WO2023070434A1 - 电极组件及其制备方法和显示装置 - Google Patents

电极组件及其制备方法和显示装置 Download PDF

Info

Publication number
WO2023070434A1
WO2023070434A1 PCT/CN2021/127033 CN2021127033W WO2023070434A1 WO 2023070434 A1 WO2023070434 A1 WO 2023070434A1 CN 2021127033 W CN2021127033 W CN 2021127033W WO 2023070434 A1 WO2023070434 A1 WO 2023070434A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
insulating layer
auxiliary
auxiliary electrode
Prior art date
Application number
PCT/CN2021/127033
Other languages
English (en)
French (fr)
Inventor
詹啟舜
倉澤隼人
周晓东
小川剛
蔡基成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/127033 priority Critical patent/WO2023070434A1/zh
Publication of WO2023070434A1 publication Critical patent/WO2023070434A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission

Definitions

  • the embodiments of the present application relate to the display field, in particular to an electrode assembly, a manufacturing method thereof, and a display device.
  • LED Light-emitting diode, light-emitting diode
  • ⁇ -LED Micro light emitting diode, micron light-emitting diode
  • Nano-LED Nano light emitting diode
  • the nano-LED technology needs to disperse the prepared nano-LED light-emitting device into a liquid system to form an ink, and spray the ink evenly onto the TFT (Thin film transistor, thin film transistor) substrate by inkjet printing technology
  • TFT Thin film transistor, thin film transistor
  • an electric field is formed by applying a voltage to the corresponding electrodes (electrode a and electrode b), so that the nano-LEDs are aligned along the direction of the electric field in the pixel.
  • the nano-LEDs of 1, 2, 3 and 4 distributed outside the electrodes cannot be affected by the electric field
  • these nano-LEDs will become ineffective light-emitting devices and cannot play a display function, thereby affecting the display performance of the display device.
  • an embodiment of the present application provides an electrode assembly for a display device, which can make the light-emitting devices in the ink better oriented and arranged in the pixel area, increase the number of effective light-emitting devices in the pixel, and improve the luminous efficiency and brightness, thereby improving the display performance of the display device.
  • an electrode assembly including:
  • the first electrode and the second electrode are located on the first insulating layer at a distance from each other, and a spacer groove is formed between the first electrode and the second electrode, and the position of the spacer groove is opposite to the position of the auxiliary electrode;
  • a second insulating layer located on the first electrode, the second electrode and the first insulating layer
  • a plurality of light emitting devices are located on the second insulating layer, and the distribution positions of the plurality of light emitting devices are opposite to the positions of the interval grooves.
  • the auxiliary electrode at the position corresponding to the spacer groove between the first electrode and the second electrode, the number of light-emitting devices that can be aligned and arranged at the position corresponding to the spacer groove can be increased, thereby improving the luminous efficiency and brightness of the display device.
  • a plurality of light-emitting devices scattered on the second insulating layer are attracted to the region corresponding to the auxiliary electrode, and then applying the second voltage to the first electrode and the second electrode An electric field is formed, so that the light-emitting devices are aligned along the direction of the electric field between the first electrode and the second electrode, thereby increasing the number of alignments of the light-emitting devices between the first electrode and the second electrode, and improving the luminous efficiency and efficiency of the electrode assembly.
  • Luminous brightness thereby improving the display performance of the display device.
  • the orthographic projection of the auxiliary electrode on the substrate at least partially coincides with the orthographic projection of the spacing groove on the substrate.
  • the auxiliary electrode is arranged opposite to the spacing groove, and maintaining at least a partial orthographic overlap is beneficial to attract the light-emitting device to the region corresponding to the spacing groove by using the auxiliary electrode.
  • the orthographic projection of the auxiliary electrode on the substrate and the orthographic projection of the first electrode on the substrate meet, or partially overlap, or form a first gap; or the auxiliary electrode
  • the orthographic projection on the substrate and the orthographic projection of the second electrode on the substrate meet, or partially overlap, or form a second gap.
  • the auxiliary electrode can form a larger reflective surface relative to the light-emitting device and the spacing groove, and better reflect the The light emitted by the light-emitting device toward the side of the auxiliary electrode is reflected to improve the luminous brightness and luminous efficiency.
  • the orthographic projection of the auxiliary electrode on the substrate is in contact with the orthographic projection of the first electrode on the substrate or forms a first gap
  • the orthographic projection of the auxiliary electrode on the substrate is in contact or forms a first gap with the orthographic projection of the second electrode on the substrate.
  • the two sides of the auxiliary electrode are closer to the middle position of the spacing groove, which is more conducive to using the auxiliary electrode to attract the light-emitting device in the ink to the corresponding position of the spacing groove, so that it is more conducive to the light-emitting device in the corresponding position of the spacing groove.
  • the orthographic projection of the auxiliary electrode on the substrate coincides with the orthographic projection of the first electrode on the substrate to form a first overlapping portion, and the width of the first overlapping portion is less than or equal to The width of the first electrode; or the orthographic projection of the auxiliary electrode on the substrate coincides with the orthographic projection of the second electrode on the substrate to form a second overlapping portion, and the second overlapping portion is along the The width in the first direction is less than or equal to the width of the second electrode.
  • the width of the first overlapped portion smaller than or equal to the width of the first electrode, and the width of the second overlapped portion smaller than or equal to the width of the second electrode can make both sides of the auxiliary electrode closer to the middle of the spacer, which is more conducive to The auxiliary electrode is used to attract the light-emitting device in the ink to the position corresponding to the interval groove.
  • the width of the auxiliary electrode is less than or equal to the distance from the side of the first electrode away from the spacing groove to the side of the second electrode away from the spacing groove.
  • the width of the first gap is less than 1/2 of the width of the interval groove.
  • the width of the second gap is less than 1/2 of the width of the interval groove.
  • the auxiliary electrode includes one or more of a conductive metal material, a conductive alloy material and a conductive oxide.
  • Metal materials, alloy materials, and conductive oxides have low resistivity and strong conductivity.
  • the auxiliary electrode includes a conductive metal or alloy material whose reflectivity to the light emitted by the light emitting device is greater than or equal to 40%.
  • the auxiliary electrode has a high reflectivity to the light emitted by the light-emitting device, which is beneficial for the auxiliary electrode to reflect the light emitted by the light-emitting device to the side of the auxiliary electrode, thereby improving luminous efficiency and brightness.
  • the auxiliary electrode includes one or more metals selected from Au, Ag, Cu, Pt, Pd, Ti, Al, and Mo.
  • the thickness of the auxiliary electrode is 0.1 micron to 0.5 micron.
  • Appropriate thickness design is conducive to ensuring good electrical conductivity, and is also conducive to process realization.
  • the width of the interval groove is less than or equal to the length of the plurality of light emitting devices.
  • the orthographic projection of each light emitting device on the substrate is respectively contiguous with or partially coincides with the orthographic projections of the first electrode and the second electrode on the substrate.
  • the orthographic projections of the light-emitting device on the substrate respectively meet or partially coincide with the orthographic projections of the first electrode and the second electrode on the substrate, it can be ensured that there are auxiliary electrodes facing each other below the light-emitting device, and the light-emitting device can be more effectively directed towards the substrate. Light emitted from the side of the auxiliary electrode is reflected.
  • the electrode assembly further includes connecting electrodes arranged at both ends of the plurality of light emitting devices, the connecting electrodes are located on the second insulating layer, and the plurality of light emitting devices communicate with each other through the connecting electrodes.
  • the other components are electrically connected.
  • the light emitting device may be a nano light emitting device or a micro light emitting device, and the length of the light emitting device may be 2 ⁇ m-10 ⁇ m.
  • the material of the first electrode may include one or more of Au, Ag, Cu, Pt, Pd, Ti, Al, Mo; the material of the second electrode may include Au , Ag, Cu, Pt, Pd, Ti, Al, Mo in one or more.
  • the thickness of the first electrode is 0.1 micron to 0.5 micron; the thickness of the second electrode is 0.1 micron to 0.5 micron.
  • Appropriate thickness design is conducive to ensuring good electrical conductivity, and is also conducive to process realization.
  • the first insulating layer includes one or more of silicon oxide and silicon nitride.
  • the second insulating layer includes one or more of silicon oxide and silicon nitride.
  • the second aspect of the embodiment of the present application also provides a method for preparing an electrode assembly, including:
  • a first electrode and a second electrode are formed on the first insulating layer, and the first electrode and the second electrode are oppositely arranged on the first insulating layer to form a spacer groove, and the position of the spacer groove is the same as that of the second electrode.
  • the positions of the auxiliary electrodes are relative;
  • a third aspect of the embodiments of the present application provides a display device, the display device including the electrode assembly described in the embodiments of the present application.
  • the display device further includes a thin film transistor layer located between the substrate and the first insulating layer, and the thin film transistor layer is used to control the light emitting device to emit light.
  • An embodiment of the present application further provides an electronic device, where the electronic device includes the display device described in the third aspect of the embodiment of the present application.
  • Figure 1 is a schematic diagram of the preparation process of nano-LED devices
  • Fig. 2 is a schematic diagram of the alignment arrangement of the nano-LED light-emitting device under the action of an electric field without an auxiliary electrode;
  • FIG. 3 is a schematic cross-sectional structure diagram of an electrode assembly 100 provided in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the positional relationship of some components in Fig. 3 in a top view
  • Fig. 5 is a schematic diagram of the light-emitting device being attracted to the corresponding area of the auxiliary electrode under the action of an electric field in the embodiment of the present application;
  • FIG. 6 is a schematic diagram of the alignment arrangement of the light-emitting device under the action of an electric field in the embodiment of the present application;
  • FIG. 7 is a schematic diagram of changing the path of light emitted downward by the auxiliary electrode 102 in the embodiment of the present application.
  • FIG. 8 and FIG. 9 are schematic diagrams of the arrangement of the auxiliary electrode 102 in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the arrangement of the auxiliary electrode 102 in another embodiment of the present application.
  • FIG. 11 is a schematic diagram of the arrangement of the auxiliary electrode 102 in another embodiment of the present application.
  • FIG. 12 is a schematic diagram of the arrangement of the light emitting device 107 and the spacing groove 201 in an embodiment of the present application;
  • FIG. 13 is a schematic diagram of the arrangement of the light emitting device 107 and the spacing groove 201 in another embodiment of the present application;
  • FIG. 14 is a schematic structural diagram of a light emitting device 107 in an embodiment of the present application.
  • Fig. 15 is a schematic diagram of the preparation process flow of the electrode assembly in an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a display device 200 provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an electronic device 300 provided by an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structural diagram of the electrode assembly 100 provided by the embodiment of the present application
  • FIG. 4 is a schematic diagram of the positional relationship of some components in FIG. 3 in a top view.
  • the electrode assembly 100 provided in this application is used in a display device, and the display device may be installed in electronic devices such as mobile phones, tablet computers, wearable devices, palmtop computers, unmanned aerial vehicles, and electric vehicles.
  • the electrode assembly 100 includes: a substrate 101; an auxiliary electrode 102 located on the substrate 101; a first insulating layer 103 located on the auxiliary electrode 102; An electrode 104 and a second electrode 105, a spacer groove 201 is formed between the first electrode 104 and the second electrode 105, and the position of the spacer groove 201 is opposite to the position of the auxiliary electrode 102; 105 and the second insulating layer 106 on the first insulating layer 103 ; a plurality of light emitting devices 107 located on the second insulating layer 106 , the distribution positions of the plurality of light emitting devices 107 are opposite to the positions of the interval grooves 201 .
  • a plurality of light emitting devices 107 are oriented and arranged along the first direction.
  • the display device may include multiple pixels, and when the electrode assembly 100 is used in the display device, each pixel corresponds to the structure of the electrode assembly 100 of the embodiment of the present application. Each pixel can control whether the pixel emits light through a thin film transistor layer (TFT layer) connected to it.
  • TFT layer thin film transistor layer
  • the related nano-LED technology needs to disperse the prepared nano-LED light-emitting device into a liquid system to form ink, and spray the ink evenly into each pixel on the TFT substrate by inkjet printing technology, and then An electric field is formed by applying a voltage to the electrodes a and b, so that the nano-LEDs are aligned (ie, aligned) in the pixel under the action of the electric field.
  • each pixel is designed to include 8 nano-LED light-emitting devices.
  • the electric field formed by the dispersion of some nano-LED light-emitting devices to the two electrodes will not affect the area, there may be only four nano-LED light-emitting devices that can be arranged between the two electrodes according to the expected orientation and become effective nano-LEDs, which will reduce the luminous efficiency and luminous brightness.
  • the electrode assembly 100 of the embodiment of the present application can increase the number of nano-LED light-emitting devices aligned between the two electrodes due to the addition of the auxiliary electrode 102 . For example, referring to FIG. 5 and FIG.
  • each pixel is designed to include 8 nano-LED light-emitting devices, and the 8 nano-LED light-emitting devices may be arranged between the two electrodes 104 and 105 according to the expected orientation, becoming an effective nano-LED, which can improve the luminous efficiency and luminous brightness of each pixel.
  • the pixels when the same magnitude of current is provided to pixels containing different numbers of effective nano-LEDs, the pixels contain more effective nano-LED light-emitting devices, the luminous brightness is greater, and the luminous efficiency is higher; while the pixels contain fewer Effective nano-LED light emitting devices have smaller luminous brightness and lower luminous efficiency.
  • pixels containing a larger number of effective nano-LED light-emitting devices can provide a relatively smaller current than pixels containing a smaller number of effective nano-LED light-emitting devices, thereby achieving The purpose of power saving.
  • the auxiliary electrode 102 is arranged under the first electrode 104 and the second electrode 105, that is, on the side close to the substrate 101, as shown in FIG. 5 and FIG. , first apply the first voltage to the auxiliary electrode 102, so that a plurality of light emitting devices 107 scattered on the second insulating layer 106 are attracted to the region corresponding to the auxiliary electrode 102, and then the first electrode 104 and the second electrode 105 applies a second voltage to form an electric field, so that the light emitting device 107 is aligned between the first electrode 104 and the second electrode 105 .
  • the electrode assembly 100 of the embodiment of the present application can pre-concentrate a plurality of light-emitting devices 107 dispersed in the ink to the area corresponding to the auxiliary electrode 102 through the auxiliary electrode 102, that is, the electric field generated between the first electrode 104 and the second electrode 105
  • the area that can be affected can increase the number of alignment arrangement of the light emitting device 107 between the first electrode 104 and the second electrode 105, thereby improving the luminous efficiency and luminous brightness of the electrode assembly, and the electrode assembly 100 can be used in a display device to improve The display performance of the display device.
  • the arrangement of the auxiliary electrode 102 in the electrode assembly 100 of the embodiment of the present application can reflect the light emitted to the substrate 101 side, change the path of the light, and make this part of the light emit upwards and emerge from the light-emitting surface, so the auxiliary electrode 102 can also The light emission rate can be improved, thereby improving the luminous efficiency and luminous brightness of the device.
  • the size and position of the auxiliary electrode 102 can be designed correspondingly according to the first electrode 104 and the second electrode 105 .
  • the size and position of the auxiliary electrode 102 may meet the following requirements: After the auxiliary electrode 102 is applied with a voltage, it can realize the scattered distribution in the area that cannot be affected by the electric field generated between the first electrode 104 and the second electrode 105 Part or all of the nano-LED light emitting devices are attracted to a region that can be affected by the electric field generated between the first electrode 104 and the second electrode 105 .
  • the electric field can affect means that the electric field can make the light-emitting device align and arrange between the first electrode 104 and the second electrode 105 .
  • the auxiliary electrode 102 is opposite to the spacer groove 201 between the first electrode 104 and the second electrode 105, and the projection of the auxiliary electrode 102 in the vertical direction may at least partially coincide with the projection of the spacer groove 201 in the vertical direction ( Overlap), that is, the orthographic projection of the auxiliary electrode 102 on the substrate 101 at least partially coincides with the orthographic projection of the spacing groove 201 on the substrate 101, that is, the auxiliary electrode 102 and the spacing groove 201 are at least partially facing each other in the vertical direction.
  • the position of the auxiliary electrode 102 opposite to the spacer groove 201 can make the light-emitting devices be attracted to the area corresponding to or near the spacer groove 201 before alignment, and increase the number of effective light-emitting devices in the final pixel.
  • the centerline of the auxiliary electrode 102 along the first direction may be directly opposite to, that is, overlap or overlap with the centerline of the spacing groove 201 along the first direction; that is, the auxiliary electrode 102 and the spacing groove 201 are in the first The direction is set symmetrically with respect to the same center line.
  • the width L1 of the auxiliary electrode 102 along the first direction may be less than that between the side of the first electrode 104 away from the spacing groove 201 and the side of the second electrode 105 away from the spacing groove 201 The distance L 2 .
  • the width L 1 of the auxiliary electrode 102 along the first direction may be equal to the distance L 2 between the side of the first electrode 104 away from the spacing groove 201 and the side of the second electrode 105 away from the spacing groove 201 .
  • the width L1 of the auxiliary electrode 102 along the first direction may also be greater than the distance between the side of the first electrode 104 away from the spacing groove 201 and the side of the second electrode 105 away from the spacing groove 201 L2 .
  • L 1 being less than or equal to L 2 is more conducive to attracting the light-emitting device 107 closer to the position corresponding to the spacing groove 201 through the auxiliary electrode 102 .
  • the effect of the auxiliary electrode 102 reflecting the light emitted toward the substrate side it is more beneficial to realize the effect of reflecting light if L 1 is greater than or equal to the width of the spacing groove 201 .
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 and the orthographic projection of the first electrode 104 on the substrate 101 meet, or partially overlap, or form a first gap.
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 is in contact with, or partially overlaps with, or forms a second gap with the orthographic projection of the second electrode 105 on the substrate 101 .
  • the auxiliary electrode 102 can be formed more closely with respect to the light emitting device 107 and the spacing groove 201.
  • the reflective surface with a large area can better reflect the light emitted by the light emitting device 107 to the side of the auxiliary electrode 102 to improve the luminous brightness and luminous efficiency.
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 is in contact with the orthographic projection of the first electrode 104 on the substrate 101 or forms a first gap, and the orthographic projection of the auxiliary electrode 102 on the substrate 101 is the same as that of the second electrode 105 on the substrate 101.
  • the two sides of the auxiliary electrode 102 are closer to the middle position of the spacer 201 along the first direction, which is more conducive to using the auxiliary electrode 102 to attract the light-emitting device in the ink to the corresponding spacer. position, so that it is more conducive to complete alignment of the light emitting device at the corresponding position of the spacing groove.
  • the widths of the auxiliary electrodes 102 on both sides of the centerline may be the same or different.
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 is in contact with the orthographic projection of the first electrode 104 on the substrate 101, while the orthographic projection of the auxiliary electrode 102 on the substrate 101 is in line with the orthographic projection of the second electrode 105 on the substrate 101.
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 may also be connected to the orthographic projection of the first electrode 104 on the substrate 101, while the orthographic projection of the auxiliary electrode 102 on the substrate 101 is in contact with the second electrode 105 on the substrate 101.
  • the orthographic projections on the substrate 101 partially overlap; it may also be that the orthographic projection of the auxiliary electrode 102 on the substrate 101 and the orthographic projection of the first electrode 104 on the substrate 101 are separated by a first gap, while the orthographic projection of the auxiliary electrode 102 on the substrate 101 It coincides with the orthographic projection of the second electrode 105 on the substrate 101 .
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 overlaps with the orthographic projection of the first electrode 104 on the substrate 101 , while the auxiliary electrode 102 is on the substrate 101
  • the orthographic projection of is coincident with the orthographic projection of the second electrode 105 on the substrate 101 .
  • the width L 1 of the auxiliary electrode 102 along the first direction is greater than the width L 5 of the spacing groove 201 along the first direction.
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 overlaps with the orthographic projection of the first electrode 104 on the substrate 101 in the first direction to form a first overlapping portion, and the width of the first overlapping portion along the first direction is D1 It may be less than or equal to the width L 3 of the first electrode 104 along the first direction.
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 coincides with the orthographic projection of the second electrode 105 on the substrate 101 in the first direction to form a second overlapping portion, and the width D2 of the second overlapping portion along the first direction may be less than or equal to The width L 4 of the second electrode 105 along the first direction.
  • the width L 1 of the auxiliary electrode 102 along the first direction may be less than or equal to the distance L 2 between the side of the first electrode 104 away from the spacing groove 201 and the side of the second electrode 105 away from the spacing groove 201 . In other embodiments, the width L 1 of the auxiliary electrode 102 along the first direction may also be greater than the distance L 2 between the side of the first electrode 104 away from the spacing groove 201 and the side of the second electrode 105 away from the spacing groove 201 .
  • the width of the auxiliary electrode 102 on both sides of the center line may be the same or different, that is, the width of the first overlapping part along the first direction
  • the width D1 and the width D2 of the second overlapping portion along the first direction may be the same or different.
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 is contiguous with the orthographic projection of the first electrode 104 on the substrate 101 , while the auxiliary electrode 102 is on the substrate 101
  • the orthographic projection of is contiguous with the orthographic projection of the second electrode 105 on the substrate 101 .
  • the orthographic projections conjoined in the first direction means that the two orthographic projections are just spliced into a continuous area.
  • one side end of the auxiliary electrode 102 along the first direction may be opposite to the side end of the first electrode 104 close to the spacer groove 201, and the other side end of the auxiliary electrode 102 along the first direction may be opposite to the side end of the first electrode 104.
  • One end of the second electrode 105 close to the spacing groove 201 faces directly.
  • the width L 1 of the auxiliary electrode 102 along the first direction is equal to the width L 5 of the spacing groove 201 along the first direction.
  • the auxiliary electrode 102 can form a reflective surface with a sufficiently large area relative to the light emitting device 107 and the spacer groove 201, so as to better reflect the light emitted by the light emitting device 107 toward the auxiliary electrode 102, thereby improving luminous brightness and luminous efficiency.
  • the auxiliary electrode 102 can be used to attract the light-emitting device 107 in the ink to the position corresponding to the spacer 201, thereby making it easier It is beneficial for the light-emitting device 107 to complete the orientation arrangement at the corresponding position of the spacer groove 201 .
  • the orthographic projection of the auxiliary electrode 102 on the substrate 101 and the orthographic projection of the first electrode 104 on the substrate 101 form a first gap in the first direction, while the auxiliary electrode 102 is on the substrate 101
  • the orthographic projection of and the second electrode 105 form a second gap in the first direction on the substrate 101 .
  • the width L 1 of the auxiliary electrode 102 along the first direction is smaller than the width L 5 of the spacing groove 201 along the first direction.
  • the width D 3 of the first gap along the first direction may be the same as or different from the width D 4 of the second gap along the first direction.
  • the width D 3 of the first gap may be less than 1/2 the width of the spacing groove 201 .
  • the width D 4 of the second gap may be less than 1/2 the width of the spacing groove 201 . It can be understood that, in order to better attract the auxiliary electrode 102 to the light emitting device 107, the width D3 of the first gap and the width D4 of the second gap can be less than 1/2 of the width of the spacing groove 201. The larger the better, the larger the gap width means that both sides of the auxiliary electrode 102 are closer to the middle of the spacing groove 201 , which is more conducive to attracting the light emitting device to the position corresponding to the spacing groove 201 .
  • the distance between the two sides of the auxiliary electrode 102 and the centerline of the spacer 201 along the first direction is less than 1/2 of the side of the first electrode 104 away from the spacer 201 to the side of the second electrode 105 away from the spacer 201
  • the distance L 2 between the sides may be less than or equal to 1/3 of the L 2 .
  • the minimum width of the auxiliary electrode 102 along the first direction may be the minimum width that can be produced by the process, for example, the minimum width may be 1 micron, that is, the width of the auxiliary electrode 102 along the first direction may be greater than or equal to 1 micron. In some embodiments, the width of the auxiliary electrode 102 along the first direction may be greater than or equal to 2 microns. The width of the auxiliary electrode 102 along the first direction may be greater than or equal to 5 micrometers. An appropriate width can enable the auxiliary electrode 102 to better attract the light emitting device.
  • the first direction is parallel to the surface of the substrate 101
  • the size of the auxiliary electrode 102 in the second direction parallel to the substrate 101 can also be arranged in various situations
  • the second direction is perpendicular to the first direction.
  • the orthographic projection of the auxiliary electrode 102 on the substrate and the orthographic projection of the spacer groove 201 on the substrate are at least partially coincident, specifically may be partially or completely coincident.
  • the auxiliary electrode 102 includes one or more of a conductive metal material, a conductive alloy material, and a conductive oxide, and specifically may be an electrode material commonly used in the field of semiconductor device manufacturing.
  • the auxiliary electrode 102 in order to enable the auxiliary electrode 102 to better reflect the light emitted by the light-emitting device 107 to the side of the auxiliary electrode 102, the auxiliary electrode 102 may have a low resistivity and reflect the light emitted by the light-emitting device 107.
  • Conductive metal or alloy materials with a ratio greater than or equal to 40%.
  • the auxiliary electrode 102 can be made of a conductive metal or alloy that has a reflectivity greater than or equal to 50%, or 60%, or 70%, or 80%, 90%, or 95% of the light emitted by the light emitting device 107 Material. It can be understood that the higher the reflectivity of the auxiliary electrode 102 to the light emitted by the light emitting device 107 is, the more favorable it is to increase the light emission rate and improve the luminous efficiency and luminous brightness.
  • the conductive oxide may include a conductive metal oxide, for example, may include indium tin oxide (ITO), indium zinc oxide (IZO) and the like.
  • the auxiliary electrode 102 may be made of gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), titanium (Ti), aluminum (Al), molybdenum (Mo ) of one or more metal elements.
  • the auxiliary electrode 102 may be a simple substance including one metal element, or an alloy including multiple metal elements, or a stacked structure including multiple metal single substance layers. Among them, plural may include two or more.
  • the auxiliary electrode 102 may include a three-layer metal stack structure, such as Ti/Al/Ti, including a first titanium metal layer, an aluminum metal layer and a second titanium metal layer stacked in sequence.
  • the auxiliary electrode 102 may include a three-layer metal stack structure, such as Mo/Al/Mo.
  • the auxiliary electrode 102 may also include a stacked metal layer and a conductive oxide layer.
  • the thickness of the auxiliary electrode 102 may be 0.1 micron to 0.5 micron. Specifically, the thickness of the auxiliary electrode 102 may be 0.1 micron, 0.2 micron, 0.3 micron, 0.4 micron or 0.5 micron.
  • the thickness of the auxiliary electrode 102 is too thin, the resistivity is too high, and too thick is not conducive to the realization of the process.
  • the sputtering preparation process takes a long time.
  • the plurality of light emitting devices 107 may be a nano light emitting device nano-LED, or may be a micron light emitting device ⁇ -LED.
  • the light emitting device 107 can be in the shape of a column, or in other shapes.
  • the diameter of the cylinder of the light emitting device may be 0.5 microns to 2 microns
  • the length of the light emitting device 107 may be 2 microns to 10 microns.
  • the length of the light emitting device 107 may be 2 microns, 3 microns, 4 microns, 5 microns, 6 microns, 7 microns, 8 microns, 9 microns, or 10 microns.
  • the orthographic projection of each light emitting device 107 on the substrate 101 is respectively contiguous with or partially coincides with the orthographic projections of the first electrode 104 and the second electrode 105 on the substrate 101 .
  • the orthographic projection of each light emitting device 107 on the substrate 101 overlaps with the orthographic projection of the first electrode 104 and the second electrode 105 on the substrate 101 respectively, and the spacing groove 201 along the The width L 5 in one direction is smaller than the length L 6 of the plurality of light emitting devices 107 .
  • the orthographic projections of each light emitting device 107 on the substrate 101 are connected to the orthographic projections of the first electrode 104 and the second electrode 105 on the substrate 101 respectively, and the spacing groove 201 along the first direction
  • the width L 5 is equal to the length L 6 of the plurality of light emitting devices 107 .
  • the electrode assembly 100 further includes connection electrodes 108 disposed at both ends of the plurality of light emitting devices 107 , the connection electrodes 108 are located on the second insulating layer 106 , and the plurality of light emitting devices 107 are electrically connected to other components through the connection electrodes 108 .
  • the connection electrodes 108 are connected to both ends of the light emitting device 107 .
  • the connection electrode 108 may be connected to the TFT layer of the display device through a via hole.
  • the connection electrode 108 may include conductive metals, alloys, etc., and the conductive metals, alloys may include one or more metals of Au, Ag, Cu, Pt, Ti, In, Al, Mo, for example.
  • each light emitting device 107 may include a stacked third electrode 1071 and a fourth electrode 1072, a first semiconductor layer 1073 and a second semiconductor layer 1074 along its longitudinal direction, that is, the first direction, and an active layer 1075 .
  • the active layer 1075 is located between the third electrode 1071 and the fourth electrode 1072
  • the first semiconductor layer 1073 is located between the third electrode 1071 and the active layer 1075
  • the second semiconductor layer 1074 is located between the fourth electrode 1072 and the active layer 1075 between.
  • the third electrode 1071 and the fourth electrode 1072 may be ohmic contact electrodes or Schottky contact electrodes.
  • the materials of the third electrode 1071 and the fourth electrode 1072 may be the same or different.
  • the third electrode 1071 and the fourth electrode 1072 may include conductive metal or conductive metal oxide.
  • the conductive metal may be, for example, one or more of gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium (Ti), indium (In), and aluminum (Al).
  • the conductive metal oxide may include, for example, indium tin oxide, indium zinc oxide, and the like.
  • the first semiconductor layer 1073 and the second semiconductor layer 1074 may be a p-type semiconductor layer and an n-type semiconductor layer, respectively.
  • the material of the p-type semiconductor layer may include one or more of gallium nitride, aluminum gallium nitride, indium gallium nitride, indium aluminum gallium nitride, aluminum nitride, and indium nitride, and the p-type semiconductor layer A dopant may be included, such as magnesium or the like.
  • the p-type semiconductor layer may be p-type gallium nitride (p-GaN).
  • the material of the n-type semiconductor layer may include one or more of gallium nitride, aluminum gallium nitride, indium gallium nitride, indium aluminum gallium nitride, aluminum nitride and indium nitride, and the n-type semiconductor layer may include doped dopant, such as silicon, germanium, tin and the like.
  • the n-type semiconductor layer may be n-type gallium nitride (n-GaN).
  • the active layer 1075 includes a luminescent material
  • the luminescent material may include, for example, a blue luminescent material, or a luminescent material of other colors.
  • the luminescent material may include an organic electroluminescent material, or a quantum dot luminescent material and the like.
  • the plurality of light emitting devices 107 are oriented and arranged along the first direction, that is, the length direction of the light emitting devices 107 is parallel or substantially parallel to the first direction.
  • the first direction is a direction parallel to the surface of the substrate 101 , specifically the direction in which the first electrodes 104 and the second electrodes 105 are spaced apart, and also the direction of the electric field generated between the first electrodes 104 and the second electrodes 105 .
  • Each light emitting device 107 is oriented and arranged along the direction of the electric field generated between the first electrode 104 and the second electrode 105 .
  • each light emitting device 107 is parallel to the first direction, but in actual production, some light emitting devices 107 may only be substantially parallel, that is, the length direction of the light emitting device 107 is parallel to the first direction. There may be an included angle between them, and the size of the included angle may be less than or equal to 15°. In some embodiments, the size of the angle may be less than or equal to 10°. In this application, the number of light emitting devices 107 in each pixel can be set according to actual needs, and can be any number of two or more.
  • the first electrode 104 may be various conductive materials used for electrodes, such as conductive metal.
  • the first electrode 104 may include one or more of Au, Ag, Cu, Pt, Pd, Ti, Al, and Mo.
  • the second electrode 105 may be various conductive materials used for electrodes, such as conductive metal.
  • the second electrode 105 may include one or more of Au, Ag, Cu, Pt, Pd, Ti, Al, and Mo.
  • the first electrode 104 and the second electrode 105 can be made of the same material or different materials.
  • the thickness of the first electrode 104 may be 0.1 micron to 0.5 micron, for example, 0.1 micron, 0.2 micron, 0.3 micron, 0.4 micron, 0.5 micron.
  • the thickness of the second electrode 105 may be 0.1 micron to 0.5 micron, for example, 0.1 micron, 0.2 micron, 0.3 micron, 0.4 micron, 0.5 micron.
  • the thickness of the first electrode 104 may be 0.2 microns to 0.3 microns.
  • the thickness of the second electrode 105 may be 0.2 microns to 0.3 microns. The thickness of the first electrode 104 and the second electrode 105 is too thin and the resistivity is too high.
  • Too thick is not conducive to the realization of the process.
  • the sputtering preparation process takes a long time.
  • the thickness of the metal after etching is prone to unevenness, which affects the performance of the electrode.
  • the width of the first electrode 104 along the first direction may be, but not limited to, 2 microns to 5 microns. Specifically, it is 2 microns, 3 microns, 4 microns, 5 microns, etc.
  • the width of the second electrode 105 along the first direction may be, but not limited to, 2 microns to 5 microns. Specifically, it is 2 microns, 3 microns, 4 microns, 5 microns, etc.
  • the first insulating layer 103 may include one or more of silicon oxide and silicon nitride.
  • the first insulating layer 103 is disposed on the auxiliary electrode 102, and the first insulating layer 103 may cover the auxiliary electrode 102 and the substrate 101 at the same time, that is, the first insulating layer 103 partially covers the auxiliary electrode 102, partially covers the substrate 101, and some In an embodiment, the first insulating layer 103 is in direct contact with both the auxiliary electrode 102 and the substrate 101 .
  • the arrangement of the first insulating layer 103 can prevent the auxiliary electrode 102 from being in direct contact with the first electrode 104 and the second electrode 105 .
  • the second insulating layer 106 includes one or more of silicon oxide and silicon nitride.
  • the second insulating layer 106 is arranged on the first electrode 104 and the second electrode 105, and the second insulating layer 106 covers the first electrode 104, the second electrode 105, and the first insulating layer 103 at the same time, that is, the second insulating layer 106 partially covers
  • the first electrode 104 partially covers the second electrode 105 and partially covers the first insulating layer 103 .
  • the second insulating layer 106 is in direct contact with the first electrode 104 , the second electrode 105 , and the first insulating layer 103 .
  • the arrangement of the second insulating layer 106 can separate the first electrode 104 and the second electrode 105 from the light emitting device 107 and the connection electrode 108 .
  • the setting of the second insulating layer 106 can also prevent the ink containing the light-emitting device from contacting other layers below the second insulating layer 106.
  • the shape of the ink droplet is not easy to control, which affects the alignment arrangement of the light-emitting device.
  • the setting of the second insulating layer 106 makes the ink only form a single interface with the second insulating layer 106, so that the shape of the ink droplet can be better controlled, which is beneficial to the alignment arrangement of the light emitting device.
  • the substrate 101 may be a rigid substrate or a flexible substrate.
  • the rigid substrate may be, for example, glass
  • the flexible substrate may be, for example, a polyimide (PI) substrate.
  • PI polyimide
  • the embodiment of the present application also provides a method for preparing an electrode assembly 100, including:
  • the ink containing a plurality of light-emitting devices 107 can be an ink of various composition formulas available, the ink can be a plurality of light-emitting devices 107 containing a solvent and dispersed in the solvent, and the ink can also include a dispersant and other additive components.
  • the solvent may include but not limited to water, ethanol, ethylene glycol, propylene glycol, anisole, cyclohexylbenzene, propylene glycol methyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), propylene carbonate, One or more of dimethylformamide, dimethylacetamide, ⁇ -butyrolactone, N-methylpyrrolidone, dipropylene glycol monomethyl ether, and dipropylene glycol dimethyl ether.
  • the dispersant may include but not limited to one or more of acidic dispersant, basic dispersant, amphoteric dispersant, and nonionic dispersant.
  • the acidic dispersant may include, for example, one or more of long-chain alkyl salicylic acid, sodium dodecylbenzenesulfonate, sodium hexametaphosphate, and triethylhexyl phosphoric acid.
  • the alkaline dispersant can be, for example, one or more of dimethyl octadecyl ammonium chloride and benzalkonium chloride.
  • the amphoteric dispersant can be, for example, one or more of dodecylalanine and alkyldimethylbetaine.
  • the nonionic dispersant can be, for example, one or more of polyethylene glycol, poly( ⁇ -caprolactone), polyether, and polyamide.
  • coating the ink containing multiple light emitting devices 107 on the second insulating layer 106 may specifically be: coating the ink containing multiple light emitting devices 107 on the second insulating layer by inkjet printing 106 , more specifically, the ink may be sprayed onto the area corresponding to the interval groove 201 on the second insulating layer 106 , that is, the pixel area.
  • the above preparation method further includes: S106, preparing connection electrodes 108 at both ends of a plurality of light-emitting devices 107, the connection electrodes 108 are connected to both ends of the light-emitting devices 107, and the connection electrodes 108 are located at the second insulating Layer 106.
  • each electrode and insulating layer can be prepared by physical deposition or chemical deposition, and can also be patterned in combination with a photolithography process.
  • applying the first voltage to the auxiliary electrode 102 causes the light emitting devices 107 to be distributed to the corresponding regions on both sides of the auxiliary electrode 102 on the second insulating layer 106, that is, a plurality of light emitting devices 107 are attracted to the first electrode 104 and the The area that can be affected by the electric field between the second electrodes 105 .
  • the second voltage is applied to the first electrode 104 and the second electrode 105 to form an electric field between the first electrode 104 and the second electrode 105, so that the plurality of light emitting devices 107 move along the first direction under the action of the electric field.
  • the orientation is arranged at the corresponding position of the spacer groove 201 on the second insulating layer 106 , that is, alignment is realized.
  • the first voltage may be a direct current voltage or an alternating current voltage, and the magnitude of the voltage may be -50V to 50V. In some embodiments, for example, it is -50V, -40V, -30V, -20V, -10V, -5V, -1V, 1V, 5V, 10V, 20V, 30V, 40V, 50V.
  • the second voltage can be an AC voltage, and the voltage can range from -50V to 50V, and the voltage can range from 1V to 10V.
  • the first voltage may be 3V to 6V.
  • the second voltage may be 3V to 6V.
  • the first voltage is a non-pulse DC voltage
  • the auxiliary electrode 102 in order to make the auxiliary electrode 102 attract the light-emitting device 107 well when the first voltage is applied, when the particles of the light-emitting device 107 in the ink are positively charged, A negative voltage can be applied to the auxiliary electrode 102 to connect the auxiliary electrode 102 to the negative electrode; when the light-emitting device 107 particles in the ink are negatively charged, a positive voltage can be applied to the auxiliary electrode 102 to connect the auxiliary electrode 102 to the positive electrode.
  • the particles of the light emitting device 107 may be charged or uncharged.
  • an AC voltage may be applied to the first electrode 104 ; or an AC voltage may be applied to the second electrode 105 .
  • the embodiment of the present application also provides a display device 200, the display device 200 includes an electrode assembly 100, and a thin film transistor layer 20 located between the substrate 101 and the first insulating layer 103, the thin film transistor layer 20 is used for driving control
  • the light emitting device 107 emits light.
  • Each electrode of the electrode assembly 100 may be connected to the TFT layer 20 through via holes.
  • the specific structure of the thin film transistor layer 20 is not specifically shown in FIG. 15 , and may be various structures that can realize the control of the light emitting device 107 .
  • the embodiment of the present application further provides an electronic device 300 , and the electronic device includes the above-mentioned display device 200 in the embodiment of the present application.
  • the electronic device 300 may include a mobile phone, a tablet computer, a wearable device, a handheld computer, a drone, an electric vehicle, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电极组件(100)、具有电极组件(100)的显示装置(200)和电子设备(300),电极组件(100)包括基板(101),位于基板(101)上的辅助电极(102),位于辅助电极(102)上的第一绝缘层(103),位于第一绝缘层(103)上的第一电极(104)和第二电极(105),第一电极(104)和第二电极(105)相对间隔形成间隔槽(201),间隔槽(201)的位置与辅助电极(102)的位置相对;还包括位于第一电极(104)、第二电极(105)和第一绝缘层(103)上的第二绝缘层(106),以及位于第二绝缘层(106)上的多个发光器件(107),多个发光器件(107)的分布位置与间隔槽(201)的位置相对。通过在第一电极(104)和第二电极(105)间的对应位置设置辅助电极(102),提高在间隔槽(201)对应位置实现取向排列的发光器件(107)数量,进而提高显示装置(200)的发光效率和亮度。

Description

电极组件及其制备方法和显示装置 技术领域
本申请实施例涉及显示领域,特别是涉及一种电极组件及其制备方法和显示装置。
背景技术
近年来,为了满足人们对显示屏显示性能需求的不断提升,业界开始开发小尺寸LED(Light-emitting diode,发光二极管)显示技术,包括μ-LED(Micro light emitting diode,微米发光二极管)技术以及比μ-LED尺寸更小的nano-LED(Nano light emitting diode,纳米发光二极管)技术。其中,参见图1,nano-LED技术需要把制备好的nano-LED发光器件分散到液态体系中形成油墨,并通过喷墨打印技术将油墨均匀地喷涂到TFT(Thin film transistor,薄膜晶体管)基板上每一像素中,再通过给相应电极(电极a和电极b)施加电压形成电场,以使nano-LED在像素中沿电场方向完成配向排列。然而,目前不能够很好地实现所有nano-LED在像素中的配向排列,例如,参见图2,分布在电极外的①号、②号、③号和④号nano-LED无法受到电场的影响而在电极a和电极b间进行配向排列,而这些nano-LED将成为无效的发光器件,不能起到显示作用,从而影响显示装置的显示性能。
发明内容
鉴于此,本申请实施例提供一种用于显示装置的电极组件,该电极组件能够使油墨中的发光器件在像素区域较好地完成取向排列,提高像素中的有效发光器件数量,提高发光效率和亮度,进而提高显示装置的显示性能。
具体地,本申请实施例第一方面提供一种电极组件,包括:
基板;
辅助电极,位于所述基板上;
第一绝缘层,位于所述辅助电极上;
第一电极和第二电极,相对间隔位于所述第一绝缘层上,第一电极和第二电极间形成间隔槽,所述间隔槽的位置与所述辅助电极的位置相对;
第二绝缘层,位于所述第一电极、第二电极和所述第一绝缘层上;
多个发光器件,位于所述第二绝缘层上,所述多个发光器件的分布位置与所述间隔槽的位置相对。
本申请通过在第一电极和第二电极间的间隔槽相对应的位置设置辅助电极,可以提高在间隔槽对应位置实现取向排列的发光器件数量,进而提高显示装置的发光效率和亮度。具体地,可以先通过对辅助电极施加第一电压,使散乱分布在第二绝缘层上的多个发光器件被吸引至辅助电极对应的区域,再对第一电极和第二电极施加第二电压形成电场,使发光器件在第一电极和第二电极之间沿电场方向进行取向排列,从而可以提高发光器件在第一电极和第二电极间进行取向排列的数量,提高电极组件的发光效率和发光亮度,进而提高显示装置的显示性能。
本申请实施方式中,所述辅助电极在所述基板上的正投影至少部分与所述间隔槽在所述基板上的正投影重合。辅助电极与间隔槽相对设置,保持至少部分正投影重叠有利于利用辅 助电极将发光器件吸引至间隔槽相对应的区域。
本申请实施方式中,所述辅助电极在所述基板上的正投影与所述第一电极在所述基板上的正投影相接、或者部分重合、或者形成第一间隙;或者所述辅助电极在所述基板上的正投影与所述第二电极在所述基板上的正投影相接、或者部分重合、或者形成第二间隙。辅助电极在基板上的正投影与第一电极和第二电极在基板上的正投影相接或者部分重合时,辅助电极能够相对发光器件和间隔槽形成更大面积的反射面,更好地将发光器件往辅助电极一侧发射的光进行反射,提高发光亮度和发光效率。而辅助电极在基板上的正投影与第一电极在基板上的正投影相接或者形成第一间隙,辅助电极在基板上的正投影与第二电极在基板上的正投影相接或者形成第二间隙时,辅助电极两侧离间隔槽的中间位置更近,则更有利于利用辅助电极将油墨中的发光器件吸引至间隔槽对应的位置来,从而更有利于发光器件在间隔槽对应位置完成取向排列。
本申请实施方式中,所述辅助电极在所述基板上的正投影与所述第一电极在所述基板上的正投影重合形成第一重合部分,所述第一重合部分的宽度小于或等于所述第一电极的宽度;或者所述辅助电极在所述基板上的正投影与所述第二电极在所述基板上的正投影重合形成第二重合部分,所述第二重合部分沿所述第一方向的宽度小于或等于所述第二电极的宽度。保持第一重合部分宽度小于或等于所述第一电极的宽度,第二重合部分宽度小于或等于所述第二电极的宽度可以使辅助电极两侧离间隔槽的中间位置更近,更有利于利用辅助电极将油墨中的发光器件吸引至间隔槽对应的位置。
本申请实施方式中,所述辅助电极的宽度小于或等于所述第一电极远离所述间隔槽的一侧至所述第二电极远离所述间隔槽的一侧之间的距离。
本申请实施方式中,所述第一间隙的宽度小于1/2所述间隔槽的宽度。
本申请实施方式中,所述第二间隙的宽度小于1/2所述间隔槽的宽度。
本申请实施方式中,所述辅助电极包括导电金属材料、导电合金材料和导电氧化物中的一种或多种。金属材料、合金材料、导电氧化物电阻率低,导电性强。
本申请实施方式中,所述辅助电极包括对所述发光器件发出的光的反射率大于或等于40%的导电金属或合金材料。辅助电极对发光器件发出的光的反射率高,有利于辅助电极实现对发光器件向辅助电极一侧发射的光的反射,提高发光效率和亮度。
本申请实施方式中,所述辅助电极包括Au、Ag、Cu、Pt、Pd、Ti、Al、Mo中的一种或多种金属。
本申请实施方式中,所述辅助电极的厚度为0.1微米至0.5微米。适合的厚度设计有利于保证良好导电性能,同时有利于工艺实现。
本申请实施方式中,所述间隔槽的宽度小于或等于所述多个发光器件的长度。
本申请实施方式中,每一所述发光器件在所述基板上的正投影分别与所述第一电极和所述第二电极在所述基板上的正投影相接或者部分重合。当发光器件在基板上的正投影分别与第一电极和第二电极在基板上的正投影相接或部分重合时,能够保证发光器件下方均有辅助电极相对,可以更有效地将发光器件往辅助电极一侧发射的光被反射。
本申请实施方式中,所述电极组件还包括设置在所述多个发光器件两端的连接电极,所述连接电极位于所述第二绝缘层上,所述多个发光器件通过所述连接电极与其他组件电连接。
本申请实施方式中,发光器件可以是纳米发光器件或微米发光器件,所述发光器件的长度可以是2μm-10μm。
本申请实施方式中,所述第一电极的材质可以是包括Au、Ag、Cu、Pt、Pd、Ti、Al、 Mo中的一种或多种;所述第二电极的材质可以是包括Au、Ag、Cu、Pt、Pd、Ti、Al、Mo中的一种或多种。
本申请实施方式中,所述第一电极的厚度为0.1微米至0.5微米;所述第二电极的厚度为0.1微米至0.5微米。适合的厚度设计有利于保证良好导电性能,同时有利于工艺实现。
本申请实施方式中,所述第一绝缘层包括氧化硅、氮化硅中的一种或多种。
本申请实施方式中,所述第二绝缘层包括氧化硅、氮化硅中的一种或多种。
本申请实施例第二方面还提供一种电极组件的制备方法,包括:
在基板上形成辅助电极;
在所述辅助电极上形成第一绝缘层;
在所述第一绝缘层上形成第一电极和第二电极,所述第一电极和所述第二电极相对间隔设于所述第一绝缘层上形成间隔槽,所述间隔槽的位置与所述辅助电极的位置相对;
在所述第一电极、所述第二电极及所述第一绝缘层上形成第二绝缘层;
将含有多个发光器件的墨水涂覆到所述第二绝缘层上,对所述辅助电极施加第一电压使所述发光器件分布至所述第二绝缘层上所述辅助电极对应的区域,再对所述第一电极和所述第二电极施加第二电压,使所述多个发光器件沿所述第一电极和所述第二电极间的电场方向取向排列于所述第二绝缘层上所述间隔槽对应的位置。
本申请实施例第三方面提供一种显示装置,所述显示装置包括本申请实施例所述的电极组件。
本申请实施方式中,所述显示装置还包括位于所述基板与所述第一绝缘层之间的薄膜晶体管层,所述薄膜晶体管层用于控制所述发光器件发光。
本申请实施例还提供一种电子设备,所述电子设备包括本申请实施例第三方面所述的显示装置。
附图说明
图1为nano-LED器件的制备工艺流程示意图;
图2为未设置辅助电极的情况下,nano-LED发光器件在电场作用下的配向排列示意图;
图3为本申请实施例提供的电极组件100的截面结构示意图;
图4为图3中部分部件在俯视视角下的位置关系示意图;
图5为本申请实施例中发光器件在电场作用下被吸引至辅助电极对应区域的示意图;
图6为本申请实施例中发光器件在电场作用下的配向排列示意图;
图7为本申请实施例中辅助电极102改变向下发射的光的路径的示意图;
图8和图9为本申请一实施方式中辅助电极102的设置示意图;
图10为本申请另一实施方式中辅助电极102的设置示意图;
图11为本申请又一实施方式中辅助电极102的设置示意图;
图12为本申请一实施方式中发光器件107与间隔槽201的设置示意图;
图13为本申请另一实施方式中发光器件107与间隔槽201的设置示意图;
图14为本申请实施例中发光器件107的结构示意图;
图15为本申请一实施方式中电极组件的制备工艺流程示意图;
图16为本申请实施例提供的显示装置200的结构示意图;
图17为本申请实施例提供的电子设备300的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行说明。
参见图3和图4,图3为本申请实施例提供的电极组件100的截面结构示意图;图4为图3中部分部件在俯视视角下的位置关系示意图。本申请提供的电极组件100,用于显示装置,显示装置可以是设置于手机、平板电脑、穿戴设备、掌上电脑、无人机、电动汽车等电子设备中。其中,电极组件100包括:基板101;位于基板101上的辅助电极102;位于辅助电极102上的第一绝缘层103;沿第一方向即X方向相对间隔设于第一绝缘层103上的第一电极104和第二电极105,第一电极104和第二电极105之间间隔形成间隔槽201,间隔槽201的位置与辅助电极102的位置相对;以及包括位于第一电极104、第二电极105和第一绝缘层103上的第二绝缘层106;位于第二绝缘层106上的多个发光器件107,多个发光器件107的分布位置与间隔槽201的位置相对。其中,多个发光器件107沿第一方向取向排列。
可以理解地,显示装置会包含多个像素,电极组件100用于显示装置时,每一像素都对应具有本申请实施例的电极组件100结构。每一像素可以通过与其连接的薄膜晶体管层(TFT层)来控制像素是否发光工作。
如图1所示,相关nano-LED技术需要把制备好的nano-LED发光器件分散到液态体系中形成油墨,并通过喷墨打印技术将油墨均匀地喷涂到TFT基板上每一像素中,再通过给电极a和电极b施加电压形成电场,以使nano-LED于电场作用下在像素中完成配向排列(即取向排列)。然而在喷墨打印将油墨喷涂到像素中时,会有一定量的含有nano-LED发光器件的油墨分散到两个电极形成的电场影响不到的区域,从而导致部分nano-LED发光器件不能够按照预期取向排列至两个电极之间。例如,参见图2,每一像素设计的是包含8个nano-LED发光器件,在未设置辅助电极102的情况下,由于部分nano-LED发光器件分散到两个电极形成的电场影响不到的区域,则可能只有4个nano-LED发光器件能够按照预期取向排列至两个电极之间,成为有效nano-LED,这样就会使得发光效率和发光亮度降低。而本申请实施例电极组件100由于增设辅助电极102,能够提高取向排列至两个电极之间的nano-LED发光器件的数量。例如,参见图5和图6,每一像素设计的是包含8个nano-LED发光器件,可以是8个nano-LED发光器件均按照预期取向排列至两个电极104和105之间,成为有效nano-LED,从而可以提高每一像素的发光效率和发光亮度。这样对包含不同数量有效nano-LED的像素提供相同大小电流时,像素中包含数量更多的有效nano-LED发光器件,则发光亮度更大,发光效率更高;而像素中包含数量更少的有效nano-LED发光器件,则发光亮度更小,发光效率更低。也因此当为了获得相同亮度时,像素中包含数量更多的有效nano-LED发光器件的像素,可以提供比包含数量更少的有效nano-LED发光器件的像素相对更小的电流,从而可以达到省电的目的。
本申请实施例提供的电极组件100,通过在第一电极104与第二电极105的下方即靠近基板101的一侧设置辅助电极102,参见图5和图6,在对发光器件107进行配向排列时,可以先通过对辅助电极102施加第一电压,使散乱分布在第二绝缘层106上的多个发光器件107被吸引至辅助电极102对应的区域,再对第一电极104和第二电极105施加第二电压形成电场,使发光器件107在第一电极104和第二电极105之间进行配向排列。本申请实施例的电极组件100通过辅助电极102可以预先将分散于油墨中的多个发光器件107集中至辅助电极102对应的区域,也即第一电极104和第二电极105之间产生的电场能够影响到的区域,这样可以提高发光器件107在第一电极104和第二电极105间进行配向排列的数量,从而提高电极组件的发光效率和发光亮度,该电极组件100用于显示装置可以提高显示装置的显示性 能。
另外,参见图7,在显示装置中,nano-LED所产生的光会有一部分是向基板101一侧(即TFT层一侧)发射,这一部分光与出光面背离,将无法作为显示用途的光,本申请实施例电极组件100中辅助电极102的设置能够将向基板101一侧发射的光进行反射,改变光的路径,使这部分光向上发射,从出光面出射,因此辅助电极102也可以提高光的出射率,从而提高器件的发光效率和发光亮度。
本申请实施方式中,辅助电极102的尺寸和位置可以根据第一电极104和第二电极105对应设计。本申请实施方式中,辅助电极102的尺寸和位置可以是满足:辅助电极102在施加电压后能够实现将散乱分布在第一电极104和第二电极105之间产生的电场不能影响到的区域的部分或全部nano-LED发光器件,吸引至第一电极104和第二电极105之间产生的电场能够影响到的区域。其中,“电场能够影响到”是指电场作用能够使发光器件在第一电极104和第二电极105间取向排列。本申请实施方式中,辅助电极102与第一电极104和第二电极105间的间隔槽201位置相对,可以是辅助电极102在垂直方向的投影至少部分与间隔槽201在垂直方向的投影重合(重叠),即辅助电极102在基板101上的正投影至少部分与间隔槽201在基板101上的正投影重合,也即辅助电极102与间隔槽201在垂直方向上至少部分是正对着的。辅助电极102与间隔槽201位置相对可以尽可能使得发光器件在配向排列之前被吸引至间隔槽201对应的或附近的区域,提高最终像素中的有效发光器件数量。
本申请一些实施方式中,辅助电极102沿第一方向的中心线可以是与间隔槽201沿第一方向的中心线正对,即重合或重叠;也即辅助电极102和间隔槽201在第一方向上相对同一中心线对称设置。参见图8,本申请一些实施方式中,辅助电极102沿第一方向的宽度L 1可以是小于第一电极104远离间隔槽201的一侧至第二电极105远离间隔槽201的一侧之间的距离L 2。本申请一些实施方式中,辅助电极102沿第一方向的宽度L 1可以是等于第一电极104远离间隔槽201的一侧至第二电极105远离间隔槽201的一侧之间的距离L 2。本申请另一些实施方式中,辅助电极102沿第一方向的宽度L 1也可以是大于第一电极104远离间隔槽201的一侧至第二电极105远离间隔槽201的一侧之间的距离L 2。考虑电场影响,L 1小于或等于L 2更有利于通过辅助电极102将发光器件107吸引至更靠近间隔槽201对应的位置。考虑辅助电极102反射向基板一侧发射的光的作用,L 1大于或等于间隔槽201的宽度更有利于实现反射光的作用。
本申请实施方式中,在第一方向上,辅助电极102在基板101上的正投影与第一电极104在基板101上的正投影相接、或者部分重合、或者形成第一间隙。本申请实施方式中,辅助电极102在基板101上的正投影与第二电极105在基板101上的正投影相接、或者部分重合、或者形成第二间隙。其中,辅助电极102在基板101上的正投影与第一电极104和第二电极105在基板101上的正投影相接或者部分重合时,辅助电极102能够相对发光器件107和间隔槽201形成更大面积的反射面,更好地将发光器件107往辅助电极102一侧发射的光进行反射,提高发光亮度和发光效率。而辅助电极102在基板101上的正投影与第一电极104在基板101上的正投影相接或者形成第一间隙,辅助电极102在基板101上的正投影与第二电极105在基板101上的正投影相接或者形成第二间隙时,辅助电极102两侧离间隔槽201沿第一方向的中间位置更近,则更有利于利用辅助电极102将油墨中的发光器件吸引至间隔槽对应的位置来,从而更有利于发光器件在间隔槽对应位置完成取向排列。本申请实施方式中,参见图9,以间隔槽201沿第一方向的中心线I作为参考,辅助电极102在中心线两侧的宽度可以是相同,也可以是不相同。例如,可以是辅助电极102在基板101上的正投影与第一电 极104在基板101上的正投影相接,同时辅助电极102在基板101上的正投影与第二电极105在基板101上的正投影相接;也可以是辅助电极102在基板101上的正投影与第一电极104在基板101上的正投影相接,同时辅助电极102在基板101上的正投影与第二电极105在基板101上的正投影部分重合;也可以是辅助电极102在基板101上的正投影与第一电极104在基板101上的正投影间隔第一间隙,同时辅助电极102在基板101上的正投影与第二电极105在基板101上的正投影部分重合。
参见图1、图8和图9,本申请一实施方式中,辅助电极102在基板101上的正投影与第一电极104在基板101上的正投影部分重合,同时辅助电极102在基板101上的正投影与第二电极105在基板101上的正投影部分重合。该实施方式中,辅助电极102沿第一方向的宽度L 1大于间隔槽201沿第一方向的宽度L 5。该实施方式中,辅助电极102在基板101上的正投影与第一电极104在基板101上的正投影在第一方向重合形成第一重合部分,第一重合部分沿第一方向的宽度D 1可以是小于或等于第一电极104沿第一方向的宽度L 3。辅助电极102在基板101上的正投影与第二电极105在基板101上的正投影在第一方向重合形成第二重合部分,第二重合部分沿第一方向的宽度D 2可以是小于或等于第二电极105沿第一方向的宽度L 4。一些实施方式中,辅助电极102沿第一方向的宽度L 1可以是小于或等于第一电极104远离间隔槽201的一侧至第二电极105远离间隔槽201的一侧之间的距离L 2。另一些实施方式中,辅助电极102沿第一方向的宽度L 1也可以是大于第一电极104远离间隔槽201的一侧至第二电极105远离间隔槽201的一侧之间的距离L 2。本申请实施方式中,以间隔槽201沿第一方向的中心线作为参考,辅助电极102在中心线两侧的宽度可以是相同,也可以是不相同,即第一重合部分沿第一方向的宽度D 1与第二重合部分沿第一方向的宽度D 2可以是相同,也可以是不相同。
参见图10,本申请一实施方式中,在第一方向上,辅助电极102在基板101上的正投影与第一电极104在基板101上的正投影相接,同时辅助电极102在基板101上的正投影与第二电极105在基板101上的正投影相接。正投影在第一方向相接是指两个正投影正好相拼接成连续区域。该实施方式中,可以是辅助电极102沿第一方向的一侧端部与第一电极104靠近间隔槽201的一侧端部正对,辅助电极102沿第一方向的另一侧端部与第二电极105靠近间隔槽201的一侧端部正对,该实施方式中,辅助电极102沿第一方向的宽度L 1等于间隔槽201沿第一方向的宽度L 5。该实施方式中,辅助电极102能够相对发光器件107和间隔槽201形成足够大面积的反射面,更好地将发光器件107往辅助电极102一侧发射的光进行反射,提高发光亮度和发光效率,又能够使辅助电极102两侧离间隔槽201沿第一方向的中间位置相对较近,更好地利用辅助电极102将油墨中的发光器件107吸引至间隔槽201对应的位置来,从而更有利于发光器件107在间隔槽201对应位置完成取向排列。
参见图11,本申请一实施方式中,辅助电极102在基板101上的正投影与第一电极104在基板101上的正投影在第一方向形成第一间隙,同时辅助电极102在基板101上的正投影与第二电极105在基板101上在第一方向形成第二间隙。该实施方式中,辅助电极102沿第一方向的宽度L 1小于间隔槽201沿第一方向的宽度L 5。本申请实施方式中,第一间隙沿第一方向的宽度D 3与第二间隙沿第一方向的宽度D 4可以是相同,也可以是不相同。本申请实施方式中,第一间隙的宽度D 3可以是小于1/2间隔槽201的宽度。本申请实施方式中,第二间隙的宽度D 4可以是小于1/2间隔槽201的宽度。可以理解地,为了更好地实现辅助电极102对发光器件107的吸引,第一间隙的宽度D 3和第二间隙的宽度D 4在满足小于1/2间隔槽201的宽度的前提下,可以是越大越好,间隙宽度越大,表明辅助电极102两侧离间隔槽201的 中间位置更近,更有利于将发光器件吸引至间隔槽201对应的位置。
考虑电场影响,辅助电极102的两侧离间隔槽201的中心线越近,更有利于通过辅助电极102将发光器件107吸引至更靠近间隔槽201对应的位置。因此,可以是辅助电极102的两侧离间隔槽201沿第一方向的中心线的距离小于1/2所述第一电极104远离间隔槽201的一侧至第二电极105远离间隔槽201的一侧之间的距离L 2。一些实施例中,也可以是辅助电极102的两侧离间隔槽201沿第一方向的中心线的距离小于或等于1/3所述L 2
本申请实施方式中,辅助电极102沿第一方向的最小宽度可以是工艺可实现制备的最小宽度,例如,最小宽度可以是1微米,即辅助电极102沿第一方向的宽度可以是大于或等于1微米。一些实施方式中,辅助电极102沿第一方向的宽度可以是大于或等于2微米。辅助电极102沿第一方向的宽度可以是大于或等于5微米。适合的宽度可以使辅助电极102能够更好地完成对发光器件的吸引。
本申请实施方式中,第一方向平行于基板101表面,辅助电极102在平行于基板101的第二方向的尺寸也可以是多种设置情况,第二方向与第一方向垂直。在第二方向上,辅助电极102在基板上的正投影与间隔槽201在基板上的正投影至少部分重合,具体可以是部分重合,也可以是完全重合。
本申请实施方式中,辅助电极102包括导电金属材料、导电合金材料和导电氧化物中的一种或多种,具体可以是半导体器件制备领域常用的电极材料。本申请一些实施方式中,为了使辅助电极102能够更好地反射发光器件107向辅助电极102一侧发射的光,辅助电极102可以是包括电阻率较低,对发光器件107发出的光的反射率大于或等于40%的导电金属或合金材料。一些实施例中,辅助电极102可以是包括对发光器件107发出的光的反射率大于或等于50%、或60%、或70%、或80%、90%、或95%的导电金属或合金材料。可以理解地,辅助电极102对发光器件107发出的光的反射率越高,则越有利于提升光的出射率,提高发光效率和发光亮度。本申请实施方式中,导电氧化物可以是包括具有导电性的金属氧化物,例如可以是包括铟锡氧化物(ITO),铟锌氧化物(IZO)等。本申请实施方式中,辅助电极102可以是包括金(Au)、银(Ag)、铜(Cu)、铂(Pt)、钯(Pd)、钛(Ti)、铝(Al)、钼(Mo)中的一种或多种金属元素。具体地,辅助电极102可以是包括一种金属元素的单质,也可以是包括多种金属元素的合金,或者包括多种金属单质层的叠层结构。其中,多种可以是包括两种或两种以上。一些实施例中,辅助电极102可以是包括三层金属叠层结构,例如Ti/Al/Ti,即包括依次层叠的第一钛金属单质层、铝金属单质层和第二钛金属单质层。一些实施例中,辅助电极102可以是包括三层金属叠层结构,例如Mo/Al/Mo。一些实施例中,辅助电极102也可以是包括层叠的金属层和导电氧化物层。
本申请实施方式中,辅助电极102的厚度可以是0.1微米至0.5微米。具体地,辅助电极102的厚度可以是0.1微米、0.2微米、0.3微米、0.4微米或0.5微米。辅助电极102厚度太薄电阻率过高,太厚不利于工艺实现,一方面溅射制备工艺时间长,另一方面刻蚀太厚的金属层不易控制蚀刻形状,刻蚀后的金属厚度易出现不均匀,影响辅助电极性能。
本申请实施方式中,多个发光器件107可以是纳米发光器件nano-LED,也可以是微米发光器件μ-LED。发光器件107可以是柱体状,也可以是其他形状。发光器件柱体直径可为0.5微米至2微米,发光器件107的长度可以是2微米至10微米。具体地,发光器件107的长度可以是2微米、3微米、4微米、5微米、6微米、7微米、8微米、9微米、10微米。
本申请实施方式中,每一发光器件107在基板101上的正投影分别与第一电极104和第二电极105在基板101上的正投影相接或者部分重合。参见图1和图12,一些实施方式中, 每一发光器件107在基板101上的正投影分别与第一电极104和第二电极105在基板101上的正投影部分重合,间隔槽201沿第一方向的宽度L 5小于多个发光器件107的长度L 6。参见图13,一些实施方式中,每一发光器件107在基板101上的正投影分别与第一电极104和第二电极105在基板101上的正投影相接,间隔槽201沿第一方向的宽度L 5等于多个发光器件107的长度L 6。当发光器件107在基板101上的正投影分别与第一电极104和第二电极105在基板101上的正投影相接或部分重合时,能够保证发光器件下方均有辅助电极相对,可以更有效地将发光器件往辅助电极一侧发射的光被反射。
本申请实施方式中,电极组件100还包括设置在多个发光器件107两端的连接电极108,连接电极108位于第二绝缘层106上,多个发光器件107通过连接电极108与其他组件电连接。连接电极108与发光器件107的两端连接。具体地,连接电极108可以是通过过孔与显示装置的TFT层连接。连接电极108的可以是包括导电金属、合金等,导电金属、合金例如可以是包括Au、Ag、Cu、Pt、Ti、In、Al、Mo中的一种或多种金属。
本申请实施方式中,参见图14,每一发光器件107沿其纵向也即第一方向可以是包括层叠的第三电极1071和第四电极1072,第一半导体层1073和第二半导体层1074,以及有源层1075。有源层1075位于第三电极1071和第四电极1072之间,第一半导体层1073位于第三电极1071和有源层1075之间,第二半导体层1074位于第四电极1072和有源层1075之间。
本申请实施方式中,第三电极1071和第四电极1072可以是欧姆接触电极,也可以是肖特基接触电极。第三电极1071和第四电极1072的材质可以是相同,也可以是不同。第三电极1071和第四电极1072具体可以是包括导电金属或导电金属氧化物。导电金属例如可以是金(Au)、银(Ag)、铜(Cu)、铂(Pt)、钛(Ti)、铟(In)、铝(Al)中的一种或多种金属。导电金属氧化物例如可以是包括铟锡氧化物、铟锌氧化物等。
本申请实施方式中,第一半导体层1073和第二半导体层1074可以是分别为p型半导体层和n型半导体层。具体地,p型半导体层的材质可以包括氮化镓、氮化铝镓、氮化铟镓、氮化铟铝镓、氮化铝和氮化铟中的一种或多种,p型半导体层可以包括掺杂剂,掺杂剂例如为镁等。一些实施例中,p型半导体层可以是p型氮化镓(p-GaN)。n型半导体层的材质可以包括氮化镓、氮化铝镓、氮化铟镓、氮化铟铝镓、氮化铝和氮化铟中的一种或多种,n型半导体层可以包括掺杂剂,掺杂剂例如为硅、锗、锡等。一些实施例中,n型半导体层可以是n型氮化镓(n-GaN)。
本申请实施方式中,有源层1075包括发光材料,发光材料例如可以是包括蓝光发光材料,也可以是包括其他颜色的发光材料。发光材料可以是包括有机电致发光材料,也可以是量子点发光材料等。
本申请实施方式中,多个发光器件107沿第一方向取向排列,即发光器件107的长度方向是与第一方向平行或基本平行。第一方向为平行于基板101表面的方向,具体是第一电极104和第二电极105的间隔排布方向,也是第一电极104与第二电极105间产生的电场的方向。每一发光器件107均沿第一电极104与第二电极105间产生的电场的方向取向排列。应说明的是,理想情况下,每一个发光器件107均与第一方向平行,但实际生产中,可能会有部分发光器件107只能满足基本平行,即发光器件107的长度方向与第一方向之间可能存在夹角,夹角的大小可以是小于或等于15°。一些实施例中,角的大小可以是小于或等于10°。本申请中,每一像素中的发光器件107的数量可以根据实际需要进行设定,可以是两个或两个以上的任意数量。
本申请实施方式中,第一电极104可以是各种用于电极的导电材质,例如可以是导电金 属。一些实施方式中,第一电极104可以是包括Au、Ag、Cu、Pt、Pd、Ti、Al、Mo中的一种或多种。本申请实施方式中,第二电极105可以是各种用于电极的导电材质,例如可以是导电金属。一些实施方式中,第二电极105可以是包括Au、Ag、Cu、Pt、Pd、Ti、Al、Mo中的一种或多种。第一电极104和第二电极105可以是相同材质,也可以是不同材质。
本申请实施方式中,第一电极104的厚度可以是0.1微米至0.5微米,具体例如为0.1微米、0.2微米、0.3微米、0.4微米、0.5微米。本申请实施方式中,第二电极105的厚度可以是0.1微米至0.5微米,具体例如为0.1微米、0.2微米、0.3微米、0.4微米、0.5微米。一些实施例中,第一电极104的厚度可以是0.2微米至0.3微米。一些实施例中,第二电极105的厚度可以是0.2微米至0.3微米。第一电极104和第二电极105的厚度太薄电阻率过高,太厚不利于工艺实现,一方面溅射制备工艺时间长,另一方面刻蚀太厚的金属层不易控制蚀刻形状,刻蚀后的金属厚度易出现不均匀,影响电极性能。
本申请实施方式中,第一电极104沿第一方向的宽度可以但不限于是2微米至5微米。具体例如为2微米、3微米、4微米、5微米等。本申请实施方式中,第二电极105沿第一方向的宽度可以但不限于是2微米至5微米。具体例如为2微米、3微米、4微米、5微米等。
本申请实施方式中,第一绝缘层103可以是包括氧化硅、氮化硅中的一种或多种。第一绝缘层103设置在辅助电极102上,第一绝缘层103可以是同时覆盖辅助电极102和基板101,即第一绝缘层103部分覆盖在辅助电极102上,部分覆盖在基板101上,一些实施例中,第一绝缘层103与辅助电极102和基板101均直接接触。第一绝缘层103的设置能够避免辅助电极102与第一电极104、第二电极105直接接触。
本申请实施方式中,第二绝缘层106包括氧化硅、氮化硅中的一种或多种。第二绝缘层106设置在第一电极104和第二电极105上,第二绝缘层106同时覆盖第一电极104、第二电极105、以及第一绝缘层103,即第二绝缘层106部分覆盖在第一电极104上,部分覆盖在第二电极105上,部分覆盖在第一绝缘层103上。一些实施例中,第二绝缘层106与第一电极104、第二电极105、以及第一绝缘层103均直接接触。第二绝缘层106的设置能够将第一电极104、第二电极105与发光器件107及连接电极108隔开。第二绝缘层106的设置还能够避免包含发光器件的油墨与第二绝缘层106下方的其它层接触,第二绝缘层106下方有多层结构,油墨直接喷涂会造成多界面的亲疏水问题,使油墨液滴形态不易控制,影响发光器件的配向排列。第二绝缘层106的设置使得油墨只与第二绝缘层106之间形成单一界面,从而可以较好地控制油墨液滴形状,有利于发光器件的配向排列。
本申请实施方式中,基板101可以是硬质基板,也可以是柔性基板,硬质基板例如可以是玻璃,柔性基板例如可以是聚酰亚胺(PI)基板。
参见图15,本申请实施例还提供一种电极组件100的制备方法,包括:
S101、在基板101上形成辅助电极102;
S102、在辅助电极102上形成第一绝缘层103;
S103、在第一绝缘层103上形成第一电极104和第二电极105,第一电极104和第二电极105沿第一方向相对间隔设于第一绝缘层103上并形成间隔槽201,间隔槽201的位置与辅助电极102的位置相对;
S104、在第一电极104、第二电极105及第一绝缘层103上形成第二绝缘层106;
S105、将含有多个发光器件107的墨水涂覆到第二绝缘层106上,对辅助电极102施加第一电压使发光器件107分布至第二绝缘层106上辅助电极102对应的区域,再对第一电极104和第二电极105施加第二电压,使多个发光器件107沿第一电极104和第二电极105间 的电场方向取向排列于第二绝缘层106上间隔槽201对应的位置。
本申请实施方式中,含有多个发光器件107的墨水可以是可用的各种组成配方的墨水,墨水可以是包含溶剂和分散在溶剂中的多个发光器件107,墨水还可以包括分散剂以及其他的添加剂组分。其中,溶剂可以是包括但不限于是水、乙醇、乙二醇、丙二醇、苯甲醚、环己基苯、丙二醇甲醚乙酸酯(PGMEA)、丙二醇单甲醚(PGME)、丙烯碳酸酯、二甲基甲酰胺、二甲基乙酰胺、γ-丁内酯、N-甲基吡咯烷酮、二丙二醇单甲醚、二丙二醇二甲醚中的一种或多种。分散剂可以是包括但不限于是酸性分散剂、碱性分散剂、两性分散剂、非离子性分散剂中的一种或多种。其中,酸性分散剂例如可以是包括长链烷基水杨酸、十二烷基苯磺酸钠、六偏磷酸钠、三乙基己基磷酸中的一种或多种。碱性分散剂例如可以是二甲基二十八烷基氯化铵、苯扎氯铵中的一种或多种。两性分散剂例如可以是十二烷基氨基丙酸、烷基二甲基甜菜碱中的一种或多种。非离子性分散剂例如可以是聚乙二醇、聚(ε-己内酯)、聚醚、聚酰胺中的一种或多种。当墨水中含有有机聚合物时,最终制备得到的电极组件中,发光器件107与第二绝缘层106之间可能还包括一层有机聚合物材料层。
本申请实施方式中,将含有多个发光器件107的墨水涂覆到第二绝缘层106上具体可以是:将含有多个发光器件107的墨水通过喷墨打印的方式涂覆至第二绝缘层106上,更具体地可以是将墨水喷涂至第二绝缘层106上间隔槽201所对应的区域,即像素区域。
参见图15,本申请实施方式中,上述制备方法还包括:S106、在多个发光器件107两端制备连接电极108,连接电极108与发光器件107的两端连接,连接电极108位于第二绝缘层106上。
本申请中,各电极和绝缘层可以是通过物理沉积或化学沉积的方式制备,还可以结合光刻工艺实现图案化。
本申请实施方式中,对辅助电极102施加第一电压使发光器件107分布至第二绝缘层106上辅助电极102两侧的对应区域,即使得多个发光器件107被吸引至第一电极104和第二电极105间的电场能够影响到的区域。本申请实施方式中,对第一电极104和第二电极105施加第二电压使第一电极104和第二电极105之间形成电场,使多个发光器件107在该电场作用下沿第一方向取向排列于第二绝缘层106上间隔槽201的对应位置,即实现对准。其中,第一电压可以是直流电压,也可以是交流电压,电压的大小可以是-50V至50V。一些实施例中,具体例如为-50V、-40V、-30V、-20V、-10V、-5V、-1V、1V、5V、10V、20V、30V、40V、50V。第二电压可以是交流电压,电压的大小可以是-50V至50V,电压的大小可以是1V至10V,一些实施例中,具体例如为-50V、-40V、-30V、-20V、-10V、-5V、-1V、1V、5V、10V、20V、30V、40V、50V。一些实施方式中,第一电压可以是3V至6V。一些实施方式中,第二电压可以是3V至6V。
本申请实施方式中,当第一电压为非脉冲直流电压时,为了使辅助电极102在施加第一电压时能够很好地吸引发光器件107,当油墨中的发光器件107粒子带正电时,可以给辅助电极102施加负电压,将辅助电极102与负电极连接;当油墨中的发光器件107粒子带负电荷时,可以给辅助电极102施加正电压,将辅助电极102与正电极连接。
本申请实施方式中,当第一电压为交流电压或脉冲直流电压时,发光器件107粒子可带电,也可不带电。
当给第一电极104和第二电极105施加第二电压时,可以是给第一电极104施加交流电压;也可以是给第二电极105施加交流电压。
参见图16,本申请实施例还提供一种显示装置200,显示装置200包括电极组件100, 以及位于基板101与第一绝缘层103之间的薄膜晶体管层20,薄膜晶体管层20用于驱动控制发光器件107发光。电极组件100的各电极可以是通过过孔与薄膜晶体管层20连接。薄膜晶体管层20的具体结构未在图15中具体示出,可以是可实现对发光器件107控制的各种结构。
参见图17,本申请实施例还提供一种电子设备300,电子设备包括本申请实施例上述的显示装置200。电子设备300可以是包括手机、平板电脑、穿戴设备、掌上电脑、无人机、电动汽车等。

Claims (23)

  1. 一种电极组件,其特征在于,包括:
    基板;
    辅助电极,位于所述基板上;
    第一绝缘层,位于所述辅助电极上;
    第一电极和第二电极,相对间隔位于所述第一绝缘层上,所述第一电极和所述第二电极之间形成间隔槽,所述间隔槽的位置与所述辅助电极的位置相对;
    第二绝缘层,位于所述第一电极、第二电极和所述第一绝缘层上;
    多个发光器件,位于所述第二绝缘层上,所述多个发光器件的分布位置与所述间隔槽的位置相对。
  2. 如权利要求1所述的电极组件,其特征在于,所述辅助电极在所述基板上的正投影至少部分与所述间隔槽在所述基板上的正投影重合。
  3. 如权利要求1或2所述的电极组件,其特征在于,所述辅助电极在所述基板上的正投影与所述第一电极在所述基板上的正投影相接、或者部分重合、或者形成第一间隙;或者所述辅助电极在所述基板上的正投影与所述第二电极在所述基板上的正投影相接、或者部分重合、或者形成第二间隙。
  4. 如权利要求3所述的电极组件,其特征在于,所述辅助电极在所述基板上的正投影与所述第一电极在所述基板上的正投影重合形成第一重合部分,所述第一重合部分的宽度小于或等于所述第一电极的宽度;或者所述辅助电极在所述基板上的正投影与所述第二电极在所述基板上的正投影重合形成第二重合部分,所述第二重合部分的宽度小于或等于所述第二电极的宽度。
  5. 如权利要求4所述的电极组件,其特征在于,所述辅助电极的宽度小于或等于所述第一电极远离所述间隔槽的一侧至所述第二电极远离所述间隔槽的一侧之间的距离。
  6. 如权利要求3所述的电极组件,其特征在于,所述第一间隙的宽度小于1/2所述间隔槽的宽度。
  7. 如权利要求3所述的电极组件,其特征在于,所述第二间隙的宽度小于1/2所述间隔槽的宽度。
  8. 如权利要求1-7任一项所述的电极组件,其特征在于,所述辅助电极包括导电金属材料、导电合金材料和导电氧化物中的一种或多种。
  9. 如权利要求8所述的电极组件,其特征在于,所述辅助电极包括对所述发光器件发出的光的反射率大于或等于40%的导电金属或合金材料。
  10. 如权利要求8或9所述的电极组件,其特征在于,所述辅助电极包括Au、Ag、Cu、Pt、Pd、Ti、Al、Mo中的一种或多种金属。
  11. 如权利要求1-10任一项所述的电极组件,其特征在于,所述辅助电极的厚度为0.1微米至0.5微米。
  12. 如权利要求1-11任一项所述的电极组件,其特征在于,所述间隔槽的宽度小于或等于所述多个发光器件的长度。
  13. 如权利要求1-12任一项所述的电极组件,其特征在于,每一所述发光器件在所述基板上的正投影分别与所述第一电极和所述第二电极在所述基板上的正投影相接或者部分重合。
  14. 如权利要求1-13任一项所述的电极组件,其特征在于,所述电极组件还包括设置在所述多个发光器件两端的连接电极,所述连接电极位于所述第二绝缘层上,所述多个发光器件通过所述连接电极与其他组件电连接。
  15. 如权利要求1-14任一项所述的电极组件,其特征在于,所述发光器件的长度为2μm-10μm。
  16. 如权利要求1-15任一项所述的电极组件,其特征在于,所述第一电极的材质包括Au、Ag、Cu、Pt、Pd、Ti、Al、Mo中的一种或多种;所述第二电极的材质包括Au、Ag、Cu、Pt、Pd、Ti、Al、Mo中的一种或多种。
  17. 如权利要求1-16任一项所述的电极组件,其特征在于,所述第一电极的厚度为0.1微米至0.5微米;所述第二电极的厚度为0.1微米至0.5微米。
  18. 如权利要求1-17任一项所述的电极组件,其特征在于,所述第一绝缘层包括氧化硅、氮化硅中的一种或多种。
  19. 如权利要求1-18任一项所述的电极组件,其特征在于,所述第二绝缘层包括氧化硅、氮化硅中的一种或多种。
  20. 一种电极组件的制备方法,其特征在于,包括:
    在基板上形成辅助电极;
    在所述辅助电极上形成第一绝缘层;
    在所述第一绝缘层上形成第一电极和第二电极,所述第一电极和所述第二电极相对间隔设于所述第一绝缘层上形成间隔槽,所述间隔槽的位置与所述辅助电极的位置相对;
    在所述第一电极、所述第二电极及所述第一绝缘层上形成第二绝缘层;
    将含有多个发光器件的墨水涂覆到所述第二绝缘层上,对所述辅助电极施加第一电压使所述发光器件分布至所述第二绝缘层上所述辅助电极对应的区域,再对所述第一电极和所述第二电极施加第二电压,使所述多个发光器件沿所述第一电极和所述第二电极间的电场方向取向排列于所述第二绝缘层上所述间隔槽对应的位置。
  21. 一种显示装置,其特征在于,所述显示装置包括如权利要求1-19任一项所述的电极组件。
  22. 如权利要求21所述的显示装置,其特征在于,所述显示装置还包括位于所述基板与所述第一绝缘层之间的薄膜晶体管层,所述薄膜晶体管层用于控制所述发光器件发光。
  23. 一种电子设备,其特征在于,所述电子设备包括权利要求21或22所述的显示装置。
PCT/CN2021/127033 2021-10-28 2021-10-28 电极组件及其制备方法和显示装置 WO2023070434A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127033 WO2023070434A1 (zh) 2021-10-28 2021-10-28 电极组件及其制备方法和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127033 WO2023070434A1 (zh) 2021-10-28 2021-10-28 电极组件及其制备方法和显示装置

Publications (1)

Publication Number Publication Date
WO2023070434A1 true WO2023070434A1 (zh) 2023-05-04

Family

ID=86160330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127033 WO2023070434A1 (zh) 2021-10-28 2021-10-28 电极组件及其制备方法和显示装置

Country Status (1)

Country Link
WO (1) WO2023070434A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676282A (zh) * 2019-10-16 2020-01-10 福州大学 一种无电学接触的全彩化μLED微显示器件及其制造方法
CN110690246A (zh) * 2019-10-16 2020-01-14 福州大学 一种非直接电学接触取向有序nLED发光显示器件
CN110690245A (zh) * 2019-10-16 2020-01-14 福州大学 基于异形纳米led晶粒的发光显示器件
CN111724699A (zh) * 2020-06-12 2020-09-29 福州大学 一种nled像素设置及修复方法
WO2021117104A1 (ja) * 2019-12-09 2021-06-17 シャープ株式会社 配向膜、表示装置、表示装置の製造方法、液晶配向剤、および液晶組成物
CN113540061A (zh) * 2021-06-30 2021-10-22 上海天马微电子有限公司 显示面板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676282A (zh) * 2019-10-16 2020-01-10 福州大学 一种无电学接触的全彩化μLED微显示器件及其制造方法
CN110690246A (zh) * 2019-10-16 2020-01-14 福州大学 一种非直接电学接触取向有序nLED发光显示器件
CN110690245A (zh) * 2019-10-16 2020-01-14 福州大学 基于异形纳米led晶粒的发光显示器件
WO2021117104A1 (ja) * 2019-12-09 2021-06-17 シャープ株式会社 配向膜、表示装置、表示装置の製造方法、液晶配向剤、および液晶組成物
CN111724699A (zh) * 2020-06-12 2020-09-29 福州大学 一种nled像素设置及修复方法
CN113540061A (zh) * 2021-06-30 2021-10-22 上海天马微电子有限公司 显示面板及其制备方法

Similar Documents

Publication Publication Date Title
US20230066918A1 (en) Display device and method of manufacturing the same
KR102608419B1 (ko) 표시장치 및 표시장치의 제조방법
KR102607727B1 (ko) 표시 장치
US20180175104A1 (en) Light emitting device and manufacturing method of the light emitting device
KR102545982B1 (ko) 표시 장치 및 그 제조 방법
CN112585771B (zh) 发光元件、包括其的显示装置及用于制造显示装置的方法
KR20200088946A (ko) 표시 장치 및 표시 장치의 제조 방법
KR102651889B1 (ko) 잉크젯 프린트 장치, 쌍극자 정렬 방법 및 표시 장치의 제조 방법
KR102666905B1 (ko) 발광 소자 분산제, 이를 포함하는 발광 소자 잉크 및 표시 장치의 제조 방법
US20230352643A1 (en) Display apparatus using semiconductor light-emitting device
KR20200088949A (ko) 표시 장치 및 이의 제조 방법
CN109545731B (zh) 转移头及其制备方法、转移方法、转移装置
TW201417246A (zh) 薄膜電晶體及其製造方法、影像顯示裝置
US20230015395A1 (en) Display device using semiconductor light-emitting element, and manufacturing method therefor
US20220302351A1 (en) Display device using semiconductor light emitting diode
US20220109083A1 (en) Light emitting element, manufacturing method for light emitting element, and display device including the same
WO2023070434A1 (zh) 电极组件及其制备方法和显示装置
US20230064316A1 (en) Display device using semiconductor light-emitting element
US20230131855A1 (en) Light-emitting device and display apparatus including the same
KR20210077060A (ko) 잉크젯 프린트 장치 및 쌍극자 정렬 방법
EP4075508A1 (en) Display device using semiconductor light emitting element, and method for manufacturing same
KR20210132279A (ko) 발광 소자 잉크 및 표시 장치의 제조 방법
US20220392922A1 (en) Display device and method of fabricating the same
US20230012528A1 (en) Display device and method of manufacturing the same
US20230008241A1 (en) Display device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE