WO2011052874A1 - Heating apparatus - Google Patents

Heating apparatus Download PDF

Info

Publication number
WO2011052874A1
WO2011052874A1 PCT/KR2010/004449 KR2010004449W WO2011052874A1 WO 2011052874 A1 WO2011052874 A1 WO 2011052874A1 KR 2010004449 W KR2010004449 W KR 2010004449W WO 2011052874 A1 WO2011052874 A1 WO 2011052874A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
ceramic plate
housing
water
heating
Prior art date
Application number
PCT/KR2010/004449
Other languages
French (fr)
Korean (ko)
Inventor
박만욱
박성원
Original Assignee
웅진코웨이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090104563A external-priority patent/KR100982702B1/en
Application filed by 웅진코웨이주식회사 filed Critical 웅진코웨이주식회사
Priority to US12/922,642 priority Critical patent/US8687952B2/en
Publication of WO2011052874A1 publication Critical patent/WO2011052874A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply

Definitions

  • the present invention relates to a heating apparatus having a ceramic heater.
  • Fig. 1A is a sectional view of a heating apparatus with a conventional ceramic heater
  • Fig. 1B is a perspective view of a conventional ceramic heater.
  • the heating device 1 includes a housing 10, a ceramic heater 20 mounted in the housing 10, and a ceramic heater 20 in the housing 10. It comprises a fixing member 30 for fixing.
  • the housing 10 and the ceramic heater 20 are formed in a cylindrical shape and are usually disposed coaxially.
  • the fixing member 30 is provided with a water inlet communicating with the internal space of the ceramic heater 20, and a water outlet is formed in the housing 10. Therefore, the water entering the inlet flows through the outer space of the ceramic heater 20 after passing through the inner space of the ceramic heater 20 and is discharged through the outlet.
  • water flows through the inner space of the ceramic heater 20 it is heated in contact with the inner wall of the ceramic heater 20, and when water flows through the outer space of the ceramic heater 20, it is heated in contact with the outer wall of the ceramic heater 20. The heated water is discharged to the outlet.
  • the heating wire 22 installed inside the conventional ceramic heater 20 is disposed close to the outer wall side of the ceramic heater 20, heating by the inner wall of the ceramic heater 20 is performed. There is little effect and it is mainly heated only by the outer wall. In this way, since the water obtained in the heating device 1 is mainly heated when flowing through the external space of the ceramic heater 20, the actual heating time becomes very short, and thus the heating wire of the ceramic heater 20 in order to obtain hot water of high temperature. It is not desirable for energy efficiency because high power must be applied to (22).
  • Korean Patent No. 0880773 proposes a fluid heating device that improves heating efficiency. Looking at a specific configuration thereof, a flat ceramic heater 102 having a terminal lead wire 101 for power supply is disclosed. ), And a gap in which the fluid to be heated is moved in the direction of the ceramic heater 102 to the upper and lower sides of the ceramic heater 102 and has a horizontal moving fluid path so that the fluid heated by the ceramic heater 102 is discharged.
  • the flow path forming plate 106 coupled with the fluid passage so that the fluid on the horizontal moving fluid path can be vertically moved to the fluid path of the next layer, and the uppermost separation plate 105
  • An upper cover 111 coupled with an inlet hole 110 for supplying a fluid for heating, and an outlet hole 112 for discharging the heated fluid to an outer surface of the lowermost partition plate 105.
  • the lower cover 113 is to be characterized in that the finish is configured.
  • the plate-shaped ceramic heater 102 is provided, and the spacer plate 105 and the flow path forming plate 106 are disposed so that flow paths are formed above and below the ceramic heater 102, Water introduced through the inlet hole 110 is heated while being in contact with the upper and lower surfaces of the ceramic heater 120 and is discharged through the outlet hole 112. According to such a configuration, since heat is transferred by contacting water with a wide surface of the flat plate ceramic heater 102, heating efficiency may be improved.
  • FIG. 2 shows the flow path of the fluid heating device configured as described above.
  • water introduced from the upper inlet hole 110 exits the lower outlet hole 112 through the flat ceramic heater 102, and the water of the ceramic heater 102.
  • the ceramic heater 102 When the upper surface flows, the ceramic heater 102 is always in contact with the heater, but when the lower surface of the ceramic heater 102 flows, the ceramic heater 102 does not come into contact with the ceramic heater 102 (see the section marked with "O").
  • the inflow of water is high and the water pressure is high, the water may flow through the entire flow path, but if the inflow is low or the water pressure is low, the water cannot be guaranteed to flow through the entire flow path, and if not, it is indicated as "O".
  • flowing water does not come into contact with the ceramic heater 102.
  • the document proposes to increase the aspect ratio of the cross section of the heating flow path in order to prevent this.
  • the width of the heating flow path is three times larger than the height of the heating flow path (i.e. flat). This configuration increases the heating area per unit volume, increases the heating efficiency and speeds up the flow, thereby increasing air absorption and The opportunity for bubble growth can be eliminated, thereby preventing thermal shock of the ceramic heater 102.
  • the above document discloses the use of a plurality of ceramic heaters 102, but the heat generation amount of the plurality of ceramic heaters 102 is the same. There is.
  • the present invention has been devised to solve the problems of the prior art, by which the water is heated in contact with the front surface of the ceramic heater to increase the heat transfer efficiency, to prevent the thermal shock due to the generation of bubbles, to provide a heating device capable of precise temperature control
  • the water is heated in contact with the front surface of the ceramic heater to increase the heat transfer efficiency, to prevent the thermal shock due to the generation of bubbles, to provide a heating device capable of precise temperature control
  • a ceramic heater having a plurality of plate-shaped ceramic plate, and a housing on which the ceramic heater is mounted and formed with an inlet and an outlet;
  • the ceramic plates 122 and 124 are mounted in the housing so that bubbles generated in the fluid by the heating of the ceramic plates 122 and 124 rise to the edges of the ceramic plate. It is arranged upright inside the 140 and side by side, the outlet 144 provides a heating device formed on the upper side of the housing 140.
  • the ceramic heater includes a first ceramic plate disposed on the inlet side and a second ceramic plate disposed on the outlet side, and wherein the first ceramic plate and the second ceramic plate A partition is installed in between.
  • the first ceramic plate and the second ceramic plate is attached to one end of the housing and spaced apart from the other end, the partition wall is attached to the other end of the housing and The wealth is spaced apart.
  • a flow path is formed wider at the outlet side than at the inlet side.
  • a gap is formed between an upper end of the ceramic plate and the housing.
  • the outlet is formed higher than the inlet.
  • the outlet side is inclined so as to be disposed upward so that bubbles generated in the fluid by heating are easily discharged.
  • an area of the ceramic plate is formed larger than the cross-sectional area of the flow path.
  • a heating wire provided inside the ceramic plate is disposed at the center in the thickness direction of the ceramic plate.
  • power applied to the first ceramic plate and the second ceramic plate is different.
  • the power applied to the second ceramic plate is greater than the power applied to the first ceramic plate.
  • a fixed power is applied to the first ceramic plate and a variable power is applied to the second ceramic plate.
  • Fig. 1A is a sectional view of a heating apparatus with a conventional ceramic heater
  • Fig. 1B is a perspective view of a conventional ceramic heater.
  • FIG. 2 is a perspective view of a heating apparatus with another conventional ceramic heater.
  • FIG 3 is a perspective view of a ceramic heater according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the heating apparatus with the ceramic heater according to the embodiment of the present invention seen from above.
  • FIG. 5 is a cross-sectional view of the heating apparatus with the ceramic heater according to the embodiment of the present invention seen from the front.
  • FIG. 6 is a cross-sectional side view of a heating apparatus with a ceramic heater according to an embodiment of the present invention.
  • FIG. 7 is a sectional side view of a heating apparatus according to another embodiment of the present invention.
  • FIG 3 is a perspective view of a ceramic heater 120 according to an embodiment of the present invention.
  • the ceramic heater 120 includes a first ceramic plate 122 and a second ceramic plate 124 disposed in parallel.
  • the first ceramic plate 122 and the second ceramic plate 124 are formed in the same plate shape.
  • Hot wires 123 are disposed in the ceramic plates 122 and 124.
  • the heating wire 123 (not shown) is centered in the thickness direction of the ceramic plates 122 and 124 so that heat emitted from the heating wire 123 may be uniformly transmitted to both surfaces of the ceramic plates 122 and 124. Is placed.
  • a fixing member 126 is installed at one side of the ceramic heater 120 so that two ceramic plates 122 and 124 may be fixed to the fixing member 126.
  • the fixing member 126 may be coupled to one end of the housing 140 to be described later.
  • Terminals 122a and 124a for supplying power to the ceramic plates 122 and 124 are provided on the opposite side of the fixing member 126 to which the ceramic plates 122 and 124 are fixed.
  • the terminals 122a and 124a may be connected to a controller (not shown), respectively, to control power supplied thereto.
  • the thickness of the ceramic plates 122 and 124 When the thickness of the ceramic plates 122 and 124 is thin, the heat transfer rate is fast and the heating time is short, so that it is possible to heat to the target temperature in a short time, but the mechanical strength becomes weak with the temperature change, making it difficult to commercialize. On the contrary, when the thickness of the ceramic plates 122 and 124 is thick, the heat transfer rate is slow and the heating time is delayed, and when the power is cut off, post-heating may occur due to latent heat due to the temperature saturated on the heater surface. Therefore, the experiments in consideration of such performance and safety, it was found that the thickness of the ceramic plate (122, 124) is suitable to design about 1 ⁇ 3mm.
  • the gap between the ceramic plates 122 and 124 is also an important factor. If the gap between the two plates 122 and 124 is too narrow, the amount of fluid flowing between the plates is too small to obtain a sufficient amount of hot water. No problem may arise due to temperature rise. On the other hand, if the spacing between the plates 122 and 124 is too wide, the amount of fluid increases, so that the amount of heat is insufficient to satisfy the performance. Therefore, experiments in consideration of the performance and safety, it was found that the distance between the two plates (122, 124) is preferably maintained at 2 ⁇ 15mm.
  • FIG. 4 is a cross-sectional view of a heating device 100 having a ceramic heater 120 according to an embodiment of the present invention
  • FIG. 5 is a heating device having a ceramic heater 120 according to an embodiment of the present invention.
  • (100) is a sectional view seen from the front
  • FIG. 6 is a sectional view seen from the side of the heating apparatus 100 provided with the ceramic heater 120 which concerns on embodiment of this invention.
  • the heating device 100 includes a ceramic heater 120, a housing 140, a cap member 160, and a bracket 180.
  • the ceramic plates 122 and 124 are fixedly disposed inside the housing 140.
  • One end of the housing 140 may also be coupled to the bracket 180.
  • the ceramic plates 122 and 124 are formed shorter than the length of the housing 140. Therefore, when the ceramic plates 122 and 124 are installed inside the housing 140, the ends of the ceramic plates 122 and 124 may be spaced apart from the cap member 160, which will be described later, so that water may flow between the spaced apart portions. .
  • the cap member 160 is coupled to the other end of the housing 140.
  • the partition member 162 is attached to the cap member 160 so that the partition member 162 is disposed between the two ceramic plates 122 and 124 when the cap member 160 is coupled to the other end of the housing 140.
  • the partition wall 162 extends in the longitudinal direction of the housing 140 to divide the space between the two ceramic plates 122 and 124.
  • the partition wall 162 is formed to be shorter than the length of the housing 140, so that the partition wall 162 is spaced apart from one end of the housing 140 when the partition wall 162 is installed inside the housing 140. Thus, water can flow between the spaced apart.
  • the ceramic plates 122 and 124 are installed upright in the housing 140 and side by side. That is, the plate-shaped ceramic plates 122 and 124 are installed vertically, so that bubbles generated by the heating of the ceramic plates 122 and 124 can rise upward.
  • the inlet 142 and the outlet 144 are formed in the housing 140.
  • the inlet 142 is formed at the side where the first ceramic plate 122 is disposed, and the outlet 144 is the second ceramic plate 124. Is formed on the side where it is disposed.
  • the inlet 142 and the outlet 144 are provided at one end of the housing 140, that is, at the side to which the fixing member 126 of the ceramic plates 122 and 124 is coupled.
  • the inlet 142 and the outlet 144 is formed on the upper side of the housing 140. In particular, since the outlet 144 is disposed at the upper portion, the heated water in the housing 140 may be pushed upward and discharged.
  • the area of the ceramic plates 122 and 124 is larger than the cross-sectional area of a heating flow path.
  • S the area of the ceramic plates 122 and 124
  • P the cross-sectional area of the heating channel
  • P the cross-sectional area of the heating channel
  • the housing 140 At one end of the housing 140, water is diverted through the spaced space between the fixing member 126 and the partition wall 162. The redirected water flows through the space between the second ceramic plate 124 and the partition wall 162. At this time, water flows from one end of the housing 140 toward the other end (hereinafter referred to as "euro 3"). At the other end of the housing 140, water is diverted through the spaced space between the second ceramic plate 124 and the cap member 160. The redirected water flows between the second ceramic plate 124 and the other side of the housing 140. At this time, water flows toward one end from the other end of the housing 140 (hereinafter referred to as "euro 4"). Water is discharged to the outside through the water outlet 144 at the other end of the housing 140.
  • water is heated by the first ceramic plate 122. Specifically, it is heated by one surface of the first ceramic plate 122 in the flow path 1, and heated by the other surface of the first ceramic plate 122 in the flow path 2. Both surfaces of the first ceramic plate 122 emit the same heat, so water in the flow path 1 and the flow path 2 is heated by the same amount of heat.
  • the water is heated by the second ceramic plate 124 in the flow path 3 and the flow path 4. Specifically, the flow path 3 is heated by one surface of the second ceramic plate 124, and in the flow path 4 is heated by the other surface of the second ceramic plate 124. Since both surfaces of the second ceramic plate 124 emit the same heat, the water is heated by the same amount of heat in the flow path 3 and the flow path 4.
  • the water flowing into the inlet 142 is heated in contact with all surfaces of the two ceramic plates 122 and 124 while flowing through the channels 1, 2, 3, and 4, so that heat transfer is efficiently performed without wasting heat. That is, since the ceramic plates 122 and 144 are installed upright in the vertical direction, and the outlet port 144 is disposed at the upper portion thereof, the water may be discharged while being pushed upwards without being drained out immediately. Thus, the water receives heat while contacting all surfaces of the ceramic plates 122 and 124.
  • the width of the flow path was wider from the inlet 142 toward the outlet 144. 4 and 5, when the width of the flow path 1 is t1, the width of the flow path 2 is t2, the width of the flow path 3 is t3 and the width of the flow path 4 is t4, the relationship of t1 ⁇ t2 ⁇ t3 ⁇ t4 is Hold. In this way, by forming a wider flow path from the inlet 142 toward the outlet 144, the flow rate of the initial inlet is increased to suppress bubble growth (aggregation of fine bubbles), and the generated bubbles can be discharged at a high flow rate. have.
  • a gap G may be formed between the upper ends of the ceramic plates 122 and 124 and the housing 140 to easily discharge the generated bubbles.
  • the bubble exits to the higher side (that is, the outlet 144 side) to prevent local overheating of the ceramic heater by the bubble. You can prevent it.
  • the heating device 100 may be installed to be inclined at a predetermined angle. That is, when the heating device 100 is installed to be inclined upwardly, the water outlet 144 may be released to the water outlet 144 even if bubbles are generated inside the heating device 100, thereby preventing the problem of thermal shock. It is. Although not shown in the drawing, the water outlet 144 must be opened in the opposite direction as in FIG. 6, that is, upwards (left upward in the drawing) so that the bubbles can easily escape upwards.
  • the ceramic plates 122 and 124 are disposed in the housing 140, and the water introduced into the inlet 142 is the housing 140 and the ceramic plate.
  • the water flows through the flow paths 1, 2, 2, 3, and 4 formed by the 122, 124, and the partition walls 162, and is discharged to the water outlet 144.
  • the ceramic plates 122 and 124 are arranged upright side by side in the housing 140, as shown in Figs. 4 and 5, the fluid (that is, water) is the flow path 1, flow path 2, flow path 3, flow path 4 As it flows, bubbles generated in the fluid by the heating of the ceramic plates 122 and 124 rise to the upper side of the edges of the ceramic plates 122 and 124 (ie, the upper side in the region A of FIG. 3).
  • breakage of the ceramic plates 122 and 124 is caused by thermal shock.
  • thermal shock When thermal air is not water but heat exchanges with the ceramic plates 122 and 124, the heat exchange is smaller than that of the ceramic plates 122 and 124 which exchange heat with the surrounding water. A portion of the ceramic plates 122 and 124 that exchange heat with air is overheated to generate a temperature difference. The shock applied by the temperature difference is called a thermal shock.
  • the ceramic plates 122 and 124 are disposed upright inside the housing, and since the bubbles are small in specific gravity compared to water, the bubbles are directed to the upper side of the edges of the ceramic plates 122 and 124. Will rise.
  • the heating wires 123 (not shown) are arranged at the edges of the ceramic plates 122 and 124. Since it comes into contact with the region A in which the heating wire 123 (not shown) is disposed, the thermal shock applied to the ceramic plates 122 and 124 by the bubbles may be reduced.
  • the power applied to the second ceramic plate 124 disposed on the outlet port 144 is greater than the power applied to the first ceramic plate 122 disposed on the inlet port 142.
  • 300 watts of power may be applied to the first ceramic plate 122
  • 700 watts of power may be applied to the second ceramic plate 124.
  • relatively low heat is generated in the first ceramic plate 122 on the inlet 142 side to heat the water to a certain level, and then, when passing through the second ceramic plate 124, the set temperature is maintained. The water may be heated to be finally discharged to the outlet 144.
  • the first ceramic plate 122 allows a small range of temperature adjustment
  • the second ceramic plate 124 allows a large range of temperature adjustment, thereby efficiently transferring heat and reducing power consumption. It is.
  • the second ceramic plate 124 may be configured by applying variable power. Such power control is in charge of the control unit.

Abstract

Provided is a heating apparatus comprising: a ceramic heater having a plurality of plate-shaped ceramic plates; and a housing in which the ceramic heater is installed and in which a water inlet and water outlet are defined, wherein in order to enable bubbles, formed in a fluid by means of heating by the ceramic plates (122, 124), to rise at edges of the ceramic plates when the fluid flows through a passage formed along the ceramic plates (122, 124), the ceramic plates (122, 124) are disposed in parallel and vertically upright within the housing (140), and the water outlet (144) is defined at the top of the housing (140).

Description

가열 장치Heating device
본 발명은 세라믹 히터를 구비한 가열 장치에 관한 것이다.The present invention relates to a heating apparatus having a ceramic heater.
도 1의 (a)는 종래의 세라믹 히터를 구비한 가열 장치의 단면도이고, 도 1의 (b)는 종래의 세라믹 히터의 사시도이다.Fig. 1A is a sectional view of a heating apparatus with a conventional ceramic heater, and Fig. 1B is a perspective view of a conventional ceramic heater.
도 1의 (a),(b)를 참조하면, 가열 장치(1)는 하우징(10), 하우징(10) 내에 장착되는 세라믹 히터(20), 및 세라믹 히터(20)를 하우징(10)에 고정하는 고정 부재(30)를 포함하여 이루어진다.Referring to FIGS. 1A and 1B, the heating device 1 includes a housing 10, a ceramic heater 20 mounted in the housing 10, and a ceramic heater 20 in the housing 10. It comprises a fixing member 30 for fixing.
하우징(10)과 세라믹 히터(20)는 원통형으로 형성되며, 통상적으로 동축상에 배치된다. 고정 부재(30)에는 세라믹 히터(20)의 내부 공간과 연통하는 입수구가 형성되고, 하우징(10)에는 출수구가 형성된다. 따라서, 입수구로 들어온 물은 세라믹 히터(20)의 내부 공간을 지난 후 세라믹 히터(20)의 외부 공간을 따라 흘러 출수구를 통해 배출된다. 물이 세라믹 히터(20)의 내부 공간을 흐를 때 세라믹 히터(20)의 내벽과 접촉하여 가열되고, 물이 세라믹 히터(20)의 외부 공간을 흐를 때 세라믹 히터(20)의 외벽과 접촉하여 가열되며, 이 가열된 물이 출수구로 배출된다.The housing 10 and the ceramic heater 20 are formed in a cylindrical shape and are usually disposed coaxially. The fixing member 30 is provided with a water inlet communicating with the internal space of the ceramic heater 20, and a water outlet is formed in the housing 10. Therefore, the water entering the inlet flows through the outer space of the ceramic heater 20 after passing through the inner space of the ceramic heater 20 and is discharged through the outlet. When water flows through the inner space of the ceramic heater 20, it is heated in contact with the inner wall of the ceramic heater 20, and when water flows through the outer space of the ceramic heater 20, it is heated in contact with the outer wall of the ceramic heater 20. The heated water is discharged to the outlet.
그런데, 도 1b에 도시된 바와 같이, 종래의 세라믹 히터(20)의 내부에 설치되는 열선(22)은 세라믹 히터(20)의 외벽 측으로 가깝게 배치되기 때문에, 세라믹 히터(20)의 내벽에 의한 가열 효과는 거의 없고, 주로 외벽에 의해서만 가열된다. 이와 같이, 가열 장치(1)에 입수된 물은 세라믹 히터(20)의 외부 공간을 흐를 때 주로 가열되기 때문에 실질적인 가열 시간이 매우 짧아지고, 따라서 고온의 온수를 얻기 위해서 세라믹 히터(20)의 열선(22)에 고전력을 인가하여야 하므로 에너지 효율상 바람직하지 못하다. However, as shown in FIG. 1B, since the heating wire 22 installed inside the conventional ceramic heater 20 is disposed close to the outer wall side of the ceramic heater 20, heating by the inner wall of the ceramic heater 20 is performed. There is little effect and it is mainly heated only by the outer wall. In this way, since the water obtained in the heating device 1 is mainly heated when flowing through the external space of the ceramic heater 20, the actual heating time becomes very short, and thus the heating wire of the ceramic heater 20 in order to obtain hot water of high temperature. It is not desirable for energy efficiency because high power must be applied to (22).
이러한 점을 감안하여, 등록특허 제0880773호는 가열 효율을 증진시킨 유체 가열 장치를 제안하고 있는데, 그 구체적인 구성을 살펴보면, 전원 인가를 위한 단자 리드선(101)을 가지고 구비되는 평판형 세라믹히터(102)와, 세라믹히터(102)의 상,하측으로는 가열하고자 하는 유체가 세라믹히터(102) 방향으로 이동하고 세라믹히터(102)에 의하여 가열된 유체가 배출되도록 수평이동 유체경로를 가지고 결합되는 간격판(105)과, 상기 수평이동 유체경로 상의 유체가 다음층의 유체경로로 수직이동할 수 있도록 유체통로를 가지고 결합되는 유로형성판(106)과, 최상측의 간격판(105)의 외측면에 가열하기 위한 유체를 공급하기 위한 인렛홀(110)을 가지고 결합되는 어퍼커버(111)와, 최하측의 간격판(105) 외측면에 가열된 유체를 배출하기 위한 아웃렛홀(112)을 가지고 결합되는 로어커버(113)로 마감하여 구성되는 것을 특징으로 하고 있다.In view of this point, Korean Patent No. 0880773 proposes a fluid heating device that improves heating efficiency. Looking at a specific configuration thereof, a flat ceramic heater 102 having a terminal lead wire 101 for power supply is disclosed. ), And a gap in which the fluid to be heated is moved in the direction of the ceramic heater 102 to the upper and lower sides of the ceramic heater 102 and has a horizontal moving fluid path so that the fluid heated by the ceramic heater 102 is discharged. On the outer surface of the plate 105, the flow path forming plate 106 coupled with the fluid passage so that the fluid on the horizontal moving fluid path can be vertically moved to the fluid path of the next layer, and the uppermost separation plate 105 An upper cover 111 coupled with an inlet hole 110 for supplying a fluid for heating, and an outlet hole 112 for discharging the heated fluid to an outer surface of the lowermost partition plate 105. The lower cover 113 is to be characterized in that the finish is configured.
상기 문헌에서 제안된 구성에 따르면, 평판형 세라믹히터(102)를 설치하고, 세라믹히터(102)의 상,하측에 유로가 형성되도록 간격판(105)과 유로형성판(106)을 배치하여, 인렛홀(110)을 통해 유입된 물이 세라믹히터(120)의 상, 하면에 접촉하면서 순간적으로 가열된 후 아웃렛홀(112)을 통해 배출되도록 되어 있다. 이러한 구성에 의하면, 평판형 세라믹히터(102)의 넓은 면에 물이 접촉하여 열전달이 이루어지므로 가열 효율이 향상될 수 있다.According to the configuration proposed in the above document, the plate-shaped ceramic heater 102 is provided, and the spacer plate 105 and the flow path forming plate 106 are disposed so that flow paths are formed above and below the ceramic heater 102, Water introduced through the inlet hole 110 is heated while being in contact with the upper and lower surfaces of the ceramic heater 120 and is discharged through the outlet hole 112. According to such a configuration, since heat is transferred by contacting water with a wide surface of the flat plate ceramic heater 102, heating efficiency may be improved.
그러나, 평판형 세라믹히터(102)를 수평 방향으로 배치하고, 상측의 인렛홀(110)로부터 하측의 아웃렛홀(112)로 물이 흐르도록 형성한 상기 문헌의 구성은 다음과 같은 문제가 있다.However, the structure of the above document in which the flat ceramic heater 102 is disposed in the horizontal direction and water flows from the upper inlet hole 110 to the lower outlet hole 112 has the following problems.
도 2는 상기와 같이 구성된 유체 가열 장치의 유로를 도시한 것이다. 도 2를 참조하면, 상측의 인렛홀(110)로부터 유입된 물이 평판형 세라믹히터(102)를 거쳐 하측의 아웃렛홀(112)로 빠져나가는 것을 알 수 있는데, 물이 세라믹히터(102)의 상면을 흐를 때에는 세라믹히터(102)에 항상 접촉되어 가열되지만, 세라믹히터(102)의 하면을 흐를 때에는 세라믹히터(102)에 접촉하지 않는 경우가 발생한다("O"로 표시한 부분 참조). 물론, 물의 유입량이 많고 수압이 높은 경우 물이 유로 전체를 채워서 흐를 수도 있지만, 유입량이 적거나 수압이 낮은 경우 물이 유로 전체를 채워서 흐르는 것을 보장할 수 없고, 전체를 채우지 못하면 "O"로 표시한 부분과 같이 세라믹히터(102)의 하면에 형성되는 유로에서는 세라믹히터(102)에 접촉하지 못하고 흐르는 물이 발생하게 된다. Figure 2 shows the flow path of the fluid heating device configured as described above. Referring to FIG. 2, it can be seen that water introduced from the upper inlet hole 110 exits the lower outlet hole 112 through the flat ceramic heater 102, and the water of the ceramic heater 102. When the upper surface flows, the ceramic heater 102 is always in contact with the heater, but when the lower surface of the ceramic heater 102 flows, the ceramic heater 102 does not come into contact with the ceramic heater 102 (see the section marked with "O"). Of course, if the inflow of water is high and the water pressure is high, the water may flow through the entire flow path, but if the inflow is low or the water pressure is low, the water cannot be guaranteed to flow through the entire flow path, and if not, it is indicated as "O". In the flow path formed on the lower surface of the ceramic heater 102 as in one portion, flowing water does not come into contact with the ceramic heater 102.
이와 같이, 세라믹히터(102)에 접촉하지 못하고 흐르는 물이 발생할 경우 다음과 같은 문제가 있다. As such, when the flowing water does not come into contact with the ceramic heater 102, there are the following problems.
첫째, 물이 세라믹히터(102)에 접촉하지 못함으로써 낭비되는 열이 발생하고 가열 효율이 떨어진다. First, heat is wasted because water does not contact the ceramic heater 102 and the heating efficiency is lowered.
둘째, 물이 세라믹히터(102)에 접촉하지 않는 유로에서는 물 대신 공기가 세라믹히터(102)에 접촉하여 급속하게 가열되므로 급격한 온도차가 발생하여 열충격이 발생한다. 세라믹히터(102)는 열충격에 취약하기 때문에 장치가 파손될 위험이 높아진다. Second, in the flow path where the water does not contact the ceramic heater 102, air is rapidly heated by contacting the ceramic heater 102 instead of water, so that a sudden temperature difference occurs and thermal shock occurs. Since the ceramic heater 102 is vulnerable to thermal shock, there is a high risk of damage to the device.
셋째, 물의 유입량이 많고 수압이 높은 경우에는 물이 유로 전체를 채워서 흐르므로 가열 효율이 증가하나, 물의 유입량이 적고 수압이 낮은 경우에는 물과 세라믹히터(102)의 비접촉 부분이 발생하여 가열 효율이 떨어지므로, 일정한 가열 효율을 보장할 수 없고, 따라서 정확한 제어가 곤란하다. Third, when the amount of water inflow is high and the water pressure is high, the water flows through the entire flow path, so that the heating efficiency is increased. However, when the amount of water inflow is low and the water pressure is low, the non-contact part of the water and the ceramic heater 102 is generated to increase the heating efficiency. As a result, constant heating efficiency cannot be guaranteed, and hence accurate control is difficult.
넷째, 물의 유입량이 많고 수압이 높아서 물이 유로 전체를 채워서 흐르는 경우에도 가열면에서 물이 가열되면 물속에 용존하는 기체가 물의 온도가 상승함에 따라 용해도가 낮아지게 되어 용출됨으로써 기포가 발생하고 기포에 의해 열충격이 발생하게 되는데, 상기 문헌은 이를 방지하기 위하여 가열유로 단면적의 종횡비를 크게 하는 것을 제안하고 있다. 즉, 가열유로의 폭을 가열유로의 높이보다 3배 이상 크게 한다는 것인데(즉, 납작하게), 이렇게 구성하면 단위 부피당 가열 면적이 증가하여 가열 효율이 증가하고 유속이 빨라져 가열면에서의 기포흡착과 기포성장의 기회를 제거할 수 있어 세라믹히터(102)의 열충격을 방지할 수 있다는 것이다. 그러나, 가열유로의 폭을 크게 한다는 것은 세라믹히터(102)의 폭을 크게 한다는 것으로, 쉽게 말하면 세라믹히터(102)를 큰 것을 사용한다는 것이다. 이와 같이, 세라믹히터(102)를 큰 것을 사용하면 기포의 발생으로 인한 열충격을 예방할 수 있지만, 부피가 커지고 비용이 증가하는 문제가 발생하게 된다. Fourth, even if the water flows through the entire flow path due to the high inflow of water and the high water pressure, if the water is heated on the heating surface, the gas dissolved in the water will have a lower solubility as the temperature of the water rises, resulting in bubbles and bubbles. The thermal shock is generated, the document proposes to increase the aspect ratio of the cross section of the heating flow path in order to prevent this. In other words, the width of the heating flow path is three times larger than the height of the heating flow path (i.e. flat). This configuration increases the heating area per unit volume, increases the heating efficiency and speeds up the flow, thereby increasing air absorption and The opportunity for bubble growth can be eliminated, thereby preventing thermal shock of the ceramic heater 102. However, to increase the width of the heating flow path is to increase the width of the ceramic heater 102, that is, to use the ceramic heater 102 in a large way. As such, when a large ceramic heater 102 is used, thermal shock due to the generation of bubbles can be prevented, but a problem arises in that the volume becomes large and the cost increases.
그 외에도, 상기 문헌에서는 복수의 세라믹 히터(102)를 사용하는 것을 개시하고 있는데, 복수의 세라믹 히터(102)의 발열량을 동일한 것으로 사용하고 있어 낭비되는 열이 발생하는 등 가열 효율상 바람직하지 못한 문제가 있다.In addition, the above document discloses the use of a plurality of ceramic heaters 102, but the heat generation amount of the plurality of ceramic heaters 102 is the same. There is.
본 발명은 이러한 종래 기술의 문제점을 해결하고자 고안된 것으로, 물이 세라믹 히터의 전면에 접촉하여 가열되게 함으로써 열전달 효율을 높이고, 기포 발생으로 인한 열충격이 방지되며, 정밀한 온도 제어가 가능한 가열 장치를 제공하는 것을 목적으로 한다.The present invention has been devised to solve the problems of the prior art, by which the water is heated in contact with the front surface of the ceramic heater to increase the heat transfer efficiency, to prevent the thermal shock due to the generation of bubbles, to provide a heating device capable of precise temperature control For the purpose of
상기와 같은 목적을 달성하기 위한 본 발명의 제1 특징에 따르면, 복수의 판형상의 세라믹 플레이트를 구비한 세라믹 히터, 및 상기 세라믹 히터가 장착되며 입수구와 출수구가 형성된 하우징을 포함하고, 상기 세라믹 플레이트(122, 124)를 따라서 형성된 유로로 유체가 흐를 때, 세라믹 플레이트(122, 124)의 가열에 의해 유체에서 발생된 기포가 세라믹 플레이트의 가장자리로 상승하도록, 상기 세라믹 플레이트(122, 124)는 상기 하우징(140) 내부에서 직립하여 나란히 배치되며, 상기 출수구(144)는 상기 하우징(140)의 상측에 형성된 가열 장치를 제공한다.According to a first aspect of the present invention for achieving the above object, comprising a ceramic heater having a plurality of plate-shaped ceramic plate, and a housing on which the ceramic heater is mounted and formed with an inlet and an outlet; When the fluid flows through the flow paths formed along the 122 and 124, the ceramic plates 122 and 124 are mounted in the housing so that bubbles generated in the fluid by the heating of the ceramic plates 122 and 124 rise to the edges of the ceramic plate. It is arranged upright inside the 140 and side by side, the outlet 144 provides a heating device formed on the upper side of the housing 140.
본 발명의 제2 특징에 따르면, 상기 세라믹 히터는 상기 입수구 측에 배치되는 제1 세라믹 플레이트와 상기 출수구 측에 배치되는 제2 세라믹 플레이트를 구비하고, 상기 제1 세라믹 플레이트와 상기 제2 세라믹 플레이트의 사이에 격벽이 설치된다.According to a second aspect of the present invention, the ceramic heater includes a first ceramic plate disposed on the inlet side and a second ceramic plate disposed on the outlet side, and wherein the first ceramic plate and the second ceramic plate A partition is installed in between.
본 발명의 제3 특징에 따르면, 상기 제1 세라믹 플레이트와 상기 제2 세라믹 플레이트는 상기 하우징의 일단부에 부착되고 타단부와는 이격되어 배치되며, 상기 격벽은 상기 하우징의 타단부에 부착되고 일단부와는 이격되어 배치된다.According to a third aspect of the invention, the first ceramic plate and the second ceramic plate is attached to one end of the housing and spaced apart from the other end, the partition wall is attached to the other end of the housing and The wealth is spaced apart.
본 발명의 제4 특징에 따르면, 상기 입수구 측보다 상기 출수구 측에서 유로가 넓게 형성된다.According to a fourth aspect of the present invention, a flow path is formed wider at the outlet side than at the inlet side.
본 발명의 제5 특징에 따르면, 상기 세라믹 플레이트의 상단과 상기 하우징 사이에 갭이 형성된다.According to a fifth aspect of the invention, a gap is formed between an upper end of the ceramic plate and the housing.
본 발명의 제6 특징에 따르면, 상기 출수구는 상기 입수구 보다 높게 형성된다.According to a sixth aspect of the invention, the outlet is formed higher than the inlet.
본 발명의 제7 특징에 따르면, 가열에 의해 유체에서 발생된 기포의 배출이 용이하도록, 출수구측이 상방에 배치되게 경사져 설치된다.According to the seventh aspect of the present invention, the outlet side is inclined so as to be disposed upward so that bubbles generated in the fluid by heating are easily discharged.
본 발명의 제8 특징에 따르면, 상기 세라믹 플레이트의 면적은 유로의 단면적보다 크게 형성된다.According to an eighth aspect of the present invention, an area of the ceramic plate is formed larger than the cross-sectional area of the flow path.
본 발명의 제9 특징에 따르면, 상기 세라믹 플레이트의 내부에 설치되는 열선이 상기 세라믹 플레이트의 두께 방향으로 중앙에 배치된다.According to a ninth aspect of the present invention, a heating wire provided inside the ceramic plate is disposed at the center in the thickness direction of the ceramic plate.
본 발명의 제10 특징에 따르면, 상기 제1 세라믹 플레이트와 상기 제2 세라믹 플레이트에 인가되는 전력이 상이하다.According to a tenth aspect of the present invention, power applied to the first ceramic plate and the second ceramic plate is different.
본 발명의 제11 특징에 따르면, 상기 제2 세라믹 플레이트에 인가되는 전력이 상기 제1 세라믹 플레이트에 인가되는 전력보다 크다.According to an eleventh aspect of the present invention, the power applied to the second ceramic plate is greater than the power applied to the first ceramic plate.
본 발명의 제12 특징에 따르면, 상기 제1 세라믹 플레이트에는 고정 전력이 인가되고 상기 제2 세라믹 플레이트에는 가변 전력이 인가된다.According to a twelfth aspect of the present invention, a fixed power is applied to the first ceramic plate and a variable power is applied to the second ceramic plate.
본 발명에 따르면, 입수구로 유입된 물이 지그재그로 형성된 유로를 흐르면서 2개의 세라믹 플레이트의 모든 면과 접촉하여 가열되므로 낭비되는 열 없이 열전달이 효율적으로 이루어지고, 기포 발생으로 인한 열충격이 방지된다.According to the present invention, since water flowing into the inlet is heated in contact with all surfaces of the two ceramic plates while flowing in a zigzag flow path, heat transfer is efficiently performed without wasting heat, and thermal shock due to bubble generation is prevented.
또한, 제1 세라믹 플레이트로는 작은 범위의 온도 조정을 하게 하고, 제2 세라믹 플레이트로는 큰 범위의 온도 조정을 하게 함으로써, 열을 효율적으로 전달함과 동시에 전력 소모를 절감할 수 있는 것이다.In addition, by adjusting the temperature of a small range in the first ceramic plate, and adjusting the temperature of a large range in the second ceramic plate, heat can be efficiently transferred and power consumption can be reduced.
도 1의 (a)는 종래의 세라믹 히터를 구비한 가열 장치의 단면도이고, 도 1의 (b)는 종래의 세라믹 히터의 사시도이다.Fig. 1A is a sectional view of a heating apparatus with a conventional ceramic heater, and Fig. 1B is a perspective view of a conventional ceramic heater.
도 2는 종래의 다른 세라믹 히터를 구비한 가열 장치의 사시도이다.2 is a perspective view of a heating apparatus with another conventional ceramic heater.
도 3은 본 발명의 실시예에 따른 세라믹 히터의 사시도이다. 3 is a perspective view of a ceramic heater according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 세라믹 히터를 구비한 가열 장치를 상방에서 본 단면도이다. 4 is a cross-sectional view of the heating apparatus with the ceramic heater according to the embodiment of the present invention seen from above.
도 5는 본 발명의 실시예에 따른 세라믹 히터를 구비한 가열 장치를 전방에서 본 단면도이다.5 is a cross-sectional view of the heating apparatus with the ceramic heater according to the embodiment of the present invention seen from the front.
도 6은 본 발명의 실시예에 따른 세라믹 히터를 구비한 가열 장치를 측방에서 본 단면도이다.6 is a cross-sectional side view of a heating apparatus with a ceramic heater according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 가열 장치를 측방에서 본 단면도이다. 7 is a sectional side view of a heating apparatus according to another embodiment of the present invention.
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명의 실시예에 따른 세라믹 히터(120)의 사시도이다. 3 is a perspective view of a ceramic heater 120 according to an embodiment of the present invention.
도 3을 참조하면, 세라믹 히터(120)는 병렬로 배치되는 제1 세라믹 플레이트(122)와 제2 세라믹 플레이트(124)를 구비한다. 제1 세라믹 플레이트(122)와 제2 세라믹 플레이트(124)는 동일한 판형상으로 형성된다. 세라믹 플레이트(122, 124)의 내부에는 열선(123, 미도시)이 배치된다. 열선(123, 미도시)에서 방출되는 열이 세라믹 플레이트(122, 124)의 양면에 균일하게 전달될 수 있도록, 열선(123,미도시)은 세라믹 플레이트(122, 124)의 두께 방향으로 중앙에 배치된다.Referring to FIG. 3, the ceramic heater 120 includes a first ceramic plate 122 and a second ceramic plate 124 disposed in parallel. The first ceramic plate 122 and the second ceramic plate 124 are formed in the same plate shape. Hot wires 123 (not shown) are disposed in the ceramic plates 122 and 124. The heating wire 123 (not shown) is centered in the thickness direction of the ceramic plates 122 and 124 so that heat emitted from the heating wire 123 may be uniformly transmitted to both surfaces of the ceramic plates 122 and 124. Is placed.
그리고, 세라믹 플레이트(122,124)의 가장자리에는 열선(123, 미도시)이 배치되지 않는 'A' 영역이 형성된다. 즉, 유체가 흐르는 경우 세라믹 플레이트(122,124)의 가열에 의해 유체에서 발생된 기포에 의한 세라믹 플레이트(122,124)의 파손을 방지하기 위한 영역(A)이 세라믹 플레이트(122,124)의 가장자리에 배치될 수 있다.At the edges of the ceramic plates 122 and 124, 'A' regions where no heating wires 123 (not shown) are disposed are formed. That is, when the fluid flows, an area A for preventing damage to the ceramic plates 122 and 124 due to bubbles generated in the fluid by heating the ceramic plates 122 and 124 may be disposed at the edges of the ceramic plates 122 and 124. .
상기한 세라믹 플레이트(122,124)의 파손 방지에 대한 보다 자세한 사항은 후술하기로 한다.More details on preventing breakage of the ceramic plates 122 and 124 will be described later.
세라믹 히터(120)의 일측에는 고정 부재(126)가 설치되어, 2개의 세라믹 플레이트(122, 124)가 고정 부재(126)에 고정될 수 있다. 또한, 이 고정 부재(126)는 후술하는 하우징(140)의 일단부에 결합될 수 있다.A fixing member 126 is installed at one side of the ceramic heater 120 so that two ceramic plates 122 and 124 may be fixed to the fixing member 126. In addition, the fixing member 126 may be coupled to one end of the housing 140 to be described later.
세라믹 플레이트(122, 124)가 고정되는 고정 부재(126)의 반대측에는 세라믹 플레이트(122, 124)에 전력을 공급하는 단자(122a, 124a)가 설치된다. 이 단자(122a, 124a)는 각각 제어부(미도시)에 연결되어 공급되는 전력이 제어될 수 있다. Terminals 122a and 124a for supplying power to the ceramic plates 122 and 124 are provided on the opposite side of the fixing member 126 to which the ceramic plates 122 and 124 are fixed. The terminals 122a and 124a may be connected to a controller (not shown), respectively, to control power supplied thereto.
세라믹 플레이트(122, 124)는 가열 시간과 히터의 성능에 직접적인 영향을 미치므로 최적의 두께와 간격을 설정하는 것이 필요하다. Since the ceramic plates 122 and 124 directly affect the heating time and the performance of the heater, it is necessary to set the optimum thickness and spacing.
세라믹 플레이트(122, 124)의 두께가 얇으면 열전달 속도가 빠르고 가열 시간이 짧아져 빠른 시간에 목표의 온도로 가열하는 것이 가능하지만, 온도 변화에 따라 기계적 강도가 약해져 제품화하기가 어렵다. 반대로, 세라믹 플레이트(122, 124)의 두께가 두꺼우면 열전달 속도가 늦고 가열 시간이 지연되게 되며, 전원을 차단하였을 경우에 히터 표면에 포화된 온도에 의한 잠열에 의하여 후과열이 발생할 수 있다. 따라서, 이러한 성능 및 안전을 고려하여 실험한 결과 세라믹 플레이트(122, 124)의 두께는 1~3mm 정도로 설계하는 것이 적합하다는 것을 알아내었다.When the thickness of the ceramic plates 122 and 124 is thin, the heat transfer rate is fast and the heating time is short, so that it is possible to heat to the target temperature in a short time, but the mechanical strength becomes weak with the temperature change, making it difficult to commercialize. On the contrary, when the thickness of the ceramic plates 122 and 124 is thick, the heat transfer rate is slow and the heating time is delayed, and when the power is cut off, post-heating may occur due to latent heat due to the temperature saturated on the heater surface. Therefore, the experiments in consideration of such performance and safety, it was found that the thickness of the ceramic plate (122, 124) is suitable to design about 1 ~ 3mm.
한편, 세라믹 플레이트(122, 124) 사이의 간격도 중요한 요소가 되는데, 두 장의 플레이트(122, 124) 사이의 간격이 너무 좁으면 플레이트 사이에 흐르는 유체의 양이 너무 작아 충분한 온수의 양을 얻을 수 없고, 온도 과상승에 의한 문제가 발생할 수 있다. 반면에, 플레이트(122, 124) 사이의 간격이 너무 넓으면 유체의 양이 많아져 열량이 부족하여 성능을 만족할 수 없게 된다. 따라서, 이러한 성능 및 안전을 고려하여 실험한 결과 두 장의 플레이트(122, 124) 사이의 간격은 2~15mm 로 유지하는 것이 바람직하다는 것을 알아내었다.On the other hand, the gap between the ceramic plates 122 and 124 is also an important factor. If the gap between the two plates 122 and 124 is too narrow, the amount of fluid flowing between the plates is too small to obtain a sufficient amount of hot water. No problem may arise due to temperature rise. On the other hand, if the spacing between the plates 122 and 124 is too wide, the amount of fluid increases, so that the amount of heat is insufficient to satisfy the performance. Therefore, experiments in consideration of the performance and safety, it was found that the distance between the two plates (122, 124) is preferably maintained at 2 ~ 15mm.
도 4는 본 발명의 실시예에 따른 세라믹 히터(120)를 구비한 가열 장치(100)를 상방에서 본 단면도이고, 도 5는 본 발명의 실시예에 따른 세라믹 히터(120)를 구비한 가열 장치(100)를 전방에서 본 단면도이고, 도 6은 본 발명의 실시예에 따른 세라믹 히터(120)를 구비한 가열 장치(100)를 측방에서 본 단면도이다.4 is a cross-sectional view of a heating device 100 having a ceramic heater 120 according to an embodiment of the present invention, and FIG. 5 is a heating device having a ceramic heater 120 according to an embodiment of the present invention. (100) is a sectional view seen from the front, and FIG. 6 is a sectional view seen from the side of the heating apparatus 100 provided with the ceramic heater 120 which concerns on embodiment of this invention.
도 4 내지 도 6에 도시된 바와 같이, 가열 장치(100)는 세라믹 히터(120), 하우징(140), 캡 부재(160), 및 브라켓(180)을 포함하여 이루어진다.As shown in FIGS. 4 to 6, the heating device 100 includes a ceramic heater 120, a housing 140, a cap member 160, and a bracket 180.
세라믹 플레이트(122, 124)의 고정 부재(126)가 하우징(140)의 일단부에 결합됨으로써, 세라믹 플레이트(122, 124)가 하우징(140)의 내부에 고정 배치된다. 하우징(140)의 일단부에는 또한 브라켓(180)이 결합될 수 있다. 세라믹 플레이트(122, 124)는 하우징(140)의 길이보다 짧게 형성된다. 따라서, 세라믹 플레이트(122, 124)가 하우징(140)의 내부에 설치된 때 세라믹 플레이트(122, 124)의 단부는 후술하는 캡 부재(160)로부터 이격되게 배치되어, 이격된 사이로 물이 흐를 수 있다.As the fixing member 126 of the ceramic plates 122 and 124 is coupled to one end of the housing 140, the ceramic plates 122 and 124 are fixedly disposed inside the housing 140. One end of the housing 140 may also be coupled to the bracket 180. The ceramic plates 122 and 124 are formed shorter than the length of the housing 140. Therefore, when the ceramic plates 122 and 124 are installed inside the housing 140, the ends of the ceramic plates 122 and 124 may be spaced apart from the cap member 160, which will be described later, so that water may flow between the spaced apart portions. .
하우징(140)의 타단부에는 캡 부재(160)가 결합된다. 캡 부재(160)에는 격벽(162)이 부착되어 있어서, 캡 부재(160)가 하우징(140)의 타단부에 결합된 때 격벽(162)이 2개의 세라믹 플레이트(122, 124) 사이에 배치된다. 격벽(162)은 하우징(140)의 길이 방향으로 연장하여 2개의 세라믹 플레이트(122, 124) 사이의 공간을 분할한다. 격벽(162)은 하우징(140)의 길이보다 짧게 형성되어, 격벽(162)이 하우징(140)의 내부에 설치된 때 격벽(162)은 하우징(140)의 일단부와 이격된다. 따라서, 이격된 사이로 물이 흐를 수 있다.The cap member 160 is coupled to the other end of the housing 140. The partition member 162 is attached to the cap member 160 so that the partition member 162 is disposed between the two ceramic plates 122 and 124 when the cap member 160 is coupled to the other end of the housing 140. . The partition wall 162 extends in the longitudinal direction of the housing 140 to divide the space between the two ceramic plates 122 and 124. The partition wall 162 is formed to be shorter than the length of the housing 140, so that the partition wall 162 is spaced apart from one end of the housing 140 when the partition wall 162 is installed inside the housing 140. Thus, water can flow between the spaced apart.
세라믹 플레이트(122, 124)는 하우징(140) 내부에서 직립하여 나란히 설치된다. 즉, 판 형상의 세라믹 플레이트(122, 124)는 수직하게 세워져 설치되며, 따라서, 세라믹 플레이트(122, 124)의 가열에 의해 생성된 기포는 위로 올라갈 수 있다.The ceramic plates 122 and 124 are installed upright in the housing 140 and side by side. That is, the plate-shaped ceramic plates 122 and 124 are installed vertically, so that bubbles generated by the heating of the ceramic plates 122 and 124 can rise upward.
하우징(140)에는 입수구(142)와 출수구(144)가 형성되는데, 입수구(142)는 제1 세라믹 플레이트(122)가 배치되는 측에 형성되고, 출수구(144)는 제2 세라믹 플레이트(124)가 배치되는 측에 형성된다. 또한, 입수구(142)와 출수구(144)는 하우징(140)의 일단부, 즉 세라믹 플레이트(122, 124)의 고정 부재(126)가 결합되는 측에 제공된다. 한편, 입수구(142)와 출수구(144)는 하우징(140)의 상측에 형성된다. 특히, 출수구(144)가 상부에 배치됨으로써 하우징(140) 내부에서 가열된 물이 상부로 밀려나면서 출수될 수 있다.The inlet 142 and the outlet 144 are formed in the housing 140. The inlet 142 is formed at the side where the first ceramic plate 122 is disposed, and the outlet 144 is the second ceramic plate 124. Is formed on the side where it is disposed. In addition, the inlet 142 and the outlet 144 are provided at one end of the housing 140, that is, at the side to which the fixing member 126 of the ceramic plates 122 and 124 is coupled. On the other hand, the inlet 142 and the outlet 144 is formed on the upper side of the housing 140. In particular, since the outlet 144 is disposed at the upper portion, the heated water in the housing 140 may be pushed upward and discharged.
한편, 세라믹 플레이트(122, 124)의 면적은 가열 유로의 단면적보다 크게 형성하는 것이 바람직하다. 도 3에서 세라믹 플레이트(122, 124)의 면적을 S로 표시하였고, 도 5에서 가열 유로의 단면적을 P로 표시하였다. P는 유로 ①, ②, ③, ④의 단면적인 P1, P2, P3, P4의 합이다. 세라믹 플레이트의 면적 S를 유로의 단면적 P보다 크게 형성함으로써 유로를 지나는 물이 세라믹 플레이트로부터 충분한 열을 전달받을 수 있다.On the other hand, it is preferable to form the area of the ceramic plates 122 and 124 larger than the cross-sectional area of a heating flow path. In FIG. 3, the area of the ceramic plates 122 and 124 is denoted by S, and in FIG. 5, the cross-sectional area of the heating channel is denoted by P. In FIG. P is the sum of the cross-sectional areas P1, P2, P3, and P4 of the flow paths ①, ②, ③, and ④. By forming the area S of the ceramic plate larger than the cross-sectional area P of the flow path, water passing through the flow path can receive sufficient heat from the ceramic plate.
상기와 같이 구성된 가열 장치(100)의 작동 방법을 설명한다.The operation method of the heating apparatus 100 comprised as mentioned above is demonstrated.
먼저, 유로에 대해서 설명하면, 하우징(140)의 입수구(142)로 유입된 물은 제1 세라믹 플레이트(122)와 하우징(140)의 일측면 사이를 흐른다. 이때, 물은 하우징(140)의 일단부(브라켓(180) 측)에서 타단부(캡 부재(160) 측)로 흐른다(이하, "유로 ①"이라 한다). 하우징(140)의 타단부에서 물은 제1 세라믹 플레이트(122)와 캡 부재(160) 사이의 이격된 공간을 통해 방향이 전환된다. 방향 전환된 물은 제1 세라믹 플레이트(122)와 격벽(162) 사이의 공간을 흐른다. 이때, 물은 하우징(140)의 타단부에서 일단부 쪽으로 흐른다(이하, "유로 ②"라 한다). 하우징(140)의 일단부에서 물은 고정 부재(126)와 격벽(162) 사이의 이격된 공간을 통해 방향이 전환된다. 방향 전환된 물은 제2 세라믹 플레이트(124)와 격벽(162) 사이의 공간을 흐른다. 이때, 물은 하우징(140)의 일단부에서 타단부 쪽으로 흐른다(이하, "유로 ③"이라 한다). 하우징(140)의 타단부에서 물은 제2 세라믹 플레이트(124)와 캡 부재(160) 사이의 이격된 공간을 통해 방향 전환된다. 방향 전환된 물은 제2 세라믹 플레이트(124)와 하우징(140)의 타측면 사이를 흐른다. 이때, 물은 하우징(140)의 타단부에서 일단부 쪽으로 흐른다(이하, "유로 ④"라 한다). 하우징(140)의 타단부에서 물은 출수구(144)를 통해 외부로 배출된다.First, the flow path will be described. Water flowing into the inlet 142 of the housing 140 flows between the first ceramic plate 122 and one side of the housing 140. At this time, water flows from one end (bracket 180 side) of the housing 140 to the other end (cap member 160 side) (hereinafter referred to as "euro ①"). At the other end of the housing 140, the water is redirected through the spaced space between the first ceramic plate 122 and the cap member 160. The redirected water flows through the space between the first ceramic plate 122 and the partition wall 162. At this time, water flows toward one end from the other end of the housing 140 (hereinafter referred to as "euro ②"). At one end of the housing 140, water is diverted through the spaced space between the fixing member 126 and the partition wall 162. The redirected water flows through the space between the second ceramic plate 124 and the partition wall 162. At this time, water flows from one end of the housing 140 toward the other end (hereinafter referred to as "euro ③"). At the other end of the housing 140, water is diverted through the spaced space between the second ceramic plate 124 and the cap member 160. The redirected water flows between the second ceramic plate 124 and the other side of the housing 140. At this time, water flows toward one end from the other end of the housing 140 (hereinafter referred to as "euro ④"). Water is discharged to the outside through the water outlet 144 at the other end of the housing 140.
다음으로 가열 방식을 설명하면, 유로 ①과 유로 ②에서 물은 제1 세라믹 플레이트(122)에 의해 가열된다. 구체적으로는 유로 ①에서는 제1 세라믹 플레이트(122)의 일면에 의해 가열되고, 유로 ②에서는 제1 세라믹 플레이트(122)의 타면에 의해 가열된다. 제1 세라믹 플레이트(122)의 양면은 동일한 열을 방출하므로 유로 ①과 유로 ②에서 물은 동일한 열량에 의해 가열된다. 한편, 유로 ③과 유로 ④에서 물은 제2 세라믹 플레이트(124)에 의해 가열된다. 구체적으로 유로 ③에서는 제2 세라믹 플레이트(124)의 일면에 의해 가열되고, 유로 ④에서는 제2 세라믹 플레이트(124)의 타면에 의해 가열된다. 제2 세라믹 플레이트(124)의 양면은 동일한 열을 방출하므로 유로 ③과 유로 ④에서 물은 동일한 열량에 의해 가열된다.Next, the heating method will be described. In the flow path ① and the flow path ②, water is heated by the first ceramic plate 122. Specifically, it is heated by one surface of the first ceramic plate 122 in the flow path ①, and heated by the other surface of the first ceramic plate 122 in the flow path ②. Both surfaces of the first ceramic plate 122 emit the same heat, so water in the flow path ① and the flow path ② is heated by the same amount of heat. On the other hand, the water is heated by the second ceramic plate 124 in the flow path ③ and the flow path ④. Specifically, the flow path ③ is heated by one surface of the second ceramic plate 124, and in the flow path ④ is heated by the other surface of the second ceramic plate 124. Since both surfaces of the second ceramic plate 124 emit the same heat, the water is heated by the same amount of heat in the flow path ③ and the flow path ④.
이와 같이, 입수구(142)로 유입된 물은 유로 ①, ②, ③, ④를 흐르면서 2개의 세라믹 플레이트(122, 124)의 모든 면과 접촉하여 가열되므로 낭비되는 열 없이 열전달이 효율적으로 이루어진다. 즉, 세라믹 플레이트(122, 144)가 수직 방향으로 세워져 설치되고, 출수구(144)가 상부에 배치되어 있기 때문에, 물이 바로 빠져나가지 않고 상부로 밀려나면서 출수될 수 있다. 따라서, 물은 세라믹 플레이트(122, 124)의 모든 면에 접촉하면서 열을 전달받게 된다. As such, the water flowing into the inlet 142 is heated in contact with all surfaces of the two ceramic plates 122 and 124 while flowing through the channels ①, ②, ③, and ④, so that heat transfer is efficiently performed without wasting heat. That is, since the ceramic plates 122 and 144 are installed upright in the vertical direction, and the outlet port 144 is disposed at the upper portion thereof, the water may be discharged while being pushed upwards without being drained out immediately. Thus, the water receives heat while contacting all surfaces of the ceramic plates 122 and 124.
한편, 세라믹 플레이트(122, 124)의 높은 열전달에 의하여 미세 기포가 발생하고 성장하여 세라믹 플레이트(122, 124)의 표면에 부착되면 그 부분에 국부 과열에 의한 온도 편차로 인한 열충격에 의하여 세라믹 히터가 파손되는 문제가 발생하게 된다.On the other hand, when the fine bubbles are generated and grown by the high heat transfer of the ceramic plate (122, 124) and attached to the surface of the ceramic plate (122, 124), the ceramic heater is caused by the thermal shock due to the temperature deviation due to local overheat The problem of breakage will occur.
이러한 점을 감안하여, 본 발명에서는 입수구(142)에서 출수구(144) 쪽으로 갈수록 유로의 폭을 넓게 형성하였다. 도 4 및 도 5를 참조하면, 유로 ①의 폭을 t1, 유로 ②의 폭을 t2, 유로 ③의 폭을 t3, 유로 ④의 폭을 t4라고 할 때, t1 < t2 < t3 < t4의 관계가 성립한다. 이와 같이, 입수구(142)에서 출수구(144) 쪽으로 갈수록 유로를 넓게 형성함으로써, 초기 입수의 유속을 빠르게 하여 기포의 성장(미세 기포의 뭉침)을 억제하고 발생된 기포를 빠른 유속에 의해 배출할 수 있다. 따라서, 기포에 의한 세라믹 히터의 국부 과열을 방지하여 히터의 파손을 방지할 수 있다. 이때, 도 5에 도시된 바와 같이, 세라믹 플레이트(122, 124)의 상단과 하우징(140) 사이에 갭(G)을 형성하여 발생된 기포가 용이하게 배출되게 할 수 있다.In view of such a point, in the present invention, the width of the flow path was wider from the inlet 142 toward the outlet 144. 4 and 5, when the width of the flow path ① is t1, the width of the flow path ② is t2, the width of the flow path ③ is t3 and the width of the flow path ④ is t4, the relationship of t1 <t2 <t3 <t4 is Hold. In this way, by forming a wider flow path from the inlet 142 toward the outlet 144, the flow rate of the initial inlet is increased to suppress bubble growth (aggregation of fine bubbles), and the generated bubbles can be discharged at a high flow rate. have. Therefore, it is possible to prevent local overheating of the ceramic heater due to bubbles to prevent breakage of the heater. In this case, as illustrated in FIG. 5, a gap G may be formed between the upper ends of the ceramic plates 122 and 124 and the housing 140 to easily discharge the generated bubbles.
또한, 도 6에 도시된 바와 같이, 입수구(142) 보다 출수구(144)를 높게 배치함으로써, 기포가 높은 쪽(즉, 출수구(144) 쪽)으로 빠져나가게 함으로써 기포에 의한 세라믹 히터의 국부 과열을 방지할 수 있다.In addition, as shown in FIG. 6, by arranging the outlet 144 higher than the inlet 142, the bubble exits to the higher side (that is, the outlet 144 side) to prevent local overheating of the ceramic heater by the bubble. You can prevent it.
한편, 도 7에 도시된 바와 같이, 가열 장치(100)가 소정의 각도로 경사지게 설치될 수 있다. 즉, 출수구(144) 쪽이 상방으로 경사지게 가열 장치(100)를 설치하면, 가열 장치(100) 내부에 기포가 발생하더라도 출수구(144)로 빠져나갈 수 있기 때문에 열 충격이 일어나는 문제가 해소될 수 있는 것이다. 도면에 도시되지는 않았지만, 출수구(144)가 도 6에서와는 반대 방향 즉, 상방(도면에서 왼쪽 상방)을 향하도록 개구되어야 기포가 상측으로 용이하게 빠져나갈 수 있을 것이다.Meanwhile, as shown in FIG. 7, the heating device 100 may be installed to be inclined at a predetermined angle. That is, when the heating device 100 is installed to be inclined upwardly, the water outlet 144 may be released to the water outlet 144 even if bubbles are generated inside the heating device 100, thereby preventing the problem of thermal shock. It is. Although not shown in the drawing, the water outlet 144 must be opened in the opposite direction as in FIG. 6, that is, upwards (left upward in the drawing) so that the bubbles can easily escape upwards.
상기에서 설명한 기포에 의한 세라믹 플레이트(122,124)의 파손 방지 메카니즘에 대하여 살펴보면, 세라믹 플레이트(122,124)는 하우징(140) 내부에 배치되며, 입수구(142)로 유입된 물은 하우징(140), 세라믹 플레이트(122,124), 및 격벽(162)에 의해 형성된 유로 ①, 유로 ②, 유로 ③, 유로 ④를 따라 흘러 출수구(144)로 출수된다.Referring to the mechanism of preventing breakage of the ceramic plates 122 and 124 due to the bubbles described above, the ceramic plates 122 and 124 are disposed in the housing 140, and the water introduced into the inlet 142 is the housing 140 and the ceramic plate. The water flows through the flow paths 1, 2, 2, 3, and ④ formed by the 122, 124, and the partition walls 162, and is discharged to the water outlet 144.
한편, 세라믹 플레이트(122,124)는 도 4 및 도 5에 도시된 바와 같이 하우징(140) 내부에서 직립하여 나란히 배치되므로, 유체(즉, 물)가 상기 유로 ①, 유로 ②, 유로 ③, 유로 ④를 따라 흐를 때 세라믹 플레이트(122,124)의 가열에 의해 유체에서 발생된 기포는 세라믹 플레이트(122,124)의 가장자리 중 상부측(즉, 도 3의 A 영역 중 상부측)으로 상승한다.On the other hand, since the ceramic plates 122 and 124 are arranged upright side by side in the housing 140, as shown in Figs. 4 and 5, the fluid (that is, water) is the flow path ①, flow path ②, flow path ③, flow path ④ As it flows, bubbles generated in the fluid by the heating of the ceramic plates 122 and 124 rise to the upper side of the edges of the ceramic plates 122 and 124 (ie, the upper side in the region A of FIG. 3).
이후, 세라믹 플레이트(122,124)의 가열에 의해 유체에서 발생된 기포는 상기 유로 ①, 유로 ②, 유로 ③, 유로 ④를 따라 흐르는 유체와 함께 출수구(144)로 배출된다.Subsequently, bubbles generated in the fluid by heating the ceramic plates 122 and 124 are discharged to the outlet port 144 together with the fluid flowing along the flow paths 1, 2, 3, and 4.
따라서, 세라믹 플레이트(122,124)의 가열에 의해 발생된 기포가 세라믹 플레이트(122,124)에 접촉되는 것을 감소시킬 수 있다. 더하여, 극단적으로 세라믹 플레이트(122,124)의 가열에 의해 생생된 기포의 성장에 의해 기포와 세라믹 플레이트(122,124)의 가장자리 중 상부측(즉, 도 3의 A 영역 중 상부측)과 접촉되더라도, A 영역에는 열선(123, 미도시)이 배치되지 않으므로 세라믹 플레이트(122,124)의 파손을 보다 감소시킬 수 있다.Therefore, it is possible to reduce the bubbles generated by the heating of the ceramic plates 122 and 124 in contact with the ceramic plates 122 and 124. In addition, even in contact with the upper side of the edges of the ceramic plates 122 and 124 (i.e., the upper side of the region A in FIG. 3) due to the growth of bubbles generated by the heating of the ceramic plates 122 and 124, the region A is Since the heating wires 123 (not shown) are not disposed, breakage of the ceramic plates 122 and 124 may be further reduced.
구체적으로, 세라믹 플레이트(122,124)의 파손은 열충격에 의해 초래되는데, 열충격이란 물이 아닌 공기가 세라믹 플레이트(122,124)와 열교환하는 경우, 주변의 물과 열교환하는 세라믹 플레이트(122,124) 부분보다 열교환이 작아 공기와 열교환하는 세라믹 플레이트(122,124) 부분이 과열되어 온도차가 발생하게 되는데, 이러한 온도차에 의해 가해지는 충격을 열충격이라 한다.Specifically, breakage of the ceramic plates 122 and 124 is caused by thermal shock. When thermal air is not water but heat exchanges with the ceramic plates 122 and 124, the heat exchange is smaller than that of the ceramic plates 122 and 124 which exchange heat with the surrounding water. A portion of the ceramic plates 122 and 124 that exchange heat with air is overheated to generate a temperature difference. The shock applied by the temperature difference is called a thermal shock.
그런데, 본 발명에 따르면 가열면에서 기포가 생성된다고 하더라도, 세라믹 플레이트(122,124)가 하우징 내부에 직립하여 배치되고, 기포는 물에 비하여 비중이 작기 때문에 기포가 세라믹 플레이트(122,124)의 가장자리 중 상부측으로 상승하게 된다.However, according to the present invention, even if bubbles are generated on the heating surface, the ceramic plates 122 and 124 are disposed upright inside the housing, and since the bubbles are small in specific gravity compared to water, the bubbles are directed to the upper side of the edges of the ceramic plates 122 and 124. Will rise.
이후, 세라믹 플레이트(122,124)의 가장자리 중 상부측으로 상승된 기포는 세라믹 플레이트(122, 124)의 상단과 하우징(140) 사이에 위치하게 되므로, 기포와 세라믹 플레이트(122,124)가 접촉되는 것을 방지 할 수 있다. 이에 따라 세라믹 플레이트(122,124)가 열충격에 의해 파손되는 것을 방지할 수 있다.Afterwards, bubbles raised to the upper side of the edges of the ceramic plates 122 and 124 are positioned between the upper ends of the ceramic plates 122 and 124 and the housing 140, thereby preventing the bubbles from contacting the ceramic plates 122 and 124. have. Accordingly, the ceramic plates 122 and 124 may be prevented from being damaged by thermal shock.
더하여, 세라믹 플레이트(122,124)의 가장자리에는 열선(123, 미도시)이 배치되는 않는 영역(A)이 존재하며, 설사 기포의 성장에 따라 기포가 세라믹 플레이트(122,124)의 가장자리와 접촉한다 하더라도, 기포는 열선(123, 미도시)이 배치되는 않는 영역(A)과 접촉하게 되므로 기포에 의해 세라믹 플레이트(122,124)에 가해지는 열충격을 감소시킬 수 있다.In addition, there is a region A in which the heating wires 123 (not shown) are arranged at the edges of the ceramic plates 122 and 124. Since it comes into contact with the region A in which the heating wire 123 (not shown) is disposed, the thermal shock applied to the ceramic plates 122 and 124 by the bubbles may be reduced.
한편, 출수구(144) 쪽에 배치된 제2 세라믹 플레이트(124)에 인가하는 전력이 입수구(142) 쪽에 배치된 제1 세라믹 플레이트(122)에 인가하는 전력보다 크도록 제어하는 것이 바람직하다. 예컨대, 제1 세라믹 플레이트(122)에는 300와트의 전력을 인가하고 제2 세라믹 플레이트(124)에는 700와트의 전력을 인가할 수 있다. 이와 같이, 입수구(142) 측의 제1 세라믹 플레이트(122)에서 비교적 낮은 열이 발생하게 하여 어느 정도의 수준까지 물을 가열하고, 이후 제2 세라믹 플레이트(124)를 통과할 때에는 설정 온도가 되도록 물을 가열하여 최종적으로 출수구(144)로 배출되게 할 수 있다.On the other hand, it is preferable to control so that the power applied to the second ceramic plate 124 disposed on the outlet port 144 is greater than the power applied to the first ceramic plate 122 disposed on the inlet port 142. For example, 300 watts of power may be applied to the first ceramic plate 122, and 700 watts of power may be applied to the second ceramic plate 124. As such, relatively low heat is generated in the first ceramic plate 122 on the inlet 142 side to heat the water to a certain level, and then, when passing through the second ceramic plate 124, the set temperature is maintained. The water may be heated to be finally discharged to the outlet 144.
즉, 제1 세라믹 플레이트(122)로는 작은 범위의 온도 조정을 하게 하고, 제2 세라믹 플레이트(124)로는 큰 범위의 온도 조정을 하게 함으로써, 열을 효율적으로 전달함과 동시에 전력 소모를 절감할 수 있는 것이다. That is, the first ceramic plate 122 allows a small range of temperature adjustment, and the second ceramic plate 124 allows a large range of temperature adjustment, thereby efficiently transferring heat and reducing power consumption. It is.
한편, 제1 세라믹 플레이트(122)로는 어느 수준까지 수온을 끌어올리는 것이 중요하므로, 제1 세라믹 플레이트(122)에는 고정 전력을 인가하고, 제2 세라믹 플레이트(124)로는 목표 온도까지 온도 조정을 하는 것이 중요하므로, 제2 세라믹 플레이트(124)에는 가변 전력을 인가하는 것으로 구성할 수도 있다. 이와 같은 전력 제어는 제어부에서 담당한다.On the other hand, since it is important to raise the water temperature to a certain level with the first ceramic plate 122, a fixed power is applied to the first ceramic plate 122, and the second ceramic plate 124 adjusts the temperature to a target temperature. Since it is important, the second ceramic plate 124 may be configured by applying variable power. Such power control is in charge of the control unit.

Claims (12)

  1. 복수의 판형상의 세라믹 플레이트(122, 124)를 구비한 세라믹 히터(120), 및A ceramic heater 120 having a plurality of plate-shaped ceramic plates 122 and 124, and
    상기 세라믹 히터(120)가 장착되며 입수구(142)와 출수구(144)가 형성된 하우징(140)을 포함하고,The ceramic heater 120 is mounted and includes a housing 140 having an inlet 142 and an outlet 144,
    상기 세라믹 플레이트(122, 124)를 따라서 형성된 유로로 유체가 흐를 때, 세라믹 플레이트(122, 124)의 가열에 의해 유체에서 발생된 기포가 세라믹 플레이트의 가장자리로 상승하도록, 상기 세라믹 플레이트(122, 124)는 상기 하우징(140) 내부에서 직립하여 나란히 배치되며, 상기 출수구(144)는 상기 하우징(140)의 상측에 형성된 것을 특징으로 하는 가열 장치.When the fluid flows through the flow path formed along the ceramic plates 122 and 124, bubbles generated in the fluid by the heating of the ceramic plates 122 and 124 rise to the edge of the ceramic plate, so that the ceramic plates 122 and 124. ) Is placed upright in the housing (140) side by side, and the water outlet (144) is a heating device, characterized in that formed on the upper side of the housing (140).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 세라믹 히터(120)는 상기 입수구(142) 측에 배치되는 제1 세라믹 플레이트(122)와 상기 출수구(144) 측에 배치되는 제2 세라믹 플레이트(124)를 구비하고,The ceramic heater 120 includes a first ceramic plate 122 disposed on the inlet 142 and a second ceramic plate 124 disposed on the outlet 144.
    상기 제1 세라믹 플레이트(122)와 상기 제2 세라믹 플레이트(124)의 사이에 격벽(162)이 설치되는 것을 특징으로 하는 가열 장치.A heating device, characterized in that a partition wall (162) is provided between the first ceramic plate (122) and the second ceramic plate (124).
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 제1 세라믹 플레이트(122)와 상기 제2 세라믹 플레이트(124)는 상기 하우징(140)의 일단부에 부착되고 타단부와는 이격되어 배치되며,The first ceramic plate 122 and the second ceramic plate 124 are attached to one end of the housing 140 and spaced apart from the other end,
    상기 격벽(162)은 상기 하우징(140)의 타단부에 부착되고 일단부와는 이격되어 배치되는 것을 특징으로 하는 가열 장치.The partition wall (162) is attached to the other end of the housing (140), characterized in that the heating device, characterized in that spaced apart from one end.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 입수구(142) 측에서 상기 출수구(144) 측으로 갈수록 유로가 넓게 형성되는 것을 특징으로 하는 가열 장치.Heating device characterized in that the flow path is formed from the inlet (142) side toward the outlet (144) wider.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 세라믹 플레이트(122, 124)의 상단과 상기 하우징(140) 사이에 갭(G)이 형성되는 것을 특징으로 하는 가열 장치.Heating device, characterized in that a gap (G) is formed between the top of the ceramic plate (122, 124) and the housing (140).
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 출수구(144)는 상기 입수구(142) 보다 상측에 형성된 것을 특징으로 하는 가열 장치.The outlet (144) is a heating device, characterized in that formed on the upper side than the inlet (142).
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 세라믹 플레이트(122, 124)의 면적은 유로의 단면적보다 크게 형성된 것을 특징으로 하는 가열 장치.Heating area, characterized in that the area of the ceramic plate (122, 124) is formed larger than the cross-sectional area of the flow path.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 세라믹 플레이트(122, 124)의 면적은 유로의 단면적보다 크게 형성된 것을 특징으로 하는 가열 장치.Heating area, characterized in that the area of the ceramic plate (122, 124) is formed larger than the cross-sectional area of the flow path.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 세라믹 플레이트(122, 124)의 내부에 설치되는 열선(123, 125)이 상기 세라믹 플레이트(122, 124)의 두께 방향으로 중앙에 배치되는 것을 특징으로 하는 가열 장치.Heating device (123, 125) provided in the ceramic plate (122, 124) is disposed in the center in the thickness direction of the ceramic plate (122, 124).
  10. 청구항 2 또는 청구항 3에 있어서,The method according to claim 2 or 3,
    상기 제1 세라믹 플레이트(122)와 상기 제2 세라믹 플레이트(124)에 인가되는 전력이 상이한 것을 특징으로 하는 가열 장치.Heating device, characterized in that the power applied to the first ceramic plate (122) and the second ceramic plate (124) is different.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 제2 세라믹 플레이트(124)에 인가되는 전력이 상기 제1 세라믹 플레이트(122)에 인가되는 전력보다 큰 것을 특징으로 하는 가열 장치.Heating device, characterized in that the power applied to the second ceramic plate (124) is greater than the power applied to the first ceramic plate (122).
  12. 청구항 10에 있어서,The method according to claim 10,
    상기 제1 세라믹 플레이트(122)에는 고정 전력이 인가되고 상기 제2 세라믹 플레이트(124)에는 가변 전력이 인가되는 것을 특징으로 하는 가열 장치.A fixed power is applied to the first ceramic plate (122) and a variable power is applied to the second ceramic plate (124).
PCT/KR2010/004449 2009-06-30 2010-07-08 Heating apparatus WO2011052874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/922,642 US8687952B2 (en) 2009-06-30 2010-07-08 Heating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090104563A KR100982702B1 (en) 2009-06-30 2009-10-30 Heating apparatus
KR10-2009-0104563 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052874A1 true WO2011052874A1 (en) 2011-05-05

Family

ID=43922665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004449 WO2011052874A1 (en) 2009-06-30 2010-07-08 Heating apparatus

Country Status (1)

Country Link
WO (1) WO2011052874A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2689945A1 (en) * 2012-07-24 2014-01-29 Behr GmbH & Co. KG Heating device
US9752757B2 (en) 2013-03-07 2017-09-05 Quarkstar Llc Light-emitting device with light guide for two way illumination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200269038Y1 (en) * 2001-12-01 2002-03-21 이종표 An electric boiler using heat transfer oil
KR20050034779A (en) * 2003-10-10 2005-04-15 주식회사 워터웍스 유진 Bidet thermostat
JP2007032273A (en) * 2006-10-19 2007-02-08 Matsushita Electric Ind Co Ltd Bidet
KR100880773B1 (en) * 2008-01-23 2009-02-02 (주) 씨엠테크 A heating unit for fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200269038Y1 (en) * 2001-12-01 2002-03-21 이종표 An electric boiler using heat transfer oil
KR20050034779A (en) * 2003-10-10 2005-04-15 주식회사 워터웍스 유진 Bidet thermostat
JP2007032273A (en) * 2006-10-19 2007-02-08 Matsushita Electric Ind Co Ltd Bidet
KR100880773B1 (en) * 2008-01-23 2009-02-02 (주) 씨엠테크 A heating unit for fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2689945A1 (en) * 2012-07-24 2014-01-29 Behr GmbH & Co. KG Heating device
WO2014016342A1 (en) * 2012-07-24 2014-01-30 Behr Gmbh & Co. Kg Heating device
US10302331B2 (en) 2012-07-24 2019-05-28 Mahle International Gmbh Heating device
US9752757B2 (en) 2013-03-07 2017-09-05 Quarkstar Llc Light-emitting device with light guide for two way illumination

Similar Documents

Publication Publication Date Title
WO2013165106A1 (en) Boiler having increased indoor heating efficiency and enabling simultaneous use of indoor heating and hot water
WO2017135728A1 (en) Heat exchanger
WO2019066244A1 (en) Cooling jacket having nonuniform flow paths, for cooling battery cell surface, and battery module including same
WO2009093832A2 (en) Fluid heating device
WO2014142561A1 (en) Instant water heater
WO2012036334A1 (en) Cold crucible induction melter integrating induction coil and melting furnace
WO2011052874A1 (en) Heating apparatus
WO2019078473A1 (en) Storage type electric water heater with hot air generating function
CN201599870U (en) Improved section bar oil heater radiating fin and electric oil heater
WO2024019456A1 (en) Socket for lighting lamp
WO2017200171A1 (en) Cooler for display, and display device having same
WO2018117337A1 (en) Solar cell cooling device
KR100982702B1 (en) Heating apparatus
WO2021015589A1 (en) Heater for secondary battery sealing process
WO2016105085A1 (en) Radiator for transformer
WO2022234951A1 (en) Dual cooling water heater
WO2012070746A1 (en) Structure for cooling a combustion chamber using supplied air
WO2014065478A1 (en) Heat exchanger having water housings
CN210899801U (en) Water-cooled UV curing module
CN110631982B (en) Test equipment
KR101795422B1 (en) Ceramic heater and heating apparatus having the same
WO2019151782A1 (en) Apparatus for manufacturing float glass
WO2020159122A1 (en) Ptc heater
WO2019093632A1 (en) Vehicle induction heater
WO2013073851A1 (en) Boiler including a multilayer heat plate furnace smoke tube

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12922642

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826959

Country of ref document: EP

Kind code of ref document: A1