WO2023070599A1 - 用于混合动力车辆的加速控制方法和加速控制装置 - Google Patents

用于混合动力车辆的加速控制方法和加速控制装置 Download PDF

Info

Publication number
WO2023070599A1
WO2023070599A1 PCT/CN2021/127719 CN2021127719W WO2023070599A1 WO 2023070599 A1 WO2023070599 A1 WO 2023070599A1 CN 2021127719 W CN2021127719 W CN 2021127719W WO 2023070599 A1 WO2023070599 A1 WO 2023070599A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque limit
acceleration control
battery
condition
control method
Prior art date
Application number
PCT/CN2021/127719
Other languages
English (en)
French (fr)
Inventor
莫延召
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to CN202180102702.9A priority Critical patent/CN118055876A/zh
Priority to PCT/CN2021/127719 priority patent/WO2023070599A1/zh
Publication of WO2023070599A1 publication Critical patent/WO2023070599A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to the technical field of vehicles. Specifically, the present invention relates to an acceleration control method and an acceleration control device for a hybrid vehicle.
  • FIG. 1 shows a schematic diagram of a power system of a hybrid vehicle with this layout.
  • the generator GM is connected to the rear end of the engine E (internal combustion engine, ICE) and the front end of the clutch K0, which is the position P1;
  • the driving motor DM is connected to the rear end of the transmission, which is the position P3.
  • the clutch K0 is disconnected, the driving motor DM can directly drive the vehicle, and the generator GM can recover the torque of the engine E to generate electricity.
  • the clutch K0 is closed, the engine E and the generator GM drive the vehicle together with the drive motor DM via the clutch K0.
  • the torque response of the engine E is lagging in the initial stage, and the drive motor DM is powered by the battery to drive the vehicle.
  • the actual discharge power of the battery reaches its continuous power limit, it is necessary to wait for the engine E to increase its speed and torque before it can further provide energy to the drive motor DM.
  • the power provided by the engine E is very small and cannot meet the needs of the driver. Only after the mode switch and the engine torque response are completed, the engine E can provide more power to the drive motor DM. Therefore, the acceleration performance of the vehicle has two inconsistent stages, making the driving experience poor.
  • the technical problem to be solved by the present invention is to provide an acceleration control method for improving the acceleration response performance of a hybrid vehicle.
  • the above technical problems are solved by an acceleration control method for a hybrid vehicle according to the present invention.
  • the hybrid vehicle includes a power system, which includes a generator introduced into the power system between the engine and the clutch and a drive motor introduced into the power system at the rear end of the transmission.
  • the power system is controlled by the accelerator pedal of the hybrid vehicle, and the drive motor Powered by batteries.
  • the acceleration control method includes the following steps:
  • the torque limit of the drive motor is switched from a peak torque limit to a continuous torque limit calculated from the continuous discharge power of the battery.
  • the insufficient torque limit condition may be that the actual position increase rate of the accelerator pedal is greater than the predetermined position increase rate and the actual position of the accelerator pedal is greater than the predetermined position.
  • the actual position increase rate of the accelerator pedal is greater than the predetermined position increase rate, which means that the accelerator position changes greatly, and the speed and torque values change greatly; while the actual position of the accelerator pedal is greater than the predetermined position, which means that the final value of the accelerator position is large, and the goal to be achieved Speed and torque values are larger.
  • the predetermined increase rate and/or the predetermined position can be determined according to the continuous discharge power of the battery and the current response time of the engine.
  • the exit condition may be that the rotational speed of the engine has reached the target rotational speed and has been maintained for a predetermined time, or the actual position of the accelerator pedal is less than a predetermined value.
  • the torque limitation of the drive motor may be switched from the initial torque limitation to the peak torque limitation at a first predetermined slope when it is recognized that the torque limitation deficiency condition is satisfied.
  • the torque limitation of the drive motor can be switched from peak torque limitation to continuous torque limitation with a second predetermined slope when an exit condition is identified.
  • the initial torque limit may be equal to the continuous torque limit.
  • the battery peak torque activation flag can be set, and when it is recognized that the insufficient torque limit condition is met, the battery peak torque activation flag can be triggered, and the motor can be driven after receiving the battery peak torque activation flag.
  • the torque limit is switched from the initial torque limit to the peak torque limit; and when the exit condition is identified, the battery peak torque activation flag can be reset, and the torque of the drive motor can be driven after receiving the reset battery peak torque activation flag Limiting switches from peak torque limiting to continuous torque limiting.
  • the acceleration control method can be executed by a vehicle controller of a hybrid electric vehicle.
  • the above-mentioned technical problems are also solved by an acceleration control device for a hybrid vehicle according to the present invention.
  • the hybrid vehicle includes a power system, which includes a generator introduced into the power system between the engine and the clutch and a drive motor introduced into the power system at the rear end of the transmission.
  • the power system is controlled by the accelerator pedal of the hybrid vehicle, and the drive motor Powered by batteries.
  • the acceleration control device includes:
  • an activation identification module configured to identify whether an insufficient torque limit condition is met during an increase in position of the accelerator pedal
  • a first switching module configured to switch the torque limit of the drive motor from an initial torque limit to a peak torque limit calculated according to a peak discharge power of the battery when it is identified that the insufficient torque limit condition is met;
  • an exit identification module configured to identify whether an exit condition is met after switching the torque limit of the drive motor to a peak torque limit
  • a second switching module configured to switch the torque limit of the drive motor from a peak torque limit to a continuous torque limit calculated based on the continuous discharge power of the battery when an exit condition is identified.
  • the insufficient torque limit condition can be that the actual position increase rate of the accelerator pedal is greater than the predetermined position increase rate and the actual position of the accelerator pedal is greater than the predetermined position
  • the start identification module can include:
  • a first activation identification unit configured to identify whether the actual position increase rate of the accelerator pedal is greater than a predetermined position increase rate
  • the second activation identification unit is configured to identify whether the actual position of the accelerator pedal is greater than a predetermined position.
  • the start identification module may include a determination unit configured to determine a predetermined increase rate and/or a predetermined position according to the continuous discharge power of the battery and the current response time of the engine.
  • the exit condition can be that the speed of the engine has reached the target speed and has been maintained for a predetermined time, or the actual position of the accelerator pedal is less than a predetermined value
  • the exit identification module can include:
  • a first exit recognition unit configured to recognize whether the rotational speed of the engine has reached a target rotational speed and has been maintained for a predetermined time
  • a second exit identification unit configured to identify whether the actual position of the accelerator pedal is less than a predetermined value.
  • the start identification module may include a trigger unit configured to trigger the battery peak torque activation flag when it is identified that the insufficient torque limit condition is met;
  • the exit identification module may include a reset unit configured to reset the battery peak torque activation flag when an exit condition is identified to be met.
  • FIG. 1 shows a schematic diagram of a power system applying an acceleration control method according to an exemplary embodiment of the present invention
  • FIG. 2 shows a flowchart of steps of an acceleration control method according to an exemplary embodiment of the present invention.
  • 3a and 3b illustrate response curves of an acceleration control method according to the prior art and an acceleration control method according to an exemplary embodiment of the present invention, respectively.
  • FIG. 1 shows a schematic diagram of the power system of the hybrid vehicle.
  • the power system includes an engine E, a generator GM, a clutch K0, a transmission T, a differential D, a drive motor DM, a battery (not shown), wheels W, and the like.
  • the generator GM is introduced into the power system at the position P1 between the engine E and the clutch K0, the generator GM can recover the kinetic energy of the engine E to generate electricity, and can provide the generated electric energy to the battery.
  • the battery can supply power to the drive motor DM.
  • the drive motor DM is introduced into the power system at the P3 position at the rear end of the transmission, and can directly drive the wheels W.
  • the powertrain is controlled by an accelerator pedal (not shown) of the hybrid vehicle.
  • the following method is used to control the acceleration process of the hybrid vehicle.
  • a trigger condition is identified. Specifically, it is identified whether a torque limit insufficient condition is satisfied during an increase in the position of the accelerator pedal.
  • the insufficient torque limit condition here refers to the fact that the current torque limit of the drive motor DM (that is, the maximum torque value that can be achieved) is not enough to stably increase the output speed and torque in the state where the clutch K0 is disconnected and the torque response of the engine E is lagging. Condition. This situation is generated under the operation of the driver's quick and deep depressing of the accelerator pedal. Therefore, judging whether the insufficient torque limit condition is met needs to be based on two criteria, the speed at which the driver depresses the accelerator pedal and the position reached by the accelerator pedal. The speed at which the driver depresses the accelerator pedal can be represented by the rate of increase of the accelerator pedal position.
  • the torque limit insufficient condition may preferably be that the actual position increase rate of the accelerator pedal is greater than the predetermined position increase rate and the actual position of the accelerator pedal is greater than the predetermined position.
  • the sensor on the accelerator pedal detects that the actual position increase rate and the actual position of the accelerator pedal exceed the predetermined value at the same time, it can be judged that the insufficient torque limit condition is met, and then trigger the battery peak torque activation flag to start the next control step; if the accelerator pedal If any one of the actual position increase rate and the actual position of the pedal does not exceed the corresponding predetermined value, it means that the insufficient torque limit condition is not met, and the battery peak torque activation flag will not be triggered to start the next control step.
  • the aforementioned predetermined increase rate and/or predetermined position may be determined according to the continuous discharge power of the battery and the current response time of the engine E.
  • step S2 the control method will start step S2.
  • step S2 the torque limit of the drive motor DM will be switched. Specifically, the torque limit of the drive motor DM is switched from the initial torque limit to the peak torque limit calculated from the peak discharge power of the battery.
  • the initiation of step S2 may be based on a battery peak torque activation flag.
  • the battery peak torque activation flag can be set, and the battery peak torque activation flag is triggered when the insufficient torque limit condition is satisfied, and the above switching process is performed after receiving the battery peak torque activation flag.
  • the battery peak torque activation flag here is a flag that controls the switching state of the torque limitation of the drive motor DM.
  • the battery peak torque activation flag usually has two states of triggering and non-triggering, corresponding to the peak torque limit calculated according to the peak discharge power of the battery and the continuous torque limit calculated according to the continuous discharge power of the battery. This is because the drive motor DM usually operates under continuous torque limitation. That is, before starting step S2, the initial torque limit of the driving motor DM is generally equal to the continuous torque limit calculated according to the continuous discharge power of the battery.
  • Fig. 3a and Fig. 3b respectively show the response curves according to the existing control method and the control method according to the embodiment of the present invention.
  • the torque limit of the driving motor DM is determined by the discharge of the battery, so the change of the torque limit of the driving motor DM can be intuitively reflected through the battery discharge power curves in Fig. 3a and Fig. 3b.
  • step S2 the torque limitation of the drive motor DM is switched from an initial torque limitation to a peak torque limitation, preferably with a certain constant slope. This constant slope may be referred to as a first predetermined slope. This is reflected in Figure 3b as the actual discharge power of the battery rising with some constant slope. This enables the switching process of the torque limitation to be performed stably.
  • step S3 an exit condition is identified in step S3. Specifically, after switching the torque limit of the drive motor DM to the peak torque limit, it is identified whether the exit condition is satisfied.
  • the exit condition is that the rotational speed of the engine E has reached the target rotational speed and has been maintained for a predetermined time, or the actual position of the accelerator pedal is smaller than a predetermined value. If the rotational speed of the engine E has reached the target rotational speed and has been maintained for a predetermined time, the clutch K0 can be connected, so that the engine E can be used to provide driving, so it is not necessary to continue to rely solely on the driving motor DM to provide driving force. If the actual position of the accelerator pedal is smaller than the predetermined value, it means that the actual required output torque becomes smaller, and the driving motor DM can provide sufficient driving force without maintaining the peak torque limit.
  • step S3 If the result of the identification in step S3 is positive, that is to say the exit condition is met, the control method starts the next step S4.
  • step S4 the working state will be exited. Specifically, the torque limit of the drive motor DM is switched again, and the torque limit of the drive motor DM is switched from the peak torque limit to the continuous torque limit calculated according to the continuous discharge power of the battery.
  • step S4 can also be performed based on the battery peak torque activation flag.
  • the battery peak torque activation flag may be reset when the exit condition is met, so that the battery peak torque activation flag is reset to a non-triggered state, and the above switching process is performed after receiving the reset battery peak torque activation flag, The torque limit of the driving motor DM is no longer maintained at the peak torque limit.
  • the torque limit of the drive motor DM is preferably switched from peak torque limit to continuous torque limit with a constant slope.
  • This constant slope may be referred to as a second predetermined slope. This is reflected in Figure 3b as the actual discharge power of the battery falling with some constant slope.
  • the above acceleration control method can be executed by the vehicle controller of the hybrid vehicle.
  • Various data required to implement the control method can be obtained through various original sensors of the hybrid electric vehicle, so no additional components need to be added.
  • an acceleration control device for a hybrid vehicle is also provided.
  • the acceleration control device can correspondingly implement the above-mentioned acceleration control method, and is also applied to the power system of the hybrid vehicle shown in FIG. 1 .
  • the acceleration control device may be composed of functional modules in the vehicle controller.
  • the acceleration control device includes a start identification module, a first switching module, an exit identification module and a second switching module.
  • the start identification module is used to execute step S1, which is configured to identify whether the torque limit insufficient condition is satisfied during the increase of the position of the accelerator pedal.
  • the start identification module may include a first start identification unit configured to identify whether the actual position increase rate of the accelerator pedal is greater than a predetermined position increase rate, and a second start identification unit configured to identify whether the actual position of the accelerator pedal is greater than a predetermined position .
  • the start identification module may further include a determination unit configured to determine a predetermined increase rate and/or a predetermined position according to the continuous discharge power of the battery and the current response time of the engine E.
  • the start identification module may further preferably include a trigger unit configured to trigger the battery peak torque activation flag when it is identified that the insufficient torque limit condition is satisfied.
  • the first switching module is used to execute step S2, which is configured to switch the torque limit of the drive motor DM from the initial torque limit to the peak torque limit calculated according to the peak discharge power of the battery when the insufficient torque limit condition is identified.
  • the exit identification module is used to execute step S3, which is configured to identify whether the exit condition is met after the torque limit of the drive motor DM is switched to the peak torque limit.
  • the exit identification module may include a first exit identification unit configured to identify whether the rotational speed of the engine E has reached a target rotational speed and has been maintained for a predetermined time, and a second exit identification unit configured to identify whether the actual position of the accelerator pedal is less than a predetermined value unit.
  • the exit identification module may further preferably include a reset unit configured to reset the battery peak torque activation flag when it is identified that the exit condition is met.
  • the second switching module is used to execute step S4, which is configured to switch the torque limit of the drive motor DM from the peak torque limit to the continuous torque limit calculated according to the continuous discharge power of the battery when the exit condition is identified.
  • the acceleration control method and acceleration control device combine continuous battery power and peak power.
  • the method and device can use the battery during the phases in which the torque and speed of the engine increase when the driver presses the accelerator pedal deeply and quickly.
  • the peak discharge power is used to compensate the transient power output, improve the second-order acceleration characteristics of the vehicle and the problem of engine response lag, so that the power response of the vehicle is timely and smooth, and the driving comfort is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种用于混合动力车辆的加速控制方法,具体包括:在油门踏板的位置增加期间识别是否满足扭矩限制不足条件;当识别出满足扭矩限制不足条件时,将驱动电机的扭矩限制从初始扭矩限制切换为根据电池的峰值放电功率计算的峰值扭矩限制;在将驱动电机的扭矩限制切换为峰值扭矩限制之后,识别是否满足退出条件;当识别出满足退出条件时,将驱动电机的扭矩限制从峰值扭矩限制切换为根据电池的连续放电功率计算的连续扭矩限制。该方法改善了混合动力车辆的加速响应性能。还涉及一种加速控制装置。

Description

用于混合动力车辆的加速控制方法和加速控制装置 技术领域
本发明涉及车辆技术领域。具体地,本发明涉及一种用于混合动力车辆的加速控制方法和加速控制装置。
背景技术
在能源与环境问题日益凸显的背景下,新能源车辆越来越受到人们的重视。P1+P3布局的混合动力车辆是当前经常采用的一类新能源车辆,图1示出了采用这种布局的混合动力车辆的动力系统的示意图。其中,发电机GM连接在发动机E(内燃机,ICE)后端、离合器K0前端,即P1位置;驱动电机DM连接在变速器后端,即P3位置。当离合器K0断开时,驱动电机DM可以直接驱动车辆,发电机GM可以回收发动机E的扭矩来进行发电。当离合器K0闭合时,发动机E和发电机GM经由离合器K0与驱动电机DM一起驱动车辆。
由于P1+P3布局的混合动力车辆使用爪形离合器,当在发动机E与驱动电机DM的串联模式、并联模式与纯电动模式之间切换时,发动机扭矩必须降低到零,并且在此期间发动机E不能提供动力输出。
当车辆在串联模式下行驶并且驾驶员在低油门位置或零油门位置下快速深踩油门时,发动机E的扭矩响应在初始阶段是滞后的,而驱动电机DM由电池供电来驱动车辆。当电池的实际放电功率达到其连续功率极限时,需要等待发动机E增加转速和扭矩,然后才能进一步向驱动电机DM提供能量。在发动机E的转速和扭矩增加过程中,发动机E提供的功率非常小,不能满足驾驶员的需要。只有在模式切换和发动机扭矩响应的完成之后,发动机E才能向驱动电机DM提供更大的功率。因此,车辆的加速性能具有两个不一致的阶段,使得驾驶体验较差。
发明内容
因此,本发明需要解决的技术问题是,提供一种改善混合动力车辆的加速响应性能的加速控制方法。
上述技术问题通过根据本发明的一种用于混合动力车辆的加速控制方法而得到解决。该混合动力车辆包括动力系统,该动力系统包括在发动机与离合器之间引入动力系统的发电机以及在变速器后端引入动力系统的驱动电机,该动力系统受到混合动力车辆的油门踏板控制,驱动电机由电池供电。其中,该加速控制方法包括以下步骤:
在油门踏板的位置增加期间识别是否满足扭矩限制不足条件;
当识别出满足扭矩限制不足条件时,将驱动电机的扭矩限制从初始扭矩限制切换为根据电池的峰值放电功率计算出的峰值扭矩限制;
在将驱动电机的扭矩限制切换为峰值扭矩限制之后,识别是否满足退出条件;和
当识别出满足退出条件时,将驱动电机的扭矩限制从峰值扭矩限制切换为根据电池的连续放电功率计算的连续扭矩限制。
根据本发明的一个优选实施例,扭矩限制不足条件可以为油门踏板的实际位置增加率大于预定位置增加率并且油门踏板的实际位置大于预定位置。油门踏板的实际位置增加率大于预定位置增加率代表油门位置的变化大,转速和扭矩数值的改变幅度较大;而油门踏板的实际位置大于预定位置代表油门位置的最终值大,需要达到的目标转速和扭矩数值较大。
根据本发明的另一优选实施例,可以根据电池的连续放电功率和发动机的当前响应时间来确定预定增加率和/或预定位置。
根据本发明的另一优选实施例,退出条件可以为发动机的转速已经达到目标转速并且已经保持预定时间,或者油门踏板的实际位置小于预定值。
根据本发明的另一优选实施例,当识别出满足扭矩限制不足条件时,可以以第一预定斜率将驱动电机的扭矩限制从初始扭矩限制切换为峰值扭矩限制。
根据本发明的另一优选实施例,当识别出满足退出条件时,可以以第二预定斜率将驱动电机的扭矩限制从峰值扭矩限制切换为连续扭矩限制。
根据本发明的另一优选实施例,初始扭矩限制可以等于连续扭矩限制。
根据本发明的另一优选实施例,可以设置电池峰值扭矩激活标志,当识别出满足扭矩限制不足条件时,可以触发电池峰值扭矩激活标志,并且可以在接收到电池峰值扭矩激活标志后将驱动电机的扭矩限制从初始扭矩限制切换为峰值扭矩限制;并且当识别出满足退出条件时,可以重置电池峰值扭矩激活标志,并且可以在接收到重置的电池峰值扭矩激活标志后将驱动电机的扭矩限制从峰值扭矩限制切换为连续扭矩限制。
根据本发明的另一优选实施例,该加速控制方法可以由混合动力车辆的整车控制器来执行。
上述技术问题还通过根据本发明的一种用于混合动力车辆的加速控制装置而得到解决。该混合动力车辆包括动力系统,该动力系统包括在发动机与离合器之间引入动力系统的发电机以及在变速器后端引入动力系统的驱动电机,该动力系统受到混合动力车辆的油门踏板控制,驱动电机由电池供电。其中,该加速控制装置包括:
启动识别模块,其配置为在油门踏板的位置增加期间识别是否满足扭矩限制不足条件;
第一切换模块,其配置为在识别出满足扭矩限制不足条件时,将驱动电机的扭矩限制从初始扭矩限制切换为根据电池的峰值放电功率计算出的峰值扭矩限制;
退出识别模块,其配置为在将驱动电机的扭矩限制切换为峰值扭矩限制之后,识别是否满足退出条件;和
第二切换模块,其配置为在识别出满足退出条件时,将驱动电机的扭矩限制从峰值扭矩限制切换为根据电池的连续放电功率计算的连续扭矩限制。
根据本发明的一个优选实施例,扭矩限制不足条件可以为油门踏板的实际位置增加率大于预定位置增加率并且油门踏板的实际位置大于预定位置,启动识别模块可以包括:
第一启动识别单元,其配置为识别油门踏板的实际位置增加率是否大于预定位置增加率;和
第二启动识别单元,其配置为识别油门踏板的实际位置是否大于预定位置。
根据本发明的另一优选实施例,启动识别模块可以包括确定单元,该确定单元配置为根据电池的连续放电功率和发动机的当前响应时间来确定预定增加率和/或预定位置。
根据本发明的另一优选实施例,退出条件可以为发动机的转速已经达到目标转速并且已经保持预定时间,或者油门踏板的实际位置小于预定值,退出识别模块可以包括:
第一退出识别单元,其配置为识别发动机的转速是否已经达到目标转速并且已经保持预定时间;和
第二退出识别单元,其配置为识别油门踏板的实际位置是否小于预定值。
根据本发明的另一优选实施例,启动识别模块可以包括触发单元,该触发单元配置为在识别出满足扭矩限制不足条件时触发电池峰值扭矩激活标志;并且
退出识别模块可以包括重置单元,该重置单元配置为在识别出满足退出条件时重置电池峰值扭矩激活标志。
附图说明
以下结合附图进一步描述本发明。图中以相同的附图标记来代表功能相同的元件。其中:
图1示出应用根据本发明的示例性实施例的加速控制方法的动力系统的示意图;
图2示出根据本发明的示例性实施例的加速控制方法的步骤流程图;和
图3a和图3b分别示出根据现有技术的加速控制方法和根据本发明的示例性实施例的加速控制方法的响应曲线图。
具体实施方式
以下将结合附图描述根据本发明的用于混合动力车辆的加速控制方法和加速控制装置的具体实施方式。下面的详细描述和附图用于示例性地说明本发明的原理,本发明不限于所描述的优选实施例,本发明的保护范围由权利要求书限定。
根据本发明的实施例,提供了一种用于混合动力车辆的加速控制方法。图1示出了该混合动力车辆的动力系统的示意图。如图1所示,该动力系统包括发动机E、发电机GM、离合器K0、变速器T、差速器D、驱动电机DM、电池(未示出)和车轮W等。发电机GM在发动机E与离合器K0之间的P1位置引入动力系统,发电机GM能够回收发动机E的动能来进行发电,并且能够将产生的电能提供给电池。电池能够为驱动电机DM供电。驱动电机DM在变速器后端的P3位置引入动力系统,并且能够直接驱动车轮W。该动力系统受到混合动力车辆的油门踏板(未示出)控制。
为了解决在低油门位置或零油门位置下,当快速深踩油门时车辆的二阶加速问题,使用如下方法来控制混合动力车辆的加速过程。
如图2的步骤图所示,首先,在步骤S1中,识别触发条件。具体而言,在油门踏板的位置增加期间识别是否满足扭矩限制不足条件。
这里的扭矩限制不足条件指的是驱动电机DM的当前扭矩限制(也就是能够达到的最大扭矩值)不足以在离合器K0断开、发动机E的扭矩响应滞后的状态下稳定增加输出转速和扭矩的情况。这种情况是在驾驶员快速深踩油门踏板的操作下产生的。因此,判断是否满足扭矩限制不足条件需要基于驾驶员踩下油门踏板的速度和油门踏板达到的位置两个标准。驾驶员踩下油门踏板的速度可以由油门踏板的位置增加率来表示。于是,扭矩限制不足条件可以优选为油门踏板的实际位置增加率大于预定位置增加率并且油门踏板的实际位置大于预定位置。当通过油门踏板上的传感器检测到油门踏板的实际位置增加率和实际位置同时超过上述预定值时,可以判断满足扭矩限制不足条件,进而触发电池峰值扭矩激活标志来启动下一控制步骤;如果油门踏板的实际位置增加率和实际位置中任一者不超过相应的预定值,就意味着不满足扭矩限制不足条件,则不会触发电池峰值扭矩激活标志来启动一下控制步骤。上述的预定增加率和/或预定位置可以根 据电池的连续放电功率和发动机E的当前响应时间来确定。
如果在步骤S1中识别的结果是肯定的,也就是说满足扭矩限制不足条件,则控制方法将启动步骤S2。在步骤S2中,将切换驱动电机DM的扭矩限制。具体而言,将驱动电机DM的扭矩限制从初始扭矩限制切换为根据电池的峰值放电功率计算出的峰值扭矩限制。
步骤S2的启动可以基于电池峰值扭矩激活标志来进行。具体而言,可以设置电池峰值扭矩激活标志,在满足扭矩限制不足条件时触发电池峰值扭矩激活标志,并且在接收到电池峰值扭矩激活标志后进行上述切换过程。这里的电池峰值扭矩激活标志是控制驱动电机DM的扭矩限制的切换状态的标志。电池峰值扭矩激活标志通常具有触发和非触发两种状态,分别对应于根据电池的峰值放电功率计算出的峰值扭矩限制以及根据电池的连续放电功率计算出的连续扭矩限制。这是因为驱动电机DM通常都是在连续扭矩限制下运行的。也就是说,在启动步骤S2之前,驱动电机DM的初始扭矩限制一般等于根据电池的连续放电功率计算出的连续扭矩限制。
图3a和图3b分别示出了根据现有的控制方法和根据本发明的实施例的控制方法的响应曲线图。驱动电机DM的扭矩限制由电池的放电决定,因此通过图3a和图3b中的电池放电功率曲线可以直观地反映出驱动电机DM的扭矩限制的变化。在步骤S2中,优选地以某一恒定斜率将驱动电机DM的扭矩限制从初始扭矩限制切换为峰值扭矩限制。该恒定斜率可以称为第一预定斜率。这在图3b中反映为电池的实际放电功率以某一恒定斜率上升。这使得扭矩限制的切换过程可以稳定进行。
驱动电机DM不会一直在峰值扭矩限制下运行,峰值扭矩限制仅用于快速深踩油门踏板期间发动机E无法正常输出扭矩的过渡阶段。因此,在上述阶段结束之后,需要退出步骤S2中的工作状态。为此,在步骤S3中识别退出条件。具体而言,在将驱动电机DM的扭矩限制切换为峰值扭矩限制之后,识别是否满足退出条件。
优选地,退出条件为发动机E的转速已经达到目标转速并且已经保持预定时间,或者油门踏板的实际位置小于预定值。如果发动机E的转速已经达到目标转速并且已经保持了预定时间,则离合器K0可以接通,从而 可以通过发动机E来提供驱动,因此可以不必继续单独依靠驱动电机DM来提供驱动力。如果油门踏板的实际位置小于预定值,则说明实际需要的输出扭矩变小,驱动电机DM不必维持峰值扭矩限制也可以提供足够的驱动力。
如果步骤S3中识别的结果是肯定的,也就是说满足退出条件,则控制方法将启动下一步骤S4。在步骤S4中,将退出工作状态。具体而言,再次切换驱动电机DM的扭矩限制,将驱动电机DM的扭矩限制从峰值扭矩限制切换为根据电池的连续放电功率计算的连续扭矩限制。
类似于步骤S2,步骤S4的退出也可以基于电池峰值扭矩激活标志来进行。具体而言,可以在满足退出条件时重置电池峰值扭矩激活标志,使得电池峰值扭矩激活标志被重置为非触发状态,并且在接收到重置的电池峰值扭矩激活标志后进行上述切换过程,使得驱动电机DM的扭矩限制不再维持峰值扭矩限制。
为了使扭矩限制的切换过程可以稳定进行,类似于步骤S2中,优选地以某一恒定斜率将驱动电机DM的扭矩限制从峰值扭矩限制切换为连续扭矩限制。该恒定斜率可以称为第二预定斜率。这在图3b中反映为电池的实际放电功率以某一恒定斜率下降。
上述加速控制方法可以由混合动力车辆的整车控制器来执行。执行该控制方法所需的各种数据可以通过混合动力车辆原有的各种传感器来获得,因此不需要增加额外的部件。
根据本发明的实施例,还提供了一种用于混合动力车辆的加速控制装置。该加速控制装置可以相应地执行上述加速控制方法,并且也同样应用于图1所示的混合动力车辆的动力系统。该加速控制装置可以由整车控制器中的功能模块构成。该加速控制装置包括启动识别模块、第一切换模块、退出识别模块和第二切换模块。
启动识别模块用于执行步骤S1,其配置为在油门踏板的位置增加期间识别是否满足扭矩限制不足条件。优选地,启动识别模块可以包括配置为识别油门踏板的实际位置增加率是否大于预定位置增加率的第一启动识别单元,以及配置为识别油门踏板的实际位置是否大于预定位置的第二启动 识别单元。优选地,启动识别模块还可以包括确定单元,确定单元配置为根据电池的连续放电功率和发动机E的当前响应时间来确定预定增加率和/或预定位置。此外,启动识别模块还可以优选地包括触发单元,触发单元配置为在识别出满足扭矩限制不足条件时触发电池峰值扭矩激活标志。
第一切换模块用于执行步骤S2,其配置为在识别出满足扭矩限制不足条件时,将驱动电机DM的扭矩限制从初始扭矩限制切换为根据电池的峰值放电功率计算出的峰值扭矩限制。
退出识别模块用于执行步骤S3,其配置为在将驱动电机DM的扭矩限制切换为峰值扭矩限制之后,识别是否满足退出条件。优选地,退出识别模块可以包括配置为识别发动机E的转速是否已经达到目标转速并且已经保持预定时间的第一退出识别单元,以及配置为识别油门踏板的实际位置是否小于预定值的第二退出识别单元。此外,退出识别模块还可以优选地包括重置单元,重置单元配置为在识别出满足退出条件时重置电池峰值扭矩激活标志。
第二切换模块用于执行步骤S4,其配置为在识别出满足退出条件时,将驱动电机DM的扭矩限制从峰值扭矩限制切换为根据电池的连续放电功率计算的连续扭矩限制。
根据本发明的加速控制方法和加速控制装置将连续电池功率和峰值功率相结合。通过对比图3a的现有技术的响应曲线和图3b的本发明的响应曲线可见,在驾驶员快速深踩油门踏板的情况下发动机的扭矩和转速增加的阶段期间,本方法和装置可以使用电池的峰值放电功率来补偿瞬态功率输出,改善车辆的二阶加速特性和发动机响应滞后的问题,从而使车辆的功率响应及时而平滑,并且提高了驾驶舒适性。
虽然在上述说明中示例性地描述了可能的实施例,但是应当理解到,仍然通过所有已知的和此外技术人员容易想到的技术特征和实施方式的组合存在大量实施例的变化。此外还应该理解到,示例性的实施方式仅仅作为一个例子,这种实施例绝不以任何形式限制本发明的保护范围、应用和构造。通过前述说明更多地是向技术人员提供一种用于转化至少一个示例性实施方式的技术指导,其中,只要不脱离权利要求书的保护范围,便可 以进行各种改变,尤其是关于所述部件的功能和结构方面的改变。
附图标记表
E   发动机
K0  离合器
D   差速器
DM  驱动电机
GM  发电机
T   变速器
W   车轮

Claims (14)

  1. 一种用于混合动力车辆的加速控制方法,所述混合动力车辆包括动力系统,所述动力系统包括在发动机(E)与离合器(K0)之间引入所述动力系统的发电机(GM)以及在变速器(T)后端引入所述动力系统的驱动电机(DM),所述动力系统受到所述混合动力车辆的油门踏板控制,所述驱动电机(DM)由电池供电,其特征在于,
    所述加速控制方法包括以下步骤:
    在所述油门踏板的位置增加期间识别是否满足扭矩限制不足条件;
    当识别出满足所述扭矩限制不足条件时,将所述驱动电机(DM)的扭矩限制从初始扭矩限制切换为根据所述电池的峰值放电功率计算出的峰值扭矩限制;
    在将所述驱动电机(DM)的扭矩限制切换为所述峰值扭矩限制之后,识别是否满足退出条件;和
    当识别出满足所述退出条件时,将所述驱动电机(DM)的扭矩限制从所述峰值扭矩限制切换为根据所述电池的连续放电功率计算的连续扭矩限制。
  2. 根据权利要求1所述的加速控制方法,其特征在于,所述扭矩限制不足条件为所述油门踏板的实际位置增加率大于预定位置增加率并且所述油门踏板的实际位置大于预定位置。
  3. 根据权利要求2所述的加速控制方法,其特征在于,根据所述电池的连续放电功率和所述发动机(E)的当前响应时间来确定所述预定增加率和/或所述预定位置。
  4. 根据权利要求1所述的加速控制方法,其特征在于,所述退出条件为所述发动机(E)的转速已经达到目标转速并且已经保持预定时间,或者所述油门踏板的实际位置小于预定值。
  5. 根据权利要求1所述的加速控制方法,其特征在于,当识别出满足所述扭矩限制不足条件时,以第一预定斜率将所述驱动电机(DM)的扭矩限制从所述初始扭矩限制切换为所述峰值扭矩限制。
  6. 根据权利要求1所述的加速控制方法,其特征在于,当识别出满足所述退出条件时,以第二预定斜率将所述驱动电机(DM)的扭矩限制从所述峰值扭矩限制切换为所述连续扭矩限制。
  7. 根据权利要求1所述的加速控制方法,其特征在于,所述初始扭矩限制等于所述连续扭矩限制。
  8. 根据权利要求1所述的加速控制方法,其特征在于,设置电池峰值扭矩激活标志,当识别出满足所述扭矩限制不足条件时,触发所述电池峰值扭矩激活标志;并且
    当识别出满足所述退出条件时,重置所述电池峰值扭矩激活标志。
  9. 根据权利要求1至8中任一项所述的加速控制方法,其特征在于,所述加速控制方法由所述混合动力车辆的整车控制器来执行。
  10. 一种用于混合动力车辆的加速控制装置,所述混合动力车辆包括动力系统,所述动力系统包括在发动机(E)与离合器(K0)之间引入所述动力系统的发电机(GM)以及在变速器(T)后端引入所述动力系统的驱动电机(DM),所述动力系统受到所述混合动力车辆的油门踏板控制,所述驱动电机(DM)由电池供电,其特征在于,
    所述加速控制装置包括:
    启动识别模块,其配置为在所述油门踏板的位置增加期间识别是否满足扭矩限制不足条件;
    第一切换模块,其配置为在识别出满足所述扭矩限制不足条件时,将所述驱动电机(DM)的扭矩限制从初始扭矩限制切换为根据所述电池的峰值放电功率计算出的峰值扭矩限制;
    退出识别模块,其配置为在将所述驱动电机(DM)的扭矩限制切换为所述峰值扭矩限制之后,识别是否满足退出条件;和
    第二切换模块,其配置为在识别出满足所述退出条件时,将所述驱动电机(DM)的扭矩限制从所述峰值扭矩限制切换为根据所述电池的连续放电功率计算的连续扭矩限制。
  11. 根据权利要求10所述的加速控制方法,其特征在于,所述扭矩限制不足条件为所述油门踏板的实际位置增加率大于预定位置增加率并且所 述油门踏板的实际位置大于预定位置,所述启动识别模块包括:
    第一启动识别单元,其配置为识别所述油门踏板的实际位置增加率是否大于所述预定位置增加率;和
    第二启动识别单元,其配置为识别所述油门踏板的实际位置是否大于所述预定位置。
  12. 根据权利要求11所述的加速控制方法,其特征在于,所述启动识别模块包括确定单元,所述确定单元配置为根据所述电池的连续放电功率和所述发动机(E)的当前响应时间来确定所述预定增加率和/或所述预定位置。
  13. 根据权利要求10所述的加速控制方法,其特征在于,所述退出条件为所述发动机(E)的转速已经达到目标转速并且已经保持预定时间,或者所述油门踏板的实际位置小于预定值,所述退出识别模块包括:
    第一退出识别单元,其配置为识别所述发动机(E)的转速是否已经达到所述目标转速并且已经保持所述预定时间;和
    第二退出识别单元,其配置为识别所述油门踏板的实际位置是否小于所述预定值。
  14. 根据权利要求10至13中任一项所述的加速控制方法,其特征在于,所述启动识别模块包括触发单元,所述触发单元配置为在识别出满足所述扭矩限制不足条件时触发电池峰值扭矩激活标志;并且
    所述退出识别模块包括重置单元,所述重置单元配置为在识别出满足所述退出条件时重置所述电池峰值扭矩激活标志。
PCT/CN2021/127719 2021-10-29 2021-10-29 用于混合动力车辆的加速控制方法和加速控制装置 WO2023070599A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102702.9A CN118055876A (zh) 2021-10-29 2021-10-29 用于混合动力车辆的加速控制方法和加速控制装置
PCT/CN2021/127719 WO2023070599A1 (zh) 2021-10-29 2021-10-29 用于混合动力车辆的加速控制方法和加速控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127719 WO2023070599A1 (zh) 2021-10-29 2021-10-29 用于混合动力车辆的加速控制方法和加速控制装置

Publications (1)

Publication Number Publication Date
WO2023070599A1 true WO2023070599A1 (zh) 2023-05-04

Family

ID=86158917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127719 WO2023070599A1 (zh) 2021-10-29 2021-10-29 用于混合动力车辆的加速控制方法和加速控制装置

Country Status (2)

Country Link
CN (1) CN118055876A (zh)
WO (1) WO2023070599A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098083A (zh) * 2006-06-27 2008-01-02 株式会社电装 车用发电机设备
CN101279603A (zh) * 2007-03-29 2008-10-08 通用汽车公司 用于控制混合动力系统中能量流的方法和设备
KR20120115797A (ko) * 2011-04-11 2012-10-19 한국과학기술연구원 저배기 운행거리 증대형 전기 자동차
WO2017196921A1 (en) * 2016-05-10 2017-11-16 Dana Limited Control strategies for hybrid electric powertrain configurations with a ball variator
CN108216181A (zh) * 2016-12-13 2018-06-29 现代自动车株式会社 当电池充电受限制时控制车辆的驱动的系统和方法
JP2018534492A (ja) * 2015-09-17 2018-11-22 ダナ リミテッド パワースプリットとして使用されるボールバリエータ連続可変トランスミッションを有するハイブリッド電気パワートレイン構成
CN110562240A (zh) * 2019-08-19 2019-12-13 中国第一汽车股份有限公司 一种轻混动力系统扭矩能力计算方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098083A (zh) * 2006-06-27 2008-01-02 株式会社电装 车用发电机设备
CN101279603A (zh) * 2007-03-29 2008-10-08 通用汽车公司 用于控制混合动力系统中能量流的方法和设备
KR20120115797A (ko) * 2011-04-11 2012-10-19 한국과학기술연구원 저배기 운행거리 증대형 전기 자동차
JP2018534492A (ja) * 2015-09-17 2018-11-22 ダナ リミテッド パワースプリットとして使用されるボールバリエータ連続可変トランスミッションを有するハイブリッド電気パワートレイン構成
WO2017196921A1 (en) * 2016-05-10 2017-11-16 Dana Limited Control strategies for hybrid electric powertrain configurations with a ball variator
CN108216181A (zh) * 2016-12-13 2018-06-29 现代自动车株式会社 当电池充电受限制时控制车辆的驱动的系统和方法
CN110562240A (zh) * 2019-08-19 2019-12-13 中国第一汽车股份有限公司 一种轻混动力系统扭矩能力计算方法

Also Published As

Publication number Publication date
CN118055876A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
KR101339264B1 (ko) 하이브리드 차량의 충방전 제어 방법 및 시스템
US8744712B2 (en) Drive control device for electric vehicle, and electric vehicle
US20180319389A1 (en) Method for controlling a drive device of a hybrid vehicle and hybrid vehicle
US9923490B2 (en) Vehicle
CN109720334B (zh) 混合动力车辆
US7828696B2 (en) Method for controlling engine torque of hybrid electric vehicle with electronic throttle control
US20180233943A1 (en) Power supply system for vehicle
KR101566736B1 (ko) 하이브리드 차량의 전부하 모드 제어 장치 및 방법
US9227620B2 (en) Engine start control device and engine start control method for hybrid electric vehicle
KR101510348B1 (ko) 하이브리드 자동차의 엔진클러치 제어장치 및 방법
US10328931B2 (en) Method for operating a hybrid vehicle and hybrid vehicle
KR101490922B1 (ko) 하이브리드 자동차의 배터리 방전 파워 제한시 주행모드 변환 방법 및 시스템
KR20130063271A (ko) 하이브리드 차량의 엔진 제어 방법
JP2013043592A (ja) ハイブリッド車両の制御装置
KR101964786B1 (ko) 하이브리드 차량의 주행 제어 장치 및 방법
JP2000204999A (ja) ハイブリッド車のエンジン始動装置
KR20190073173A (ko) 마일드 하이브리드 차량용 크루즈 제어 시스템 및 제어 방법
WO2023070599A1 (zh) 用于混合动力车辆的加速控制方法和加速控制装置
JPH10246134A (ja) 車両の減速エネルギ回収装置
KR102003517B1 (ko) 하이브리드 차량의 주행 제어 장치 및 방법
WO2023070603A1 (zh) 用于混合动力车辆的发动机扭矩控制方法和控制装置
JP6666965B2 (ja) 車両用制御装置
JP6197526B2 (ja) ハイブリッド車両の制御装置および制御方法
KR101964771B1 (ko) 하이브리드 차량의 변속제어장치 및 방법
CN110562236A (zh) 用于操作混合动力传动系统的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961951

Country of ref document: EP

Kind code of ref document: A1