifth resistor R96, one end of the ninety-third resistor R85 is connected to the ninety-second resistor One end of R84 is connected, the other end of the ninety-third resistor R85 is grounded, the base of the thirteenth transistor Q20 is connected to the other end of the ninety-first resistor R81, the emitter of the thirteenth transistor Q20 is grounded, and the ninth One end of the fourteenth resistor R78 is connected to the collector of the thirteenth transistor Q20, one end of the ninety-fifth resistor R80 is connected to the collector of the thirteenth transistor Q20, and the other end of the ninety-fifth resistor R80 is connected to the ninth The other end of the fourteenth resistor R78 is connected to the source of the ninth field effect transistor Q22, one end of the ninety-sixth
  • the power supply circuit 1000 further includes an output module 600, the input terminal of the output module 600 is connected to the output terminal of the first switch module 150, the output terminal of the second switch module 250 and the output terminal of the third switch module 350 , used for outputting and stabilizing and filtering one of the first DC voltage, the second DC voltage and the third DC voltage.
  • the output module 600 may include a thirty-sixth capacitor C59, a thirty-seventh capacitor C60, and a first bidirectional voltage regulator diode D25, wherein the thirty-sixth capacitor C59 and the thirty-seventh capacitor C60 may be As an output filter capacitor, the first two-way voltage regulator diode D25 can be used for surge voltage protection and electrostatic protection of the output port, one end of the thirty-sixth capacitor C59 and one end of the thirty-seventh capacitor C60, the first two-way voltage regulator diode One end of D25, the drain of the third field effect transistor Q6, the drain of the seventh field effect transistor Q16, the drain of the eleventh field effect transistor Q26 are connected to the first output terminal J7, and the second output terminal J8 is connected to the third The other end of the sixteenth capacitor C59, the other end of the thirty-seventh capacitor C60 and the other end of the first bidirectional voltage regulator diode D25 are connected to ground.
  • pin 5 of U2B is higher than pin 6, so pin 7 of U2B outputs a high level, Q7 is turned on, and pin 3 of Q7 and Pin 2 is connected to low level, the upper end of R33 is pulled down to ground, and R30 is low, so pin 3 of U2A is lower than pin 2, pin 1 of U2A outputs low level, the right end of R29 is pulled low, Q8 (Q8, capacitor
  • the push-pull circuit composed of C26 can also be omitted), the gate of PH1 is turned off, and PH2 is turned on (conversely, if the input at the right end of R29 is high, PH1 is turned on, and PH2 is turned off), and Q3-Q6 is turned off , the input of the power supply sub-circuit is disconnected from the subsequent output; and Q14 and Q24 are not turned on, releasing the control right to the low-priority channel (that is, when the input
  • pin 5 of U2B is lower than pin 6, so pin 7 of U2B outputs low level, Q7 is disconnected, R14, R25, R33 Three resistors divide the voltage, so pin 3 of U2A is lower than pin 2, pin 1 of U2A outputs low level, the right end of R29 is pulled low, and the gate of Q8 (the push-pull circuit composed of Q8, capacitor C26, etc. can also be omitted) Pull low, PH1 is disconnected, PH2 is turned on, Q3-Q6 is closed, and the input of the power supply sub-circuit is disconnected from the subsequent output.
  • pin 5 of U2B when the input voltage of the first input module 110 is less than the preset upper limit voltage and greater than the preset lower limit voltage, pin 5 of U2B is lower than pin 6, so pin 7 of U2B outputs a low level, and Q7 is turned off , three resistors divide the voltage, at this time, pin 3 of U2A is higher than pin 2, pin 1 of U2A outputs high level, the right end of R29 is pulled high, PH1 is turned on, PH2 is turned off, Q3-Q6 is turned on, and the power supply sub-circuit There is conduction between the input and the output at the back; Q14 and Q24 are turned on and pulled to the ground, and the switch at the back is turned off, that is, when the level of D18/D26 is determined to be low, all the corresponding switches at the back are turned off.
  • each channel of the above circuit is not allowed to be turned on at the same time.
  • Q12-16 is low, Q9 is turned off, and the control of D10 is released, so the high priority is satisfied first, and the low priority does not affect the high priority, and the high priority is directly turned on ;Satisfied after the high priority, the high priority disconnects the low priority, and the high priority turns on after detecting that the low priority disconnects successfully.
  • the first power supply sub-circuit 100 and the second power supply sub-circuit 100 can be correspondingly adjusted according to the setting of the corresponding connection relationship between the N+1 power supply sub-circuits and the N switching modules.
  • the power supply priority among the sub-circuit 200 and the third power supply sub-circuit 300 is sorted. For example, when the power supply priority of the first power subcircuit 100 is higher than that of the second power subcircuit 200, and there is no undervoltage and/or overvoltage in the supply voltage of the first power subcircuit 100, the The power supply circuit will preferentially select the first power supply sub-circuit 100 for power supply.
  • the first switching module 400 and the second switching module 500 may constitute a priority logic switching circuit for controlling priority and switching dead time.
  • the priority logic switching circuit with over-voltage and under-voltage protection and dead-time control each power sub-circuit has an over-voltage and under-voltage detection circuit, when the voltage of each power sub-circuit meets the input we set In the voltage range, each detection signal will be sent to the priority logic switching circuit for automatic priority control switching among the power supply sub-circuits.
  • the priority logic switching circuit will automatically switch the power supply of the system to the power supply sub-circuit with the highest priority currently provided by DC power. That is, when it is detected that the high-priority power supply sub-circuit meets the preset voltage range, the priority logic switching circuit will automatically switch the power supply of the system to the high-priority power supply channel.
  • the first undervoltage protection module 130 simultaneously judges whether the power supply voltage of the first power supply subcircuit 100 is at a preset level through the first overvoltage protection module 120 and the first undervoltage protection module 130 Between the upper limit voltage and the preset lower limit voltage, if the power supply voltage of the first power supply sub-circuit 100 is between the preset upper limit voltage and the preset lower limit voltage, the first undervoltage protection module 130 outputs a second control signal of high potential, The first driving module 140 also outputs a corresponding high-level signal, and then controls the first power supply sub-circuit 100 to be in a conducting state through the first switch module 150 .
  • the working principle of the second power supply subcircuit 200 and the third power supply subcircuit 300 is the same as that of the first power supply subcircuit 100 .
  • the switching modules such as the first switching module 400 and the second switching module 500 can control other power supply subcircuits except the first power supply subcircuit 100 to be in an off state.
  • the switching modules such as the first switching module 400 and the second switching module 500 can control the second power supply sub-circuit 200 to be turned on and other circuits to be disconnected without affecting the control of other circuits Right (that is, when the original conducting road does not supply power, when other circuits meet the voltage requirements again, the road can also be turned on; and when the high priority does not meet the requirements to meet the requirements again, the high priority stage conduction.
  • the DC bias power Bais can be provided by a bias power circuit, and the bias power circuit can include a charge pump, and the charge pump is used to provide the turn-on voltage of the N-channel field effect transistor.
  • the field effect transistor in each of the above embodiments can select a suitable withstand voltage value and a suitable conduction internal resistance according to the voltage and current of the actual application scene. It should be noted that it takes tens of milliseconds or even hundreds of milliseconds to control the switching time of each power supply sub-circuit by using a switching circuit built with relays. However, since the first switching module 400 and/or the second switching module 500 do not use relays Therefore, the switching time for controlling each power supply sub-circuit provided by the present application can be reduced to microsecond level.
  • the present application can implement a multi-channel power supply automatic switching circuit based on N-channel field effect transistors. It can not only meet the requirements of miniaturization, ultra-fast response, and high reliability, but also avoid the problems of difficult selection and high cost of P-channel field effect transistors in high DC voltage and high current application scenarios. In addition, its overvoltage protection function and undervoltage protection function make the system more reliable.
  • the priority logic switching circuit can achieve a faster switching speed, so that the output voltage of the power supply circuit 1000 can achieve a short drop time and a small drop amplitude, effectively solving the problem of LED (Light Emitting Diode, light emitting diode) lights flickering.
  • this example provides a lighting device, which includes a control box 10000 and a light emitting module 2000, and the control box 10000 includes the power circuit 1000 and the adapter 3000 in any of the above-mentioned embodiments,
  • the light emitting module 2000 is electrically connected to the power circuit 1000 .
  • the output end of the adapter 3000 is connected to an input end of the power circuit 1000, and the mains 4000 is connected to the input end of the adapter 3000 for providing the first DC voltage DC1.
  • the large-capacity battery board 5000 is connected to the other input end of the power supply circuit 1000 for providing a second direct current voltage DC2.
  • the small-capacity battery 6000 is connected to the other input end of the power supply circuit 1000 for providing a third direct current voltage DC3.
  • the lighting device provided in this embodiment controls the first switch module 150 through the cascaded output result of the first overvoltage protection module 120 and the first undervoltage protection module 130, and then can control the on-off control of the first power supply module.
  • the circuit 100 that is, when the first power supply sub-circuit 100 has an overvoltage, the first undervoltage protection module 130 can directly output the undervoltage result without performing undervoltage protection detection, which can save the undervoltage protection detection time and improve the power supply circuit. 1000 overvoltage protection and timeliness of undervoltage protection.
  • the light emitting module 2000 may be an LED, of course, others such as laser diodes or organic light emitting diodes are also feasible.
  • the control box 10000 can supply power to the light emitting module 2000 through wires or the like.
  • both the power circuit 1000 and the adapter 3000 can be arranged inside the control box 10000, and of course the adapter 3000 can also be arranged outside the control box 10000, which is not specifically limited.
  • the power supply circuit 1000 can be made as an integrated circuit and installed in the lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本申请公开了一种电源电路、电源电路的工作方法及照明装置,属于供电技术领域,该电源电路包括第一电源子电路,第一电源子电路包括第一过压保护模块、第一欠压保护模块、第一驱动模块以及第一开关模块,通过第一过压保护模块与第一欠压保护模块的级联输出结果控制第一开关模块,进而可以通断控制第一电源子电路,即当第一电源子电路出现过压时,第一欠压保护模块无需进行欠压保护检测,即可直接输出欠压结果,能够节省欠压保护检测时间,提高了电源电路的过压保护及欠压保护的及时性。

Description

电源电路、电源电路的工作方法及照明装置 技术领域
本申请涉及供电技术领域,具体涉及一种电源电路、电源电路的工作方法及照明装置。
背景技术
传统技术方案中的电源电路通常不具有欠压保护功能、过压保护功能,即使具有欠压保护功能和/或过压保护功能,相互独立的欠压保护功能和过压保护功能的传统技术方案,既需要进行欠压保护检测,又需要进行过压保护检测,这需要较长的欠压保护检测时间和过压保护检测时间,严重影响了电源电路保护的及时性。
需要注意的是,上述关于背景技术的介绍仅仅是为了便于清楚、完整地理解本申请的技术方案。因此,不能仅仅由于其出现在本申请的背景技术中,而认为上述所涉及到的技术方案为本领域所属技术人员所公知。
发明内容
本申请提供一种电源电路、电源电路的工作方法及照明装置,以缓解电源电路中过压保护及欠压保护动作较慢的技术问题。
第一方面,本申请提供一种电源电路1000,电源电路1000包括至少一个电源子电路,其中,第一电源子电路100包括第一过压保护模块120、第一欠压保护模块130、第一驱动模块140以及第一开关模块150,第一过压保护模块120的输入端与第一电源子电路100的输入端连接,用于输出第一控制信号;第一欠压保护模块130的第一输入端与第一电源子电路100的输入端连接,第一欠压保护模块130的第二输入端与第一过压保护模块120的输出端连接,用于根据第一控制信号和/或第一电源子电路100的供电电压输出第二控制信号;第一驱动模块140的输入端与第一欠压保护模块130的输出端连接,以接入第二控制信号;以及第一开关模块150的控制端与第一驱动模块140的输出端连接,用于通断控制第一电源子电路100;其中,当第一电源子电路100的供电电压大于预设下限电压且小于预设上限电压时,第一驱动模块140控制第一开关模块150处于导通状态;当第一电源子电路100的供电电压大于或者等于预设上限电压时,和/或,当第一电源子电路100的供电电压小于或者等于预设下限电压时,第一驱动模块140控制第一开关模块150处于断开状态。
第二方面,本申请提供一种电源电路1000的工作方法,其包括:配置至少一个电源子电路于电源电路1000,至少一个电源子电路中的第一电源子电路100包括第一过压保护模块120、第一欠压保护模块130、第一驱动模块140以及第一开关模块150;电性连接第一电源子电路100的输入端与第一过压保护模块120的输入端、第一欠压保护模块130的第一输入端;电性连接第一过压保护模块120的输出端与第一欠压保护模块130的第二输入端;电性连接第一欠压保护模块130的输出端与第一驱动模块140的输入端;以及电性连接第一驱动模块140的输出端与第一开关模块150的控制端以通断控制第一电源子电路100,其中,当第一电源子电路100的供电电压大于预设下限电压且小于预设上限电压时,第一驱动模块140控制第一开关模块150处于导通状态;当第一电源子电路100的供电电压大于或者等于预设上限电压时,和/或,当第一电源子电路100的供电电压小于或者等于预设下限电压时,第一驱动模块140控制第一开关模块150处于断开状态。
第三方面,本申请提供一种照明装置,其包括上述任一实施方式中的电源电路1000和发光模块2000,发光模块2000与电源电路1000电性连接。
本申请提供的电源电路1000、电源电路1000的工作方法及照明装置,通过第一过压保护模 块120与第一欠压保护模块130的级联输出结果控制第一开关模块150,进而可以通断控制第一电源子电路100,即当第一电源子电路100出现过压时,第一欠压保护模块130无需进行欠压保护检测,即可直接输出欠压结果,能够节省欠压保护检测时间,提高了电源电路1000的过压保护及欠压保护的及时性。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的电源电路1000的结构示意图。
图2为本申请实施例提供的第一输入模块110的结构示意图。
图3为本申请实施例提供的第一过压保护模块120的结构示意图。
图4为本申请实施例提供的第一欠压保护模块130的结构示意图。
图5为本申请实施例提供的第一驱动模块140的结构示意图。
图6为本申请实施例提供的第一开关模块150的结构示意图。
图7为本申请实施例提供的第二输入模块210的结构示意图。
图8为本申请实施例提供的第二过压保护模块220的结构示意图。
图9为本申请实施例提供的第二欠压保护模块230的结构示意图。
图10为本申请实施例提供的第二驱动模块240的结构示意图。
图11为本申请实施例提供的第二开关模块250的结构示意图。
图12为本申请实施例提供的第三输入模块310的结构示意图。
图13为本申请实施例提供的第三过压保护模块320的结构示意图。
图14为本申请实施例提供的第三欠压保护模块330的结构示意图。
图15为本申请实施例提供的第三驱动模块340的结构示意图。
图16为本申请实施例提供的第三开关模块350的结构示意图。
图17为本申请实施例提供的第一切换模块400的结构示意图。
图18为本申请实施例提供的第二切换模块500的结构示意图。
图19为本申请实施例提供的输出模块600的结构示意图。
图20为本申请实施例提供的照明装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1至图20,如图1所示,本实施例提供了一种电源电路1000,该电源电路1000包括至少一个电源子电路,其中,第一电源子电路100包括第一过压保护模块120、第一欠压保护模块130、第一驱动模块140以及第一开关模块150,第一过压保护模块120的输入端与第一电源子电路100的输入端连接,用于输出第一控制信号;第一欠压保护模块130的第一输入端与第一电源子电路100的输入端连接,第一欠压保护模块130的第二输入端与第一过压保护模块120的输出端连接,用于根据第一控制信号和/或第一电源子电路100的供电电压输出第二控制信号;第一驱动模块140的输入端与第一欠压保护模块130的输出端连接,以接入第二控制信号;以及第一开关模块150的控制端与第一驱动模块140的输出端连接,用于通断控制第一电源子电路100;其中,当第一电源子电路100的供电电压大于预设下限电压且小于预设上限电压时,第一驱动模块140控制第一开关模块150处于导通状态; 当第一电源子电路100的供电电压大于或者等于预设上限电压时,和/或,当第一电源子电路100的供电电压小于或者等于预设下限电压时,第一驱动模块140控制第一开关模块150处于断开状态。
可以理解的是,本实施例提供的电源电路1000,第一过压模块120设定有预设上限电压(例如可以是电源电路1000允许输入的最大电压),第一欠压保护模块设定有预设下限电压(例如可以是电源电路100允许输入的最小电压),通过将电源电路1000的输入电压分别于第一过压保护模块120中的预设上限电压和第一欠压模块130的预设下限电压比较,由第一过压保护模块120与第一欠压保护模块130的级联输出结果控制第一开关模块150,能够控制第一开关模块150的导通或者关闭以实现对第一电源子电路100的输入和输出的通断控制。当第一电源子电路100输入电压大于预设上限电压时,第一过压保护模块120检测可以得到一信号而将第一过压保护模块120的输出拉低到地,由于第一欠压保护模块130余第一过压保护模块120的输出端连接,因而第一欠压保护模块130的第一输入端与第一电源子电路100的输入电压直接拉低到地,此时第一欠压保护模块130无需进行欠压保护检测,即可直接输出欠压结果,能够节省欠压保护检测时间,提高了电源电路1000的过压保护及欠压保护的及时性。应当理解,这里的预设上限电压和预设下限电压分别可以为固定的数值,也可以为某段数值区间浮动。
其中,当第一电源子电路100的输入电压大于或者等于第一过压保护模块120的预设上限电压时(例如预设上限为80v,此时输入电压为90v),第一过压保护模块120可以输出一控制信号(例如高电平信号)以将第一过压保护模块120的输出和由第一过压保护模块120连接到第一欠压保护模块130连接处的输入拉低(例如都拉到地),此时由第一电源子电路100输入至第一欠压模块130的第一输入端的电压也拉低到地,进而使得第一欠压保护模块130输出控制信号(例如低电平信号)至第一驱动模块140,通过第一驱动模块140发送控制信号(例如低电平信号)使得第一开关模块150断开(即不闭合,不导通)。
其中,当第一电源子电路100的输入电压小于或者等于第一欠压保护模块130的预设下限电压时(例如预设下限电压为20v,此时输入电压为15v),第一过压保护模块120可以输出一控制信号(例如低电平信号)使得第一过压保护模块120和第一欠压保护模块130之间断开(即不导通),此时由第一电源子电路100输入至第一欠压模块130的第一输入端的电压分压后的电压仍然小于第一欠压保护模块130的预设下限电压,进而使得第一欠压保护模块130输出控制信号(例如低电平信号)至第一驱动模块140给第一欠压保护模块130,通过第一驱动模块140发送控制信号(例如低电平信号)使得第一开关模块150断开。
其中,当第一电源子电路100的供电电压(即初始的输入电压)小于第一过压保护模块120的预设上限电压且大于第一欠压保护模块130的预设下限电压时(例如预设上限电压为80v,预设下限电压为20v,输入电压为48v),第一过压保护模块120可以对应输出第一控制信号(例如低电位信号)使得第一过压保护模块120和第一欠压保护模块130之间断开(即不导通)。第一欠压保护模块130可以根据第一高电位控制信号输出第二高电位控制信号(即第一欠压保护模块130根据自身的电阻分压进行比较输出第二高电位控制信号),此时由第一电源子电路100输入至第一欠压模块130的第一输入端的电压分压后的电压大于第一欠压保护模块130的预设下限电压,进而使得第一欠压保护模块130输出控制信号(例如高电平信号)至第一驱动模块140给第一欠压保护模块130,通过第一驱动模块140发送控制信号(例如高电平信号)使得第一开关模块150导通,此时,第一电源子电路100可以为后端负载正常供电。
在一些实施例中,第一过压保护模块120和第一欠压保护模块130之间也可以互换位置,或者为了实现过压或者欠压其中一个功能时,只使用其中一个保护模块。
在其中一个实施例中,第一电源子电路100还包括第一输入模块110,第一输入模块110的 输入端用于接入电压输入,例如可以是第一直流电压DC1,第一输入模块110的输出端与第一过压保护模块120的输入端、第一欠压保护模块130的第一输入端以及第一开关模块150的输入端连接,用于维持第一直流电压DC1的电位,并滤波第一直流电压DC1。
如图2所示,在其中一个实施例中,第一输入模块110可以包括第三十八电容C21、第三十九电容C22以及第二双向稳压二极管D7,第一输入端子J1与第三十八电容C21的一端、第三十九电容C22的一端以及第二双向稳压二极管D7的一端以及第一电阻R21的一端连接,其中,第三十八电容C21可以用于低频滤波,第三十九电容C22可以用于高频滤波,第二双向稳压二极管D7可以用于钳制第一直流电压DC1,第二输入端子J2与第三十八电容C21的另一端、第三十九电容C22的另一端以及第二双向稳压二极管D7的另一端连接,并接地。如图3所示,在其中一个实施例中,第一过压保护模块120可以包括第一电阻R21、第二电阻R26、第三电阻R34、第四电阻R32、第一电容C32、第一运算放大器U2B、第五电阻R36、第六电阻R27、第二电容C29、第七电阻R18、第八电阻R19、第九电阻R20、第十电阻R28以及第一三极管Q7。第一电阻R21的一端与第一电源子电路100的输入端连接,第二电阻R26的一端与第一电阻R21的另一端连接,第三电阻R34的一端与第二电阻R26的另一端连接,第三电阻R34的另一端接地,第四电阻R32的一端与第三电阻R34的一端连接,第一电容C32的一端与第四电阻R32的一端连接,第一电容C32的另一端接地,第一运算放大器U2B的同相输入端与第四电阻R32的另一端连接,可以用于获取第一直流电压DC1的实时电压。第五电阻R36的一端与第一运算放大器U2B的同相输入端连接,第五电阻R36的另一端与第一运算放大器U2B的输出端连接,需要进行说明的是,该结构可以构成第一运算放大器U2B的同相反馈,使得第一过压保护模块120具有滞回功能,可以防止其在过压阈值附近出现误动作。第六电阻R27的一端与第一运算放大器U2B的反相输入端连接,第二电容C29的一端与第六电阻R27的另一端连接,第二电容C29的另一端接地,第七电阻R18的一端与第二电容C29的一端连接,第七电阻R18的另一端接地,第八电阻R19的一端与第七电阻R18的一端连接,第九电阻R20的一端与第八电阻R19的另一端连接,第九电阻R20的另一端用于连接直流电源VCC,以用于设置预设上限电压。第十电阻R28的一端与第一运算放大器U2B的输出端连接;第一三极管Q7的基极与第十电阻R28的另一端连接,第一三极管Q7的发射极接地。可以理解的是,第一电源子电路100的供电电压大于或者等于预设上限电压时,第一三极管Q7的集电极可以输出第一控制信号;反之,第一三极管Q7的集电极可以输出第一高电位控制信号。
在其中一个实施例中,本申请中的三极管也可以为对应参数的N沟道型场效应晶体管。
需要进行说明的是,在另外一个实施例中,第一过压保护模块120可以包括第一电阻R21或者第二电阻R26中的一个,同样可以构成分压检测电路。
在另外一个实施例中,第一过压保护模块120也可以包括第八电阻R19或者第九电阻R20中的一个,同样可以实现直流电源VCC的分压供电。
如图4所示,在其中一个实施例中,第一欠压保护模块130可以包括第十一电阻R14、第十二电阻R25、第十三电阻R33、第十四电阻R30、第三电容C31、第二运算放大器U2A、第十五电阻R37、第十六电阻R24、第四电容C28、第十七电阻R15、第十八电阻R16、第十九电阻R17、第五电容C24、第六电容C27、第二十电阻R29以及第一二极管D10。第十一电阻R14的一端与第一电阻R21的一端连接,第十二电阻R25的一端与第十一电阻R14的另一端连接,第十二电阻R25的另一端与第一三极管Q7的集电极连接,第十三电阻R33的一端与第十二电阻R25的另一端连接,第十三电阻R33的另一端接地,第十四电阻R30的一端与第十三电阻R33的一端连接,第三电容C31的一端与第十四电阻R30的一端连接,第三电容C31的另一端接地,第二运算放大器U2A的同相输入端与第十四电阻R30的另一端连接,以用于实时接收第一过压保护模块120的输出结果和/或第一直流电压DC1的实时电 压。第二运算放大器U2A的负电源端接地,第二运算放大器U2A的正电源端与直流电源VCC连接。第十五电阻R37的一端与第二运算放大器U2A的同相输入端连接,第十五电阻R37的另一端与第二运算放大器U2A的输出端连接,以此构成第二运算放大器U2A的正相反馈,使得第一欠压保护模块130具有滞回功能,可以防止第一欠压保护模块130在其欠压阈值附近出现误动作。第十六电阻R24的一端与第二运算放大器U2A的反相输入端连接,第四电容C28的一端与第十六电阻R24的另一端连接,第四电容C28的另一端接地;第十七电阻R15的一端与第四电容C28的一端连接,第十七电阻R15的另一端接地,第十八电阻R16的一端与第十七电阻R15的一端连接,第十九电阻R17的一端与第十八电阻R16的另一端连接,第十九电阻R17的另一端与直流电源VCC连接,可以理解的是,如此构造可以用于设置第一电源子电路100的预设下限电压。第五电容C24的一端与第十九电阻R17的另一端连接,第五电容C24的另一端接地,第六电容C27的一端与第十九电阻R17的另一端连接,第六电容C27的另一端接地。第二十电阻R29的一端与第二运算放大器U2A的输出端连接。第一二极管D10的阴极与第二十电阻R29的一端连接,第一二极管D10的阳极与第二十电阻R29的另一端连接,第一二极管D10用于形成快速泄放路径。
在其中一个实施例中,第一欠压保护模块130可以包括第十一电阻R14或者第十二电阻R25中的一个。第一欠压保护模块130可以包括第十七电阻R15或者第十八电阻R16中的一个。第一欠压保护模块130可以不包括第五电容C24和/或第六电容C27,其中,第五电容C24可以作为低频滤波电容或者高频滤波电容中的一个,第六电容C27可以作为低频滤波电容或者高频滤波电容中的另一个。
在其中一个实施例中,第一欠压保护模块130还可以包括第十四二极管D21,其可以用于限定电信号的定向流动。
如图5所示,在其中一个实施例中,第一驱动模块140可以包括第一场效应晶体管Q8A、第二场效应晶体管Q8B、第七电容C26、第八电容C30、第九电容C23、第二十一电阻R22、第二二极管D9、第二十二电阻R23、第一光耦PH1、第二十三电阻R13、第十电容C25、第三二极管D12、第二十四电阻R39、第十一电容C33、第二十五电阻R40、第二光耦PH2以及第二十六电阻R35。第一场效应晶体管Q8A的栅极与第二十电阻R29的另一端连接,第一场效应晶体管Q8A的漏极与直流电源VCC连接;第二场效应晶体管Q8B的漏极与第一场效应晶体管Q8A的源极连接,第二场效应晶体管Q8B的栅极与第一场效应晶体管Q8A的栅极连接,第一场效应晶体管Q8A与第二场效应晶体管Q8B可以构成推挽输出电路,以提高电流驱动能力。第七电容C26的一端与第一场效应晶体管Q8A的漏极连接,第七电容C26的另一端接地,第八电容C30的一端与第一场效应晶体管Q8A的漏极连接,第八电容C30的另一端接地,第九电容C23的一端与第二场效应晶体管Q8B的漏极连接,第二十一电阻R22的一端与第九电容C23的一端连接,第二十一电阻R22的另一端与第九电容C23的另一端连接,第二二极管D9的阴极与第二十一电阻R22的另一端连接,第二二极管D9的阳极接地,第二十二电阻R23的一端与第二二极管D9的阴极连接,第一光耦PH1的第一管脚与第二十二电阻R23的另一端连接,第一光耦PH1的第二管脚接地,第二十三电阻R13的一端与第一光耦PH1的第四管脚连接,第二十三电阻R13的另一端用于连接直流偏置电源Bais,第十电容C25的一端与第二十三电阻R13的一端连接,第十电容C25的另一端接地,第一光耦PH1可以用于实现耦合前后电压的隔离。第三二极管D12的阳极与第二十一电阻R22的一端连接;第二十四电阻R39的一端与第三二极管D12的阴极连接,第二十四电阻R39的另一端与直流电源VCC连接;第十一电容C33的一端与第二十四电阻R39的一端连接,第十一电容C33的另一端与直流电源VCC连接;第二十五电阻R40的一端与第十一电容C33的一端连接;第二光耦PH2的第一管脚与第二十五电阻R40的另一端连接,第二光耦PH2的第二管脚与第三二极管D12的阳极连接;第二十六电阻R35的一端与第一光耦PH1的第 三管脚和第二光耦PH2的第四管脚连接,第二光耦PH2同样用于实现耦合前后电压的隔离。可以理解的是,在其中一个实施例中,第一驱动模块140可以不包括第一场效应晶体管Q8A、第二场效应晶体管Q8B、第七电容C26、第八电容C30、第九电容C23、第二十一电阻R22、第二二极管D9以及第二十二电阻R23。对应地,第一欠压保护模块130可以直接电性连接第一光耦PH1的第一管脚和第二光耦PH2的第二管脚。
如图6所示,在其中一个实施例中,第一开关模块150包括第二场效应管Q5和第三场效应管Q6,第二场效应管Q5的漏极与第十一电阻R14的一端连接,第二场效应管Q5的栅极与第二十六电阻R35的另一端连接;第三场效应管Q6的栅极与第二场效应管Q5的栅极连接,第三场效应管Q6的源极与第二场效应管Q5的源极连接。
在其中一个实施例中,第一开关模块150可以包括第一场效应管Q3、第二场效应管Q5、第三场效应管Q6、第四场效应管Q4、第二十七电阻R12以及第一稳压二极管D8,第一场效应管Q3的漏极与第十一电阻R14的一端连接;第二场效应管Q5的漏极与第一场效应管Q3的漏极连接,第二场效应管Q5的栅极与第二十六电阻R35的另一端连接;第三场效应管Q6的栅极与第二场效应管Q5的栅极连接,第三场效应管Q6的源极与第一场效应管Q3的源极和第二场效应管Q5的源极连接;第四场效应管Q4的栅极与第三场效应管Q6的栅极连接,第四场效应管Q4的源极与第三场效应管Q6的源极连接,第四场效应管Q4的漏极与第三场效应管Q6的漏极连接;第二十七电阻R12的一端与第四场效应管Q4的栅极连接,第二十七电阻R12的另一端与第四场效应管Q4的源极连接;第一稳压二极管D8的负极与第四场效应管Q4的栅极连接,第一稳压二极管D8的正极与第四场效应管Q4的源极连接。
其中,第一场效应管Q3、第二场效应管Q5、第三场效应管Q6、第四场效应管Q4中的至少一个可以为N沟道场效应晶体管,当N沟道场效应晶体管的栅极电位大于N沟道场效应晶体管的源极电位一定值时,则该N沟道场效应晶体管将打开;反之,则关闭。
可以理解的是,本实施例提供的第一开关模块150在工作过程中,可以减少对应场效应管的发热量,可以提高整个电源电路1000的稳定可靠性。
在其中一个实施例中,电源电路1000可以包括N+1个电源子电路和N个切换模块,N为正整数;N个切换模块与N+1个电源子电路对应电性连接,N个切换模块用于确定N+1个电源子电路的优先级顺序,及同一时间切换优先级最高且供电电压位于预设上限电压与预设下限电压之间的电源子电路处于导通状态。
可以理解,电源子电路可以包括多个,例如第一电源子电路100、第二电源子电路200、第三电源子电路300……等等,切换模块可以包括多个切换模块,但是数量比电源子电路少1,例如切换模块可以包括第一切换模块400、第二切换模块500等,可以理解,从上往下每一路高优先的欠压保护模块的输出端都连接到后面相应的切换模块,例如第一欠压保护模块120需要电性连接到第一切换模块400和第二切换模块500(如果后续还有多路的话则需要连接到相应的切换模块上),第二欠压模块230电性连接到第二切换模块500(如果后续还有多路的话则需要连接到相应的切换模块上)。其中,其中,切换模块位于相邻两个电源子电路之间,每一切换模块还分别电性连接到相邻两个电源子电路的欠压保护模块和第一驱动模块之间,例如第一切换模块400电性连接到第一欠压保护模块130和第一驱动模块140之间,且第一切换模块400电性连接到第二欠压保护模块230和第二驱动模块240之间。高优先级的切换模块还电性连接到后面每一级的开关模块。切换模块还电性连接到对应的驱动模块上,例如第一切换模块400电性连接到第一驱动模块140和第二驱动模块240。应当理解,如果第一电源子电路100的输入电压符合预设上、下限电压时,第一开关模块150导通,且通过第一欠压保护模块130发送控制信号到第一切换模块400,使得第一切换模块400保持断开而不会控制第二开关模块250导通、断开,而且第一欠压保护模块130还发送控制信号到第二切换模块500,使得第二切换模块500不控制通过第二切换模块500控制第 三开关模块350导通,只有当该路的电压输入符合要求时,才可以将对应的开关模块导通以允许其工作,因此高优先级符合要求时可以释放对低优先级电源子电路的控制权,也即当高优先级的电压符合要求时,如果低优先级电源子电路符合要求时,则高优先级不会影响低优先级电路的工作。而如果第一电源子电路100的输入电压不符合预设上限电压或预设下限电压时,第二电源子电路符合时,则通过第二电源子电路供电,此时如果第一电源子电路又符合要求时,则会通过第一切换模块400控制第二开关模块250断开,即让原先符合预设上、下限电压要求的低优先级电路断开,而让重新符合预设上、下限电压要求的高优先级电路导通。
例如,N+1个电源子电路可以包括第二电源子电路200,N个切换模块可以包括第一切换模块400。其中,第二电源子电路200可以采用与第一电源子电路100相同的电路拓扑结构。其中,第二电源子电路200可以包括第二输入模块210、第二过压保护模块220、第二欠压保护模块230、第二驱动模块240以及第二开关模块250。
如图7所示,在其中一个实施例中,第二输入模块210可以包括第四十电容C35、第四十一电容C36以及第三双向稳压二极管D15。第二输入模块210可以与第一输入模块110具有相同的电路拓扑结构。
如图8所示,在其中一个实施例中,第二过压保护模块220可以包括第二十八电阻R55、第二十九电阻R63、第三十电阻R71、第三十一电阻R69、第十二电容C46、第三运算放大器U3B、第三十二电阻R73、第三十三电阻R64、第十三电容C43、第三十四电阻R56、第三十五电阻R57、第三十六电阻R58、第三十七电阻R65以及第二三极管Q17。第二过压保护模块220可以与第一过压保护模块120具有相同的电路拓扑结构。
如图9所示,在其中一个实施例中,第二欠压保护模块230可以包括第三十八电阻R51、第三十九电阻R62、第四十电阻R70、第四十一电阻R67、第十四电容C45、第四运算放大器U3A、第四十二电阻R74、第四十三电阻R61、第十五电容C42、第四十四电阻R52、第四十五电阻R53、第四十六电阻R54、第十六电容C38、第十七电容C41、第四十七电阻R66以及第四二极管D18。第二欠压保护模块230可以与第一欠压保护模块130具有相同的电路拓扑结构。
如图10所示,在其中一个实施例中,第二驱动模块240可以包括第三场效应晶体管Q18A、第四场效应晶体管Q18B、第十八电容C40、第十九电容C44、第二十电容C37、第四十八电阻R59、第五二极管D17、第四十九电阻R60、第三光耦PH3、第五十电阻R50、第二十一电容C39、第六二极管D20、第五十一电阻R76、第二十二电容C47、第五十二电阻R77、第四光耦PH4以及第五十三电阻R72。第二驱动模块240可以与第一驱动模块140具有相同的电路拓扑结构。
如图11所示,在其中一个实施例中,第二开关模块250可以包括第五场效应管Q12、第六场效应管Q15、第七场效应管Q16、第八场效应管Q13、第五十四电阻R49以及第二稳压二极管D16。第二开关模块250可以与第一开关模块150具有相同的电路拓扑结构。
例如,N+1个电源子电路还可以包括第三电源子电路300,N个切换模块还可以包括第二切换模块500。其中,第三电源子电路300可以采用与第一电源子电路100相同的电路拓扑结构。
其中,第三电源子电路300可以包括第三输入模块310、第三过压保护模块320、第三欠压保护模块330、第三驱动模块340以及第三开关模块350。
如图12所示,在其中一个实施例中,第三输入模块310可以包括第四十二电容C49、第四十三电容C50以及第四双向稳压二极管D22。其中,第三输入模块310也可以与第一输入模块110具有相同的电路拓扑结构。
如图13所示,在其中一个实施例中,第三过压保护模块320包括第五十五电阻R95、第五 十六电阻R100、第五十七电阻R108、第五十八电阻R106、第二十三电容C62、第五运算放大器U4B、第五十九电阻R110、第六十电阻R101、第二十四电容C57、第六十一电阻R92、第六十二电阻R93、第六十三电阻R94、第六十四电阻R102以及第三三极管Q27。其中,第三过压保护模块320也可以与第一过压保护模块120具有相同的电路拓扑结构。
如图14所示,在其中一个实施例中,第三欠压保护模块330包括第六十五电阻R88、第六十六电阻R99、第六十七电阻R107、第六十八电阻R104、第二十五电容C61、第六运算放大器U4A、第六十九电阻R111、第七十电阻R98、第二十六电容C56、第七十一电阻R89、第七十二电阻R90、第七十三电阻R91、第二十七电容C52、第二十八电容C55、第七十四电阻R103以及第七二极管D26。其中,第三欠压保护模块330也可以与第一欠压保护模块130具有相同的电路拓扑结构。
如图15所示,在其中一个实施例中,第三驱动模块340包括第五场效应晶体管Q28A、第六场效应晶体管Q28B、第二十九电容C54、第三十电容C58、第三十一电容C51、第七十五电阻R96、第八二极管D24、第七十六电阻R97、第五光耦PH5、第七十七电阻R87、第三十二电容C53、第九二极管D27、第七十八电阻R113、第三十三电容C63、第七十九电阻R114、第六光耦PH6以及第八十电阻R109。其中,第三驱动模块340也可以与第一驱动模块140具有相同的电路拓扑结构。
如图16所示,在其中一个实施例中,第三开关模块350包括第九场效应管Q22、第十场效应管Q25、第十一场效应管Q26、第十二场效应管Q23、第八十一电阻R86以及第三稳压二极管D23。其中,第三开关模块350也可以与第一开关模块150具有相同的电路拓扑结构。如图17所示,在其中一个实施例中,第一切换模块400可以包括第十二极管D11、第八十二电阻R46、第三十四电容C34、第四三极管Q14、第八十三电阻R44、第五三极管Q11、第八十四电阻R47、第八十五电阻R48、第六三极管Q10、第八十六电阻R41、第八十七电阻R43、第十一二极管D13、第十二二极管D14、第八十八电阻R42、第八十九电阻R45以及第七三极管Q9。第十二极管D11的正极与第二运算放大器U2A的输出端连接,第八十二电阻R46的一端与第十二极管D11的负极连接,第三十四电容C34的一端与第十二极管D11的负极连接,第三十四电容C34的另一端接地,第四三极管Q14的基极与第八十二电阻R46的另一端连接,第四三极管Q14的发射极接地,第四三极管Q14的集电极与第四十七电阻R66的另一端连接,如此构造可以用于确定第一电源子电路100的优先级高于第二电源子电路200的优先级。第八十三电阻R44的一端与直流电源VCC连接,第五三极管Q11的集电极与第八十三电阻R44的另一端连接,第五三极管Q11的发射极接地,第八十四电阻R47的一端与第五三极管Q11的基极连接,第八十四电阻R47的另一端与第四十八电阻R59的一端连接,第八十五电阻R48的一端与第八十四电阻R47的一端连接,第八十五电阻R48的另一端接地,第六三极管Q10的基极与第八十三电阻R44的另一端连接,第六三极管Q10的发射极接地,第八十六电阻R41的一端与第六三极管Q10的集电极连接,第八十七电阻R43的一端与第六三极管Q10的集电极连接,第八十七电阻R43的另一端与第八十六电阻R41的另一端和第五场效应管Q12的源极连接,如此构造,当第二电源子电路200进行过压保护和/或欠压保护时,可以可靠断开第二开关模块250。第十一二极管D13的阳极与第九场效应管Q22的源极连接,第十二二极管D14的阳极与第五场效应管Q12的源极连接,第八十八电阻R42的一端与第十一二极管D13的阴极和第十二二极管D14的阴极连接,第八十九电阻R45的一端与第八十八电阻R42的另一端连接,第八十九电阻R45的另一端接地,第七三极管Q9的栅极与第八十九电阻R45的一端连接,第七三极管Q9的发射极接地,第七三极管Q9的集电极与第二十电阻R29的另一端连接,如此构造,可以确保第二电源子电路200和/或第三电源子电路300可靠停止供电时,第一电源子电路100才会开始正常供电。在其中一个实施例中,第一切换模块400还可以包括第八十六电阻R41或者第八十七电阻 R43中的一个,其他的电性连接关系可以保持不变。
在其中一个实施例中,第二切换模块500可以包括第十三二极管D19、第十四二极管D21、第九十电阻R83、第三十五电容C48、第八三极管Q24、第九十一电阻R81、第九三极管Q21、第九十二电阻R84、第九十三电阻R85、第十三极管Q20、第九十四电阻R78、第九十五电阻R80、第九十六电阻R79、第九十七电阻R82以及第十一三极管Q19。如此构造可以用于确定第一电源子电路100的供电优先级、第二电源子电路200的供电优先级均高于第三电源子电路300的供电优先级。第十三二极管D19的阳极与第四运算放大器U3A的输出端连接,第十四二极管D21的阳极与第二运算放大器U2A的输出端连接,第九十电阻R83的一端与第十三二极管D19的阴极和第十四二极管D21的阴极连接,第三十五电容C48的一端与第九十电阻R83的一端连接,第三十五电容C48的另一端接地,第八三极管Q24的基极与第九十电阻R83的另一端连接,第八三极管Q24的发射极接地,第八三极管Q24的集电极与第七十四电阻R103的另一端连接。第九十一电阻R81的一端与直流电源VCC连接,第九三极管Q21的集电极与第九十一电阻R81的另一端连接,第九三极管Q21的发射极接地,第九十二电阻R84的一端与第九三极管Q21的基极连接,第九十二电阻R84的另一端与第七十五电阻R96的一端连接,第九十三电阻R85的一端与第九十二电阻R84的一端连接,第九十三电阻R85的另一端接地,第十三极管Q20的基极与第九十一电阻R81的另一端连接,第十三极管Q20的发射极接地,第九十四电阻R78的一端与第十三极管Q20的集电极连接,第九十五电阻R80的一端与第十三极管Q20的集电极连接,第九十五电阻R80的另一端与第九十四电阻R78的另一端和第九场效应管Q22的源极连接,第九十六电阻R79的一端与第九十五电阻R80的另一端连接,第九十七电阻R82的一端与第九十六电阻R79的另一端连接,第九十七电阻R82的另一端接地,第十一三极管Q19的基极与第九十七电阻R82的一端连接,第十一三极管Q19的发射极接地,第十一三极管Q19的集电极与第四十七电阻R66的另一端连接。
在其中一个实施例中,电源电路1000还包括输出模块600,输出模块600的输入端与第一开关模块150的输出端、第二开关模块250的输出端以及第三开关模块350的输出端连接,用于输出及稳压滤波第一直流电压、第二直流电压以及第三直流电压中的一个。
在其中一个实施例中,输出模块600可以包括第三十六电容C59、第三十七电容C60以及第一双向稳压二极管D25,其中,第三十六电容C59、第三十七电容C60可以作为输出滤波电容,第一双向稳压二极管D25可以用于输出端口的浪涌电压保护及静电保护,第三十六电容C59的一端与第三十七电容C60的一端、第一双向稳压二极管D25的一端、第三场效应管Q6的漏极、第七场效应管Q16的漏极、第十一场效应管Q26的漏极以及第一输出端子J7连接,第二输出端子J8与第三十六电容C59的另一端、第三十七电容C60的另一端以及第一双向稳压二极管D25的另一端连接,并接地。
在一些实施例中,当第一输入模块110输入的电压大于预设上限电压时,U2B的5脚高于6脚,因此U2B的7脚输出高电平,Q7导通,Q7的3脚和2脚连通拉为低电平,R33的上端拉低到地,R30为低,因此U2A的3脚低于2脚,U2A的1脚输出低电平,R29右端拉低,Q8(Q8、电容C26等构成的推挽电路也可省去)的栅极拉低,PH1断开,PH2导通(相反地,如果R29右端输入为高,则PH1导通,PH2断开),Q3-Q6关闭,电源子电路的输入与后面输出之间断开;且Q14、Q24不导通,释放对低优先级通道的控制权(即其他路输入满足电压范围时,可以正常工作)。
在一些实施例中,当第一输入模块110输入的电压小于预设下限电压时,U2B的5脚低于6脚,因此U2B的7脚输出低电平,Q7断开,R14、R25、R33三个电阻分压,因此U2A的3脚低于2脚,U2A的1脚输出低电平,R29右端拉低,Q8(Q8、电容C26等构成的推挽电路也可省去)的栅极拉低,PH1断开,PH2导通,Q3-Q6关闭,电源子电路的输入与后面输 出之间断开。
在一些实施例中,当第一输入模块110的输入电压小于预设上限电压且大于预设下限电压时,U2B的5脚低于6脚,因此U2B的7脚输出低电平,Q7断开,三个电阻分压,此时U2A的3脚高于2脚,U2A的1脚输出高电平,R29的右端拉高,PH1导通,PH2断开,Q3-Q6打开,电源子电路的输入与后面输出之间导通;Q14和Q24导通拉到地,后面的开关关闭,即当判定D18/D26的电平拉低,后面对应的开关全部断开。
可以理解上述电路每一路不允许同时导通,当Q12-16为低,Q9断开,释放D10的控制,因而高优级先满足,低优先不影响高优先级,且高优先级直接导通;高优先级后满足,高优先级断开低优先级,待检测到低优先级断开成功后再高优先级导通。
在其中一个实施例中,基于本申请的发明构思,可以根据N+1个电源子电路和N个切换模块之间对应的连接关系的设置,来对应调整第一电源子电路100、第二电源子电路200以及第三电源子电路300之间的供电优先级排序。例如,当第一电源子电路100的供电优先级高于第二电源子电路200的供电优先级时,第一电源子电路100的供电电压不存在欠压和/或过压时,本申请的电源电路会优先选择第一电源子电路100进行供电。
需要进行说明的是,本申请的附图所示的技术方案未全部以文字描述呈现于本申请的说明书中,但是在本申请的其他实施例可以根据对应的附图去直接且毫无疑义地确定不同的实施例,可以根据同一附图所示的内容去得到至少一个不同的实施例。
需要进行说明的是,第一切换模块400和第二切换模块500可以构成优先级逻辑切换电路,用于控制第一电源子电路100、第二电源子电路200以及第三电源子电路300之间的优先级及切换死区时间。具体地,带过压欠压保护及死区时间控制的优先级逻辑切换电路:每个电源子电路均有过压和欠压检测电路,当每个电源子电路的电压满足我们设定的输入电压区间时,各检测信号将传送到各电源子电路之间的优先级自动控制切换的优先级逻辑切换电路。优先级逻辑切换电路会将系统的电源自动切换到当前有直流电源提供且优先级最高的电源子电路。即当检测到高优先级的电源子电路满足预设电压区间时,优先级逻辑切换电路会将系统的电源自动切换到高优先级电源通道。
具体地,在第一电源子电路100中,第一欠压保护模块130通过第一过压保护模块120、第一欠压保护模块130同时判断第一电源子电路100的供电电压是否处于预设上限电压与预设下限电压之间,如果第一电源子电路100的供电电压处于预设上限电压与预设下限电压之间,则第一欠压保护模块130输出高电位的第二控制信号,第一驱动模块140也输出对应的高电平信号,进而通过第一开关模块150控制第一电源子电路100处于导通状态。同理,第二电源子电路200、第三电源子电路300的工作原理与第一电源子电路100的工作原理相同。与此同时,第一切换模块400、第二切换模块500等切换模块可以控制除第一电源子电路100之外的其它电源子电路处于断开状态。
同理,如果第一电源子电路100、第三电源子电路300的供电电压未处于预设上限电压与预设下限电压之间,且第二电源子电路200的供电电压的供电电压处于预设上限电压与预设下限电压之间的话,第一切换模块400、第二切换模块500等切换模块可以控制除第二电源子电路200导通而其它路断开,而且不会影响其他路的控制权(即当原有导通的路不供电时,其它电路重新符合电压要求时,该路同样可以实现导通;并且当高优先级从不符合要求到重新满足要求后,则重新让高优先级导通。
在其中一个实施例中,直流偏置电源Bais可以由偏置电源电路提供,该偏置电源电路可以包括电荷泵,该电荷泵用于提供N沟道型场效应晶体管的开启电压。其中,上述各实施例中的场效应晶体管可以根据实际应用场景的电压和电流来选择合适耐压值和合适导通内阻。需要进行说明的是,采用继电器搭建的切换电路控制各电源子电路的切换时间均需要几十毫秒甚至几百毫秒,但是,由于第一切换模块400和/或第二切换模块500均未采用继电器搭 建的切换电路,因此,本申请提供的用于控制各电源子电路的切换时间可以降低至微秒级。
可以理解的是,本申请可以实现一种基于N沟道型场效应晶体管的多通道电源自动切换电路。其不仅可以满足小型化,超快速响应,高可靠性的需求,同时也避免了在高直流电压且大电流应用场景中P沟道型场效应晶体管面临的选型难,成本高的问题。另外其过压保护功能和欠压保护功能使得系统可靠性更高。优先级逻辑切换电路可以实现更快的切换速度,从而可以实现电源电路1000的输出电压跌落时间短且跌落幅值小,有效解决了LED(Light Emitting Diode,发光二极管)灯出现闪烁的问题。
如图20所示,在其中一个实施例中,本实例提供一种照明装置,其包括控制盒10000和发光模块2000,该控制盒10000包括上述任一实施例中的电源电路1000和适配器3000,发光模块2000与电源电路1000电性连接。适配器3000的输出端与电源电路1000的一输入端连接,市电4000与适配器3000的输入端连接,用于提供第一直流电压DC1。大容量电池板5000与电源电路1000的另一输入端连接,用于提供第二直流电压DC2。小容量电池6000与电源电路1000的另一输入端连接,用于提供第三直流电压DC3。
可以理解的是,本实施例提供的照明装置,通过第一过压保护模块120与第一欠压保护模块130的级联输出结果控制第一开关模块150,进而可以通断控制第一电源子电路100,即当第一电源子电路100出现过压时,第一欠压保护模块130无需进行欠压保护检测,即可直接输出欠压结果,能够节省欠压保护检测时间,提高了电源电路1000的过压保护及欠压保护的及时性。
在其中一个实施例中,发光模块2000可以为LED,当然其它例如激光二极管,或者有机发光二极管等也是可行的。控制盒10000可以通过电线等给发光模块2000供电。
在其中一个实施例中,电源电路1000、适配器3000均可以设置于控制盒10000内部,当然适配器3000还可设置在控制盒10000的外部,具体不作限定。
在其中一个实施例中,电源电路1000可以制作为集成电路,并设置于灯具内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的电源电路、电源电路的工作方法及照明装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (18)

  1. 一种电源电路(1000),其特征在于,所述电源电路(1000)包括至少一个电源子电路,其中,第一电源子电路(100)包括:
    第一过压保护模块(120),所述第一过压保护模块(120)的输入端与所述第一电源子电路(100)的输入端连接,用于接收所述第一电源子电路(100)的输入电压并输出第一控制信号;
    第一欠压保护模块(130),所述第一欠压保护模块(130)的第一输入端与所述第一电源子电路(100)的输入端连接,所述第一欠压保护模块(130)的第二输入端与所述第一过压保护模块(120)的输出端连接,用于接收所述第一控制信号和/或所述第一电源子电路(100)的输入电压,并根据所述第一控制信号和/或所述第一电源子电路(100)的输入电压输出第二控制信号;
    第一驱动模块(140),所述第一驱动模块(140)的输入端与所述第一欠压保护模块(130)的输出端连接,以接入所述第二控制信号;以及
    第一开关模块(150),所述第一开关模块(150)的控制端与所述第一驱动模块(140)的输出端连接,用于通断控制所述第一电源子电路(100);
    其中,当所述第一电源子电路(100)的供电电压大于预设下限电压且小于预设上限电压时,所述第一驱动模块(140)控制所述第一开关模块(150)处于导通状态;当所述第一电源子电路(100)的供电电压大于或者等于预设上限电压时,和/或,当所述第一电源子电路(100)的供电电压小于或者等于预设下限电压时,所述第一驱动模块(140)控制所述第一开关模块(150)处于断开状态。
  2. 根据权利要求1所述的电源电路(1000),其特征在于,所述电源电路(1000)包括:
    N+1个电源子电路,N为正整数;和
    N个切换模块,与所述N+1个电源子电路对应电性连接,用于确定所述N+1个电源子电路的优先级顺序,及同一时间切换优先级最高且供电电压位于所述预设上限电压与所述预设下限电压之间的电源子电路处于导通状态。
  3. 根据权利要求1所述的电源电路(1000),其特征在于,所述第一过压保护模块(120)包括:
    第一电阻R21,所述第一电阻R21的一端与所述第一电源子电路(100)的输入端连接;
    第三电阻R34,所述第三电阻R34的一端与所述第一电阻R21的另一端连接,所述第三电阻R34的另一端接地;
    第四电阻R34,所述第四电阻R34的一端与所述第三电阻R34的一端连接;
    第一运算放大器U2B,所述第一运算放大器U2B的同相输入端与所述第四电阻R34的另一端连接;
    第五电阻R36,所述第五电阻R36的一端与所述第一运算放大器U2B的同相输入端连接,所述第五电阻R36的另一端与所述第一运算放大器U2B的输出端连接;
    第六电阻R27,所述第六电阻R27的一端与所述第一运算放大器U2B的反相输入端连接;
    第二电容C29,所述第二电容C29的一端与所述第六电阻R27的另一端连接,所述第二电容C29的另一端接地;
    第七电阻R18,所述第七电阻R18的一端与所述第二电容C29的一端连接,所述第七电阻R18的另一端接地;
    第九电阻R20,所述第九电阻R20的一端与所述第七电阻R18的一端连接,所述第九电阻R20的另一端用于连接直流电源VCC;
    第十电阻R28,所述第十电阻R28的一端与所述第一运算放大器U2B的输出端连接;以及
    第一三极管Q7,所述第一三极管Q7的基极与所述第十电阻R28的另一端连接,所述第一三 极管Q7的发射极接地。
  4. 根据权利要求3所述的电源电路(1000),其特征在于,所述第一欠压保护模块(130)包括:
    第十一电阻R14,所述第十一电阻R14的一端与所述第一电阻R21的一端连接;
    第十三电阻R33,所述第十三电阻R33的一端与所述第十一电阻R14的另一端连接,所述第十三电阻R33的另一端接地;
    第十四电阻R30,所述第十四电阻R30的一端与所述第十三电阻R33的一端连接;
    第二运算放大器U2A,所述第二运算放大器U2A的同相输入端与所述第十四电阻R30的另一端连接,所述第二运算放大器U2A的负电源端接地,所述第二运算放大器U2A的正电源端与所述直流电源VCC连接;
    第十五电阻R37,所述第十五电阻R37的一端与所述第二运算放大器U2A的同相输入端连接,所述第十五电阻R37的另一端与所述第二运算放大器U2A的输出端连接;
    第十六电阻R24,所述第十六电阻R24的一端与所述第二运算放大器U2A的反相输入端连接;
    第四电容C28,所述第四电容C28的一端与所述第十六电阻R24的另一端连接,所述第四电容C28的另一端接地;
    第十七电阻R15,所述第十七电阻R15的一端与所述第四电容C28的一端连接,所述第十七电阻R15的另一端接地;
    第十九电阻R17,所述第十九电阻R17的一端与所述第十七电阻R15的一端连接,所述第十九电阻R17的另一端与所述直流电源VCC连接;
    第二十电阻R29,所述第二十电阻R29的一端与所述第二运算放大器U2A的输出端连接;以及
    第一二极管D10,所述第一二极管D10的阴极与所述第二十电阻R29的一端连接,所述第一二极管D10的阳极与所述第二十电阻R29的另一端连接。
  5. 根据权利要求4所述的电源电路(1000),其特征在于,所述第一驱动模块(140)包括:
    第一光耦PH1,所述第一光耦PH1的第一管脚与所述第二十电阻R29的另一端连接,所述第一光耦PH1的第二管脚接地;
    第二十三电阻R13,所述第二十三电阻R13的一端与所述第一光耦PH1的第四管脚连接,所述第二十三电阻R13的另一端用于连接直流偏置电源Bais;
    第十电容C25,所述第十电容C25的一端与所述第二十三电阻R13的一端连接,所述第十电容C25的另一端接地;
    第二十五电阻R40,所述第二十五电阻R40的一端与所述直流电源VCC连接;
    第二光耦PH2,所述第二光耦PH2的第一管脚与所述第二十五电阻R40的另一端连接,所述第二光耦PH2的第二管脚与所述第二十电阻R29的另一端连接;以及
    第二十六电阻R35,所述第二十六电阻R35的一端与所述第一光耦PH1的第三管脚和所述第二光耦PH2的第四管脚连接。
  6. 根据权利要求5所述的电源电路(1000),其特征在于,所述第一驱动模块(140)还包括:
    第一场效应晶体管Q8A,所述第一场效应晶体管Q8A的栅极与所述第二十电阻R29的另一端连接,所述第一场效应晶体管Q8A的漏极与所述直流电源VCC连接;
    第二场效应晶体管Q8B,所述第二场效应晶体管Q8B的漏极与所述第一场效应晶体管Q8A的源极连接,所述第二场效应晶体管Q8B的栅极与所述第一场效应晶体管Q8A的栅极连接;
    第九电容C23,所述第九电容C23的一端与所述第二场效应晶体管Q8B的漏极连接;
    第二十一电阻R22,所述第二十一电阻R22的一端与所述第九电容C23的一端连接,所述第二十一电阻R22的另一端与所述第九电容C23的另一端连接;
    第二二极管D9,所述第二二极管D9的阴极与所述第二十一电阻R22的另一端连接,所述第 二二极管D9的阳极接地;
    第二十二电阻R23,所述第二十二电阻R23的一端与所述第二二极管D9的阴极连接;
    第三二极管D12,所述第三二极管D12的阳极与所述第二十一电阻R22的一端连接;
    第二十四电阻R39,所述第二十四电阻R39的一端与所述第三二极管D12的阴极连接,所述第二十四电阻R39的另一端与所述直流电源VCC连接;以及
    第十一电容C33,所述第十一电容C33的一端与所述第二十四电阻R39的一端连接,所述第十一电容C33的另一端与所述直流电源VCC连接。
  7. 根据权利要求6所述的电源电路(1000),其特征在于,所述第一开关模块(150)包括:
    第二场效应管Q5,所述第二场效应管Q5的漏极与所述第十一电阻R14的一端连接,所述第二场效应管Q5的栅极与所述第二十六电阻R35的另一端连接;和
    第三场效应管Q6,所述第三场效应管Q6的栅极与所述第二场效应管Q5的栅极连接,所述第三场效应管Q6的源极与所述第二场效应管Q5的源极连接。
  8. 根据权利要求7所述的电源电路(1000),其特征在于,所述N个切换模块中的第一切换模块(400)包括:
    第十二极管D11,所述第十二极管D11的正极与所述第二运算放大器U2A的输出端连接;
    第八十二电阻R46,所述第八十二电阻R46的一端与所述第十二极管D11的负极连接;
    第三十四电容C34,所述第三十四电容C34的一端与所述第十二极管D11的负极连接,所述第三十四电容C34的另一端接地;
    第四三极管Q14,所述第四三极管Q14的基极与所述第八十二电阻R46的另一端连接,所述第四三极管Q14的发射极接地,所述第四三极管Q14的集电极与所述第四十七电阻R66的另一端连接;
    第八十三电阻R44,所述第八十三电阻R44的一端与所述直流电源VCC连接;
    第五三极管Q11,所述第五三极管Q11的集电极与所述第八十三电阻R44的另一端连接,所述第五三极管Q11的发射极接地;
    第八十四电阻R47,所述第八十四电阻R47的一端与所述第五三极管Q11的基极连接,所述第八十四电阻R47的另一端与所述第四十八电阻R59的一端连接;
    第八十五电阻R48,所述第八十五电阻R48的一端与所述第八十四电阻R47的一端连接,所述第八十五电阻R48的另一端接地;
    第六三极管Q10,所述第六三极管Q10的基极与所述第八十三电阻R44的另一端连接,所述第六三极管Q10的发射极接地;
    第八十七电阻R43,所述第八十七电阻R43的一端与所述第六三极管Q10的集电极连接,所述第八十七电阻R43的另一端与所述电源电路(1000)中的第二电源子电路(200)连接;
    第八十八电阻R42,所述第八十八电阻R42的一端与所述电源电路(1000)中的第二电源子电路(200)连接;
    第八十九电阻R45,所述第八十九电阻R45的一端与所述第八十八电阻R42的另一端连接,所述第八十九电阻R45的另一端接地;以及
    第七三极管Q9,所述第七三极管Q9的栅极与所述第八十九电阻R45的一端连接,所述第七三极管Q9的发射极接地,所述第七三极管Q9的集电极与所述第二十电阻R29的另一端连接。
  9. 一种电源电路(1000)的工作方法,其特征在于,包括:
    配置至少一个电源子电路于所述电源电路(1000),所述至少一个电源子电路中的第一电源子电路(100)包括第一过压保护模块(120)、第一欠压保护模块(130)、第一驱动模块(140)以及第一开关模块(150);
    电性连接所述第一电源子电路(100)的输入端与所述第一过压保护模块(120)的输入端、所述第一欠压保护模块(130)的第一输入端;
    电性连接所述第一过压保护模块(120)的输出端与所述第一欠压保护模块(130)的第二输入端;
    电性连接所述第一欠压保护模块(130)的输出端与所述第一驱动模块(140)的输入端;以及
    电性连接所述第一驱动模块(140)的输出端与所述第一开关模块(150)的控制端以通断控制所述第一电源子电路(100),其中,当所述第一电源子电路(100)的供电电压大于预设下限电压且小于预设上限电压时,所述第一驱动模块(140)控制所述第一开关模块(150)处于导通状态;当所述第一电源子电路(100)的供电电压大于或者等于预设上限电压时,和/或,当所述第一电源子电路(100)的供电电压小于或者等于预设下限电压时,所述第一驱动模块(140)控制所述第一开关模块(150)处于断开状态。
  10. 根据权利要求9所述的工作方法,其特征在于,包括:
    配置N+1个电源子电路于所述电源电路(1000),N为正整数;
    配置N个切换模块于所述电源电路(1000);以及
    对应电性连接所述N+1个电源子电路与所述N个切换模块,以确定所述N+1个电源子电路的优先级顺序,且于同一时间切换优先级最高且供电电压位于所述预设上限电压与所述预设下限电压之间的电源子电路处于导通状态。
  11. 一种照明装置,其特征在于,包括:
    一种电源电路(1000),其中,所述电源电路(1000)包括至少一个电源子电路,其中,第一电源子电路(100)包括:
    第一过压保护模块(120),所述第一过压保护模块(120)的输入端与所述第一电源子电路(100)的输入端连接,用于接收所述第一电源子电路(100)的输入电压并输出第一控制信号;
    第一欠压保护模块(130),所述第一欠压保护模块(130)的第一输入端与所述第一电源子电路(100)的输入端连接,所述第一欠压保护模块(130)的第二输入端与所述第一过压保护模块(120)的输出端连接,用于接收所述第一控制信号和/或所述第一电源子电路(100)的输入电压,并根据所述第一控制信号和/或所述第一电源子电路(100)的输入电压输出第二控制信号;
    第一驱动模块(140),所述第一驱动模块(140)的输入端与所述第一欠压保护模块(130)的输出端连接,以接入所述第二控制信号;以及
    第一开关模块(150),所述第一开关模块(150)的控制端与所述第一驱动模块(140)的输出端连接,用于通断控制所述第一电源子电路(100);
    其中,当所述第一电源子电路(100)的供电电压大于预设下限电压且小于预设上限电压时,所述第一驱动模块(140)控制所述第一开关模块(150)处于导通状态;当所述第一电源子电路(100)的供电电压大于或者等于预设上限电压时,和/或,当所述第一电源子电路(100)的供电电压小于或者等于预设下限电压时,所述第一驱动模块(140)控制所述第一开关模块(150)处于断开状态;和
    发光模块(2000),与所述电源电路(1000)电性连接。
  12. 根据权利要求11所述的照明装置,其中,所述电源电路(1000)包括:
    N+1个电源子电路,N为正整数;和
    N个切换模块,与所述N+1个电源子电路对应电性连接,用于确定所述N+1个电源子电路的优先级顺序,及同一时间切换优先级最高且供电电压位于所述预设上限电压与所述预设下限电压之间的电源子电路处于导通状态。
  13. 根据权利要求11所述的照明装置,其中,所述第一过压保护模块(120)包括:
    第一电阻R21,所述第一电阻R21的一端与所述第一电源子电路(100)的输入端连接;
    第三电阻R34,所述第三电阻R34的一端与所述第一电阻R21的另一端连接,所述第三电阻R34的另一端接地;
    第四电阻R34,所述第四电阻R34的一端与所述第三电阻R34的一端连接;
    第一运算放大器U2B,所述第一运算放大器U2B的同相输入端与所述第四电阻R34的另一端连接;
    第五电阻R36,所述第五电阻R36的一端与所述第一运算放大器U2B的同相输入端连接,所述第五电阻R36的另一端与所述第一运算放大器U2B的输出端连接;
    第六电阻R27,所述第六电阻R27的一端与所述第一运算放大器U2B的反相输入端连接;
    第二电容C29,所述第二电容C29的一端与所述第六电阻R27的另一端连接,所述第二电容C29的另一端接地;
    第七电阻R18,所述第七电阻R18的一端与所述第二电容C29的一端连接,所述第七电阻R18的另一端接地;
    第九电阻R20,所述第九电阻R20的一端与所述第七电阻R18的一端连接,所述第九电阻R20的另一端用于连接直流电源VCC;
    第十电阻R28,所述第十电阻R28的一端与所述第一运算放大器U2B的输出端连接;以及
    第一三极管Q7,所述第一三极管Q7的基极与所述第十电阻R28的另一端连接,所述第一三极管Q7的发射极接地。
  14. 根据权利要求3所述的电源电路照明装置,其中,所述第一欠压保护模块(130)包括:
    第十一电阻R14,所述第十一电阻R14的一端与所述第一电阻R21的一端连接;
    第十三电阻R33,所述第十三电阻R33的一端与所述第十一电阻R14的另一端连接,所述第十三电阻R33的另一端接地;
    第十四电阻R30,所述第十四电阻R30的一端与所述第十三电阻R33的一端连接;
    第二运算放大器U2A,所述第二运算放大器U2A的同相输入端与所述第十四电阻R30的另一端连接,所述第二运算放大器U2A的负电源端接地,所述第二运算放大器U2A的正电源端与所述直流电源VCC连接;
    第十五电阻R37,所述第十五电阻R37的一端与所述第二运算放大器U2A的同相输入端连接,所述第十五电阻R37的另一端与所述第二运算放大器U2A的输出端连接;
    第十六电阻R24,所述第十六电阻R24的一端与所述第二运算放大器U2A的反相输入端连接;
    第四电容C28,所述第四电容C28的一端与所述第十六电阻R24的另一端连接,所述第四电容C28的另一端接地;
    第十七电阻R15,所述第十七电阻R15的一端与所述第四电容C28的一端连接,所述第十七电阻R15的另一端接地;
    第十九电阻R17,所述第十九电阻R17的一端与所述第十七电阻R15的一端连接,所述第十九电阻R17的另一端与所述直流电源VCC连接;
    第二十电阻R29,所述第二十电阻R29的一端与所述第二运算放大器U2A的输出端连接;以及
    第一二极管D10,所述第一二极管D10的阴极与所述第二十电阻R29的一端连接,所述第一二极管D10的阳极与所述第二十电阻R29的另一端连接。
  15. 根据权利要求14所述的照明装置,其中,所述第一驱动模块(140)包括:
    第一光耦PH1,所述第一光耦PH1的第一管脚与所述第二十电阻R29的另一端连接,所述第一光耦PH1的第二管脚接地;
    第二十三电阻R13,所述第二十三电阻R13的一端与所述第一光耦PH1的第四管脚连接,所述第二十三电阻R13的另一端用于连接直流偏置电源Bais;
    第十电容C25,所述第十电容C25的一端与所述第二十三电阻R13的一端连接,所述第十电 容C25的另一端接地;
    第二十五电阻R40,所述第二十五电阻R40的一端与所述直流电源VCC连接;
    第二光耦PH2,所述第二光耦PH2的第一管脚与所述第二十五电阻R40的另一端连接,所述第二光耦PH2的第二管脚与所述第二十电阻R29的另一端连接;以及
    第二十六电阻R35,所述第二十六电阻R35的一端与所述第一光耦PH1的第三管脚和所述第二光耦PH2的第四管脚连接。
  16. 根据权利要求15所述的照明装置,其中,所述第一驱动模块(140)还包括:
    第一场效应晶体管Q8A,所述第一场效应晶体管Q8A的栅极与所述第二十电阻R29的另一端连接,所述第一场效应晶体管Q8A的漏极与所述直流电源VCC连接;
    第二场效应晶体管Q8B,所述第二场效应晶体管Q8B的漏极与所述第一场效应晶体管Q8A的源极连接,所述第二场效应晶体管Q8B的栅极与所述第一场效应晶体管Q8A的栅极连接;
    第九电容C23,所述第九电容C23的一端与所述第二场效应晶体管Q8B的漏极连接;
    第二十一电阻R22,所述第二十一电阻R22的一端与所述第九电容C23的一端连接,所述第二十一电阻R22的另一端与所述第九电容C23的另一端连接;
    第二二极管D9,所述第二二极管D9的阴极与所述第二十一电阻R22的另一端连接,所述第二二极管D9的阳极接地;
    第二十二电阻R23,所述第二十二电阻R23的一端与所述第二二极管D9的阴极连接;
    第三二极管D12,所述第三二极管D12的阳极与所述第二十一电阻R22的一端连接;
    第二十四电阻R39,所述第二十四电阻R39的一端与所述第三二极管D12的阴极连接,所述第二十四电阻R39的另一端与所述直流电源VCC连接;以及
    第十一电容C33,所述第十一电容C33的一端与所述第二十四电阻R39的一端连接,所述第十一电容C33的另一端与所述直流电源VCC连接。
  17. 根据权利要求16所述的照明装置,其中,所述第一开关模块(150)包括:
    第二场效应管Q5,所述第二场效应管Q5的漏极与所述第十一电阻R14的一端连接,所述第二场效应管Q5的栅极与所述第二十六电阻R35的另一端连接;和
    第三场效应管Q6,所述第三场效应管Q6的栅极与所述第二场效应管Q5的栅极连接,所述第三场效应管Q6的源极与所述第二场效应管Q5的源极连接。
  18. 根据权利要求17所述的照明装置,其中,所述N个切换模块中的第一切换模块(400)包括:
    第十二极管D11,所述第十二极管D11的正极与所述第二运算放大器U2A的输出端连接;
    第八十二电阻R46,所述第八十二电阻R46的一端与所述第十二极管D11的负极连接;
    第三十四电容C34,所述第三十四电容C34的一端与所述第十二极管D11的负极连接,所述第三十四电容C34的另一端接地;
    第四三极管Q14,所述第四三极管Q14的基极与所述第八十二电阻R46的另一端连接,所述第四三极管Q14的发射极接地,所述第四三极管Q14的集电极与所述第四十七电阻R66的另一端连接;
    第八十三电阻R44,所述第八十三电阻R44的一端与所述直流电源VCC连接;
    第五三极管Q11,所述第五三极管Q11的集电极与所述第八十三电阻R44的另一端连接,所述第五三极管Q11的发射极接地;
    第八十四电阻R47,所述第八十四电阻R47的一端与所述第五三极管Q11的基极连接,所述第八十四电阻R47的另一端与所述第四十八电阻R59的一端连接;
    第八十五电阻R48,所述第八十五电阻R48的一端与所述第八十四电阻R47的一端连接,所述第八十五电阻R48的另一端接地;
    第六三极管Q10,所述第六三极管Q10的基极与所述第八十三电阻R44的另一端连接,所述 第六三极管Q10的发射极接地;
    第八十七电阻R43,所述第八十七电阻R43的一端与所述第六三极管Q10的集电极连接,所述第八十七电阻R43的另一端与所述电源电路(1000)中的第二电源子电路(200)连接;
    第八十八电阻R42,所述第八十八电阻R42的一端与所述电源电路(1000)中的第二电源子电路(200)连接;
    第八十九电阻R45,所述第八十九电阻R45的一端与所述第八十八电阻R42的另一端连接,所述第八十九电阻R45的另一端接地;以及
    第七三极管Q9,所述第七三极管Q9的栅极与所述第八十九电阻R45的一端连接,所述第七三极管Q9的发射极接地,所述第七三极管Q9的集电极与所述第二十电阻R29的另一端连接。
PCT/CN2021/132145 2021-10-27 2021-11-22 电源电路、电源电路的工作方法及照明装置 WO2023070783A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111253159.0 2021-10-26
CN202111253159.0A CN113708347B (zh) 2021-10-27 2021-10-27 电源电路、电源电路的工作方法及照明装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/401,002 Continuation US20240136807A1 (en) 2021-10-26 2023-12-29 Power supply circuit, working method of power supply circuit, and lighting device

Publications (1)

Publication Number Publication Date
WO2023070783A1 true WO2023070783A1 (zh) 2023-05-04

Family

ID=78647025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132145 WO2023070783A1 (zh) 2021-10-27 2021-11-22 电源电路、电源电路的工作方法及照明装置

Country Status (2)

Country Link
CN (1) CN113708347B (zh)
WO (1) WO2023070783A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116819166A (zh) * 2023-08-31 2023-09-29 苏州贝克微电子股份有限公司 高压端欠压检测电路
CN117394507A (zh) * 2023-12-12 2024-01-12 广州伟仕达电子科技有限公司 一种优化电池使用寿命的智能充电器及其控制电路
CN117492396A (zh) * 2023-11-03 2024-02-02 广州技诺智能设备有限公司 一种咖啡机的供水控制电路及其系统
CN117590054A (zh) * 2023-11-27 2024-02-23 西南石油大学 一种模拟自动电流检测告警保护装置
CN117792369A (zh) * 2024-02-26 2024-03-29 深圳市南方智控科技有限公司 电子设备的按键检测电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115453939B (zh) * 2022-09-15 2023-09-15 珠海东之尼电子科技有限公司 一种保护电路、控制系统及水洗机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025696A (ja) * 2011-07-25 2013-02-04 Asahi Kasei Electronics Co Ltd 多入力電源回路
CN103457346A (zh) * 2012-06-01 2013-12-18 研祥智能科技股份有限公司 一种电源系统及其电源冗余控制电路
CN106558868A (zh) * 2017-02-14 2017-04-05 北方电子研究院安徽有限公司 一种电源输入过压欠压关断控制器保护电路
CN208971123U (zh) * 2018-10-26 2019-06-11 深圳市创维群欣安防科技股份有限公司 一种电源欠压过压保护电路与保护装置
US20200083740A1 (en) * 2018-09-11 2020-03-12 Dell Products L.P. Load-based management of multiple dc power sources
CN112542829A (zh) * 2020-11-16 2021-03-23 科大讯飞股份有限公司 应用于电子设备的多路供电管理方法及多路供电装置
CN112737084A (zh) * 2020-12-29 2021-04-30 深圳市爱图仕影像器材有限公司 照明装置、电源切换电路及照明装置的电源切换方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301133B1 (en) * 1999-04-07 2001-10-09 Astec International Limited Power supply system with ORing element and control circuit
US9198254B2 (en) * 2012-12-14 2015-11-24 Shenzhen China Star Optoelectronics Technology Co., Ltd LED backlight driving circuit and LCD device
US10862294B2 (en) * 2018-02-16 2020-12-08 Microchip Technology Incorporated Under-voltage and over-voltage protection using a single comparator
US10931099B1 (en) * 2020-02-26 2021-02-23 Calamp Corp. Systems and methods for automatic threshold sensing for UVLO circuits in a multi-battery environment
CN113485181B (zh) * 2021-06-30 2022-07-08 浙江中控技术股份有限公司 一种基于故障检测的通信总线控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025696A (ja) * 2011-07-25 2013-02-04 Asahi Kasei Electronics Co Ltd 多入力電源回路
CN103457346A (zh) * 2012-06-01 2013-12-18 研祥智能科技股份有限公司 一种电源系统及其电源冗余控制电路
CN106558868A (zh) * 2017-02-14 2017-04-05 北方电子研究院安徽有限公司 一种电源输入过压欠压关断控制器保护电路
US20200083740A1 (en) * 2018-09-11 2020-03-12 Dell Products L.P. Load-based management of multiple dc power sources
CN208971123U (zh) * 2018-10-26 2019-06-11 深圳市创维群欣安防科技股份有限公司 一种电源欠压过压保护电路与保护装置
CN112542829A (zh) * 2020-11-16 2021-03-23 科大讯飞股份有限公司 应用于电子设备的多路供电管理方法及多路供电装置
CN112737084A (zh) * 2020-12-29 2021-04-30 深圳市爱图仕影像器材有限公司 照明装置、电源切换电路及照明装置的电源切换方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116819166A (zh) * 2023-08-31 2023-09-29 苏州贝克微电子股份有限公司 高压端欠压检测电路
CN116819166B (zh) * 2023-08-31 2023-11-03 苏州贝克微电子股份有限公司 高压端欠压检测电路
CN117492396A (zh) * 2023-11-03 2024-02-02 广州技诺智能设备有限公司 一种咖啡机的供水控制电路及其系统
CN117492396B (zh) * 2023-11-03 2024-04-05 广州技诺智能设备有限公司 一种咖啡机的供水控制电路及其系统
CN117590054A (zh) * 2023-11-27 2024-02-23 西南石油大学 一种模拟自动电流检测告警保护装置
CN117590054B (zh) * 2023-11-27 2024-05-28 西南石油大学 一种模拟自动电流检测告警保护装置
CN117394507A (zh) * 2023-12-12 2024-01-12 广州伟仕达电子科技有限公司 一种优化电池使用寿命的智能充电器及其控制电路
CN117394507B (zh) * 2023-12-12 2024-02-20 广州伟仕达电子科技有限公司 一种优化电池使用寿命的智能充电器及其控制电路
CN117792369A (zh) * 2024-02-26 2024-03-29 深圳市南方智控科技有限公司 电子设备的按键检测电路

Also Published As

Publication number Publication date
CN113708347B (zh) 2022-03-25
CN113708347A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2023070783A1 (zh) 电源电路、电源电路的工作方法及照明装置
CN102571502A (zh) 终端接入设备和反向以太网工供电状态的检测方法
CN101916959B (zh) 一种激光器关断装置及其关断方法
CN203590234U (zh) 一种激光器开启和关闭电路以及光模块
CN1327328A (zh) 可平滑扩容的数据通信系统
CN211427304U (zh) 一种服务器电源电路、服务器供电架构电路和psu电源
CN202160154U (zh) 一种带上电保护的igbt驱动电路
CN211630456U (zh) 一种共阳双路节能电源
CN1527469A (zh) 开关电源驱动控制电路
CN101777760A (zh) 带锁定功能的激光电源过流保护电路
US20240136807A1 (en) Power supply circuit, working method of power supply circuit, and lighting device
JP2003296034A5 (zh)
WO2015154588A1 (zh) 一种串口信息传递方法、单板设备和公用单板
CN207218221U (zh) 漏电断路器的分励脱扣装置及漏电断路器
CN110461072A (zh) 一种隔离调光电路及一种灯具
CN116248136A (zh) 发送器电路及具有其的总线收发器
CN208540047U (zh) 一种基于语音的中央控制模块及会议系统
CN201047970Y (zh) 一种金融型监控系统
CN209028431U (zh) 一种应用于多种场景的安防控制器
CN100352156C (zh) 一种隔离开关电源的磁放大器辅助输出电路
CN1230852C (zh) 一种高速模拟脱扣的自锁电路
CN1485747A (zh) 双热插拔ide装置之控制电路及方法
CN215818582U (zh) 一种多功能蓝牙音箱控制电路及蓝牙音箱
CN211648551U (zh) 一种风机专用电源的控制电路
CN218957047U (zh) 一种锁控板用的控制电路及锁控板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962127

Country of ref document: EP

Kind code of ref document: A1