WO2023067745A1 - 学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法 - Google Patents

学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法 Download PDF

Info

Publication number
WO2023067745A1
WO2023067745A1 PCT/JP2021/038860 JP2021038860W WO2023067745A1 WO 2023067745 A1 WO2023067745 A1 WO 2023067745A1 JP 2021038860 W JP2021038860 W JP 2021038860W WO 2023067745 A1 WO2023067745 A1 WO 2023067745A1
Authority
WO
WIPO (PCT)
Prior art keywords
congestion
past
related information
model
data
Prior art date
Application number
PCT/JP2021/038860
Other languages
English (en)
French (fr)
Inventor
大心 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180103058.7A priority Critical patent/CN118076959A/zh
Priority to PCT/JP2021/038860 priority patent/WO2023067745A1/ja
Priority to EP21961397.3A priority patent/EP4401013A1/en
Priority to JP2023547531A priority patent/JP7378688B2/ja
Publication of WO2023067745A1 publication Critical patent/WO2023067745A1/ja
Priority to US18/635,337 priority patent/US20240257289A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/022Knowledge engineering; Knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination

Definitions

  • the present disclosure relates to a learning device, a prediction device, a learning prediction device, a program, a learning method, a prediction method, and a learning prediction method.
  • Patent Document 1 when estimating the degree of congestion or the flow of people on the platform or concourse of a station, considering the dynamic causal relationship between timetable information and sensors, places where sensors are not installed Means are disclosed for estimating the degree of congestion or flow of people in a street.
  • the conventional technology only predicts and presents the current congestion degree of the station or trains to passengers who are already at the station. Therefore, since users do not know the degree of congestion in the future, they cannot take actions to avoid congestion in the future. As a result, the degree of satisfaction of future passengers who are about to head to a station or the like is lowered.
  • an object of one or more aspects of the present disclosure is to be able to predict future congestion in areas where sensors are not deployed.
  • the learning device stores past congestion area data indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more) past congestion area data a storage unit, and past sensor data indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas; and the value indicated by the past sensor data as input data, and the congestion-related information indicated by the past congestion area data as correct data, so that the one or more sensors
  • a first model generation unit that generates a first model, which is a learning model for predicting congestion-related information at the time when the one or more sensors detect, from the detected values, and the past congestion area data
  • the congestion-related information at a first point in time is input data, and the degree of congestion is included in the congestion-related information at a second point in time after the first point in time, indicated by the past congestion area data. as correct data, and a second model generation unit that generates a second model that is a learning model
  • a learning device stores past congestion area data indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more) past congestion area data a storage unit, and past sensor data indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas; and the congestion-related information indicated by the past congestion area data as input data, and by using the value indicated by the past sensor data as correct data, from the congestion-related information, A first model generation unit that generates a first model, which is a learning model for predicting values detected by the one or more sensors at the time when the congestion-related information is acquired, and the first model using a model application unit that predicts the values detected by the one or more sensors at the first time point from the congestion-related information at the first time point, indicated by the past congestion area data, and the prediction By using the obtained value as input data and using the congestion degree included in the congestion-related information at the second time point after the first
  • the prediction device is installed in n areas (n is an integer of 1 or more and n ⁇ m) included in m areas (m is an integer of 2 or more)
  • An acquisition unit that acquires values detected by one or more sensors, and one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • the value indicated by the past sensor data indicating the value detected in the past is input data, and the congestion indicated by the past congestion area data indicating congestion-related information including the past congestion degree in each of the m areas
  • a first prediction unit that predicts congestion-related information at the time when the one or more sensors detect from the acquired value using the model of, and the past congestion area data, the first The congestion-related information at a point in time is used as input data, and the degree of congestion included in the congestion-related information at a second point in time after the first point in time, which is indicated by the past congestion area data, is defined as correct data.
  • the second model which is a learning model for predicting the degree of congestion in the future from the congestion-related information generated by and a second prediction unit for predicting the degree of congestion in the area in the future.
  • the prediction device is installed in n areas (n is an integer of 1 or more and n ⁇ m) included in m areas (m is an integer of 2 or more)
  • An acquisition unit that acquires values detected by one or more sensors; , at the time when the congestion-related information is obtained from the congestion-related information generated by using the values indicated by the past sensor data indicating the values detected in the past by the one or more sensors as the correct data , using the first model, which is a learning model for predicting the values detected by the one or more sensors, from the congestion-related information at the first point in time indicated by the past congestion area data, the first Input data is the predicted value obtained by predicting the values detected by the one or more sensors at one point in time, and after the first point in time indicated by the past congested area data.
  • a learning model for predicting the future congestion degree from the values detected by the one or more sensors generated by using the congestion degree included in the congestion-related information at the second time point as correct data a prediction execution unit that predicts the future congestion degree of any one of the m areas from the obtained value using a certain second model.
  • the learning prediction device stores past congestion area data indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more) Past congestion area a data storage unit, and past sensors indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • the past sensor data storage unit for storing data, the value indicated by the past sensor data as input data, and the congestion-related information indicated by the past congestion area data as correct data
  • the one or more sensors A first model generation unit that generates a first model, which is a learning model for predicting congestion-related information at the time when the one or more sensors detect, from the values detected in, and the past congestion area data
  • the congestion-related information at the first point in time indicated by is input data, and the congestion included in the congestion-related information at a second point in time after the first point in time indicated by the past congestion area data
  • a second model generation unit that generates a second model, which is a learning
  • a learning prediction device stores past congestion area data indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more) Past congestion area a data storage unit, and past sensors indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • a first model generation unit that generates a first model, which is a learning model for predicting values detected by the one or more sensors at the time when the congestion-related information is acquired
  • a first prediction unit that uses a model to predict values detected by the one or more sensors at the first time point from the congestion-related information at the first time point, which is indicated by the past congested area data; and using the predicted value as input data, and using the congestion degree included in the congestion-
  • a second model generation unit that generates a second model, which is a learning model for predicting the degree of congestion in the future from the values detected by the one or more sensors; an acquisition unit that acquires a value; and a second prediction unit that predicts the future congestion degree of any one of the m areas from the acquired value using the second model.
  • a program causes a computer to store past congestion area data indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more).
  • area data storage unit a past sensor indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • the one or more sensors A first model generation unit that generates a first model, which is a learning model for predicting congestion-related information at the time when the one or more sensors detect from detected values, and the past congestion area data
  • the congestion-related information at the first point in time indicated by is input data, and the congestion included in the congestion-related information at a second point in time after the first point in time indicated by the past congestion area data
  • it functions as a second model generation unit that generates
  • a program causes a computer to store past congestion area data indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more).
  • area data storage unit a past sensor indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • a first model generation unit that generates a first model, which is a learning model for predicting values detected by the one or more sensors at the time when the congestion-related information is acquired, the first model using a model application unit that predicts the values detected by the one or more sensors at the first time point from the congestion-related information at the first time point indicated by the past congestion area data, and the prediction
  • the obtained value as input data and using the congestion degree included in the congestion-related information at
  • a program installs a computer in n areas (n is an integer of 1 or more and n ⁇ m) included in m areas (m is an integer of 2 or more) an acquisition unit that acquires values detected by one or more sensors that are detected; one or more installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • the value indicated by the past sensor data indicating the value detected by the sensor in the past is used as input data, and the past congestion area data indicating congestion-related information including the past congestion degree in each of the m areas.
  • a first prediction unit that predicts congestion-related information at the time when the one or more sensors detect from the acquired value using a model of 1, and the past congestion area data.
  • the congestion-related information at time 1 is used as input data, and the degree of congestion included in the congestion-related information at a second time after the first time, indicated by the past congestion area data, is correct.
  • the second model which is a learning model for predicting the degree of congestion in the future from the congestion-related information generated by making data, from the predicted congestion-related information, included in the m areas It is characterized by functioning as a second prediction unit that predicts the future congestion degree of any one of the areas where the area is located.
  • a program installs a computer in n areas (n is an integer of 1 or more and n ⁇ m) included in m areas (m is an integer of 2 or more) an acquisition unit that acquires values detected by one or more sensors that have been detected;
  • the congestion-related information is obtained from the congestion-related information generated by using as input data the values indicated by past sensor data indicating values detected in the past by the one or more sensors as correct data.
  • the first model which is a learning model for predicting the values detected by the one or more sensors at the time point, from the congestion-related information at the first time point indicated by the past congestion area data
  • the predicted value obtained by predicting the value detected by the one or more sensors at the first time point is used as input data, and the first time point indicated by the past congested area data
  • the second model which is a learning model, to function as a prediction execution unit that predicts the future congestion degree of any one of the m areas from the acquired values. do.
  • a program causes a computer to store past congestion area data indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more).
  • area data storage unit a past sensor indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • the one or more sensors A first model generation unit that generates a first model, which is a learning model for predicting congestion-related information at the time of detection by the one or more sensors, from the detected values, indicated by the past congestion area data
  • the congestion-related information at a first point in time is input data
  • the degree of congestion included in the congestion-related information at a second point in time after the first point in time indicated by the past congestion area data is
  • a second model generation unit that generates a second model, which
  • a first prediction unit that predicts congestion-related information at the time when the one or more sensors detect from the obtained value using the first model
  • the second prediction unit It is characterized by functioning as a second prediction unit that predicts the future congestion degree of any one of the m areas from the predicted congestion-related information using a model.
  • a program causes a computer to store past congestion area data indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more).
  • area data storage unit a past sensor indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • a first model generation unit that generates a first model, which is a learning model for predicting the values detected by the one or more sensors at the time when the congestion-related information is acquired, the first model; a first prediction unit that predicts values detected by the one or more sensors at the first time point from the congestion-related information at the first time point indicated by the past congested area data, the prediction By using the obtained value as input data and using the congestion degree included in the congestion-related information
  • the learning method according to the first aspect of the present disclosure is installed in n areas (n is an integer of 1 or more and n ⁇ m) included in m areas (m is an integer of 2 or more)
  • Past congestion area data indicating congestion-related information including the past congestion degree in each of the m areas, with the values indicated by past sensor data indicating values detected in the past by one or more sensors as input data.
  • a learning model for predicting the congestion-related information at the time when the one or more sensors detect 1 model is generated, the congestion-related information at a first point in time indicated by the past congested area data is used as input data, and a second model after the first point in time indicated by the past congested area data is used.
  • a second model that is a learning model for predicting the future congestion degree from the congestion-related information is generated.
  • the congestion-related information indicated by past congestion-related information indicating congestion-related information including past congestion degrees in each of m areas (m is an integer of 2 or more) as input data, past sensors indicating values detected in the past by one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas
  • a first model and using the first model, from the congestion-related information at the first point in time indicated by the past congestion area data, detected by the one or more sensors at the first point in time;
  • the congestion level included in the congestion-related information at a second time point after the first time point, indicated by the past congestion area data, by using the predicted value as input data. is correct data, a second model, which is a learning model for predicting the degree of congestion in the future, is generated from the values detected by the one or more sensors.
  • the prediction method according to the first aspect of the present disclosure is installed in n areas (n is an integer of 1 or more and n ⁇ m) included in m areas (m is an integer of 2 or more) Acquire values detected by one or more sensors, and use one or more sensors installed in n areas (n is an integer of 1 or more and n ⁇ m) included in the m areas in the past
  • the value indicated by past sensor data indicating the detected value is used as input data, and the congestion-related information indicated by past congestion area data indicating congestion-related information including the past congestion degree in each of the m areas.
  • a first model that is a learning model for predicting congestion-related information at the time when the one or more sensors detect from the values detected by the one or more sensors generated by making the correct data is used to predict the congestion-related information at the time when the one or more sensors detect from the acquired value, and the congestion-related information at the first time point indicated by the past congestion area data is input data and congestion-related data generated by using the congestion degree included in the congestion-related information at a second time point after the first time point indicated by the past congestion area data as correct data
  • a second model which is a learning model for predicting the future congestion degree from information, from the predicted congestion-related information, the future congestion degree of any one of the areas included in the m areas It is characterized by predicting.
  • the prediction method according to the second aspect of the present disclosure is installed in n areas (n is an integer of 1 or more and n ⁇ m) included in m areas (m is an integer of 2 or more) Values detected by one or more sensors are acquired, and the congestion-related information indicated by past congestion-related area data indicating congestion-related information including the past congestion degree in each of the m areas is used as input data, The one at the time when the congestion-related information is obtained from the congestion-related information generated by using the values indicated by the past sensor data indicating the values detected in the past by the above sensors as the correct data.
  • the first model which is a learning model for predicting the values detected by the above sensors, from the congestion-related information at the first time point indicated by the past congestion area data
  • the first time point The predicted value obtained by predicting the value detected by the one or more sensors in the second point after the first point in time, indicated by the past congested area data, with the predicted value as input data
  • a learning model for predicting the future congestion degree from the values detected by the one or more sensors generated by using the congestion degree included in the congestion-related information at the time point as correct data is used to predict the future congestion degree of any one of the m areas from the acquired values.
  • the learning prediction method is installed in n areas (n is an integer of 1 or more and n ⁇ m) included in m areas (m is an integer of 2 or more)
  • Past congestion area data indicating congestion-related information including the past congestion degree in each of the m areas, with the values indicated by past sensor data indicating values detected in the past by one or more sensors as input data.
  • the congestion-related information indicated by as correct data from the values detected by the one or more sensors, it is a learning model for predicting the congestion-related information at the time when the one or more sensors detect.
  • a first model is generated, the congestion-related information at the first point in time indicated by the past congested area data is used as input data, and the first model after the first point in time indicated by the past congested area data
  • a second model that is a learning model for predicting the future congestion degree from the congestion-related information is generated, and the one or more Obtain the value detected by the sensor, predict the congestion-related information at the time when the one or more sensors detect from the obtained value using the first model, and the second A model is used to predict the future congestion degree of any one of the m areas from the predicted congestion-related information.
  • the congestion-related information indicated by the past congestion area data indicating congestion-related information including the past congestion degree in each of m areas (m is an integer of 2 or more)
  • a past indicating values detected in the past by one or more sensors installed in n areas (n is an integer equal to or greater than 1 and n ⁇ m) included in the m areas with information as input data
  • a first model is generated, and using the first model, from the congestion-related information at the first time point indicated by the past congestion area data, with the one or more sensors at the first time point Predicting a detected value, using the predicted value as input data, and the congestion included in the congestion-related information at a second time point after the first time point indicated by the past congestion area data
  • a second model that is a learning model for predicting the future congestion degree from the values detected by the one or more sensors is generated, and the second model is generated.
  • a value is obtained, and the second model is used to predict the future congestion degree of any one of the m areas from the obtained value.
  • FIG. 1 is a block diagram schematically showing the configuration of a congestion prediction system according to Embodiments 1 and 2;
  • FIG. FIG. 2 is a schematic diagram illustrating areas where congestion is predicted in the congestion prediction system and sensor installation positions;
  • 1 is a block diagram schematically showing the configuration of a congestion prediction device according to Embodiment 1;
  • FIG. It is a schematic diagram showing an example of past congestion area data. It is a schematic diagram showing an example of past sensor data. It is a block diagram which shows the structure of a computer roughly.
  • 4 is a flowchart showing an example of correction model generation processing according to Embodiment 1; 4 is a flowchart showing an example of predictive model learning processing according to Embodiment 1.
  • FIG. 4 is a flow chart showing an example of prediction processing according to Embodiment 1.
  • FIG. (A) and (B) are schematic diagrams for explaining past congestion degree data and real-time congestion degree data.
  • FIG. 4 is a block diagram schematically showing the configuration of a congestion prediction device according to Embodiment 2;
  • FIG. 9 is a schematic diagram for explaining processing in a congestion prediction device according to Embodiment 2;
  • FIG. 1 is a block diagram schematically showing the configuration of congestion prediction system 100 according to Embodiment 1.
  • the congestion prediction system 100 includes a first sensor 110A, a second sensor 110B, a third sensor 110C, . . .
  • Sensor data representing values detected by the third sensors 110C, . . . are transmitted to the congestion prediction device 120.
  • any one of the first sensor 110A, the second sensor 110B, and the third sensor 110C may be It says. Although three sensors 110 are shown in FIG. 1, the number of sensors 110 should be at least one.
  • the plurality of sensors 110 includes a congestion sensor that acquires congestion data related to the symmetrical space and an external sensor that acquires external data related to the target space.
  • the congestion data is, for example, imaging data captured by a camera, point cloud data representing a point cloud detected by a laser, infrared imaging data detected by an infrared sensor, or the like.
  • Congestion data are analyzed by the congestion prediction device 120 or another device, and the number of people included in the congestion data is specified.
  • External data is, for example, data representing physical quantities such as the temperature, air temperature, wind speed, atmospheric pressure, or amount of precipitation at representative points in or around the target space, or the radio wave intensity of wireless access points.
  • the external data is not limited to data representing the above physical quantity, for example, data such as special operation information of public transportation in or around the target space, or the implementation status of events related to the target space It may be data such as information to represent.
  • FIG. 2 is a schematic diagram illustrating areas where congestion is predicted and the installation positions of the sensors 110 in the congestion prediction system 100.
  • m areas (m is an integer equal to or greater than 2) are assumed to be areas in which congestion is predicted.
  • n areas (n is an integer equal to or greater than 1 and n ⁇ m).
  • the congestion prediction system 100 predicts the degree of congestion for each of the 1st to 8th zones.
  • FIG. 3 is a block diagram schematically showing the configuration of congestion prediction device 120 according to Embodiment 1.
  • Congestion prediction device 120 includes storage unit 130 , control unit 140 , and communication unit 180 .
  • Control unit 140 includes correction unit 150 , learning unit 160 , and prediction unit 170 .
  • the congestion prediction device 120 has past congestion area data indicating congestion-related information that is information related to congestion such as congestion information, weather information, and event information in each area in the past, and from sensors 110 installed in any area A model is generated based on the past sensor data, which is the past sensor data, and prediction is performed using the model from the current sensor data.
  • the congestion prediction device 120 functions as a learning device that learns a learning model, a prediction device that performs prediction using the learning model, and a learning prediction device that performs both of these functions.
  • the storage unit 130 includes a past congested area data storage unit 131, a past sensor data storage unit 132, a correction model storage unit 133, and a prediction model storage unit 134.
  • the past congested area data storage unit 131 stores past congested area data indicating congestion-related information, which is information related to past congestion in each of the m areas.
  • the congestion-related information includes past congestion degrees in each of the m areas.
  • FIG. 4 is a schematic diagram showing an example of past congested area data.
  • the past congestion area data shown in FIG. 4 represents congestion information, weather information, and event information for each area and time.
  • Congestion information is information indicating the degree of congestion in the area.
  • the congestion information indicates the degree of congestion, which is a numerical value indicating the state of congestion in the area, such as the number of people staying in the area or the congestion rank defined by some criteria.
  • Congestion information may be generated from the congestion data acquired by the congestion sensor for areas where congestion sensors are arranged. Also, for areas in which congestion sensors are not arranged, congestion information may be generated based on information acquired by another device or information input by an operator.
  • Weather information is information that indicates the weather of the area.
  • the weather information is numerical values related to the weather in the area, such as precipitation amount, probability of precipitation, humidity, temperature, wind speed, etc. in the area.
  • Event information is information about events in the area.
  • the event information is a numerical value related to the event in the area, such as the number of visitors to the event held in the area, or a flag indicating the presence or absence of the event in the area.
  • At least one of weather information and event information may be generated from external data acquired by the external sensors.
  • at least one of weather information and event information may be generated based on information acquired by another device or information input by an operator. good.
  • the past congestion area data indicates congestion-related information for each hour.
  • the past sensor data storage unit 132 stores past sensor data indicating values detected in the past by one or more sensors installed in n areas included in m areas.
  • FIG. 5 is a schematic diagram showing an example of past sensor data.
  • the past sensor data shown in FIG. 5 indicates values detected by the sensor 110 for each time.
  • the correction model storage unit 133 stores a correction model, which is a learning model for predicting congestion-related information at the time of detection by the sensor 110 from values detected by the sensor 110 .
  • the prediction model storage unit 134 stores a prediction model, which is a learning model for predicting future congestion degrees from congestion-related information.
  • the correction unit 150 of the control unit 140 includes a reading unit 151, a correction model generation unit 152, and a correction model output unit 153.
  • the reading unit 151 reads values that are data included in overlapping periods from past congested area data and past sensor data. The read values are given to the correction model generation unit 152 .
  • Correction model generation unit 152 uses values indicated by past sensor data as input data and congestion-related information indicated by past congested area data as correct data. It functions as a first model generation unit that generates a first model, which is a learning model for predicting congestion-related information at the time when the sensor 110 performs detection. For example, the correction model generation unit 152 learns the first model by using as input data a value detected by the sensor 110 at a certain point in time and by using congestion-related information at that point as correct data.
  • the correction model generating unit 152 uses the values read by the reading unit 151 to generate a correction model as a first model for predicting congestion-related information from the values detected by the sensor 110. .
  • the generated correction model is given to the correction model output unit 153 .
  • the correction model output unit 153 causes the correction model storage unit 133 to store the learning model generated by the correction model generation unit 152 .
  • the learning unit 160 of the control unit 140 includes a reading unit 161, a model learning unit 162, and a prediction model output unit 163.
  • the reading unit 161 reads past congested area data from the past congested area data storage unit 131 .
  • the read past congested area data is given to the model learning unit 162 .
  • the model learning unit 162 uses the congestion-related information at the first time point in the past congestion area data as input data, and corrects the degree of congestion included in the congestion-related information at the second time point after the first time point. By using data, it functions as a second model generation unit that generates a second model, which is a learning model for predicting the degree of congestion in the future from congestion-related information. For example, the model learning unit 162 uses, as input data, one or more congestion-related information in one or more regions included in one or more time zones, and m pieces at times later than one or more time zones The second model is learned by using the congestion degree of one of the zones as correct data.
  • the congestion-related information for all areas from 13:00 to 14:00 on a certain day is used as input data, and the congestion information included in the congestion-related information for the first area at 14:30 on the same day.
  • the congestion degree indicated by as correct data it is possible to learn a prediction model capable of predicting the congestion degree of the first area 30 minutes later.
  • the congestion-related information of all areas is used as input data, but only the congestion-related information of areas for which the future congestion degree is to be predicted may be used as input data. Only the congestion-related information for the one or more areas identified may be used as input data.
  • the model learning unit 162 uses past congestion area data to generate a prediction model as a second model for predicting the future congestion degree from the congestion-related information.
  • the generated prediction model is given to the prediction model output unit 163 .
  • the prediction model output unit 163 stores the prediction model generated by the model learning unit 162 in the prediction model storage unit 134.
  • the prediction unit 170 of the control unit 140 includes an acquisition unit 171, a correction model application unit 172, a prediction execution unit 173, and a prediction result output unit 174.
  • the acquisition unit 171 acquires values detected by the sensor 110 via the communication unit 180 .
  • Data indicating the values acquired here is also called real sensor data.
  • the real sensor data is given to the correction model application section 172 .
  • the correction model application unit 172 functions as a first prediction unit that predicts congestion-related information at the time when the sensor 110 performs detection from the values acquired by the acquisition unit 171 using the correction model.
  • the correction model application unit 172 accumulates real sensor data for a predetermined period of time, inputs the real sensor data into the correction model stored in the correction model storage unit 133, and thereby calculates all data during that period. Predict congestion-related information in areas of The congestion-related information predicted here is given to the prediction execution unit 173 .
  • the prediction execution unit 173 uses a prediction model to predict the future congestion degree of any one of the m regions from the congestion-related information predicted by the correction model application unit 172.
  • the prediction execution unit 173 accumulates the congestion-related information predicted by the correction model application unit 172 for a predetermined period, and uses the accumulated congestion-related information as real-time congestion area data. The prediction execution unit 173 then reads the prediction model from the prediction model storage unit 134 . The prediction execution unit 173 inputs the real-time congestion area data and the target area, which is the area for which the future congestion level is predicted, into the read prediction model, thereby predicting the future congestion level of the target area. The congestion degree predicted here is given to the prediction result output unit 174 .
  • the prediction result output unit 174 outputs the degree of congestion predicted by the prediction execution unit 173 as a prediction result.
  • the prediction result output unit 174 may output a prediction result by generating a prediction result screen image that is a screen image showing the degree of congestion, and displaying the prediction result screen image on a display unit (not shown). good.
  • the prediction result output unit 174 generates prediction result information that is information indicating the degree of congestion, and outputs the prediction result by transmitting the prediction result information to another device via the communication unit 180.
  • a communication unit 180 performs communication via the network 101 .
  • the communication unit 180 receives data indicating values detected by the sensor 110 .
  • the congestion prediction device 120 described above can be realized by, for example, the computer 10 shown in FIG. FIG. 6 is a block diagram schematically showing the configuration of computer 10.
  • Computer 10 includes processor 11 , volatile storage device 12 , nonvolatile storage device 13 , and communication device 14 .
  • the computer 10 incorporating the processor 11 is, for example, a stationary computer such as a personal computer, a server computer, a portable computer such as a smartphone or a tablet computer, a microcomputer for embedding in equipment, or a SoC (System on Chip ), etc.
  • SoC System on Chip
  • the processor 11 controls the computer 10 as a whole.
  • the processor 11 is a CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), or the like.
  • Processor 11 may be a single processor or multiple processors.
  • the volatile memory device 12 is the main memory device of the computer 10.
  • the volatile memory device 12 is RAM (Random Access Memory).
  • the non-volatile storage device 13 is an auxiliary storage device of the computer 10.
  • the nonvolatile storage device 13 is a ROM (Read Only Memory), HDD (Hard Disk Drive), or SSD (Solid State Drive).
  • the communication device 14 is a communication interface such as a NIC (Network Interface Card).
  • NIC Network Interface Card
  • the processor 11 uses the volatile storage device 12 as a working memory and operates according to a computer program read from the nonvolatile storage device 13 through the communication path 15 .
  • the computer program may be supplied from outside the computer 10 .
  • the computer program may be distributed on a computer 10-readable nonvolatile storage medium, such as a CD (Compact Disc), a DVD (Digital Versatile Disc), a flash memory, or the like.
  • a computer program may be provided by a program product.
  • the storage unit 130 of the congestion prediction device 120 shown in FIG. 3 can be realized by the volatile storage device 12 or the nonvolatile storage device 13.
  • the control unit 140 can be realized by reading a program stored in the nonvolatile storage device 13 to the volatile storage device 12 by the processor 11 and executing the program.
  • the communication unit 180 can be implemented by the communication device 14 .
  • the congestion prediction device 120 may have a processing circuit such as an ASIC (Application Specific Integrated Circuit) other than a computer.
  • the processing circuit may be a single circuit or multiple circuits.
  • the congestion predictor 120 can be implemented by processing circuitry.
  • FIG. 7 is a flowchart showing an example of correction model generation processing executed by the correction unit 150.
  • the reading unit 151 reads data of overlapping periods from the past congested area data storage unit 131 and the past sensor data storage unit 132 (S10). The read data is given to the correction model generation unit 152 .
  • the correction model generation unit 152 uses the data read out in step S11 to generate a correction model (S11).
  • the generated correction model is given to the correction model output unit 153 .
  • a regression method such as multiple regression can be used for the generation processing of the correction model.
  • the correction model generation unit 152 uses a multiple regression equation as shown in the following formula (1) as a correction model, and uses the value y included in the past congested area data and the past sensor data.
  • the correction model is generated by optimizing the correction coefficients ⁇ 1 to ⁇ k and the constant term ⁇ , which are the parameters of the correction model, by the method of least squares or the like, with the values x1 to k obtained as inputs.
  • y ⁇ 1x1 + ⁇ 2x2 + ⁇ 3x3 + ... + ⁇ kxk + ⁇ (1)
  • correction model generation unit 152 may use any learning algorithm to generate the correction model.
  • the correction model generation unit 152 uses known statistical techniques such as simple regression or multiple regression, as well as neural networks, support vector machines (SVM), gradient boosting decision trees (GBDT), clustering or reinforcement A model may be generated using a machine learning algorithm such as learning.
  • SVM support vector machines
  • GBDT gradient boosting decision trees
  • reinforcement A model may be generated using a machine learning algorithm such as learning.
  • the correction model output unit 153 stores the correction model in the correction model storage unit 133 (S12).
  • FIG. 8 is a flowchart showing an example of predictive model learning processing executed by the learning unit 160.
  • the reading unit 161 reads past congested area data from the past congested area data storage unit 131 (S20).
  • the read past congested area data is given to the model learning unit 162 .
  • the model learning unit 162 generates a prediction model using the past congested area data as learning data (S21).
  • the generated prediction model is given to the prediction model output unit 163 .
  • the model learning unit 162 may generate a model using any learning algorithm.
  • the model learning unit 162 may generate a prediction model using a learning algorithm such as neural network, support vector machine, gradient boosting decision tree, clustering, or reinforcement learning.
  • the prediction model output unit 163 stores the prediction model in the prediction model storage unit 134 (S22).
  • FIG. 9 is a flowchart showing an example of prediction processing executed by the prediction unit 170.
  • the acquisition unit 171 acquires real sensor data from the sensor 110 (S30).
  • the real sensor data is given to the correction model application section 172 .
  • the correction model application unit 172 acquires a correction model from the correction model storage unit 133 (S31). Then, the correction model application unit 172 accumulates real sensor data for a predetermined period, inputs the real sensor data into the correction model, corrects the real sensor data, and predicts congestion related information. Acquire real-time congested area data (S32).
  • FIGS. 10A and 10B are schematic diagrams for explaining past congested area data and real-time congested area data.
  • Lines L1 to L3 shown in FIG. 10A indicate values detected by sensor 110.
  • FIG. A line L4 shown in FIG. 10A indicates the degree of congestion included in the past congestion area data.
  • a line L4 shown in FIG. 10(B) is the degree of congestion included in the past congestion area data, as in FIG. 10(A).
  • Line L5 shown in FIG. 10B inputs the values shown by lines L1 to L3 in FIG. 11A into the correction model stored in correction model storage unit 133 as real sensor data. It shows the degree of congestion predicted by In other words, line L5 indicates the degree of congestion included in the real-time congestion area data.
  • the correction model learned by the correction unit 150 Since it is difficult for the sensor 110 to detect all areas in real time, when the correction model is learned by the correction unit 150, the past congested area data is used as learning data to learn the correction model. Then, at the time of prediction by the prediction unit 170, the correction model learned in this way is used to generate real-time congested area data from real sensor data, and the generated real-time congested area data is used as an input for the prediction model. Make predictions. As a result, it is difficult to acquire in real time, but it is difficult to acquire congested area data that has accumulated past data, and sensor data that can be acquired in real time but has not been accumulated in all areas. will be brought to life.
  • the prediction execution unit 173 acquires a prediction model from the prediction model storage unit 134 (S33). Then, the correction model application unit 172 accumulates the congestion-related information predicted in step S32 for a predetermined period, and inputs the accumulated congestion-related information to the prediction model as real-time congestion area data. , the future congestion degree of the target area, which is the area for which prediction is performed, is predicted (S34). The predicted congestion degree is provided to prediction result output section 174 .
  • the prediction result output unit 174 outputs the predicted congestion degree from the congestion prediction device 120 as the congestion degree prediction result (S35).
  • the past congestion degree of the prediction target area is learned by the model, and the sensor data of the sensors 110 installed in several areas are input to the model. It is possible to predict future congestion in areas where 110 is not installed. Therefore, the user can take action to avoid congestion in advance, and the user's satisfaction is improved.
  • a congestion prediction system 200 includes a first sensor 110A, a second sensor 110B, a third sensor 110C, .
  • the sensor data detected by the third sensors 110C, . . . are transmitted to the congestion prediction device 220.
  • Sensor 110 of congestion prediction system 200 according to the second embodiment is the same as sensor 110 of congestion prediction system 100 according to the first embodiment.
  • FIG. 11 is a block diagram schematically showing the configuration of congestion prediction device 220 according to the second embodiment.
  • Congestion prediction device 220 includes storage unit 230 , control unit 240 , and communication unit 180 .
  • Control unit 240 includes correction unit 250 , learning unit 260 , and prediction unit 270 .
  • Communication unit 180 of congestion prediction device 220 in the second embodiment is the same as communication unit 180 of congestion prediction device 120 in the first embodiment.
  • the congestion prediction device 220 includes past congestion area data including information related to congestion such as congestion information, weather information, and event information in each area in the past, and from sensors 110 installed in any area A model is generated based on the past sensor data, which is the past sensor data, and prediction is performed using the model from the current sensor data.
  • the congestion prediction device 220 functions as a learning device that learns a learning model, a prediction device that performs prediction using the learning model, and a learning prediction device that performs both of these functions.
  • the storage unit 230 includes a past congested area data storage unit 131 , a past sensor data storage unit 132 , a correction model storage unit 233 and a prediction model storage unit 234 .
  • the past congested area data storage unit 131 and the past sensor data storage unit 132 of the storage unit 230 in the second embodiment are the same as the past crowded area data storage unit 131 and the past sensor data storage unit 132 of the storage unit 130 in the first embodiment. is.
  • the correction model storage unit 233 stores a correction model, which is a learning model for predicting a value detected by the sensor 110 when congestion-related information is acquired from the congestion-related information.
  • the prediction model storage unit 234 stores a prediction model, which is a learning model for predicting the future congestion degree from the values detected by the sensor 110 .
  • Correction unit 250 of control unit 240 includes reading unit 151 , correction model generation unit 252 , and correction model output unit 153 .
  • the reading unit 151 and the correction model output unit 153 of the correction unit 250 according to the second embodiment are the same as the reading unit 151 and the correction model output unit 153 of the correction unit 150 according to the first embodiment.
  • the correction model generation unit 252 uses the congestion-related information indicated by the past congested area data as input data and the value indicated by the past sensor data as correct data, so that the congestion-related information is acquired from the congestion-related information. It functions as a first model generation unit that generates a first model, which is a learning model for predicting values detected by one or more sensors 110 in . For example, the correction model generation unit 252 learns the first model by using congestion-related information at a certain point in time as input data, and using values detected by the sensor 110 at that point in time as correct data.
  • the correction model generating unit 252 uses the congestion-related information read by the reading unit 151 to generate a correction model as a first model for predicting the value detected by the sensor 110.
  • the generated correction model is given to the correction model output unit 153 .
  • the learning unit 260 of the control unit 240 includes a reading unit 161 , a model learning unit 262 , a prediction model output unit 163 and a correction model application unit 264 .
  • the reading unit 161 and the prediction model output unit 163 of the learning unit 260 according to the second embodiment are the same as the reading unit 161 and the prediction model output unit 163 of the learning unit 260 according to the first embodiment.
  • the reading unit 161 in Embodiment 2 provides the past congested area data read from the past congested area data storage unit 131 to the correction model application unit 264 .
  • Correction model application unit 264 uses the correction model to determine the value detected by sensor 110 at the time the congestion-related information is acquired from the congestion-related information indicated by the past congestion area data provided from reading unit 161. It functions as a model applicator that predicts The sensor data indicating the predicted value is also referred to as predicted sensor data. The predicted sensor data is given to the model learning unit 162 .
  • the model learning unit 262 uses the predicted sensor data at the first time point as input data, and corrects the degree of congestion included in the congestion-related information of the past congested section data at the second time point after the first time point. By using data, it functions as a second model generation unit that generates a second model, which is a learning model for predicting the degree of congestion in the future, from sensor data. For example, the model learning unit 262 uses predicted sensor data included in one or more time slots as input data, and the congestion degree of one of the m zones at a time after the one or more time slots is the correct data, the second model is learned. The generated prediction model is given to the prediction model output unit 163 .
  • the prediction unit 270 of the control unit 240 includes an acquisition unit 171 , a prediction execution unit 273 and a prediction result output unit 174 .
  • Acquisition unit 171 and prediction result output unit 174 of prediction unit 270 according to the second embodiment are the same as acquisition unit 171 and prediction result output unit 174 of prediction unit 170 according to the first embodiment.
  • the acquisition unit 171 in Embodiment 1 provides the prediction execution unit 273 with real sensor data, which is data indicating values acquired from the sensor 110 .
  • the prediction execution unit 273 functions as a second prediction unit that predicts the future congestion degree of any one of the m regions from the real sensor data given from the acquisition unit 171 using a prediction model. do.
  • the prediction execution unit 273 accumulates real sensor data from the acquisition unit 171 for a predetermined period, and uses the accumulated real sensor data as target sensor data. The prediction execution unit 273 then reads the prediction model from the prediction model storage unit 134 . The prediction executing unit 273 inputs the target sensor data and the target area, which is the area for which the future congestion level is predicted, to the read prediction model, thereby predicting the future congestion level of the target area. The congestion degree predicted here is given to the prediction result output unit 174 .
  • the past congestion degree of the prediction target area is learned by the model, and the sensor data of the sensors 110 installed in several areas are input to the model. It is possible to predict future congestion in areas where 110 is not installed. Therefore, the user can take action to avoid congestion in advance, and the user's satisfaction is improved.
  • the correction model generation unit 252 can generate a correction model by using these data in period t1. Then, the correction model application unit 264 can predict the sensor data in the period t0 in which no sensor data is acquired using the correction model. Therefore, the model learning unit 262 can generate a prediction model using the predicted sensor data. As described above, in the second embodiment, it is possible to reduce the load of acquiring sensor data. For example, by arranging the sensor 110 immediately before operating the congestion prediction device 220 and acquiring sensor data, Congestion can be predicted. Note that the model learning unit 262 may also use the sensor data in the period t1 when learning the prediction model. Thereby, the accuracy of prediction can be improved.
  • the installation cost of the sensor 110 be reduced, but also the data accumulation time for use in prediction and the data collection man-hours can be reduced.
  • Embodiments 1 and 2 are not limited to the examples described above, and the configuration of the congestion prediction devices 120 and 220, the configuration of information stored in the storage units 130 and 230, etc. of the present invention. Various modifications can be made without departing from the scope of the invention.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the invention at the implementation stage.
  • various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the above embodiments.
  • constituent elements of different embodiments may be combined as appropriate.
  • Congestion prediction system 110 Sensor 120, 220 Congestion prediction device 130, 230 Storage unit 131 Past congestion area data storage unit 132 Past sensor data storage unit 133, 233 Correction model storage unit 134, 234 Prediction model storage unit, 140 control unit, 150, 250 correction unit, 151 reading unit, 152, 252 correction model generation unit, 153 correction model output unit, 160, 260 learning unit, 161 reading unit, 162, 262 model learning unit, 163 Prediction model output unit, 264 correction model application unit, 170, 270 prediction unit, 171 acquisition unit, 172 correction model application unit, 173, 273 prediction execution unit, 174 prediction result output unit, 180 communication unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

混雑予測装置(120)は、m個の区域に含まれるn個の区域に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される混雑関連情報を正解データとすることで、一以上のセンサで検出される値から、一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである補正モデルを生成する補正モデル生成部(152)と、過去混雑区域データで示される、第1の時点における混雑関連情報を入力データとし、過去混雑区域データで示される、第1の時点よりも後の第2の時点における混雑関連情報に含まれる混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである予測モデルを生成するモデル学習部(162)とを備える。

Description

学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法
 本開示は、学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法に関する。
 近年、駅のホーム又はコンコースにおける将来の混雑度を予測し、その混雑度を提示することで、利用客自身に混雑回避行動を促す試みが行われている。このため、駅のホーム又はコンコースにおける混雑度又は人の流れを推定する技術が提案されている。
 混雑度等を推定するためには、推定したい全ての区域にセンサを配置することが望ましい。しかしながら、コスト面又は運用の難しさから、全ての区域にセンサを設置するのは困難である。
 そのため、特許文献1には、駅のホーム又はコンコースにおける混雑度又は人の流れを推定する際に、ダイヤ情報及びセンサ間の動的な因果関係を考慮して、センサが設置されていない場所の混雑度又は人の流れを推定する手段が開示されている。
特開2013-116676号公報
 しかしながら、従来の技術は、既に駅にいる利用客に対して現在の駅又は車両等の混雑度を予測して提示するのみである。従って、利用客は、将来の混雑度がわからないため、将来における混雑を回避する行動を取ることができない。これにより、これから駅等に向かおうとしている将来の利用客の満足度が低下する。
 そこで、本開示の一又は複数の態様は、センサが配置されていない区域の将来における混雑を予測できるようにすることを目的とする。
 本開示の第1の態様に係る学習装置は、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部と、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部と、前記過去センサデータで示される前記値を入力データとし、前記過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部と、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部と、を備えることを特徴とする。
 本開示の第2の態様に係る学習装置は、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部と、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部と、前記過去混雑区域データで示される前記混雑関連情報を入力データとし、前記過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部と、前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測するモデル適用部と、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部と、を備えることを特徴とする。
 本開示の第1の態様に係る予測装置は、m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得する取得部と、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで生成された、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測する第1の予測部と、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれている前記混雑度を正解データとすることで生成された、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部と、を備えることを特徴とする。
 本開示の第2の態様に係る予測装置は、m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得する取得部と、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで生成された、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測することで得られた、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで生成された、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する予測実行部と、を備えることを特徴とする。
 本開示の第1の態様に係る学習予測装置は、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部と、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部と、前記過去センサデータで示される前記値を入力データとし、前記過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部と、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部と、前記一以上のセンサで検出された値を取得する取得部と、前記第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測する第1の予測部と、前記第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部と、を備えることを特徴とする。
 本開示の第2の態様に係る学習予測装置は、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部と、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部と、前記過去混雑区域データで示される前記混雑関連情報を入力データとし、前記過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出された値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部と、前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測する第1の予測部と、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部と、前記一以上のセンサで検出された値を取得する取得部と、前記第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部と、を備えることを特徴とする。
 本開示の第1の態様に係るプログラムは、コンピュータを、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部、前記過去センサデータで示される前記値を入力データとし、前記過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部、及び、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部、として機能させることを特徴とする。
 本開示の第2の態様に係るプログラムは、コンピュータを、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部、前記過去混雑区域データで示される前記混雑関連情報を入力データとし、前記過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部、前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測するモデル適用部、及び、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部、として機能させることを特徴とする。
 本開示の第3の態様に係るプログラムは、コンピュータを、m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得する取得部、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで生成された、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測する第1の予測部、及び、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれている前記混雑度を正解データとすることで生成された、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部、として機能させることを特徴とする。
 本開示の第4の態様に係るプログラムは、コンピュータを、m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得する取得部、及び、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで生成された、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測することで得られた、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで生成された、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する予測実行部、として機能させることを特徴とする。
 本開示の第5の態様に係るプログラムは、コンピュータを、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部、前記過去センサデータで示される前記値を入力データとし、前記過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部、前記一以上のセンサで検出された値を取得する取得部、前記第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測する第1の予測部、及び、前記第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部、として機能させることを特徴とする。
 本開示の第6の態様に係るプログラムは、コンピュータを、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部、前記過去混雑区域データで示される前記混雑関連情報を入力データとし、前記過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出された値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部、前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測する第1の予測部、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部、前記一以上のセンサで検出された値を取得する取得部、及び、前記第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部、として機能させることを特徴とする。
 本開示の第1の態様に係る学習方法は、m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成し、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成することを特徴とする。
 本開示の第2の態様に係る学習方法は、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを生成し、前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測し、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成することを特徴とする。
 本開示の第1の態様に係る予測方法は、m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得し、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで生成された、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測し、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれている前記混雑度を正解データとすることで生成された、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測することを特徴とする。
 本開示の第2の態様に係る予測方法は、m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得し、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで生成された、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測することで得られた、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで生成された、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測することを特徴とする。
 本開示の第1の態様に係る学習予測方法は、m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成し、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成し、前記一以上のセンサで検出された値を取得し、前記第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測し、前記第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測することを特徴とする。
 本開示の第2の態様に係る学習予測方法は、m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出された値を予測するための学習モデルである第1のモデルを生成し、前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測し、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成し、前記一以上のセンサで検出された値を取得し、前記第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測することを特徴とする。
 本開示の一又は複数の態様によれば、センサが配置されていない区域における将来の混雑を予測することができる。
実施の形態1及び2に係る混雑予測システムの構成を概略的に示すブロック図である。 混雑予測システムにおいて混雑を予測する区域と、センサの設置位置とを説明する概略図である。 実施の形態1における混雑予測装置の構成を概略的に示すブロック図である。 過去混雑区域データの一例を示す概略図である。 過去センサデータの一例を示す概略図である。 コンピュータの構成を概略的に示すブロック図である。 実施の形態1における補正モデル生成処理の一例を示すフローチャートである。 実施の形態1における予測モデル学習処理の一例を示すフローチャートである。 実施の形態1における予測処理の一例を示すフローチャートである。 (A)及び(B)は、過去混雑度データ及びリアルタイム混雑度データを説明するための概略図である。 実施の形態2における混雑予測装置の構成を概略的に示すブロック図である。 実施の形態2における混雑予測装置での処理を説明するための概略図である。
実施の形態1.
 図1は、実施の形態1に係る混雑予測システム100の構成を概略的に示すブロック図である。
 混雑予測システム100は、第1センサ110A、第2センサ110B、第3センサ110C、・・・と、混雑予測装置120とを備える。
 第1センサ110A、第2センサ110B、第3センサ110C、・・・と、混雑予測装置120とは、例えば、インターネット等のネットワーク101に接続されており、第1センサ110A、第2センサ110B、第3センサ110C、・・・で検出された値を示すデータであるセンサデータは、混雑予測装置120に送信される。
 第1センサ110A、第2センサ110B及び第3センサ110Cの各々を特に区別する必要がない場合には、第1センサ110A、第2センサ110B及び第3センサ110Cの何れか一つを、センサ110という。
 なお、図1には、三つのセンサ110が示されているが、センサ110の数については、少なくとも一つ以上あればよい。
 複数のセンサ110には、対称空間に係る混雑データを取得する混雑センサと、対象空間に関係する外部データを取得する外部センサとが含まれる。
 混雑データは、例えば、カメラにより撮像された撮像データ、レーザにより検出された点群を示す点群データ、又は、赤外線センサで検出された赤外線撮像データ等である。混雑データについては、これらのデータから混雑予測装置120又はその他の装置で解析され、混雑データに含まれている人の人数が特定されるものとする。
 外部データは、例えば、対象空間内又は対象空間周辺の、代表点の温度、気温、風速、気圧若しくは降水量、又は、無線アクセスポイントの電波強度等の物理量を表すデータである。なお、外部データは、上記の物理量を表すデータに限定されず、例えば、対象空間内又は対象空間周辺の公共交通機関の特別運行情報等のデータ、又は、対象空間に関係するイベントの実施状況を表す情報等のデータであってもよい。
 図2は、混雑予測システム100において、混雑を予測する区域と、センサ110の設置位置とを説明する概略図である。
 実施の形態1では、混雑を予測する区域をm個の区域(mは、2以上の整数)とする。また、センサ110が設置されている区域をn個の区域(nは、1以上の整数、かつ、n<m)とする。
 例えば、図2に示されているように、混雑予測システム100は、第1区域~第8区域のそれぞれについて混雑度を予測するものとする。第1区域~第8区域のそれぞれにセンサ110が配置されていればよいが、コスト等の関係から、図2に示されているように、第1区域、第3区域、第5区域及び第6区域にしかセンサ110は配置されていないものとする。この例では、m=8、n=4となる。
 図3は、実施の形態1における混雑予測装置120の構成を概略的に示すブロック図である。
 混雑予測装置120は、記憶部130と、制御部140と、通信部180とを備える。
 制御部140は、補正部150と、学習部160と、予測部170とを備える。
 混雑予測装置120は、過去における各区域の混雑情報、気象情報及びイベント情報等の混雑に関連する情報である混雑関連情報を示す過去混雑区域データと、何れかの区域に設置されたセンサ110からの過去のセンサデータである過去センサデータとに基づいてモデルを生成して、現在のセンサデータからそのモデルを用いて予測を行う。
 言い換えると、混雑予測装置120は、学習モデルを学習する学習装置、学習モデルを用いて予測を行う予測装置、及び、これらの両方を行う学習予測装置として機能する。
 記憶部130は、過去混雑区域データ記憶部131と、過去センサデータ記憶部132と、補正モデル記憶部133と、予測モデル記憶部134とを備える。
 過去混雑区域データ記憶部131は、m個の区域のそれぞれにおける過去の混雑に関連する情報である混雑関連情報を示す過去混雑区域データを記憶する。混雑関連情報は、m個の区域のそれぞれにおける過去の混雑度を含む。
 図4は、過去混雑区域データの一例を示す概略図である。
 図4に示されている過去混雑区域データは、区域及び時刻毎に、混雑情報、気象情報及びイベント情報を表す。
 混雑情報は、その区域の混雑度を示す情報である。例えば、混雑情報は、その区域内の滞在人数又は何らかの基準で定められた混雑ランク等のように、その区域内の混雑の状況を示す数値である混雑度を示す。
 混雑センサが配置されている区域については、混雑情報は、混雑センサで取得された混雑データから生成されればよい。
 また、混雑センサが配置されていない区域については、別の装置で取得された情報又はオペレータにより入力された情報に基づいて、混雑情報が生成されればよい。
 気象情報は、その区域の気象を示す情報である。例えば、気象情報は、その区域内の降水量、降水確率、湿度、気温又は風速等のように、その区域における気象に関する数値である。
 イベント情報は、その区域でのイベントに関する情報である。例えば、イベント情報は、その区域内で開催されるイベントの来客人数、又は、その区域内でのイベントの有無を表すフラグ等のように、その区域におけるイベントに関する数値である。
 なお、対応する外部センサが配置されている地域については、気象情報及びイベント情報の少なくとも何れか一方は、外部センサで取得された外部データから生成されればよい。
 また、対応する外部センサが配置されていない地域については、気象情報及びイベント情報の少なくとも何れか一方は、他の装置で取得された情報又はオペレータにより入力された情報に基づいて、生成されればよい。
 以上のように、過去混雑区域データにより、時刻毎に混雑に関連する情報が示される。
 図3に戻り、過去センサデータ記憶部132は、m個の区域に含まれるn個の区域に設置された一以上のセンサで、過去において検出された値を示す過去センサデータを記憶する。
 図5は、過去センサデータの一例を示す概略図である。
 図5に示されている過去センサデータは、時刻毎に、センサ110で検出された値を示す。
 図3に戻り、補正モデル記憶部133は、センサ110で検出された値から、センサ110で検出された時点の混雑関連情報を予測するための学習モデルである補正モデルを記憶する。
 予測モデル記憶部134は、混雑関連情報から将来の混雑度を予測するための学習モデルである予測モデルを記憶する。
 制御部140の補正部150は、読出部151と、補正モデル生成部152と、補正モデル出力部153とを備える。
 読出部151は、過去混雑区域データ及び過去センサデータから、重複する期間に含まれているデータである値を読み出す。読み出された値は、補正モデル生成部152に与えられる。
 補正モデル生成部152は、過去センサデータで示される値を入力データとし、過去混雑区域データで示される混雑関連情報を正解データとすることで、一以上のセンサ110で検出される値から、一以上のセンサ110が検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部として機能する。
 例えば、補正モデル生成部152は、センサ110で検出された、ある時点における値を入力データとし、その時点における混雑関連情報を正解データとすることで、第1のモデルを学習する。
 ここでは、補正モデル生成部152は、読出部151で読み出された値を用いて、センサ110で検出された値から混雑関連情報を予測するための第1のモデルとしての補正モデルを生成する。生成された補正モデルは、補正モデル出力部153に与えられる。
 補正モデル出力部153は、補正モデル生成部152で生成された学習モデルを補正モデル記憶部133に記憶させる。
 制御部140の学習部160は、読出部161と、モデル学習部162と、予測モデル出力部163とを備える。
 読出部161は、過去混雑区域データ記憶部131から過去混雑区域データを読み出す。読み出された過去混雑区域データは、モデル学習部162に与えられる。
 モデル学習部162は、過去混雑区域データにおいて、第1の時点における混雑関連情報を入力データとし、第1の時点よりも後の第2の時点における混雑関連情報に含まれている混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部として機能する。
 例えば、モデル学習部162は、一又は複数の時間帯に含まれる一又は複数の地域の一又は複数の混雑関連情報を入力データとし、一又は複数の時間帯よりも後の時刻におけるm個の区域の内の一つの区域の混雑度を正解データとすることで、第2のモデルを学習する。
 具体的には、ある日の13:00~14:00までの全ての区域における混雑関連情報を入力データとし、同じ日の14:30における第1区域の混雑関連情報に含まれている混雑情報で示される混雑度を正解データとすることで、第1区域の30分後における混雑度を予測することのできる予測モデルを学習することができる。ここでは、全ての区域の混雑関連情報が入力データとして使用されているが、将来の混雑度を予測する区域の混雑関連情報だけが入力データとして使用されてもよく、また、全ての区域から選択された一又は複数の区域の混雑関連情報のみが入力データとして使用されてもよい。
 ここでは、モデル学習部162は、過去混雑区域データを用いて、混雑関連情報から、将来の混雑度を予測するための第2のモデルとしての予測モデルを生成する。生成された予測モデルは、予測モデル出力部163に与えられる。
 予測モデル出力部163は、モデル学習部162で生成された予測モデルを予測モデル記憶部134に記憶させる。
 制御部140の予測部170は、取得部171と、補正モデル適用部172と、予測実行部173と、予測結果出力部174とを備える。
 取得部171は、通信部180を介して、センサ110から検出された値を取得する。ここで取得される値を示すデータをリアルセンサデータともいう。リアルセンサデータは、補正モデル適用部172に与えられる。
 補正モデル適用部172は、補正モデルを用いて、取得部171で取得された値から、センサ110が検出を行った時点における混雑関連情報を予測する第1の予測部として機能する。
 ここでは、補正モデル適用部172は、リアルセンサデータを予め定められた期間蓄積し、そのリアルセンサデータを、補正モデル記憶部133に記憶されている補正モデルに入力することにより、その期間における全ての区域における混雑関連情報を予測する。
 ここで予測された混雑関連情報は、予測実行部173に与えられる。
 予測実行部173は、予測モデルを用いて、補正モデル適用部172で予測された混雑関連情報から、m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部として機能する。
 予測実行部173は、補正モデル適用部172で予測された混雑関連情報を予め定められた期間蓄積することで、その蓄積された混雑関連情報をリアルタイム混雑区域データとする。
 そして、予測実行部173は、予測モデルを予測モデル記憶部134から読み出す。予測実行部173は、読み出された予測モデルに、リアルタイム混雑区域データと、将来の混雑度を予測する区域である対象区域とを入力することで、対象区域の将来における混雑度を予測する。ここで予測された混雑度は、予測結果出力部174に与えられる。
 予測結果出力部174は、予測実行部173で予測された混雑度を、予測結果として出力する。
 例えば、予測結果出力部174は、その混雑度を示す画面画像である予測結果画面画像を生成し、その予測結果画面画像を、図示しない表示部に表示することにより、予測結果を出力してもよい。
 また、予測結果出力部174は、その混雑度を示す情報である予測結果情報を生成し、その予測結果情報を、通信部180を介して他の装置に送信することにより、予測結果を出力してもよい。
 通信部180は、ネットワーク101を介した通信を実行する。
 例えば、通信部180は、センサ110で検出された値を示すデータを受信する。
 以上の混雑予測装置120は、例えば、図7に示されているコンピュータ10により実現することができる。
 図6は、コンピュータ10の構成を概略的に示すブロック図である。
 コンピュータ10は、プロセッサ11と、揮発性記憶装置12と、不揮発性記憶装置13と、通信装置14とを備える。
 プロセッサ11を内蔵するコンピュータ10は、例えば、パーソナルコンピュータ、サーバ型コンピュータ等の据え置き型コンピュータ、スマートフォン、タブレット型コンピュータ等の可搬型コンピュータ、あるいは、機器組み込み用途のマイクロコンピュータ、又は、SoC(System on Chip)等である。
 プロセッサ11は、コンピュータ10の全体を制御する。例えば、プロセッサ11は、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)、又は、DSP(Digital Signal Processor)等である。プロセッサ11は、単一のプロセッサでもマルチプロセッサでもよい。
 揮発性記憶装置12は、コンピュータ10の主記憶装置である。例えば、揮発性記憶装置12は、RAM(Random Access Memory)である。
 不揮発性記憶装置13は、コンピュータ10の補助記憶装置である。例えば、不揮発性記憶装置13は、ROM(Read Only Memory)、HDD(Hard Disk Drive)、又は、SSD(Solid State Drive)である。
 通信装置14は、NIC(Network Interface Card)等の通信インタフェースである。
 プロセッサ11は、作業用メモリとして揮発性記憶装置12を使用し、不揮発性記憶装置13から、通信路15を通じて読み出されたコンピュータプログラムに従って動作する。なお、コンピュータプログラムは、コンピュータ10の外部から供給されてもよい。また、コンピュータプログラムは、コンピュータ10で読み取り可能な不揮発性記憶媒体、例えば、CD(Compact Disc)、DVD(Digital Versatile Disc)又はフラッシュメモリ等により配布されてもよい。言い換えると、コンピュータプログラムは、プログラムプロダクトにより提供されてもよい。
 ここで、図3に示されている混雑予測装置120の記憶部130は、揮発性記憶装置12又は不揮発性記憶装置13により実現することができる。
 制御部140は、不揮発性記憶装置13に記憶されているプログラムを、プロセッサ11が揮発性記憶装置12に読み出し、そのプログラムを実行することで実現することができる。
 通信部180は、通信装置14により実現することができる。
 なお、混雑予測装置120は、コンピュータ以外にASIC(Application Specific Integrated Circuit)等の処理回路を有してもよい。処理回路は、単一回路又は複合回路でもよい。
 言い換えると、混雑予測装置120は、処理回路網により実現することができる。
 次に、混雑予測装置120の動作について説明する。
 図7は、補正部150によって実行される補正モデル生成処理の一例を示すフローチャートである。
 まず、読出部151は、過去混雑区域データ記憶部131と、過去センサデータ記憶部132とから、重複する期間のデータを読み出す(S10)。読み出されたデータは、補正モデル生成部152に与えられる。
 次に、補正モデル生成部152は、ステップS11で読み出されたデータを用いて、補正モデルを生成する(S11)。生成された補正モデルは、補正モデル出力部153に与えられる。
 ここで、補正モデルの生成処理には、例えば、重回帰等の回帰手法を用いることができる。
 具体的には、補正モデル生成部152は、下記の式(1)に示すような、重回帰式を補正モデルとして用い、過去混雑区域データに含まれている値yと、過去センサデータで示される値x1~kを入力に、補正モデルのパラメータである補正係数α1~αk、定数項βを最小二乗法等により最適化して、補正モデルを生成する。
 y = α1x1+α2x2+α3x3+・・・+αkxk+β
                               (1)
 なお、補正モデル生成部152は、いかなる学習アルゴリズムを用いて補正モデルを生成してもよい。例えば、補正モデル生成部152は、単回帰又は重回帰等の公知の統計的手法の他、ニューラルネットワーク(Neural Network)、サポートベクターマシン(SVM)、勾配ブースティング決定木(GBDT)、クラスタリング又は強化学習等の機械学習アルゴリズムを用いてモデルを生成してもよい。
 次に、補正モデル出力部153は、補正モデルを、補正モデル記憶部133に記憶させる(S12)。
 図8は、学習部160によって実行される予測モデル学習処理の一例を示すフローチャートである。
 まず、読出部161は、過去混雑区域データ記憶部131から過去混雑区域データを読み出す(S20)。読み出された過去混雑区域データは、モデル学習部162に与えられる。
 次に、モデル学習部162は、過去混雑区域データを学習データとして用いて予測モデルを生成する(S21)。生成された予測モデルは、予測モデル出力部163に与えられる。
 なお、モデル学習部162は、いかなる学習アルゴリズムを用いてモデルを生成してもよい。例えば、モデル学習部162は、ニューラルネットワーク、サポートベクターマシン、勾配ブースティング決定木、クラスタリング又は強化学習等の学習アルゴリズムを用いて予測モデルを生成すればよい。
 次に、予測モデル出力部163は、予測モデルを予測モデル記憶部134に記憶させる(S22)。
 図9は、予測部170によって実行される予測処理の一例を示すフローチャートである。
 まず、取得部171は、センサ110からリアルセンサデータを取得する(S30)。リアルセンサデータは、補正モデル適用部172に与えられる。
 次に、補正モデル適用部172は、補正モデル記憶部133から補正モデルを取得する(S31)。
 そして、補正モデル適用部172は、リアルセンサデータを予め定められた期間蓄積し、そのリアルセンサデータを補正モデルに入力することにより、リアルセンサデータを補正して、混雑関連情報を予測することでリアルタイム混雑区域データを取得する(S32)。
 図10(A)及び(B)は、過去混雑区域データ及びリアルタイム混雑区域データを説明するための概略図である。
 図10(A)に示されているラインL1~L3は、センサ110で検出された値を示す。
 また、図10(A)に示されているラインL4は、過去混雑区域データに含まれている混雑度を示す。
 図10(B)に示されているラインL4は、図10(A)と同様に、過去混雑区域データに含まれている混雑度である。
 図10(B)に示されているラインL5は、図11(A)におけるラインL1~L3で示されている値をリアルセンサデータとして、補正モデル記憶部133に記憶されている補正モデルに入力することで予測された混雑度を示している。言い換えると、ラインL5は、リアルタイム混雑区域データに含まれている混雑度を示している。
 全ての区域についてリアルタイムでのセンサ110による検出が難しいため、補正部150による補正モデルの学習時には、過去混雑区域データを学習データとして用いて、補正モデルを学習しておく。そして、予測部170による予測時には、このようにして学習された補正モデルを用いて、リアルセンサデータからリアルタイム混雑区域データを生成し、生成されたリアルタイム混雑区域データを予測モデルの入力とすることで予測を実行する。これにより、リアルタイムでの取得は困難だが、過去のデータが蓄積されている混雑区域データと、リアルタイムでの取得はできるが、全ての区域ではデータが蓄積されていないセンサデータとの、それぞれの利点が生かされることとなる。
 図9に戻り、予測実行部173は、予測モデル記憶部134から予測モデルを取得する(S33)。
 そして、補正モデル適用部172は、ステップS32で予測された混雑関連情報を予め定められた期間蓄積することで、その蓄積された混雑関連情報をリアルタイム混雑区域データとして、予測モデルに入力することで、予測を行う区域である対象区域の将来における混雑度を予測する(S34)。予測された混雑度は、予測結果出力部174に与えられる。
 次に、予測結果出力部174は、予測された混雑度を混雑度予測結果として混雑予測装置120から出力する(S35)。
 以上のように、実施の形態1によれば、予測対象区域の過去の混雑度をモデルに学習させ、そのモデルにいくつかの区域に設置されたセンサ110のセンサデータを入力することで、センサ110が設置されていない区域の将来の混雑度が予測できる。このため、利用者が事前の混雑回避行動をとることが可能となり、利用者の満足度が向上する。
実施の形態2.
 図1に示されているように、実施の形態2に係る混雑予測システム200は、第1センサ110A、第2センサ110B、第3センサ110C、・・・と、混雑予測装置220とを備える。
 第1センサ110A、第2センサ110B、第3センサ110C、・・・と、混雑予測装置220とは、例えば、インターネット等のネットワーク101に接続されており、第1センサ110A、第2センサ110B、第3センサ110C、・・・で検出されたデータであるセンサデータは、混雑予測装置220に送信される。
 実施の形態2に係る混雑予測システム200のセンサ110は、実施の形態1に係る混雑予測システム100のセンサ110と同様である。
 図11は、実施の形態2における混雑予測装置220の構成を概略的に示すブロック図である。
 混雑予測装置220は、記憶部230と、制御部240と、通信部180とを備える。
 制御部240は、補正部250と、学習部260と、予測部270とを備える。
 実施の形態2における混雑予測装置220の通信部180は、実施の形態1における混雑予測装置120の通信部180と同様である。
 実施の形態2における混雑予測装置220は、過去における各区域の混雑情報、気象情報及びイベント情報等の混雑に関係する情報を含む過去混雑区域データと、何れかの区域に設置されたセンサ110からの過去のセンサデータである過去センサデータとに基づいてモデルを生成して、現在のセンサデータからそのモデルを用いて予測を行う。
 言い換えると、混雑予測装置220は、学習モデルを学習する学習装置、学習モデルを用いて予測を行う予測装置、及び、これらの両方を行う学習予測装置として機能する。
 記憶部230は、過去混雑区域データ記憶部131と、過去センサデータ記憶部132と、補正モデル記憶部233と、予測モデル記憶部234とを備える。
 実施の形態2における記憶部230の過去混雑区域データ記憶部131及び過去センサデータ記憶部132は、実施の形態1における記憶部130の過去混雑区域データ記憶部131及び過去センサデータ記憶部132と同様である。
 補正モデル記憶部233は、混雑関連情報から、混雑関連情報が取得された時点で、センサ110で検出される値を予測するための学習モデルである補正モデルを記憶する。
 予測モデル記憶部234は、センサ110で検出される値から将来の混雑度を予測するための学習モデルである予測モデルを記憶する。
 制御部240の補正部250は、読出部151と、補正モデル生成部252と、補正モデル出力部153とを備える。
 実施の形態2における補正部250の読出部151及び補正モデル出力部153は、実施の形態1における補正部150の読出部151及び補正モデル出力部153と同様である。
 補正モデル生成部252は、過去混雑区域データで示される混雑関連情報を入力データとし、過去センサデータで示される値を正解データとすることで、混雑関連情報から、混雑関連情報が取得された時点における一以上のセンサ110で検出される値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部として機能する。
 例えば、補正モデル生成部252は、ある時点の混雑関連情報を入力データとして、その時点においてセンサ110で検出された値を正解データすることで、第1のモデルを学習する。
 ここでは、補正モデル生成部252は、読出部151で読み出された混雑関連情報を用いて、センサ110で検出された値を予測するための第1のモデルとしての補正モデルを生成する。生成された補正モデルは、補正モデル出力部153に与えられる。
 制御部240の学習部260は、読出部161と、モデル学習部262と、予測モデル出力部163と、補正モデル適用部264とを備える。
 実施の形態2における学習部260の読出部161及び予測モデル出力部163は、実施の形態1における学習部260の読出部161及び予測モデル出力部163と同様である。
 但し、実施の形態2における読出部161は、過去混雑区域データ記憶部131から読み出された過去混雑区域データを、補正モデル適用部264に与える。
 補正モデル適用部264は、補正モデルを用いて、読出部161から与えられた過去混雑区域データで示される混雑関連情報から、その混雑関連情報が取得された時点において、センサ110で検出される値を予測するモデル適用部として機能する。ここで予測された値を示すセンサデータを予測センサデータともいう。予測センサデータは、モデル学習部162に与えられる。
 モデル学習部262は、第1の時点における予測センサデータを入力データとし、第1の時点よりも後の第2の時点における、過去混雑区間データの混雑関連情報に含まれている混雑度を正解データとすることで、センサデータから将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部として機能する。
 例えば、モデル学習部262は、一又は複数の時間帯に含まれる予測センサデータを入力データとし、一又は複数の時間帯よりも後の時刻におけるm個の区域の内の一つの区域の混雑度を正解データとすることで、第2のモデルを学習する。生成された予測モデルは、予測モデル出力部163に与えられる。
 制御部240の予測部270は、取得部171と、予測実行部273と、予測結果出力部174とを備える。
 実施の形態2における予測部270の取得部171及び予測結果出力部174は、実施の形態1における予測部170の取得部171及び予測結果出力部174と同様である。
 但し、実施の形態1における取得部171は、センサ110から取得された値を示すデータであるリアルセンサデータを、予測実行部273に与える。
 予測実行部273は、予測モデルを用いて、取得部171から与えられたリアルセンサデータから、m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部として機能する。
 予測実行部273は、取得部171からのリアルセンサデータを予め定められた期間蓄積することで、その蓄積されたリアルセンサデータを対象センサデータとする。
 そして、予測実行部273は、予測モデルを予測モデル記憶部134から読み出す。予測実行部273は、読み出された予測モデルに、対象センサデータと、将来の混雑度を予測する区域である対象区域とを入力することで、対象区域の将来における混雑度を予測する。ここで予測された混雑度は、予測結果出力部174に与えられる。
 以上のように、実施の形態2によれば、予測対象区域の過去の混雑度をモデルに学習させ、そのモデルにいくつかの区域に設置されたセンサ110のセンサデータを入力することで、センサ110が設置されていない区域の将来の混雑度が予測できる。このため、利用者が事前の混雑回避行動をとることが可能となり、利用者の満足度が向上する。
 また、実施の形態2によれば、例えば、図12に示されているように、センサデータが取得されている期間が、過去混雑区域データが取得されている期間よりも短くても、センサデータ及び過去混雑区域データの両方が取得されている期間t1があれば、補正モデル生成部252は、期間t1におけるこれらのデータを利用することで補正モデルを生成することができる。
 そして、補正モデル適用部264は、センサデータが取得されていない期間t0におけるセンサデータを、補正モデルを用いて予測することができる。
 このため、モデル学習部262は、その予測されたセンサデータを用いて、予測モデルを生成することができる。
 以上により、実施の形態2では、センサデータを取得する負荷を軽減することができ、例えば、混雑予測装置220を運用する直前にセンサ110を配置して、センサデータを取得することで、将来における混雑度を予測することができるようになる。
 なお、モデル学習部262は、予測モデルを学習する際に、期間t1におけるセンサデータも利用してもよい。これにより、予測の精度を高めることができる。
 また、実施の形態1又は2によれば、センサ110の設置コストを低減できるだけでなく、予測に使うためのデータ蓄積の時間、並びに、データ収集工数も低減することができる。
 実施の形態1又は2は、以上に記載された例に限定されるものではなく、混雑予測装置120、220の構成、その記憶部130、230に記憶される情報の構成等については、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。
 要するにこの発明は、上記の実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記の実施の形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、上記の実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施の形態に亘る構成要素が適宜組み合わされてもよい。
 100,200 混雑予測システム、 110 センサ、 120,220 混雑予測装置、 130,230 記憶部、 131 過去混雑区域データ記憶部、 132 過去センサデータ記憶部、 133,233 補正モデル記憶部、 134,234 予測モデル記憶部、 140 制御部、 150,250 補正部、 151 読出部、 152,252 補正モデル生成部、 153 補正モデル出力部、 160,260 学習部、 161 読出部、 162,262 モデル学習部、 163 予測モデル出力部、 264 補正モデル適用部、 170,270 予測部、 171 取得部、 172 補正モデル適用部、 173,273 予測実行部、 174 予測結果出力部、 180 通信部。

Claims (19)

  1.  m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部と、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部と、
     前記過去センサデータで示される前記値を入力データとし、前記過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部と、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部と、を備えること
     を特徴とする学習装置。
  2.  m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部と、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部と、
     前記過去混雑区域データで示される前記混雑関連情報を入力データとし、前記過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部と、
     前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測するモデル適用部と、
     前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部と、を備えること
     を特徴とする学習装置。
  3.  前記過去混雑区域データは、時刻毎に前記混雑関連情報を示し、
     前記過去センサデータは、時刻毎に前記値を示すこと
     を特徴とする請求項1又は2に記載の学習装置。
  4.  m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得する取得部と、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで生成された、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測する第1の予測部と、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれている前記混雑度を正解データとすることで生成された、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部と、を備えること
     を特徴とする予測装置。
  5.  m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得する取得部と、
     前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで生成された、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測することで得られた、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで生成された、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する予測実行部と、を備えること
     を特徴とする予測装置。
  6.  m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部と、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部と、
     前記過去センサデータで示される前記値を入力データとし、前記過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部と、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部と、
     前記一以上のセンサで検出された値を取得する取得部と、
     前記第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測する第1の予測部と、
     前記第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部と、を備えること
     を特徴とする学習予測装置。
  7.  m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部と、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部と、
     前記過去混雑区域データで示される前記混雑関連情報を入力データとし、前記過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出された値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部と、
     前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測する第1の予測部と、
     前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部と、
     前記一以上のセンサで検出された値を取得する取得部と、
     前記第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部と、を備えること
     を特徴とする学習予測装置。
  8.  コンピュータを、
     m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部、
     前記過去センサデータで示される前記値を入力データとし、前記過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部、及び、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部、として機能させること
     を特徴とするプログラム。
  9.  コンピュータを、
     m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部、
     前記過去混雑区域データで示される前記混雑関連情報を入力データとし、前記過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部、
     前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測するモデル適用部、及び、
     前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部、として機能させること
     を特徴とするプログラム。
  10.  コンピュータを、
     m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得する取得部、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで生成された、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測する第1の予測部、及び、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれている前記混雑度を正解データとすることで生成された、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部、として機能させること
     を特徴とするプログラム。
  11.  コンピュータを、
     m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得する取得部、及び、
     前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで生成された、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測することで得られた、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで生成された、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する予測実行部、として機能させること
     を特徴とするプログラム。
  12.  コンピュータを、
     m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部、
     前記過去センサデータで示される前記値を入力データとし、前記過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部、
     前記一以上のセンサで検出された値を取得する取得部、
     前記第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測する第1の予測部、及び、
     前記第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部、として機能させること
     を特徴とするプログラム。
  13.  コンピュータを、
     m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データを記憶する過去混雑区域データ記憶部、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータを記憶する過去センサデータ記憶部、
     前記過去混雑区域データで示される前記混雑関連情報を入力データとし、前記過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出された値を予測するための学習モデルである第1のモデルを生成する第1のモデル生成部、
     前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測する第1の予測部、
     前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成する第2のモデル生成部、
     前記一以上のセンサで検出された値を取得する取得部、及び、
     前記第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測する第2の予測部、として機能させること
     を特徴とするプログラム。
  14.  m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成し、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成すること
     を特徴とする学習方法。
  15.  m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを生成し、
     前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測し、
     前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成すること
     を特徴とする学習方法。
  16.  m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得し、
     前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで生成された、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測し、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれている前記混雑度を正解データとすることで生成された、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測すること
     を特徴とする予測方法。
  17.  m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで検出された値を取得し、
     前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで生成された、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出される値を予測するための学習モデルである第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測することで得られた、前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで生成された、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測すること
     を特徴とする予測方法。
  18.  m個の区域(mは2以上の整数)に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を入力データとし、前記m個の区域のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を正解データとすることで、前記一以上のセンサで検出される値から、前記一以上のセンサが検出を行う時点における混雑関連情報を予測するための学習モデルである第1のモデルを生成し、
     前記過去混雑区域データで示される、第1の時点における前記混雑関連情報を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、混雑関連情報から将来における混雑度を予測するための学習モデルである第2のモデルを生成し、
     前記一以上のセンサで検出された値を取得し、
     前記第1のモデルを用いて、前記取得された値から、前記一以上のセンサが検出を行った時点における混雑関連情報を予測し、
     前記第2のモデルを用いて、前記予測された混雑関連情報から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測すること
     を特徴とする学習予測方法。
  19.  m個の区域(mは2以上の整数)のそれぞれにおける過去の混雑度を含む混雑関連情報を示す過去混雑区域データで示される前記混雑関連情報を入力データとし、前記m個の区域に含まれるn個の区域(nは1以上の整数、かつ、n<m)に設置された一以上のセンサで過去において検出された値を示す過去センサデータで示される前記値を正解データとすることで、前記混雑関連情報から、前記混雑関連情報が取得された時点における、前記一以上のセンサで検出された値を予測するための学習モデルである第1のモデルを生成し、
     前記第1のモデルを用いて、前記過去混雑区域データで示される、第1の時点における前記混雑関連情報から、前記第1の時点における前記一以上のセンサで検出される値を予測し、
     前記予測された値を入力データとし、前記過去混雑区域データで示される、前記第1の時点よりも後の第2の時点における前記混雑関連情報に含まれる前記混雑度を正解データとすることで、前記一以上のセンサで検出される値から将来における混雑度を予測するための学習モデルである第2のモデルを生成し、
     前記一以上のセンサで検出された値を取得し、
     前記第2のモデルを用いて、前記取得された値から、前記m個の区域に含まれる何れかの区域の将来における混雑度を予測すること
     を特徴とする学習予測方法。
PCT/JP2021/038860 2021-10-21 2021-10-21 学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法 WO2023067745A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180103058.7A CN118076959A (zh) 2021-10-21 2021-10-21 学习装置、预测装置、学习预测装置、程序、学习方法、预测方法和学习预测方法
PCT/JP2021/038860 WO2023067745A1 (ja) 2021-10-21 2021-10-21 学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法
EP21961397.3A EP4401013A1 (en) 2021-10-21 2021-10-21 Training device, prediction device, training prediction device, program, training method, prediction method, and training prediction method
JP2023547531A JP7378688B2 (ja) 2021-10-21 2021-10-21 学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法
US18/635,337 US20240257289A1 (en) 2021-10-21 2024-04-15 Learning device, prediction device, learning prediction device, non-transitory computer-readable medium, learning method, prediction method, and learning prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038860 WO2023067745A1 (ja) 2021-10-21 2021-10-21 学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/635,337 Continuation US20240257289A1 (en) 2021-10-21 2024-04-15 Learning device, prediction device, learning prediction device, non-transitory computer-readable medium, learning method, prediction method, and learning prediction method

Publications (1)

Publication Number Publication Date
WO2023067745A1 true WO2023067745A1 (ja) 2023-04-27

Family

ID=86057994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038860 WO2023067745A1 (ja) 2021-10-21 2021-10-21 学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法

Country Status (5)

Country Link
US (1) US20240257289A1 (ja)
EP (1) EP4401013A1 (ja)
JP (1) JP7378688B2 (ja)
CN (1) CN118076959A (ja)
WO (1) WO2023067745A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146252A (ja) * 2007-12-17 2009-07-02 Sony Corp 情報処理装置、情報処理方法、及びプログラム
JP2013116676A (ja) 2011-12-02 2013-06-13 Hitachi Ltd 人流予測装置および方法
US20160124906A1 (en) * 2013-06-07 2016-05-05 Yandex Europe Ag Methods and systems for representing a degree of traffic congestion using a limited number of symbols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146252A (ja) * 2007-12-17 2009-07-02 Sony Corp 情報処理装置、情報処理方法、及びプログラム
JP2013116676A (ja) 2011-12-02 2013-06-13 Hitachi Ltd 人流予測装置および方法
US20160124906A1 (en) * 2013-06-07 2016-05-05 Yandex Europe Ag Methods and systems for representing a degree of traffic congestion using a limited number of symbols

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P RAPHIPHAN ; P PRATHOMBUTR ; A ZASLAVSKY ; P MEESAD: "Real time traffic congestion degree computation for minor sensorless roads using cost efficient context reasoning", INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2010 13TH INTERNATIONAL IEEE CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 19 September 2010 (2010-09-19), Piscataway, NJ, USA , pages 1741 - 1746, XP031792756, ISBN: 978-1-4244-7657-2 *

Also Published As

Publication number Publication date
JP7378688B2 (ja) 2023-11-13
JPWO2023067745A1 (ja) 2023-04-27
US20240257289A1 (en) 2024-08-01
EP4401013A1 (en) 2024-07-17
CN118076959A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US10699214B2 (en) Automatic identification and deployment of virtual sensor models
US20200011932A1 (en) Battery capacity fading model using deep learning
JP7082461B2 (ja) 故障予知方法、故障予知装置および故障予知プログラム
JP5214656B2 (ja) 評価装置および評価プログラム
JP2019169028A (ja) 渋滞予測システム、渋滞予測方法、学習装置、予測装置、プログラム、および学習済みモデル
JP2019040475A (ja) 人流予測装置、システムおよびプログラム
KR20210041724A (ko) 전기차 충전기의 고장 예측 장치 및 방법
US10277473B2 (en) Model deployment based on benchmarked devices
US10012765B2 (en) Geographical condition prediction
WO2023105891A1 (ja) 排水ポンプ装置、排水ポンプ管理システム、排水ポンプ支援計画作成装置、推論装置、機械学習装置、排水ポンプ支援計画作成方法、推論方法、及び、機械学習方法
WO2022025244A1 (ja) 車両事故予測システム、車両事故予測方法、車両事故予測プログラム、及び、学習済みモデル生成システム
US20200379824A1 (en) Hybrid spatial-temporal event probability prediction method
JP6158967B1 (ja) 環境汚染予測システム及び方法
WO2023067745A1 (ja) 学習装置、予測装置、学習予測装置、プログラム、学習方法、予測方法及び学習予測方法
JP2020101908A (ja) 交通状況予測装置、および交通状況予測方法
US20200311401A1 (en) Analyzing apparatus, control method, and program
US20230411960A1 (en) Predicting electrical component failure
Reuland et al. Monitoring-Driven Post-earthquake Building Damage Tagging
JPWO2019159585A1 (ja) 学習システム、推定システム及び学習済モデル
JP7541470B2 (ja) 予測装置及び予測モデル学習装置
JP7500504B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP2018147495A (ja) 予測装置、予測方法、予測プログラム、情報処理装置、情報処理方法、及び情報処理プログラム
JP7079663B2 (ja) 電力需要予測システム、学習装置及び電力需要予測方法
JP6932245B2 (ja) 情報表示システム、情報表示方法及びプログラム
Dong et al. Improving network traffic flow reliability through dynamic anticipatory tolls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547531

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180103058.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021961397

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021961397

Country of ref document: EP

Effective date: 20240410

NENP Non-entry into the national phase

Ref country code: DE