WO2023070185A1 - Espuma porosa para retenção de compostos orgânicos e inorgânicos, processo de produção da mesma e seus usos - Google Patents

Espuma porosa para retenção de compostos orgânicos e inorgânicos, processo de produção da mesma e seus usos Download PDF

Info

Publication number
WO2023070185A1
WO2023070185A1 PCT/BR2022/050410 BR2022050410W WO2023070185A1 WO 2023070185 A1 WO2023070185 A1 WO 2023070185A1 BR 2022050410 W BR2022050410 W BR 2022050410W WO 2023070185 A1 WO2023070185 A1 WO 2023070185A1
Authority
WO
WIPO (PCT)
Prior art keywords
foams
foam
cellulose
oxidized
cnf
Prior art date
Application number
PCT/BR2022/050410
Other languages
English (en)
French (fr)
Inventor
Marcos Vinicius LOREVICE
Rubia FIGUEREDO GOUVEIA
Original Assignee
Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102021021329A external-priority patent/BR102021021329A2/pt
Application filed by Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais filed Critical Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais
Priority claimed from BR102022021603-7A external-priority patent/BR102022021603A2/pt
Publication of WO2023070185A1 publication Critical patent/WO2023070185A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • C08L7/02Latex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/37Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers of foam-like material, i.e. microcellular material, e.g. sponge rubber

Definitions

  • absorbent and/or adsorbent materials show promise, due to their easy applicability and high specific surface area, making them efficient in water remediation, even in low quantity.
  • most commercial absorbents and/or adsorbents have no or minimal biodegradability. Therefore, the search for materials obtained from renewable sources that present biodegradability has attracted attention.
  • biomass has emerged as a source of obtaining biodegradable, renewable polymers, and applicable in the development of new absorbent/adsorbent materials.
  • nanocellulose stands out due to its abundance and excellent reinforcement properties, in addition to being a renewable and biodegradable material. Additionally, nanocellulose can be isolated from sugarcane bagasse, one of the main by-products of the ethanol production process, made up mostly of cellulose.
  • Cellulose is the most abundant natural polymer in nature, renewable and biodegradable, formed from glucose (C 6 H 10 O 5 ) with [3(1,4) bonds in the D-glucose units.
  • the polymeric chains interact via intra- and intermolecular interactions, forming hydrogen bonds through the hydroxyl groups present in the monomeric units.
  • Nanocellulose extracted from plant biomass can be classified into two different denominations, according to its structure and extraction route: crystalline nanocellulose (CNC), crystalline region of the polymer, composed of shorter and more rigid chains; and nanofibrillated cellulose (CNF), consisting in the crystalline and amorphous region of the polymer with longer chains.
  • CNC crystalline nanocellulose
  • CNF nanofibrillated cellulose
  • the process of obtaining nanocellulose requires defibrillation of the cellulose, a method called “top-down”, in which the “bulk” of biomass consisting of fibers and microfibers are comminuted into fibrils with nanometric dimensions. This process can be carried out via chemical and/or mechanical methods, thus changing its final properties.
  • CNF nanofibrillated cellulose
  • CNFs which is one of the raw materials of this invention, show promise in the production of porous materials (aerogels, foams and sponges), due to their characteristic renewability, biodegradability and support in three-dimensional porous structures with high specific surface area.
  • nanocellulose-based foams are also due, among other factors, to the simplicity of its production method, which includes mixing the components added to the nanocellulose suspension, subsequent freezing and sublimation (removal) of water by the process of lyophilization.
  • porous material For an effective adsorption of these pollutants, it is required that the porous material remains structurally resilient for a considerable period of time in order to reach the maximum adsorption.
  • crosslinking agents are added to nanocellulose, interconnecting the nanostructure chains by physical or chemical means, in order to obtain a porous and structurally resilient 3D structure in aqueous media.
  • Natural rubber latex (LBN) extracted from rubber trees has unique properties, especially when compared to its synthetic analogue, polyisoprene.
  • the differentiated characteristics of LBN come from its natural composition.
  • the amount of polyisoprene in LBN can be estimated at 96% m/m, with 1% m/m protein and 3% m/m phospholipids.
  • These almost 4% of different compounds in LBN give it unique properties, stabilizing the polyisoprene particles, involving this hydrophobic core with a protein-phospholipid layer that gives it a negative charge, which is the property responsible for the colloidal stability necessary for its effective homogeneous dispersion in polymer matrices, such as the nanofibrillated cellulose matrix.
  • Patent document US20190309144 describes an airgel or foam comprising CNF. Its production process is also described, which uses at least one organic solvent, as well as one or more crosslinking agents. Such components are not environmentally friendly, which is a disadvantage of the technique described in this document.
  • Patent document EP3335695 discloses a hydrogel-like foam comprising TEMPO-oxidized CNF, trehalose and polyethylene glycol. This document also describes the production process of this foam, in which one of the steps involves the lyophilization process. The described formulation is not suitable for the production of foams (which have a solids content below 10% by mass, preferably below 8% by mass), due to the increase in viscosity in the presence of trehalose and polyethylene glycol.
  • Patent document SE539714C2 describes a foam comprising fibrillated (CNF) or crystalline (CNC) nanocellulose, oxidized by periodate. Also described is the production process of this foam, which involves crosslinking control through highly complex steps of ice growth followed by thawing. Such a process strongly depends on a strict control of the temperature as a function of the time in the freezing to achieve the described airgel.
  • the patent document FI127764B presents a method of treating water with CNF oxidized by TEMPO, in which the nanocellulose acts as a filtering agent for heavy metals in a network formed by CNF. Such nanocellulose is not processed to obtain the foam.
  • the use of cellulose in this way brings some disadvantages, such as the difficulty in removing residual nanocellulose after treating the polluted aqueous medium and the difficulty in separating nanocellulose from water, making it impossible to reuse the material.
  • the patent document US10350576 discloses a process for producing an airgel comprising nanocrystals or nanofibrillated functionalized with organosilane groups through heating, being applied in the removal of hydrophobic pollutants.
  • a limitation of the object described is evident in its difficulty in removing hydrophilic and amphiphilic pollutants due to the high hydrophobicity of the developed airgel.
  • Patent document BR02020022041-1 anticipates a hydrophobic foam comprising natural rubber latex (LBN) and cellulose in fibrillar format, preferably micro and nanofibrillated cellulose.
  • LBN natural rubber latex
  • cellulose in fibrillar format, preferably micro and nanofibrillated cellulose.
  • the components of LBN stabilize the polyisoprene particles of this latex, involving its hydrophobic core with a protein-phospholipid layer that gives it a negative charge, being responsible for the colloidal stability necessary for its effective dispersion in polymer matrices, such as the nanofibrillated cellulose matrix, dispensing with the addition of any stabilizing, dispersing and crosslinking agents for this purpose.
  • a limitation of said prior art consists in the fact that the cellulose described in this document does not undergo oxidation refinement, having less control over the size of the resulting mixture of microstructures and nanostructures.
  • the resulting foam has mostly micrometric pores and high hydrophobicity, making it difficult to capture pollutants such as hydrophilic dyes and amphiphilic materials.
  • the objects of the present invention are achieved by a foam comprising oxidized nanofibrillated cellulose and natural rubber latex.
  • the objectives of the present invention are also achieved by a foam production process based on oxidized fibrillated cellulose and natural rubber latex, in which the process comprises:
  • Figures 1a to 1h are a series of images of an embodiment of the foams of the present description subjected to a commercial detergent retention test, in which: Figures 1a and 1b are photographs of the dry foam submerged in detergent, respectively; Figures 1c, 1e and 1g are X-ray microtomography of dried foams; and, Figures 1d, 1f and 1h are X-ray microtomography of the foams after being submerged in detergent.
  • Figures 2a and 2b are two photographs of hydrophobic foams, according to a state of the art modality, subjected to a detergent retention test, at the beginning and end of the test, respectively.
  • Figure 3a is a photograph of hydrophilic foams, according to an embodiment of the present description, subjected to a structural resilience test in an aqueous medium for 24 hours.
  • Figures 3b and 3c are two photographs of hydrophilic foam, according to an embodiment of the present description, subjected to detergent retention test, at the beginning of the test and after 24 hours of test, respectively.
  • Figures 4a to 4c are representative photographs of the stages of an adsorption test and evaluation of the porous microstructure of a modality of hydrophilic foams of the present description subjected to immersion in a copper chloride solution for 24 hours.
  • Figure 4d is a microtomography image of an embodiment of the foams of the present description after adsorption of copper ions.
  • Figures 4e and 4f are photographic and microtomographic images, respectively, of an embodiment of the foam of the present description before the adsorption of copper ions.
  • Figure 5 illustrates the ecotoxicity test of the hydrophilic foams of the present description.
  • Figure 5a summarizes the first step of the ecotoxicity test, which involves the process of obtaining the lethal concentration that kills 50% of living organisms (LC 50 ) for Daphinia similis when exposed to Cu (II) ion solutions.
  • Figure 5b shows the process of remediation of media containing Cu(II) ions using hydrophilic foams pre-treated or not with humic acid (HA).
  • Figure 5c shows the exposure protocol of D. similis organisms to systems remedied with hydrophilic foams.
  • Figure 5d illustrates the response property used in the ecotoxicity assay: living (ecologically benign) and dead (toxic) organisms. DETAILED DESCRIPTION OF THE INVENTION
  • the present description discloses a foam comprising natural rubber latex (LBN) and cellulose in fibrillar format, specifically oxidized micro and nanofibrillated cellulose.
  • Said oxidized micro and nanofibrillated cellulose foams are produced by “green” routes (using renewable components and dispensing with the use of solvents, that is, using only water as a solvent).
  • This production process includes the incorporation of natural rubber latex (biopolymer commonly extracted from Hevea brasilienses) as a crosslinking agent for cellulose nanofibrils in an aqueous medium.
  • the oxidized micro and nanofibrillated cellulose described herein undergoes refinement by oxidation, with greater control over the size of the resulting microstructures and nanostructures.
  • the foams obtained had a low solids content (below 8% by mass, preferably below 2%), high porosity (porosity above 80%, with pores of nanometric sizes) and high mechanical-structural stability in aqueous media, compared to state-of-the-art foams formed by LBN and non-oxidized fibrillar cellulose, facilitating the capture of pollutants such as hydrophilic dyes and amphiphilic materials.
  • the foams comprise oxidized fibrillar morphology cellulose with micro and nanometric dimensions.
  • the foams comprise cellulose of oxidized fibrillar morphology containing carboxylic groups.
  • the foams comprise cellulose of oxidized fibrillar morphology from at least one natural source selected from the group comprising eucalyptus, sugarcane bagasse and mixtures thereof.
  • the foams comprise natural rubber latex concentration in dry mass between 5 and 50%.
  • the foams comprise natural rubber latex with a pH between 7 and 9.
  • the foams comprise natural rubber latex from Hevea brasilienses.
  • the foam production process comprises:
  • At least one of the mold walls has lower thermal conductivity than the other mold walls.
  • foams described here through their characteristics and production processes, find a wide range of applications, including: use for adsorption of dyes; use for detergent adsorption; use for adsorption of inorganic salts precursors of heavy metals, such as Cu, Cd, Pb, Hg and Ag.
  • said foams they are used for decontamination and remediation of water, such as water disposed in reservoirs or found in the environment.
  • said foams are used for decontamination and remediation of water, and the means decontaminated/remediated with them do not present ecotoxicity.
  • the detergent retention capacity of the foams of the present invention was evaluated, considering a composition containing natural rubber latex (LBN) and oxidized nanofibrillated cellulose (CNF), whose source was sugarcane bagasse.
  • the foam was produced in the manner described below.
  • composition an aqueous dispersion of LNB extracted from the species Hevea brasilienses with an ammonia percentage of 0.9% and 62.5% of total solids content, and CNF with 2% m/m of content of solids containing cellulose nanofibrils from sugarcane bagasse.
  • the foams were obtained in a process involving two steps. The first involving the functionalization of CNF from sugarcane bagasse, and the second comprising the homogenization of oxidized CNF with LBN in the proportions of 80% CNF and 20% latex, all in dry mass.
  • oxidized CNF was performed by means of TEMPO-mediated oxidation of the bleached pulp (N-oxyl-2,2,6,6-tetramethylpiperidine).
  • 13 g of bleached pulp were immersed in 1300 ml of distilled water for 24 hours. Then, the system was stirred to homogenize the suspension.
  • a pH meter is attached to the system and 1.3 g of NaBr and 0.208 g of TEMPO.
  • the addition of 40 g of NaClO (12%) was done slowly in order to keep the pH constant and equal to 10. This was done with the addition of a NaOH solution (0.5M). The entire procedure was performed between 100 and 130 min. After the reaction, HCI was added to neutralize the suspension (pH 7). The oxidized CNF was washed to remove excess reagent.
  • M f and M o are, respectively, the masses of the foams after absorption and drying.
  • the detergent retention capacity was (39.7 ⁇ 1.4) g/g, when compared to the dry foam mass itself (before detergent retention).
  • the foams of the modality of Example 1 were submerged in water for 20h, for cleaning and removal of retained detergent. After this immersion time, the foams were removed from the water and dried at room temperature for 48 hours. Then, each foam was immersed in 10 mL of yellow colored commercial detergent (Limpol®) in a detergent retention time of 5 minutes. Measurements were acquired in quintuplicates for the foams.
  • the retention capacity (Q) of the detergent by the foams is described in Table 2.
  • the Q value of the Limpol® detergent was (23.5 ⁇ 4.9) g/g, when compared to the mass of the dry foam (before of detergent retention). The reuse of foams showed a detergent retention efficiency of 60%.
  • FIG. 1a to 1f show the data obtained for foams before and after the reuse test, illustrating, respectively, the shape of the foams and their submission to the detergent retention test. It appears that in the test all the foam is submerged in the detergent, thus indicating the high filling capacity, as well as affinity for the detergent. In addition, air bubbles are eliminated, showing the retention of the detergent inside the foam.
  • the Q value of the Limpol® detergent was (21 .1 ⁇ 5.2) g/g for the second test, when compared to the dry foam mass itself (before detergent retention).
  • Non-oxidized CNF foams were obtained in a process that involves the homogenization of non-oxidized CNF with LBN in the proportions of 80% CNF and 20% latex, all in dry mass.
  • the detergent retention capacity (Q) for foams with non-oxidized CNF was (26.1 ⁇ 1 .2) g/g, below those produced with oxidized CNF (39.7 ⁇ 1 .4) g/g.
  • the increase in the Q value may be related to the oxidation of CNFs.
  • the existence of these functional groups promotes greater entanglement of the nanofibrils, resulting in a hydrated three-dimensional structure, which when subjected to the freezing process and subsequent lyophilization results in architectures with greater porosity, smaller pores and greater specific surface area. This greater surface area can be closely correlated with the significant increase in the Q value, thus justifying the need for NFC oxidation to gain absorption of amphiphilic components.
  • FIGs 2a and 2b illustrate the foam subjected to the retention test.
  • the foam is inserted into the liquid and appears to remain intact.
  • Figure 2b it is possible to verify the appearance of fragments and/or materials (Figure 2b) in which such fragments are detached from the foam. This behavior was not observed for the oxidized CNF foams.
  • the 3D architecture remained intact even after reuse cycles, as evidenced in the 3D X-ray microtomography images of Figures 1 g and 1 h.
  • the foams were obtained in a process involving two steps. The first involving the functionalization of CNF from sugarcane bagasse, and the second comprising the homogenization of oxidized CNF with LBN in the proportions of 80% CNF and 20% latex, all in dry mass.
  • oxidized CNF was performed by TEMPO-mediated oxidation of the bleached pulp (N-oxyl-2,2,6,6-tetramethylpiperidine).
  • 13 g of bleached pulp were immersed in 1300 ml of distilled water for 24 hours. Then, the system was stirred to homogenize the dispersion.
  • a pH meter is coupled to the system and 1.3 g of NaBr and 0.208 g of TEMPO are added.
  • the addition of 40 g of NaClO (12%) was done slowly in order to keep the pH constant and equal to 10. This was done with the addition of a 0.5 M NaOH solution. and 130 min.
  • HCl was added to neutralize the suspension, resulting in pH 7.
  • the oxidized CNF was washed to remove excess reagent.
  • the foams have good structural resistance when immersed for 24 hours in water, as shown in Figure 3a, thus indicating the possibility of evaluating the adsorption of methylene blue dye.
  • Figures 3b and 3c illustrate the dye adsorption test by the foams. These were immersed in AM solution in 50ml_ Falcon tubes, illustrated in Figure 3c.
  • the isothermal methylene blue (AM) adsorption test was carried out by immersing known masses of the foams in different dye concentrations over a 24-hour interval at a temperature of 27 °C.
  • the mass of the CNF/LBN foams was cataloged and identified as (m initial i). Values are organized in Table 6. Different concentrations of AM (from 0.1 to 1000 mg/L) were prepared.
  • C starts i concentrations were denominated as “C starts i”.
  • the previously weighed foams were immersed in 25 ml of each concentration. After 24 hours, an aliquot of 2 ml was removed from each container and the equilibrium concentration (C eq ) was measured by UV-vis spectroscopy at 664 nm.
  • C eq C initial i
  • the foams showed a high adsorption of AM, with the value of Q am close to 250 mg/g adsorbed after 24 hours. This can be visually verified by the change in color of the solution and the foam ( Figure 3c), visually showing dye retention. Even with low dye availability (concentrations close to 100 ppm or 100 mg/L), the foam was effective in reducing the initial concentration by almost 90%.
  • foams based on non-oxidized CNF from Eucalyptus and LBN showed a capacity of absorption of AM around 105 ⁇ 8 mg/g when immersed in AM solutions (between 50 and 800 mg/g), indicating that the foam analyzed here (oxidized CNF and LBN) has properties superior to those already existing in the state of the art and that cellulose oxidation is essential for this adsorption performance , with the addition of the plurality of sequestration of metals, dyes, and detergents, something still unheard of.
  • Example 5 Preparation of foams for copper ion retention
  • the foams were obtained in a process involving two steps. The first involving the functionalization of CNF from sugarcane bagasse, and the second comprising the homogenization of oxidized CNF with LBN in the proportions of 80% CNF and 20% latex, all in dry mass.
  • oxidized CNF was performed by TEMPO-mediated oxidation of the bleached pulp (N-oxyl-2,2,6,6-tetramethylpiperidine).
  • 13 g of bleached pulp were immersed in 1300 ml of distilled water for 24 hours. Then, the system was stirred to homogenize the suspension.
  • a pH meter is coupled to the system and 1.3 g of NaBr and 0.208 g of TEMPO are added.
  • the addition of 40 g of NaClO (12%) was done slowly in order to keep the pH constant and equal to 10. This was done with the addition of a NaOH solution (0.5M).
  • the entire procedure was performed between 100 and 130 min.
  • HCI was added to neutralize the suspension, resulting in pH 7.
  • the oxidized CNF was washed to remove excess reagent.
  • Table 7 Copper (II) adsorption capacity. Initial foam mass, initial concentration at equilibrium and adsorbed amount of Copper II ions.
  • the foams were obtained in a process involving two steps. The first involving the functionalization of CNF from sugarcane bagasse, and the second comprising the homogenization of oxidized CNF with LBN in the proportions of 80% CNF and 20% latex, all in dry mass.
  • oxidized CNF was performed by TEMPO-mediated oxidation of the bleached pulp (N-oxyl-2,2,6,6-tetramethylpiperidine).
  • 13 g of bleached pulp were immersed in 1300 ml of distilled water for 24 hours. Then, the system was stirred to homogenize the suspension.
  • a pH meter is coupled to the system and 1.3 g of NaBr and 0.208 g of TEMPO are added.
  • the addition of 40 g of NaClO (12%) was done slowly in order to keep the pH constant and equal to 10. This was done with the addition of a NaOH solution (0.5M).
  • the entire procedure was performed between 100 and 130 min.
  • HCl was added to neutralize the suspension, resulting in a neutral pH ( ⁇ 7).
  • the oxidized CNF was washed with distilled water to remove excess reagent.
  • the proposed ecotoxicity test consisted of the evaluation of the ecotoxicity of the material and the exposure of a bioindicator to systems contaminated with Cu (II) that were previously remedied by these foams based on CNF and LBN.
  • the bioindicator model used was that of Daphia similis, in which the results of acute toxicity (median mortality concentration - LC50 - with a 95% confidence interval (CI), estimated by the PriProbit software) were used as a response variable.
  • the test was divided into three subsequent steps, which are schematized in Figure 5.
  • the first consisted of determining the LC50 value for D. similis.
  • newborn organisms of D. similis ⁇ 24 h
  • media containing Cu(II) ions for 24 and 48 h under controlled temperature and photoperiod in biological incubators (BOD, Eletrolab EL212, SP, Brazil)
  • Figure 5a Cu(II) toxicity was evaluated at concentrations between 0 and 150 pg 1 , values estimated from those already reported in the literature for contaminated environments (0.03 to 30 pg L' 1 ).
  • the second comprised the process of remediation of media containing Cu (II) ions at concentrations 0, 20, and 60 pg 1 for 48h at 20°C, respectively above and below the predetermined value of LC50.
  • the lethal concentration values that kill 50% of the organisms (LC50) obtained were 33.0 and 28.36 pg L' 1 respectively for 24 and 48 h of exposure to Cu(II) ions.
  • Table 1 Number of live D. similis organisms when exposed in systems containing Cu(II) ions and remediated by CNF/LBN and CNF/LBN/AH foams for 24 and 48 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

São reveladas espumas baseadas em celulose micro e nanofibrilada, submetidas ao processo de oxidação, e combinadas com látex de borracha natural, bem como seu processo de produção que envolve etapas de mistura, congelamento e liofilização. As espumas apresentam alta porosidade, resiliência estrutural em meios líquidos e alta capacidade de adsorção de compostos orgânicos (como corantes e detergentes) e compostos inorgânicos de metais pesados, não apresentando ecotoxidade e podendo ser aplicadas para remediação de meios contaminados por esses compostos.

Description

ESPUMA POROSA PARA RETENÇÃO DE COMPOSTOS ORGÂNICOS E INORGÂNICOS, PROCESSO DE PRODUÇÃO DA MESMA E SEUS USOS CAMPO DA DESCRIÇÃO
[0001] A presente descrição é do campo da elaboração de substâncias macromoleculares para produzir artigos ou materiais porosos.
FUNDAMENTOS DA DESCRIÇÃO
[0002] A escassez de água doce apta ao consumo vem se intensificando em diferentes regiões do planeta em decorrência de descartes irregulares de esgoto, de poluição por derramamentos/vazamentos de produtos químicos orgânicos e inorgânicos (metais pesados, corantes, entre outros), seja por resultado de acidentes, por desastres naturais ou por más práticas de laborais/industriais. Tal contaminação também ocorre em águas marítimas e estuários, prejudicando a pesca, o lazer e outras atividades ligadas aos mares e litorais. Em geral, a grande maioria dos contaminantes é sempre prejudicial a todos os seres vivos que compõem um determinado ecossistema, sejam eles humanos ou não.
[0003] A crescente preocupação com problemas ambientais relacionados à contaminação de águas fluviais com poluentes (metais pesados, corantes, pesticidas, detergentes etc.) tem demandado atenção tanto da indústria, como da sociedade como um todo. Isso ocorre pois apesar de os metais pesados serem componentes naturais encontrados na crosta terrestre, parte desses (Cu, Hg, Cd, Pb etc.) podem ser tóxicos, mesmo em baixas concentrações. Ainda, alguns podem ser bioacumulativos, tanto no corpo humano, podendo ser uma ameaça à saúde humana (causa de doenças como câncer), quanto nos demais seres-vivos, em que quantidades desses metais são descartadas demasiada e irresponsavelmente.
[0004] Vale destacar que muitos meios contaminados por poluentes são misturas complexas, que contém diversos metais e corantes, como os resíduos oriundos da indústria têxtil descartados em efluentes. E essa complexidade torna o tratamento desses meios contaminados um desafio maior a ser vencido.
[0005] Dentre as diversas estratégias que podem ser aplicadas no intuito de diminuir a quantidade desses poluentes, materiais absorventes e/ou adsorventes mostram-se promissores, pela fácil aplicabilidade e alta área superficial específica, tornando-os eficientes na remediação de águas, mesmo em baixa quantidade. Entretanto, boa parte dos absorventes e/ou adsorventes comerciais possui nenhuma ou mínima biodegradabilidade. Portanto, a busca por materiais obtidos a partir de fontes renováveis que apresentem biodegradabilidade tem atraído a atenção.
[0006] Neste cenário, a biomassa vem surgindo como uma fonte de obtenção de polímeros biodegradáveis, renováveis, e aplicáveis no desenvolvimento de novos materiais absorventes/adsorventes. Dentre esses materiais, destaca-se a nanocelulose, pela sua abundância e suas excelentes propriedades de reforço, além de ser um material renovável e biodegradável. Adicionalmente, a nanocelulose pode ser isolada do bagaço de cana-de-açúcar, um dos principais subprodutos do processo de produção do etanol, constituído majoritariamente de celulose.
[0007] A celulose é o polímero natural mais abundante na natureza, renovável e biodegradável, formado a partir da glicose (C6H10O5) com ligações [3(1 ,4) nas unidades de D-glicose. As cadeias poliméricas interagem via interações intra- e intermoleculares, formando ligações de hidrogênio através dos grupos hidroxila presente nas unidades monoméricas.
[0008] Estruturas em escala nanométrica extraídas da celulose despertam bastante interesse devido às suas propriedades intrínsecas (diferentes estruturas morfológicas, hidrofilicidade, possibilidade de funcionalização e abundância), e isso possibilita a aplicações em diversos segmentos. A nanocelulose extraída de biomassa vegetal pode ser classificada em duas diferentes denominações, segundo sua estrutura e rota de extração: nanocelulose cristalina (CNC), região cristalina do polímero, composta por cadeias mais curtas e mais rígidas; e celulose nanofibrilada (CNF), consistindo na região cristalina e amorfa do polímero com cadeias mais longas. Ainda, essas nanoestruturas podem ser utilizadas em sua forma original como polímero matriz em compósitos, uma vez que possui uma baixa densidade, alta rigidez, capacidade de modificação superficial, e uma alta razão de aspecto.
[0010] O processo de obtenção da nanocelulose demanda a desfibrilação da celulose, método denominado “top-down”, em que o “bulk” de biomassa constituído por fibras e microfibras são cominuídas em fibrilas com dimensões nanométricas. Esse processo pode ser realizado via métodos químicos e/ou mecânicos, alterando assim suas propriedades finais.
[0011] O processo químico mais comum para a obtenção da nanocelulose é a hidrólise ácida, assistida com ácidos fortes (sulfúrico ou clorídrico). Nesse processo, a hidrólise ocorre nas regiões amorfas das fibras de celulose, isolando os nanocristais de celulose (CNC). Já os processos mecânicos requerem equipamentos que aplicam alta energia de cisalhamento à suspensão de celulose, como moinho de bolas, ultrassom e microfluidizador de alta pressão. Tais processos resultam em celulose nanofibrilada (CNF) com diâmetros médios dependentes do número de ciclos e quantidade de energia aplicada.
[0012] Devido à abundante quantidade de grupos hidroxilas nas superfícies das cadeias de celulose que compõem essas nanoestruturas, é possível combinar processos químicos de funcionalização da celulose, como a acetilação e a gratificação ou ainda a oxidação por TEMPO (N-oxil-2,2,6,6-tetrametilpiperidina), que juntamente com processos mecânicos, favorecem a fibrilação e obtenção de CNF funcionalizada com morfologia e diâmetro médio uniformes, e que quando aplicadas na produção de materiais porosos, essa CNF pode produzir estruturas com alta porosidade, tamanhos de poros mais homogêneos e com dimensões micro e nanométricas.
[0013] As CNFs, que é uma das matérias-primas dessa invenção, mostra-se promissora na produção de materiais porosos (aerogéis, espumas e esponjas), devido a sua característica renovabilidade, biodegradabilidade e de sustentação em estruturas tridimensionais porosas com alta área superficial específica.
[0014] Das aplicações conhecidas, destacam-se o isolamento acústico e térmico, membranas para descontam inação de água, o crescimento biológico como “scaffolds” para regeneração óssea ou impressão de tecidos, e dispositivos eletrônicos para geração e armazenamento de energia.
[0015] A viabilidade das espumas baseadas em nanocelulose também se dá, dentre outros fatores, pela simplicidade de seu método de obtenção, que inclui a mistura dos componentes adicionados à suspensão de nanocelulose, o posterior congelamento e sublimação (remoção) de água pelo processo de liofilização.
[0016] Para uma efetiva adsorção desses poluentes é demandado que o material poroso se mantenha resiliente estruturalmente durante um considerável intervalo de tempo a fim de que se alcance a adsorção máxima. Contudo, devido a sua inerente hidrofilicidade resultante da alta disponibilidade de grupos hidroxila solvatáveis em meio aquoso, sua utilização como espuma filtrante ou absorvedora de poluentes em meios aquosos torna-se pouco viável. Neste contexto, agentes reticulantes são adicionados a nanocelulose, interligando as cadeias da nanoestrutura por vias físicas ou químicas, de modo a obter uma estrutura 3D porosa e resiliente estruturalmente em meios aquosos.
[0017] O látex da borracha natural (LBN) extraído das seringueiras possui propriedades singulares, especialmente se comparado ao seu análogo sintético, o polisopreno. As características diferenciadas do LBN são provenientes da sua composição natural. A quantidade de polisopreno no LBN pode ser estimada em 96% m/m, com 1% m/m de proteína e 3% m/m de fosfolipídios. Esses quase 4% de diferentes compostos do LBN lhe conferem propriedades singulares, estabilizando as partículas de polisopreno, envolvendo esse núcleo hidrofóbico com uma camada proteico-fosfolipídica que lhe confere carga negativa, sendo essa a propriedade responsável pela estabilidade coloidal necessária para sua efetiva dispersão homogênea em matrizes poliméricas, como a matriz de celulose nanofibrilada.
[0018] Diante do exposto, verifica-se uma demanda para o desenvolvimento de novos materiais porosos resilientes estruturalmente em meio aquoso baseados em biopolímeros com alta porosidade e área superficial específica, cuja funcionalização com grupos sequestradores de poluentes inorgânicos e orgânicos, como metais pesados, corantes e detergentes permita sua aplicação na remediação de ambientes aquáticos.
ESTADO DA TÉCNICA
[0019] O documento de patente US20190309144 descreve um aerogel ou espuma que compreende CNF. Também é descrito seu processo de produção, o qual utiliza ao menos um solvente orgânico, bem como um ou mais agentes de reticulação. Tais componentes não são ambientalmente amigáveis, sendo este ponto uma desvantagem da técnica descrita neste documento.
[0020] O documento de patente EP3335695 revela uma espuma tipo hidrogel que compreende CNF oxidada por TEMPO, trealose e polietileno glicol. Neste documento também é descrito o processo de produção dessa espuma, em que uma das etapas envolve o processo de liofilização. A formulação descrita não é adequada para produção de espumas (que apresentam teor de sólidos abaixo de 10% em massa, preferencialmente abaixo de 8% em massa), devido ao aumento da viscosidade na presença de trealose e polietileno glicol.
[0021] O documento de patente SE539714C2 descreve uma espuma que compreende nanocelulose fibrilada (CNF) ou cristalina (CNC), oxidada por periodato. Também é descrito o processo de produção dessa espuma, que envolve controle de reticulação por meio de etapas altamente complexas de crescimento de gelo seguidas de descongelamento. Tal processo depende fortemente de um controle estrito da temperatura em função do tempo no congelamento para alcançar o aerogel descrito. [0022] O documento de patente FI127764B apresenta um método de tratamento de águas com CNF oxidada por TEMPO, em que a nanocelulose atua como agente filtrante para metais pesados em rede formada pela CNF. Tal nanocelulose não é processada para se obter a espuma. O uso de celulose dessa forma traz algumas desvantagens, como a dificuldade de remoção da nanocelulose residual após o tratamento do meio aquoso poluído e dificuldade de separação entre nanocelulose e água, impossibilitando o reuso do material.
[0023] O documento de patente US10350576 revela um processo de produção de um aerogel que compreende nanocristais ou nanofibrilada funcionalizada com grupos organosilanos por meio de aquecimento, sendo aplicada na remoção de poluentes hidrofóbicos. Uma limitação do objeto descrito evidencia-se na sua dificuldade em remover poluentes hidrofílicos e anfifílicos devido à alta hidrofobicidade do aerogel revelado.
[0024] O documento de patente BR02020022041-1 antecipa uma espuma hidrofóbica que compreende látex de borracha natural (LBN) e celulose em formato fibrilar, preferencialmente celulose micro e nanofibrilada. Os componentes do LBN estabilizam as partículas de polisopreno desse látex, envolvendo seu núcleo hidrofóbico com uma camada proteico-fosfolipídica que lhe confere carga negativa, sendo responsável pela estabilidade coloidal necessária para sua efetiva dispersão em matrizes poliméricas, como a matriz de celulose nanofibrilada, dispensando a adição de quaisquer agentes estabilizantes, dispersantes e de crosslink para essa finalidade. Uma limitação da referida anterioridade consiste no fato de que a celulose descrita neste documento não sofre refinamento por oxidação, tendo menor controle de tamanho da mistura de microestruturas e nanoestruturas resultante. Como resultado da falta de refinamento no controle de diâmetros na celulose, a espuma resultante apresenta majoritariamente poros de tamanhos micrométricos e alta hidrofobicidade, dificultando a captura de poluentes como corantes hidrofílicos e materiais anfifílicos.
BREVE DESCRIÇÃO DA INVENÇÃO [0025] É um objetivo da presente descrição revelar uma espuma baseada em materiais de fonte natural e renovável, com alta porosidade, baixa densidade, e alta capacidade de adsorção de compostos inorgânicos (precursores de metais pesados) e orgânicos (corantes e detergentes), podendo ser aplicada como material absorvente na remediação de sistemas fluviais ou como proteção à contaminação destes. Também é objetivo da presente descrição revelar um processo de produção da referida espuma.
[0026] Os objetivos da presente invenção são alcançados por uma espuma compreendendo celulose nanofibrilada oxidada e látex de borracha natural. Os objetivos da presente invenção também são alcançados por um processo de produção de espuma à base de celulose fibriladas oxidada e látex de borracha natural, em que o processo compreende:
[0027] adicionar celulose em formato micro e nanofibrilar, previamente oxidada e homogeneizada a uma dispersão de látex de borracha natural;
[0028] agitar a mistura mecanicamente para homogeneizar;
[0029] preencher moldes com a mistura;
[0030] congelar a mistura no molde a -10°C por um período entre 18 e 30h;
[0031] liofilizar a mistura a 10 mBar e temperatura de -45°C, por um período entre 24 e 48h.
BREVE DESCRIÇÃO DAS FIGURAS
[0032] A presente invenção encontra-se ilustrada nas modalidades representadas em figuras, conforme brevemente descritas a seguir.
[0033] As Figuras 1a a 1 h são uma série de imagens de uma modalidade das espumas da presente descrição submetidas a teste de retenção de detergente comercial, em que: as Figuras 1a e 1 b são fotografias da espuma seca e submersa em detergente, respectivamente; as Figuras 1c, 1e e 1g são microtomografia de raios-X das espumas secas; e, as Figuras 1 d, 1f e 1 h são microtomografia de raios-X das espumas após serem submersas em detergente. [0034] As Figuras 2a e 2b são duas fotografias de espumas hidrofóbicas, de acordo com uma modalidade do estado da técnica, submetidas a ensaio de retenção de detergente, no início e final do ensaio, respectivamente.
[0035] A Figura 3a é uma fotografia de espumas hidrofílicas, de acordo com uma modalidade da presente descrição, submetidas a ensaio de resiliência estrutural em meio aquoso por 24 horas.
[0036] As Figuras 3b e 3c são duas fotografias de espuma hidrofílicas, de acordo com uma modalidade da presente descrição, submetidas a ensaio de retenção de detergente, no início do ensaio e após 24 horas de ensaio, respectivamente.
[0037] As Figuras 4a a 4c são fotografias representativas das etapas de um ensaio de adsorção e avaliação da microestrutura porosa de uma modalidade das espumas hidrofílicas da presente descrição submetidas a imersão em solução de cloreto de cobre por 24 horas.
[0038] A Figura 4d é uma imagem de microtomografia de uma modalidade das espumas da presente descrição após adsorção de íons de cobre.
[0039] As Figuras 4e e 4f são imagens fotográficas e microtomográficas, respectivamente, de uma modalidade da espuma da presente descrição antes da adsorção de íons de cobre.
[0040] Figura 5 ilustra o ensaio de ecotoxicidade das espumas hidrofílicas da presente descrição. A Figura 5a resume a primeira etapa do ensaio de ecotoxidade que envolve o processo de obtenção da concentração letal que mata 50% dos organismos vivos (LC50) para Daphinia similis quando expostos às soluções de íons Cu (II). A Figura 5b mostra o processo de remediação de meios contendo íons Cu (II) utilizando espumas hidrofílicas pré-tratadas ou não com ácido húmico (AH). A Figura 5c mostra o protocolo de exposição dos organismos D. similis aos sistemas remediados com as espumas hidrofílicas. A Figura 5d ilustra a propriedade de resposta utilizada no ensaio de ecotoxicidade: organismos vivos (ecologicamente benigno) e mortos (tóxico). DESCRIÇÃO DETALHADA DA INVENÇÃO
[0041] A presente descrição revela uma espuma que compreende látex de borracha natural (LBN) e celulose em formato fibrilar, sendo especificamente celulose micro e nanofibrilada oxidada. As referidas espumas de celulose micro e nanofibrilada oxidada são produzidos por rotas “verdes” (utilizando componentes renováveis e dispensando uso de solventes, ou seja, utilizando apenas água como solvente). Tal processo de produção compreende a incorporação de látex de borracha natural (biopolímero comumente extraído da Hevea brasilienses) como agente reticulante das nanofibrilas de celulose em meio aquoso.
[0042] A celulose micro e nanofibrilada oxidada ora descrita sofre refinamento por oxidação, tendo maior controle de tamanho das microestruturas e nanoestruturas resultantes. Como resultado do maior controle de diâmetros das nanofibras de celulose, as espumas obtidas apresentaram baixo teor de sólidos (abaixo de 8% em massa, preferencialmente abaixo de 2%), alta porosidade (porosidade acima de 80%, com poros de tamanhos nanométricos) e alta estabilidade mecânico-estrutural em meios aquosos, se comparada com espumas do estado da técnica formadas por LBN e celulose fibrilar não-oxidada, facilitando a captura de poluentes como corantes hidrofílicos e materiais anfifílicos.
[0043] A presença da carga negativa da celulose, devido ao processo prévio de oxidação, viabiliza a captura de poluentes carregados com cargas opostas, como corantes catiônicos e íons de metais pesados, ampliando a gama de aplicações dessas espumas.
[0044] Em uma modalidade da presente descrição, as espumas compreendem celulose de morfologia fibrilar oxidada com dimensões micro e nanométricas.
[0045] Em uma modalidade da presente descrição, as espumas compreendem celulose de morfologia fibrilar oxidada contendo grupos carboxílicos. [0046] Em uma modalidade da presente descrição, as espumas compreendem celulose de morfologia fibrilar oxidada provenientes de pelo menos uma fonte natural selecionada do grupo que compreende eucalipto, bagaço de cana-de-açúcar e misturas dos mesmos.
[0047] Em uma modalidade da presente descrição, as espumas compreendem concentração de látex de borracha natural em massa seca entre 5 e 50%.
[0048] Em uma modalidade da presente descrição, as espumas compreendem látex de borracha natural com pH entre 7 e 9.
[0049] Em uma modalidade da presente descrição, as espumas compreendem látex de borracha natural proveniente de Hevea brasilienses.
[0050] Em uma modalidade da presente descrição, o processo de produção das espumas compreende:
[0051] adicionar celulose de morfologia nanofibrilada, previamente oxidada e homogeneizada a uma dispersão de látex de borracha natural;
[0052] agitar a mistura mecanicamente para homogeneizar;
[0053] preencher moldes com a mistura;
[0054] congelar a mistura no molde a -10°C por um período entre 18 e 30h;
[0055] liofilizar a mistura a 10 mBar e temperatura de -45 °C, por um período entre 24 e 48h.
[0056] Em uma modalidade da presente descrição, pelo menos uma das paredes do molde apresenta condutividade térmica mais baixa que as demais paredes do molde.
[0057] As diversas modalidades das espumas aqui descritas, por meio de suas características e processos de produção, encontram uma ampla gama de aplicações, incluindo: uso para adsorção de corantes; uso para adsorção de detergentes; uso para adsorção de sais inorgânicos precursores de metais pesados, como Cu, Cd, Pb, Hg e Ag.
[0058] Em uma modalidade da presente descrição, as referidas espumas são usadas para descontam inação e remediação de águas, como águas dispostas em reservatórios ou encontradas no meio ambiente.
[0059] Em uma modalidade da presente descrição, as referidas espumas são usadas para descontam inação e remediação de águas, e os meios descontaminados/remediados com as mesmas não apresentam ecotoxicidade.
EXEMPLOS DE CONCRETIZAÇÃO DA INVENÇÃO
[0060] Nos parágrafos que se seguem, são apresentados exemplos de concretização não-limitativos da presente invenção que guardam o mesmo conceito inventivo das modalidades anteriormente descritas.
Exemplo 1 : Capacidade de retenção de detergente comercial
[0061] Neste exemplo a capacidade de retenção de detergentes das espumas da presente invenção foi avaliada, considerando uma composição contendo látex de borracha natural (LBN) e celulose nanofibrilada (CNF) oxidada, cuja fonte foi o bagaço de cana-de-açúcar. A espuma foi produzida segundo a modalidade descrita a seguir.
[0062] Para a composição utilizou-se uma dispersão aquosa de LNB extraída da espécie Hevea brasilienses com um percentual amoniacal de 0,9% e 62,5% de teor de sólidos totais, e CNF com 2% m/m de teor de sólidos contendo nanofibrilas de celulose provenientes do bagaço da cana-de-açúcar.
[0063] Nesta modalidade exemplar, as espumas foram obtidas em um processo que envolve duas etapas. A primeira envolvendo a funcionalização da CNF de bagaço de cana-de-açúcar, e a segunda compreendida na homogeneização da CNF oxidada com o LBN nas proporções de 80% CNF e 20% látex, todos em massa seca.
[0064] A obtenção da CNF oxidada foi realizada por meio da oxidação da polpa branqueada mediada por TEMPO (N-oxil-2,2,6,6-tetrametilpiperidina). Assim, 13 g de polpa branqueada foram imersas em 1300 ml de água destilada por 24 horas. Em seguida, o sistema foi agitado para a homogeneização da suspensão. Um pHmetro é acoplado ao sistema e foram adicionados 1 ,3 g de NaBr e 0,208 g de TEMPO. A adição de 40 g de NaCIO (12%) foi feita vagarosamente de forma a manter o pH constante e igual a 10. Isso foi feito com a adição de uma solução de NaOH (0,5M). Todo o procedimento foi realizado entre 100 e 130 min. Finalizada a reação, HCI foi adicionado para neutralizar a suspensão (pH 7). A CNF oxidada foi lavada para a retirada de excesso de reagente.
[0065] A mistura da CNF oxidada homogeneizada (previamente sonificada em ultrassom de pontas com amplitude de 40% por 5 min sob banho de gelo) e a dispersão do LBN foi feita com teor de sólidos finais igual a 2% m/m. A mistura foi submetida à agitação mecânica por 30 min em uma temperatura de 27 °C. Tal quantidade de sólidos resultou em uma viscosidade adequada para o preenchimento de moldes cilíndricos de polietileno. Os moldes foram preenchidos com a mistura CNF/LBN e devidamente alocados em freezer por 24 horas à temperatura de -10 °C. Posteriormente foram submetidos ao processo de liofilização por 48 horas para completa sublimação do gelo contido nas amostras.
[0066] As espumas foram imersas em 10 mL de detergente comercial de coloração amarela (da marca Limpol®, produzido pela empresa Bombril S.A., Brasil) por um tempo de retenção do detergente de 5 minutos. Foram adquiridas medidas em quintuplicatas após 5 minutos em equilíbrio com o detergente comercial, conforme a Tabela 1 .
Tabela 1 : Capacidade de retenção (Q) de detergente comercial em cinco minutos de imersão.
Composição de espumas
Mo (mg) Mf (g) Q (g/g)
CNF/LBN
80/20 63,6 2,49 38,2
80/20 53,0 2,14 39,3
80/20 59,3 2,48 40,7
80/20 76,3 3,24 41 ,5 80/20 65,4 2,58 38,5
[0067] A capacidade de absorção ou retenção (Q) foi calculada a partir da equação (1 ):
[0068] Q = (MrM0)/M0 (Equação 1 )
[0069] Em que Mf e Mo são, respectivamente, as massas das espumas após absorção e seca. A capacidade de retenção do detergente foi de (39,7 ± 1 ,4) g/g, quando comparado a própria massa da espuma seca (antes da retenção de detergente).
Exemplo 2: Reuso das espumas na retenção de detergentes
[0070] Neste exemplo, as mesmas espumas da modalidade do Exemplo 1 foram submetidas a consecutivos testes de reuso. Os testes estão descritos a seguir.
[0071] Inicialmente as espumas da modalidade do Exemplo 1 foram submersas em água por 20h, para limpeza e remoção do detergente retido. Após esse tempo de imersão, as espumas foram retiradas da água e secas em temperatura ambiente por 48h. Em seguida, cada espuma foi imersa em 10 mL de detergente comercial coloração amarela (Limpol®) em um tempo de retenção do detergente de 5 minutos. Foram adquiridas medidas em quintuplicatas para as espumas. A capacidade de retenção (Q) do detergente pelas espumas está descrito na Tabela 2. O valor de Q do detergente Limpol® foi de (23,5 ± 4,9) g/g, quando comparado a própria massa da espuma seca (antes da retenção de detergente). A reutilização das espumas apresentou uma eficiência de retenção do detergente de 60%.
Tabela 2: Capacidade de retenção (Q) de detergente comercial (Limpol®) em cinco minutos de imersão para o primeiro ciclo de reuso.
Composição de espumas
Mo (mg) Mf (g) Q (g/g)
CNF/LBN
80/20 67,4 1 ,82 26,1 80/20 53,4 1 ,03 18,2
80/20 79,5 2,49 30,4
80/20 68,3 1 ,39 19,3
80/20 64,8 1 ,58 23,4
[0072] As espumas de CNF80/LBN20 referentes ao primeiro ciclo de reuso foram secas e analisadas quanto a sua microestrutura porosa interna por microtomografia de raios-X, de forma a avaliar as possíveis mudanças estruturais ocasionadas pelo processo de retenção/reuso. As Figuras 1a a 1f apresentam os dados obtidos para espumas antes e após o ensaio de reuso, ilustrando, respectivamente, o formato das espumas e sua submissão ao ensaio de retenção do detergente. Constata-se que no ensaio toda a espuma fica submersa no detergente, indicando assim a alta capacidade de preenchimento, bem como afinidade ao detergente. Além disso, são eliminadas bolhas de ar, mostrando a retenção do detergente no interior da espuma.
[0073] A microestrutura porosa das espumas foi verificada pelas projeções 2D, conforme as Figura 1c a 1f. Comparando as microestruturas internas da espuma seca (Figuras 1c e 1e), com a espuma submetida ao processo de reuso (Figuras 1d e 1f), verificou-se que a adição de LBN permitiu a manutenção dos poros, mantendo a morfologia praticamente inalterada. A porosidade, um fator importante para materiais absorventes, manteve-se praticamente constante após os ciclos de reuso, aproximadamente 90% (antes e após o reuso). Vale salientar que, dada a hidrofilicidade da celulose, essa manutenção da estrutura 3D após o reuso é um diferencial. E isso pode ser correlacionado ao alto grau de emaranhamento da celulose fibri ladas oxidada e reticulação efetiva proveniente da adição de LBN sem a necessidade de utilização de solventes orgânicos ou etapas adicionais de cura, caracterizando uma diferença importante frente às demais tecnologias do estado da técnica.
[0074] Após o primeiro teste de reuso, as mesmas espumas foram submetidas ao segundo e terceiro teste de reuso. O teste está descrito como se segue: espumas foram submersas em água por 20h, para limpeza e remoção do detergente retido. Após esse tempo de imersão, estas foram retiradas da água e secas em temperatura ambiente por 2 dias. Em seguida, cada espuma foi imersa em 10 mL de detergente comercial coloração amarela (Limpol®) em um tempo de retenção do detergente de 5 minutos. Foram adquiridas medidas em quintuplicatas para as espumas. A capacidade de retenção (Q) do detergente pelas espumas foi calculada segundo a Equação 1 e os valores calculados estão organizados na Tabela 3 e Tabela 4, referentes, respectivamente, ao segundo e terceiro teste de reuso.
Tabela 3: Capacidade de retenção (Q) de detergente comercial (Limpol®) em cinco minutos de imersão no segundo teste de reuso.
Composição de espumas
Mo (mg) Mf (g) Q (g/g)
CNF/LBN
80/20 59,4 0,9418 14,86
80/20 64,8 1 ,8602 27,71
80/20 63,7 1 ,1323 16,78
80/20 63,0 1 ,5082 22,94
80/20 52,0 1 ,1997 22,97
[0075] O valor de Q do detergente Limpol® foi de (21 ,1 ± 5,2) g/g para o segundo teste, quando comparado a própria massa da espuma seca (antes da retenção de detergente).
Tabela 4: Capacidade de retenção (Q) de detergente comercial (Limpol®) em cinco minutos de imersão no terceiro teste de reuso.
Composição de espumas
Mo (mg) Mf(g) Q(g/g)
CNF/LBN
80/20 75,4 1 ,9990 26,4
80/20 63,1 0,7895 11 ,5
80/20 62,2 1 ,5809 24,4 80/20 64,0 1 ,6507 24,8
80/20 57,9 0,7903 12,6
[0076] No caso do terceiro teste, o valor de Q foi de (20 ± 7) g/g. A reutilização das espumas apresentou uma eficiência de retenção do detergente entre 86 e 90%, em relação aos ciclos de reuso (ciclos 1 , 2, e 3). Isso demonstra a eficácia de utilização em repetidos ciclos de retenção, mantendo sua arquitetura estrutural 3D, e a característica ecossustentável desse material. Exemplo 3: Preparação de espumas com celulose não-oxidada para capacidade de retenção de detergente comercial
[0077] Neste exemplo, foi realizado um ensaio de retenção de detergentes com espumas do estado da técnica (de acordo documento anterior BR02020022041-1) formadas de CNF não-oxidada combinada com LBN, a título de comparação com espumas obtidas com CNF oxidada, conforme a presente descrição.
[0078] As espumas de CNF não-oxidadas foram obtidas em um processo que envolve a homogeneização da CNF não-oxidada com o LBN nas proporções de 80% CNF e 20% látex, todos em massa seca.
[0079] A mistura da CNF não-oxidada homogeneizada (previamente sonificada em ultrassom de pontas com amplitude de 40% por 5 min sob banho de gelo) e a dispersão do LBN foi feita com teor de sólidos finais igual a 2% m/m. A mistura foi submetida à agitação mecânica por 30 min em uma temperatura de 27 °C. Tal quantidade de sólidos resultou em uma viscosidade adequada para o preenchimento de moldes cilíndricos de polietileno. Os moldes foram preenchidos com a mistura CNF/LBN e devidamente alocados em freezer por 24 horas à temperatura de -10 °C. Posteriormente foram submetidos ao processo de liofilização por 48 horas para completa sublimação do gelo contido nas amostras.
[0080] As espumas então foram imersas em 10 mL de detergente comercial coloração amarela (Limpol®) por um tempo de retenção do detergente de 5 minutos. Foram adquiridas medidas em quintuplicatas após 5 minutos em equilíbrio com o detergente comercial, conforme a Tabela 5.
Tabela 5: Capacidade de retenção (Q) de detergente comercial (Limpol®) em cinco minutos de imersão.
Composição de espumas
Mo (mg) Mf (g) Q (g/g)
CNF/LBN
80/20 65,5 1 ,7038 25,0
80/20 61 ,8 1 ,6548 25,8
80/20 62,0 1 ,6393 25,4
80/20 49,7 1 ,4407 27,9
80/20 61 ,1 1 ,6583 26,2
[0081] A capacidade de retenção de detergentes (Q) para espumas com CNF não-oxidada foi de (26,1 ± 1 ,2) g/g, ficando abaixo daquelas produzidas com CNF oxidada (39,7 ± 1 ,4) g/g. O aumento do valor de Q pode ser relacionado à oxidação das CNFs. A existência desses grupos funcionais promove maior emaranhamento das nanofibrilas, resultando em uma estrutura tridimensional hidratada, que quando submetida ao processo de congelamento e posterior liofilização resulta em arquiteturas com maiores porosidades, menores poros e maior área superficial específica. Essa maior área superficial pode ser intimamente correlacionada ao aumento significativo no valor de Q, justificando assim a necessidade de oxidação das CNFs para ganho na absorção de componentes anfifílicos.
[0082] Paralelamente ao incremento no valor de Q, a falta de oxidação das CNF impede a resiliência estrutural da espuma em meio líquido. As Figuras 2a e 2b ilustram a espuma submetida ao teste de retenção. Na Figura 2a a espuma é inserida no líquido e se mantém aparentemente intacta. Contudo, transcorridos o tempo de retenção de 5 min é possível verificar o surgimento de fragmentos e/ou materiais (Figura 2b) em que tais fragmentos são desprendidos da espuma. Esse comportamento não foi observado para as espumas de CNF oxidada. A arquitetura 3D se manteve intacta mesmo após os ciclos de reuso, como evidenciado nas imagens em 3D de microtomografia de raios-X das Figuras 1 g a 1 h.
Exemplo 4: Preparação de espumas para retenção de corante catiônico (Azul de Metileno, AM)
[0083] Nesta modalidade exemplar, as espumas foram obtidas em um processo que envolve duas etapas. A primeira envolvendo a funcionalização da CNF de bagaço de cana-de-açúcar, e a segunda compreendida na homogeneização da CNF oxidada com o LBN nas proporções de 80% CNF e 20% látex, todos em massa seca.
[0084] A obtenção da CNF oxidada foi realizada por meio da oxidação da polpa branqueada mediada por TEMPO (N-oxil-2,2,6,6-tetrametilpiperidina). Assim, 13 g de polpa branqueada foram imersas em 1300 ml de água destilada por 24 horas. Em seguida, o sistema foi agitado para homogeneização da dispersão. Um pHmetro é acoplado ao sistema e foram adicionados 1 ,3 g de NaBr e 0,208 g de TEMPO. A adição de 40 g de NaCIO (12%) foi feita vagarosamente de forma a manter o pH constante e igual a 10. Isso foi feito com a adição de uma solução de NaOH a 0,5 M. Todo o procedimento foi realizado entre 100 e 130 min. Finalizada a reação, HCI foi adicionado para neutralizar a suspensão, resultando em pH 7. A CNF oxidada foi lavada para a retirada de excesso de reagente.
[0085] A mistura da CNF oxidada homogeneizada (previamente sonificada em ultrassom de pontas com amplitude de 40% por 5 min sob banho de gelo) e a dispersão do LBN foi feita com teor de sólidos finais igual a 2% m/m. A mistura foi submetida à agitação mecânica por 30 min em uma temperatura de 27 °C. Tal quantidade de sólidos resultou em uma viscosidade adequada para o preenchimento de moldes cilíndricos de polietileno. Os moldes foram preenchidos com a mistura CNF/LBN e devidamente alocados em freezer por 24 horas à temperatura de -10 °C. Posteriormente foram submetidos ao processo de liofilização por 48 horas para completa sublimação do gelo contido nas amostras.
[0086] As espumas apresentam boa resistência estrutural quando imersas por 24 horas em água, como representado na Figura 3a, indicando assim a possibilidade de avaliar a adsorção do corante de azul de metileno. As Figuras 3b e 3c ilustram o ensaio de adsorção do corante pelas espumas. Estas foram imersas em solução de AM em tubos Falcon de 50ml_, ilustrado na Figura 3c. O ensaio de adsorção isotérmica de azul de metileno (AM) foi realizado pela imersão de massas conhecidas das espumas em diferentes concentrações do corante em um intervalo de 24 horas e temperatura de 27 °C. A massa das espumas de CNF/LBN foi catalogada e identificada como (miniciai). Os valores estão organizados na Tabela 6. Diferentes concentrações de AM (de 0,1 a 1000 mg/L) foram preparadas. Tais concentrações foram denominadas como “Ciniciai”. As espumas previamente pesadas foram imersas em 25 ml_ de cada concentração. Transcorridos as 24 horas, uma alíquota de 2 m L foi retirada de cada recipiente e a concentração no equilíbrio (Ceq) foi mensurada por espectroscopia UV-vis em 664 nm. Uma curva de calibração (0,1 -10 mg/L) foi feita com R2 = 0,997 para correlação da absorbância em 664 nm e a concentração correspondente. Com os valores de Ceq, Ciniciai, do volume da solução (VS0|UÇã0 = 25 mL), da massa da espuma (miniciai), e da Equação 1 , calculou-se a quantidade de AM adsorvido (QAM) em mg/g de espuma. Todas as medidas foram feitas em duplicata.
Tabela 6: Massa inicial das espumas, concentração inicial, no equilíbrio, quantidade adsorvida de Azul de Metileno (QAM).
Massa espuma Tempo de Ciniciai Ceq QAM
(mg) imersão (h) (mg/L) (mg/L) (mg/g)
63 ± 3 100 11 ± 06 35 ± 4
56 ± 2 200 43 ± 06 70 ± 6
60 ± 3 24 300 43 ± 10 107 ± 8
58 ± 1 400 121 ± 44 114 ± 10 58 ± 9 500 130 ± 39 171 ± 32
56 ± 2 600 299 ± 12 145 ± 8
54 ± 7 700 352 ± 30 151 ± 15
59 ± 3 800 409 ± 13 158 ± 7
59 ± 4 1000 566 ± 62 220 ± 70
[0087] As espumas demonstraram uma alta adsorção de AM, sendo o valor de Qam próximo de 250 mg/g adsorvidos após 24 horas. Isso pode ser verificado visualmente pela mudança na coloração da solução e da espuma (Figura 3c), mostrando visualmente a retenção do corante. Mesmo com baixa disponibilidade de corante (concentrações próximas a 100 ppm ou 100 mg/L), a espuma mostrou efetividade reduzindo a concentração inicial em quase 90%. Em termos de efetividade de oxidação e da fonte de obtenção da celulose na capacidade de adsorção do azul de metileno, espumas baseadas em CNF não-oxidada proveniente de Eucalipto e LBN demonstraram capacidade de absorção de AM por volta de 105 ± 8 mg/g quando imersas em soluções de AM (entre 50 e 800 mg/g), indicando que a espuma aqui analisada (CNF oxidada e LBN) possui propriedades superiores às já existentes no estado da técnica e que a oxidação da celulose é essencial para esse desempenho de adsorção, com o adicional da pluralidade de sequestro de metais, corantes, e detergentes, algo ainda inédito.
Exemplo 5: Preparação de espumas para retenção de íons cobre
[0088] Nesta presente invenção as espumas foram obtidas em um processo que envolve duas etapas. A primeira envolvendo a funcionalização da CNF de bagaço de cana-de-açúcar, e a segunda compreendida na homogeneização da CNF oxidada com o LBN nas proporções de 80% CNF e 20% látex, todos em massa seca.
[0089] A obtenção da CNF oxidada foi realizada por meio da oxidação da polpa branqueada mediada por TEMPO (N-oxil-2,2,6,6-tetrametilpiperidina). Assim, 13 g de polpa branqueada foram imersas em 1300 ml de água destilada por 24 horas. Em seguida, o sistema foi agitado para a homogeneização da suspensão. Um pHmetro é acoplado ao sistema e foram adicionados 1 ,3 g de NaBr e 0,208 g de TEMPO. A adição de 40 g de NaCIO (12%) foi feita vagarosamente de forma a manter o pH constante e igual a 10. Isso foi feito com a adição de uma solução de NaOH (0,5M). Todo o procedimento foi realizado entre 100 e 130 min. Finalizada a reação, HCI foi adicionado para neutralizar a suspensão, resultando em pH 7. A CNF oxidada foi lavada para a retirada de excesso de reagente.
[0090] A mistura da CNF oxidada homogeneizada (previamente sonificada em ultrassom de pontas com amplitude de 40% por 5 min sob banho de gelo) e a dispersão do LBN foi feita com teor de sólidos finais igual a 2% m/m. A mistura foi submetida à agitação mecânica por 30 min em uma temperatura de 27 °C. Tal quantidade de sólidos resultou em uma viscosidade adequada para o preenchimento de moldes cilíndricos de polietileno. Os moldes foram preenchidos com a mistura CNF/LBN e devidamente alocados em freezer por 24 horas à temperatura de -10 °C. Posteriormente foram submetidos ao processo de liofilização (10 mBar) por 48 horas para completa sublimação do gelo contido nas amostras.
[0091] A capacidade de adsorção de ions Cobre II foi avaliada a partir do ensaio de adsorção isotérmica de massas conhecidas de espumas inseridas em soluções de cloreto de cobre. Para isso, diferentes soluções de cloreto de cobre variando entre 15 e 700 mg/L foram preparadas e equilibradas à 27°C. Tais concentrações foram denominadas como “Ciniciai”. A massa das espumas de CNF/LBN foi catalogada e identificada como “miniciai”. Os valores miniciai e Ciniciai obtidos a partir deste exemplo estão quantificados na Tabela 7.
Tabela 7: Capacidade de adsorção de Cobre (II). Massa inicial das espumas, concentração inicial no equilíbrio e quantidade adsorvida de ions Cobre II.
Massa da espuma Cinicia, Ceq QCu „ minimal (mg/L) (mg/L) (mg/g) (mg)
61 ,0 ± 7,1 25,44 16,1 ± 0,5 39 ± 6
56.4 ± 4,1 37,37 23,9 ± 2,5 59 ± 10
64.4 ± 1 ,1 65,71 39,7 ± 0,8 101 ± 4
57,9 ± 4,4 96,43 66,1 ± 4,3 131 ± 15
62,7 ± 3,9 205,42 152,6 ± 6,6 210 ± 17
62,1 ± 3,3 351 ,55 264,9 ± 4,7 349 ± 31
66,0 ± 9,3 564,66 387,5 ± 9,4 325 ± 36
57,3 ± 2,6 687,02 508,3 ± 2,4 246 ± 22
[0092] As espumas previamente pesadas foram imersas em 25 ml_ de cada concentração, como ilustrado nas Figuras 4a a 4c. Transcorridos as 24 horas, uma alíquota de 2 m L foi retirada de cada recipiente. Esta concentração foi denominada como concentração de equilíbrio “Ceq”. Essa concentração foi mensurada via espectrometria de emissão óptica com plasma (ICP-OES). Uma curva de calibração (20-200 mg/L) foi feita com R2 = 0,997 para correlação do sinal do plasma e da concentração de ion Cobre II da amostra. Com os valores de Ceq, Ciniciai, do volume da solução (Vso,ução = 25ml_), da massa da espuma (nriiniciai), e auxílio da equação 1 , calculou-se a quantidade de Cobre II adsorvido (Qcu II) em mg por grama (mg/g) de espuma. Todas as medidas foram feitas em triplicates.
[0093] A partir dos dados apresentados na Tabela 7, constata-se que as espumas de CNF oxidada e LBN são eficazes no sequestro de íons cobre. A quantidade adsorvida aqui chegou a valores de cerca de 350 mg de Cu II adsorvido por grama de espuma. Verificou-se a capacidade de adsorção para diferentes concentrações. Mesmo para valores muito baixos (~25ppm) as espumas foram eficazes no sequestro de mais de 40% dos íons disponíveis em solução. Em suma, para todas essas, o sequestro foi efetivo e com valores acima dos reportados na literatura (entre 20 e 100 mg/g).
[0094] Adicionalmente, a adsorção de íons Cu II na espuma foi analisada por microtomografia de raios-X, de forma a identificar as possíveis mudanças morfológicos, bem como as diferenças de atenuação de raios-X, após a adsorção dos íons cobre. Esse ensaio foi realizado com as amostras após imersão em solução de CuCI2 e posteriormente seca por 2 dias (Figura 4d), bem como nas espumas secas (Figura 4e e 4f) antes da imersão. A reconstrução das imagens das espumas antes e após o teste de adsorção mostram claramente regiões com maior atenuação de raios-X (regiões em azul - Figura 4d), o que indica a retenção de espécimes com maior densidade eletrônica, permitindo inferir que se trata da adsorção do cobre II pela espuma. Isso fica mais evidente quando comparamos essa reconstrução com aquela feita para a espuma antes do ensaio (Figura 4g). Nesta última figura, é possível verificar apenas o sinal atenuado para valores menores, comumente correlacionados a materiais compostos por carbono, como a celulose nanofibrilada. Esses dados confirmam a efetividade da espuma contendo CNF/LBN em manter sua estrutura porosa quando submetida a ambientes aquosos e alta capacidade de adsorção de metais pesados, como verificado para o cobre II. Tais confirmações estão intimamente correlacionadas a adição do LBN e a oxidação da celulose, respectivamente.
Exemplo 6: Preparação de espumas para teste de remediação e ecotoxidade
[0095] As espumas foram obtidas em um processo que envolve duas etapas. A primeira envolvendo a funcionalização da CNF de bagaço de cana-de-açúcar, e a segunda compreendida na homogeneização da CNF oxidada com o LBN nas proporções de 80% CNF e 20% látex, todos em massa seca.
[0096] A obtenção da CNF oxidada foi realizada por meio da oxidação da polpa branqueada mediada por TEMPO (N-oxil-2,2,6,6-tetrametilpiperidina). Assim, 13 g de polpa branqueada foram imersas em 1300 ml de água destilada por 24 horas. Em seguida, o sistema foi agitado para a homogeneização da suspensão. Um pHmetro é acoplado ao sistema e foram adicionados 1 ,3 g de NaBr e 0,208 g de TEMPO. A adição de 40 g de NaCIO (12%) foi feita vagarosamente de forma a manter o pH constante e igual a 10. Isso foi feito com a adição de uma solução de NaOH (0,5M). Todo o procedimento foi realizado entre 100 e 130 min. Finalizada a reação, HCI foi adicionado para neutralizar a suspensão, resultando em pH neutro (~7). A CNF oxidada foi lavada com água destilada para a retirada de excesso de reagente.
[0097] A mistura da CNF oxidada homogeneizada (previamente sonificada em ultrassom de pontas com amplitude de 40% por 5 min sob banho de gelo) e a dispersão do LBN foi feita com teor de sólidos finais igual a 2% m/m. A mistura foi submetida à agitação mecânica por 30 min em uma temperatura de 27 °C. Tal quantidade de sólidos resultou em uma viscosidade adequada para o preenchimento de moldes cilíndricos de polietileno. Os moldes foram preenchidos com a mistura CNF/LBN e devidamente alocados em freezer por 24 horas à temperatura de -10 °C. Posteriormente foram submetidos ao processo de liofilização (10 mBar) por 48 horas para completa sublimação do gelo contido nas amostras.
[0098] O ensaio de ecotoxicidade proposto consistiu na avaliação da ecotoxidade do material e a exposição de um bioindicador a sistemas contaminados com Cu (II) que foram previamente remediados por essas espumas baseados em CNF e LBN. O modelo de bioindicador utilizado foi da Daphia similis, em que os resultados de toxicidade aguda (concentração de mortalidade mediana - LC50 - com intervalo de confiança de 95% (Cl), estimados pelo software PriProbit) foram utilizados como variável de resposta. Além disso, de forma a simular um experimento mais próximo ao cenário real, a presença de compostos orgânicos, como o ácido húmico (AH - encontrado em ambientes aquáticos em concentração entre 1-20 mg L-1) foram incorporados nesse ensaio, pois podem interferir na eficácia de captura dos íons de Cu (II). A ecotoxidade da espuma CNF/LBN foi avaliada.
[0099] Assim, o ensaio se dividiu em três etapas subsequentes, as quais estão esquematizadas na Figura 5. A primeira consistiu na determinação do valor do LC50 para D. similis. Para isso, organismos neonatos de D. similis (< 24 h) foram expostos aos meios contendo ions Cu (II) por 24 e 48 h sob temperatura e fotoperíodo controlados em incubadoras biológicas (B.O.D., Eletrolab EL212, SP, Brasil) (Figura 5a). A toxicidade do Cu (II) foi avaliada em concentrações entre 0 e 150 pg 1, valores estes estimados a partir dos já reportados na literatura para ambientes contaminados (0.03 a 30 pg L’1).
[0100] A segunda compreendeu no processo de remediação de meios contendo ions Cu (II) nas concentrações 0, 20, e 60 pg 1 por 48h à 20°C, respectivamente acima e abaixo do valor pré-determinado de LC50. Os valores de concentração letal que mata 50% dos organismos (LC50) obtidos foram de 33,0 e 28,36 pg L’1 respectivamente para 24 e 48 h de exposição a ions Cu (II).
[0101] Dois grupos de espumas foram investigados (Figura 5b): CNF/LBN e CNF/LBN previamente tratada com ácido húmico (AH) (1 mg mL-1 por 24 h à 20 °C), denominada CNF/LBN/AH. Transcorridas as 24 ou 48 h, as espumas foram removidas (Figura 5b) e os sistemas remediados utilizados para a próxima etapa. Nesta terceira e última etapa, os organismos D. similis foram expostos às soluções remediadas (2 mL para cada replicata) por 24 h e 48 h (Figura 5c-d). Três réplicas experimentais e cinco réplicas biológicas foram consideradas para todos os experimentos realizados. Os resultados do teste de toxicidade estão organizados na Tabela 1.
[0102] Todos os organismos morreram após exposição às soluções de Cu (II), tanto para 20 quanto para 60 pg L’1. Contudo, para os sistemas tratados com as espumas de CNF/LBN e CNF/LBN/AH nenhuma morte de organismo foi identificada, indicando assim que essas espumas de CNF/LBN diminuíram completamente a toxicidade do Cu (II) em doses superiores à 60 pg L’1. A similaridade dos resultados para os meios tratados com CNF/LBN e CNF/LBN/AH indicou que a presença do ácido húmico não interfere no processo de remediação da CNF/LBN, mesmo para altas concentrações de AH. Ainda pode-se observar que as espumas estudadas aqui não interferiram na taxa de mortalidade, ou seja, 0% de organismos mortos quando expostos apenas aos aerogéis, demonstrando que tais materiais não apresentam riscos à vida de organismos aquáticos.
Tabela 1 : Número de organismos D. similis vivos quando expostos em sistemas contendo ions Cu (II) e remediados por espumas CNF/LBN e CNF/LBN/AH por 24 e 48 h.
Espuma ( CA/F/LB A//AH) 24 h/ 48 h
Meio CNF/LBN CNF/LBN CNF/LBN
Figure imgf000028_0001
5/5 5/5 5/5 5/5 0/0 0/0
5/5 5/5 5/5 5/5 0/0 0/0
Espuma ( CA/F/LB A//AH) 24 h/ 48 h
Meio CNF/LBN/ CNF/LBN/ CNF/LBN/
AH AH AH 20/jgL'1 60 fjgL~1
20 pg.L'1 60 pg.L'1 Cu (II) Cu (II)
Cu (II) Cu (II)
5/5 5/5 5/5 5/5 0/0 0/0
5/5 5/5 5/5 5/5 0/0 0/0
5/5 5/5 5/5 5/5 0/0 0/0
CNF - nanofibrilas de celulose; LBN - Látex de Borracha Natural; AH - ácido húmico; a nomenclatura 5/5 indica organismos vivos e assim, um material não tóxico.
[0103] Embora modalidades exemplares dos processos e produtos descritos tenham sido apresentadas neste relatório, não se pretende que o escopo de proteção seja limitado à literalidade destas. Portanto, a descrição deve ser interpretada não como limitativa, mas meramente como exemplificações de modalidades particulares que guardam o conceito inventivo aqui apresentado. Um técnico no assunto poderá prontamente aplicar os ensinamentos desta descrição em soluções análogas, decorrentes dos mesmos, limitadas apenas pelo escopo das reivindicações a seguir.

Claims

27 REIVINDICAÇÕES
1. Espuma baseada em celulose e látex de borracha natural caracterizada por compreender celulose de morfologia fibrilar oxidada e látex de borracha natural.
2. Espuma, de acordo com a reivindicação 1 , caracterizada por compreender celulose de morfologia fibrilar oxidada com dimensões micro e nanométricas.
3. Espuma, de acordo com qualquer uma das reivindicações 1 a 2, caracterizada por compreender celulose de morfologia fibrilar oxidada contendo grupos carboxílicos.
4. Espuma, de acordo com qualquer uma das reivindicações 1 a 2, caracterizada por compreender celulose de morfologia fibrilar oxidada provenientes de pelo menos uma fonte natural selecionada do grupo que compreende eucalipto, bagaço de cana-de-açúcar e misturas destas fontes.
5. Espuma, de acordo com qualquer uma das reivindicações 1 a 4, caracterizadas por compreender concentração de látex de borracha natural em massa seca entre 5 e 50%.
6. Espuma, de acordo com qualquer uma das reivindicações 1 a 5, caracterizadas por compreender látex de borracha natural com pH entre 7 e 9.
7. Espuma, de acordo com qualquer uma das reivindicações 1 a 6, caracterizadas por compreender látex de borracha natural proveniente de Hevea brasilienses.
8. Processo de produção da espuma das reivindicações 1 a 7, caracterizado por compreender: adicionar celulose de morfologia fibrilar, previamente oxidada e homogeneizada a uma dispersão de látex de borracha natural; agitar a mistura mecanicamente para homogeneizar; preencher moldes com a mistura; congelar a mistura no molde a -10 °C por um período entre 18 e 30h; liofilizar a mistura a 10 mBar e temperatura de -45 °C, por um período entre 24 e 48h.
9. Processo, de acordo com a reivindicação 8, caracterizado pelo fato de que pelo menos uma das paredes do molde apresenta condutividade térmica mais baixa que as demais paredes do molde.
10. Uso das espumas das reivindicações 1 a 7, caracterizado por ser para adsorção de corantes.
11. Uso das espumas das reivindicações 1 a 7, caracterizado por ser para adsorção de detergentes.
12. Uso das espumas das reivindicações 1 a 7, caracterizado por ser para adsorção de sais inorgânicos precursores de metais pesados, como Cu, Cd, Pb, Hg e Ag.
13. Uso das espumas das reivindicações 1 a 7, caracterizado por ser para descontam inação e remediação de águas, como águas dispostas em reservatórios ou encontradas no meio ambiente.
14. Uso das espumas das reivindicações 1 a 7, caracterizado por ser para adsorção simultânea de matéria orgânica e de metais pesados.
15. Uso, de acordo com a reivindicação 14, caracterizado pelo fato de que os metais pesados compreendem ions Cu (II).
PCT/BR2022/050410 2021-10-25 2022-10-25 Espuma porosa para retenção de compostos orgânicos e inorgânicos, processo de produção da mesma e seus usos WO2023070185A1 (pt)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BR1020210213299 2021-10-25
BR102021021329A BR102021021329A2 (pt) 2021-10-25 2021-10-25 Espuma porosa para retenção de compostos orgânicos e inorgânicos, processo de produção da mesma e seus usos
BR102022021603-7A BR102022021603A2 (pt) 2021-10-25 2022-10-25 Espuma porosa para retenção de compostos orgânicos e inorgânicos, processo de produção da mesma e seus usos
BR1020220216037 2022-10-25

Publications (1)

Publication Number Publication Date
WO2023070185A1 true WO2023070185A1 (pt) 2023-05-04

Family

ID=86160218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2022/050410 WO2023070185A1 (pt) 2021-10-25 2022-10-25 Espuma porosa para retenção de compostos orgânicos e inorgânicos, processo de produção da mesma e seus usos

Country Status (1)

Country Link
WO (1) WO2023070185A1 (pt)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103790A (en) * 1994-03-01 2000-08-15 Elf Atochem S.A. Cellulose microfibril-reinforced polymers and their applications
WO2015012273A1 (ja) * 2013-07-23 2015-01-29 ユニ・チャーム株式会社 吸水剤
JP2018090694A (ja) * 2016-12-02 2018-06-14 国立研究開発法人産業技術総合研究所 ナノニトロセルロース及びその製造方法
JP2018188651A (ja) * 2018-07-12 2018-11-29 兵庫県 発泡ゴム成形体、その製造方法並びにそれを用いた水中用衣類、車両用緩衝材、防振ゴム、防音ゴム及びシール材
JP2021030224A (ja) * 2019-08-15 2021-03-01 ▲広▼州大学 植物セルロース製吸着スポンジ、その製造方法及び応用
BR102019022589A2 (pt) * 2019-10-28 2021-05-11 Cnpem Centro Nac De Pesquisa Em Energia E Materiais espumas verdes porosas para separação de compostos hidrofóbicos, produção e seus usos

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103790A (en) * 1994-03-01 2000-08-15 Elf Atochem S.A. Cellulose microfibril-reinforced polymers and their applications
WO2015012273A1 (ja) * 2013-07-23 2015-01-29 ユニ・チャーム株式会社 吸水剤
JP2018090694A (ja) * 2016-12-02 2018-06-14 国立研究開発法人産業技術総合研究所 ナノニトロセルロース及びその製造方法
JP2018188651A (ja) * 2018-07-12 2018-11-29 兵庫県 発泡ゴム成形体、その製造方法並びにそれを用いた水中用衣類、車両用緩衝材、防振ゴム、防音ゴム及びシール材
JP2021030224A (ja) * 2019-08-15 2021-03-01 ▲広▼州大学 植物セルロース製吸着スポンジ、その製造方法及び応用
BR102019022589A2 (pt) * 2019-10-28 2021-05-11 Cnpem Centro Nac De Pesquisa Em Energia E Materiais espumas verdes porosas para separação de compostos hidrofóbicos, produção e seus usos

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANTONINI CARLO, WU TINGTING, ZIMMERMANN TANJA, KHERBECHE ABDERRAHMANE, THORAVAL MARIE-JEAN, NYSTRÖM GUSTAV, GEIGER THOMAS: "Ultra-Porous Nanocellulose Foams: A Facile and Scalable Fabrication Approach", NANOMATERIALS, vol. 9, no. 8, 1 January 2019 (2019-01-01), pages 1 - 14, XP093066711, DOI: 10.3390/nano9081142 *
DACRORY SAWSAN, ABOU-YOUSEF HUSSEIN, KAMEL SAMIR, TURKY GAMAL: "Development of biodegradable semiconducting foam based on micro-fibrillated cellulose/Cu-NPs", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 132, 1 July 2019 (2019-07-01), NL , pages 351 - 359, XP093066714, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2019.03.156 *
KARGARZADEH HANIEH; MARIANO MARCOS; GOPAKUMAR DEEPU; AHMAD ISHAK; THOMAS SABU; DUFRESNE ALAIN; HUANG JIN; LIN NING: "Advances in cellulose nanomaterials", CELLULOSE, vol. 25, no. 4, 27 February 2018 (2018-02-27), Netherlands , pages 2151 - 2189, XP036470149, ISSN: 0969-0239, DOI: 10.1007/s10570-018-1723-5 *
ZHANG ZHEXIN; LI HUIDONG; LI JING; LI XIAOLEI; WANG ZHIXIA; LIU XINXIN; ZHANG LIN: "A novel adsorbent of core-shell construction of chitosan-cellulose magnetic carbon foam: Synthesis, characterization and application to remove copper in wastewater", CHEMICAL PHYSICS LETTERS, vol. 731, 2 July 2019 (2019-07-02), NL , XP085774768, ISSN: 0009-2614, DOI: 10.1016/j.cplett.2019.07.001 *

Similar Documents

Publication Publication Date Title
Qi et al. Highly efficient dye decontamination via microbial salecan polysaccharide-based gels
Zhu et al. Removal of anionic and cationic dyes using porous chitosan/carboxymethyl cellulose-PEG hydrogels: Optimization, adsorption kinetics, isotherm and thermodynamics studies
Thakur et al. Cellulosic biomass-based sustainable hydrogels for wastewater remediation: chemistry and prospective
Feng et al. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels
CN107690355B (zh) 用于制备含有经还原的氧化石墨烯的水凝胶的方法
Lapwanit et al. Adsorptive removal of cationic methylene blue dye by kappa-carrageenan/poly (glycidyl methacrylate) hydrogel beads: preparation and characterization
Junthip Water-insoluble cyclodextrin polymer crosslinked with citric acid for paraquat removal from water
CN109012618A (zh) 一种氧化石墨烯/海藻酸钠凝胶球的制备方法和应用
Ulu et al. Eco-friendly chitosan/κ-carrageenan membranes reinforced with activated bentonite for adsorption of methylene blue
Yin et al. Covalently crosslinked sodium alginate/poly (sodium p-styrenesulfonate) cryogels for selective removal of methylene blue
Saheed et al. Imidazolium based ionic liquids modified polysaccharides for adsorption and solid-phase extraction applications: A review
KR20190090521A (ko) 세슘 흡착제 및 이의 제조방법
Chen et al. Synthesis of ultralight chitosan/activated biochar composite aerogel globules for ketoprofen removal from aqueous solution
Benhalima et al. Sponge-like biodegradable polypyrrole-modified biopolymers for selective adsorption of basic red 46 and crystal violet dyes from single and binary component systems
Far et al. Decontamination of Congo red dye from aqueous solution using nanoclay/chitosan-graft-gelatin nanocomposite hydrogel
Srivastava et al. Green synthesis of PH-responsive, self-assembled, novel polysaccharide composite hydrogel and its application in selective capture of cationic/anionic dyes
Li et al. Highly efficient and selective removal of anionic dyes from water using a cellulose nanofibril/chitosan sponge prepared by dehydrothermal treatment
Orhan et al. Sustainable alginate-carboxymethyl cellulose superabsorbents prepared by a novel quasi-cryogelation method
Wang et al. A novel adsorbent drived from salted egg white for efficient removal of cationic organic dyes from wastewater
Joo et al. Sustainable cellulose-based hydrogels for water treatment and purification
Shi et al. Adsorption of methylene blue from aqueous solution by crosslinked carboxymethyl cellulose/organo-montmorillonite composite hydrogels
Ni et al. Development of Carbon Nanotube/Graphene‐Based Alginate Interpenetrating Hydrogels for Removal of Antibiotic Pollutants
Chen et al. Mechanically stable core-shell cellulose nanofibril/sodium alginate hydrogel beads with superior cu (II) removal capacity
WO2023070185A1 (pt) Espuma porosa para retenção de compostos orgânicos e inorgânicos, processo de produção da mesma e seus usos
Wasikiewicz et al. Radiation crosslinking of biodegradable carboxymethylchitin and carboxymethylchitosan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884813

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE