WO2023067976A1 - 超伝導装置の循環冷却式初期冷却の付加価値決定方法 - Google Patents

超伝導装置の循環冷却式初期冷却の付加価値決定方法 Download PDF

Info

Publication number
WO2023067976A1
WO2023067976A1 PCT/JP2022/035154 JP2022035154W WO2023067976A1 WO 2023067976 A1 WO2023067976 A1 WO 2023067976A1 JP 2022035154 W JP2022035154 W JP 2022035154W WO 2023067976 A1 WO2023067976 A1 WO 2023067976A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
added value
amount
liquid helium
liquid
Prior art date
Application number
PCT/JP2022/035154
Other languages
English (en)
French (fr)
Inventor
出 横谷
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN202280063454.6A priority Critical patent/CN117981500A/zh
Publication of WO2023067976A1 publication Critical patent/WO2023067976A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a method for determining the added value of circulating cooling type initial cooling of superconducting devices.
  • Superconducting magnets can generate strong static magnetic fields at extremely low temperatures below the superconducting critical temperature, and are used in various applications that use high magnetic fields, such as magnetic resonance imaging (MRI).
  • MRI magnetic resonance imaging
  • Superconducting magnets must be cooled from the ambient temperature (e.g., room temperature) to the target cryogenic temperature in order to start the superconducting magnets at the time of manufacture, inspection, recovery from anomalies such as quenching, etc. , which is often called initial cooling.
  • Immersion cooling in which the superconducting magnet is immersed in a cryogenic liquid coolant, such as liquid helium or liquid nitrogen, is typically used for initial cooling.
  • Initial cooling by immersion cooling consumes a very large amount (eg at least 1000 liters) of cryogenic liquid refrigerant. Therefore, amid the recent worldwide decrease in helium production and the resulting soaring helium price, it is desired to reduce the amount of liquid helium used.
  • Circulating cooling type initial cooling has not yet spread much.
  • initial cooling is not often performed during the lifetime of a superconducting magnet (in the minimum case, it is only at the time of manufacturing and shipping), whereas the circulation cooling system is relatively expensive. is.
  • the fact that it is difficult to find value for the investment in introducing a circulating cooling system is considered to be the reason why the circulating cooling type initial cooling is being prevented from spreading.
  • One of the exemplary purposes of certain aspects of the present invention is to provide a technology that helps popularize circulation-type initial cooling of superconducting devices.
  • a method for determining the added value of recirculating initial cooling of a superconducting device includes a liquid coolant bath containing a superconducting coil.
  • Circulating primary cooling comprises (i) cooling the superconducting coil from the ambient temperature of the superconducting device to a predetermined cryogenic temperature using a circulating chiller that circulates the cooled gas through a liquid coolant bath; (ii) immersing the superconducting coil in liquid helium in a liquid coolant bath to cool it from a predetermined cryogenic temperature to a target cryogenic temperature for operating the superconducting coil.
  • the method consists of obtaining the liquid helium consumption for cooling a superconducting coil from ambient temperature to a target cryogenic temperature by immersion cooling using liquid helium, or liquid helium and other liquid refrigerants, and recirculating cooling. Based on obtaining the liquid helium consumption of primary cooling and comparing the liquid helium consumption of immersion cooling and the liquid helium consumption of circulating primary cooling, the added value of circulating primary cooling over immersion cooling. presenting;
  • FIG. 1 is a diagram schematically showing a superconducting device according to an embodiment
  • FIG. It is a figure which shows typically the circulation cooling device which concerns on embodiment with a superconducting device.
  • FIG. 4 is a diagram schematically showing an apparatus for determining the added value of circulation cooling type initial cooling of a superconducting device according to an embodiment
  • 5 is a flow chart showing a method for determining added value of circulating cooling type initial cooling of a superconducting device according to an embodiment;
  • FIG. 1 is a diagram schematically showing a superconducting device 100 according to an embodiment.
  • superconducting device 100 forms part of, for example, a magnetic resonance imaging (MRI) system.
  • the superconducting device 100 comprises a superconducting coil 102 , a liquid coolant bath 104 , a heat shield 106 , a vacuum vessel 108 and a cryogenic refrigerator 110 .
  • MRI magnetic resonance imaging
  • the superconducting coil 102 When in use, the superconducting coil 102 is cooled to a cryogenic temperature below the critical temperature at which superconductivity occurs. An excitation current is supplied to the superconducting coil 102 from an external power supply (not shown) arranged outside the vacuum vessel 108, thereby generating a strong magnetic field.
  • the liquid coolant tank 104 is configured to contain the liquid coolant 112 together with the superconducting coil 102 .
  • the superconducting device 100 can cool the superconducting coil 102 to a target cryogenic temperature and maintain the temperature by immersion cooling in which the superconducting coil 102 is immersed in a cryogenic liquid coolant such as liquid helium.
  • the heat shield 106 is arranged around the liquid coolant tank 104 and configured to thermally protect the liquid coolant tank 104 and the superconducting coil 102 from radiant heat that may enter from outside the heat shield 106 .
  • Heat shield 106 is formed of a metallic material such as copper or other material with high thermal conductivity.
  • the vacuum vessel 108 is an adiabatic vacuum vessel that provides a cryogenic vacuum environment suitable for making the superconducting coil 102 into a superconducting state, and is also called a cryostat.
  • a liquid coolant bath 104 and a heat shield 106 are housed within the vacuum vessel 108 along with the superconducting coil 102 .
  • Vacuum vessel 108 is formed of a metallic material, eg, stainless steel, or other suitable high-strength material to withstand ambient pressure (eg, atmospheric pressure).
  • the vacuum vessel 108 is provided with a coolant inlet 114 and a coolant outlet 116 .
  • Liquid refrigerant 112 may be supplied to liquid refrigerant tank 104 through refrigerant inlet 114 and liquid refrigerant 112 or its vapor may be recovered from refrigerant outlet 116 .
  • the cryogenic refrigerator 110 comprises a compressor 110a and a cold head 110b, also called an expander.
  • the compressor 110a is arranged outside the vacuum vessel 108, and the cold head 110b is installed in the vacuum vessel 108 so that the cold part thereof is arranged inside the vacuum vessel 108.
  • the compressor 110a is configured to recover the working gas of the cryogenic refrigerator 110 from the cold head 110b, pressurize the recovered working gas, and supply the working gas to the cold head 110b again.
  • Compressor 110a and coldhead 110b form the refrigeration cycle of cryogenic refrigerator 110, whereby coldhead 110b can provide cryogenic cooling.
  • the working gas is typically helium gas, although other suitable gases may be used.
  • Cryogenic refrigerator 110 is, by way of example, a Gifford-McMahon (GM) refrigerator, but may also be a pulse tube refrigerator, Stirling refrigerator, or other cryogenic refrigerator.
  • GM Gifford-McMahon
  • the single cooling stage of the cryogenic refrigerator 110 is cooled to a first cooling temperature, eg, 30K to 50K, and the double cooling stage of the cryogenic refrigerator 110 is cooled below the first cooling temperature. It is cooled to a low second cooling temperature, eg 3K to 20K (eg about 4K).
  • the heat shield 106 is thermally coupled with the single cooling stage of the cryogenic refrigerator 110 and cooled to a first cooling temperature.
  • a dual cooling stage of the cryogenic refrigerator 110 may be utilized to recondense the vaporized liquid refrigerant 112 .
  • a dual cooling stage of cryogenic refrigerator 110 may be thermally coupled to superconducting coil 102 to cool superconducting coil 102 to the second cooling temperature by conduction cooling.
  • initial cooling of the superconducting device 100 is performed in order to start the superconducting device 100.
  • Initial cooling is performed, for example, as the final stage of the manufacturing process of the superconducting device 100 before shipment.
  • initial cooling may be performed after periodic inspection of superconducting device 100 or for recovery from anomalies such as quenching.
  • Initial cooling by immersion cooling is performed by immersing the superconducting coil 102 in the liquid coolant 112 .
  • superconducting coil 102 may be cooled from the ambient temperature of superconducting device 100 (eg, 295 K) to a target cryogenic temperature (eg, 4 K).
  • target cryogenic temperature eg, 4 K.
  • liquid refrigerant 112 In order to reduce the consumption of liquid helium, other extremely low-temperature liquid refrigerant having a boiling point higher than that of liquid helium, such as liquid nitrogen, may be used as the liquid refrigerant 112 for precooling.
  • the superconducting coil 102 is pre-cooled from ambient temperature to a predetermined cryogenic temperature (e.g. 77K) by being immersed in liquid nitrogen, after which the liquid refrigerant 112 in the liquid refrigerant bath 104 is exchanged from liquid nitrogen to liquid helium, Additionally, the superconducting coil 102 may be cooled from this predetermined cryogenic temperature to a target cryogenic temperature by being immersed in liquid helium.
  • a predetermined cryogenic temperature e.g. 77K
  • liquid nitrogen is still required for precooling, but the consumption of liquid helium can be suppressed to about 1000 liters, for example. Since the unit price of liquid nitrogen is significantly lower than that of liquid helium, the initial cooling cost can be reduced.
  • Circulating initial cooling consists of (i) cooling the superconducting coil 102 from the ambient temperature of the superconducting device 100 to a predetermined cryogenic temperature using the circulating chiller 10 which circulates the cooled gas through a liquid coolant bath 104; and (ii) immersing the superconducting coil 102 in liquid helium in a liquid coolant bath 104 to cool it from a predetermined cryogenic temperature to a target cryogenic temperature at which the superconducting coil 102 operates.
  • FIG. 2 is a diagram schematically showing the circulation cooling device 10 according to the embodiment together with the superconducting device 100.
  • the circulation cooling device 10 is configured to cool the refrigerant gas to a cryogenic temperature and circulate it through the superconducting device 100 .
  • the refrigerant gas is helium gas in this embodiment, but other gases such as nitrogen gas may be used in some cases.
  • the circulation cooling device 10 includes a circulation device 12, at least one (in this embodiment, a plurality of, for example, four) cryogenic refrigerators 14, a vacuum vessel 16, a supply line 18, and a recovery line 20. Prepare.
  • the circulation device 12 is configured to deliver the refrigerant gas recovered from the recovery line 20 to the supply line 18 so that the refrigerant gas can be circulated between the circulation cooling device 10 and the superconducting device 100. .
  • the circulation device 12 is installed in a vacuum vessel 16 .
  • the circulation device 12 may be, for example, a fan.
  • Each of the plurality of cryogenic refrigerators 14 has a cooling stage 14 a for cooling the refrigerant gas, and is installed in the vacuum vessel 16 so that the cooling stage 14 a is arranged inside the vacuum vessel 16 .
  • Cryogenic refrigerator 14, like cryogenic refrigerator 110 of superconducting device 100, may be, for example, a Gifford-McMahon (GM) refrigerator, or a pulse tube refrigerator, a Stirling refrigerator. and other cryogenic refrigerators.
  • Cryogenic refrigerator 14 may be single-stage and may provide a cooling temperature (eg, liquid nitrogen temperature) selected, for example, from a range of 100K to 10K to cooling stage 14a.
  • the vacuum vessel 16 is an adiabatic vacuum vessel that provides a cryogenic vacuum environment inside, and is also called a cryostat.
  • a supply line 18 and a recovery line 20 are housed within the vacuum vessel 16 along with the cooling stage 14 a of the cryogenic refrigerator 14 .
  • the vacuum vessel 16 is provided with a refrigerant gas supply port 22 and a refrigerant gas recovery port 24 on its wall surface.
  • a supply line 18 connects the circulation device 12 to the refrigerant gas supply port 22 and a recovery line 20 connects the refrigerant gas recovery port 24 to the refrigerant gas supply port 22 .
  • the supply line 18 includes a heat exchanger 18a that cools the refrigerant gas by exchanging heat with the cooling stage 14a of the cryogenic refrigerator 14.
  • a heat exchanger 18a is provided for each cooling stage 14a, and these heat exchangers 18a are connected in series.
  • the circulation cooling device 10 When the circulation cooling type initial cooling is performed, the circulation cooling device 10 is connected to the superconducting device 100 by the supply side transfer line 26 and the recovery side transfer line 28 .
  • the supply-side transfer line 26 connects the refrigerant gas supply port 22 of the circulation cooling device 10 to the refrigerant inlet 114 of the superconducting device 100
  • the recovery-side transfer line 28 connects the refrigerant gas recovery port 24 of the circulation cooling device 10 to superconductivity.
  • the supply transfer line 26 and the recovery transfer line 28 may be flexible tubing compatible with the cryogenically cooled refrigerant gas.
  • the refrigerant gas sequentially passes through a plurality of heat exchangers 18a connected in series on the supply line 18, and is cooled by the cooling stage 14a of each cryogenic refrigerator 14.
  • the refrigerant gas thus cooled to the cooling temperature of the cooling stage 14 a is supplied to the liquid refrigerant tank 104 of the superconducting device 100 through the supply-side transfer line 26 to cool the superconducting coil 102 .
  • the refrigerant gas is recovered from the liquid refrigerant tank 104 through the recovery-side transfer line 28 to the recovery line 20 of the circulation cooling system 10 and sent back to the supply line 18 by the circulation system 12 .
  • Pre-cooling of the superconducting device 100 using the circulation cooling device 10 does not use a liquid coolant such as liquid nitrogen.
  • the circulation cooling device 10 can cool the superconducting coil 102 of the superconducting device 100 to the cooling temperature of the refrigerant gas of the circulation cooling device 10 . After the superconducting coil 102 is precooled in this way, the operation of the circulation cooling device 10 is stopped and the circulation cooling device 10 is removed from the superconducting device 100 .
  • liquid helium is supplied to the liquid coolant tank 104 of the superconducting device 100 .
  • the superconducting coil 102 is finally cooled to a target cryogenic temperature (eg, about 4K), completing the initial cooling.
  • FIG. 3 is a diagram schematically showing a device for determining the added value of the circulating cooling type initial cooling of the superconducting device 100 according to the embodiment.
  • the added value determining device 50 includes an arithmetic processing device 52 , an input section 54 and an output section 56 .
  • the internal configuration of the added-value determination device 50 is realized by elements and circuits such as a CPU and memory of a computer as a hardware configuration, and is realized by a computer program etc. as a software configuration. It is drawn as a functional block realized by cooperation. It should be understood by those skilled in the art that these functional blocks can be implemented in various ways by combining hardware and software.
  • the added value determination device 50 may be implemented in a general-purpose computer such as a personal computer.
  • the input unit 54 is configured to accept input data from a user or other device required to determine the added value of recirculating initial cooling and to provide this input data to the processing unit 52, for example , input means such as a mouse or keyboard for accepting input from a user, and/or communication means for communicating with other devices.
  • the output unit 56 is configured to output input data and/or data generated by the processing unit 52, and may include output means such as a display or printer, for example.
  • the arithmetic processing unit 52 is configured to execute an added value determination method, which will be described later, and includes a first cooling cost arithmetic unit 60 , a second cooling cost arithmetic unit 62 , and an added value arithmetic unit 64 .
  • the first cooling cost calculation unit 60 acquires the consumption of liquid helium (and the consumption of other liquid refrigerants, if used) in the initial cooling of the superconducting device 100 by immersion cooling, and the acquired information , the cooling cost for initial cooling of the superconducting device 100 by immersion cooling is calculated.
  • the second cooling cost calculation unit 62 acquires the liquid helium consumption of the circulation cooling type initial cooling (and, if applicable, other usage costs of the circulation cooling device 10), and based on the acquired information, Calculate the cooling cost for initial cooling with circulation cooling.
  • the added value calculation unit 64 calculates the added value of circulating cooling initial cooling with respect to immersion cooling based on a comparison between the calculated cooling cost of immersion cooling and the cooling cost of circulating cooling initial cooling.
  • FIG. 4 is a flow chart showing a method for determining the added value of circulating cooling type initial cooling of the superconducting device 100 according to the embodiment.
  • the added value determination device illustrated in FIG. 3 can perform this method.
  • the cooling cost of immersion initial cooling is obtained (S10)
  • the cooling cost of circulating initial cooling is obtained (S20)
  • the added value of circulating initial cooling to immersion cooling is presented ( S30).
  • S10 and S20 does not matter.
  • the liquid helium consumption amount when the superconducting coil 102 is cooled from the ambient temperature to the target cryogenic temperature by immersion cooling is acquired. If only liquid helium is used to cool the superconducting coil 102 from ambient temperature to the target cryogenic temperature, the amount of liquid helium used is taken as liquid helium consumption.
  • the superconducting coil 102 is cooled from ambient temperature to a predetermined cryogenic temperature (eg, 77 K) by a liquid coolant other than liquid helium (eg, liquid nitrogen), and then liquid helium is used to cool the predetermined cryogenic temperature. to the target cryogenic temperature, not only the liquid helium consumption but also the consumption of another liquid refrigerant is obtained.
  • the consumption of these liquid refrigerants may be recorded by actually performing immersion cooling of the superconducting device 100 , and the recorded consumption may be input to the input unit 54 and transmitted to the arithmetic processing unit 52 .
  • the liquid coolant consumption may be estimated by simulating initial cooling by immersion cooling of the superconducting device 100 or empirically, and the estimated consumption is input to the input unit 54. , may be transmitted to the processing unit 52 .
  • the cooling cost for immersion cooling type initial cooling is calculated by multiplying the liquid helium consumption for immersion cooling by the helium price per unit amount when only liquid helium is used.
  • the cooling cost of immersion cooling initial cooling is calculated by multiplying the liquid helium consumption by the helium price per unit to calculate the liquid helium cost, and the consumption of other liquid refrigerants
  • the amount is multiplied by the price of the liquid refrigerant per unit amount to calculate the liquid refrigerant cost, which is calculated as the sum of the liquid helium cost and the liquid refrigerant cost.
  • the calculation of the cooling cost for the immersion cooling type initial cooling may be performed by the first cooling cost calculator 60 .
  • Helium price data indicating the price of helium per unit amount (for example, 1 liter) and liquid refrigerant price data indicating the price of other liquid refrigerants per unit amount are input to the input unit 54 and provided to the processing unit 52. , or may be stored in the arithmetic processing unit 52 in advance.
  • the usage cost of the circulating cooling device 10 and the liquid helium consumption amount in the final stage of the initial cooling are obtained.
  • the cost of use and the price of liquid helium are then added together as the cooling cost of the recirculating primary cooling.
  • the usage cost of the circulation cooling device 10 includes, for example, the cost of the helium gas used in the circulation cooling device 10, the cost of electricity due to the use of the circulation cooling device 10, and the costs generated with the use of the circulation cooling device 10. may be
  • the price of liquid helium is calculated by multiplying the amount of liquid helium consumed by the price of helium per unit amount, as in the case of immersion cooling.
  • the usage cost and liquid helium consumption of the recirculating cooling system 10 can be estimated by actually performing a recirculating initial cooling on the superconducting device 100, by simulating the recirculating initial cooling, or empirically.
  • the estimated usage cost and consumption may be input to the input unit 54 and transmitted to the processing unit 52 .
  • the calculation of the cooling cost for the circulating cooling type initial cooling may be performed by the second cooling cost calculator 62 .
  • the presentation of the added value of circulating initial cooling to immersion cooling is based on a comparison of the liquid helium consumption of immersion cooling and the liquid helium consumption of circulating initial cooling. More specifically, the cooling cost of the circulating cooling initial cooling may be subtracted from the cooling cost of the immersion cooling initial cooling, and the remaining amount may be calculated as the added value of the circulating cooling initial cooling.
  • the added value calculation unit 64 may perform this calculation and output data indicating the obtained added value to the output unit 56 .
  • the output unit 56 can present the acquired added value based on the added value data.
  • the added value is calculated by multiplying the difference between the liquid helium consumption for immersion cooling and the liquid helium consumption for circulation cooling type initial cooling by the helium price per unit amount to calculate the added value. It hits. The cost of using the circulation cooling system is deducted from this added value. In addition, the amount equivalent to the amount of consumption of liquid refrigerant other than the liquid helium used for immersion cooling is added to the added value.
  • the presentation of the added value of the circulating cooling type initial cooling to the immersion cooling may include calculating the amount obtained by multiplying the added value amount by a predetermined ratio as the usage fee of the circulating cooling device 10 in the circulating cooling type initial cooling. good.
  • the predetermined ratio may be, for example, 1/2, or any value greater than 0 and less than 1.
  • the calculation of the usage fee for the circulating cooling device 10 may be performed by the added value calculation unit 64 .
  • the calculated usage fee may be output to the output unit 56 .
  • the embodiment it is possible to grasp the added value of circulating cooling type initial cooling to immersion cooling as a specific amount of money. It helps to promote the popularization of the initial cooling of the superconducting device 100 by helping to recognize the technical value obtained by using the circulating cooling device 10 in monetary terms.
  • the owner of the superconducting device 100 may change the owner of the circulation cooling device 10 from the owner of the circulation cooling device 10 to the circulation cooling device 10. It is possible to determine the price for receiving a loan and performing the circulation cooling type initial cooling using the loaned circulation cooling device 10 . As the compensation, the calculated usage fee for the circulation cooling device 10 can be used. That is, every time the owner of the superconducting device 100 performs initial cooling of the circulation cooling system, the owner of the superconducting device 100 pays the owner of the circulation cooling device 10 the usage fee for the circulation cooling device 10 as consideration. Become.
  • the owner of the superconducting device 100 implements the circulating initial cooling with a low usage fee compared to the high initial investment of purchasing the circulating cooling device 10 for the circulating cooling initial cooling.
  • the added value of the circulation cooling type initial cooling described above is based on the amount of liquid helium consumption that can be reduced by the circulation cooling type initial cooling compared to the conventional immersion cooling, and the usage fee of the circulation cooling device 10 is based on this added value. , fair and reasonable. Therefore, such a fee arrangement for the circulatory cooling device 10 helps popularize the circulatory cooling type initial cooling of the superconducting device 100 .
  • the superconducting device 100 may form part of, for example, a single crystal puller, an NMR system, an accelerator such as a cyclotron, a high energy physical system such as a nuclear fusion system, or other high magnetic field equipment.
  • a method for determining the added value of recirculating initial cooling of a superconducting device comprising: The superconducting device comprises a liquid coolant tank containing a superconducting coil,
  • the circulating initial cooling comprises: (i) cooling the superconducting coil from ambient temperature of the superconducting device to a predetermined cryogenic temperature using a circulating chiller that circulates cooled gas through the liquid coolant bath; (ii) immersing the superconducting coil in liquid helium in the liquid coolant bath to cool it from the predetermined cryogenic temperature to a target cryogenic temperature for operating the superconducting coil;
  • the method includes: obtaining the liquid helium consumption when cooling the superconducting coil from the ambient temperature to the target cryogenic temperature by immersion cooling using liquid helium or liquid helium plus another liquid coolant; obtaining the liquid helium consumption of the recirculating initial cooling; presenting the added value of the circulating primary cooling relative to the immersion cooling based on a comparison of the liquid helium consumption of the immersion
  • a paragraph characterized in that presenting the added value comprises calculating the added value based on a comparison between the liquid helium consumption of the immersion cooling and the liquid helium consumption of the circulation cooling initial cooling. 1. The method according to 1.
  • Calculating the added value includes calculating the added value amount by multiplying the difference between the liquid helium consumption amount for the immersion cooling and the liquid helium consumption amount for the circulation cooling type initial cooling by the helium price per unit amount.
  • the method further comprises obtaining a cost of using the recirculating chiller in the recirculating initial cooling, 4.
  • calculating the value-added amount comprises deducting the usage cost from the value-added amount.
  • the method further comprises obtaining consumption of the other liquid refrigerant in the immersion cooling, 5.
  • a method according to claim 3 or 4, wherein calculating the value added comprises adding to the value added an amount equivalent to the consumption of the other liquid refrigerant.
  • Items 3 to 5, wherein presenting the added value comprises calculating an amount obtained by multiplying the added value amount by a predetermined ratio as a usage fee for the circulation cooling device in the circulation cooling type initial cooling.
  • Presenting the added value includes: inputting into a computer the liquid helium consumption for the immersion cooling and the liquid helium consumption for the circulation cooling initial cooling; The computer calculates the added value based on a comparison between the liquid helium consumption amount for the immersion cooling and the liquid helium consumption amount for the circulation cooling type initial cooling, and outputs the added value.
  • Item 1 The method of item 1, characterized in that:
  • the computer multiplies the difference between the liquid helium consumption amount for the immersion cooling and the liquid helium consumption amount for the circulation cooling type initial cooling by the helium price per unit amount to calculate the added value amount. 8. The method of clause 7, comprising calculating.
  • the method further comprising inputting into the computer a cost of using the recirculating chiller in the recirculating initial cooling; 9.
  • calculating the value-added amount comprises the computer deducting the usage cost from the value-added amount.
  • the method further comprises inputting into the computer the consumption of the other liquid refrigerant in the immersion cooling, 10.
  • calculating the added value comprises adding to the added value by the computer an amount equivalent to the consumption of the other liquid refrigerant.
  • Presenting the added value is characterized in that the computer calculates an amount obtained by multiplying the added value amount by a predetermined ratio as a usage fee for the circulating cooling device in the circulating cooling type initial cooling.
  • Item 11 The method according to any one of Items 8 to 10.
  • the present invention can be used in the field of value added determination methods for circulating cooling type initial cooling of superconducting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

超伝導装置(100)の循環冷却式初期冷却の付加価値決定方法が提供される。この方法は、液体ヘリウム、または液体ヘリウムと他の液体冷媒を使用する浸漬冷却によって超伝導コイル(102)を周囲温度から目標の極低温まで冷却した場合の液体ヘリウム消費量を取得することと、循環冷却式初期冷却の液体ヘリウム消費量を取得することと、浸漬冷却の液体ヘリウム消費量と循環冷却式初期冷却の液体ヘリウム消費量との比較に基づいて、浸漬冷却に対する循環冷却式初期冷却の付加価値を提示することと、を備える。

Description

超伝導装置の循環冷却式初期冷却の付加価値決定方法
 本発明は、超伝導装置の循環冷却式初期冷却の付加価値決定方法に関する。
 超伝導磁石は、超伝導臨界温度以下の極低温下で強い静磁場を発生させることができ、例えば磁気共鳴イメージング(MRI)など高磁場を利用する様々な用途に用いられている。製造出荷時、点検時、あるいは、クエンチなど異常からの復旧時など、超伝導磁石を起動するために、超伝導磁石は、周囲温度(例えば室温)から目標の極低温まで冷却される必要があり、これはしばしば初期冷却とも呼ばれる。
 初期冷却には典型的に、極低温の液体冷媒、例えば液体ヘリウムや液体窒素に超伝導磁石を浸漬させる浸漬冷却が使用されている。浸漬冷却による初期冷却は、きわめて多量(例えば少なくとも1000リットル)の極低温液体冷媒を消費する。そのため、近年の世界的なヘリウム生産量の減少とそれによるヘリウム価格の高騰のなか、液体ヘリウムの使用量を削減することが望まれている。
 そこで、極低温に冷却されたガスを超伝導磁石に循環させる循環冷却式の初期冷却が提案されている。この循環冷却装置を用いることで、初期冷却で消費される液体ヘリウムの量を浸漬冷却に比べて顕著に削減することができる。
特表2020-515038号公報
 本発明者は、超伝導装置の初期冷却について鋭意研究を重ねた結果、以下の課題を認識するに至った。循環冷却式初期冷却の普及はまだあまり進んでいない。その一つの理由は、超伝導磁石のライフタイムのなかで初期冷却が行われる頻度は多くない(最小の場合、製造出荷時のみである)のに対し、循環冷却装置が比較的高額であるためである。つまり、循環冷却装置を導入するにあたり投資に見合う価値を見出しにくいことが、循環冷却式初期冷却の普及を阻む理由であると考えられる。
 本発明のある態様の例示的な目的のひとつは、超伝導装置の循環冷却式初期冷却の普及に役立つ技術を提供することにある。
 本発明のある態様によると、超伝導装置の循環冷却式初期冷却の付加価値決定方法が提供される。超伝導装置は、超伝導コイルを内部に収めた液体冷媒槽を備える。循環冷却式初期冷却は、(i)冷却されたガスを液体冷媒槽に循環させる循環冷却装置を使用して、超伝導コイルを超伝導装置の周囲温度から所定の極低温まで冷却することと、(ii)超伝導コイルを液体冷媒槽で液体ヘリウムに浸漬させて所定の極低温から超伝導コイルを動作させる目標の極低温まで冷却することとを備える。この方法は、液体ヘリウム、または液体ヘリウムと他の液体冷媒を使用する浸漬冷却によって超伝導コイルを周囲温度から目標の極低温まで冷却した場合の液体ヘリウム消費量を取得することと、循環冷却式初期冷却の液体ヘリウム消費量を取得することと、浸漬冷却の液体ヘリウム消費量と循環冷却式初期冷却の液体ヘリウム消費量との比較に基づいて、浸漬冷却に対する循環冷却式初期冷却の付加価値を提示することと、を備える。
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システム、コンピュータプログラムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明によれば、超伝導装置の循環冷却式初期冷却の普及に役立つ技術を提供することができる。
実施の形態に係る超伝導装置を模式的に示す図である。 実施の形態に係る循環冷却装置を超伝導装置とともに模式的に示す図である。 実施の形態に係る超伝導装置の循環冷却式初期冷却の付加価値を決定する装置を模式的に示す図である。 実施の形態に係る超伝導装置の循環冷却式初期冷却の付加価値決定方法を示すフローチャートである。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 図1は、実施の形態に係る超伝導装置100を模式的に示す図である。この実施の形態では、超伝導装置100は、たとえば磁気共鳴イメージング(MRI)システムの一部を構成する。超伝導装置100は、超伝導コイル102と、液体冷媒槽104と、熱シールド106と、真空容器108と、極低温冷凍機110とを備える。
 超伝導コイル102は、使用時に、超伝導を発現する臨界温度以下の極低温に冷却される。超伝導コイル102には、真空容器108の外に配置された外部電源(図示せず)から励磁電流が供給され、それにより、強力な磁場を発生することができる。
 液体冷媒槽104は、液体冷媒112を超伝導コイル102とともに収容するように構成されている。超伝導装置100は、超伝導コイル102を液体ヘリウムなどの極低温液体冷媒に浸漬する浸漬冷却式によって、超伝導コイル102を目標の極低温に冷却し当該温度に維持することができる。
 熱シールド106は、液体冷媒槽104の周囲に配置され、熱シールド106の外から侵入しうる輻射熱から液体冷媒槽104および超伝導コイル102を熱的に保護するように構成されている。熱シールド106は、例えば銅などの金属材料またはその他の高い熱伝導率をもつ材料で形成される。
 真空容器108は、超伝導コイル102を超伝導状態とするのに適する極低温真空環境を提供する断熱真空容器であり、クライオスタットとも呼ばれる。真空容器108内には、超伝導コイル102とともに液体冷媒槽104および熱シールド106が収容される。真空容器108は、周囲圧力(たとえば大気圧)に耐えるように、例えばステンレス鋼などの金属材料またはその他の適する高強度材料で形成される。真空容器108には、冷媒入口114と冷媒出口116が設けられている。液体冷媒112を冷媒入口114から液体冷媒槽104に供給し、液体冷媒112またはその気化物を冷媒出口116から回収することができる。
 極低温冷凍機110は、圧縮機110aと、膨張機とも呼ばれるコールドヘッド110bとを備える。圧縮機110aは真空容器108の外に配置され、コールドヘッド110bはその低温部が真空容器108内に配置されるようにして真空容器108に設置されている。圧縮機110aは、極低温冷凍機110の作動ガスをコールドヘッド110bから回収し、回収した作動ガスを昇圧して、再び作動ガスをコールドヘッド110bに供給するよう構成されている。圧縮機110aとコールドヘッド110bにより極低温冷凍機110の冷凍サイクルが構成され、それによりコールドヘッド110bは極低温冷却を提供することができる。作動ガスは通例、ヘリウムガスであるが、適切な他のガスが用いられてもよい。極低温冷凍機110は、一例として、ギフォード・マクマホン(Gifford-McMahon;GM)冷凍機であるが、パルス管冷凍機、スターリング冷凍機、またはそのほかの極低温冷凍機であってもよい。
 超伝導装置100の運転中、極低温冷凍機110の一段冷却ステージは、第1冷却温度、例えば30K~50Kに冷却され、極低温冷凍機110の二段冷却ステージは、第1冷却温度よりも低い第2冷却温度、例えば3K~20K(例えば約4K)に冷却される。熱シールド106は、極低温冷凍機110の一段冷却ステージと熱的に結合され、第1冷却温度に冷却される。極低温冷凍機110の二段冷却ステージは、気化した液体冷媒112の再凝縮に利用されてもよい。あるいは、極低温冷凍機110の二段冷却ステージは、超伝導コイル102と熱的に結合され、超伝導コイル102を伝導冷却により第2冷却温度に冷却してもよい。
 超伝導装置100の運転に先立って、超伝導装置100を起動するために、超伝導装置100の初期冷却が行われる。初期冷却は、例えば、超伝導装置100の製造工程の最終段階として出荷前に行われる。あるいは、初期冷却は、超伝導装置100の定期的な点検後に、または、クエンチなど異常からの復旧のために、行われる場合もある。
 浸漬冷却による初期冷却は、超伝導コイル102を液体冷媒112に浸すことによって行われる。液体冷媒112として液体ヘリウムのみを使用して、超伝導コイル102は、超伝導装置100の周囲温度(例えば295K)から目標の極低温(例えば4K)まで冷却されてもよい。この場合、典型的には、例えば数千リットルもの多量の液体ヘリウムが必要とされうる。
 液体ヘリウムの消費量を削減するために、液体冷媒112として液体ヘリウムよりも高沸点の他の極低温液体冷媒、例えば液体窒素が予冷に利用されてもよい。超伝導コイル102は、液体窒素に浸されることによって周囲温度から所定の極低温(例えば77K)まで予冷され、その後、液体冷媒槽104内の液体冷媒112は液体窒素から液体ヘリウムに交換され、さらに超伝導コイル102は、液体ヘリウムに浸されることによってこの所定の極低温から目標の極低温まで冷却されてもよい。この場合、予冷のための液体窒素は依然として多量に必要となるが、液体ヘリウムの消費量は例えば1000リットル程度に抑えることができる。液体窒素の単価は液体ヘリウムに比べて大幅に安価であるため、初期冷却のコストを削減することができる。
 超伝導装置100の初期冷却コストをいっそう低減するために、極低温に冷却されたガスを超伝導装置100に循環させる循環冷却式の初期冷却が提案されている。循環冷却式初期冷却は、(i)冷却されたガスを液体冷媒槽104に循環させる循環冷却装置10を使用して、超伝導コイル102を超伝導装置100の周囲温度から所定の極低温まで冷却することと、(ii)超伝導コイル102を液体冷媒槽104で液体ヘリウムに浸漬させて所定の極低温から超伝導コイル102を動作させる目標の極低温まで冷却することとを備える。
 図2は、実施の形態に係る循環冷却装置10を超伝導装置100とともに模式的に示す図である。循環冷却装置10は、冷媒ガスを極低温に冷却し、超伝導装置100に循環させるように構成されている。冷媒ガスは、この実施の形態では、ヘリウムガスであるが、場合によっては例えば窒素ガスなど他のガスが用いられてもよい。循環冷却装置10は、循環装置12と、少なくとも一台(この実施の形態では複数台、例えば4台)の極低温冷凍機14と、真空容器16と、供給ライン18と、回収ライン20とを備える。
 循環装置12は、回収ライン20から回収される冷媒ガスを供給ライン18に送出するように構成され、それにより、冷媒ガスを循環冷却装置10と超伝導装置100との間で循環させることができる。循環装置12は、真空容器16に設置されている。循環装置12は、例えばファンであってもよい。
 複数の極低温冷凍機14は各々が冷媒ガスを冷却するための冷却ステージ14aを備え、冷却ステージ14aが真空容器16内に配置されるようにして真空容器16に設置されている。極低温冷凍機14は、超伝導装置100の極低温冷凍機110と同様に、例えばギフォード・マクマホン(Gifford-McMahon;GM)冷凍機であってもよく、または、パルス管冷凍機、スターリング冷凍機などその他の極低温冷凍機であってもよい。極低温冷凍機14は、単段式であってもよく、例えば100Kから10Kの範囲から選択される冷却温度(例えば液体窒素温度)を冷却ステージ14aに提供することができる。
 真空容器16は、内部に極低温真空環境を提供する断熱真空容器であり、クライオスタットとも呼ばれる。真空容器16内には、極低温冷凍機14の冷却ステージ14aとともに供給ライン18および回収ライン20が収容される。真空容器16には、その壁面に冷媒ガス供給口22と冷媒ガス回収口24が設けられている。供給ライン18が循環装置12を冷媒ガス供給口22に接続し、回収ライン20が冷媒ガス回収口24を冷媒ガス供給口22に接続する。
 供給ライン18は、極低温冷凍機14の冷却ステージ14aとの熱交換により冷媒ガスを冷却する熱交換器18aを備える。熱交換器18aは冷却ステージ14aごとに設けられ、これら熱交換器18aは直列接続されている。
 循環冷却式の初期冷却が行われるとき、循環冷却装置10が供給側移送ライン26と回収側移送ライン28により超伝導装置100に接続される。供給側移送ライン26は、循環冷却装置10の冷媒ガス供給口22を超伝導装置100の冷媒入口114に接続し、回収側移送ライン28は、循環冷却装置10の冷媒ガス回収口24を超伝導装置100の冷媒出口116に接続する。供給側移送ライン26と回収側移送ライン28は、極低温に冷却された冷媒ガスに適合するフレキシブルチューブであってもよい。
 循環装置12が作動することにより、冷媒ガスは、供給ライン18上で直列接続された複数の熱交換器18aを順次通過し、各極低温冷凍機14の冷却ステージ14aによって冷却される。こうして冷却ステージ14aの冷却温度に冷却された冷媒ガスは、供給側移送ライン26を通じて超伝導装置100の液体冷媒槽104に供給され、超伝導コイル102を冷却する。冷媒ガスは、液体冷媒槽104から回収側移送ライン28を通じて循環冷却装置10の回収ライン20へと回収され、循環装置12によって供給ライン18に再び送出される。循環冷却装置10を用いた超伝導装置100の予冷では、液体窒素など液体冷媒は使用されない。
 このような冷媒ガスの循環を継続することにより、循環冷却装置10は、超伝導装置100の超伝導コイル102を循環冷却装置10の冷媒ガスの冷却温度まで冷却することができる。こうして超伝導コイル102が予冷されたら、循環冷却装置10の動作は停止され、循環冷却装置10が超伝導装置100から取り外される。
 続いて、超伝導装置100の液体冷媒槽104に液体ヘリウムが供給される。超伝導コイル102を液体ヘリウムに浸漬させることによって、超伝導コイル102は、目標の極低温(例えば約4K)まで最終的に冷却され、初期冷却は完了する。
 図3は、実施の形態に係る超伝導装置100の循環冷却式初期冷却の付加価値を決定する装置を模式的に示す図である。付加価値決定装置50は、演算処理装置52と、入力部54と、出力部56とを備える。
 付加価値決定装置50の内部構成は、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図では適宜、それらの連携によって実現される機能ブロックとして描いている。これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
 付加価値決定装置50は、パソコンなど汎用のコンピュータに実装されてもよい。入力部54は、循環冷却式初期冷却の付加価値を決定するために必要とされるユーザまたは他の装置からの入力データを受け付け、この入力データを演算処理装置52に提供するよう構成され、例えば、ユーザからの入力を受け付けるためのマウスやキーボード等の入力手段、及び/または、他の装置との通信をするための通信手段を含んでもよい。出力部56は、入力データ、及び/または演算処理装置52が生成したデータを出力するよう構成され、例えば、ディスプレイやプリンタ等の出力手段を含んでもよい。
 演算処理装置52は、後述する付加価値決定方法を実行するように構成され、第1冷却コスト演算部60と、第2冷却コスト演算部62と、付加価値演算部64とを備える。第1冷却コスト演算部60は、浸漬冷却による超伝導装置100の初期冷却における液体ヘリウムの消費量(および、使用される場合には、他の液体冷媒の消費量)を取得し、取得した情報に基づいて、浸漬冷却による超伝導装置100の初期冷却の冷却コストを算出する。第2冷却コスト演算部62は、循環冷却式初期冷却の液体ヘリウム消費量(および、適用可能な場合には、循環冷却装置10のそのほかの使用コスト)を取得し、取得した情報に基づいて、循環冷却式初期冷却の冷却コストを算出する。付加価値演算部64は、算出した浸漬冷却の冷却コストと循環冷却式初期冷却の冷却コストとの比較に基づいて、浸漬冷却に対する循環冷却式初期冷却の付加価値を算出する。
 図4は、実施の形態に係る超伝導装置100の循環冷却式初期冷却の付加価値決定方法を示すフローチャートである。例えば、図3に例示される付加価値決定装置がこの方法を実行することができる。この方法では、浸漬冷却式初期冷却の冷却コストが取得され(S10)、循環冷却式初期冷却の冷却コストが取得され(S20)、浸漬冷却に対する循環冷却式初期冷却の付加価値が提示される(S30)。なお、S10とS20の順序は問わない。
 浸漬冷却式初期冷却の冷却コストの取得(S10)では、まず、浸漬冷却によって超伝導コイル102を周囲温度から目標の極低温まで冷却した場合の液体ヘリウム消費量が取得される。超伝導コイル102を周囲温度から目標の極低温まで冷却するために液体ヘリウムのみが使用される場合には、使用した液体ヘリウムの量が液体ヘリウム消費量として取得される。別の例として、まず液体ヘリウムとは別の液体冷媒(例えば液体窒素)により超伝導コイル102を周囲温度から所定の極低温(例えば77K)まで冷却し、続いて液体ヘリウムによりこの所定の極低温から目標の極低温まで冷却する場合には、液体ヘリウム消費量だけでなく、別の液体冷媒の消費量も取得される。
 これら液体冷媒の消費量は、超伝導装置100の浸漬冷却を実際に行うことにより記録され、記録された消費量が入力部54に入力され、演算処理装置52に伝達されてもよい。あるいは、液体冷媒の消費量は、超伝導装置100の浸漬冷却による初期冷却のシミュレーションを行うことにより、または経験的に見積もられてもよく、見積もられた消費量が入力部54に入力され、演算処理装置52に伝達されてもよい。
 浸漬冷却式初期冷却の冷却コストは、液体ヘリウムのみが使用される場合、浸漬冷却の液体ヘリウム消費量に単位量あたりのヘリウム価格を乗じて算出される。液体ヘリウムと他の液体冷媒が使用される場合、浸漬冷却式初期冷却の冷却コストは、液体ヘリウム消費量に単位量あたりのヘリウム価格を乗じて液体ヘリウムコストを算出し、他の液体冷媒の消費量に単位量あたりの当該液体冷媒の価格を乗じて液体冷媒コストを算出し、液体ヘリウムコストと液体冷媒コストの和として算出される。浸漬冷却式初期冷却の冷却コストの算出は、第1冷却コスト演算部60が実行してもよい。単位量(例えば1リットル)あたりのヘリウム価格を示すヘリウム価格データ、および単位量あたりの他の液体冷媒の価格を示す液体冷媒価格データは、入力部54に入力されて演算処理装置52に提供され、または演算処理装置52にあらかじめ格納されていてもよい。
 浸漬冷却式初期冷却の一例として、液体窒素により超伝導コイル102を300Kから77Kまで冷却し、液体ヘリウムにより超伝導コイル102を77Kから4Kまでさらに冷却するケースにおいて、2000Lの液体窒素と1500Lの液体ヘリウムが使用されたものとする。液体窒素と液体ヘリウムの単価がそれぞれ、1リットルあたりで30円、1800円であったとすると、浸漬冷却式初期冷却の冷却コストは、276万円(=2000L×30円/L+1500L×1800円/L)と計算される。
 循環冷却式初期冷却の冷却コストの取得(S20)では、循環冷却装置10の使用コストと、初期冷却の最終段階での液体ヘリウム消費量が取得される。そして、使用コストと液体ヘリウム価格が循環冷却式初期冷却の冷却コストとして合計される。循環冷却装置10の使用コストには、例えば、循環冷却装置10に使用されるヘリウムガスの価格、循環冷却装置10の使用による電気料金など、循環冷却装置10の使用に伴って発生するコストが含まれてもよい。液体ヘリウム価格は、浸漬冷却の場合と同様に、液体ヘリウム消費量に単位量あたりのヘリウム価格を乗じて算出される。循環冷却装置10の使用コストと液体ヘリウム消費量は、循環冷却式初期冷却を超伝導装置100に実際に行うことにより、または循環冷却式初期冷却のシミュレーションを行うことにより、または経験的に見積もられてもよく、見積もられた使用コストおよび消費量が入力部54に入力され、演算処理装置52に伝達されてもよい。循環冷却式初期冷却の冷却コストの算出は、第2冷却コスト演算部62が実行してもよい。
 循環冷却式初期冷却の一例として、循環冷却装置10により超伝導コイル102を300Kから15Kまで冷却し、液体ヘリウムにより超伝導コイル102を15Kから4Kまでさらに冷却するケースを考える。400Lの液体ヘリウムが使用され、20万円の使用コスト(例えば、5万円の電気代と15万円のヘリウムガス代)がかかったとすると、循環冷却式初期冷却の冷却コストは、92万円(=400L×1800円/L+20万円)と計算される。
 浸漬冷却に対する循環冷却式初期冷却の付加価値の提示(S30)は、浸漬冷却の液体ヘリウム消費量と循環冷却式初期冷却の液体ヘリウム消費量との比較に基づく。より具体的には、浸漬冷却式初期冷却の冷却コストから循環冷却式初期冷却の冷却コストが控除され、その残額が循環冷却式初期冷却の付加価値額として計算されてもよい。付加価値演算部64がこの計算を実行し、得られた付加価値を示すデータを出力部56に出力してもよい。出力部56は、付加価値データに基づいて、取得された付加価値を提示することができる。
 別の見方をすれば、付加価値の算出は、浸漬冷却の液体ヘリウム消費量と循環冷却式初期冷却の液体ヘリウム消費量との差に単位量あたりのヘリウム価格を乗じて付加価値額を算出することにあたる。この付加価値額から循環冷却装置の使用コストは控除される。また、浸漬冷却で使用される液体ヘリウムとは別の液体冷媒の消費量の相当額は付加価値額に加算される。
 浸漬冷却に対する循環冷却式初期冷却の付加価値の提示(S30)は、付加価値額に所定比率を乗じた額を循環冷却式初期冷却における循環冷却装置10の使用料として算出することを備えてもよい。所定比率は、例えば、1/2であってもよく、あるいは、0より大きく1より小さい任意の値であってもよい。上述の例では、循環冷却装置10の使用料は、92万円(=(276万円-92万円)×1/2)と算出できる。循環冷却装置10の使用料の算出は、付加価値演算部64が実行してもよい。算出された使用料は、出力部56に出力されてもよい。
 実施の形態によれば、浸漬冷却に対する循環冷却式初期冷却の付加価値を具体的な金額として把握することができる。循環冷却装置10の利用によって得られる技術的な価値を金銭的に認識する助けとなるから、超伝導装置100の循環冷却式初期冷却の普及に役立つ。
 例えば、循環冷却装置10の所有者と超伝導装置100の所有者(または使用者)との間の取り決めにより、超伝導装置100の所有者が循環冷却装置10の所有者から循環冷却装置10の貸与を受け、貸与された循環冷却装置10を用いて循環冷却式初期冷却を行う場合の対価を定めることができる。この対価として、算出された循環冷却装置10の使用料を利用できる。つまり、超伝導装置100の所有者が循環冷却式初期冷却を行うたびに、超伝導装置100の所有者から循環冷却装置10の所有者に循環冷却装置10の使用料が対価として支払われることになる。
 このようにすれば、超伝導装置100の所有者が循環冷却式初期冷却のために循環冷却装置10を購入する高額な初期投資に比べて、低廉な使用料で循環冷却式初期冷却を実施することができる。上述の循環冷却式初期冷却の付加価値は従来の浸漬冷却に対して循環冷却式初期冷却で削減できる液体ヘリウム消費量に基づくものであり、循環冷却装置10の使用料はこの付加価値に基づくから、公平で合理的である。したがって、こうした循環冷却装置10の使用料の取り決めは、超伝導装置100の循環冷却式初期冷却の普及に役立つ。
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。
 上述の実施の形態では、超伝導装置100がMRIシステムに搭載される場合を例として説明しているが、その限りでない。超伝導装置100は、例えば単結晶引き上げ装置、NMRシステム、サイクロトロンなどの加速器、核融合システムなどの高エネルギー物理システム、またはその他の高磁場利用機器の一部を構成してもよい。
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
 本発明の実施の形態は以下のように番号付けられた項により表現することもできる。
 1.超伝導装置の循環冷却式初期冷却の付加価値決定方法であって、
 前記超伝導装置は、超伝導コイルを内部に収めた液体冷媒槽を備え、
 前記循環冷却式初期冷却は、(i)冷却されたガスを前記液体冷媒槽に循環させる循環冷却装置を使用して、前記超伝導コイルを前記超伝導装置の周囲温度から所定の極低温まで冷却することと、(ii)前記超伝導コイルを前記液体冷媒槽で液体ヘリウムに浸漬させて前記所定の極低温から前記超伝導コイルを動作させる目標の極低温まで冷却することとを備えており、前記方法は、
 液体ヘリウム、または液体ヘリウムと他の液体冷媒を使用する浸漬冷却によって前記超伝導コイルを前記周囲温度から前記目標の極低温まで冷却した場合の液体ヘリウム消費量を取得することと、
 前記循環冷却式初期冷却の液体ヘリウム消費量を取得することと、
 前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との比較に基づいて、前記浸漬冷却に対する前記循環冷却式初期冷却の付加価値を提示することと、を備えることを特徴とする方法。
 2.前記付加価値を提示することは、前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との比較に基づいて前記付加価値を算出することを備えることを特徴とする項1に記載の方法。
 3.前記付加価値を算出することは、前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との差に単位量あたりのヘリウム価格を乗じて付加価値額を算出することを備えることを特徴とする項2に記載の方法。
 4.前記方法は、前記循環冷却式初期冷却における前記循環冷却装置の使用コストを取得することをさらに備え、
 前記付加価値額を算出することは、前記付加価値額から前記使用コストを控除することを備えることを特徴とする項3に記載の方法。
 5.前記方法は、前記浸漬冷却における前記他の液体冷媒の消費量を取得することをさらに備え、
 前記付加価値額を算出することは、前記付加価値額に前記他の液体冷媒の消費量の相当額を加算することを備えることを特徴とする項3または4に記載の方法。
 6.前記付加価値を提示することは、前記付加価値額に所定比率を乗じた額を前記循環冷却式初期冷却における前記循環冷却装置の使用料として算出することを備えることを特徴とする項3から5のいずれかに記載の方法。
 7.前記付加価値を提示することは、
 前記浸漬冷却の液体ヘリウム消費量および前記循環冷却式初期冷却の液体ヘリウム消費量を、コンピュータに入力することと、
 前記コンピュータが、前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との比較に基づいて前記付加価値を算出し、前記付加価値を出力することと、を備えることを特徴とする項1に記載の方法。
 8.前記付加価値を算出することは、前記コンピュータが、前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との差に単位量あたりのヘリウム価格を乗じて付加価値額を算出することを備えることを特徴とする項7に記載の方法。
 9.前記方法は、前記循環冷却式初期冷却における前記循環冷却装置の使用コストを、前記コンピュータに入力することをさらに備え、
 前記付加価値額を算出することは、前記コンピュータが、前記付加価値額から前記使用コストを控除することを備えることを特徴とする項8に記載の方法。
 10.前記方法は、前記浸漬冷却における前記他の液体冷媒の消費量を、前記コンピュータに入力することをさらに備え、
 前記付加価値額を算出することは、前記コンピュータが、前記付加価値額に前記他の液体冷媒の消費量の相当額を加算することを備えることを特徴とする項8または9に記載の方法。
 11.前記付加価値を提示することは、前記コンピュータが、前記付加価値額に所定比率を乗じた額を前記循環冷却式初期冷却における前記循環冷却装置の使用料として算出することを備えることを特徴とする項8から10のいずれかに記載の方法。
 本発明は、超伝導装置の循環冷却式初期冷却の付加価値決定方法の分野における利用が可能である。
 10 循環冷却装置、 50 付加価値決定装置、 100 超伝導装置、 102 超伝導コイル、 104 液体冷媒槽、 112 液体冷媒。

Claims (13)

  1.  超伝導装置の循環冷却式初期冷却の付加価値決定方法であって、
     前記超伝導装置は、超伝導コイルを内部に収めた液体冷媒槽を備え、
     前記循環冷却式初期冷却は、(i)冷却されたガスを前記液体冷媒槽に循環させる循環冷却装置を使用して、前記超伝導コイルを前記超伝導装置の周囲温度から所定の極低温まで冷却することと、(ii)前記超伝導コイルを前記液体冷媒槽で液体ヘリウムに浸漬させて前記所定の極低温から前記超伝導コイルを動作させる目標の極低温まで冷却することとを備えており、前記方法は、
     液体ヘリウム、または液体ヘリウムと他の液体冷媒を使用する浸漬冷却によって前記超伝導コイルを前記周囲温度から前記目標の極低温まで冷却した場合の液体ヘリウム消費量を取得することと、
     前記循環冷却式初期冷却の液体ヘリウム消費量を取得することと、
     前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との比較に基づいて、前記浸漬冷却に対する前記循環冷却式初期冷却の付加価値を提示することと、を備えることを特徴とする方法。
  2.  前記付加価値を提示することは、前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との比較に基づいて前記付加価値を算出することを備えることを特徴とする請求項1に記載の方法。
  3.  前記付加価値を算出することは、前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との差に単位量あたりのヘリウム価格を乗じて付加価値額を算出することを備えることを特徴とする請求項2に記載の方法。
  4.  前記方法は、前記循環冷却式初期冷却における前記循環冷却装置の使用コストを取得することをさらに備え、
     前記付加価値額を算出することは、前記付加価値額から前記使用コストを控除することを備えることを特徴とする請求項3に記載の方法。
  5.  前記方法は、前記浸漬冷却における前記他の液体冷媒の消費量を取得することをさらに備え、
     前記付加価値額を算出することは、前記付加価値額に前記他の液体冷媒の消費量の相当額を加算することを備えることを特徴とする請求項3または4に記載の方法。
  6.  前記付加価値を提示することは、前記付加価値額に所定比率を乗じた額を前記循環冷却式初期冷却における前記循環冷却装置の使用料として算出することを備えることを特徴とする請求項3から5のいずれかに記載の方法。
  7.  前記付加価値を提示することは、
     前記浸漬冷却の液体ヘリウム消費量および前記循環冷却式初期冷却の液体ヘリウム消費量を、コンピュータに入力することと、
     前記コンピュータが、前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との比較に基づいて前記付加価値を算出し、前記付加価値を出力することと、を備えることを特徴とする請求項1に記載の方法。
  8.  前記付加価値を算出することは、前記コンピュータが、前記浸漬冷却の液体ヘリウム消費量と前記循環冷却式初期冷却の液体ヘリウム消費量との差に単位量あたりのヘリウム価格を乗じて付加価値額を算出することを備えることを特徴とする請求項7に記載の方法。
  9.  前記方法は、前記循環冷却式初期冷却における前記循環冷却装置の使用コストを、前記コンピュータに入力することをさらに備え、
     前記付加価値額を算出することは、前記コンピュータが、前記付加価値額から前記使用コストを控除することを備えることを特徴とする請求項8に記載の方法。
  10.  前記方法は、前記浸漬冷却における前記他の液体冷媒の消費量を、前記コンピュータに入力することをさらに備え、
     前記付加価値額を算出することは、前記コンピュータが、前記付加価値額に前記他の液体冷媒の消費量の相当額を加算することを備えることを特徴とする請求項8または9に記載の方法。
  11.  前記付加価値を提示することは、前記コンピュータが、前記付加価値額に所定比率を乗じた額を前記循環冷却式初期冷却における前記循環冷却装置の使用料として算出することを備えることを特徴とする請求項8から10のいずれかに記載の方法。
  12.  超伝導装置の循環冷却式初期冷却の付加価値決定装置であって、
     請求項1から11のいずれかに記載の方法を実行するように構成される演算処理装置を備えることを特徴とする付加価値決定装置。
  13.  コンピュータに請求項1から11のいずれかに記載の方法を実行させる命令を備えることを特徴とするコンピュータプログラム。
PCT/JP2022/035154 2021-10-20 2022-09-21 超伝導装置の循環冷却式初期冷却の付加価値決定方法 WO2023067976A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063454.6A CN117981500A (zh) 2021-10-20 2022-09-21 超导装置的循环冷却式初始冷却的附加价值确定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021171628A JP7360431B2 (ja) 2021-10-20 2021-10-20 超伝導装置の循環冷却式初期冷却の付加価値決定方法、付加価値決定装置、およびコンピュータプログラム
JP2021-171628 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023067976A1 true WO2023067976A1 (ja) 2023-04-27

Family

ID=86059059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035154 WO2023067976A1 (ja) 2021-10-20 2022-09-21 超伝導装置の循環冷却式初期冷却の付加価値決定方法

Country Status (4)

Country Link
JP (1) JP7360431B2 (ja)
CN (1) CN117981500A (ja)
TW (1) TW202318327A (ja)
WO (1) WO2023067976A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147698A1 (ja) * 2013-03-18 2014-09-25 三菱電機株式会社 超電導マグネットの冷却方法および超電導マグネット
WO2019146215A1 (ja) * 2018-01-29 2019-08-01 住友重機械工業株式会社 極低温冷却システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147698A1 (ja) * 2013-03-18 2014-09-25 三菱電機株式会社 超電導マグネットの冷却方法および超電導マグネット
WO2019146215A1 (ja) * 2018-01-29 2019-08-01 住友重機械工業株式会社 極低温冷却システム

Also Published As

Publication number Publication date
JP2023061609A (ja) 2023-05-02
TW202318327A (zh) 2023-05-01
CN117981500A (zh) 2024-05-03
JP7360431B2 (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
CN113035486B (zh) 低温超导磁体的制冷系统
JP4352040B2 (ja) 冷凍機冷却式nmr分光器
JP6502422B2 (ja) 低温冷凍機の寒剤ガス液化装置における液化率向上のためのシステムおよび方法
EP1586833A2 (en) Cooling apparatus
Jha Cryogenic technology and applications
Lebrun et al. Cooling with superfluid helium
Sun et al. Conceptual design and thermal analysis of a modular cryostat for one single coil of a 10 MW offshore superconducting wind turbine
Chapman et al. Cryogen-free cryostat for neutron scattering sample environment
JPH08222429A (ja) 極低温装置
WO2023067976A1 (ja) 超伝導装置の循環冷却式初期冷却の付加価値決定方法
Sun et al. Speed up the cooling process of superconducting magnets by applying a large cooling capacity Stirling cryocooler
Van Sciver Cryogenic systems for superconducting devices
Narasaki et al. Development of zero boil-off cooling systems for superconducting self-shielded MEG
Batey et al. Integration of superconducting magnets with cryogen-free dilution refrigerator systems
Takeda et al. An efficient helium circulation system with small GM cryocoolers
Zheng et al. Thermodynamic Analysis of a Forced-Flow-Cooling System for a CICC Coil in a High Field Superconducting Magnet
Kirichek Cryocooler Applications at Neutron Scattering Facilities
Green et al. Using a single-stage GM cooler to augment the cooling of the shields and leads of a magnet cooled with two-stage coolers
Hu et al. Performance of Two-phase Closed Loop Thermosyphon in Cooling Down of Compact Superconducting Magnet
Stautner Cryocoolers for Healthcare
Dong et al. Development of a 2 K Joule-Thomson Cryocooler with 4He
Nakanishi et al. KEKB/SuperKEKB Cryogenics Operation
Jin et al. Development of adiabatic demagnetization refrigerator for future astronomy missions
Głuchowska et al. Cryogenic Thermosiphon Used for Indirect Cooling of Superconducting Magnets
Bassan et al. Numerical model for cooling a gravitational wave detector below 1 K

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280063454.6

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024007787

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022883286

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022883286

Country of ref document: EP

Effective date: 20240521