WO2023070775A1 - 叶轮出口结构及具有其的离心泵 - Google Patents

叶轮出口结构及具有其的离心泵 Download PDF

Info

Publication number
WO2023070775A1
WO2023070775A1 PCT/CN2021/131511 CN2021131511W WO2023070775A1 WO 2023070775 A1 WO2023070775 A1 WO 2023070775A1 CN 2021131511 W CN2021131511 W CN 2021131511W WO 2023070775 A1 WO2023070775 A1 WO 2023070775A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
liquid outlet
liquid
outlet
thickness
Prior art date
Application number
PCT/CN2021/131511
Other languages
English (en)
French (fr)
Inventor
余敏
余伟平
杨丹飞
张丹艺
周维坚
Original Assignee
浙江水泵总厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江水泵总厂有限公司 filed Critical 浙江水泵总厂有限公司
Publication of WO2023070775A1 publication Critical patent/WO2023070775A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2216Shape, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2272Rotors specially for centrifugal pumps with special measures for influencing flow or boundary layer

Definitions

  • the present application relates to related fields of centrifugal pumps, in particular to an impeller outlet structure and a centrifugal pump having the same.
  • the working efficiency of the pump is obtained by multiplying the mechanical efficiency, hydraulic efficiency and volumetric efficiency.
  • the mechanical efficiency includes the bearing loss power, sealing loss and disc friction loss power.
  • the disc friction loss refers to the mechanical energy of the impeller rotation and does not All the liquid passed through the impeller, part of which is consumed to overcome the friction of the liquid between the front and rear cover surfaces of the impeller and the casing.
  • the application first provides an impeller outlet structure, including the impeller; the impeller includes a front cover, a rear cover and guide vanes, the center of the front cover is opened with a liquid inlet, and the front cover and the rear
  • the cover plates are fixedly connected by the guide vanes; a hollow cavity is formed between the front cover plate and the rear cover plate, and a plurality of guide vanes are uniformly distributed around the liquid inlet as the center, and the The hollow cavity is divided into a plurality of flow channels, and the ratio of the thickness h of the liquid outlet of the flow channel to the circumference of the impeller is greater than 1:310.
  • the above-mentioned impeller outlet structure limits the ratio of the thickness of the liquid outlet of the flow channel to the circumference of the impeller, so that under the same impeller diameter and number of guide vanes, the ratio of the thickness of the liquid outlet to the length of the liquid outlet in this application is compared with that of the prior art. Larger, closer to 1:1; and because the rectangle has an aspect ratio close to 1:1 under the condition of constant area, and the circumference is smaller, so the application reduces the circumference of the liquid outlet, so that the liquid and the liquid outlet The contact area between the inner walls is smaller, the disc friction loss is smaller, and the working efficiency is higher.
  • the ratio of the thickness h of the liquid outlet of the flow channel to the circumference of the impeller is 1:185.
  • the thickness h of the liquid outlet of the flow channel is 3mm-6mm.
  • the thickness h of the liquid outlet of the flow channel is 5mm.
  • the flow channel includes a liquid inlet section, a flow diversion section and a liquid outlet section, and the end faces of the front cover plate and the rear cover plate on the side close to each other are located in the liquid outlet section respectively.
  • the part of the front flow channel surface located in the liquid outlet section is the front liquid outlet surface, and the angle ⁇ between the front liquid outlet surface and the first plane is in the range of 4°-6°.
  • the part of the rear channel surface located in the liquid outlet section is the rear liquid outlet surface, and the angle ⁇ between the rear liquid outlet surface and the first plane is in the range of 3°-5° °.
  • the angle ⁇ between the front liquid outlet surface and the rear liquid outlet surface is 8°.
  • the end surface of the guide vane close to the liquid inlet is rounded.
  • the second aspect of the present application provides a centrifugal pump, including the above impeller outlet structure.
  • Fig. 1 is a schematic cross-sectional structural view of the impeller of the present application in the front view direction.
  • Fig. 2 is a schematic perspective view of the three-dimensional structure of the impeller of the present application.
  • Fig. 3 is a schematic diagram of the three-dimensional structure after being cut along the direction A-A in Fig. 2 .
  • Fig. 4 is an enlarged schematic structural view of the part above the central axis in Fig. 1 .
  • Fig. 5 is a schematic cross-sectional structure diagram of the centrifugal pump of the present application in the front view direction.
  • liquid inlet part 100, liquid inlet part; 200, booster part; 210, impeller; 220, middle casing; 300, main shaft; 400, suspension.
  • a component when a component is said to be “mounted on” another component, it can be directly on the other component or there can also be an intervening component.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be an intervening component at the same time.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may be an intervening component at the same time.
  • the working efficiency of the pump is obtained by multiplying the mechanical efficiency, hydraulic efficiency and volumetric efficiency.
  • the mechanical efficiency includes the bearing loss power, sealing loss and disc friction loss power.
  • the disc friction loss refers to the mechanical energy of the impeller rotation and does not All the liquid passed through the impeller, part of which is consumed to overcome the friction of the liquid between the front and rear cover surfaces of the impeller and the casing.
  • the area of the liquid outlet is constant (that is, the flow rate is constant)
  • the closer the value of the thickness and length of the liquid outlet is to 1:1 the smaller the circumference of the liquid outlet; and the smaller the circumference, it represents the distance between the liquid and the impeller.
  • the smaller the contact area the smaller the friction between the liquid and the impeller. Therefore, by adjusting the ratio of the thickness to the length of the liquid outlet to be close to 1:1, the disc friction loss can be effectively reduced.
  • the length of the liquid outlet is approximately equal to the circumference of the impeller divided by the number of guide vanes, by adjusting the ratio between the thickness of the liquid outlet and the impeller, it is to adjust the ratio between the thickness and the length of the liquid outlet .
  • the thickness of the liquid outlet of a small flow pump (below 65 square meters) is within 3mm. Taking the impeller with a diameter of 295mm as an example, the circumference of the impeller is about 926.3mm. When the thickness of the liquid outlet is 3mm, the thickness of the liquid outlet The ratio of the thickness to the circumference of the impeller is about 1:310. If there are 5 guide vanes, the ratio of the thickness to the length of the liquid outlet is about 1:62, resulting in a relatively large disc friction loss.
  • the present application firstly provides an impeller outlet structure, as shown in Fig. 1 and Fig. 2, including an impeller 210; There is a liquid inlet 12 through it, and the front cover 10 and the rear cover 20 are fixedly connected by the guide vane 30; A plurality of them are evenly distributed around the center, and the hollow cavity 40 is divided into a plurality of flow channels 41 .
  • the ratio of the thickness of the liquid outlet of the flow channel 41 to the circumference of the impeller 210 is greater than 1:310.
  • the central axis direction of the liquid inlet 12 is defined as the axial direction
  • the thickness of the liquid outlet of the flow channel 41 is defined as h
  • the length is defined as L
  • the flow channel 41 The plane where the center point of the liquid outlet is located and perpendicular to the central axis of the liquid inlet 12 is defined as the first plane 1, and the direction along the first plane 1 away from the central axis of the liquid inlet 12 is defined as the radial direction.
  • the ratio of the thickness of the liquid outlet of the small flow pump to the circumference of the impeller 210 is usually less than 1:310.
  • the thickness h of the liquid outlet is increased by designing the ratio range to be greater than 1:310
  • the ratio to the circumference of the impeller 210 increases the ratio between the thickness h and the length L of the liquid outlet.
  • the thickness h of the liquid outlet of the current small flow centrifugal pump is usually designed to be within 3mm.
  • the range of the ratio of the thickness h of the port to the circumference of the impeller is designed to be greater than 1:310, so that in this application, the thickness h of the liquid outlet is greater than 3 mm.
  • the length L of the liquid outlet is approximately equal to the circumference of the impeller 210 divided by the number of the guide vanes 30, the length L of the liquid outlet of the impeller 210 is 926.3 mm in the circumference of the impeller 210 and the guide vanes 30 are 5 pieces. Both are about 186mm; therefore, in the prior art, the ratio of the thickness h of the liquid outlet to the length L is at most 1:62, but in this application, the ratio is greater than 1:62.
  • the present application increases the ratio between the thickness h and the length L of the liquid outlet.
  • the adaptability of the length L of the liquid outlet is reduced, so as to ensure that the area of the liquid outlet will not change after the thickness h of the liquid outlet increases, so as to achieve the effect of keeping the flow rate constant; and, the liquid outlet After the length L of the port is adaptively reduced, the ratio of the thickness h of the liquid outlet to the length L will further increase, closer to 1:1.
  • increasing the thickness h of the liquid outlet can be achieved by increasing the distance between the front cover 10 and the rear cover 20, or reducing the thickness of the front cover 10 and the rear cover 20; and reducing the length of the liquid outlet L can be realized by increasing the thickness of the guide vane 30 or reducing the diameter of the impeller 210; the present application does not make further limitations on how to increase the thickness h of the liquid outlet and reduce the length L of the liquid outlet.
  • the impeller 210 of the present application has a larger liquid outlet thickness h under the premise of keeping the flow rate constant, and the ratio of the liquid outlet thickness h to the liquid outlet length L is closer to 1:1. That is to say, in the impeller 210 of the present application, under the premise that the area of the liquid outlet remains unchanged, the circumference of the liquid outlet is smaller, the contact area between the liquid and the inner wall of the liquid outlet is smaller, the disc friction loss is smaller, and the working efficiency higher.
  • the front cover 10, the rear cover 20 and the guide vane 30 are fixed as one by integral casting, welding or other common fixing methods; optionally, the front cover 10, the rear cover 20 and the guide vane 30 are integrally formed by casting , to ensure the accuracy of the flow channel, and at the same time ensure that the front cover 10 , the rear cover 20 and the guide vane 30 are firmly fixed.
  • the ratio of the thickness h of the liquid outlet of the channel 41 to the circumference of the impeller 210 is 1:185, the diameter of the impeller 210 is 295 mm, and the thickness h of the liquid outlet is 5 mm.
  • the thickness of the liquid outlet of the flow channel 41 is 3mm-6mm.
  • the thickness h of the liquid outlet is less than 3mm, the casting of the impeller 210 is difficult, and the liquid outlet of the flow channel 41 will be due to residual Casting sand or other reasons cause roughness, which requires subsequent processing; and because the thickness h of the liquid outlet is less than 3mm, which is extremely small, subsequent processing is also difficult.
  • the thickness of the liquid outlet of the flow channel 41 can effectively reduce the casting difficulty of the impeller 210 and reduce the production and processing cost of the impeller 210 at the same time.
  • the thickness h of the liquid outlet of the flow channel 41 is 5 mm.
  • the flow channel 41 includes a liquid inlet section 411, a guide section 412, and a liquid outlet section 413, and the end faces of the front cover 10 and the rear cover 20 on the side close to each other are respectively front flow Road surface 11 and rear runner surface 21.
  • the liquid inlet section 411 is a liquid inflow section.
  • the impeller 210 starts to rotate, the liquid entering the hollow cavity 40 from the liquid inlet section 411 flows radially under the action of centrifugal force, that is, flows to In the liquid outlet section 413, during this process, the cross-sectional area of the flow channel 41 continues to decrease, so that the pressure and flow velocity of the liquid increase, thereby realizing the transfer of the mechanical energy of the impeller 210 rotation to the liquid passing through the impeller 210 during the liquid passing through the impeller 210. 210 to complete the pressurization process of this part of the liquid.
  • the part of the front runner surface 11 located in the liquid outlet section 413 is the front liquid outlet surface 113
  • the angle ⁇ between the front liquid outlet surface 113 and the first plane 1 ranges from 4° to 6°. °, so as to ensure the pressurization effect of the flow channel 41 and at the same time reduce the area of the liquid outlet surface 113 as much as possible, thereby reducing the disc friction loss of the impeller 210.
  • the angle ⁇ between the front liquid outlet surface 113 and the first plane 1 is 5°.
  • the part of the rear flow channel surface 21 located in the liquid outlet section 413 is the rear liquid outlet surface 213, and the angle ⁇ between the rear liquid outlet surface 213 and the first plane 1 ranges from 3° to 5°. °, so as to reduce the area of the rear outlet surface 213 as much as possible while ensuring the pressurization effect of the flow channel 41, thereby reducing the disk friction loss of the impeller 210.
  • the angle ⁇ between the rear liquid outlet surface 213 and the first plane 1 is 3°.
  • the angle ⁇ between the front liquid outlet surface 113 and the rear liquid outlet surface 213 is 8°, so as to reduce the pressure of the impeller 210 as much as possible while ensuring the pressurization effect of the flow channel 41. disc friction loss.
  • the angle ⁇ between the front liquid outlet surface 113 and the first plane 1 is 5°, and the angle ⁇ between the rear liquid outlet surface 213 and the first plane 1 is 3°.
  • the end faces of the guide vanes 30 close to the liquid inlet 12 are rounded to ensure that the liquid can naturally and smoothly enter the different flow channels 41 under the guidance of the guide vanes 30, so as to prevent the liquid from flowing into the inlet.
  • the liquid port 12 directly collides with the end surface of the guide vane 30 , the liquid will be turbulent.
  • the fillet radius is 3mm-5mm.
  • the liquid outlet section 413 is arranged radially, and the guide section 412 is arc-shaped and connects the liquid inlet section 411 and the liquid outlet section 413 .
  • the diversion section 412 is arc-shaped and connects the liquid inlet section 411 and the liquid outlet section 413 .
  • the part of the front runner surface 11 located at the guide section 412 is the front guide surface 112, and the arc radius of the front guide surface 112 is 20mm-45mm; the rear runner surface 21 is located at the guide section 412 Part of it is the rear diversion surface 212, and the arc radius of the rear diversion surface 212 is 30mm-60mm.
  • the radius of the arc of the front guide surface 112 is 45 mm, and the radius of the arc of the rear guide surface 212 is 40 mm.
  • the thickness h of the liquid outlet is 1.3-2.2 times the thickness of the front cover 10 and 1.3-2.2 times the thickness of the rear cover 20.
  • the thickness of the front cover 10 is the same as that of the rear cover.
  • the thickness of the plates 20 is the same.
  • the thickness of the front cover 10 and the rear cover 20 is prevented from being too thin, resulting in poor strength of the impeller 210; On the one hand, the thickness of the front cover plate 10 and the rear cover plate 20 is avoided to be too thick, resulting in greater energy loss when the impeller 210 rotates, and lower working efficiency of the pump body.
  • h of the liquid outlet is 1.38 times the thickness of the front cover 10 and 1.38 times the thickness of the rear cover 20 .
  • the present application also provides a centrifugal pump, including the impeller outlet structure of any one of the above embodiments.
  • the centrifugal pump includes a liquid inlet 100 , a booster 200 , a main shaft 300 and a suspension 400 , wherein the booster 200 is arranged between the liquid inlet 100 and the suspension 400 , and the main shaft One end of the 300 is connected to the suspension 400, and the other end passes through the supercharging part 200 to the liquid inlet part 100;
  • the supercharging part 200 includes a plurality of impellers 210 arranged along the extending direction of the main shaft 300, and the impeller 210 is formed between the inner wall of the pump body. circulation space.
  • the impeller 210 closest to the liquid inlet part 100 is defined as the primary impeller herein.
  • the impellers 210 are fixedly connected to the main shaft 300, the water inlet of the impeller 210 is opened toward the direction of the liquid inlet part 100, and the water outlet is opened along the radial direction.
  • the main shaft 300 rotates, it will drive the impellers 210 to rotate, so that , pressurize the liquid to be transported entering the impeller 210 and throw it out to the next-stage impeller 210 , repeat the above process until the liquid to be transported leaves the pressurization part 200 , thereby realizing the pressurized transport function of the pressurization part 200 .
  • the supercharging part 200 is composed of a plurality of hollow middle casings 220, each impeller 210 corresponds to a middle casing 220, and the impeller 210 is arranged in the middle casing 220, between the impeller 210 and the inner side wall of the middle casing 220 A through-flow space is formed, and the through-flow space is used to guide the liquid to be transported, so that the liquid flowing out from the water outlet of the impeller 210 of this stage can enter the water inlet of the next-stage impeller under the guidance of the through-flow space.
  • the corners of the through-flow space are all rounded to ensure that the liquid to be transported can turn naturally during the flow process, and avoid direct collision with the side wall of the through-flow space to cause liquid turbulence.
  • middle casings 220 makes it possible to remove the corresponding middle casing 220 and replace the corresponding wearing parts when the sealing rings, shaft seals and other wearing parts in the middle casing 220 are damaged.
  • the middle casing 220 itself and the impeller 210 can still be used continuously, which greatly saves the time and cost required for repair.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种叶轮出口结构及具有其的离心泵。叶轮出口结构,包括叶轮(210);叶轮(210)包括前盖板(10)、后盖板(20)以及导叶(30),前盖板(10)中心贯通开设有进液口(12),前盖板(10)与后盖板(20)之间通过导叶(30)固定连接;前盖板(10)与后盖板(20)之间形成中空腔(40),导叶(30)以进液口(12)为中心周向均布设置有多个,并将中空腔(40)区分为多个流道(41),流道(41)的出液口的厚度(h)与叶轮(210)的周长之比大于1:310。

Description

叶轮出口结构及具有其的离心泵
相关申请
本申请要求2021年10月31日申请的,申请号为202111279064.6,发明名称为“叶轮出口结构及具有其的离心泵”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及离心泵相关领域,特别是涉及一种叶轮出口结构及具有其的离心泵。
背景技术
泵的工作效率由机械效率、水力效率以及容积效率三者相乘得到,其中,机械效率又包括轴承损失功率、密封损失以及圆盘摩擦损失功率,圆盘摩擦损失是指叶轮旋转的机械能并没有全部传给通过叶轮的液体,其中一部分消耗于克服叶轮前、后盖板表面与壳体间液体的摩擦。
现有的一些流量较小的离心泵,其工作效率大多较低,以每小时2方、单级扬程60m的水泵为例,其工作效率大多只有百分之十几,能量利用率低,损耗大。
由于提高离心泵的流量能够有效的提高泵的工作效率,因此,目前大部分厂商对小流量泵工作效率提升方面的改进积极性较低,通过设计叶轮结构以减少圆盘摩擦损失,提高小流量泵工作效率的方案也相对较少。
发明内容
基于此,有必要针对流量较小的泵工作效率较低的问题,提供一种能够减少圆盘摩擦损失,从而提高泵工作效率的叶轮出口结构及具有其的离心泵。
本申请首先提供一种叶轮出口结构,包括叶轮;所述叶轮包括前盖板、后盖板以及导叶,所述前盖板中心贯通开设有进液口,所述前盖板与所述后盖板之间通过所述导叶固定连接;所述前盖板与所述后盖板之间形成中空腔,所述导叶以所述进液口为中心周向均布设置有多个,并将所述中空腔区分为多个流道,所述流道的出液口的厚度h与所述叶轮的周长之比大于1:310。
上述叶轮出口结构,通过限制流道出液口厚度与叶轮周长之比,使得相同叶轮直径与导叶数量的情况下,本申请中出液口厚度与出液口长度之比相较于现有技术更大、更接近1:1;又由于长方形在面积不变的情况下,长宽比约接近1:1,周长越小,因此本申请减少了出液口的周长,使得液体与出液口内壁之间的接触面积更小,圆盘摩擦损失更小,工作效率更高。
在其中一个实施例中,所述流道的出液口的厚度h与所述叶轮的周长之比为1:185。
在其中一个实施例中,所述流道的出液口的厚度h为3mm-6mm。
如此设置,通过增加出液口的厚度,有效的降低叶轮的铸造难度,同时降低了叶轮的生产加工成本。
在其中一个实施例中,所述流道的出液口的厚度h为5mm。
在其中一个实施例中,所述流道包括进液段、导流段以及出液段,所述前盖板与所述后盖板互相靠近侧的端面位于所述出液段的部分分别为前流道面与后流道面。
在其中一个实施例中,所述前流道面位于所述出液段部分为前出液面,所述前出液面与第一平面之间的夹角α范围为4°-6°。
如此设置,在保证流道的增压效果的同时,尽可能减小了前流道面的面积,从而减小了叶轮的圆盘摩擦损失。
在其中一个实施例中,所述后流道面位于所述出液段部分为后出液面,所述后出液面与所述第一平面之间的夹角β范围为3°-5°。
如此设置,在保证流道的增压效果的同时,尽可能减小了后流道面的面积,从而减小了叶轮的圆盘摩擦损失。
在其中一个实施例中,所述前出液面与所述后出液面之间的夹角γ为8°。
在其中一个实施例中,所述导叶靠近所述进液口的端面倒有圆角。
如此设置,以保证液体能够在各导叶的导流作用下,自然平滑的进入不同流道,避免液体在流入进液口时与导叶的端面直接碰撞导致液体发生紊流。
本申请第二方面提供一种离心泵,包括上述的叶轮出口结构。
附图说明
图1为本申请的叶轮正视方向的剖视结构示意图。
图2为本申请的叶轮的立体结构示意图。
图3为图2中沿A-A方向剖开后的立体结构示意图。
图4为图1中中轴线以上部分的放大结构示意图。
图5为本申请的离心泵正视方向的剖视结构示意图。
主要元件符号说明
100、进液部;200、增压部;210、叶轮;220、中段壳体;300、主轴;400、悬架。
1、第一平面;10、前盖板;11、前流道面;112、前导流面;113、前出液面;12、进液口;20、后盖板;21、后流道面;212、后导流面;213、后出液面;30、导叶;40、中空腔;41、流道;411、进液段;412、导流段; 413、出液段。
以上主要元件符号说明结合附图及具体实施方式对本申请作进一步详细的说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“安装于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
泵的工作效率由机械效率、水力效率以及容积效率三者相乘得到,其中,机械效率又包括轴承损失功率、密封损失以及圆盘摩擦损失功率,圆盘摩擦损失是指叶轮旋转的机械能并没有全部传给通过叶轮的液体,其中一部分消耗于克服叶轮前、后盖板表面与壳体间液体的摩擦。
当出液口的面积一定(即流量一定)时,出液口的厚度与长度的数值越 接近1:1,出液口的周长就越小;而周长越小,代表液体与叶轮之间的接触面积越小,即液体与叶轮之间的摩擦力越小。因此,通过调整出液口的厚度与长度的比例,使其接近1:1,能够有效降低圆盘摩擦损失。
此外,又由于出液口的长度约等于叶轮周长除以导叶数量,因此,通过调整出液口的厚度与叶轮之间的比例,即为调节出液口的厚度与长度之间的比例。
现有的一些流量较小的离心泵,其工作效率大多较低,以每小时2方、单级扬程60m的水泵为例,其工作效率大多只有百分之十几,能量利用率低,损耗大。
其中的一部分原因在于小流量泵的圆盘摩擦损失过大。通常,小流量泵(流量65方以下)出液口的厚度在3mm以内,以直径295mm的叶轮为例,叶轮周长约为926.3mm,当出液口的厚度为3mm时,出液口的厚度与叶轮周长之比约为1:310,若导叶设置有5片,则出液口的厚度与长度之比约为1:62,从而导致圆盘摩擦损失相对较大。
而目前的离心泵在设计制造过程中,一方面,由于提高离心泵的流量能够有效的提高泵的工作效率,因此,目前大部分厂商对小流量泵工作效率提升方面的改进积极性较低。
另一方面,由于离心泵的工作效率如上文所述,涉及机械效率、水力效率以及容积效率,且不同类型的效率又由多种不同因素决定,较为复杂,因此,对于出液口厚度与叶轮直径之比过小会增大离心泵的圆盘摩擦损失这一问题的发现同样较为困难,目前较少有通过设计叶轮出液口结构来减少圆盘摩擦损失,提高离心泵工作效率的方案。
针对上述问题,本申请首先提供一种叶轮出口结构,请结合图1和图2 所示,包括叶轮210;叶轮210包括前盖板10、后盖板20以及导叶30,前盖板10中心贯通开设有进液口12,前盖板10与后盖板20之间通过导叶30固定连接;前盖板10与后盖板20之间形成中空腔40,导叶30以进液口12为中心周向均布设置有多个,并将中空腔40区分为多个流道41,流道41的出液口的厚度与叶轮210的周长之比大于1:310。
请结合图1和图3所示,本文中,将进液口12的中轴线方向定义为轴向方向,将流道41的出液口的厚度定义为h,长度定义为L,将流道41出液口的中心点所在、并且与进液口12的中轴线垂直的平面定义为第一平面1,将沿第一平面1远离进液口12的中轴线的方向定义为径向方向。
现有技术中,小流量泵出液口的厚度与叶轮210的周长之比通常小于1:310,本申请中,通过将该比值范围设计为大于1:310,增大了出液口的厚度h与叶轮210的周长之比,从而增大了出液口的厚度h与长度L之间的比值。
以直径295mm,5片导叶30的叶轮为例,目前的小流量离心泵的出液口厚度h通常设计为3mm以内,而本申请中,由于该叶轮周长为926.3mm,通过将出液口的厚度h与叶轮周长之比的范围设计为大于1:310,使得本申请中,出液口厚度h大于3mm。
又由于出液口的长度L约等于叶轮210周长除以导叶30数量,因此,在叶轮210周长均为926.3mm,导叶30均为5片的情况下,叶轮210的出液口长度L均约为186mm;故现有技术中,出液口厚度h与长度L的比值最大为1:62,而本申请中,该比值大于1:62。
取不同叶轮210直径与不同导叶30数量时,结果相同,因此,本申请增大了出液口的厚度h与长度L之间的比值。
此外,本申请中,出液口的长度L适应性的减小,从而保证出液口厚度h 增加后,出液口的面积不会发生变化,达到保持流量不变的效果;并且,出液口的长度L适应性减少后,出液口厚度h与长度L的比值会进一步增大,更接近于1:1。
这里,增加出液口的厚度h能够通过增加前盖板10与后盖板20之间的间距、或减少前盖板10与后盖板20的厚度等方式实现;而减少出液口的长度L,能够通过增加导叶30的厚度、或减少叶轮210的直径等方式实现;本申请在此不对如何实现出液口厚度h的增加、以及出液口长度L的减少做进一步的限定。
从而使得本申请的叶轮210与现有技术相比,在保持流量不变的前提下,出液口厚度h更大,出液口厚度h与出液口长度L的比值更接近1:1,即本申请的叶轮210,在出液口面积不变的前提下,出液口的周长更小,液体与出液口内壁之间的接触面积更小,圆盘摩擦损失更小,工作效率更高。
前盖板10、后盖板20以及导叶30通过一体成型铸造、焊接或其他常见的固定方式固定为一体;可选的,前盖板10、后盖板20以及导叶30通过铸造一体成型,以保证流道的精度,同时保证前盖板10、后盖板20以及导叶30之间固定牢靠。
在图1所示的实施例中,流道41的出液口的厚度h与叶轮210的周长之比为1:185,叶轮210的直径为295mm,出液口的厚度h为5mm。
在一些实施例中,流道41的出液口的厚度为3mm-6mm,当出液口的厚度h小于3mm时,叶轮210的铸造难度较高,流道41的出液口处会由于残留铸造砂粒或其他原因导致较为毛糙,从而需要后续加工;而又由于出液口厚度h小于3mm,厚度极小,会导致后续的加工过程也较为困难。
因此,将流道41的出液口厚度限制在3mm-6mm,能够有效降低叶轮210 的铸造难度,同时降低叶轮210的生产加工成本。可选的,流道41的出液口的厚度h为5mm。
在图3和图4所示的实施例中,流道41包括进液段411、导流段412以及出液段413,前盖板10与后盖板20互相靠近侧的端面分别为前流道面11与后流道面21。
其中,进液段411为液体流入段,当叶轮210开始转动后,由进液段411进入中空腔40内的液体在离心力作用下沿径向流动,即在导流段412的导向作用下流向出液段413,在此过程中,流道41的截面积持续减小,从而使得液体的压力以及流速增加,进而实现在液体通过叶轮210的过程中,将叶轮210旋转的机械能传递给通过叶轮210的液体,完成该部分液体的增压过程。
请结合图2和图3所示,液体在通过出液口流出时,与液体直接接触的实体表面分别为前流道面11、后流道面21以及出液口两侧的导叶30的侧面,因此,通过减少这四个面的面积,能够有效减小叶轮210的圆盘摩擦损失。
在图4所示的实施例中,前流道面11位于出液段413部分为前出液面113,前出液面113与第一平面1之间的夹角α范围为4°-6°,以在保证流道41的增压效果的同时,尽可能减小前出液面113的面积,从而减小叶轮210的圆盘摩擦损失。可选的,前出液面113与第一平面1之间的夹角α为5°。
在图4所示的实施例中,后流道面21位于出液段413部分为后出液面213,后出液面213与第一平面1之间的夹角β范围为3°-5°,以在保证流道41的增压效果的同时,尽可能减小后出液面213的面积,从而减小叶轮210的圆盘摩擦损失。可选的,后出液面213与第一平面1之间的夹角β为3°。
在图4所示的实施例中,前出液面113与后出液面213之间的夹角γ为8°,以在保证流道41的增压效果的同时,尽可能减小叶轮210的圆盘摩擦损失。 可选的,前出液面113与第一平面1之间的夹角α为5°,后出液面213与第一平面1之间的夹角β为3°。
在一些实施例中,导叶30靠近进液口12的端面倒有圆角,以保证液体能够在各导叶30的导流作用下,自然平滑的进入不同流道41,避免液体在流入进液口12时与导叶30的端面直接碰撞导致液体发生紊流。可选的,圆角半径为3mm-5mm。
在图4所示的实施例中,出液段413沿径向开设,导流段412呈弧形并连接进液段411以及出液段413。通过将导流段412开设为弧形,从而将轴向流入的液体平滑的引导为径向流出,避免液体在转向时与前流道面11或后流道面21发生碰撞,从而发生紊流并导致能量损失。
在一些实施例中,前流道面11位于导流段412的部分为前导流面112,前导流面112的圆弧半径为20mm-45mm;后流道面21位于导流段412的部分为后导流面212,后导流面212的圆弧半径为30mm-60mm。
通过限制前导流面112的圆弧半径为20mm-45mm,后导流面212的圆弧半径为30mm-60mm,一方面保证进液段411以及出液段413之间能够平滑连接,另一方面,避免因导流段412的横截面积缩小过快,导致液体的加速压降大于由叶轮210机械能传递时增加的压力值的情况发生,即避免液体在导流段412内压力值仍处于降低状态的情况发生,进而避免汽蚀现象在导流段412产生。
在图4所示的实施例中,前导流面112的圆弧半径为45mm,后导流面212的圆弧半径为40mm。
在一些实施例中,出液口的厚度h为前盖板10的厚度的1.3倍-2.2倍,且为后盖板20的厚度的1.3倍-2.2倍,前盖板10的厚度与后盖板20的厚度 相同。
通过限制出液口的厚度h与前盖板10以及后盖板20厚度的比值范围,一方面避免前盖板10与后盖板20的厚度过薄,导致叶轮210的强度较差;另一方面避免前盖板10与后盖板20的厚度过厚,导致叶轮210转动时的能量损耗较大、泵体的工作效率较低。
在图2所示的实施例中,出液口的h为前盖板10的1.38倍,且为与后盖板20厚度的1.38倍。
本申请还提供一种离心泵,包括上述任一实施例的叶轮出口结构。
在图5所示的实施例中,离心泵包括进液部100、增压部200、主轴300以及悬架400,其中,增压部200设置于进液部100与悬架400之间,主轴300一端连接于悬架400,另一端贯穿增压部200至进液部100内;增压部200包括多个沿主轴300延伸方向设置的叶轮210,叶轮210与泵体的内侧壁之间形成通流空间。
为便于描述,本文中将最靠近进液部100的叶轮210定义为首级叶轮。
具体的,叶轮210均与主轴300固定连接,叶轮210的进水口朝向进液部100的方向开设,出水口沿径向开设,主轴300转动时会带动各叶轮210转动,从而通过叶轮210的转动,将进入叶轮210的待输送液体增压并甩出至下一级叶轮210,重复上述过程至待输送液体离开增压部200,从而实现增压部200的增压输送作用。
增压部200由多个中空的中段壳体220组成,每一叶轮210均对应一中段壳体220,且叶轮210设置于中段壳体220内,叶轮210与中段壳体220的内侧壁之间形成通流空间,通流空间用于导向待输送液体,使得从该级叶轮210的出水口流出的液体,能够在通流空间的导向作用下,进入下一级叶轮的 入水口。
可选的,通流空间的转角位置均倒有圆角,以保证待输送液体在流动过程中能够自然转向,避免其与通流空间的侧壁直接碰撞导致液体紊流。
此外,多个中段壳体220的设置,使得中段壳体220内的密封环、轴封等易损件在损坏时,能够将对应的中段壳体220拆出并进行对应易损件的更换,中段壳体220本身与叶轮210仍可继续使用,大大节约了修理所需的时间与费用。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种叶轮出口结构,其特征在于,包括叶轮;
    所述叶轮包括前盖板、后盖板以及导叶,所述前盖板中心贯通开设有进液口,所述前盖板与所述后盖板之间通过所述导叶固定连接;
    所述前盖板与所述后盖板之间形成中空腔,所述导叶以所述进液口为中心周向均布设置有多个,并将所述中空腔分成多个流道,所述流道的出液口的厚度h与所述叶轮的周长之比大于1:310。
  2. 根据权利要求1所述的叶轮出口结构,其中,所述流道的出液口的厚度h与所述叶轮的周长之比为1:185。
  3. 根据权利要求1所述的叶轮出口结构,其中,所述流道的出液口的厚度h为3mm-6mm。
  4. 根据权利要求3所述的叶轮出口结构,其中,所述流道的出液口的厚度h为5mm。
  5. 根据权利要求1所述的叶轮出口结构,其中,所述流道包括进液段、导流段以及出液段,所述前盖板与所述后盖板互相靠近侧的端面位于所述出液段的部分分别为前流道面与后流道面。
  6. 根据权利要求5所述的叶轮出口结构,其中,所述前流道面位于所述出液段部分为前出液面,所述前出液面与第一平面之间的夹角α范围为4°-6°。
  7. 根据权利要求6所述的叶轮出口结构,其中,所述后流道面位于所述出液段部分为后出液面,所述后出液面与所述第一平面之间的夹角β范围为3°-5°。
  8. 根据权利要求7所述的叶轮出口结构,其中,所述前出液面与所述后出液面之间的夹角γ为8°。
  9. 根据权利要求1所述的叶轮出口结构,其中,所述导叶靠近所述进液口的端面倒有圆角。
  10. 一种离心泵,其特征在于,包括如权利要求1-9中任意一项所述的叶轮出口结构。
PCT/CN2021/131511 2021-10-31 2021-11-18 叶轮出口结构及具有其的离心泵 WO2023070775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111279064.6A CN113775563A (zh) 2021-10-31 2021-10-31 叶轮出口结构及具有其的离心泵
CN202111279064.6 2021-10-31

Publications (1)

Publication Number Publication Date
WO2023070775A1 true WO2023070775A1 (zh) 2023-05-04

Family

ID=78956822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131511 WO2023070775A1 (zh) 2021-10-31 2021-11-18 叶轮出口结构及具有其的离心泵

Country Status (2)

Country Link
CN (1) CN113775563A (zh)
WO (1) WO2023070775A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208391A (ja) * 1994-01-21 1995-08-08 Nikkiso Co Ltd ソリッドインペラ
CN103291653A (zh) * 2013-06-24 2013-09-11 江苏大学 一种低比转数叶轮及其叶片设计方法
CN104314860A (zh) * 2014-09-24 2015-01-28 江苏大学 一种低比速离心泵叶轮
CN104791293A (zh) * 2015-03-25 2015-07-22 中国计量学院 一种改善离心泵汽蚀性能的方法
CN107882771A (zh) * 2017-10-18 2018-04-06 江苏大学 一种射流式自吸离心泵的优化设计方法
CN210290251U (zh) * 2018-12-31 2020-04-10 兴化市精锐机械有限公司 一种离心泵叶轮

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065325C (zh) * 1998-02-17 2001-05-02 鄢平安 高速离心泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208391A (ja) * 1994-01-21 1995-08-08 Nikkiso Co Ltd ソリッドインペラ
CN103291653A (zh) * 2013-06-24 2013-09-11 江苏大学 一种低比转数叶轮及其叶片设计方法
CN104314860A (zh) * 2014-09-24 2015-01-28 江苏大学 一种低比速离心泵叶轮
CN104791293A (zh) * 2015-03-25 2015-07-22 中国计量学院 一种改善离心泵汽蚀性能的方法
CN107882771A (zh) * 2017-10-18 2018-04-06 江苏大学 一种射流式自吸离心泵的优化设计方法
CN210290251U (zh) * 2018-12-31 2020-04-10 兴化市精锐机械有限公司 一种离心泵叶轮

Also Published As

Publication number Publication date
CN113775563A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
TW201441489A (zh) 流體泵浦低紊流動葉輪
CN109404334A (zh) 一种斜流风轮及包括该斜流风轮的低噪声斜流风机
CN104989668A (zh) 一种背叶片平衡轴向力旋流泵水力设计方法
CN108361205A (zh) 一种离心泵叶轮及包含该离心泵叶轮的lng潜液泵
US20220163048A1 (en) Impeller
CN209228688U (zh) 叶轮转子组件和包括其的离心泵
JP2018105298A (ja) 高効率二重吸引インペラ
WO2023070775A1 (zh) 叶轮出口结构及具有其的离心泵
CN112648230B (zh) 一种高效抗汽蚀离心泵叶轮
CN110500288B (zh) 一种立式多级泵空间导叶体
CN107120314A (zh) 轴封式核主泵压水室
CN206957988U (zh) 轴封式核主泵压水室
WO2023070774A1 (zh) 叶轮进口结构及具有其的离心泵
WO2020037644A1 (zh) 半开式导流增压叶轮
CN110748504A (zh) 侧流道泵体的水力结构
CN208966709U (zh) 一种离心泵导叶
WO2020024401A1 (zh) 一种斜流风机
CN220551286U (zh) 一种带轴向孔的半开式叶轮
CN218062783U (zh) 一种半开式离心泵叶轮
CN218118114U (zh) 一种半开式叶轮离心泵
CN211314651U (zh) 侧流道泵体的水力结构
CN109026825A (zh) 一种水泵叶轮结构
CN114688095B (zh) 一种立式管道多级离心泵的径向转轴向末级导叶
CN218325388U (zh) 无回流低噪音散热风扇
CN211009268U (zh) 高效无蜗壳离心风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE