WO2023068465A1 - Instantaneous water heater - Google Patents

Instantaneous water heater Download PDF

Info

Publication number
WO2023068465A1
WO2023068465A1 PCT/KR2022/005388 KR2022005388W WO2023068465A1 WO 2023068465 A1 WO2023068465 A1 WO 2023068465A1 KR 2022005388 W KR2022005388 W KR 2022005388W WO 2023068465 A1 WO2023068465 A1 WO 2023068465A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
steam
hot water
main body
chamber
Prior art date
Application number
PCT/KR2022/005388
Other languages
French (fr)
Korean (ko)
Inventor
윤상구
Original Assignee
윤상구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤상구 filed Critical 윤상구
Publication of WO2023068465A1 publication Critical patent/WO2023068465A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • F24H1/122Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply combined with storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/43Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/02Resistances

Definitions

  • the present invention instantaneously heats raw water in a first indirect and second direct manner in a ceramic heater structure to rapidly heat water to a required temperature regardless of the discharge flow rate of hot water or the inlet temperature of raw water, and smoothly provide hot water
  • the present invention relates to an instantaneous water heater in which heat loss of the water heater is minimized and a vapor pressure module required for direct water pressure is integrally provided.
  • a water heater is a device that generates and provides hot water by heating raw water supplied from a waterworks or raw water stored in a water tank, etc.
  • a boiler and recently, a small water heater that is directly connected to a faucet in a building to provide hot water there is.
  • Water heaters using electricity have a heater as a heat energy source inside and heat raw water by directly or indirectly contacting water to the heater.
  • a water tank having a raw water inlet and a hot water outlet; a ceramic heater installed inside the water tank; a temperature sensor for measuring the temperature of the hot water contained in the water tank; and a controller for controlling the temperature of the ceramic heater based on the measured value of the temperature sensor.
  • a tank for storing water is required, and a heater that transfers heat energy to the inside of the tank has a structure for heating the water stored in the tank, so the contact area of the heater is characteristic of the storage type water heater. It takes a lot of time to heat the water contained in a larger volume, and the heat energy continuously used to maintain the temperature of the water is wasted due to heat loss in the tank, so the thermal efficiency is significantly lowered. Therefore, there is a problem in that the temperature at which hot water is discharged is not constant.
  • the present invention is to solve the conventional problems, and hot water is discharged while instantaneously heating raw water in a first indirect and second direct manner in a ceramic heater structure using a coil-shaped pipe, so that the discharge flow rate of hot water or the inflow of raw water Regardless of the temperature, the water is rapidly heated to the required temperature to provide hot water smoothly, and when the steam pressure rises using the steam pressure module that is filled with steam, the steam is blocked and the hot water is discharged through the outlet pipe. Its purpose is to reduce heat loss to the water heater tank by using a vapor pressure module.
  • the present invention is a structure in which the raw water passing through the coiled pipe is discharged using one or more discharge holes formed in the circular direction of the lower pipe, wherein the discharged raw water moves upward along the coil pipe and the wall while making fine turns.
  • the raw water of the heater part can maintain a constant flow rate, enabling sufficient heating for the raw water, and the out-of-field direction of the coil pipe has a faster flow rate than the heater part, so it is constant to the side adjacent to the outlet pipe Its purpose is to minimize heat loss during hot water heating, and to prevent disturbance through its structure.
  • the present invention to solve this object
  • a main body having an inlet pipe through which raw water flows and an outlet pipe through which hot water is discharged;
  • a coil pipe connected to the inlet pipe, through which raw water is introduced, and having a lower pipe through which the raw water introduced into the main body is discharged;
  • a heater that firstly indirectly heats the water introduced into the coil pipe and secondarily directly heats the water discharged into the main body to generate hot water;
  • An instantaneous water heater characterized in that it is configured to include a; steam module that allows hot water to be discharged through the water outlet pipe while hot water vapor generated through the heater flows in when hot water is discharged, and the vapor pressure is lowered when hot water is not discharged.
  • the instantaneous water heater further includes a lower conduit in which the coil pipe discharges raw water into the main body using one or more discharge holes formed in a circumferential direction to form a fluid flow pattern of the raw water flowing into the main body.
  • the main body provides an instantaneous water heater that further includes a sensor member integrally formed with a side for measuring temperature and a side for measuring the presence or absence of water.
  • the present invention it is possible to smoothly provide hot water while rapidly heating water to a required temperature regardless of the discharge flow rate of hot water or the inflow temperature of raw water, and providing a direct water pressure structure using a vapor pressure module to a water heater tank by a vapor pressure module. There is an effect of improving the energy efficiency of thermal energy by minimizing heat loss.
  • a fluid flow pattern is formed in which the raw water introduced into the body moves upward along the coil pipe and the wall, so that the ceramic heater part maintains constant heating, reduces heat loss in the outward direction of the coil pipe, and prevents disturbance. It works.
  • FIG. 1 is a perspective view illustrating an instantaneous water heater according to an embodiment of the present invention
  • FIG. 2 is a side cross-sectional view and an enlarged view of a main part of an instantaneous water heater according to an embodiment of the present invention
  • FIG 3 is a view of a lower pipe of an instantaneous water heater according to an embodiment of the present invention.
  • FIG. 4 is a view of a sensor member of an instantaneous water heater according to an embodiment of the present invention.
  • FIG 5 and 6 are diagrams of an embodiment of an instantaneous water heater according to the present invention.
  • the main body 100 having an inlet pipe 110 and an outlet pipe 120; Coil pipe 200 for introducing and discharging raw water into the body 100; a heater 300 for heating the water discharged to the coil pipe 200 and the main body 100; It is composed of a steam module 400 in which steam is introduced when hot water is discharged and the vapor pressure is filled so that hot water is discharged and the vapor pressure is lowered when hot water is not discharged.
  • the main body 100 First, the main body 100;
  • the main body 100 is made in the form of a tank filled with raw water therein.
  • the inlet pipe 110 and the outlet pipe 120 are inserted through the upper part of the main body 100, respectively, through the inlet pipe 110.
  • Raw water flows into and fills the inner space of the main body 100, and hot water heated in the main body 100 can be discharged to the outside through the outlet pipe 120.
  • the inlet pipe 110 is connected to a water supply facility to supply raw water, and the outlet pipe 120 discharges and provides hot water to the side where the hot water is used.
  • the main body 100 should measure the temperature and check the presence of water, and may be provided with one or a plurality of bimetal switches to control the operation of the heater 300. Preferably, about three bimetal switches are provided. It enables hot water generation and smooth hot water supply.
  • the main body 100 is provided with a tank-shaped space filled with raw water therein, which may be partitioned into a first space s1 and a second space s2 by the separator 130, and the first space s1
  • the heater 300 and the coil pipe 200 are positioned there, and the lower conduit 210 is positioned in the second space s2.
  • the body 100 further includes a sensor member 140 integrally formed with a side for measuring the temperature and a side for measuring the presence or absence of water.
  • the sensor member 140 is provided with a thermistor 141 that measures the temperature, is provided with a terminal 142 that sends a minute current to the thermistor 141 to conduct current through the main body 100, and the thermistor 141
  • the temperature of the hot water inside the main body 100 is monitored in real time, and the presence or absence of water inside the main body 100 can be continuously monitored while energizing the main body 100 by sending a microcurrent through the terminal 142. .
  • the sensor member 140 may have a flange to be coupled to the main body 100, and it is necessary to cut off the current with a silicon O-ring as a part that is not energized.
  • the main body 100 further includes a separator 130 for blocking the flow of raw water discharged from the lower conduit 210.
  • the separation plate 130 is a plate body having a shape corresponding to the internal cross-sectional area of the main body 100, and the heater ( 300) can be seated and assembled on the assembled protruding part, and the first space s1 equipped with the coil pipe 200 and the heater 300 and the lower conduit 210 are located by the separator 130
  • the second space s2 is partitioned from each other inside the main body 100 to separate the lower conduit 210 from the first space s1.
  • the separation plate 130 is a separation passage 131 formed between the inner walls of the main body 100 in the lateral direction of the separation plate 130 so that raw water moves from the second space s2 to the first space s1 ; is further included.
  • the separation passage 131 is formed by separating the separation plate 130 from the inner wall of the main body 100, and when raw water is discharged from the lower conduit 210 located in the second space s2, through the separation passage 131. While allowing the raw water to flow into the first space s1, the raw water moves upward along the inner wall of the coil pipe 200 and the main body 100.
  • the separation passage 131 blocks the air contained in the raw water from flowing into the side where the heater 300 is provided, and in the case of the heater 300, the thermal parallelism coefficient is proportional to the time in contact with the air contained in the raw water Since the heater 300 may be damaged due to a change in the heater 300, the raw water air flow blocking function using the separation passage 131 may be prevented.
  • the coil pipe 200 is inserted into the main body 100 to be positioned around the heater 300 in a non-contact manner, and the upper part of the coil pipe 200 is connected to the water inlet pipe 110 of the main body 100 so that the raw material is It can be introduced into the coil pipe 200, and the lower pipe 210 is provided at the bottom of the coil pipe 200, and raw water flowing into the coil pipe 200 is discharged to the lower pipe 210, and the inside of the main body 100 to fill the space
  • the coil tube 200 is formed in the form of a coil that is wound around the heater 300 in a non-contact manner, and the number of times the coil is wound can be adjusted, and the coil part of the coil tube 200 is the inner wall of the main body 100.
  • the raw water that is formed by being wound close to and introduced into the coil part of the coil pipe 200 is first indirectly heated by the heater 300, passes through the coil pipe 200 and flows into the inside of the main body 100 to fill the raw water is directly heated secondarily by the heater 300.
  • raw water is instantaneously heated by the first indirect and second direct methods in the ceramic heater structure by the coil pipe 200 in the form of a coil, and hot water is generated to the required temperature regardless of the discharge flow rate of hot water or the inflow temperature of raw water. Hot water can be smoothly provided while rapidly heating water.
  • the coil pipe 200 further includes a lower conduit 210 forming a fluid flow pattern of raw water flowing into the main body using one or more discharge holes 211 formed in a circumferential direction.
  • the lower conduit 210 extends in the circumferential direction inside the second space s2 partitioned by the separator 130, and the coil portion of the coil pipe 200 extends in the circumferential direction of the lower conduit 210.
  • one or more discharge holes 211 are formed to allow the raw water to flow into the body 100.
  • four or more discharge holes 211 may be formed in the lower pipe 210. there is.
  • the separation passage 131 Flows into the first space s1 of the body 100 through, and the raw water introduced into the first space s1 forms a fluid flow pattern that moves upward along the inner wall of the coil pipe 200 and the body 100.
  • the flow velocity (water pressure) of the heater 300 and the out-of-field direction of the coil pipe 200 may be different.
  • the raw water of the heater 300 part enables sufficient heating for the raw water while maintaining a constant flow rate, and the out-of-field direction of the coil pipe 200 has a faster flow rate than the heater 300 portion, so that the water outlet pipe 120 Hot water with a constant amount of heat absorbed can be discharged while flowing in to the side adjacent to the main body 100, and the heat loss to the outer wall of the main body 100 can be significantly reduced, and the separator 130, the lower pipe 210 and one or more discharge holes ( 211) can prevent the disturbance phenomenon through the fluid flow.
  • Water introduced into the coil pipe 200 is indirectly heated, and water discharged into the main body 100 is directly heated to generate hot water.
  • the heater 300 is installed in a non-contact manner on the inside of the coil pipe 200 as the inside of the main body 100, and the raw water filled inside the main body 100 and the raw water flowing through the coil pipe 200 are heated by external power operation. are heated in a direct and indirect manner, respectively, to produce hot water.
  • the heater 300 is provided vertically in the form of a plate to uniformly heat the inner space of the main body 100 .
  • the heater 300 may be formed of a ceramic heater or a zirconium heater, and one or more heaters 300 further include one or more disposed at regular intervals.
  • One or more heaters 300 made of ceramic heaters or zircotium heaters are arranged in a row with plate portions spaced apart from each other, and the heaters 300 are basically made of ceramic heaters.
  • the heating efficiency of the raw water is improved and hot water can be generated more quickly. It takes 10 to 30 seconds to reach , which is very fast, minimizing heat loss and maximizing energy efficiency.
  • the heater 300 further includes determining a thickness corresponding to a low current or a high current.
  • the thickness of the heater 300 corresponding to the low current or high current may be formed to 2 mm in the case of low current and 3 mm in the case of high current. In order to smoothly operate the ceramic heater 300.
  • the steam module 400 is provided to have a separate and independent space above the main body 100 so that the steam of hot water can be filled in the space of the steam module 400, and the main body 100 is discharged through the upper part of the steam module 400.
  • the pipe 120 is connected while penetrating, and the inlet pipe 110 of the main body 100 is also connected to the top of the steam module 400 to allow raw water to flow into the main body 100, and is generated in the main body 100
  • the hot water can be discharged through the outlet pipe 120.
  • the steam module 400 further includes a chamber chamber 410 in which steam is introduced when hot water is used, the vacuum breaker 450 is closed and the steam pressure is filled, and the vacuum breaker 450 is opened when the hot water is not used and the steam pressure is released. do.
  • the chamber chamber 410 is a space formed independently above the main body 100, and the water outlet pipe 120 and the water inlet pipe 110 pass through the inside of the chamber chamber 410 and are connected to the main body 100, and the chamber Steam from hot water of the main body 100 may be introduced into the inner space of the chamber 410 to fill the inside of the chamber 410 with steam.
  • a vacuum breaker 450 is provided at the top of the chamber chamber 410, and when the steam introduced into the chamber chamber 410 has an appropriate vapor pressure, the vacuum breaker While the 450 is closed, steam is filled into the chamber chamber 410, that is, hot water can be discharged through the water outlet pipe 120 while the steam pressure is filled into the chamber chamber 410 in the process of dispensing hot water.
  • the vacuum breaker 450 is opened and the steam is transformed into water, the steam transformed into water is collected through the recovery unit 430 provided at the bottom of the chamber 410 To be recovered back to the inside of the main body (100).
  • the inlet pipe 110 and the outlet pipe 120 pass through, and steam of hot water flows into the chamber chamber 410 through the outlet pipe 120 passing through the chamber chamber 410. It further includes that the vapor hole 420 is formed.
  • the steam hole 420 is formed as a small hole on one side of the water outlet pipe 120 inserted into the chamber chamber 410 and fills the chamber chamber 410 with steam pressure through the steam hole 420 when hot water is discharged. Hot water can be discharged through the water outlet pipe 120 with direct water pressure.
  • the steam module 400 further includes a vacuum breaker 450 that closes when steam flows into the chamber 410 and fills the chamber with an appropriate steam pressure, and opens when the steam pressure decreases due to blocking the steam inflow.
  • the vacuum breaker 450 protrudes from the upper part of the steam module 400 and is connected to the inner space of the chamber chamber 410, and is closed by the steam pressure flowing into the chamber chamber 410 or opened when the steam pressure is lowered.
  • the vacuum breaker 450 includes a housing 451 having a space through which vapor pressure is introduced while penetrating toward the chamber chamber 410; It consists of; an operating mechanism 452 that selectively opens and closes the housing 451 by moving up and down by steam pressure inside the housing 451 .
  • the housing 451 is a pipe body and has a space inside, and the lower side of the housing 451 is connected to the inner space of the chamber chamber 410 so that the vacuum breaker 450 is installed in the steam module 400, the housing 451 has an inlet through which the vapor pressure is introduced and an outlet through which the vapor pressure is discharged.
  • the actuator 452 moves up and down by the vapor pressure inside the housing 451 to open and close by selectively blocking the outlet of the housing 451, and when the vapor pressure is greater than the weight of the actuator 452, the actuator When the vapor pressure of the actuator 452 is lower than its own weight, the actuator 452 moves downward to open the passage of the housing 451.
  • the actuator 452 may be provided with an O-ring for airtightness, a stopper for facilitating the closing of the passage of the housing 451, and the chamber chamber 410 corresponding to the weight of the actuator 452. ) It is possible to set the vapor pressure introduced into the inside, basically set to 1 atm, and when the pressure exceeds 1 atm, the vacuum breaker 450 closes and the inside of the chamber 410 can be filled with steam.
  • the vacuum breaker 450 closes at an appropriate steam pressure and fills the chamber chamber 410 with steam, so that hot water is discharged at direct water pressure through the water outlet pipe 120.
  • a direct water pressure structure may be provided.
  • the vacuum breaker 450 is opened to lower the vapor pressure inside the chamber chamber 410, and also minimizes heat loss to the upper part of the main body 100 due to the heat of the steam filled in the chamber chamber 410. there is.
  • the chamber chamber 410 further includes a recovery unit 430 that collects water generated by steam introduced therein and recovers the collected water to the main body 100 .
  • the recovery unit 430 is formed as a water collecting portion lower than the bottom surface of the chamber chamber 410 at the inner lower central portion of the chamber chamber 410, and collects water generated by steam introduced into the chamber chamber 410 into the recovery unit ( 430), and the water outlet pipe 120 is connected to the bottom side of the recovery unit 430, and the inlet groove 431 is formed at the bottom of the water outlet pipe 120 connected in this way, so that the water collected in the recovery unit 430 To be recovered to the main body 100 through the inlet groove 431.
  • the recovery unit 430 prevents water from remaining inside the chamber chamber 410 to smoothly maintain a space heated by steam, and removes water generated inside the chamber chamber 410 by steam. It can be recovered to the main body 100 very easily, so the structure is very efficient.
  • the raw water flowing along the inner wall of the main body 100 is gathered toward the outlet pipe 120 in the outward direction of the coil pipe 200.
  • the raw water discharged through the four discharge holes 211 is a coil A vector field flowing along the tube 200 can be confirmed.
  • the instantaneous water heater 1 shows the temperature and speed distribution patterns formed in the flow pipe and main body in an abnormal state for up to 30 seconds when a flow rate of 3 L/min and 4.2 kW power are used. indicate Convective transfer of heat is carried out according to the micro-flow, and the temperature rises around the heater, which depends on the amount of injection, and discharge occurs simultaneously. The speed was adjusted to the maximum 0.6m/s scale, and the temperature was visualized after adjusting the maximum 400°C scale range. Ansys CFX fluid analysis is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

The present invention relates to an instantaneous water heater corresponding to a water heater for sequentially heating water directly and indirectly to provide hot water while instantaneously heating the water to a required temperature, wherein the instantaneous water heater minimizes heat loss while enabling instantaneous hot water generation by increasing a heat exchange area. The present invention comprises: a body having a water introduction pipe through which raw water is introduced and a water discharge pipe through which hot water is discharged; a coil pipe connected to the water introduction pipe to allow the raw water to be introduced therethrough and having a lower pipeline for discharging the raw water introduced in the body; a heater for indirectly heating the water introduced in the coil pipe primarily and directly heating the water discharged from the body secondarily to generate hot water; and a steam module in which when the hot water is discharged, the steam of the hot water generated by the heater is introduced to discharge the hot water through the water discharge pipe while filling the steam pressure therein, and when the hot water is not discharged, the steam pressure is lowered.

Description

순간식 온수기instantaneous water heater
본 발명은 세라믹 히터 구조에서 원수를 1차 간접 및 2차 직접 방식으로 순간식 가열하여 온수의 토출유량이나 원수의 유입온도에 상관없이 필요한 온도로 물을 급가열 시키면서 온수를 원활하게 제공하도록 하며, 온수기의 열손실을 최소화하고, 직수압에 필요한 증기압 모듈이 일체형으로 마련된 순간식 온수기에 관한 것이다.The present invention instantaneously heats raw water in a first indirect and second direct manner in a ceramic heater structure to rapidly heat water to a required temperature regardless of the discharge flow rate of hot water or the inlet temperature of raw water, and smoothly provide hot water, The present invention relates to an instantaneous water heater in which heat loss of the water heater is minimized and a vapor pressure module required for direct water pressure is integrally provided.
일반적으로 온수기는 상수도로부터 공급되는 원수 또는 물탱크 등에 저장된 원수를 가열시켜 온수를 생성하여 제공하는 장치이며, 대표적으로 보일러가 있고 최근에는 건물 내의 수전에 직접 연결하여 온수를 제공하는 방식의 소형 온수기가 있다.In general, a water heater is a device that generates and provides hot water by heating raw water supplied from a waterworks or raw water stored in a water tank, etc. Representatively, there is a boiler, and recently, a small water heater that is directly connected to a faucet in a building to provide hot water there is.
이러한 온수기는 원수를 가열시키는 에너지원으로 전기를 사용하는데, 전기를 이용한 온수기는 내부에 열에너지원으로 히터가 마련되고, 히터에 물을 직접 또는 간접으로 접촉시켜 원수를 가열시키는 구조를 널리 사용한다.These water heaters use electricity as an energy source to heat raw water. Water heaters using electricity have a heater as a heat energy source inside and heat raw water by directly or indirectly contacting water to the heater.
예를 들어, 종래 한국공개특허공보 제10-2015-0046539호를 살펴보면, 원수 입구와 온수 출구가 형성된 워터 탱크; 상기 워터 탱크의 내부에 설치되는 세라믹 히터; 상기 워터 탱크에 수용된 온수의 온도를 측정하는 온도 센서; 및 상기 온도 센서의 측정값에 의해 세라믹 히터의 온도를 제어하는 제어부;로 구성된 영유아 분유용 살균수 공급기가 제시되어 있다.For example, looking at conventional Korean Patent Publication No. 10-2015-0046539, a water tank having a raw water inlet and a hot water outlet; a ceramic heater installed inside the water tank; a temperature sensor for measuring the temperature of the hot water contained in the water tank; and a controller for controlling the temperature of the ceramic heater based on the measured value of the temperature sensor.
그러나 종래에는 저탕식의 온수기로서 물이 저장되는 탱크가 필요하고, 탱크의 내부로 열에너지를 전달하는 히터가 구비되면서 탱크에 저장되는 물을 가열하는 구조를 갖기 때문에 저탕식의 온수기 특성상 히터의 접촉 면적보다 큰 용적안에 수용된 물을 가열하는데 시간이 많이 소요되고, 탱크의 열손실로 물의 온도를 유지하기 위해 지속적으로 사용되는 열에너지가 낭비되어 열효율이 현저히 떨어지며, 온수의 토출유량이나 원수의 유입온도에 대응하여 온수가 토출되는 온도가 일정하지 않은 문제점이 있었다.However, conventionally, as a storage type water heater, a tank for storing water is required, and a heater that transfers heat energy to the inside of the tank has a structure for heating the water stored in the tank, so the contact area of the heater is characteristic of the storage type water heater. It takes a lot of time to heat the water contained in a larger volume, and the heat energy continuously used to maintain the temperature of the water is wasted due to heat loss in the tank, so the thermal efficiency is significantly lowered. Therefore, there is a problem in that the temperature at which hot water is discharged is not constant.
또한, 종래에는 탱크의 내부로 유입되는 원수가 상대적으로 저온으로 유입되고, 빠른 유속을 갖기 때문에 탱크의 내부에 채워져 가열되는 온수와 충돌에 의해서 왜란 현상이 발생하는 문제점이 있었다.In addition, since the raw water introduced into the tank has a relatively low temperature and a high flow rate, a disturbance phenomenon occurs due to collision with hot water filled and heated in the tank in the related art.
본 발명은 종래의 문제점들을 해결하기 위한 것으로서, 원수를 코일 형태의 관을 이용해 세라믹 히터 구조에서 1차 간접 및 2차 직접 방식으로 순간식 가열하면서 온수가 출수되게 하여 온수의 토출유량이나 원수의 유입온도에 상관없이 필요한 온도로 물을 급가열 시키면서 온수를 원활하게 제공하도록 하고, 온수의 증기가 채워지는 증기압 모듈을 이용해 증기압이 차오르면 증기가 차단되면서 출수관으로 온수를 출수되게 하는 직수압 구조를 제공하며, 증기압 모듈을 이용해 온수기 탱크에 대한 열손실을 줄이도록 하는데 그 목적이 있다.The present invention is to solve the conventional problems, and hot water is discharged while instantaneously heating raw water in a first indirect and second direct manner in a ceramic heater structure using a coil-shaped pipe, so that the discharge flow rate of hot water or the inflow of raw water Regardless of the temperature, the water is rapidly heated to the required temperature to provide hot water smoothly, and when the steam pressure rises using the steam pressure module that is filled with steam, the steam is blocked and the hot water is discharged through the outlet pipe. Its purpose is to reduce heat loss to the water heater tank by using a vapor pressure module.
또한, 본 발명은 코일 형태의 관을 통과한 원수를 하부 관로의 원방향으로 하나 이상 형성된 토출홀을 이용해 토출되게 하는 구조로서, 토출된 원수가 미세 선회를 하면서 코일 관과 벽을 따라 상향 이동하는 유체 유동 패턴을 형성되게 하여 히터 부분의 원수는 일정하게 유속이 유지되면서 원수에 대하여 충분한 가열을 가능하게 할 수 있고, 코일 관의 원외 방향은 히터 부분 대비 유속이 빠름으로 출수관에 인접한 측으로 일정하게 열량이 흡수된 온수가 유입되면서 출수될 수 있어 온수 가열시 열량손실을 최소화할 수 있도록 하며, 그 구조를 통해 왜란 현상을 방지되게 하는데 그 목적이 있다.In addition, the present invention is a structure in which the raw water passing through the coiled pipe is discharged using one or more discharge holes formed in the circular direction of the lower pipe, wherein the discharged raw water moves upward along the coil pipe and the wall while making fine turns. By forming a fluid flow pattern, the raw water of the heater part can maintain a constant flow rate, enabling sufficient heating for the raw water, and the out-of-field direction of the coil pipe has a faster flow rate than the heater part, so it is constant to the side adjacent to the outlet pipe Its purpose is to minimize heat loss during hot water heating, and to prevent disturbance through its structure.
이와 같은 목적을 해결하기 위해 본 발명은;The present invention to solve this object;
원수가 유입되는 입수관 및 온수가 배출되는 출수관을 갖는 본체와;A main body having an inlet pipe through which raw water flows and an outlet pipe through which hot water is discharged;
상기 입수관에 연결되어 원수가 유입되며, 상기 본체의 내부로 유입된 원수를 토출시키는 하부관로를 갖는 코일 관과;A coil pipe connected to the inlet pipe, through which raw water is introduced, and having a lower pipe through which the raw water introduced into the main body is discharged;
상기 코일 관에 유입된 물을 1차로 간접 가열하고, 상기 본체에 토출된 물을 2차로 직접 가열하여 온수를 생성하는 히터와;a heater that firstly indirectly heats the water introduced into the coil pipe and secondarily directly heats the water discharged into the main body to generate hot water;
온수 출수시 상기 히터를 통해 생성된 온수의 증기가 유입되어 증기압이 채워지면서 출수관을 통해 온수를 출수되게 하고, 온수 미출수시 증기압이 낮아지는 증기 모듈;을 포함하여 구성된 것을 특징으로 하는 순간식 온수기를 제공한다.An instantaneous water heater characterized in that it is configured to include a; steam module that allows hot water to be discharged through the water outlet pipe while hot water vapor generated through the heater flows in when hot water is discharged, and the vapor pressure is lowered when hot water is not discharged. provides
또한 본 발명은;In addition, the present invention;
코일 관은 원둘레 방향으로 하나 이상 형성되는 토출홀을 이용해 본체 내부로 원수를 토출시켜 본체의 내부로 흐르는 원수의 유체 유동 패턴을 형성하는 하부관로;를 더 포함한 순간식 온수기를 제공한다.The instantaneous water heater further includes a lower conduit in which the coil pipe discharges raw water into the main body using one or more discharge holes formed in a circumferential direction to form a fluid flow pattern of the raw water flowing into the main body.
또한 본 발명은;In addition, the present invention;
본체는 온도를 측정하는 측과 물의 유무를 측정하는 측이 일체형으로 형성된 센서부재;를 더 포함한 순간식 온수기를 제공한다.The main body provides an instantaneous water heater that further includes a sensor member integrally formed with a side for measuring temperature and a side for measuring the presence or absence of water.
이러한 본 발명에 따르면, 온수의 토출유량이나 원수의 유입온도에 상관없이 필요한 온도로 물을 급가열 시키면서 온수를 원활하게 제공 가능하고, 증기압 모듈을 이용한 직수압 구조를 제공하면서 증기압 모듈에 의해 온수기 탱크에 대한 열손실이 최소화되어 열에너지의 에너지 효율성이 향상되는 효과가 있다.According to the present invention, it is possible to smoothly provide hot water while rapidly heating water to a required temperature regardless of the discharge flow rate of hot water or the inflow temperature of raw water, and providing a direct water pressure structure using a vapor pressure module to a water heater tank by a vapor pressure module. There is an effect of improving the energy efficiency of thermal energy by minimizing heat loss.
또한, 본체 내부로 유입된 원수가 코일 관과 벽을 따라 상향 이동하는 유체 유동 패턴이 형성되어 세라믹 히터 부분은 일정한 가열이 유지되고, 코일 관의 원외 방향의 열손실이 줄며, 왜란 현상이 방지되는 효과가 있다.In addition, a fluid flow pattern is formed in which the raw water introduced into the body moves upward along the coil pipe and the wall, so that the ceramic heater part maintains constant heating, reduces heat loss in the outward direction of the coil pipe, and prevents disturbance. It works.
도 1은 본 발명의 일 실시 예에 따른 순간식 온수기를 도시한 사시도.1 is a perspective view illustrating an instantaneous water heater according to an embodiment of the present invention;
도 2는 본 발명의 일 실시 예에 따른 순간식 온수기를 도시한 측단면도 및 요부 확대도.2 is a side cross-sectional view and an enlarged view of a main part of an instantaneous water heater according to an embodiment of the present invention;
도 3은 본 발명의 일 실시 예에 따른 순간식 온수기 중 하부 파이프의 도면.3 is a view of a lower pipe of an instantaneous water heater according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 순간식 온수기 중 센서부재의 도면.4 is a view of a sensor member of an instantaneous water heater according to an embodiment of the present invention.
도 5 내지 도 6은 본 발명에 따른 순간식 온수기의 실시 예시 도면이다.5 and 6 are diagrams of an embodiment of an instantaneous water heater according to the present invention.
본 발명에 따른 순간식 온수기를 첨부된 도면을 참고로 하여 이하 상세히 기술되는 실시 예들에 의해 그 특징들을 이해할 수 있을 것이다.The characteristics of the instantaneous water heater according to the present invention will be understood by the embodiments described in detail below with reference to the accompanying drawings.
한편, 실시 예를 설명함에 있어 본 발명이 속하거나 속하지 아니한 기술분야에서 광범위하게 널리 알려져 사용되고 있는 구성요소에 대해서는 이에 대한 상세한 설명은 생략하도록 하며, 이는 불필요한 설명을 생략함과 더불어 이에 따른 본 발명의 요지를 더욱 명확하게 전달하기 위함이다.On the other hand, in describing the embodiments, detailed descriptions of components that are widely known and used in the technical field to which the present invention belongs or does not belong will be omitted, and unnecessary descriptions will be omitted, and the present invention according to this will be omitted. This is to make the point more clear.
이하, 본 발명의 일 실시 예에 따른 순간식 온수기를 도 1 내지 도 4를 참고로 구체적으로 설명한다.Hereinafter, an instantaneous water heater according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4 .
이에 따른 순간식 온수기(1)를 개략적으로 살펴보면, 입수관(110) 및 출수관(120)을 갖는 본체(100); 본체(100)의 내부로 원수를 유입 및 토출시키는 코일 관(200); 코일 관(200) 및 본체(100)에 토출된 물을 가열하는 히터(300); 온수 출수시 증기가 유입되어 증기압이 채워져 온수를 출수되게 하고 온수 미출수시 증기압이 낮아지는 증기 모듈(400);로 구성된다.Schematically looking at the instantaneous water heater 1 according to this, the main body 100 having an inlet pipe 110 and an outlet pipe 120; Coil pipe 200 for introducing and discharging raw water into the body 100; a heater 300 for heating the water discharged to the coil pipe 200 and the main body 100; It is composed of a steam module 400 in which steam is introduced when hot water is discharged and the vapor pressure is filled so that hot water is discharged and the vapor pressure is lowered when hot water is not discharged.
먼저, 상기 본체(100)는;First, the main body 100;
원수가 유입되는 입수관(110) 및 온수가 배출되는 출수관(120)을 갖는다. 본체(100)는 내부로 원수가 채워지는 탱크 형태로 이루어지는데. 순간식 온수기(1)의 몸체로서 순간식 온수기가 적용되는 장소에 설치되며, 본체(100)의 상부로 입수관(110) 및 출수관(120)이 각각 관통 삽입되어 입수관(110)을 통해 원수가 본체(100)의 내부 공간으로 유입되어 채워지고, 출수관(120)을 통해 본체(100)에서 가열된 온수를 외부로 배출시킬 수 있다.It has an inlet pipe 110 through which raw water flows and an outlet pipe 120 through which hot water is discharged. The main body 100 is made in the form of a tank filled with raw water therein. As the body of the instantaneous water heater (1), it is installed in a place where the instantaneous water heater is applied, and the inlet pipe 110 and the outlet pipe 120 are inserted through the upper part of the main body 100, respectively, through the inlet pipe 110. Raw water flows into and fills the inner space of the main body 100, and hot water heated in the main body 100 can be discharged to the outside through the outlet pipe 120.
이때, 입수관(110)은 상수도 시설 등에 연결되어 원수가 공급되고, 출수관(120)은 온수가 사용되는 측에 온수를 배출 제공하도록 한다. 본체(100)는 온도의 측정 및 물 유무를 확인하여야 하며, 히터(300)의 작동을 제어할 수 있도록 하나 또는 다수의 바이메탈 스위치가 구비될 수 있고, 바람직하게 3개 정도의 바이메탈 스위치가 구비되어 온수 생성 및 원활한 온수 공급을 가능하게 한다. 본체(100)는 내부로 원수가 채워지는 탱크 형태의 공간이 마련되는데 분리판(130)에 의해 제1공간(s1) 및 제2공간(s2)으로 구획될 수 있고, 제1공간(s1)에 히터(300) 및 코일 관(200)이 위치되고, 제2공간(s2)에 하부관로(210)가 위치된다.At this time, the inlet pipe 110 is connected to a water supply facility to supply raw water, and the outlet pipe 120 discharges and provides hot water to the side where the hot water is used. The main body 100 should measure the temperature and check the presence of water, and may be provided with one or a plurality of bimetal switches to control the operation of the heater 300. Preferably, about three bimetal switches are provided. It enables hot water generation and smooth hot water supply. The main body 100 is provided with a tank-shaped space filled with raw water therein, which may be partitioned into a first space s1 and a second space s2 by the separator 130, and the first space s1 The heater 300 and the coil pipe 200 are positioned there, and the lower conduit 210 is positioned in the second space s2.
또한, 본체(100)는 온도를 측정하는 측과 물의 유무를 측정하는 측이 일체형으로 형성된 센서부재(140);를 더 포함한다.In addition, the body 100 further includes a sensor member 140 integrally formed with a side for measuring the temperature and a side for measuring the presence or absence of water.
센서부재(140)는 온도를 측정하는 서미스터(141)가 구비되고, 서미스터(141)에 미세 전류를 보내 본체(100)에 전류를 통전시키도록 하는 터미널(142)이 구비되고, 서미스터(141)를 이용해 본체(100) 내부의 온수에 대한 온도를 실시간 감시하고, 터미널(142)을 통해 미세 전류를 보냄으로 본체(100)에 통전되면서 본체(100) 내부의 물 유무를 지속적으로 감시할 수 있다.The sensor member 140 is provided with a thermistor 141 that measures the temperature, is provided with a terminal 142 that sends a minute current to the thermistor 141 to conduct current through the main body 100, and the thermistor 141 The temperature of the hot water inside the main body 100 is monitored in real time, and the presence or absence of water inside the main body 100 can be continuously monitored while energizing the main body 100 by sending a microcurrent through the terminal 142. .
이때, 센서부재(140)는 본체(100)에 결합되기 위한 플랜지를 구비할 수 있고, 통전이 이루어지지 않는 부분으로 실리콘 오링으로 통전 차단이 필요하다.At this time, the sensor member 140 may have a flange to be coupled to the main body 100, and it is necessary to cut off the current with a silicon O-ring as a part that is not energized.
또한, 상기 본체(100)는 하부관로(210)에서 토출되는 원수의 흐름을 차단하기 위한 분리판(130);을 더 포함한다.In addition, the main body 100 further includes a separator 130 for blocking the flow of raw water discharged from the lower conduit 210.
분리판(130)은 본체(100)의 내부 단면적에 대응한 형태의 판체로 본체(100)의 하부로 하부관로(210)와 히터(300) 사이로 분리판(130)이 삽입된 상태에서 히터(300)가 조립된 돌출 부분에 안착되어 조립될 수 있고, 분리판(130)에 의해 코일 관(200) 및 히터(300)가 구비된 제1공간(s1)과, 하부관로(210)가 위치되는 제2공간(s2)이 본체(100)의 내부에서 서로 구획되어 하부관로(210)를 제1공간(s1)에서 분리시킨다.The separation plate 130 is a plate body having a shape corresponding to the internal cross-sectional area of the main body 100, and the heater ( 300) can be seated and assembled on the assembled protruding part, and the first space s1 equipped with the coil pipe 200 and the heater 300 and the lower conduit 210 are located by the separator 130 The second space s2 is partitioned from each other inside the main body 100 to separate the lower conduit 210 from the first space s1.
또한, 상기 분리판(130)은 제2공간(s2)에서 제1공간(s1)으로 원수가 이동하도록 분리판(130)의 측방향으로 본체(100)의 내벽 사이에 형성된 이격유로(131);를 더 포함한다.In addition, the separation plate 130 is a separation passage 131 formed between the inner walls of the main body 100 in the lateral direction of the separation plate 130 so that raw water moves from the second space s2 to the first space s1 ; is further included.
이격유로(131)는 분리판(130)이 본체(100)의 내벽으로부터 이격되어 형성되며, 제2공간(s2)에 위치된 하부관로(210)에서 원수가 토출되면 이격유로(131)를 통해 원수를 제1공간(s1) 측으로 유입되게 하면서 원수를 코일 관(200)과 본체(100)의 내벽을 따라 상향 이동하도록 한다.The separation passage 131 is formed by separating the separation plate 130 from the inner wall of the main body 100, and when raw water is discharged from the lower conduit 210 located in the second space s2, through the separation passage 131. While allowing the raw water to flow into the first space s1, the raw water moves upward along the inner wall of the coil pipe 200 and the main body 100.
이 경우 이격유로(131)는 원수에 포함된 공기가 히터(300)가 구비된 측으로 유입되는 것을 차단하도록 하며, 히터(300)의 경우 원수에 포함된 공기에 접촉되는 시간에 비례하여 열평행계수가 달라져 파손될 수 있는바, 이격유로(131)를 이용한 원수의 공기흐름 차단 기능은 히터(300)의 파손을 방지할 수 있다.In this case, the separation passage 131 blocks the air contained in the raw water from flowing into the side where the heater 300 is provided, and in the case of the heater 300, the thermal parallelism coefficient is proportional to the time in contact with the air contained in the raw water Since the heater 300 may be damaged due to a change in the heater 300, the raw water air flow blocking function using the separation passage 131 may be prevented.
그리고, 상기 코일 관(200)은;And, the coil tube 200;
상기 입수관(110)에 연결되어 원수가 유입되며, 상기 본체(100)의 내부로 유입된 원수를 토출시키는 하부관로(210)를 갖는다. 코일 관(200)은 본체(100)의 내부로 히터(300)의 둘레에 비접촉으로 위치되게 삽입되며, 코일 관(200)의 상부는 본체(100)의 입수관(110)에 연결되어 원수가 코일 관(200)으로 유입될 수 있고, 코일 관(200)의 하부로 하부관로(210)가 마련되어 코일 관(200)으로 유입된 원수가 하부관로(210)로 토출되면서 본체(100)의 내부공간을 채우게 한다.It is connected to the water inlet pipe 110 and has a lower conduit 210 for discharging raw water introduced into the main body 100. The coil pipe 200 is inserted into the main body 100 to be positioned around the heater 300 in a non-contact manner, and the upper part of the coil pipe 200 is connected to the water inlet pipe 110 of the main body 100 so that the raw material is It can be introduced into the coil pipe 200, and the lower pipe 210 is provided at the bottom of the coil pipe 200, and raw water flowing into the coil pipe 200 is discharged to the lower pipe 210, and the inside of the main body 100 to fill the space
이때, 코일 관(200)은 히터(300)의 둘레로 비접촉으로 감기는 코일 형태로 이루어지며, 코일이 감기는 횟수를 조절할 수 있고, 코일 관(200)의 코일 부분은 본체(100)의 내벽에 근접하게 감겨 형성되어 코일 관(200)의 코일 부분으로 유입된 원수가 히터(300)에 의해 1차로 간접 가열되고, 코일 관(200)을 통과하여 본체(100)의 내부로 유입되어 채워진 원수가 히터(300)에 의해 2차로 직접 가열된다.At this time, the coil tube 200 is formed in the form of a coil that is wound around the heater 300 in a non-contact manner, and the number of times the coil is wound can be adjusted, and the coil part of the coil tube 200 is the inner wall of the main body 100. The raw water that is formed by being wound close to and introduced into the coil part of the coil pipe 200 is first indirectly heated by the heater 300, passes through the coil pipe 200 and flows into the inside of the main body 100 to fill the raw water is directly heated secondarily by the heater 300.
이 경우 원수가 코일 형태의 코일 관(200)에 의해 세라믹 히터 구조에서 1차 간접 및 2차 직접 방식으로 순간식 가열하면서 온수가 생성되어 온수의 토출유량이나 원수의 유입온도에 상관없이 필요한 온도로 물을 급가열 시키면서 온수를 원활하게 제공할 수 있다.In this case, raw water is instantaneously heated by the first indirect and second direct methods in the ceramic heater structure by the coil pipe 200 in the form of a coil, and hot water is generated to the required temperature regardless of the discharge flow rate of hot water or the inflow temperature of raw water. Hot water can be smoothly provided while rapidly heating water.
또한, 상기 코일 관(200)은 원둘레 방향으로 하나 이상 형성되는 토출홀(211)을 이용해 본체 내부로 유입되는 원수의 유체 유동 패턴을 형성하는 하부관로(210);를 더 포함한다.In addition, the coil pipe 200 further includes a lower conduit 210 forming a fluid flow pattern of raw water flowing into the main body using one or more discharge holes 211 formed in a circumferential direction.
하부관로(210)는 분리판(130)에 의해 구획된 제2공간(s2)의 안쪽에 원둘레 방향으로 연장 형성되고, 하부관로(210)의 원둘레 측방향으로 코일 관(200)의 코일 부분을 통과한 원수가 토출되면서 본체(100)의 내부로 원수를 유입되게 하는 하나 이상의 토출홀(211)이 형성되고, 일례로 하나 이상의 토출홀(211)은 하부관로(210)에 4개가 형성될 수 있다.The lower conduit 210 extends in the circumferential direction inside the second space s2 partitioned by the separator 130, and the coil portion of the coil pipe 200 extends in the circumferential direction of the lower conduit 210. As the passed raw water is discharged, one or more discharge holes 211 are formed to allow the raw water to flow into the body 100. For example, four or more discharge holes 211 may be formed in the lower pipe 210. there is.
즉, 하부관로(210)의 토출홀(211)을 이용해 원수를 토출시키면, 하나 이상 형성된 토출홀(211)을 통해 토출된 원수가 제2공간(s2)에서 미세 선회를 하면서 이격유로(131)를 통해 본체(100)의 제1공간(s1)으로 유입되며, 제1공간(s1)으로 유입된 원수는 코일 관(200)과 본체(100)의 내벽을 따라 상향 이동하는 유체 유동 패턴을 형성하여 히터(300)가 구비된 부분과 코일 관(200)의 원외 방향의 유속(수압)을 다르게 할 수 있다.That is, when the raw water is discharged using the discharge hole 211 of the lower conduit 210, the raw water discharged through one or more discharge holes 211 formed while making fine turns in the second space s2, the separation passage 131 Flows into the first space s1 of the body 100 through, and the raw water introduced into the first space s1 forms a fluid flow pattern that moves upward along the inner wall of the coil pipe 200 and the body 100. Thus, the flow velocity (water pressure) of the heater 300 and the out-of-field direction of the coil pipe 200 may be different.
이 경우 히터(300) 부분의 원수는 일정하게 유속이 유지되면서 원수에 대하여 충분한 가열을 가능하게 하고, 코일 관(200)의 원외 방향은 히터(300) 부분 대비 유속이 빠름으로 출수관(120)에 인접한 측으로 일정하게 열량이 흡수된 온수가 유입되면서 출수될 수 있어 본체(100)의 외벽에 대한 열량손실을 현저히 줄일 수 있고, 분리판(130), 하부관로(210) 및 하나 이상의 토출홀(211)을 이용한 유체 흐름을 통해 왜란 현상을 방지할 수 있다.In this case, the raw water of the heater 300 part enables sufficient heating for the raw water while maintaining a constant flow rate, and the out-of-field direction of the coil pipe 200 has a faster flow rate than the heater 300 portion, so that the water outlet pipe 120 Hot water with a constant amount of heat absorbed can be discharged while flowing in to the side adjacent to the main body 100, and the heat loss to the outer wall of the main body 100 can be significantly reduced, and the separator 130, the lower pipe 210 and one or more discharge holes ( 211) can prevent the disturbance phenomenon through the fluid flow.
그리고, 상기 히터(300)는;And, the heater 300;
상기 코일 관(200)에 유입된 물을 간접 가열하고, 상기 본체(100)에 토출된 물을 직접 가열하여 온수를 생성한다. 히터(300)는 본체(100)의 내부로 코일 관(200)의 안쪽에 비접촉으로 설치되며, 외부 전원 조작에 의해 발열되면서 본체(100)의 내부에 채워진 원수 및 코일 관(200)에 흐르는 원수를 각각 직접 및 간접 방식으로 가열하여 온수를 생성되게 한다.Water introduced into the coil pipe 200 is indirectly heated, and water discharged into the main body 100 is directly heated to generate hot water. The heater 300 is installed in a non-contact manner on the inside of the coil pipe 200 as the inside of the main body 100, and the raw water filled inside the main body 100 and the raw water flowing through the coil pipe 200 are heated by external power operation. are heated in a direct and indirect manner, respectively, to produce hot water.
이때, 히터(300)는 판 형태로 수직으로 세워져 마련되어 본체(100)의 내부공간을 균일하게 가열할 수 있도록 한다.At this time, the heater 300 is provided vertically in the form of a plate to uniformly heat the inner space of the main body 100 .
또한, 히터(300)는 세라믹 히터 또는 지르코늄 히터로 형성될 수 있고, 히터(300)는 하나 이상 일정 간격으로 배치된 것을 더 포함한다.In addition, the heater 300 may be formed of a ceramic heater or a zirconium heater, and one or more heaters 300 further include one or more disposed at regular intervals.
세라믹 히터 또는 지르코튬 히터로 제작된 하나 이상의 히터(300)는 판 부분이 서로 일정 간격을 갖으면서 일렬로 배치되어 마련되고, 히터(300)는 기본적으로 세라믹 히터로 제작한다.One or more heaters 300 made of ceramic heaters or zircotium heaters are arranged in a row with plate portions spaced apart from each other, and the heaters 300 are basically made of ceramic heaters.
이 경우 히터(300)를 하나 이상 증설하면 원수에 대한 가열효율이 향상되어 온수를 보다 빠르게 생성할 수 있으며, 세라믹 히터는 기존 시스 히터 대비 발열 속도가 8 ~ 10배 정도 빠른데 일례로 800℃의 온도로 도달하는 시간이 10초 ~ 30초 이내로 매우 빨라 열량 손실을 최소화하고 에너지 효율을 극대화할 수 있다.In this case, if one or more heaters 300 are added, the heating efficiency of the raw water is improved and hot water can be generated more quickly. It takes 10 to 30 seconds to reach , which is very fast, minimizing heat loss and maximizing energy efficiency.
또한, 히터(300)는 저전류 또는 고전류에 대응하여 두께가 결정되는 것을 더 포함한다.In addition, the heater 300 further includes determining a thickness corresponding to a low current or a high current.
저전류 또는 고전류에 대응하는 히터(300)의 두께는 저전류의 경우 2mm 고전류의 경우 3mm로 형성할 수 있으며, 적용되는 전류의 사양에 대응하여 세라믹으로 이루어진 히터(300)의 두께를 결정하면서 물속에서 세라믹 히터(300)를 원활하게 운용할 수 있도록 한다.The thickness of the heater 300 corresponding to the low current or high current may be formed to 2 mm in the case of low current and 3 mm in the case of high current. In order to smoothly operate the ceramic heater 300.
그리고, 상기 증기 모듈(400)은;And, the steam module 400;
온수 출수시 상기 히터를 통해 생성된 온수의 증기가 유입되어 증기압이 채워지면서 출수관을 통해 온수를 출수되게 하고, 온수 미출수시 증기압이 낮아지는 구조를 갖는다. 증기 모듈(400)은 본체(100)의 상부에 별도 독립된 공간을 갖도록 마련되어 증기 모듈(400)의 공간으로 온수의 증기가 채워질 수 있도록 하고, 증기 모듈(400)의 상부로 본체(100)의 출수관(120)이 관통되면서 연결되고, 본체(100)의 입수관(110) 역시 증기 모듈(400)의 상부로 연결되면서 본체(100)의 내부로 원수를 유입되게 하고, 본체(100)에서 생성된 온수를 출수관(120)을 이용해 배출 가능하게 한다.When the hot water is discharged, steam of the hot water generated through the heater is introduced and the vapor pressure is filled so that the hot water is discharged through the water discharge pipe, and when the hot water is not discharged, the vapor pressure is lowered. The steam module 400 is provided to have a separate and independent space above the main body 100 so that the steam of hot water can be filled in the space of the steam module 400, and the main body 100 is discharged through the upper part of the steam module 400. The pipe 120 is connected while penetrating, and the inlet pipe 110 of the main body 100 is also connected to the top of the steam module 400 to allow raw water to flow into the main body 100, and is generated in the main body 100 The hot water can be discharged through the outlet pipe 120.
또한, 상기 증기 모듈(400)은 온수 사용시 증기가 유입되면서 버큠브레이커(450)가 닫히며 증기압이 채워지고, 온수 미사용시 버큠브레이커(450)가 열리면서 증기압이 빠지는 챔버실(410);을 더 포함한다.In addition, the steam module 400 further includes a chamber chamber 410 in which steam is introduced when hot water is used, the vacuum breaker 450 is closed and the steam pressure is filled, and the vacuum breaker 450 is opened when the hot water is not used and the steam pressure is released. do.
챔버실(410)은 본체(100)의 상부로 독립적으로 형성된 공간이며 챔버실(410)의 내부로 출수관(120) 및 입수관(110)이 각각 관통되어 본체(100)에 연결되고, 챔버실(410)의 내부공간으로 본체(100)의 온수에서 증기가 유입되어 챔버실(410)의 내부를 증기로 채울 수 있다.The chamber chamber 410 is a space formed independently above the main body 100, and the water outlet pipe 120 and the water inlet pipe 110 pass through the inside of the chamber chamber 410 and are connected to the main body 100, and the chamber Steam from hot water of the main body 100 may be introduced into the inner space of the chamber 410 to fill the inside of the chamber 410 with steam.
한편, 챔버실(410)의 내부를 증기로 채우기 위해 챔버실(410)의 상부에는 버큠브레이커(450)가 구비되고, 챔버실(410)의 내부로 유입되는 증기가 적정 증기압을 갖으면 버큠브레이커(450)가 닫히면서 챔버실(410)의 내부로 증기가 채워지는데, 즉 온수를 출수하는 과정에서 챔버실(410)의 내부로 증기압이 채워지면서 출수관(120)을 통해 온수를 출수할 수 있도록 하고, 온수 미사용시 챔버실(410) 내의 증기압이 낮아지면서 버큠브레이커(450)가 열리고 증기가 물로 변형되면 챔버실(410)의 저부에 마련된 회수부(430)를 통해 물로 변한 증기가 모이면서 본체(100)의 내부로 다시 회수되도록 한다.On the other hand, in order to fill the inside of the chamber chamber 410 with steam, a vacuum breaker 450 is provided at the top of the chamber chamber 410, and when the steam introduced into the chamber chamber 410 has an appropriate vapor pressure, the vacuum breaker While the 450 is closed, steam is filled into the chamber chamber 410, that is, hot water can be discharged through the water outlet pipe 120 while the steam pressure is filled into the chamber chamber 410 in the process of dispensing hot water. When hot water is not used, when the vapor pressure in the chamber 410 is lowered, the vacuum breaker 450 is opened and the steam is transformed into water, the steam transformed into water is collected through the recovery unit 430 provided at the bottom of the chamber 410 To be recovered back to the inside of the main body (100).
여기서, 챔버실(410)은 입수관(110) 및 출수관(120)이 통과하며, 챔버실(410)을 통과하는 출수관(120)에는 온수의 증기를 챔버실(410)의 내부로 유입시키는 증기홀(420)이 형성된 것을 더 포함한다.Here, in the chamber chamber 410, the inlet pipe 110 and the outlet pipe 120 pass through, and steam of hot water flows into the chamber chamber 410 through the outlet pipe 120 passing through the chamber chamber 410. It further includes that the vapor hole 420 is formed.
증기홀(420)은 챔버실(410)의 내부로 관통 삽입된 출수관(120)의 일측에 작은 구멍으로 형성되면서 온수의 토출시 증기홀(420)을 통해 챔버실(410)을 증기압으로 채워 출수관(120)으로 온수를 직수압으로 출수할 수 있도록 한다.The steam hole 420 is formed as a small hole on one side of the water outlet pipe 120 inserted into the chamber chamber 410 and fills the chamber chamber 410 with steam pressure through the steam hole 420 when hot water is discharged. Hot water can be discharged through the water outlet pipe 120 with direct water pressure.
또한, 상기 증기 모듈(400)은 챔버실(410)에 증기가 유입되어 적정 증기압으로 채워지면 닫히고, 증기 유입이 차단되어 증기압이 낮아지면 열리는 버큠브레이커(450);를 더 포함한다.In addition, the steam module 400 further includes a vacuum breaker 450 that closes when steam flows into the chamber 410 and fills the chamber with an appropriate steam pressure, and opens when the steam pressure decreases due to blocking the steam inflow.
버큠브레이커(450)는 증기 모듈(400)의 상부에 돌출되면서 챔버실(410)의 내부공간으로 연결되어 챔버실(410)로 유입되는 증기압에 의해 닫히거나 증기압이 낮아지면 열리는 작동을 한다.The vacuum breaker 450 protrudes from the upper part of the steam module 400 and is connected to the inner space of the chamber chamber 410, and is closed by the steam pressure flowing into the chamber chamber 410 or opened when the steam pressure is lowered.
여기서, 버큠브레이커(450)는 챔버실(410) 측으로 관통되어 통하면서 증기압이 유입되는 공간을 갖는 하우징(451); 하우징(451)의 안쪽에서 증기압에 의해 상하 이동 작동하여 하우징(451)을 선택적으로 개폐시키는 작동구(452);로 구성된다.Here, the vacuum breaker 450 includes a housing 451 having a space through which vapor pressure is introduced while penetrating toward the chamber chamber 410; It consists of; an operating mechanism 452 that selectively opens and closes the housing 451 by moving up and down by steam pressure inside the housing 451 .
하우징(451)은 관체로 내부에 공간을 갖고, 하우징(451)의 하부 측이 챔버실(410)의 내부공간에 통하도록 연결되어 증기 모듈(400)에 버큠브레이커(450)가 설치되며, 하우징(451)은 증기압이 유입되는 입구 및 증기압이 배출되는 출구를 갖는다.The housing 451 is a pipe body and has a space inside, and the lower side of the housing 451 is connected to the inner space of the chamber chamber 410 so that the vacuum breaker 450 is installed in the steam module 400, the housing 451 has an inlet through which the vapor pressure is introduced and an outlet through which the vapor pressure is discharged.
작동구(452)는 하우징(451)의 내부에서 증기압에 의해 상하 이동하면서 하우징(451)의 출구를 선택적으로 막는 작동으로 개폐 기능을 하며, 작동구(452)의 자체 무게보다 증기압이 커지면 작동구(452)가 상향 이동하여 하우징(451)의 유로를 막아 닫고, 작동구(452)의 자체 무게보다 증기압이 낮으면 작동구(452)가 하향 이동하여 하우징(451)의 유로를 열게 된다.The actuator 452 moves up and down by the vapor pressure inside the housing 451 to open and close by selectively blocking the outlet of the housing 451, and when the vapor pressure is greater than the weight of the actuator 452, the actuator When the vapor pressure of the actuator 452 is lower than its own weight, the actuator 452 moves downward to open the passage of the housing 451.
이때, 작동구(452)에는 기밀 유지를 위한 오링이 구비되고, 하우징(451)의 유로 폐쇄를 원활하게 하는 스토퍼가 구비될 수 있으며, 작동구(452)의 자체 무게에 대응하여 챔버실(410)의 내부로 유입되는 증기압을 설정할 수 있는데, 기본적으로 1기압에 맞추어져 1기압이 넘으면 버큠브레이커(450)가 닫히면서 챔버실(410)의 내부로 증기가 채워질 수 있다.At this time, the actuator 452 may be provided with an O-ring for airtightness, a stopper for facilitating the closing of the passage of the housing 451, and the chamber chamber 410 corresponding to the weight of the actuator 452. ) It is possible to set the vapor pressure introduced into the inside, basically set to 1 atm, and when the pressure exceeds 1 atm, the vacuum breaker 450 closes and the inside of the chamber 410 can be filled with steam.
이 경우 증기 모듈(400)이 적용됨으로 증기압이 차오르면 버큠브레이커(450)가 적정 증기압에서 닫히면서 챔버실(410)의 내부로 증기를 채워 출수관(120)을 통해 온수가 직수압으로 출수되는 직수압 구조를 제공할 수 있다. 온수 미사용시 버큠브레이커(450)가 열려 챔버실(410) 내부의 증기압을 낮출 수 있고, 또한 챔버실(410)에 채워진 증기의 열에 의해 본체(100)의 상부 부분에 대한 열손실을 최소화할 수 있다.In this case, as the steam module 400 is applied, when the steam pressure rises, the vacuum breaker 450 closes at an appropriate steam pressure and fills the chamber chamber 410 with steam, so that hot water is discharged at direct water pressure through the water outlet pipe 120. A direct water pressure structure may be provided. When hot water is not used, the vacuum breaker 450 is opened to lower the vapor pressure inside the chamber chamber 410, and also minimizes heat loss to the upper part of the main body 100 due to the heat of the steam filled in the chamber chamber 410. there is.
또한, 챔버실(410)은 내부에 유입되는 증기에 의해 생성되는 물이 모이며, 모이는 물을 본체(100)로 회수되게 하는 회수부(430);를 더 포함한다.In addition, the chamber chamber 410 further includes a recovery unit 430 that collects water generated by steam introduced therein and recovers the collected water to the main body 100 .
회수부(430)는 챔버실(410)의 내부 하측 중앙 부분에 챔버실(410)의 바닥면 보다 낮은 집수 부분으로 형성되어 챔버실(410)에 유입된 증기에 의해 생성되는 물을 회수부(430)로 모이게 하며, 회수부(430)의 바닥 측에는 출수관(120)이 연결되고, 이렇게 연결된 출수관(120)의 저단에 유입홈(431)이 형성되면서 회수부(430)로 집수된 수분을 유입홈(431)을 통해 본체(100)로 회수되게 한다.The recovery unit 430 is formed as a water collecting portion lower than the bottom surface of the chamber chamber 410 at the inner lower central portion of the chamber chamber 410, and collects water generated by steam introduced into the chamber chamber 410 into the recovery unit ( 430), and the water outlet pipe 120 is connected to the bottom side of the recovery unit 430, and the inlet groove 431 is formed at the bottom of the water outlet pipe 120 connected in this way, so that the water collected in the recovery unit 430 To be recovered to the main body 100 through the inlet groove 431.
이 경우 회수부(430)는 챔버실(410)의 내부로 물이 잔류하는 것을 방지하여 증기로 가열되는 공간을 원활하게 유지하도록 하고, 증기에 의해 챔버실(410)이 내부로 발생하는 물을 아주 간편하게 본체(100)로 회수시킬 수 있어 구조가 매우 효율적이다.In this case, the recovery unit 430 prevents water from remaining inside the chamber chamber 410 to smoothly maintain a space heated by steam, and removes water generated inside the chamber chamber 410 by steam. It can be recovered to the main body 100 very easily, so the structure is very efficient.
이하, 본 발명에 따른 순간식 온수기의 실시 예시를 도 5 내지 도 6을 참고로 구체적으로 설명한다.Hereinafter, an embodiment of an instantaneous water heater according to the present invention will be described in detail with reference to FIGS. 5 and 6 .
일례로, 도 5에서 도시한 바와 같이, 전술한 구조로 이루어진 순간식 온수기(1)는 하부관로(210)의 측방향으로 형성된 토출홀(211)을 통해 원수를 토출시키면 4개의 토출홀(211)의 비균일 토출량에 의해 미세 선회가 발생하며, 4개의 토출홀(211)을 통해 토출된 원수가 미세 선회하면서 이격유로(131)를 통해 제2공간(s2)에서 제1공간(s1)으로 유입되어 본체(100)의 내벽을 유동장을 형성한다.For example, as shown in FIG. 5, when the instantaneous water heater 1 having the above-described structure discharges raw water through the discharge holes 211 formed in the lateral direction of the lower pipe 210, four discharge holes 211 are formed. ) Due to the non-uniform discharge amount, fine turning occurs, and the raw water discharged through the four discharge holes 211 moves from the second space s2 to the first space s1 through the separation passage 131 while making fine turns. It flows in to form a flow field on the inner wall of the main body 100.
이때, 본체(100)의 내벽을 따라 유동하는 원수를 코일 관(200)의 원외 방향으로 출수관(120) 측으로 모이게 된다.(좌) 또한 4개의 토출홀(211)을 통해 토출된 원수가 코일 관(200)을 따라 유동하는 벡터장을 확인할 수 있다.(우)At this time, the raw water flowing along the inner wall of the main body 100 is gathered toward the outlet pipe 120 in the outward direction of the coil pipe 200. (Left) Also, the raw water discharged through the four discharge holes 211 is a coil A vector field flowing along the tube 200 can be confirmed. (Right)
또한, 도 6에서 도시한 바와 같이, 순간식 온수기(1)는 유량율 3L/min, 4.2kW 전력량을 사용하는 경우 30초까지 진행되는 비정상 상태 유로관 및 본체에서 형성되는 온도 및 속도 분포 패턴을 나타낸다. 미세 유동에 따라 열 대류 전달이되고, 주입량에 따라 좌우되는 히터 주변 부위의 온도 상승과 동시에 토출을 나타낸다. 속도는 최대 0.6m/s scale 조정, 온도는 최대 400℃ scale 범위 조정 후 가시화하였다. Ansys CFX 유체해석 사용함.In addition, as shown in FIG. 6 , the instantaneous water heater 1 shows the temperature and speed distribution patterns formed in the flow pipe and main body in an abnormal state for up to 30 seconds when a flow rate of 3 L/min and 4.2 kW power are used. indicate Convective transfer of heat is carried out according to the micro-flow, and the temperature rises around the heater, which depends on the amount of injection, and discharge occurs simultaneously. The speed was adjusted to the maximum 0.6m/s scale, and the temperature was visualized after adjusting the maximum 400℃ scale range. Ansys CFX fluid analysis is used.
이상 설명한 바와 같이. 본 발명은 특정의 바람직한 실시 예를 예시한 설명과 도면으로 표현하였으나, 여기서 사용하는 용어들은 본 발명을 용이하게 설명하기 위함이며, 이 용어들에 대한 의미 한정이나, 특허청구범위에 기재된 범위를 제한하기 위함이 아니며,as explained above. Although the present invention has been expressed in descriptions and drawings illustrating specific preferred embodiments, the terms used herein are intended to easily describe the present invention, limit the meaning of these terms, or limit the scope described in the claims. It is not intended to
본 발명은 상기한 실시 예에 따른 특허청구범위에 의해 나타난 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경 및 개조, 수정 등이 가능할 수 있음을 누구나 쉽게 알 수 있을 것이다.The present invention can be variously changed, modified, modified, etc. by those skilled in the art to which the present invention pertains within the scope without departing from the spirit and scope of the invention indicated by the claims according to the above embodiments. Anyone can easily see that it is possible.

Claims (11)

  1. 원수가 유입되는 입수관 및 온수가 배출되는 출수관을 갖는 본체와;A main body having an inlet pipe through which raw water flows and an outlet pipe through which hot water is discharged;
    상기 입수관에 연결되어 원수가 유입되며, 상기 본체의 내부로 유입된 원수를 토출시키는 하부관로를 갖는 코일 관과;A coil pipe connected to the inlet pipe, through which raw water is introduced, and having a lower pipe through which the raw water introduced into the main body is discharged;
    상기 코일 관에 유입된 물을 1차로 간접 가열하고, 상기 본체에 토출된 물을 2차로 직접 가열하여 온수를 생성하는 히터와;a heater that firstly indirectly heats the water introduced into the coil pipe and secondarily directly heats the water discharged into the main body to generate hot water;
    온수 출수시 상기 히터를 통해 생성된 온수의 증기가 유입되어 증기압이 채워지면서 출수관을 통해 온수를 출수되게 하고, 온수 미출수시 증기압이 낮아지는 증기 모듈;을 포함하여 구성된 것을 특징으로 하는 순간식 온수기.An instantaneous water heater characterized in that it is configured to include a; steam module that allows hot water to be discharged through the water outlet pipe while hot water vapor generated through the heater flows in when hot water is discharged, and the vapor pressure is lowered when hot water is not discharged. .
  2. 제1항에 있어서,According to claim 1,
    상기 증기 모듈은 온수 사용시 증기가 유입되면서 버큠브레이커가 닫히며 증기압이 채워지고, 온수 미사용시 버큠브레이커가 열리면서 증기압이 빠지는 챔버실;을 더 포함한 순간식 온수기.The steam module further includes a chamber chamber in which steam is introduced when hot water is used, the vacuum breaker is closed and the steam pressure is filled, and the vacuum breaker is opened when the hot water is not used and the steam pressure is released.
  3. 제2항에 있어서,According to claim 2,
    상기 챔버실은 입수관 및 출수관이 통과하며, 챔버실을 통과하는 출수관에는 온수의 증기를 챔버실의 내부로 유입시키는 증기홀이 형성된 것을 더 포함한 순간식 온수기.The chamber chamber has an inlet pipe and a water outlet pipe passing therethrough, and a steam hole is formed in the outlet pipe passing through the chamber chamber to allow steam of hot water to flow into the chamber chamber.
  4. 제2항에 있어서,According to claim 2,
    상기 챔버실은 내부에 유입되는 증기에 의해 생성되는 물이 모이며, 모이는 물을 본체로 회수되게 하는 회수부;를 더 포함한다.The chamber chamber further includes a recovery unit for collecting water generated by steam introduced therein and recovering the collected water to the main body.
  5. 제1항에 있어서,According to claim 1,
    상기 증기 모듈은 챔버실에 증기가 유입되어 적정 증기압으로 채워지면 닫히고, 증기 유입이 차단되어 증기압이 낮아지면 열리는 버큠브레이커;를 더 포함한 순간식 온수기.The steam module further includes a vacuum breaker that closes when steam flows into the chamber and fills the chamber with an appropriate steam pressure, and opens when the steam pressure decreases due to blocking the steam inflow.
  6. 제1항에 있어서,According to claim 1,
    상기 본체는 하부관로에서 토출되는 원수의 흐름을 차단하는 분리판;을 더 포함한 순간식 온수기.The main body further includes a separation plate for blocking the flow of raw water discharged from the lower conduit.
  7. 제6항에 있어서,According to claim 6,
    상기 분리판은 제2공간에서 제1공간으로 원수가 이동하도록 분리판의 측방향으로 본체 내벽 사이에 형성된 이격유로;를 더 포함한 순간식 온수기.The separation plate further includes a separation passage formed between inner walls of the main body in a lateral direction of the separation plate so that raw water moves from the second space to the first space.
  8. 제1항에 있어서,According to claim 1,
    상기 코일 관은 원둘레 방향으로 하나 이상 형성되는 토출홀을 이용해 본체 내부로 원수를 토출시켜 본체의 내부로 흐르는 원수의 유체 유동 패턴을 형성하는 하부관로;를 더 포함한 순간식 온수기.The coil pipe further includes a lower pipe for discharging raw water into the main body using one or more discharge holes formed in a circumferential direction to form a fluid flow pattern of the raw water flowing into the main body.
  9. 제8항에 있어서,According to claim 8,
    상기 하부관로는 분리판에 의해 구획된 제2공간의 안쪽에 원둘레 방향으로 연장 형성되는 것을 더 포함한 순간식 온수기.The instantaneous water heater further comprising the lower conduit extending in a circumferential direction inside the second space partitioned by the partition plate.
  10. 제1항에 있어서,According to claim 1,
    상기 히터는 하나 이상 일정 간격으로 배치되고, 저전류 또는 고전류에 대응하여 두께가 결정되는 것을 더 포함한 순간식 온수기.The instantaneous water heater further comprising one or more heaters disposed at regular intervals and having a thickness determined corresponding to a low current or a high current.
  11. 제1항에 있어서,According to claim 1,
    상기 본체는 온도를 측정하는 측과 물의 유무를 측정하는 측이 일체형으로 형성된 센서부재;를 더 포함한 순간식 온수기.The main body further includes a sensor member integrally formed with a side for measuring temperature and a side for measuring the presence or absence of water.
PCT/KR2022/005388 2021-10-19 2022-04-14 Instantaneous water heater WO2023068465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0138995 2021-10-19
KR1020210138995A KR102626188B1 (en) 2021-10-19 2021-10-19 Water Heater

Publications (1)

Publication Number Publication Date
WO2023068465A1 true WO2023068465A1 (en) 2023-04-27

Family

ID=86059317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005388 WO2023068465A1 (en) 2021-10-19 2022-04-14 Instantaneous water heater

Country Status (2)

Country Link
KR (1) KR102626188B1 (en)
WO (1) WO2023068465A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241772A (en) * 2000-02-28 2001-09-07 Energy Support Corp Thermal storage apparatus
KR20080079851A (en) * 2007-02-28 2008-09-02 주식회사 케리에이 Boiler for hot water circulation mat
KR20120062958A (en) * 2010-12-07 2012-06-15 안기장 A boiled water tank for a cold and hot water dispense
US20130112155A1 (en) * 2011-11-08 2013-05-09 Ayman Abdel-Rehim Water heater and method of operating
KR20140112765A (en) * 2013-03-14 2014-09-24 윤상기 Water Heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200439061Y1 (en) * 2006-11-21 2008-03-18 이정임 Electric water heater
KR20150046539A (en) 2013-10-22 2015-04-30 오세천 Sterilizing water feeding device for infant milk powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241772A (en) * 2000-02-28 2001-09-07 Energy Support Corp Thermal storage apparatus
KR20080079851A (en) * 2007-02-28 2008-09-02 주식회사 케리에이 Boiler for hot water circulation mat
KR20120062958A (en) * 2010-12-07 2012-06-15 안기장 A boiled water tank for a cold and hot water dispense
US20130112155A1 (en) * 2011-11-08 2013-05-09 Ayman Abdel-Rehim Water heater and method of operating
KR20140112765A (en) * 2013-03-14 2014-09-24 윤상기 Water Heater

Also Published As

Publication number Publication date
KR20230055522A (en) 2023-04-26
KR102626188B1 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
KR101357666B1 (en) Condensation heat exchanger including 2 primary bundles and a secondary bundle
WO2018026160A1 (en) High-capacity electric water heater
WO2014142561A1 (en) Instant water heater
WO2009096729A2 (en) Multilateral continuous uniform rapid cooling device of double cooling structure
WO2017111364A1 (en) Combined heating and hot water boiler, and control method therefor
WO2015194785A1 (en) Hot-water storage type condensing boiler
WO2011068313A2 (en) Pipe connecting structure of water heater
WO2023068465A1 (en) Instantaneous water heater
WO2018230817A1 (en) Electric water heater having instantaneous hot water storage-type structure
WO2012024950A1 (en) Steam generation device and household electric steam box
WO2019078473A1 (en) Storage type electric water heater with hot air generating function
WO2011043513A1 (en) Outer-wall cooling apparatus of reactor vessel
JP5165605B2 (en) Latent heat recovery type water heater
WO2022169303A1 (en) Hot water generation apparatus, water purifier comprising same, and method for controlling hot water generation apparatus
CN114606729A (en) Water heating device
WO2019168225A1 (en) Hot-water storage type boiler having vortex guide portion
WO2019172644A1 (en) Bidet hot water system comprising flow channel guide tank, and hot water mode method using same
TWI740269B (en) On-demand heater and temperature control system and related process
WO2016143924A1 (en) Solar hot water system
WO2020145454A1 (en) Storage water heater having instantaneous heating function
CN208887088U (en) A kind of electric heater
WO2011052874A1 (en) Heating apparatus
JP2012229896A (en) Combustion appliance
CN109099577A (en) A kind of electric heater
KR20210014519A (en) Condensate water trap for gas furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22883696

Country of ref document: EP

Kind code of ref document: A1