WO2023070694A1 - 一种判定高炉最优气流分布的方法、电子设备和存储介质 - Google Patents

一种判定高炉最优气流分布的方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023070694A1
WO2023070694A1 PCT/CN2021/128125 CN2021128125W WO2023070694A1 WO 2023070694 A1 WO2023070694 A1 WO 2023070694A1 CN 2021128125 W CN2021128125 W CN 2021128125W WO 2023070694 A1 WO2023070694 A1 WO 2023070694A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
optimal
reflow zone
characteristic curves
distribution
Prior art date
Application number
PCT/CN2021/128125
Other languages
English (en)
French (fr)
Inventor
李鹏
吴映江
严晗
秦涔
崔伟
方明新
闫朝付
Original Assignee
中冶南方工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶南方工程技术有限公司 filed Critical 中冶南方工程技术有限公司
Publication of WO2023070694A1 publication Critical patent/WO2023070694A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention relates to the technical field of blast furnace smelting, in particular to a method for judging the optimal gas flow distribution of a blast furnace, electronic equipment and a storage medium.
  • Blast furnace ironmaking is the main mode of modern ironmaking production, and 90% of my country's steel production depends on blast furnace ironmaking.
  • the refractory zone in the blast furnace not only dominates the gas flow distribution of the blast furnace, directly affects the utilization rate of blast furnace gas, but also has a great influence on the heat exchange, reduction process and air permeability in the furnace.
  • the blast furnace anatomy and experimental simulation have also confirmed its existence.
  • the soft melting zone is the core link of the blast furnace smelting process, and it is the result of the joint action of the upper adjustment and the lower adjustment of the blast furnace. Its shape and position play a very critical role in the production of the blast furnace.
  • the height and shape of the refractory zone directly affect the various technical and economic indicators of the blast furnace, and are closely related to the stability of the blast furnace, and play an important guiding role in the long-term production process of the blast furnace.
  • each operation mode corresponds to a specific optimal reflow zone.
  • the optimal reflow zone will also change. Therefore, using the soft
  • the melting belt guides the operation of the blast furnace, it must correspond to the operation mode adopted. To achieve the best guiding effect, a long-term exploration around the soft melting belt model and technical and economic indicators is required.
  • the shape of the reflow zone will also change every day.
  • the current reflow zone must be calculated by using the model, and the shape and shape of the reflow zone can be obtained through in-depth excavation of the reflow zone samples accumulated over a long period of time.
  • the relationship between blast furnace production and finding out the laws behind it can provide valuable information for production.
  • the current research on the reflow zone of the blast furnace is mainly through the calculation of the model and the corresponding means to correct it.
  • the relationship between the reflow zone and the actual production of the blast furnace is rarely established on the data. Possible furnace condition information.
  • the object of the present invention is to provide a method for judging the optimal airflow distribution of a blast furnace by using a reflow belt, electronic equipment and a storage medium.
  • the first aspect of the present invention provides a method for determining the optimal gas flow distribution of a blast furnace, including:
  • Step S1 establishing a calculation model for the height of the reflow zone;
  • the calculation model for the height of the reflow zone is based on the following assumptions: the blast furnace is divided into n coaxial cylinders along the radial direction, and the parameters of the blast furnace in each cylinder are assumed to operate independent;
  • Step S2 Calculate the temperature distribution of each cylinder along the height direction to obtain the temperature field distribution in the blast furnace; obtain the upper boundary, lower boundary and upper and lower boundaries of the blast furnace reflow zone according to the temperature field combined with the reflow characteristics of the ore The position of the three characteristic curves of the mean;
  • Step S3 collecting multiple groups of associated data of the technical and economic indicators of the blast furnace within a certain time interval and the three characteristic curves of the reflow zone;
  • Step S4 perform cluster analysis on the three characteristic curves of the reflow zone according to the shape and position of the reflow zone, and output the clustering results, and select the reflow zone of the blast furnace from the clustering results according to the optimal technical and economic index optimal sample;
  • Step S5 According to the temperature field distribution in the blast furnace of the optimal sample of the blast furnace reflow zone, the optimal air flow distribution type is obtained.
  • the blast furnace production process is regarded as a steady-state process, and each blast furnace parameter does not change with time.
  • step S2 includes:
  • step S4 specifically includes:
  • the three characteristic curves of the reflow zone are clustered respectively to generate type samples of the three characteristic curves
  • the algorithm for cluster analysis in step S4 is one of K-means algorithm, mean shift clustering, and agglomerative hierarchical clustering algorithm.
  • the technical and economic indicators include: blast furnace output, coke ratio and fuel ratio.
  • the second aspect of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the determination of the optimal gas flow distribution of the blast furnace as described in any solution of the first aspect of the present invention is realized. steps in the method.
  • the third aspect of the present invention also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. Steps in the method for determining the optimal gas flow distribution in a blast furnace described in the scheme.
  • the present invention establishes the relationship between the technical and economic indicators and the three characteristic curves of the reflow belt within a certain period of time, thereby obtaining the optimal sample of the three characteristic curves of the blast furnace reflow belt according to the optimal technical and economic indicators, and then obtaining the blast furnace Optimal air distribution.
  • the method can quickly and accurately obtain the optimal gas flow distribution of the blast furnace through the information of the reflow zone, and contributes to the energy saving and consumption reduction of the blast furnace production.
  • Fig. 1 is the flow chart of the method for judging blast furnace optimal gas flow distribution of the present invention
  • Fig. 2 is a schematic diagram of the blast furnace temperature field distribution and reflow zone involved in the present invention
  • Fig. 3 is the flow chart of k-means clustering algorithm involved in the present invention.
  • Figure 4 is an example of the clustering results of the three characteristic curves of the reflow zone.
  • the present invention provides a method for determining the optimal gas flow distribution of a blast furnace, including:
  • Step S1 establishing a calculation model for the height of the reflow zone;
  • the calculation model for the height of the reflow zone is based on the following assumptions: the blast furnace is divided into n coaxial cylinders along the radial direction, and the parameters of the blast furnace in each cylinder are assumed to operate independent;
  • Step S2 Calculate the temperature distribution of each cylinder along the height direction to obtain the temperature field distribution in the blast furnace; obtain the upper boundary, lower boundary and upper and lower boundaries of the blast furnace reflow zone according to the temperature field combined with the reflow characteristics of the ore The position of the three characteristic curves of the mean;
  • Step S3 collecting multiple groups of associated data of the technical and economic indicators of the blast furnace within a certain time interval and the three characteristic curves of the reflow zone;
  • Step S4 perform cluster analysis on the three characteristic curves of the reflow zone according to the shape and position of the reflow zone, and output the clustering results, and select the reflow zone of the blast furnace from the clustering results according to the optimal technical and economic index optimal sample;
  • Step S5 According to the temperature field distribution in the blast furnace of the optimal sample of the blast furnace reflow zone, the optimal air flow distribution type is obtained.
  • step S1 assumes that the blast furnace parameters in each cylinder operate independently, and the following further assumptions are made for this purpose:
  • the blast furnace production process is regarded as a steady-state process, and each blast furnace parameter does not change with time.
  • step S2 includes:
  • step S4 specifically includes:
  • the three characteristic curves of the reflow zone are clustered respectively to generate type samples of the three characteristic curves
  • the type samples are a collection of type samples corresponding to the three characteristic curves of the reflow zone.
  • the cluster analysis algorithm in step S4 may be one of K-means algorithm, mean shift clustering, and agglomerative hierarchical clustering algorithm.
  • Figure 3 is a general flowchart of the K-means algorithm.
  • the economic and technical indicators involved in the cluster analysis include: output, coke ratio and fuel ratio.
  • the present invention establishes the relationship between the technical and economic indicators and the three characteristic curves of the reflow belt within a certain period of time, thereby obtaining the optimal sample of the three characteristic curves of the blast furnace reflow belt according to the optimal technical and economic indicators, and then obtaining the blast furnace Optimal air distribution.
  • the method can quickly and accurately obtain the optimal gas flow distribution of the blast furnace through the information of the reflow zone, and contributes to the energy saving and consumption reduction of the blast furnace production.
  • another embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the steps in the method described in any of the above-mentioned embodiments of the present application are implemented. .
  • an electronic device includes a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor implements the steps in the method described in any one of the above embodiments of the present application when executed.
  • the embodiments of the embodiments of the present application may be provided as methods, devices or computer program products. Therefore, the embodiment of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Moreover, the embodiments of the present application may adopt computer program products implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, semiconductor storage, etc.) containing computer-usable program codes therein. form.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, semiconductor storage, etc.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor or processor of other programmable data processing terminal equipment to produce a machine such that instructions executed by the computer or processor of other programmable data processing terminal equipment Produce means for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the The instruction means implements the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Manufacture Of Iron (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

一种判定高炉最优气流分布的方法、电子设备和存储介质,所述方法包括:建立软熔带高度计算模型,并做假设:将高炉沿径向将炉料划分为n个同轴圆筒体,各圆筒体内的高炉参数运行独立,计算每个圆筒体沿高度方向的温度分布,得到高炉炉内的温度场分布;根据温度场结合矿石的软熔特性得到高炉软熔带的上边界、下边界和上下边界平均值的三条特征曲线的位置;采集该高炉在一定时间区间内的技术经济指标和软熔带的三条特征曲线的多组关联数据;对软熔带的三条特征曲线分别进行聚类分析输出聚类结果,根据最优技术经济指标从所述聚类结果中选取该高炉软熔带的最优样本;根据该高炉软熔带的最优样本的温度场分布,得到最优的气流分布类型。

Description

一种判定高炉最优气流分布的方法、电子设备和存储介质 技术领域
本发明涉及高炉冶炼技术领域,尤其涉及一种判定高炉最优气流分布的方法、电子设备和存储介质。
背景技术
高炉炼铁是现代化炼铁生产的主要方式,其中我国90%的钢铁产量依靠高炉炼铁。高炉中软熔带不仅支配着高炉的气流分布,直接影响高炉煤气利用率,也对炉内热交换、还原过程和透气性有极大的影响,高炉解剖及实验模拟也证实了它的存在。软熔带是高炉冶炼过程的核心环节,是高炉上部调剂和下部调剂共同作用的结果,其形状和位置,对高炉的生产有着非常关键的作用。
高炉炼铁过程中,软熔带的高低和形状直接影响着高炉的各项技术经济指标,并且与高炉的稳定顺行有着密切的关系,在高炉的长期生产过程中发挥这重要的指导作用。
对于同一座高炉,每一种操作方式都对应一种特定的最佳软熔带,当主要操作方式中的任何一个发生较大变化时,最佳的软熔带也会发生变化,因此利用软熔带指导高炉操作时一定要与所采用的操作方式相对应,想达到最好的指导效果需要围绕软熔带模型和技术经济指标进行长期的摸索。
随着生产条件的不同,每一天的软熔带形态也会随之发生变化,必须利用模型计算出当前软熔带,通过长时间积累的软熔带样本进行深入挖掘才能得到软熔带形态与高炉生产之间的关系,找出背后蕴藏的规律才能为生产提供有价值的信息。目前的高炉软熔带的研究主要是通过模型的计算以及相应的手段进 行修正,很少将软熔带情况和高炉的实际生产在数据上建立关系,难以直接通过软熔带的信息得出其可能的炉况信息。
发明内容
有鉴于现有技术的上述不足,本发明的目的是提供一种利用软熔带判定高炉最优气流分布的方法,电子设备和存储介质。
为实现上述目的,本发明第一方面提供了一种判定高炉最优气流分布的方法,包括:
步骤S1、建立软熔带高度计算模型;所述软熔带高度计算模型基于以下假设:将高炉沿径向将炉料划分为n个同轴圆筒体,并假设各圆筒体内的高炉参数运行独立;
步骤S2、计算每个圆筒体沿高度方向的温度分布,得到高炉炉内的温度场分布;根据所述温度场结合矿石的软熔特性得到高炉软熔带的上边界、下边界和上下边界平均值的三条特征曲线的位置;
步骤S3、采集该高炉在一定时间区间内的技术经济指标和软熔带的三条特征曲线的多组关联数据;
步骤S4、根据软熔带的形状和位置对软熔带的三条特征曲线分别进行聚类分析输出聚类结果,并根据最优技术经济指标从所述聚类结果中选取该高炉软熔带的最优样本;
步骤S5、根据该高炉软熔带的最优样本的高炉炉内温度场分布,得到最优的气流分布类型。
进一步的,所述步骤S1的建立软熔带高度计算模型做如下进一步假定:
(1)每个圆筒体中有一股主煤气流和固体料流互相逆向运动;
(2)每个圆筒体中的炉料为保持整体下降的活塞流;
(3)每个圆筒体中的铁水成分和温度相同,各圆筒体之间没有铁水流动和热交换;
(4)每个圆筒体中的进入煤气温度相同;
(5)温度和高度的微分关系方程只适合从料线到风口的区域;
(6)将高炉生产过程看成一个稳态过程,各高炉参数不随时间发生变化。
进一步的,所述步骤S2包括:
(1)以采集到的炉顶煤气和炉料沿径向的成分和温度分布作为模型的上边界条件,通过煤气控制方程和炉料控制方程向下迭代计算出每个圆筒沿高度方向的温度分布;
(2)将每个圆筒的等温线相连得到高炉炉内的温度场分布;
(3)根据炉料的特性确定软熔带的温度区域,得到高炉软熔带上边界、下边界和上下边界平均值三条特征曲线的位置。
进一步的,所述步骤S4具体包括:
(1)根据软熔带的形状和位置对软熔带的三条特征曲线分别进行聚类生成三条特征曲线的类型样本;
(2)选取三条特征曲线的类型样本中满足最优技术经济指标的样本为各自的最优样本;
(3)选取在同一时间段三条特征曲线的类型样本均为最优样本的软熔带类型样本为该高炉软熔带的最优样本。
进一步的,所述步骤S4中聚类分析的算法为K-means算法、均值漂移聚类、凝聚层次聚类算法中的一种。
进一步的,所述技术经济指标包括:高炉的产量、焦比和燃料比。
本发明的第二方面还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明第一方面任一方案所述的判定高炉最优气流分布的方法中的步骤。
本发明的第三方面还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行时实现如本发明第一方面任一方案所述的判定高炉最优气流分布的方法中的步骤。
本发明实现了如下技术效果:
本发明通过获取一定时间内的技术经济指标和软熔带的三条特征曲线,建立二者的关系,从而根据最优技术经济指标获取高炉软熔带三条特征曲线的最优样本,进而得到高炉的最优气流分布。本方法能够通过软熔带信息较为快速、准确地获得高炉的最优气流分布,有助于高炉生产的节能降耗。
附图说明
图1是本发明的判定高炉最优气流分布的方法的流程图;
图2是本发明涉及的高炉温度场分布和软熔带示意图;
图3是本发明涉及的k-means聚类算法流程图;
图4是软熔带三条特征曲线聚类结果的示例。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。图中的组件并未按比例绘制,而类似的组件符号通 常用来表示类似的组件。
现结合附图和具体实施方式对本发明进一步说明。
如图1所示,本发明提供了一种判定高炉最优气流分布的方法,包括:
步骤S1、建立软熔带高度计算模型;所述软熔带高度计算模型基于以下假设:将高炉沿径向将炉料划分为n个同轴圆筒体,并假设各圆筒体内的高炉参数运行独立;
步骤S2、计算每个圆筒体沿高度方向的温度分布,得到高炉炉内的温度场分布;根据所述温度场结合矿石的软熔特性得到高炉软熔带的上边界、下边界和上下边界平均值的三条特征曲线的位置;
步骤S3、采集该高炉在一定时间区间内的技术经济指标和软熔带的三条特征曲线的多组关联数据;
步骤S4、根据软熔带的形状和位置对软熔带的三条特征曲线分别进行聚类分析输出聚类结果,并根据最优技术经济指标从所述聚类结果中选取该高炉软熔带的最优样本;
步骤S5、根据该高炉软熔带的最优样本的高炉炉内温度场分布,得到最优的气流分布类型。
在本实施例中,所述步骤S1的建立软熔带高度计算模型假设各圆筒体内的高炉参数运行独立,为此做如下进一步假定:
(1)每个圆筒体中有一股主煤气流和固体料流互相逆向运动;
(2)每个圆筒体中的炉料为保持整体下降的活塞流;
(3)每个圆筒体中的铁水成分和温度相同,各圆筒体之间没有铁水流动和热交换;
(4)每个圆筒体中的进入煤气温度相同;
(5)温度和高度的微分关系方程只适合从料线到风口的区域;
(6)将高炉生产过程看成一个稳态过程,各高炉参数不随时间发生变化。
在本实施例中,步骤S2包括:
(1)以采集到的炉顶煤气和炉料沿径向的成分和温度分布作为模型的上边界条件,通过煤气控制方程和炉料控制方程向下迭代计算出每个圆筒沿高度方向的温度分布;
(2)将每个圆筒的等温线相连得到高炉炉内的温度场分布;
(3)根据炉料的特性确定软熔带的温度区域,得到高炉软熔带上边界、下边界和上下边界平均值三条特征曲线的位置。如图2所示,其中上下边界平均值的特征曲线未示出。
在本实施例中,步骤S4具体包括:
(1)根据软熔带的形状和位置对软熔带的三条特征曲线分别进行聚类生成三条特征曲线的类型样本;
(2)选取三条特征曲线的类型样本中满足最优技术经济指标的样本为各自的最优样本;
(3)选取在同一时间段三条特征曲线的类型样本均为最优样本的软熔带类型样本为该高炉软熔带的最优样本,其中,某一时间点的软熔带的软熔带类型样本为该软熔带的三条特征曲线对应的类型样本的集合。
在本实施例中,步骤S4中的聚类分析的算法可以是K-means算法、均值漂移聚类、凝聚层次聚类算法中的一种。图3为K-means算法的通用流程图。
在本实施例中,聚类分析涉及的经济技术指标包括:产量、焦比和燃料比。
如图4给出的软熔带的三条特征曲线聚类结果的示例,上边界、下边界和上下边界平均值特征曲线分别聚类,各生成5条对应的类型样本,并根据经济技术指标,分别从中选取一条类型样本,如各子图中的箭头所示。
本发明实现了如下技术效果:
本发明通过获取一定时间内的技术经济指标和软熔带的三条特征曲线,建立二者的关系,从而根据最优技术经济指标获取高炉软熔带三条特征曲线的最优样本,进而得到高炉的最优气流分布。本方法能够通过软熔带信息较为快速、准确地获得高炉的最优气流分布,有助于高炉生产的节能降耗。
基于同一发明构思,本申请另一实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请上述任一实施例所述的方法中的步骤。
基于同一发明构思,本申请另一实施例提供一种电子设备。该电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行时实现本申请上述任一实施例所述的方法中的步骤。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器、半导体存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (9)

  1. 一种判定高炉最优气流分布的方法,其特征在于,包括:
    步骤S1、建立软熔带高度计算模型;所述软熔带高度计算模型基于以下假设:将高炉沿径向将炉料划分为n个同轴圆筒体,并假设各圆筒体内的高炉参数运行独立;
    步骤S2、计算每个圆筒体沿高度方向的温度分布,得到高炉炉内的温度场分布;根据所述温度场结合矿石的软熔特性得到高炉软熔带的上边界、下边界和上下边界平均值的三条特征曲线的位置;
    步骤S3、采集该高炉在一定时间区间内的技术经济指标和软熔带的三条特征曲线的多组关联数据;
    步骤S4、根据软熔带的形状和位置对软熔带的三条特征曲线分别进行聚类分析输出聚类结果,并根据最优技术经济指标从所述聚类结果中选取该高炉软熔带的最优样本;
    步骤S5、根据该高炉软熔带的最优样本的高炉炉内温度场分布,得到最优的气流分布类型。
  2. 如权利要求1所述的方法,其特征在于,所述步骤S1中将高炉沿径向将炉料划分为n个同轴圆筒体,具体为:将高炉沿径向按半径进行n等分将炉料划分为n个同轴圆筒体。
  3. 如权利要求1所述的方法,其特征在于,所述步骤S1的建立软熔带高度计算模型做如下进一步假定:
    (1)每个圆筒体中有一股主煤气流和固体料流互相逆向运动;
    (2)每个圆筒体中的炉料为保持整体下降的活塞流;
    (3)每个圆筒体中的铁水成分和温度相同,各圆筒体之间没有铁水流动和 热交换;
    (4)每个圆筒体中的进入煤气温度相同;
    (5)温度和高度的微分关系方程只适合从料线到风口的区域;
    (6)将高炉生产过程看成一个稳态过程,各高炉参数不随时间发生变化。
  4. 如权利要求1所述的方法,其特征在于,所述步骤S2包括:
    (1)以采集到的炉顶煤气和炉料沿径向的成分和温度分布作为模型的上边界条件,向下迭代计算出每个圆筒沿高度方向的温度分布;
    (2)将每个圆筒的等温线相连得到高炉炉内的温度场分布;
    (3)根据炉料的特性确定软熔带的温度区域,得到高炉软熔带上边界、下边界和上下边界平均值三条特征曲线的位置。
  5. 如权利要求1所述的方法,其特征在于,所述步骤S4具体包括:
    (1)根据软熔带的形状和位置对软熔带的三条特征曲线分别进行聚类生成三条特征曲线的类型样本;
    (2)选取三条特征曲线的类型样本中满足最优技术经济指标的样本为各自的最优样本;
    (3)选取在同一时间段三条特征曲线的类型样本均为最优样本的软熔带类型样本为该高炉软熔带的最优样本。
  6. 如权利要求1所述的方法,其特征在于,所述步骤S4中聚类分析的算法为K-means算法、均值漂移聚类、凝聚层次聚类算法中的一种。
  7. 如权利要求1所述的方法,其特征在于,所述技术经济指标包括:高炉的产量、焦比和燃料比。
  8. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,该程序 被处理器执行时实现如权利要求1-7任一项所述的判定高炉最优气流分布的方法中的步骤。
  9. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行时实现如权利要求1-7任一项所述的判定高炉最优气流分布的方法中的步骤。
PCT/CN2021/128125 2021-10-28 2021-11-02 一种判定高炉最优气流分布的方法、电子设备和存储介质 WO2023070694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111262880.6A CN114139348B (zh) 2021-10-28 2021-10-28 一种判定高炉最优气流分布的方法、电子设备和存储介质
CN202111262880.6 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023070694A1 true WO2023070694A1 (zh) 2023-05-04

Family

ID=80395707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128125 WO2023070694A1 (zh) 2021-10-28 2021-11-02 一种判定高炉最优气流分布的方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114139348B (zh)
WO (1) WO2023070694A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115169175B (zh) * 2022-06-23 2023-09-22 中冶南方工程技术有限公司 一种高炉软熔带区域形状计算方法
CN115630447B (zh) * 2022-08-16 2023-11-24 中冶南方工程技术有限公司 一种计算高炉软熔带根部高度的方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090276103A1 (en) * 2008-04-30 2009-11-05 Kabushiki Kaisha Toshiba Optimal load distributing system
CN103593540A (zh) * 2013-11-28 2014-02-19 中南大学 多源信息融合确定高炉软熔带根部位置的方法
CN110765629A (zh) * 2019-10-31 2020-02-07 中冶赛迪重庆信息技术有限公司 一种软熔带计算方法、系统及设备
CN112232429A (zh) * 2020-10-23 2021-01-15 中冶南方工程技术有限公司 一种高炉整体状态的判断方法、终端设备及存储介质
CN112270237A (zh) * 2020-10-22 2021-01-26 中冶南方工程技术有限公司 一种高炉煤气流状态识别方法、系统及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916915B (zh) * 2017-04-14 2018-09-14 中南大学 一种在线监测高炉软熔带根部位置的方法
CN110578024B (zh) * 2019-10-22 2021-03-12 山西太钢不锈钢股份有限公司 一种改善高炉高球团冶炼炉内压差的方法
CN112927347B (zh) * 2021-02-01 2022-05-20 中南大学 一种高炉软熔带温度场数据可视化方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090276103A1 (en) * 2008-04-30 2009-11-05 Kabushiki Kaisha Toshiba Optimal load distributing system
CN103593540A (zh) * 2013-11-28 2014-02-19 中南大学 多源信息融合确定高炉软熔带根部位置的方法
CN110765629A (zh) * 2019-10-31 2020-02-07 中冶赛迪重庆信息技术有限公司 一种软熔带计算方法、系统及设备
CN112270237A (zh) * 2020-10-22 2021-01-26 中冶南方工程技术有限公司 一种高炉煤气流状态识别方法、系统及存储介质
CN112232429A (zh) * 2020-10-23 2021-01-15 中冶南方工程技术有限公司 一种高炉整体状态的判断方法、终端设备及存储介质

Also Published As

Publication number Publication date
CN114139348A (zh) 2022-03-04
CN114139348B (zh) 2024-09-13

Similar Documents

Publication Publication Date Title
WO2023070694A1 (zh) 一种判定高炉最优气流分布的方法、电子设备和存储介质
CN103544273A (zh) 利用模式识别技术对炉况整体状态进行评估的方法
CN105219899B (zh) 一种根据静压差判断高炉异常炉况的预警方法
CN110427715B (zh) 基于时间序列和高炉多维度的炉缸热状态趋势预测的方法
JP2018024936A (ja) 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置
CN108647407A (zh) 一种转炉炼钢烟气分析定碳方法
JP2019019385A (ja) 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置
CN102758032B (zh) 一种实时预测高炉发生管道概率的方法
CN106834593A (zh) 一种以参考炉次法确定rh精炼炉脱碳工艺数据的方法
CN111639801A (zh) 高炉炉况的评分方法及系统
CN110502781A (zh) 一种基于先验知识的铁合金生产配料优化方法
CN115522012B (zh) 一种大型转炉控制tsc阶段吹氧量的方法
JP6248550B2 (ja) 高炉操業条件の決定方法
CN102373310B (zh) 一种指导转炉补吹过程操作的方法
CN106957935A (zh) 一种高炉内部软熔带形状的软测量方法
CN118016203B (zh) 一种基于机理模型和XGBoost算法的LF精炼温度预报方法
CN115896372A (zh) 一种基于料面热图像识别高炉塌料炉况的方法
CN110373508A (zh) 软熔带识别方法、装置及电子设备
CN113420426A (zh) 一种确定高炉顺行状况的方法、装置、介质及计算机设备
GB2628442A (en) Methods for monitoring and predicting energy consumption of production blast furnace (BF) and hydrogen-rich smelting respectively based on Rist operation line
CN113584240B (zh) 一种高炉布料方法
CN116228022A (zh) 一种富氢高炉操作窗口的确定方法及系统
CN110245690A (zh) 一种基于模糊聚类的高炉炉况识别方法与系统
CN115466810A (zh) 一种风口布局调控方法及装置
CN103160629A (zh) 一种预报高炉趋热的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE