WO2023070699A1 - 一种基于电子墨水的彩色图形化变色织物及制备方法 - Google Patents

一种基于电子墨水的彩色图形化变色织物及制备方法 Download PDF

Info

Publication number
WO2023070699A1
WO2023070699A1 PCT/CN2021/128284 CN2021128284W WO2023070699A1 WO 2023070699 A1 WO2023070699 A1 WO 2023070699A1 CN 2021128284 W CN2021128284 W CN 2021128284W WO 2023070699 A1 WO2023070699 A1 WO 2023070699A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
color
microstrip
electronic ink
layer
Prior art date
Application number
PCT/CN2021/128284
Other languages
English (en)
French (fr)
Inventor
尹超逸
刘瑞芳
巴龙
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2023070699A1 publication Critical patent/WO2023070699A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/06Patterned fabrics or articles
    • D04B21/08Patterned fabrics or articles characterised by thread material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • D03D1/0047Camouflage fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0088Fabrics having an electronic function
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0094Belts
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/533Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4023Coloured on the layer surface, e.g. ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0242Fabric incorporating additional compounds enhancing chemical properties
    • D10B2403/02421Fabric incorporating additional compounds enhancing chemical properties containing particulate matter, e.g. powder or granulate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0243Fabric incorporating additional compounds enhancing functional properties
    • D10B2403/02431Fabric incorporating additional compounds enhancing functional properties with electronic components, e.g. sensors or switches

Definitions

  • the invention belongs to self-adaptive visible light color rendering fabric, in particular to an adaptive visible light color rendering fabric based on electronic ink and a preparation method.
  • Functional fibers formed by endowing fiber materials with new properties can be used to prepare smart fabrics, among which color-changing fabrics provide a broad development space for large-scale dynamic graphics and text display, color-changing clothing, camouflage clothing, and weaponry camouflage cloth.
  • Electronic ink display components have certain market advantages due to their low power consumption and high visibility under strong light, but their high price and low contrast limit their application scenarios.
  • the use of conductive fabric as a substrate gives electronic ink new application opportunities, especially In low cost, large area display and dynamic camouflage scenarios.
  • the electronic ink display products in the form of electronic paper, its polymer bottom layer and transparent ITO film top material limit its use in flexible folding applications, and the use of photolithography to prepare small-sized pixels also increases the cost, which is not conducive to large-area and large-scale applications. Dimensions of display products in pixels.
  • the Chinese patent with application number 2010101365461 discloses a color-changing camouflage fabric based on electronic ink display technology and its preparation method. Although the interchanging of two or more camouflage patterns on the surface of the fabric can be realized, the use of ITO film on the upper electrode causes the fabric to have no Flexible, and the obtained fabric can only be self-adapted in the set camouflage pattern, but cannot be integrated into any environment. Therefore, how to prepare camouflage fabrics based on electronic ink microcapsule technology that can achieve full flexibility and control display methods with centimeter-sized pixels to achieve arbitrary environment integration is particularly important.
  • the purpose of the present invention is to provide a color-patterned color-changing fabric based on electronic ink with high contrast, high bending resistance and appropriate electrophoretic color development voltage;
  • the second purpose of the present invention is to provide the above-mentioned electronic ink-based
  • the invention discloses a preparation method of a color-patterned color-changing fabric.
  • a color-patterned color-changing fabric based on electronic ink of the present invention includes a conductive fabric microstrip formed by weaving conductive yarns and insulating yarns, the conductive yarns form conductive regions, and the insulating yarns form An insulating region; the conductive region is provided with an electronic ink microcapsule layer for image display, and the electronic ink microcapsule layer is composed of an electronic ink microcapsule slurry and an adhesive; the electronic ink microcapsule layer is provided with a A flexible transparent conductive layer for providing electrophoretic color development voltage, the flexible transparent conductive layer is composed of single-wall carbon nanotube and silver nanowire paste; the conductive fabric microstrip is provided with a transparent polymer layer for encapsulation.
  • the conductive fabric microstrip has a double-layer structure, formed by weaving, bonding or knitting of conductive yarns and insulating yarns; the conductive area is located on the central surface of the conductive fabric microstrip, and the insulating area is located on the conductive fabric microstrip edges and bottom.
  • the conductive yarn includes any one of silver-plated conductive yarn and conductive nano-material coated conductive yarn, the size of the yarn is not greater than 100D, and the size of the monofilament is not greater than 30D;
  • the insulating yarn is made of nylon, polyester, Any kind of polypropylene or blended yarn, the yarn size is not larger than 100D, and the single filament size is not larger than 15D.
  • the silver nanowire slurry specifically refers to ethanol or aqueous solution of silver nanowires, the average diameter of silver nanowires is 15-22 nm, and the aspect ratio is 1000-2000.
  • the carbon nanotube slurry is an aqueous solution of single-walled carbon nanotubes grown by gas phase catalysis, and the silver nanowire slurry has a transparency of not less than 90% and a square resistance of not more than 150 ⁇ after drying.
  • the electronic ink microcapsule slurry uses electrophoretic particles that realize two-color interchange under different voltages or multi-color electrophoretic particles with different electrophoretic mobility; wherein, the two-color interchange specifically includes black and white, blue and white, Interchange of any color in red, white, green and white.
  • the conductive fabric microstrip is also provided with a drive circuit for applying voltage and a pixel selection chip for controlling the drive circuit to form graphics on the surface of the fabric, the pixel selection chip is connected to the drive circuit signal, and the drive circuit The signal output ends of the signals are respectively connected to the conductive area and the flexible transparent conductive layer.
  • the present invention also protects a method for preparing a color-patterned color-changing fabric based on electronic ink, which includes the following steps:
  • Step 1 Weave the conductive yarn and the insulating yarn into a conductive fabric microstrip by double-layer warp knitting technology, and the conductive yarn and the insulating yarn respectively construct a conductive area and an insulating area on the electrical fabric microstrip;
  • Step 2 mixing the electronic ink microcapsule slurry and the adhesive, evenly coating it on the conductive area, and curing to form an electronic ink microcapsule layer;
  • Step 3 first coat the silver nanowire slurry on the surface of the electronic ink microcapsule layer and dry it, then continue to coat the single-walled carbon nanotube aqueous solution on the dry surface, form a flexible transparent conductive layer after drying, and place the conductive yarn
  • the thread is sewn in the direction perpendicular to the length of the conductive fabric microstrip, so that the conductive yarn is connected to the flexible transparent conductive layer and fixed with the conductive fabric microstrip;
  • Step 4 the conductive area is cut and disconnected with a low-energy YAG laser to form independent display pixels;
  • Step 5 evenly coating the transparent polymer slurry on the surface of the conductive fabric microstrip to form a transparent polymer layer;
  • Step 6 Apply the voltage output by the driving circuit to the conductive area and the flexible transparent conductive layer, respectively, and reverse the color of the discrete single pixel by electrophoresis;
  • Step 7 Weaving or splicing the conductive fabric microstrip into a dynamic color rendering module with fixed pixel density or size, and splicing several modules to form a display device that can be expanded to any size; the pixel selection chip controls the driving circuit through the grid voltage to control the dynamic color rendering module.
  • the module performs voltage modulation, and the simulated environment fusion graphics are displayed on the dynamic color rendering module.
  • the conductive yarn and the insulating yarn are woven into a double-layer microstrip structure by a double-layer weaving process, the edge and bottom surface of the microstrip are composed of insulating yarn, and the central surface is composed of conductive yarn;
  • the knitting process weaves the conductive yarn and the insulating yarn into a double-layer structure, or uses a water-based adhesive to bond the conductive microstrip to the middle of the insulating microstrip, so that the bottom layer of the microstrip is composed of insulating yarns.
  • the upper layer is made of conductive yarn; the thickness of the double-layer microstrip is 50-150 ⁇ m, and the square resistance of the conductive microstrip is 10-150 ⁇ .
  • the volume ratio of the electronic ink microcapsule slurry to the binder is 1.5-2.5:1; wherein, the binder is water-based polyurethane, water-based polyacrylic acid or a mixture of the two, and the concentration of the binder is 10-30 wt%, and the concentration of the electronic ink microcapsule slurry is 1.1-1.3 g/cm 3 .
  • the carbon nanotube slurry is an aqueous solution of single-walled carbon nanotubes grown by gas phase catalysis
  • the silver nanowire slurry is ethanol or aqueous solution of silver nanowires.
  • the transparency is not less than 90%, and the square resistance is not greater than 150 ⁇
  • the conductive yarn used is a bundle of silver-plated fibers, the bundle is 40D20F, and the resistance per centimeter is 5-100 ⁇ ;
  • the concentration of silver nanowires in the silver nanowire slurry is 1 ⁇ 10 -2 to 1 ⁇ 10 -3 wt%, the single-wall carbon nanotube concentration in the single-wall carbon nanotube aqueous solution is 1 ⁇ 10 -3 -1 ⁇ 10 -4 wt%.
  • the conductive area on the microstrip is separated by laser to form independent controllable color rendering pixels, and an overall image or character can be formed by controlling the gray level of a single pixel.
  • the laser has a low output power With a 10-watt YAG laser (wavelength 1.06 ⁇ m), the spot size is less than 0.1 ⁇ m, and the scanning speed is 0.1-1 m/s.
  • the transparent polymer is a non-conductive polymer, and the polymer material cured at room temperature or rapidly cured at high temperature can be used to adjust the overall wear resistance of the microstrip by adjusting the coating thickness of the water-based polyurethane; wherein, the transparent polymer
  • the transparent polymer in the material layer adopts water-based polyurethane, water-based polyacrylic acid or a mixture of the two; the concentration of the transparent polymer is 10-30 wt%, and the thickness after curing is 1-3 ⁇ m.
  • the drive circuit includes a thin film field effect transistor, a scanning driver chip and a driving power supply; the gate and drain of the thin film field effect transistor are connected to the signal output terminal of the scanning driver chip through a signal line; the voltage output of the thin film field effect transistor The terminals are respectively connected to the conductive area and the transparent conductive paste coating; the scanning driver chip is electrically connected to the driving power supply through the power line; the signal line and the power line are both made of conductive yarn; the driving circuit can adjust the output voltage through the control of the external driving power supply , each pixel is driven by a thin-film transistor, and the thin-film transistor is attached to the back of a single pixel color block.
  • the input and output wires of the transistor are made of conductive yarn, and the gate voltage and drain voltage of the transistor are controlled by a scanning driver chip integrated in a single microstrip.
  • the scanning driver chip applies the amplitude and time-modulated pulse voltage output by the power circuit to a single pixel to obtain 16-level grayscale black and white or color display, achieving dynamic control of single pixel grayscale and cloth image, and a single pixel flipping time is low in 1 second.
  • the dynamic color rendering module with fixed pixel density or size is a detachable unit of camouflage cloth woven or spliced with microstrips of different colors, including power supply and output voltage modulation module, graphics memory, decoding chip, communication chip,
  • the environmental simulation image generated by the image control computer is distributed to a single color rendering module through graphic segmentation, and the grayscale control voltage generated by the voltage modulation module is applied to each pixel of the color rendering module through the microstrip pixel scanning chip and pixel driving circuit , to realize the graphical color rendering of the dynamic adaptive environment simulation of the entire camouflage cloth.
  • the molding principle of the present invention is: the present invention adopts the prefabricated double-layer conductive fabric microstrip, weaves the bottom layer with insulating yarn, and weaves the bottom layer of the electronically controlled electronic ink electrophoresis flip structure with conductive yarn, and the thickness of the double-layer microstrip is 50-150 ⁇ m , the square resistance of the conductive microstrip is 10-150 ⁇ ; the microcapsule and the polymer binder are mixed and coated on the surface of the conductive microstrip, and after curing, silver nanowires and single-walled carbon nanotubes are used to coat the electronic ink microcapsule for color development On the surface of the fabric, a transparent conductive layer is formed, and the color and grayscale of a single pixel are controlled by an electronic control circuit to display computer output graphics on a large-area fabric surface.
  • the flexible transparent conductive layer is composed of single-walled carbon nanotubes and silver nanowire coating layer
  • the conductive layer has high transparency, high bending resistance and effective electrophoretic electric field uniformity, temperature, chemical environment and aging stability
  • the silver nanowire conductive network is in contact with the electronic ink microcapsule layer, it has outstanding bending resistance and smaller bending radius compared to the ITO transparent conductive film.
  • Coating single-walled carbon nanotubes on the silver nanowire network not only The bending resistance is greatly improved.
  • the electrode due to the supercapacitive properties of single-armed carbon nanotubes, the electrode has a larger charge capacity under the same bias voltage, so it has a larger field strength, and achieves the same reflectivity of electronic ink compared with silver alone.
  • the nanowires reduce the bias voltage, and the carbon nanotubes also make the flexible electrodes more resistant to bending, with a synergistic enhancement of flexibility, transparency, and conductivity.
  • the electronic ink-based color graphic color-changing fabric of the present invention can adjust the color and pattern of camouflage cloth and camouflage equipment according to the environment image in real time, It has the advantages of simple structural design and high color stability. By rationally designing the size of the microstrip and coating the electronic ink microcapsules with different colors of electrophoretic particles, it can be expanded into a standard-sized dynamic color development module, and then spliced.
  • the present invention provides a preparation method suitable for mass production of large-area flexible reflective display and self-adaptive camouflage textiles, with the color electronic ink microstrip as the basic unit, which can conveniently modify a single pixel Control, mixing microstrips of different colors can form a large-area graphic display, and integrate the displayed graphics with the background to achieve a large-area self-adaptive stealth effect;
  • the conductive layer on the surface of the microstrip is made of one-dimensional nanomaterials, which has good resistance Bending performance, after packaging, the textile has good water resistance and durability, and has rich secondary development potential as a basic material, and has a wide range of application prospects;
  • the fabric of the present invention can not only be used for large-area low-cost color graphic display , can also be used for military self-adaptive visible light camouflage equipment.
  • the concealed objects can be actively hidden into the environment, achieving dynamic self-adaptive stealth, and greatly improving the advantage of one's own side in battlefield confrontation; at the same time, the flexible Color display fabrics also have wide application value in the civilian field, and can be made into reflective display products such as large-area dynamic display murals and advertisements. They have the performance advantages of low cost, foldable, and easy to use.
  • Fig. 1 is the schematic structural view of the colored patterned discoloration fabric of the present invention
  • Fig. 2 is the double-layer structure schematic diagram of conductive fabric microstrip
  • Fig. 3 is the scanning electron micrograph of the flexible transparent conductive layer of embodiment 1, embodiment 4 and embodiment 5;
  • FIG. 4 is a graph showing the relationship between reflectivity and bending times of the microstrip coated with a flexible transparent conductive layer in Example 1 after inversion.
  • the conductive yarn and insulating yarn are woven into a double-layer conductive fabric microstrip with a width of 12mm by double-layer warp knitting process.
  • the edge is composed of insulating yarn, and the center surface is composed of conductive yarn.
  • Silver conductive yarn, insulating yarn is 70D24F nylon yarn, and the conductive yarn is woven into the central area of the microstrip.
  • the width of the conductive area is about 10mm, the width of the side layers on both sides is about 1mm, and the square resistance of the conductive microstrip is ⁇ 1 ⁇ .
  • the electronic ink is electrophoretic microcapsule slurry with a density of 1.20g/cm 3
  • the polyurethane slurry is 9006A water-based polyurethane produced by Shanghai Bihe Industry and Trade Company
  • the electronic ink is the mixed volume ratio of electrophoretic microcapsule slurry and polyurethane 2:1, ultrasonic vibration and mixing for 10 minutes, after the coating is completed, the microstrip is continuously passed through the drying oven, dried and cured at 90°C for 15 minutes
  • the overall thickness of the microstrip substrate and electronic ink is about 200 ⁇ m after curing
  • the electronic ink microcapsule layer The thickness is 90 ⁇ m.
  • each microstrip is provided with a glue coating head, and the diluted silver nanowire ethanol solution is evenly brushed on the microstrips through the slit of the glue coating head
  • the surface of the adhesive layer is cured by electronic ink, and the microstrip is continuously passed through the drying oven, and dried at 90°C for 2 minutes. After drying, the square resistance of the transparent silver nanowire layer is 150 ⁇ ; then spray the diluted single-walled carbon nanotube aqueous solution. On the surface of the microstrip, the spray rate is 0.1mL/s, and the carbon nanotubes are sprayed repeatedly after the hot air is dried.
  • the temperature of the hot air is lower than 90°C, and the total number of spraying is 2 times.
  • the conductive yarn is connected to the surface conductive layer and fixed to the bottom layer of the microstrip; wherein, the average diameter of the silver nanowire is 20nm, and the aspect ratio is 1000; the silver nanowire in the silver nanowire paste
  • the concentration of the single-walled carbon nanotubes in the aqueous solution is 1 ⁇ 10 -2 wt %, and the concentration of the single-walled carbon nanotubes in the aqueous solution is 1 ⁇ 10 -3 wt %.
  • the microstrip into a scraper coater, and evenly coat the transparent polymer water-based polyurethane 9006A slurry on the surface of the above microstrip. After coating, pass the microstrip continuously through the drying oven, and dry and solidify at 90°C for 15 minutes. After curing, an insulating encapsulation layer is formed, and the microstrip is rolled up to make a semi-finished color electronic ink microstrip; the concentration of the transparent polymer is 20wt%, and the thickness after curing is 2 ⁇ m.
  • the obtained color patterned color-changing fabric structure is shown in Fig. 1 and Fig. 2, comprising a conductive fabric microstrip formed by weaving conductive yarn 2 and insulating yarn 1, the conductive yarn 2 forms a conductive region, and the insulating yarn 1 forms an insulating region;
  • the conductive area is provided with an electronic ink microcapsule layer 3 for image display;
  • the electronic ink microcapsule layer 3 is provided with a flexible transparent conductive layer 4 for providing electrophoretic color voltage;
  • the conductive fabric microstrip is provided with transparent polymer for encapsulation.
  • Object layer 4 Before packaging, the conductive area is cut and disconnected with a low-energy YAG laser.
  • the laser wavelength is 1.06 ⁇ m, the spot size is less than 0.1 ⁇ m, and the scanning speed is 0.1-1m/s to form independent square display pixels; Blue sequence, weaving the designed color-developing fabric or camouflage cloth of any size by vertical weaving method, sewing the pixel driver chip on the back insulating layer, and the pins of the driver chip are connected with the upper electrode on the monochromatic color block on the surface of the woven product.
  • the conductive yarn is connected by sewing method to form the color and grayscale control of the color pixel unit, and the pixel control circuit is connected with the output port of the image control circuit by conductive yarn to realize the dynamic display of the image on the textile.
  • Electronic ink microcapsules can choose to contain two different color particles with opposite charges, such as blue-white interchange, black-and-white interchange, red-white interchange, green-white interchange, etc., to form a single-color pixel space color mixing, or a single micro
  • the capsule contains multi-color electrophoretic particles, and the voltage regulates the color mixing in the capsule, and the microstrips arranged in parallel are sewn into dynamic graphic display textiles of any size to achieve a richer display effect.
  • the conductive yarn and insulating yarn are woven into a double-layer conductive fabric microstrip with a width of 12mm by double-layer warp knitting process.
  • the edge is composed of insulating yarn, and the center surface is composed of conductive yarn.
  • Silver conductive yarn, polyester yarn 75D72F is used as the insulating yarn, and the conductive yarn is woven into the central area of the microstrip.
  • the width of the conductive area is about 10mm, and the width of the side layers on both sides is about 1mm.
  • the conductive area is plated with silver, and the thickness is about 2 ⁇ m ,
  • the square resistance of the conductive microstrip is ⁇ 1 ⁇ .
  • the electronic ink is electrophoretic microcapsule slurry with a density of 1.10g/cm 3
  • the polyurethane slurry is 9006A water-based polyurethane produced by Shanghai Bihe Industry and Trade Company
  • the electronic ink is the mixed volume ratio of electrophoretic microcapsule slurry and polyurethane 1.5:1, ultrasonic vibration and mixing for 10 minutes, after the coating is completed, the microstrip is continuously passed through the drying oven, dried and cured at 90°C for 15 minutes
  • the overall thickness of the microstrip substrate and electronic ink is about 200 ⁇ m after curing
  • the electronic ink microcapsule layer The thickness is 90 ⁇ m.
  • each microstrip is provided with a glue coating head, and the diluted silver nanowire aqueous solution is evenly brushed on the microstrip electronics through the slit of the glue coating head.
  • the ink is cured on the surface of the adhesive layer, and the microstrip is continuously passed through the drying oven, and dried at 90°C for 20 minutes. After drying, the square resistance of the transparent silver nanowire layer is 150 ⁇ ; then the diluted single-walled carbon nanotube aqueous solution is sprayed on the On the surface of the microstrip, the spray rate is 0.1mL/s. Repeat the spraying of carbon nanotubes after the hot air is dried.
  • the temperature of the hot air is lower than 90°C.
  • the total number of spraying is 2 times.
  • the vertical microstrip length direction makes the conductive yarn conduct with the surface conductive layer and fixes with the bottom layer of the microstrip; wherein, the average diameter of the silver nanowire is 15nm, and the aspect ratio is 2000; the silver nanowire in the silver nanowire slurry
  • the concentration is 1 ⁇ 10 -3 wt %, and the concentration of single-wall carbon nanotubes in the aqueous solution of single-wall carbon nanotubes is 1 ⁇ 10 -4 wt %.
  • the microstrip is introduced into a scraper coater, and the transparent polymer water-based polyacrylic acid slurry is evenly coated on the surface of the above-mentioned microstrip. After coating, the microstrip is continuously passed through a drying oven, and dried and cured at 90° C. for 15 minutes. An insulating encapsulation layer is formed after curing, and a semi-finished color electronic ink microstrip is made after the microstrip is rolled up; the concentration of the transparent polymer is 10wt%, and the thickness after curing is 1 ⁇ m.
  • the conductive area is cut and disconnected with a low-energy YAG laser.
  • the laser wavelength is 1.06 ⁇ m
  • the spot size is less than 0.1 ⁇ m
  • the scanning speed is 0.1-1 m/s to form independent square display pixels.
  • the conductive yarn connected with the upper electrode on the color block is connected by sewing method to form the color and gray scale control of the color pixel unit.
  • the pixel control circuit is connected with the output port of the image control circuit by conductive yarn to realize the control on the textile The image is displayed dynamically.
  • the conductive yarn and the insulating yarn are woven into a double-layer conductive fabric microstrip with a width of 12 mm by double-layer warp knitting technology.
  • the edge is composed of insulating yarn
  • the center surface is composed of conductive yarn.
  • Material-coated conductive yarn, the nanomaterials in the conductive yarn coating are carbon nanotubes and silver nanowires, the specification is 75D3F
  • the insulating yarn is polypropylene yarn
  • the specification is 75D36F
  • the conductive yarn is woven into the microstrip by high-density knitting technology
  • the width of the conductive area is about 10 mm
  • the width of the side layers on both sides is about 1 mm
  • the square resistance of the conductive microstrip is ⁇ 1 ⁇ .
  • the woven continuous strip is coiled, it is introduced into the rubber scraping machine, and several microstrips are arranged in parallel, and each is provided with a dispensing head, and the electronic ink microcapsule slurry and the water-based polyacrylic acid mixed slurry are dripped on the micro In the center of the conductive area, the electronic ink is electrophoretic microcapsule slurry with a density of 1.35g/cm 3 , the electronic ink is electrophoretic microcapsule slurry and water-based polyacrylic acid with a volume ratio of 2.5:1, ultrasonic vibration and mixing for 10 minutes, and the coating is completed Afterwards, the microstrip was continuously passed through a drying oven, dried and cured at 90°C for 15 minutes, the overall thickness of the microstrip substrate and electronic ink cured was about 200 ⁇ m, and the thickness of the electronic ink microcapsule layer was 90 ⁇ m.
  • each microstrip is provided with a glue coating head, and the diluted silver nanowire aqueous solution is evenly brushed on the microstrip electronics through the slit of the glue coating head.
  • the ink is cured on the surface of the adhesive layer, and the microstrip is continuously passed through the drying oven, and dried at 90°C for 20 minutes. After drying, the square resistance of the transparent silver nanowire layer is 150 ⁇ ; then the diluted single-walled carbon nanotube aqueous solution is sprayed on the On the surface of the microstrip, the spray rate is 0.1mL/s. Repeat the spraying of carbon nanotubes after the hot air is dried.
  • the temperature of the hot air is lower than 90°C.
  • the total number of spraying is 2 times.
  • the concentration is 1 ⁇ 10 -2 wt %
  • the concentration of single-wall carbon nanotubes in the aqueous solution of single-wall carbon nanotubes is 1 ⁇ 10 -3 wt %.
  • the conductive area is cut and disconnected with a low-energy YAG laser.
  • the laser wavelength is 1.06 ⁇ m
  • the spot size is less than 0.1 ⁇ m
  • the scanning speed is 0.1-1m/s to form independent square display pixels;
  • Blue sequence weaving the designed color-developing fabric or camouflage cloth of any size by vertical weaving method, sewing the pixel driver chip on the back insulating layer, and the pins of the driver chip are connected with the upper electrode on the monochromatic color block on the surface of the woven product
  • the conductive yarn is connected by sewing method to form the color and grayscale control of the color pixel unit, and the pixel control circuit is connected with the output port of the image control circuit by conductive yarn to realize the dynamic display of the image on the textile.
  • step (3) only the ethanol solution of silver nanowires is used to coat the surface of the microstrip electronic ink cured adhesive layer, and it is dried at 90 ° C for 2 minutes through a drying oven , to obtain a flexible transparent conductive layer after drying, and further prepare a color-patterned color-changing fabric.
  • step (3) repeats spraying carbon nanotubes for 4 times to obtain a flexible transparent conductive layer, and further color-patterning the color-changing fabric.
  • the flexible transparent conductive layer of embodiment 1, embodiment 4 and embodiment 5 is carried out scanning electron microscope test, as can be seen from Fig. 3, wherein, (a) is the test result of embodiment 1, (b) is the test result of embodiment 4 , (c) is the test result of Example 5.
  • (a) is the test result of embodiment 1
  • (b) is the test result of embodiment 4
  • (c) is the test result of Example 5.
  • the charged layer has a moderate density of silver nanowires and carbon nanotubes (square resistance ⁇ 100 ⁇ ), a light transmittance higher than 90%, and an inversion voltage lower than that of Example 4.
  • Table 1 is the capacitance value (pF) of different flexible conductive layers measured against ITO electrodes with the same thickness of electronic ink layer at 100kHz voltage, transparent silver wire, silver wire + carbon tube 1, silver wire + carbon tube 2, silver wire + carbon tube 3 is embodiment 4, embodiment 1, embodiment 5 and the electrode coated with 6 layers of carbon nanotubes on the silver nanowire layer.
  • Example 1 The stability of the electrode in Example 1 is characterized by measuring the reflectivity after repeated bending and changing color. The results show that the carbon tube layer significantly increases the bending stability.
  • Figure 4 is the test result of Example 1. When the bending diameter is 6mm There is no obvious change in the discoloration characteristics after 10,000 times of bending.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本发明公开了一种基于电子墨水的彩色图形化变色织物及制备方法,织物包括由导电纱线和绝缘纱线编织形成的导电织物微带,导电纱线形成导电区域,绝缘纱线形成绝缘区域;导电区域上设有电子墨水微胶囊层;电子墨水微胶囊层上设有柔性透明导电层;柔性透明导电层上设有透明聚合物层。本发明微带表层为导电层,底层为绝缘层,将电泳变色微囊、导电一维纳米材料及透明聚合物均匀涂敷于微带表面,通过驱动电路输出的电压分别施加于导电微带及透明导电层,实现对微带表面厘米尺度微区选择性翻转显色。将上下电极与控制电路连接,实现厘米尺寸像素控制和大尺寸图形显示,制成基于导电织物基材的可折叠、环境耐受性高的低成本大面积彩色显示及自适应可见光伪装织物。

Description

一种基于电子墨水的彩色图形化变色织物及制备方法 技术领域
本发明属于自适应可见光显色织物,具体涉及一种基于电子墨水的自适应可见光显色织物及制备方法。
背景技术
通过赋予纤维材料新性能所形成的功能纤维可用于制备智能织物,其中可变色彩的布料为大尺寸动态图形及文字显示、变色服装、迷彩服、武器装备伪装布等提供了广阔的开发空间。
电子墨水显示元件因其低功耗、强光照可见度高的特性而有一定市场优势,但其高价格、低反差限制了其应用场景,以导电织物为底材赋予电子墨水新的应用机会,尤其在低成本、大面积显示和动态迷彩场景。目前电子纸形态的电子墨水显示产品,其聚合物底层和透明ITO薄膜顶材限制了其用于柔性折叠应用场景,用光刻技术制备小尺寸像素也增加了成本,不利于用于大面积大尺寸像素的显示产品。目前未见有以织物做底材的电子墨水显示装置。
在现代战场对抗条件下,侦察装备的综合使用使得传统数码迷彩的伪装效果受到严重抑制,而具备动态环境适应能力的色彩和图形可变的迷彩遮蔽装备,使被遮蔽物完全隐没在自然环境中,能大幅提高己方人员和装备在战场中的对抗优势。电子墨水类的反射式显色原理使得其成为在可见光波段下实现自适应伪装的理想材料。
申请号为2010101365461的中国专利公开了一种基于电子墨水显示技术的变色迷彩织物及其制备方法,虽然可以实现织物表面两种以上迷彩图案的互变,但是其上电极采用ITO薄膜导致织物不具备柔性,且所得织物只能在设定的迷彩图形中自适应,而不能达到任意环境的融入。因此,如何制备基于电子墨水微胶囊技术的能够实现全柔性和用厘米尺寸像素控制显示方法实现任意环境融入的伪装织物尤为重要。
发明内容
发明目的:本发明的目的在于提供一种具有高反差、高耐折弯性和适当电泳显色电压的基于电子墨水的彩色图形化变色织物;本发明的第二目的在于提供上述基于电子墨水的彩色图形化变色织物的制备方法。
技术方案:本发明的一种基于电子墨水的彩色图形化变色织物,包括由导电纱线和绝缘纱线编织形成的导电织物微带,所述导电纱线形成导电区域,所述绝缘纱线形成绝缘区域;所述导电区域上设有用于图像显示的电子墨水微胶囊层, 所述电子墨水微胶囊层由电子墨水微胶囊浆料与粘合剂组成;所述电子墨水微胶囊层上设有用于提供电泳显色电压的柔性透明导电层,所述柔性透明导电层由单壁碳纳米管和银纳米线浆料组成;所述导电织物微带上设有用于封装的透明聚合物层。
进一步的,所述导电织物微带为双层结构,由导电纱线和绝缘纱线通过梭织、粘接或针织形成;导电区域位于导电织物微带的中心表面,绝缘区域位于导电织物微带的边缘和底部。
进一步的,所述导电纱线包括镀银导电纱、导电纳米材料涂层导电纱中的任意一种,纱线尺寸不大于100D,单丝尺寸不大于30D;所述绝缘纱采用锦纶、涤纶、丙纶中的任意一种或混纺纱,纱线尺寸不大于100D,单丝尺寸不大于15D。
进一步的,所述银纳米线浆料具体是指银纳米线的乙醇或水溶液,银纳米线的平均直径为15~22nm,长径比为1000~2000。碳纳米管浆料为气相催化生长的单壁碳纳米管水溶液,银纳米线浆料干燥后透明度不低于90%,方阻不大于150Ω。
进一步的,所述电子墨水微胶囊浆料采用在不同电压下实现双色互变的电泳颗粒或具有不同电泳迁移率的多色电泳颗粒;其中,所述的双色互变具体包括黑白、蓝白、红白、绿白中的任一种颜色的互变。
进一步的,所述导电织物微带上还设有用于施加电压的驱动电路和用于控制驱动电路在织物表面形成图形的像素选择芯片,所述像素选择芯片与驱动电路信号连接,所述驱动电路的信号输出端分别与导电区域和柔性透明导电层连接。
本发明还保护一种基于电子墨水的彩色图形化变色织物的制备方法,包括以下步骤:
步骤一、用双层经编工艺将导电纱线和绝缘纱线织成导电织物微带,导电纱线与绝缘纱线在电织物微带上分别构建出导电区域和绝缘区域;
步骤二、将电子墨水微胶囊浆料与粘合剂混合后均匀涂敷于导电区域,并固化形成电子墨水微胶囊层;
步骤三、先将银纳米线浆料涂覆在电子墨水微胶囊层的表面并干燥,然后在干燥的表面继续涂敷单壁碳纳米管水溶液,吹干后形成柔性透明导电层,将导电纱线缝制在垂直导电织物微带长度的方向,使导电纱线与柔性透明导电层导通且与导电织物微带固定;
步骤四、导电区域用低能YAG激光切割断开,形成独立的显示像素;
步骤五、将透明聚合物浆料均匀涂敷于导电织物微带的表面,形成透明聚合物层;
步骤六、将驱动电路输出的电压分别施加于导电区域和柔性透明导电层,对分立的单个像素电泳翻转显色;
步骤七、将导电织物微带编织或拼接成固定像素密度或尺寸的动态显色模块,将若干模块拼接,形成可扩展任意尺寸的显示装置;像素选择芯片通过栅压控制驱动电路对动态显色模块进行电压调制,在动态显色模块上显示出模拟的环境融合图形。
上述的步骤一中,导电纱线与绝缘纱线用双层梭织工艺织成双层微带结构,微带边缘和底面由绝缘纱线构成,中心表面由导电纱线构成;也可以采用经编针织工艺将导电纱线与绝缘纱线织成双层结构,或者使用水性粘合剂通过粘合的方式将导电微带粘合在绝缘微带中间,使微带底层由绝缘纱线构成,上层由导电纱线构成;所述双层微带厚度为50~150μm,导电微带方阻为10~150Ω。
上述的步骤二中,电子墨水微胶囊浆料与粘合剂的体积比为1.5~2.5:1;其中,粘合剂为水性聚氨酯、水性聚丙烯酸或二者的混合,粘合剂的浓度为10~30wt%,电子墨水微胶囊浆料的浓度为1.1~1.3g/cm 3
上述的步骤三中,碳纳米管浆料为气相催化生长的单壁碳纳米管水溶液,银纳米线浆料为银纳米线的乙醇或水溶液,干燥后透明度不低于90%,方阻不大于150Ω,采用的导电纱线由镀银纤维组成的束丝,束丝为40D20F,厘米电阻为5~100Ω;其中,银纳米线浆料中银纳米线的浓度为1×10 -2~1×10 -3wt%,单壁碳纳米管水溶液中单壁碳纳米管的浓度为1×10 -3~1×10 -4wt%。
上述的步骤四中,将微带上的导电区域用激光分离,可以形成独立的可控显色的像素,可以通过控制单个像素灰度,形成整体图像或字符,优选的,激光为输出功率低于10瓦的YAG激光(波长1.06μm),光斑尺寸低于0.1μm,扫描速度为0.1~1米/秒。
上述的步骤五中,透明聚合物为非导电聚合物,采用常温固化或高温快速固化的聚合物材料,可以通过调节水性聚氨酯的涂敷厚度来调节微带的整体耐磨性能;其中,透明聚合物层中的透明聚合物采用水性聚氨酯、水性聚丙烯酸或二者的混合物;透明聚合物的浓度为10~30wt%,固化后厚度为1~3μm。
上述的步骤六中,驱动电路包括薄膜场效应晶体管、扫描驱动芯片以及驱动电源;薄膜场效应晶体管的栅极、漏极通过信号线与扫描驱动芯片信号输出端连接;薄膜场效应晶体管的电压输出端分别与导电区域和透明导电浆料涂层连接;扫描驱动芯片通过电源线与驱动电源电性连接;信号线、电源线均采用导电纱线;驱动电路通过外部驱动电源控制能够调节输出电压大小,每个像素用薄膜晶体管驱动,薄膜晶体管贴合在单个像素色块背面,晶体管输入、输出导线均采用导电 纱线,晶体管栅极电压、漏极电压用集成在单个微带的扫描驱动芯片控制,扫描驱动芯片将电源电路输出的幅值、时间调制的脉冲电压施加到单个像素,得到16级灰度黑白或彩色显示,达到对单个像素灰度、布面图像动态控制,单个像素翻转时间低于1秒。
上述的步骤七中,固定像素密度或尺寸的动态显色模块,为不同颜色微带编织或拼接的伪装布可拆装单元,包含电源和输出电压调制模块、图形存储器、解码芯片、通讯芯片,将图像控制计算机生成的环境模拟图像,通过图形分割,分配到单个显色模块,将电压调制模块产生的灰度控制电压,通过微带像素扫描芯片和像素驱动电路,施加到显色模块各个像素,实现整个伪装布的动态自适应环境模拟图形化显色。
本发明的成型原理为:本发明采用预制的双层导电织物微带,用绝缘纱织成底层,用导电纱织成电控电子墨水电泳翻转结构的底层,双层微带厚度为50~150μm,导电微带方阻为10~150Ω;将微囊与聚合物粘结剂混合涂敷在导电微带表面,固化后用银纳米线和单壁碳纳米管涂敷在电子墨水微囊显色层表面,形成透明导电层,通过电子控制电路控制单个像素的颜色和灰度,达到在大面积织物表面显示计算机输出的图形。其中,柔性透明导电层由单壁碳纳米管和银纳米线涂敷层组成,该导电层具有高透明度、高耐折弯性和有效的电泳电场均匀性、温度、化学环境和老化稳定性,由于银纳米线导电网络与电子墨水微胶囊层接触,相比ITO透明导电薄膜,具有突出的耐折弯性和更小折弯半径,在银纳米线网络上涂敷单壁碳纳米管,不仅大幅提高耐折弯性,同时由于单臂碳纳米管具有超电容性质,在相同偏压下电极具有更大的荷电量,因此具有更大场强,达到相同电子墨水反射率下相比单独银纳米线降低了偏压,碳纳米管还使得柔性电极具有更高的耐折弯性,具有柔性、透明性和导电性的协同增强效果。
有益效果:与现有技术相比,本发明的具有如下显著优点:(1)本发明的基于电子墨水的彩色图形化变色织物,能实时根据环境图像调节伪装布及伪装装备的颜色、图形,具有结构设计简单、变色稳定性能高等优点,通过合理设计微带的尺寸、涂敷带不同颜色电泳颗粒的电子墨水微囊,以此为基本单元,可以扩展成标准尺寸动态显色模块,进而拼接成任意尺寸柔性伪装布及结构;(2)本发明提供一种适合大量生产大面积柔性反射显示和自适应伪装纺织品的制备方法,以彩色电子墨水微带为基本单元,可以方便地对单个像素控制,将不同颜色微带混编,可以形成大面积图形化显示,将显示的图形与背景融合,可以达到大面积自适应隐身效果;微带表面导电层采用一维纳米材料,具有良好的耐折弯性能,封装后纺织品具有良好耐水性、耐久性,作为基础材料具有丰富的二次开发潜力, 具有广泛的应用前景;(3)本发明的织物不仅可以用于大面积低成本彩色图形显示,还可以用于军用自适应可见光伪装装备,通过在柔性织物表面生成环境模拟图形,可以使被遮蔽物主动隐入环境,达到动态自适应隐身,大幅提高战场对抗中己方优势;同时,该柔性彩色显示布料在民用领域也具有广泛的应用价值,可制成大面积动态显示壁画、广告等反射式显示产品,具有低成本、可折叠、使用方便的性能优势。
附图说明
图1是本发明彩色图形化变色织物的结构示意图;
图2是导电织物微带的双层结构示意图;
图3为实施例1、实施例4和实施例5的柔性透明导电层扫描电镜照片;
图4为实施例1的涂敷柔性透明导电层微带翻转后反射率与折弯次数关系图。
具体实施方式
下面结合附图和实施例对本发明的技术方案做进一步详细说明。
实施例1
(1)用双层经编工艺将导电纱线和绝缘纱线织成宽12mm的双层导电织物微带,边缘由绝缘纱线构成,中心表面由导电纱线构成,导电纱线用70D24F镀银导电纱,绝缘纱线采用70D24F锦纶纱,将导电纱织到微带中心区域,导电区域宽度约为10mm,两边边层宽度约为1mm,导电微带方阻为~1Ω。
(2)将织成的连续带材盘卷后导入刮胶机,若干微带平行排列,每根设置一个滴胶头,将电子墨水微胶囊浆料和水性聚氨酯混合浆料滴加在微带导电区域中央,电子墨水为电泳微囊浆料的密度为1.20g/cm 3,聚氨酯浆料为上海碧鹤工贸公司生产的9006A水性聚氨酯,电子墨水为电泳微囊浆料与聚氨酯混合体积比为2:1,超声震荡混合10min,涂敷完成后将微带连续通过干燥箱,在90℃烘干固化15分钟,微带基底和电子墨水固化后整体厚度约为200μm,电子墨水微囊层厚度为90μm。
(3)将固化的连续微带导入涂胶机,若干微带平行排列,每根微带设置一个涂胶头,将稀释的银纳米线乙醇溶液通过涂胶头窄缝均匀刷涂在微带电子墨水固化胶层表面,将微带连续通过干燥箱,在90℃下烘干2分钟,干燥后且透明银纳米线层方阻为150Ω;再将稀释的单壁碳纳米管水溶液喷雾涂敷在微带表面,喷雾速率为0.1mL/s,热风吹干后重复喷涂碳纳米管,热风温度低于90℃,总喷涂次数为2次,热风吹干后将导电纱线用绝缘丝缝制在垂直微带长度方向,使得导电纱线与表面导电层导通且与微带的底层固定;其中,银纳米 线的平均直径为20nm,长径比为1000;银纳米线浆料中银纳米线的浓度为1×10 -2wt%,单壁碳纳米管水溶液中单壁碳纳米管的浓度为1×10 -3wt%。
(4)将微带导入刮涂机,将透明聚合物水性聚氨酯9006A浆料均匀涂敷于上述微带表面,涂敷后将微带连续通过干燥箱,在90℃下烘干固化15分钟,固化后形成绝缘封装层,微带收卷后制成彩色电子墨水微带半成品;透明聚合物浓度为20wt%,固化后厚度为2μm。
得到的彩色图形化变色织物结构参见图1和图2,包括由导电纱线2和绝缘纱线1编织形成的导电织物微带,导电纱线2形成导电区域,绝缘纱线1形成绝缘区域;导电区域上设有用于图像显示的电子墨水微胶囊层3;电子墨水微胶囊层3上设有用于提供电泳显色电压的柔性透明导电层4;导电织物微带上设有用于封装的透明聚合物层4。封装前,导电区域用低能YAG激光切割断开,激光波长1.06μm,光斑尺寸低于0.1μm,扫描速度为0.1~1m/s,形成独立的方形显示像素;通过半成品多色微带按红绿蓝次序,以垂直编织方法织成设计的任意尺寸显色织物或伪装布,将像素驱动芯片缝制在背面绝缘层上,驱动芯片管脚与编织产品表面单色色块上与上电极联通的导电纱线用缝制方法联结,形成对彩色像素单元的色彩和灰度控制,该像素控制电路用导电纱线与图像控制电路输出端口联结,实现对纺织品上图像动态显示。电子墨水微囊可选择含有两种带电相反的不同颜色颗粒,如采用蓝白互变、黑白互变、红白互变、绿白互变等,形成单色像素空间混色,也可以采用单个微囊内包含多色电泳颗粒,电压调控囊内混色,将平行排列的微带缝制成任意尺寸动态图形显示纺织品,达到更丰富的显示效果。
实施例2
(1)用双层经编工艺将导电纱线和绝缘纱线织成宽12mm的双层导电织物微带,边缘由绝缘纱线构成,中心表面由导电纱线构成,导电纱线用70D24F镀银导电纱,绝缘纱线采用涤纶纱75D72F,将导电纱织到微带中心区域,导电区域宽度约为10mm,两边边层宽度约为1mm,微带编织后导电区镀银,厚度约为2μm,导电微带方阻为~1Ω。
(2)将织成的连续带材盘卷后导入刮胶机,若干微带平行排列,每根设置一个滴胶头,将电子墨水微胶囊浆料和水性聚氨酯混合浆料滴加在微带导电区域中央,电子墨水为电泳微囊浆料的密度为1.10g/cm 3,聚氨酯浆料为上海碧鹤工贸公司生产的9006A水性聚氨酯,电子墨水为电泳微囊浆料与聚氨酯混合体积比为1.5:1,超声震荡混合10min,涂敷完成后将微带连续通过干燥箱,在90℃烘干固化15分钟,微带基底和电子墨水固化后整体厚度约为200μm,电子 墨水微囊层厚度为90μm。
(3)将固化的连续微带导入涂胶机,若干微带平行排列,每根微带设置一个涂胶头,将稀释的银纳米线水溶液通过涂胶头窄缝均匀刷涂在微带电子墨水固化胶层表面,将微带连续通过干燥箱,在90℃下烘干20分钟,干燥后且透明银纳米线层方阻为150Ω;再将稀释的单壁碳纳米管水溶液喷雾涂敷在微带表面,喷雾速率为0.1mL/s,热风吹干后重复喷涂碳纳米管,热风温度低于90℃,总喷涂次数为2次,热风吹干后将导电纱线用绝缘丝缝制在垂直微带长度方向,使得导电纱线与表面导电层导通且与微带的底层固定;其中,银纳米线的平均直径为15nm,长径比为2000;银纳米线浆料中银纳米线的浓度为1×10 -3wt%,单壁碳纳米管水溶液中单壁碳纳米管的浓度为1×10 -4wt%。
(4)将微带导入刮涂机,将透明聚合物水性聚丙烯酸浆料均匀涂敷于上述微带表面,涂敷后将微带连续通过干燥箱,在90℃下烘干固化15分钟,固化后形成绝缘封装层,微带收卷后制成彩色电子墨水微带半成品;透明聚合物浓度为10wt%,固化后厚度为1μm。
封装前,导电区域用低能YAG激光切割断开,激光波长1.06μm,光斑尺寸低于0.1μm,扫描速度为0.1~1m/s,形成独立的方形显示像素。通过半成品多色微带按红绿蓝次序,以垂直编织方法织成设计的任意尺寸显色织物或伪装布,将像素驱动芯片缝制在背面绝缘层上,驱动芯片管脚与编织产品表面单色色块上与上电极联通的导电纱线用缝制方法联结,形成对彩色像素单元的色彩和灰度控制,该像素控制电路用导电纱线与图像控制电路输出端口联结,实现对纺织品上图像动态显示。
实施例3
(1)用双层经编工艺将导电纱线和绝缘纱线织成宽12mm的双层导电织物微带,边缘由绝缘纱线构成,中心表面由导电纱线构成,导电纱线用导电纳米材料涂层导电纱,该导电纱涂层中纳米材料为碳纳米管和银纳米线,规格为75D3F,绝缘纱线采用丙纶纱,规格为75D36F,采用高密度针织工艺将导电纱织到微带中心区域,导电区域宽度约为10mm,两边边层宽度约为1mm,导电微带方阻为~1Ω。
(2)将织成的连续带材盘卷后导入刮胶机,若干微带平行排列,每根设置一个滴胶头,将电子墨水微胶囊浆料和水性聚丙烯酸混合浆料滴加在微带导电区域中央,电子墨水为电泳微囊浆料的密度为1.35g/cm 3,电子墨水为电泳微囊浆料与水性聚丙烯酸混合体积比为2.5:1,超声震荡混合10min,涂敷完成后将微带连续通过干燥箱,在90℃烘干固化15分钟,微带基底和电子墨水固化 后整体厚度约为200μm,电子墨水微囊层厚度为90μm。
(3)将固化的连续微带导入涂胶机,若干微带平行排列,每根微带设置一个涂胶头,将稀释的银纳米线水溶液通过涂胶头窄缝均匀刷涂在微带电子墨水固化胶层表面,将微带连续通过干燥箱,在90℃下烘干20分钟,干燥后且透明银纳米线层方阻为150Ω;再将稀释的单壁碳纳米管水溶液喷雾涂敷在微带表面,喷雾速率为0.1mL/s,热风吹干后重复喷涂碳纳米管,热风温度低于90℃,总喷涂次数为2次,热风吹干后将导电纱线用绝缘丝缝制在垂直微带长度方向,使得导电纱线与表面导电层导通且与微带的底层固定;其中,银纳米线的平均直径为20nm,长径比为1000;银纳米线浆料中银纳米线的浓度为1×10 -2wt%,单壁碳纳米管水溶液中单壁碳纳米管的浓度为1×10 -3wt%。
(4)将微带导入刮涂机,将透明聚合物水性聚氨酯9006A浆料均匀涂敷于上述微带表面,涂敷后将微带连续通过干燥箱,在90℃下烘干固化15分钟,固化后形成绝缘封装层,微带收卷后制成彩色电子墨水微带半成品;透明聚合物浓度为30wt%,固化后厚度为3μm。
封装前,导电区域用低能YAG激光切割断开,激光波长1.06μm,光斑尺寸低于0.1μm,扫描速度为0.1~1m/s,形成独立的方形显示像素;通过半成品多色微带按红绿蓝次序,以垂直编织方法织成设计的任意尺寸显色织物或伪装布,将像素驱动芯片缝制在背面绝缘层上,驱动芯片管脚与编织产品表面单色色块上与上电极联通的导电纱线用缝制方法联结,形成对彩色像素单元的色彩和灰度控制,该像素控制电路用导电纱线与图像控制电路输出端口联结,实现对纺织品上图像动态显示。
实施例4
具体制备过程同实施例1,不同之处在于,步骤(3)中仅采用银纳米线的乙醇溶液涂敷在微带电子墨水固化胶层表面,通过干燥箱,在90℃下烘干2分钟,干燥后得到柔性透明导电层,并进一步制备彩色图形化变色织物。
实施例5
具体制备过程同实施例1,不同之处在于,步骤(3)重复喷涂碳纳米管,喷涂次数为4次,得到柔性透明导电层,并进一步彩色图形化变色织物。
将实施例1、实施例4和实施例5的柔性透明导电层进行扫描电镜测试,由图3可知,其中,(a)为实施例1的测试结果,(b)为实施例4的测试结果,(c)为实施例5的测试结果,由图可知,仅涂敷银纳米线,表面导电层银纳米线稀疏分布,涂敷碳管量较少时,碳管填充银线网络间隙,形成荷电层,适度的银纳米线与碳纳米管密度(方阻~100Ω),透光度高于90%,翻转电压低于实 施例4。
对实施例1、实施例4和实施例5的柔性导电层电容测试结果见表1。
表1
  银线 银线+碳管1 银线+碳管2 银线+碳管3
不透明电极 440 475 1085 1391
透明电极 38 400 968 1164
表1为不同柔性导电层在100kHz电压下相对ITO电极测量相同厚度电子墨水层的电容值(pF),透明银线、银线+碳管1、银线+碳管2、银线+碳管3分别为实施例4、实施例1、实施例5和银纳米线层上涂敷6层碳纳米管的电极。
对实施例1的电极稳定性通过重复折弯后测量翻转变色后反射率来表征,结果表明,碳管层明显增加折弯稳定性,图4为实施例1的测试结果,折弯直径6mm时10000次折弯变色特性没明显变化。

Claims (10)

  1. 一种基于电子墨水的彩色图形化变色织物,其特征在于:包括由导电纱线(2)和绝缘纱线(1)编织形成的导电织物微带,所述导电纱线(2)形成导电区域,所述绝缘纱线(1)形成绝缘区域;所述导电区域上设有用于图像显示的电子墨水微胶囊层(3),所述电子墨水微胶囊层(3)由电子墨水微胶囊浆料与粘合剂组成;所述电子墨水微胶囊层(3)上设有用于提供电泳显色电压的柔性透明导电层(4),所述柔性透明导电层(4)由单壁碳纳米管和银纳米线浆料组成;所述导电织物微带上设有用于封装的透明聚合物层(4)。
  2. 根据权利要求1所述的基于电子墨水的彩色图形化变色织物,其特征在于:所述导电织物微带为双层结构,由导电纱线(2)和绝缘纱线(1)通过梭织、粘接或针织形成;导电区域位于导电织物微带的中心表面,绝缘区域位于导电织物微带的边缘和底部。
  3. 根据权利要求2所述的基于电子墨水的彩色图形化变色织物,其特征在于:所述导电纱线(2)包括镀银导电纱、导电纳米材料涂层导电纱中的任意一种,纱线尺寸不大于100D,单丝尺寸不大于30D;所述绝缘纱线(1)采用锦纶、涤纶、丙纶中的任意一种或混纺纱,纱线尺寸不大于100D,单丝尺寸不大于15D。
  4. 根据权利要求1所述的基于电子墨水的彩色图形化变色织物,其特征在于:所述银纳米线浆料具体是指银纳米线的乙醇或水溶液,银纳米线的平均直径为15~20nm,长径比为1000~2000。
  5. 根据权利要求1所述的基于电子墨水的彩色图形化变色织物,其特征在于:所述电子墨水微胶囊浆料采用在不同电压下实现双色互变的电泳颗粒或具有不同电泳迁移率的多色电泳颗粒;其中,所述的双色互变具体包括黑白、蓝白、红白、绿白中的任一种颜色的互变。
  6. 根据权利要求1所述的基于电子墨水的彩色图形化变色织物,其特征在于:所述导电织物微带上还设有用于施加电压的驱动电路和用于控制驱动电路在织物表面形成图形的像素选择芯片,所述像素选择芯片与驱动电路信号连接,所述驱动电路的信号输出端分别与导电区域和柔性透明导电层连接。
  7. 权利要求1-6任一项所述的基于电子墨水的彩色图形化变色织物的制备方法,其特征在于,包括以下步骤:
    步骤一、用双层经编工艺将导电纱线和绝缘纱线织成导电织物微带,导电纱线与绝缘纱线在织物微带上分别构建出导电区域和绝缘区域;
    步骤二、将电子墨水微胶囊浆料与粘合剂混合后均匀涂敷于导电区域,并固化形成电子墨水微胶囊层;
    步骤三、先将银纳米线浆料涂覆在电子墨水微胶囊层的表面并干燥,然后在干燥的表面继续 涂敷单壁碳纳米管水溶液,吹干后形成柔性透明导电层,将导电纱线缝制在垂直导电织物微带长度的方向,使导电纱线与柔性透明导电层导通且与导电织物微带固定;
    步骤四、导电区域用低能YAG激光切割断开,形成独立的显示像素;
    步骤五、将透明聚合物浆料均匀涂敷于导电织物微带的表面,形成透明聚合物层;
    步骤六、将驱动电路输出的电压分别施加于导电区域和柔性透明导电层,对分立的单个像素电泳翻转显色;
    步骤七、将导电织物微带编织或拼接成固定像素密度或尺寸的动态显色模块,将若干模块拼接,形成可扩展任意尺寸的显示装置;像素选择芯片通过栅压控制驱动电路对动态显色模块进行电压调制,在动态显色模块上显示出模拟的环境融合图形。
  8. 根据权利要求7所述的基于电子墨水的彩色图形化变色织物的制备方法,其特征在于:所述步骤二中,电子墨水微胶囊浆料与粘合剂的体积比为1.5~2.5:1;其中,粘合剂为水性聚氨酯、水性聚丙烯酸或二者的混合,粘合剂的浓度为10~30wt%,电子墨水微胶囊浆料的浓度为1.1~1.3g/cm 3
  9. 根据权利要求7所述的基于电子墨水的彩色图形化变色织物的制备方法,其特征在于:所述步骤三中,银纳米线浆料中银纳米线的浓度为1×10 -2~1×10 -3wt%,单壁碳纳米管水溶液中单壁碳纳米管的浓度为1×10 -3~1×10 -4wt%。
  10. 根据权利要求7所述的基于电子墨水的彩色图形化变色织物的制备方法,其特征在于:所述步骤五中,透明聚合物层中的透明聚合物采用水性聚氨酯、水性聚丙烯酸或二者的混合物;透明聚合物的浓度为10~30wt%,固化后厚度为1~3μm。
PCT/CN2021/128284 2021-11-01 2021-11-03 一种基于电子墨水的彩色图形化变色织物及制备方法 WO2023070699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111282361.6A CN113981605B (zh) 2021-11-01 2021-11-01 一种基于电子墨水的彩色图形化变色织物及制备方法
CN202111282361.6 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023070699A1 true WO2023070699A1 (zh) 2023-05-04

Family

ID=79745332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128284 WO2023070699A1 (zh) 2021-11-01 2021-11-03 一种基于电子墨水的彩色图形化变色织物及制备方法

Country Status (2)

Country Link
CN (1) CN113981605B (zh)
WO (1) WO2023070699A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115772717B (zh) * 2022-12-19 2024-08-09 东南大学 一种皮芯结构的电致变色长丝纤维及其制备方法和织物
CN116339028A (zh) * 2023-02-17 2023-06-27 中国人民解放军国防科技大学 透明电致变红外发射率器件在可见光-红外兼容伪装中的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101828785A (zh) * 2010-03-29 2010-09-15 中国人民解放军总后勤部军需装备研究所 一种基于电子墨水显示技术的变色迷彩织物及其制备方法
CN102527621A (zh) * 2011-12-27 2012-07-04 浙江科创新材料科技有限公司 一种雾度可调柔性透明导电薄膜的制备方法
WO2015068654A1 (ja) * 2013-11-05 2015-05-14 昭和電工株式会社 導電パターン形成方法及びこれを使用したオンセル型タッチパネルの製造方法並びにこれに使用する転写用フィルム及びオンセル型タッチパネル
CN109031846A (zh) * 2018-08-29 2018-12-18 合肥鑫晟光电科技有限公司 柔性纤维基板和包括其的柔性显示装置
CN109642359A (zh) * 2017-06-14 2019-04-16 苹果公司 具有可调节外观的股线的织物物品
CN110181882A (zh) * 2019-03-07 2019-08-30 上海市纺织科学研究院有限公司 电致变色织物及其制备方法和织造方法
CN112226899A (zh) * 2020-10-10 2021-01-15 重庆文理学院 一种柔性电子皮肤及其制备方法
CN112813558A (zh) * 2021-01-20 2021-05-18 复旦大学 一种具有显示功能的电子织物及其制备方法
CN112864630A (zh) * 2021-01-13 2021-05-28 军事科学院系统工程研究院军需工程技术研究所 一种可展的可调谐频率选择织物及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181857A (ja) * 2006-12-27 2008-08-07 Canon Inc 画像表示装置、画像表示装置の製造方法、及び、機能付きフィルム
CN103928476A (zh) * 2008-10-03 2014-07-16 株式会社半导体能源研究所 显示装置及其制造方法
CN102208547B (zh) * 2011-04-18 2013-11-20 电子科技大学 一种柔性光电子器件用基板及其制备方法
CN104216193A (zh) * 2013-05-29 2014-12-17 北京京东方光电科技有限公司 电子纸模组、电子纸显示装置以及电子纸模组制作方法
CN110093702B (zh) * 2018-01-31 2021-01-08 香港理工大学 发电布的制造方法
US11890850B2 (en) * 2019-09-30 2024-02-06 Flex Ltd. Additive manufacturing of highly flexible electrophoretic film and textile composites

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101828785A (zh) * 2010-03-29 2010-09-15 中国人民解放军总后勤部军需装备研究所 一种基于电子墨水显示技术的变色迷彩织物及其制备方法
CN102527621A (zh) * 2011-12-27 2012-07-04 浙江科创新材料科技有限公司 一种雾度可调柔性透明导电薄膜的制备方法
WO2015068654A1 (ja) * 2013-11-05 2015-05-14 昭和電工株式会社 導電パターン形成方法及びこれを使用したオンセル型タッチパネルの製造方法並びにこれに使用する転写用フィルム及びオンセル型タッチパネル
CN109642359A (zh) * 2017-06-14 2019-04-16 苹果公司 具有可调节外观的股线的织物物品
CN109031846A (zh) * 2018-08-29 2018-12-18 合肥鑫晟光电科技有限公司 柔性纤维基板和包括其的柔性显示装置
CN110181882A (zh) * 2019-03-07 2019-08-30 上海市纺织科学研究院有限公司 电致变色织物及其制备方法和织造方法
CN112226899A (zh) * 2020-10-10 2021-01-15 重庆文理学院 一种柔性电子皮肤及其制备方法
CN112864630A (zh) * 2021-01-13 2021-05-28 军事科学院系统工程研究院军需工程技术研究所 一种可展的可调谐频率选择织物及其制备方法
CN112813558A (zh) * 2021-01-20 2021-05-18 复旦大学 一种具有显示功能的电子织物及其制备方法

Also Published As

Publication number Publication date
CN113981605A (zh) 2022-01-28
CN113981605B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2023070699A1 (zh) 一种基于电子墨水的彩色图形化变色织物及制备方法
CN100383609C (zh) 电光丝或纤维
CN101855389B (zh) 用于制造电泳显示器的过程
CN108761947A (zh) 具有显示功能的胆甾液晶手写板装置及其制备方法
JP2007524009A (ja)
CN103152893B (zh) 一种发光线组合的柔性双面显示器
CN110473655A (zh) 一种透明导电薄膜及其制备方法
CN109061936A (zh) 像素结构、显示面板及其制造和控制方法、显示装置
CN208834060U (zh) 彩色液晶手写板
DE102004007365A1 (de) Textile Flächenstruktur aus einer Anordnung einer Vielzahl von leitfähigen oder leitfähige Eigenschaften aufweisenden Fäden sowie Verfahren zu deren Herstellung
US10770668B2 (en) Flexible fiber substrate and flexible display device including the same
CN109656075A (zh) 子像素结构、显示面板及其制造和控制方法、显示装置
CN109712558A (zh) 异形显示面板、显示装置
CN109690663A (zh) 柔性显示装置和用于增强柔性显示面板的表面硬度和机械强度的硬度增强层
CN110471223A (zh) 显示面板和显示装置
CN109656077A (zh) 可拉伸彩色电子纸及自供电可拉伸彩色电子纸
KR20060134143A (ko) 측면 전계를 가지는 파이버 제조 방법
DE112020000040T5 (de) Formveränderliche elektronische Vorrichtung und deren Betriebsverfahren
CN106067516A (zh) 一种发光器件以及发光显示装置
CN114351482A (zh) 一种电致变色艺术服装面料及其制备方法与应用
WO2024130759A1 (zh) 一种皮芯结构的电致变色长丝纤维及其制备方法和织物
CN103941514B (zh) 一种电泳显示面板及其制造方法、电泳显示装置
CN208903050U (zh) 一种显示电浆模组
CN208861126U (zh) 一种封闭式显示电浆模组
CN207457665U (zh) 电泳显示膜片和电泳显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18726407

Country of ref document: US