WO2023067697A1 - Power conversion device and heat pump device - Google Patents

Power conversion device and heat pump device Download PDF

Info

Publication number
WO2023067697A1
WO2023067697A1 PCT/JP2021/038620 JP2021038620W WO2023067697A1 WO 2023067697 A1 WO2023067697 A1 WO 2023067697A1 JP 2021038620 W JP2021038620 W JP 2021038620W WO 2023067697 A1 WO2023067697 A1 WO 2023067697A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
power
inverter
frequency
load
Prior art date
Application number
PCT/JP2021/038620
Other languages
French (fr)
Japanese (ja)
Inventor
和徳 畠山
慎也 豊留
翔英 堤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023554128A priority Critical patent/JPWO2023067697A1/ja
Priority to PCT/JP2021/038620 priority patent/WO2023067697A1/en
Publication of WO2023067697A1 publication Critical patent/WO2023067697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present disclosure relates to a power converter and a heat pump device using the power converter.
  • the motor control device described in Patent Document 1 controls a motor that drives a load whose load torque pulsates periodically.
  • a power conversion device equipped with a converter that converts AC power supplied from an AC power source into DC power when the load torque pulsates at a frequency asynchronous to the power source frequency, the charging/discharging current flowing from the converter to the smoothing capacitor is reduced by the power source. An unbalanced state occurs between positive and negative voltages. As a result, the harmonics of the power supply current may increase.
  • the electric motor control device described in Patent Document 1 estimates a three-phase alternating current flowing in the electric motor from the detection result of the current flowing between the converter that rectifies the alternating current power supply and the inverter, and converts the estimated three-phase alternating current into generate a control signal based on Patent Literature 1 also describes that a shunt resistor can be used to detect the current flowing between the converter and the inverter.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device capable of increasing the accuracy of load control performed based on an instantaneous value of current obtained at a predetermined timing. do.
  • the power converter according to the present disclosure includes a converter that rectifies AC power supplied from an AC power supply, and power that is connected to the output terminal of the converter and output by the converter. a smoothing unit that smoothes the current, an inverter that is connected to both ends of the smoothing unit and generates AC power to be output to the load, a current detector that detects current flowing between the smoothing unit and the inverter, and controls the inverter and a control unit.
  • the control unit divides a unit time, which is a period of a predetermined length, into a plurality of current detection intervals based on voltage vectors representing the state of each switching element that constitutes the inverter, and for each of the plurality of current detection intervals , calculates the product of the time width of the current detection section and the current value detected by the current detector in the current detection section, and controls the inverter so that the total value of the calculated product per unit time is constant for each unit time. .
  • an electric power conversion device capable of highly accurate control of a load based on an instantaneous value of current obtained at a predetermined timing.
  • FIG. 1 is a diagram showing a configuration example of a power converter according to a first embodiment
  • FIG. FIG. 4 is a diagram for explaining how the control unit generates a control signal for the inverter;
  • FIG. 4 shows switching patterns of switching elements that make up an inverter
  • FIG. 4 is a diagram showing an example of current and voltage waveforms when the power converter according to the first embodiment operates;
  • FIG. 4 is a diagram showing frequency components included in an input current Is in a state where symmetry is lost when the frequency of the power supply voltage Vs is 50 Hz;
  • FIG. 4 is a diagram for explaining a method of detecting a direct current Idc flowing from an inverter of a power conversion device to a load
  • FIG. 2 is a diagram showing an example of a hardware configuration that realizes a control unit included in the power converter according to the first embodiment
  • FIG. 10 is a diagram showing a configuration example of a heat pump device according to a second embodiment
  • Embodiment 1. 1 is a diagram illustrating a configuration example of a power converter according to a first embodiment; FIG.
  • the power conversion device 100 includes a reactor 2 , a rectifier 3 that is a converter, a smoothing section 4 , an inverter 5 , a current detector 7 , a voltage detector 8 and a control section 9 .
  • the power conversion device 100 is connected to an AC power supply 1 , converts AC power supplied from the AC power supply 1 into three-phase AC power, and supplies the three-phase AC power to a load 6 .
  • a power supply voltage Vs input from an AC power supply 1 is rectified by a rectifier 3 via a reactor 2, and is accumulated in capacitors 4a and 4b constituting a smoothing section 4 connected to the output end of the rectifier 3, thereby smoothing the voltage. After that, it is supplied to the inverter 5 .
  • the capacitor 4a of the smoothing unit 4 is charged when the power supply voltage Vs is positive, and the capacitor 4b is charged when the power supply voltage Vs is negative.
  • the battery is charged.
  • the AC power supply 1 may be a commercial power supply of 50 Hz or 60 Hz, or an AC voltage generated by a distributed power supply such as a stationary storage battery or solar power generation.
  • the reactor 2 may be an EI-shaped or EE-shaped one in which electromagnetic steel sheets are laminated, or may be one using an iron core such as ferrite or amorphous.
  • the winding material is copper, aluminum, or the like.
  • the rectifier 3 is realized, for example, by arranging diodes in a bridge shape.
  • the rectifier 3 may be configured by a power semiconductor such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) instead of the diode.
  • power semiconductors such as diodes and MOSFETs may be of general silicon material or may be wide bandgap semiconductors with lower loss.
  • the capacitors 4a and 4b are aluminum electrolytic capacitors, small-capacity film capacitors, or the like.
  • the configuration of the rectifier 3 is not limited to that shown in FIG.
  • the power converter 100 according to the present embodiment may be of any type as long as it includes a circuit for rectifying AC power and a capacitor for smoothing the rectified DC power.
  • An inverter 5 is connected to both ends of the smoothing section 4, that is, to both ends of a series circuit composed of a capacitor 4a and a capacitor 4b connected in series, and a load 6 is connected to the inverter 5.
  • a load 6 that consumes the AC power generated by the inverter 5 includes an electric motor.
  • the inverter 5 has a plurality of series-connected switching elements arranged in parallel, and operates to apply a multiphase AC voltage to the electric motor included in the load 6 .
  • a diode is connected in parallel to each of the switching elements forming inverter 5 .
  • IGBTs Insulated Gate Bipolar Transistors
  • MOSFETs are widely used as switching elements. In the case of a MOSFET, a parasitic diode is built in, and the diode connected in parallel may not be separately connected.
  • Si materials are widely used for switching elements, and in recent years, due to the demand for higher efficiency, MOSFETs with a super junction structure are also widely used.
  • wide bandgap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), and diamond have been used for further efficiency improvement.
  • switching elements made of any material can be used as long as they are capable of switching operation so as to apply a voltage to the motor.
  • the stator may be concentrated winding or distributed winding, and the winding may be made of any material such as copper or aluminum wire that allows current to flow.
  • the rotor there are surface magnet type, embedded magnet type, etc. as those using a permanent magnet synchronous motor, but any type may be used as long as it has a structure capable of generating a rotational force.
  • the motor When such a motor is used to implement, for example, a refrigeration cycle device, the motor is used to operate a compression mechanism that compresses the refrigerant or drive a fan for heat exchange.
  • control unit 9 controls the switching element to control the voltage supplied to the load 6 by the inverter 5 based on the DC current Idc detected by the current detector 7 and the DC voltage Vdc detected by the voltage detector 8.
  • a pulse width modulation (PWM: Pulse Width Modulation) signal is sent out.
  • the current detector 7 may be a shunt resistor or a DCCT (Direct Current Current Transformer) or any other device that can detect current.
  • FIG. 2 is a diagram for explaining how the control section 9 generates a control signal for the inverter 5. As shown in FIG.
  • the control unit 9 controls a carrier signal whose amplitude is 1/2 of the DC voltage Vdc and a command for each of the U-phase, V-phase, and W-phase voltages to be applied to the motor included in the load 6.
  • the values Vu*, Vv*, and Vw* are compared to generate a PWM signal for operating each switching element of the inverter 5 .
  • V* is the amplitude of the voltage command value (Vu*, Vv*, Vw*) of each phase.
  • the PWM signal generated by the controller 9 is shown in the lower part of FIG. 2, UP is a control signal for the upper left switching element of the inverter 5 shown in FIG.
  • UN is a control signal for the lower left switching element
  • VP is a control signal for the middle upper switching element
  • VN is the middle lower switching element
  • WP is a control signal for the upper right switching element
  • WN is a control signal for the lower right switching element.
  • FIG. 3 is a diagram showing switching patterns of switching elements that constitute the inverter 5.
  • FIG. 3 shows the direction of the voltage applied to the motor (voltage direction) in each switching pattern of the switching elements that make up the inverter 5, and the rectifier 3 and the inverter 5 when the voltage vector (V0 to V7) is output. and the PWM signals (UP, VP, WP, UN, VN, WN).
  • a voltage vector represents the state of each switching element that constitutes inverter 5 . Note that the numerical values (0 to 7) combined with "V" correspond to the states of the switching elements UP, VP, and WP.
  • a current detector 7 detects a direct current Idc described as "detected current".
  • Idc direct current
  • FIG. 3 the current flowing from the rectifier 3 to the inverter 5 is assumed to be positive.
  • current is detected at a specific moment when a PWM signal corresponding to a voltage vector is output to the inverter, and the detected instantaneous value is used for controlling the motor. Since such an electric motor control method is publicly known, a detailed explanation is omitted.
  • FIG. 4 is a diagram showing an example of current and voltage waveforms when the power converter 100 according to the first embodiment operates.
  • FIG. 4 shows waveforms when the speed pulsation is suppressed by controlling the torque of the electric motor according to the pulsation of the load torque.
  • the power converter 100 When controlling the torque of the electric motor in accordance with the pulsation of the load torque, the power converter 100 increases or decreases the active power output to the electric motor in accordance with the pulsation of the load torque. Therefore, as shown in FIG. 4, the DC current Idc pulsates, and electric charges are consumed from the capacitors 4a and 4b forming the smoothing section 4 in accordance with the pulsation of the load torque. Therefore, the charging timing of the capacitors 4a and 4b with the power supply voltage Vs becomes asynchronous with the power supply frequency, and the symmetry between positive and negative input current Is is lost.
  • FIG. 4 Each of the waveforms shown in FIG.
  • the input current Is When the input current Is and the power supply voltage Vs are synchronized, the input current Is has odd-order harmonics such as the 3rd, 5th, 7th, etc., with the component of the same frequency as the frequency of the power supply voltage Vs as the fundamental wave. component becomes dominant, and the generation of even-order harmonics is slight.
  • odd-order harmonics such as the 3rd, 5th, 7th, etc.
  • the input current Is flows irregularly and asynchronously with the power supply voltage Vs, the symmetry of the waveform of the input current Is is lost as described above.
  • current components other than odd-order harmonics, specifically, even-order harmonics and inter-harmonics are generated.
  • Interharmonics are harmonics that are neither odd nor even harmonics of the input current Is. For example, if the frequency of the fundamental wave is 50 Hz, the second harmonic is 100 Hz. A frequency component between 50 Hz and 100 Hz.
  • the harmonic current of the power supply current (corresponding to the input current Is in the power converter 100) is the limit value in 61000-3-2 of the standard stipulated by JIS (Japanese Industrial Standards) and IEC (International Electrotechnical Commission). is determined.
  • the standard sets higher limits for odd harmonics than for even harmonics. Therefore, in cases where components other than odd-order harmonics are generated, the even-order harmonics increase and easily exceed the limit value.
  • the handling method is determined in 61000-4-7 of the standard defined by JIS and IEC. According to this standard 61000-4-7, interharmonics are grouped by frequency within a specific range and added to adjacent odd-order or even-order harmonics. Therefore, as the interharmonics increase, the harmonics treated as odd-order harmonics and the harmonics treated as even-order harmonics also increase. Therefore, the generation of interharmonics cannot be ignored, and it is important to suppress the generation.
  • FIG. 5 shows current components included in the input current Is when the power supply frequency is 50 Hz.
  • FIG. 5 is a diagram showing frequency components included in the input current Is in a state where the symmetry is lost when the frequency of the power supply voltage Vs is 50 Hz.
  • the frequency component included in the input current Is in which the symmetry is lost can also be obtained in the same manner as described below.
  • the frequencies (0, 5, 10, . . . , 100) described in the leftmost column of FIG. is the fluctuation frequency of
  • this frequency may hereinafter be referred to as the load current fluctuation frequency.
  • the range of numerical values (75 to 125, 125 to 175, . . . , 275 to 325) shown in the first row of FIG. That is, in the grouping according to the above standard 61000-4-7, the interharmonics included in each range shown in the first line of FIG. 5 are grouped. For example, interharmonics in the range of 75-125 Hz belong to the same group.
  • the numerical values described in each column other than the leftmost column from the third row onward in FIG. 5 indicate the frequency of the interharmonics included in the input current Is.
  • a specific current component generated when the DC current Idc flowing through the load 6 is periodically changed will be described.
  • the frequency (50 Hz) of the fundamental wave component of the power supply voltage Vs is described as power supply frequency 1f
  • the frequencies (100Hz, 150Hz, 200Hz, . . . ) of the harmonic components of power supply voltage Vs are referred to as power supply frequency 2f , power frequency 3f, power frequency 4f, .
  • the DC current Idc flowing through the load 6 may be referred to as a load current.
  • Power supply frequency 1f represents the frequency of the fundamental wave of the power supply current
  • Power supply frequency (2n-1) represents the frequency of the 2n-1st harmonic of the power supply current. That is, the fundamental wave component and the odd-order harmonic component are generated regardless of fluctuations in the load current of the AC power supply 1 .
  • Power supply frequency 3f represents the frequency of the third harmonic of the power supply current
  • Power supply frequency 5f represents the frequency of the fifth harmonic of the power supply current
  • the current components other than the frequency shown in (1) are generated depending on the power supply frequency and the load current fluctuation frequency, and the generated amount increases as the fluctuation range of the load current increases. As shown in FIG. 5, it is mostly the interharmonics in between, rather than the odd and even harmonics that are multiples of 50 Hz (power supply frequency).
  • the load current fluctuation frequency is 30 Hz
  • current components with frequencies of 80 Hz, 90 Hz, 110 Hz, and 120 Hz are generated. is grouped at 100 Hz of the even harmonics, resulting in an increase in the even harmonics.
  • even-order harmonics are set to a low limit value in the above-mentioned standard 61000-3-2, etc., when inter-order harmonics grouped into even-order harmonics are generated, even-order harmonics are generated. You are more likely to exceed your limits.
  • FIG. 6 is a diagram showing an example of current and voltage waveforms when the power converter 100 operates the load 6 with a constant current.
  • the power supply voltage Vs and the input current Is have synchronized waveforms, and the input current Is has a waveform containing many odd-order harmonics.
  • the power supply current (corresponding to the input current Is in this embodiment) is synchronized with the power supply voltage Vs and contains many odd-order harmonics. Therefore, as described above, in the standard 61000-3-2, the limit value of odd-order harmonics is set high, and the limit value of even-order harmonics is set low. Therefore, it is necessary to suppress the generation of interharmonics that are grouped into even orders.
  • FIG. 7 is a diagram for explaining a general method of detecting load current.
  • the upper part of FIG. 7 shows the relationship between the carrier signal and the voltage commands (Vu*, Vv*, Vw*) of each phase applied to the motor.
  • the lower part of FIG. 7 shows the current flowing through the motor and the timing of detecting the current (corresponding to current measurement points represented by ⁇ ).
  • the current is detected once during the period from when the voltage vector changes until the next change.
  • FIG. 8 is a diagram for explaining a method of detecting the direct current Idc flowing from the inverter 5 to the load 6 of the power converter 100.
  • one carrier cycle is defined as a unit time that is a period of a predetermined length, and a current value (instantaneous value) detected at a certain timing within one carrier cycle is output to the inverter 5. Based on the PWM signal, the average value of the DC current Idc per unit time is obtained.
  • a real vector is output from the control unit 9 to the inverter 5 based on the relationship between the carrier signal used to generate the PWM signal for the inverter 5 and the voltage commands Vu*, Vv*, and Vw*. It is possible to guess the time.
  • the real vector here means a voltage vector other than the V0 vector and the V7 vector shown in FIG.
  • the control unit 9 can estimate the time during which each of the V1 vector to V6 vector is output. For example, in the case of time t1 shown in FIG. 8, the time during which the real vector is output is the difference between the point where the voltage command Vw* and the carrier signal intersect and the point where the voltage command Vv* and the carrier signal intersect. It's time.
  • v is the voltage command value on the vertical axis in FIG. 8
  • t is the time on the horizontal axis in FIG. 8
  • a and b are constants.
  • the current detection timing in the current detection section which is the time section (t1 to t4) corresponding to each voltage vector, is preferably near the center of each current detection section.
  • the width of the current detection section is narrow and detection is performed near the center, ringing will occur when the current detection section switches, and it will continue to near the center, which will affect the detection accuracy. there is a possibility. Therefore, when the width of the current detection section is narrow, detection may be performed after waiting until the influence of ringing disappears.
  • the average value may be obtained by adding the areas of the currents as described above in the period of six times the frequency.
  • the average value may be obtained in a period other than one carrier period.
  • the average value of the DC current Idc per unit time may be obtained by using a period that is an integral multiple of one carrier period as a unit time.
  • FIG. 8 shows an example in which current measurement is performed once in each current detection section, it is also possible to perform current measurement multiple times in one current detection section, average the measured values, and use them for the above area calculation. good.
  • the electric charge consumed from the capacitors 4a and 4b is reduced according to the cycle of the load torque pulsation.
  • the amount becomes uniform in each cycle of the load torque pulsation, making it possible to reduce the harmonics of the input current Is.
  • the harmonic current can be effectively reduced even when the capacity of the reactor 2 and the capacitors 4a and 4b is small, and the size and weight of the device can be reduced and the cost can be reduced.
  • a method of controlling the torque generated by the electric motor so that the DC current Idc flowing through the load 6 is constant can be easily realized using a known technique.
  • the control unit 9 compensates the q-axis current command value, which is the torque current of the motor, so that the direct current Idc flowing through the load 6 is constant, and operates the motor, thereby easily manipulating the active power. is possible, and the DC current Idc flowing through the load 6 can be controlled to be constant.
  • the charging and discharging of the capacitors 4a and 4b are affected by the electromotive force and voltage drop due to the reactor 2 and the capacitance of the capacitors 4a and 4b.
  • the capacity of the reactor 2 and the capacitors 4a and 4b is sufficiently large (reactor 2 is several milliseconds, and the capacitors 4a and 4b are several hundreds of microfarads)
  • fluctuations in the DC voltage Vdc become small, and pulsations are superimposed on the DC current Idc.
  • components other than odd-order harmonics are less likely to occur in the input current Is. Therefore, while considering the amount of current generated other than the odd-order harmonics, it is possible to use the conventional control of pulsating the load torque. By doing so, it is possible to achieve both a reduction in vibration of the compressor driven by the motor to be controlled and a reduction in harmonic current.
  • the DC current Idc flowing through the load 6 fluctuates according to the load torque, and the harmonic current of the input current Is deteriorates as described above.
  • the load power is determined by the product of the mechanical angular frequency ⁇ and the torque ⁇ of the motor. Therefore, by varying the mechanical angular frequency ⁇ or varying the torque ⁇ , it is possible to control the DC current Idc so as to approach a constant value.
  • the operation is performed so as to suppress the pulsation of the DC current Idc flowing through the load 6 so that the power supply harmonic current does not further increase, there is a concern that the vibration will increase.
  • the power fluctuation is proportional to the load torque and inversely proportional to the moment of inertia. If the fluctuation of the DC current Idc flowing through the load 6 due to the load torque is unacceptable, it can be dealt with by designing to increase the moment of inertia. By taking such measures, it is possible to achieve both suppression of vibration and suppression of power supply harmonic current.
  • the load current fluctuates according to the load torque, and the harmonic current of the input current deteriorates as described above.
  • the load power is determined by the product of the mechanical angular frequency ⁇ and the torque ⁇ . Therefore, by varying the mechanical angular frequency ⁇ or varying the torque ⁇ , it is possible to control the DC current Idc, which is the load current, to be nearly constant.
  • the control unit 9 of the power conversion device 100 sets the amount of fluctuation of the DC current Idc detected by the current detector 7 to be within an allowable range, in other words, the amount of fluctuation of the DC current Idc is set to a value
  • the load 6 is controlled via the inverter 5 so that:
  • the permissible range is the range in which the even-order harmonics affected by the generation of inter-harmonics of the power supply current can be maintained below the standard limit value, and the inductance of the reactor 2 and the static of the capacitors 4a and 4b. It is determined in advance in consideration of the electric capacity and the like.
  • the switching frequency of the inverter for driving the compressor for air conditioning is higher than 2 kHz (when the power main frequency is 50 Hz) or 2.4 kHz (when the power frequency is 60 Hz) of the 40th harmonic, which is the power harmonic regulation value.
  • the load current in the inverter has a pulse shape corresponding to the switching frequency, but this pulse shape current does not easily affect the harmonics of the power supply. Therefore, the pulsating component of the load current should be suppressed below the frequency of the 40th harmonic, which is the power supply harmonic regulation value.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration that implements the control unit 9 included in the power converter 100 according to the first embodiment.
  • the control unit 9 of the power conversion device 100 is realized by, for example, a processor 91 and a memory 92 shown in FIG. 9 .
  • the processor 91 is a CPU (Central Processing Unit, also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)).
  • the memory 92 is RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), or the like. Note that the memory 92 stores a program for operating as the control unit 9 of the power conversion device 100, and the control unit 9 is realized by the processor 91 reading and executing this program.
  • the above program stored in the memory 92 may be provided to the user or the like while being written on a storage medium such as a CD (Compact Disc)-ROM, a DVD (Digital Versatile Disc)-ROM, etc. Alternatively, it may be provided via a network.
  • a storage medium such as a CD (Compact Disc)-ROM, a DVD (Digital Versatile Disc)-ROM, etc.
  • it may be provided via a network.
  • the control unit 9 can also be realized by a dedicated processing circuit, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit combining these. be.
  • a dedicated processing circuit for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit combining these. be.
  • the control unit 9 that controls the inverter 5 sets the unit time to an integral multiple of one period of the carrier signal, and sets the unit time based on the voltage vector. It is divided into a plurality of current detection intervals, and for each of the plurality of current detection intervals, the product of the time width of the current detection interval and the DC current Idc detected by the current detector 7 in the current detection interval is calculated. The inverter 5 is controlled so that the total value per unit time is constant for each unit time.
  • the current detector 7 As a result, even when a shunt resistor or the like, which is difficult to improve the resolution of current detection, is used as the current detector 7, the DC current flowing between the smoothing section 4 and the inverter 5 can be detected with high accuracy. It is possible to improve the accuracy of the control of the load 6 based on the instantaneous value of the current obtained at the timing.
  • Embodiment 2 a device that can be realized by applying the power conversion device 100 described in the first embodiment will be described.
  • a heat pump device using the power conversion device 100 described in Embodiment 1 will be described.
  • FIG. 10 is a diagram showing a configuration example of the heat pump device 200 according to the second embodiment.
  • a heat pump device 200 according to the second embodiment includes the power conversion device 100 described in the first embodiment.
  • the heat pump device 200 includes a four-way valve 902, a compressor 903 that constitutes the load 6 shown in FIG. It has a refrigeration cycle in a mounted configuration.
  • the compressor 903 is provided with a compression mechanism 904 that compresses the refrigerant circulating in the refrigerant pipe 912 and an electric motor 905 that operates the compression mechanism 904 .
  • the electric motor 905 constitutes the load 6 shown in FIG. 1 and is driven by being supplied with electric power from the power converter 100 .
  • the heat pump device 200 having such a configuration can be used, for example, in air conditioners, heat pump water heaters, refrigerators, refrigerators, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion device (100) comprises: a rectifier (3) that is a converter for rectifying AC power supplied from an AC power supply (1); a smoothing unit (4) that is connected to the output end of the converter and smooths power output by the converter; an inverter (5) that is connected to both ends of the smoothing unit and generates AC power to be output to a load (6); a current detector (7) that detects the current flowing between the smoothing unit and the inverter; and a control unit (9) that controls the inverter. The control unit divides, on the basis of a voltage vector indicating the state of each switching element constituting the inverter, a unit time that is a period having a predetermined length into a plurality of current detection intervals, calculates, for each of the plurality of current detection intervals, the products of the time widths of the current detection intervals and the current values detected by the current detector in the current detection intervals, and controls the inverter so that the sum value of the calculated products per unit time becomes constant for each unit time.

Description

電力変換装置およびヒートポンプ装置Power conversion equipment and heat pump equipment
 本開示は、電力変換装置および電力変換装置を用いたヒートポンプ装置に関する。 The present disclosure relates to a power converter and a heat pump device using the power converter.
 空気調和機および冷凍機といったヒートポンプ装置に適用されるシングルロータリ圧縮機やツインロータリ圧縮機を駆動する電動機の制御において、例えば、電動機の状態に応じてトルクの脈動成分を適切に補償することで消費電力の増加を抑制する技術がある(例えば、特許文献1参照)。 In the control of electric motors that drive single-rotary compressors and twin-rotary compressors applied to heat pump devices such as air conditioners and refrigerators, for example, power consumption can be reduced by appropriately compensating for the pulsating component of torque according to the state of the electric motor. There is a technique for suppressing an increase in electric power (see Patent Document 1, for example).
特開2016-178814号公報JP 2016-178814 A
 特許文献1に記載の電動機制御装置は、周期的に負荷トルクが脈動する負荷を駆動する電動機の制御を行うものである。しかしながら、交流電源から供給される交流電力を直流電力に変換するコンバータを備える電力変換装置の場合、電源周波数と非同期の周波数で負荷トルクが脈動すると、コンバータから平滑コンデンサに流れ込む充放電電流が、電源電圧の正と負でアンバランス状態となる。この結果、電源電流の高調波が増加してしまう恐れがある。 The motor control device described in Patent Document 1 controls a motor that drives a load whose load torque pulsates periodically. However, in the case of a power conversion device equipped with a converter that converts AC power supplied from an AC power source into DC power, when the load torque pulsates at a frequency asynchronous to the power source frequency, the charging/discharging current flowing from the converter to the smoothing capacitor is reduced by the power source. An unbalanced state occurs between positive and negative voltages. As a result, the harmonics of the power supply current may increase.
 また、特許文献1に記載の電動機制御装置は、交流電源を整流するコンバータとインバータとの間に流れる電流の検出結果から、電動機に流れる三相交流電流を推定し、推定した三相交流電流に基づいて制御信号を生成する。特許文献1には、コンバータとインバータとの間に流れる電流の検出にシャント抵抗を使用可能であることも記載されている。 Further, the electric motor control device described in Patent Document 1 estimates a three-phase alternating current flowing in the electric motor from the detection result of the current flowing between the converter that rectifies the alternating current power supply and the inverter, and converts the estimated three-phase alternating current into generate a control signal based on Patent Literature 1 also describes that a shunt resistor can be used to detect the current flowing between the converter and the inverter.
 しかしながら、シャント抵抗を用いて電流検出を行う場合、所定のタイミングでのみ検出が可能である。一般的には、定められた時間間隔で周期的に電流検出を行うため、瞬時の値しか検出することができず、正確な電流値を得ることが難しい。正確な電流値が得られない場合はインバータの制御を正確に行うことが難しくなる。なお、電流検出を行う時間間隔には最小値が存在し、最小値よりも短い間隔で電流検出を行うことはできない。 However, when current detection is performed using a shunt resistor, detection is possible only at a predetermined timing. In general, current detection is performed periodically at predetermined time intervals, so only instantaneous values can be detected, making it difficult to obtain accurate current values. If an accurate current value cannot be obtained, it becomes difficult to accurately control the inverter. Note that there is a minimum value in the time interval for current detection, and current detection cannot be performed at intervals shorter than the minimum value.
 本開示は、上記に鑑みてなされたものであって、所定のタイミングで得られる電流の瞬時値に基づいて行う負荷の制御を高精度化することが可能な電力変換装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device capable of increasing the accuracy of load control performed based on an instantaneous value of current obtained at a predetermined timing. do.
 上述した課題を解決し、目的を達成するために、本開示にかかる電力変換装置は、交流電源から供給される交流電力を整流するコンバータと、コンバータの出力端に接続され、コンバータが出力する電力を平滑化する平滑部と、平滑部の両端に接続され、負荷に出力する交流電力を生成するインバータと、平滑部とインバータとの間に流れる電流を検出する電流検出器と、インバータを制御する制御部と、を備える。制御部は、予め定められた長さの期間である単位時間を、インバータを構成する各スイッチング素子の状態を表す電圧ベクトルに基づき複数の電流検出区間に分割し、複数の電流検出区間のそれぞれについて、電流検出区間の時間幅と電流検出区間で電流検出器が検出した電流値との積を算出し、算出した積の単位時間あたりの合計値が単位時間ごとに一定となるようインバータを制御する。 In order to solve the above-described problems and achieve the object, the power converter according to the present disclosure includes a converter that rectifies AC power supplied from an AC power supply, and power that is connected to the output terminal of the converter and output by the converter. a smoothing unit that smoothes the current, an inverter that is connected to both ends of the smoothing unit and generates AC power to be output to the load, a current detector that detects current flowing between the smoothing unit and the inverter, and controls the inverter and a control unit. The control unit divides a unit time, which is a period of a predetermined length, into a plurality of current detection intervals based on voltage vectors representing the state of each switching element that constitutes the inverter, and for each of the plurality of current detection intervals , calculates the product of the time width of the current detection section and the current value detected by the current detector in the current detection section, and controls the inverter so that the total value of the calculated product per unit time is constant for each unit time. .
 本開示によれば、所定のタイミングで得られる電流の瞬時値に基づいて行う負荷の制御を高精度化することが可能な電力変換装置を実現できる、という効果を奏する。 According to the present disclosure, it is possible to realize an electric power conversion device capable of highly accurate control of a load based on an instantaneous value of current obtained at a predetermined timing.
実施の形態1にかかる電力変換装置の構成例を示す図1 is a diagram showing a configuration example of a power converter according to a first embodiment; FIG. 制御部がインバータに対する制御信号を生成する方法を説明するための図FIG. 4 is a diagram for explaining how the control unit generates a control signal for the inverter; インバータを構成するスイッチング素子のスイッチングパターンを示す図FIG. 4 shows switching patterns of switching elements that make up an inverter 実施の形態1にかかる電力変換装置が動作した時の電流および電圧の波形の一例を示す図FIG. 4 is a diagram showing an example of current and voltage waveforms when the power converter according to the first embodiment operates; 電源電圧Vsの周波数が50Hzの場合において、対称性が失われた状態の入力電流Isに含まれる周波数成分を表す図FIG. 4 is a diagram showing frequency components included in an input current Is in a state where symmetry is lost when the frequency of the power supply voltage Vs is 50 Hz; 電力変換装置が定電流で負荷を動作させた場合の電流および電圧の波形の一例を示す図A diagram showing an example of current and voltage waveforms when the power conversion device operates the load at a constant current 負荷電流の一般的な検出方法を説明するための図Diagram for explaining a general method of detecting load current 電力変換装置のインバータから負荷に流れる直流電流Idcの検出方法を説明するための図FIG. 4 is a diagram for explaining a method of detecting a direct current Idc flowing from an inverter of a power conversion device to a load; 実施の形態1にかかる電力変換装置が備える制御部を実現するハードウェア構成の一例を示す図FIG. 2 is a diagram showing an example of a hardware configuration that realizes a control unit included in the power converter according to the first embodiment; FIG. 実施の形態2にかかるヒートポンプ装置の構成例を示す図FIG. 10 is a diagram showing a configuration example of a heat pump device according to a second embodiment;
 以下に、本開示の実施の形態にかかる電力変換装置およびヒートポンプ装置を図面に基づいて詳細に説明する。 A power conversion device and a heat pump device according to embodiments of the present disclosure will be described below in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる電力変換装置の構成例を示す図である。電力変換装置100は、リアクトル2と、コンバータである整流器3と、平滑部4と、インバータ5と、電流検出器7と、電圧検出器8と、制御部9と、を備える。電力変換装置100は、交流電源1に接続され、交流電源1から供給される交流電力を三相交流電力に変換して負荷6に供給する。
Embodiment 1.
1 is a diagram illustrating a configuration example of a power converter according to a first embodiment; FIG. The power conversion device 100 includes a reactor 2 , a rectifier 3 that is a converter, a smoothing section 4 , an inverter 5 , a current detector 7 , a voltage detector 8 and a control section 9 . The power conversion device 100 is connected to an AC power supply 1 , converts AC power supplied from the AC power supply 1 into three-phase AC power, and supplies the three-phase AC power to a load 6 .
 交流電源1から入力される電源電圧Vsはリアクトル2を介して整流器3で整流され、整流器3の出力端に接続された平滑部4を構成するコンデンサ4aおよび4bに蓄積されることで平滑化が行われた後、インバータ5に供給される。なお、交流電源1の出力端子のリアクトル2が接続された側を正とした場合、平滑部4のコンデンサ4aは、電源電圧Vsが正の場合に充電され、コンデンサ4bは電源電圧Vsが負の場合に充電される。 A power supply voltage Vs input from an AC power supply 1 is rectified by a rectifier 3 via a reactor 2, and is accumulated in capacitors 4a and 4b constituting a smoothing section 4 connected to the output end of the rectifier 3, thereby smoothing the voltage. After that, it is supplied to the inverter 5 . When the side of the output terminal of the AC power supply 1 connected to the reactor 2 is positive, the capacitor 4a of the smoothing unit 4 is charged when the power supply voltage Vs is positive, and the capacitor 4b is charged when the power supply voltage Vs is negative. When the battery is charged.
 ここで、交流電源1は、50Hzまたは60Hzの商用電源であってもよいし、定置型蓄電池や太陽光発電などの分散電源などにより生成された交流電圧でもよい。 Here, the AC power supply 1 may be a commercial power supply of 50 Hz or 60 Hz, or an AC voltage generated by a distributed power supply such as a stationary storage battery or solar power generation.
 また、リアクトル2は、電磁鋼板などを積層したEI形状またはEE形状のものでもよいし、フェライトまたはアモルファスなどの鉄心を用いたものでもよい。巻線の材質は、銅、アルミなどである。 In addition, the reactor 2 may be an EI-shaped or EE-shaped one in which electromagnetic steel sheets are laminated, or may be one using an iron core such as ferrite or amorphous. The winding material is copper, aluminum, or the like.
 整流器3は、例えば、ダイオードをブリッジ状に配置して実現する。ダイオードに代えてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などのパワー半導体により整流器3を構成してもよい。また、ダイオード、および、MOSFETなどのパワー半導体は、一般的なシリコン材料のものであってもよいし、より損失の低いワイドバンドギャップ半導体でもよい。 The rectifier 3 is realized, for example, by arranging diodes in a bridge shape. The rectifier 3 may be configured by a power semiconductor such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) instead of the diode. Also, power semiconductors such as diodes and MOSFETs may be of general silicon material or may be wide bandgap semiconductors with lower loss.
 コンデンサ4aおよび4bは、アルミ電解コンデンサ、小容量のフィルムコンデンサなどである。 The capacitors 4a and 4b are aluminum electrolytic capacitors, small-capacity film capacitors, or the like.
 なお、整流器3の構成は図1に示したものに限定されない。本実施の形態にかかる電力変換装置100は、交流電力を整流する回路と、整流後の直流電力を平滑化するコンデンサとを備えるものであればどのようなものでもよい。 The configuration of the rectifier 3 is not limited to that shown in FIG. The power converter 100 according to the present embodiment may be of any type as long as it includes a circuit for rectifying AC power and a capacitor for smoothing the rectified DC power.
 また、平滑部4の両端、すなわち、直列接続されたコンデンサ4aおよびコンデンサ4bからなる直列回路の両端にはインバータ5が接続され、インバータ5には負荷6が接続される。インバータ5が生成する交流電力を消費する負荷6は電動機を含む。インバータ5は直列接続されたスイッチング素子が並列に複数配置され、負荷6に含まれる電動機に多相の交流電圧を印加するよう動作する。また、インバータ5を構成するスイッチング素子のそれぞれには並列にダイオードが接続される。スイッチング素子はIGBT(Insulated Gate Bipolar Transistors)やMOSFET等が広く用いられる。MOSFETの場合には寄生ダイオードが内蔵された構成となっており、並列に接続したダイオードを別途接続しない場合もある。 An inverter 5 is connected to both ends of the smoothing section 4, that is, to both ends of a series circuit composed of a capacitor 4a and a capacitor 4b connected in series, and a load 6 is connected to the inverter 5. A load 6 that consumes the AC power generated by the inverter 5 includes an electric motor. The inverter 5 has a plurality of series-connected switching elements arranged in parallel, and operates to apply a multiphase AC voltage to the electric motor included in the load 6 . A diode is connected in parallel to each of the switching elements forming inverter 5 . IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs are widely used as switching elements. In the case of a MOSFET, a parasitic diode is built in, and the diode connected in parallel may not be separately connected.
 スイッチング素子にはシリコン(Si)の材料が広く用いられ、近年は高効率化の要望によりスーパージャンクション構造のMOSFETなども広く用いられている。また、さらなる高効率化のためにワイドバンドギャップ半導体である、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンドなども用いられるようになってきており、いずれを用いても問題ないし、電動機に電圧を印加するようスイッチング動作が可能であれば、どのような材料のスイッチング素子を用いても問題ない。 Silicon (Si) materials are widely used for switching elements, and in recent years, due to the demand for higher efficiency, MOSFETs with a super junction structure are also widely used. In addition, wide bandgap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), and diamond have been used for further efficiency improvement. There is no problem, and switching elements made of any material can be used as long as they are capable of switching operation so as to apply a voltage to the motor.
 電動機については、誘導電動機や同期電動機などがあるが、どのような構成の電動機であっても問題ない。例えば同期電動機の場合には、ステータは集中巻きや分布巻きのどちらでもよく、巻線については銅やアルミ線など電流を流せる材料であればどのようなものを用いても問題ない。またロータについては永久磁石同期電動機を用いたものとして表面磁石型や埋込磁石型などがあるが、回転力を発生させられるような構造であれば、どのようなものを用いてもよい。 Regarding the electric motor, there are induction motors and synchronous motors, but there is no problem with the electric motor of any configuration. For example, in the case of a synchronous motor, the stator may be concentrated winding or distributed winding, and the winding may be made of any material such as copper or aluminum wire that allows current to flow. As for the rotor, there are surface magnet type, embedded magnet type, etc. as those using a permanent magnet synchronous motor, but any type may be used as long as it has a structure capable of generating a rotational force.
 このような電動機を用いて、例えば冷凍サイクル機器を実現する場合は、電動機は、冷媒を圧縮する圧縮機構を動作させたり、熱交換をするためのファンを駆動したりするために用いられる。 When such a motor is used to implement, for example, a refrigeration cycle device, the motor is used to operate a compression mechanism that compresses the refrigerant or drive a fan for heat exchange.
 また、制御部9は、電流検出器7により検出した直流電流Idc、電圧検出器8により検出した直流電圧Vdcに基づいて、インバータ5が負荷6に供給する電圧を制御すべくスイッチング素子を制御する信号であるパルス幅変調(PWM:Pulse Width Modulation)信号を送出する。なお、電流検出器7は、シャント抵抗、または、DCCT(Direct Current Current Transformer)など電流が検出可能なものであれば、どのようなものを用いてもよい。 Further, the control unit 9 controls the switching element to control the voltage supplied to the load 6 by the inverter 5 based on the DC current Idc detected by the current detector 7 and the DC voltage Vdc detected by the voltage detector 8. A pulse width modulation (PWM: Pulse Width Modulation) signal is sent out. It should be noted that the current detector 7 may be a shunt resistor or a DCCT (Direct Current Current Transformer) or any other device that can detect current.
 制御部9がインバータ5に対する制御信号としてPWM信号を生成する方法について説明する。図2は、制御部9がインバータ5に対する制御信号を生成する方法を説明するための図である。 A method for the control unit 9 to generate a PWM signal as a control signal for the inverter 5 will be described. FIG. 2 is a diagram for explaining how the control section 9 generates a control signal for the inverter 5. As shown in FIG.
 制御部9は、図2の上段に示すように、振幅が直流電圧Vdcの1/2のキャリア信号と、負荷6に含まれる電動機に印加するU相、V相、W相それぞれの電圧の指令値であるVu*、Vv*、Vw*とを比較して、インバータ5の各スイッチング素子を動作させるPWM信号を生成する。V*は、各相の電圧指令値(Vu*、Vv*、Vw*)の振幅である。制御部9が生成するPWM信号は図2の下段に示したものとなる。なお、図2の下段において、UPは図1に示すインバータ5の左上のスイッチング素子に対する制御信号、UNは左下のスイッチング素子に対する制御信号、VPは真ん中上のスイッチング素子に対する制御信号、VNは真ん中下のスイッチング素子に対する制御信号、WPは右上のスイッチング素子に対する制御信号、WNは右下のスイッチング素子に対する制御信号である。 As shown in the upper part of FIG. 2, the control unit 9 controls a carrier signal whose amplitude is 1/2 of the DC voltage Vdc and a command for each of the U-phase, V-phase, and W-phase voltages to be applied to the motor included in the load 6. The values Vu*, Vv*, and Vw* are compared to generate a PWM signal for operating each switching element of the inverter 5 . V* is the amplitude of the voltage command value (Vu*, Vv*, Vw*) of each phase. The PWM signal generated by the controller 9 is shown in the lower part of FIG. 2, UP is a control signal for the upper left switching element of the inverter 5 shown in FIG. 1, UN is a control signal for the lower left switching element, VP is a control signal for the middle upper switching element, and VN is the middle lower switching element. , WP is a control signal for the upper right switching element, and WN is a control signal for the lower right switching element.
 図3は、インバータ5を構成するスイッチング素子のスイッチングパターンを示す図である。詳細には、図3は、インバータ5を構成するスイッチング素子の各スイッチングパターンにおける電動機への印加電圧方向(電圧方向)と、電圧ベクトル(V0~V7)を出力した際に整流器3とインバータ5との間に流れる直流電流Idc(検出電流)と、PWM信号(UP,VP,WP,UN,VN,WN)との関係を示す。電圧ベクトルは、インバータ5を構成する各スイッチング素子の状態を表す。なお、「V」と組み合わされている数値(0~7)は、UP,VP,WPのスイッチング素子の状態に対応する。 FIG. 3 is a diagram showing switching patterns of switching elements that constitute the inverter 5. FIG. Specifically, FIG. 3 shows the direction of the voltage applied to the motor (voltage direction) in each switching pattern of the switching elements that make up the inverter 5, and the rectifier 3 and the inverter 5 when the voltage vector (V0 to V7) is output. and the PWM signals (UP, VP, WP, UN, VN, WN). A voltage vector represents the state of each switching element that constitutes inverter 5 . Note that the numerical values (0 to 7) combined with "V" correspond to the states of the switching elements UP, VP, and WP.
 図3において「電圧方向」と記載された、電動機への印加電圧方向は、電圧検出器8による直流電圧Vdcの検出結果から求める。また「検出電流」と記載された直流電流Idcは電流検出器7により検出する。図3においては、整流器3からインバータ5の方向に流れる電流を正としている。一般的に、インバータに接続された電動機の制御では、電圧ベクトルに対応するPWM信号をインバータに出力した際の特定の瞬間の電流を検出し、検出した瞬時値を電動機の制御に利用する。このような電動機の制御方法は公知であるため、詳細説明は割愛する。 The direction of the voltage applied to the electric motor, which is described as "voltage direction" in FIG. A current detector 7 detects a direct current Idc described as "detected current". In FIG. 3, the current flowing from the rectifier 3 to the inverter 5 is assumed to be positive. Generally, in controlling a motor connected to an inverter, current is detected at a specific moment when a PWM signal corresponding to a voltage vector is output to the inverter, and the detected instantaneous value is used for controlling the motor. Since such an electric motor control method is publicly known, a detailed explanation is omitted.
 続いて、上述した特許文献1に記載された技術のように負荷トルクの脈動に合わせて電動機のトルクを制御することで速度脈動を抑制する制御を考える。図4は、実施の形態1にかかる電力変換装置100が動作した時の電流および電圧の波形の一例を示す図である。図4では、負荷トルクの脈動に合わせて電動機のトルクを制御することで速度脈動を抑制する場合の波形を示している。 Next, consider control for suppressing speed pulsation by controlling the torque of the electric motor in accordance with the pulsation of the load torque, as in the technology described in Patent Document 1 above. FIG. 4 is a diagram showing an example of current and voltage waveforms when the power converter 100 according to the first embodiment operates. FIG. 4 shows waveforms when the speed pulsation is suppressed by controlling the torque of the electric motor according to the pulsation of the load torque.
 電力変換装置100は、負荷トルクの脈動に合わせて電動機のトルクを制御する場合、電動機へ出力する有効電力を負荷トルクの脈動に合わせて増減させる。そのため、図4に示すように、直流電流Idcが脈動し、平滑部4を構成するコンデンサ4aおよび4bから負荷トルクの脈動に合わせて電荷が消費される。そのため、電源電圧Vsによるコンデンサ4aおよび4bへの充電タイミングが電源周波数と非同期になり、入力電流Isの正と負の対称性が失われてくる。なお、図4に示す波形のそれぞれは、上から、電源電圧Vs、入力電流Is、直流電圧Vdc、電動機電流Iu,Iv,Iw、直流電流Idc、電圧ベクトルを示す。このような、入力電流Isの正側の波形と負側の波形との対称性が失われた状態になると、入力電流Isに含まれる高調波が増加する。 When controlling the torque of the electric motor in accordance with the pulsation of the load torque, the power converter 100 increases or decreases the active power output to the electric motor in accordance with the pulsation of the load torque. Therefore, as shown in FIG. 4, the DC current Idc pulsates, and electric charges are consumed from the capacitors 4a and 4b forming the smoothing section 4 in accordance with the pulsation of the load torque. Therefore, the charging timing of the capacitors 4a and 4b with the power supply voltage Vs becomes asynchronous with the power supply frequency, and the symmetry between positive and negative input current Is is lost. Each of the waveforms shown in FIG. 4 represents, from top to bottom, the power supply voltage Vs, the input current Is, the DC voltage Vdc, the motor currents Iu, Iv, Iw, the DC current Idc, and the voltage vector. When the symmetry between the positive waveform and the negative waveform of the input current Is is lost, harmonics contained in the input current Is increase.
 入力電流Isと電源電圧Vsとが同期している場合、入力電流Isは電源電圧Vsの周波数と同じ周波数の成分を基本波として3次、5次、7次、・・・といった奇数次高調波成分が支配的となり、偶数次高調波の発生は軽微である。しかしながら、入力電流Isが、電源電圧Vsと非同期、かつ不規則に流れると、上述したように、入力電流Isの波形の対称性が失われる。この結果、奇数次高調波以外の電流成分、具体的には、偶数次高調波および次数間高調波が発生する。次数間高調波は、入力電流Isの奇数次高調波および偶数次高調波のいずれにも該当しない高調波であり、例えば、基本波の周波数を50Hzとすると、2次高調波は100Hzとなり、この50Hzと100Hzとの間の周波数成分である。 When the input current Is and the power supply voltage Vs are synchronized, the input current Is has odd-order harmonics such as the 3rd, 5th, 7th, etc., with the component of the same frequency as the frequency of the power supply voltage Vs as the fundamental wave. component becomes dominant, and the generation of even-order harmonics is slight. However, if the input current Is flows irregularly and asynchronously with the power supply voltage Vs, the symmetry of the waveform of the input current Is is lost as described above. As a result, current components other than odd-order harmonics, specifically, even-order harmonics and inter-harmonics are generated. Interharmonics are harmonics that are neither odd nor even harmonics of the input current Is. For example, if the frequency of the fundamental wave is 50 Hz, the second harmonic is 100 Hz. A frequency component between 50 Hz and 100 Hz.
 ここで、電源電流(電力変換装置100では入力電流Isに相当)の高調波電流は、JIS(Japanese Industrial Standards)およびIEC(International Electrotechnical Commission)により定められた規格の61000-3-2において限度値が決められている。この規格では、偶数次高調波よりも奇数次高調波の限度値の方が高く設定されている。そのため、奇数次高調波以外の成分が発生するケースでは、偶数次高調波が増加し限度値を超過しやすくなる。また、次数間高調波については、その取扱い方法がJISおよびIECにより定められた規格の61000-4-7において決められている。この規格61000-4-7では、次数間高調波を特定範囲の周波数ごとにグルーピングを行い、隣接する奇数次高調波または偶数次高調波に足し込むとされている。そのため、次数間高調波の増加に伴い、奇数次高調波として取り扱う高調波および偶数次高調波として取り扱う高調波が増加する。よって、次数間高調波の発生も無視することはできず、発生を抑制することが重要となる。 Here, the harmonic current of the power supply current (corresponding to the input current Is in the power converter 100) is the limit value in 61000-3-2 of the standard stipulated by JIS (Japanese Industrial Standards) and IEC (International Electrotechnical Commission). is determined. The standard sets higher limits for odd harmonics than for even harmonics. Therefore, in cases where components other than odd-order harmonics are generated, the even-order harmonics increase and easily exceed the limit value. As for the interharmonics, the handling method is determined in 61000-4-7 of the standard defined by JIS and IEC. According to this standard 61000-4-7, interharmonics are grouped by frequency within a specific range and added to adjacent odd-order or even-order harmonics. Therefore, as the interharmonics increase, the harmonics treated as odd-order harmonics and the harmonics treated as even-order harmonics also increase. Therefore, the generation of interharmonics cannot be ignored, and it is important to suppress the generation.
 図4の場合には、入力電流Isのアンバランスにより1回あたりの充電電流が大きくなる箇所(例えば、左から1番目の周期の正側の充電電流)と小さくなる箇所(例えば、左から4番目の周期の正側の充電電流)が現れ、特に充電電流が大きくなる領域では、リアクトル2に流れる入力電流Isが大きくなることによるインダクタンスの低下による影響、整流器3に過大な電流が流れることによる損失悪化などが懸念される。そのため、このような電流が流れないようにする制御、すなわち、1回あたりの充電電流が大きくならないようにすることが必要となる。 In the case of FIG. 4, due to the imbalance of the input current Is, there are places where the charging current per charge is large (for example, the charging current on the positive side in the first cycle from the left) and places where it is small (for example, the fourth cycle from the left). (positive charging current in the second cycle) appears, and in the region where the charging current is particularly large, the input current Is flowing through the reactor 2 increases, which causes the inductance to decrease, and the rectifier 3 to flow an excessive current. There are concerns about worsening losses. Therefore, it is necessary to perform control to prevent such current from flowing, that is, to prevent the charging current per charge from increasing.
 直流電流Idcが小さい場合には直流電圧Vdcの低下は小さくなり、電源電圧Vsによる充電量が小さくなるため、入力電流Isは低下する。また、電源電圧Vsが低く(ゼロに近い)、かつ、直流電流Idcが大きい場合、直流電圧Vdcが大きく低下する。このような状態で電源電圧Vsの正または負のピークが発生すると、コンデンサ4aおよび4bへの充電電流が大きくなり、入力電流Isは増加する。このような、入力電流Isの対称性が失われてアンバランスとなった状態の場合、入力電流Isに以下の成分が含まれる。一例として、電源周波数が50Hzの場合の入力電流Isに含まれる電流成分について図5に記載する。図5は、電源電圧Vsの周波数が50Hzの場合において、対称性が失われた状態の入力電流Isに含まれる周波数成分を表す図である。なお、電源周波数が60Hzの場合において、対称性が失われた状態の入力電流Isに含まれる周波数成分についても、以下により同様に求めることが可能である。 When the DC current Idc is small, the drop in the DC voltage Vdc is small, and the amount of charge due to the power supply voltage Vs is small, so the input current Is is reduced. Also, when the power supply voltage Vs is low (close to zero) and the DC current Idc is large, the DC voltage Vdc drops significantly. If a positive or negative peak occurs in power supply voltage Vs in such a state, the charging current to capacitors 4a and 4b increases and input current Is increases. In such an unbalanced state where the symmetry of the input current Is is lost, the input current Is contains the following components. As an example, FIG. 5 shows current components included in the input current Is when the power supply frequency is 50 Hz. FIG. 5 is a diagram showing frequency components included in the input current Is in a state where the symmetry is lost when the frequency of the power supply voltage Vs is 50 Hz. In the case where the power supply frequency is 60 Hz, the frequency component included in the input current Is in which the symmetry is lost can also be obtained in the same manner as described below.
 図5の左端の列に記載の周波数(0,5,10,…,100)は、周期的に変化する直流電流Idcの波形(図4参照)の周波数、すなわち、負荷6に流れる直流電流Idcの変動周波数である。説明の便宜上、以下では、この周波数を負荷電流変動周波数と称する場合がある。 The frequencies (0, 5, 10, . . . , 100) described in the leftmost column of FIG. is the fluctuation frequency of For convenience of explanation, this frequency may hereinafter be referred to as the load current fluctuation frequency.
 図5の1行目に示す数値の範囲(75~125,125~175,…,275~325)は、周波数の範囲を表し、上述した、次数間高調波のグルーピングを行う際の単位となる。すなわち、上記の規格61000-4-7の規定に従うグルーピングでは、図5の1行目に示す範囲のそれぞれに含まれる次数間高調波を1つのグループとする。例えば、75~125Hzの範囲に含まれる次数間高調波は同じグループに属することになる。図5の3行目以降の左端の列以外の各列に記載した数値は、入力電流Isに含まれる次数間高調波の周波数を示す。 The range of numerical values (75 to 125, 125 to 175, . . . , 275 to 325) shown in the first row of FIG. . That is, in the grouping according to the above standard 61000-4-7, the interharmonics included in each range shown in the first line of FIG. 5 are grouped. For example, interharmonics in the range of 75-125 Hz belong to the same group. The numerical values described in each column other than the leftmost column from the third row onward in FIG. 5 indicate the frequency of the interharmonics included in the input current Is.
 図5の2行目の左端の列以外の記載(2次,3次,…,6次)は、電源周波数の高調波の次数であり、グルーピングされた次数間高調波が足し込まれる先を表す。例えば、「2次」と記載された列の次数間高調波(75Hz,80Hz,…)、すなわち、75~125Hzの範囲の次数間高調波は、2次高調波に足し込まれる。なお、グルーピングを行う範囲それぞれの境界となる周波数(125Hz,175Hz,225Hz,…)の次数間高調波は、その半分が、この次数間高調波を含む2つの範囲のそれぞれに対応する奇数次高調波および偶数次高調波の一方に足し込まれ、残り半分が、他方に足し込まれる。 Descriptions other than the leftmost column on the second row in FIG. 5 (second, third, . show. For example, the interharmonics (75 Hz, 80 Hz, . Half of the interharmonics of the frequencies (125Hz, 175Hz, 225Hz, etc.) that form the boundaries of the ranges to be grouped are odd-order harmonics corresponding to the two ranges that include these interharmonics. one of the waves and the even harmonics and the other half is added to the other.
 負荷6に流れる直流電流Idcを周期的に変化させた場合に発生する具体的な電流成分について説明する。なお、以下の説明では、電源電圧Vsの基本波成分の周波数(50Hz)を電源周波数1fと記載し、電源電圧Vsの高調波成分の周波数(100Hz,150Hz,200Hz,…)を、電源周波数2f,電源周波数3f,電源周波数4f,…と記載する。また、説明が煩雑となるのを防止するために、負荷6に流れる直流電流Idcを負荷電流と称する場合がある。 A specific current component generated when the DC current Idc flowing through the load 6 is periodically changed will be described. In the following description, the frequency (50 Hz) of the fundamental wave component of the power supply voltage Vs is described as power supply frequency 1f, and the frequencies (100Hz, 150Hz, 200Hz, . . . ) of the harmonic components of power supply voltage Vs are referred to as power supply frequency 2f , power frequency 3f, power frequency 4f, . Also, in order to prevent the explanation from becoming complicated, the DC current Idc flowing through the load 6 may be referred to as a load current.
 交流電源1の負荷電流の変動を問わず発生する電流成分として、以下の(1)に示す周波数の電流成分がある。 As a current component that occurs regardless of fluctuations in the load current of the AC power supply 1, there is a current component with the frequency shown in (1) below.
(1)電源周波数1f,電源周波数3f,電源周波数5f,…,電源周波数(2n-1)f、(n=1,2,3,…) (1) Power frequency 1f, power frequency 3f, power frequency 5f, ..., power frequency (2n-1)f, (n = 1, 2, 3, ...)
 「電源周波数1f」は電源電流の基本波の周波数を表し、「電源周波数(2n-1)」は電源電流の2n-1次高調波の周波数を表す。すなわち、基本波成分と、奇数次高調波成分とが、交流電源1の負荷電流の変動を問わず発生する。 "Power supply frequency 1f" represents the frequency of the fundamental wave of the power supply current, and "Power supply frequency (2n-1)" represents the frequency of the 2n-1st harmonic of the power supply current. That is, the fundamental wave component and the odd-order harmonic component are generated regardless of fluctuations in the load current of the AC power supply 1 .
 負荷電流の基本波成分の影響により入力電流Isに発生する電流成分として、以下の(2)~(7)に示す周波数の電流成分がある。なお、「電源周波数3f」は電源電流の3次高調波の周波数を表し、「電源周波数5f」は、電源電流の5次高調波の周波数を表す。 Current components with frequencies shown in (2) to (7) below are current components generated in the input current Is due to the influence of the fundamental wave component of the load current. "Power supply frequency 3f" represents the frequency of the third harmonic of the power supply current, and "Power supply frequency 5f" represents the frequency of the fifth harmonic of the power supply current.
(2)電源周波数1f-{電源周波数1f-|電源周波数1f-負荷電流変動周波数|}
(3)電源周波数1f+{電源周波数1f-|電源周波数1f-負荷電流変動周波数|}
(4)電源周波数3f-{電源周波数1f-|電源周波数1f-負荷電流変動周波数|}
(5)電源周波数3f+{電源周波数1f-|電源周波数1f-負荷電流変動周波数|}
(6)電源周波数5f-{電源周波数1f-|電源周波数1f-負荷電流変動周波数|}
(7)電源周波数5f+{電源周波数1f-|電源周波数1f-負荷電流変動周波数|}
(2) Power frequency 1f- {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency|}
(3) Power frequency 1f + {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency|}
(4) Power frequency 3f- {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency|}
(5) Power frequency 3f + {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency|}
(6) Power frequency 5f- {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency|}
(7) Power frequency 5f + {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency|}
 また、負荷電流の2次高調波成分の影響により入力電流Isに発生する電流成分として、以下の(8)~(13)に示す周波数の電流成分がある。なお、これらは、図5中では括弧内に記載している(例えば「(80,120)」が該当)。 In addition, current components with frequencies shown in (8) to (13) below are current components generated in the input current Is due to the influence of the secondary harmonic components of the load current. Note that these are shown in parentheses in FIG. 5 (for example, "(80, 120)" corresponds).
(8)電源周波数1f-{電源周波数1f-|電源周波数1f-負荷電流変動周波数×2|}
(9)電源周波数1f+{電源周波数1f-|電源周波数1f-負荷電流変動周波数×2|}
(10)電源周波数3f-{電源周波数1f-|電源周波数1f-負荷電流変動周波数×2|}
(11)電源周波数3f+{電源周波数1f-|電源周波数1f-負荷電流変動周波数×2|}
(12)電源周波数5f-{電源周波数1f-|電源周波数1f-負荷電流変動周波数×2|}
(13)電源周波数5f+{電源周波数1f-|電源周波数1f-負荷電流変動周波数×2|}
(8) Power frequency 1f- {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency x 2|}
(9) Power frequency 1f + {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency x 2|}
(10) Power frequency 3f-{Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency x 2|}
(11) Power frequency 3f + {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency x 2|}
(12) Power frequency 5f- {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency x 2|}
(13) Power frequency 5f + {Power frequency 1f-|Power frequency 1f-Load current fluctuation frequency x 2|}
 このように、(1)に示した周波数の電流成分以外については、電源周波数と負荷電流変動周波数とに依存して発生し、発生量は負荷電流の変動幅が大きいほど増加する。図5に示すように、50Hz(電源周波数)の倍数である奇数次高調波および偶数次高調波ではなく、その間の次数間高調波になる場合がほとんどである。上記の規格61000-4-7で定められたグルーピング処理を行うと、例えば、負荷電流変動周波数が30Hzの場合には、周波数が80Hz,90Hz,110Hz,120Hzの各電流成分が発生するが、これらは偶数次高調波の100Hzにグルーピングされるため、偶数次高調波が増加することになる。偶数次高調波は上記の規格61000-3-2などでは限度値が低く設定されているため、このような、偶数次高調波にグルーピングされる次数間高調波が発生すると、偶数次高調波が限度値を超過してしまう可能性が高まる。 In this way, the current components other than the frequency shown in (1) are generated depending on the power supply frequency and the load current fluctuation frequency, and the generated amount increases as the fluctuation range of the load current increases. As shown in FIG. 5, it is mostly the interharmonics in between, rather than the odd and even harmonics that are multiples of 50 Hz (power supply frequency). When the grouping process defined by the above standard 61000-4-7 is performed, for example, when the load current fluctuation frequency is 30 Hz, current components with frequencies of 80 Hz, 90 Hz, 110 Hz, and 120 Hz are generated. is grouped at 100 Hz of the even harmonics, resulting in an increase in the even harmonics. Since even-order harmonics are set to a low limit value in the above-mentioned standard 61000-3-2, etc., when inter-order harmonics grouped into even-order harmonics are generated, even-order harmonics are generated. You are more likely to exceed your limits.
 上記の(2)~(13)に示した周波数の次数間高調波は、負荷電流変動周波数がゼロとなれば、すなわち、負荷電流が直流となれば、発生しない。そのため、負荷電流が直流となるように制御部9が負荷6を制御すれば、図6に示すように入力電流Isのアンバランスが発生せず、次数間高調波の発生を抑制できることは明らかである。図6は、電力変換装置100が定電流で負荷6を動作させた場合の電流および電圧の波形の一例を示す図である。 The interharmonics of the frequencies shown in (2) to (13) above do not occur if the load current fluctuation frequency becomes zero, that is, if the load current becomes direct current. Therefore, if the control unit 9 controls the load 6 so that the load current becomes direct current, it is clear that the imbalance of the input current Is does not occur as shown in FIG. be. FIG. 6 is a diagram showing an example of current and voltage waveforms when the power converter 100 operates the load 6 with a constant current.
 このように、平滑部4を構成するコンデンサ4aおよび4bから常に一定の電荷を消費するように定電流で負荷6を動作させることにより、コンデンサ4aおよび4bの充放電のバラつきが無くなる。この結果、電源電圧Vsと入力電流Isとが同期した波形となり、入力電流Isは奇数次高調波を多く含む波形となる。一般的に、電源電流(本実施の形態の入力電流Isに相当)は、電源電圧Vsと同期しており奇数次高調波を多く含む。そのため、上述したように、規格61000-3-2では、奇数次の高調波の限度値が高く設定されており、偶数次の高調波の限度値は低く設定されている。したがって、偶数次にグルーピングされる次数間高調波の発生を抑制する必要がある。 In this way, by operating the load 6 with a constant current so as to always consume a constant amount of electric charge from the capacitors 4a and 4b that constitute the smoothing section 4, variations in charging and discharging of the capacitors 4a and 4b are eliminated. As a result, the power supply voltage Vs and the input current Is have synchronized waveforms, and the input current Is has a waveform containing many odd-order harmonics. In general, the power supply current (corresponding to the input current Is in this embodiment) is synchronized with the power supply voltage Vs and contains many odd-order harmonics. Therefore, as described above, in the standard 61000-3-2, the limit value of odd-order harmonics is set high, and the limit value of even-order harmonics is set low. Therefore, it is necessary to suppress the generation of interharmonics that are grouped into even orders.
 以上のことから、偶数次高調波を発生させないためには、インバータ5から負荷6に流れる直流電流Idcに生じる交流成分を抑制する必要があり、正確に直流電流Idcを検出する必要がある。 From the above, in order not to generate even-order harmonics, it is necessary to suppress the AC component generated in the DC current Idc flowing from the inverter 5 to the load 6, and it is necessary to accurately detect the DC current Idc.
 ここで、従来は、図7に示すように、キャリア信号の1周期内の、図3に示す電圧ベクトルを出力しているタイミングで電流を検出し、この検出結果を用いてインバータを制御している。図7は、負荷電流の一般的な検出方法を説明するための図である。図7の上段は、キャリア信号と、電動機に印加する各相の電圧指令(Vu*、Vv*、Vw*)との関係を示す。図7の下段は、電動機に流れる電流と、電流を検出するタイミング(●で表す電流測定点が該当)とを示す。図7に示す負荷電流検出方法では、電圧ベクトルが変化してから次に変化するまでの期間において1回、電流を検出する。 Here, conventionally, as shown in FIG. 7, the current is detected at the timing of outputting the voltage vector shown in FIG. 3 within one cycle of the carrier signal, and the inverter is controlled using this detection result. there is FIG. 7 is a diagram for explaining a general method of detecting load current. The upper part of FIG. 7 shows the relationship between the carrier signal and the voltage commands (Vu*, Vv*, Vw*) of each phase applied to the motor. The lower part of FIG. 7 shows the current flowing through the motor and the timing of detecting the current (corresponding to current measurement points represented by ●). In the load current detection method shown in FIG. 7, the current is detected once during the period from when the voltage vector changes until the next change.
 しかし、実際には、図7からも分かるように、電動機に連続的に電流が流れており、電圧ベクトルが同じ区間でも電流は変化する。そのため、検出タイミングに依存して検出値が変化し、正確な値を得ることができない可能性がある。また、電流が流れない区間もあるため検出は容易ではない。電流の検出タイミングを細かくする方法もあるが、キャリア信号の周期が数十μ秒~数百μ秒であるのに対して、一般的なマイコンのアナログデジタル変換の速度は数μ秒程度であり、時間分解能が不足する恐れがある。また、頻繁にアナログデジタル変換を行うとマイコン全体の処理時間に影響を与える恐れもあるため現実的ではない。 However, in reality, as can be seen from FIG. 7, current flows continuously in the motor, and the current changes even in sections where the voltage vector is the same. Therefore, the detected value may change depending on the detection timing, and an accurate value may not be obtained. In addition, since there are sections in which no current flows, detection is not easy. There is also a method of finer current detection timing, but the period of the carrier signal is several tens of microseconds to several hundreds of microseconds, whereas the speed of analog-to-digital conversion of general microcomputers is about several microseconds. , the time resolution may be insufficient. Moreover, frequent analog-to-digital conversion may affect the processing time of the entire microcomputer, which is not realistic.
 そこで、本実施の形態にかかる電力変換装置100では、図8に示すような方法を用いて電流検出を行う。図8は、電力変換装置100のインバータ5から負荷6に流れる直流電流Idcの検出方法を説明するための図である。図8に示す方法では、1キャリア周期を、予め定められた長さの期間である単位時間とし、1キャリア周期内のあるタイミングで検出された電流値(瞬時値)と、インバータ5に出力するPWM信号とに基づいて、直流電流Idcの単位時間あたりの平均値を求める。 Therefore, in the power conversion device 100 according to the present embodiment, current detection is performed using a method as shown in FIG. FIG. 8 is a diagram for explaining a method of detecting the direct current Idc flowing from the inverter 5 to the load 6 of the power converter 100. As shown in FIG. In the method shown in FIG. 8, one carrier cycle is defined as a unit time that is a period of a predetermined length, and a current value (instantaneous value) detected at a certain timing within one carrier cycle is output to the inverter 5. Based on the PWM signal, the average value of the DC current Idc per unit time is obtained.
 電力変換装置100では、インバータ5に対するPWM信号を生成する際に使用するキャリア信号と電圧指令Vu*、Vv*およびVw*との関係により、制御部9からインバータ5へ実ベクトルが出力されている時間を推測可能である。なお、ここでの実ベクトルとは、図3に示すV0ベクトルおよびV7ベクトル以外の電圧ベクトル、すなわち、インバータ5から負荷6に電流を流す時に出力される電圧ベクトルである。制御部9は、V1ベクトル~V6ベクトルのそれぞれが出力されている時間を推測可能である。実ベクトルが出力されている時間は、例えば、図8に示す時間t1の場合、電圧指令Vw*とキャリア信号とが交差する点と、電圧指令Vv*とキャリア信号とが交差する点の差分の時間となる。これに関してはキャリア信号の上りのタイミングをv=a×t+bとし、電圧指令Vv*およびVw*をそれぞれvに代入してtを求めて差分をとればよい。なお、vは図8における縦軸の電圧指令値、tは図8における横軸の時間、a,bは定数である。このようにして求めたt1とその区間で検出した電流I1の積を求めることで、面積を求めることができる。同様にして、図8に示すI2×t2、I3×t3、I4×t4を求め、合算する。これをキャリア周期の時間で除することで1キャリア周期において負荷6に流れる電流の平均値である平均負荷電流を求めることができる。このような方法を用いることで安価なシャント抵抗を用いる場合など、電流検出タイミングを細かくすることが難しい場合でも、平均負荷電流の検出誤差の発生を抑制し、負荷6に流れる直流電流Idcを一定に制御することが可能となる。 In the power conversion device 100, a real vector is output from the control unit 9 to the inverter 5 based on the relationship between the carrier signal used to generate the PWM signal for the inverter 5 and the voltage commands Vu*, Vv*, and Vw*. It is possible to guess the time. Note that the real vector here means a voltage vector other than the V0 vector and the V7 vector shown in FIG. The control unit 9 can estimate the time during which each of the V1 vector to V6 vector is output. For example, in the case of time t1 shown in FIG. 8, the time during which the real vector is output is the difference between the point where the voltage command Vw* and the carrier signal intersect and the point where the voltage command Vv* and the carrier signal intersect. It's time. In this regard, the carrier signal rising timing is set to v=a×t+b, voltage commands Vv* and Vw* are substituted for v, t is obtained, and the difference is obtained. Note that v is the voltage command value on the vertical axis in FIG. 8, t is the time on the horizontal axis in FIG. 8, and a and b are constants. By obtaining the product of t1 obtained in this way and the current I1 detected in that section, the area can be obtained. Similarly, I2×t2, I3×t3, and I4×t4 shown in FIG. 8 are calculated and added. By dividing this by the carrier cycle time, the average load current, which is the average value of the current flowing through the load 6 in one carrier cycle, can be obtained. By using such a method, even when fine current detection timing is difficult, such as when using an inexpensive shunt resistor, the occurrence of detection errors in the average load current is suppressed, and the DC current Idc flowing through the load 6 is kept constant. It is possible to control
 なお、電圧ベクトルのそれぞれに対応する時間区間(t1~t4)である電流検出区間における電流検出タイミングは、各電流検出区間の中央付近が望ましい。電流検出区間の中央付近で検出を行うことで、電流の検出誤差を抑制し、面積を高精度に算出することが可能となる。ただし、電流検出区間の幅が狭い場合に中央付近で検出を行うと、電流検出区間の切り替わり時にリンギングが発生し、それが中央付近まで継続してしまい、その影響を受けて検出精度が劣化する可能性がある。そのため、電流検出区間の幅が狭い場合は、リンギングの影響を受けなくなるまで待ってから検出を行うようにしてもよい。 It should be noted that the current detection timing in the current detection section, which is the time section (t1 to t4) corresponding to each voltage vector, is preferably near the center of each current detection section. By performing detection near the center of the current detection section, it is possible to suppress current detection errors and calculate the area with high accuracy. However, if the width of the current detection section is narrow and detection is performed near the center, ringing will occur when the current detection section switches, and it will continue to near the center, which will affect the detection accuracy. there is a possibility. Therefore, when the width of the current detection section is narrow, detection may be performed after waiting until the influence of ringing disappears.
 また、直流電流Idcのピーク電流は、電動機に流れる電流の6倍の周波数で脈動する。そのため、6倍の周波数の周期で、前述のような電流の面積を加算して平均値を求めてもよい。また、その他の脈動による影響を除外するために、1キャリア周期とは別の周期で平均値を求めてもよい。例えば、1キャリア周期の整数倍の周期を単位時間とし、単位時間あたりの直流電流Idcの平均値を求めてもよい。 Also, the peak current of the direct current Idc pulsates at a frequency six times that of the current flowing in the motor. Therefore, the average value may be obtained by adding the areas of the currents as described above in the period of six times the frequency. In addition, in order to eliminate the influence of other pulsations, the average value may be obtained in a period other than one carrier period. For example, the average value of the DC current Idc per unit time may be obtained by using a period that is an integral multiple of one carrier period as a unit time.
 また、図8では、各電流検出区間において電流測定を1回行う例を示したが、1つの電流検出区間で電流測定を複数回行い、測定値を平均して上記の面積算出に用いてもよい。 In addition, although FIG. 8 shows an example in which current measurement is performed once in each current detection section, it is also possible to perform current measurement multiple times in one current detection section, average the measured values, and use them for the above area calculation. good.
 このような方法で求めた電流値(直流電流Idc)が一定となるよう、電動機に発生させるトルクを制御することで、負荷トルクの脈動の周期に合わせてコンデンサ4aおよび4bから消費される電荷の量が、負荷トルクの脈動の周期のそれぞれで均一となり、入力電流Isの高調波を低減させることが可能となる。これにより、リアクトル2やコンデンサ4aおよび4bの容量が小さい状況においても効果的に高調波電流を低減することができ、機器の小型軽量化と低コスト化が図れる。 By controlling the torque generated by the motor so that the current value (direct current Idc) obtained by such a method is constant, the electric charge consumed from the capacitors 4a and 4b is reduced according to the cycle of the load torque pulsation. The amount becomes uniform in each cycle of the load torque pulsation, making it possible to reduce the harmonics of the input current Is. As a result, the harmonic current can be effectively reduced even when the capacity of the reactor 2 and the capacitors 4a and 4b is small, and the size and weight of the device can be reduced and the cost can be reduced.
 負荷6に流れる直流電流Idcが一定になるように、電動機に発生させるトルクを制御する方法については、公知の技術を用いることで容易に実現することが可能である。例えば、制御部9は、負荷6に流れる直流電流Idcが一定となるように、電動機のトルク電流であるq軸電流指令値を補償し、電動機を動作させることで有効電力を容易に操作することが可能であり、負荷6に流れる直流電流Idcが一定となるように制御できる。 A method of controlling the torque generated by the electric motor so that the DC current Idc flowing through the load 6 is constant can be easily realized using a known technique. For example, the control unit 9 compensates the q-axis current command value, which is the torque current of the motor, so that the direct current Idc flowing through the load 6 is constant, and operates the motor, thereby easily manipulating the active power. is possible, and the DC current Idc flowing through the load 6 can be controlled to be constant.
 また、コンデンサ4aおよび4bの充放電については、リアクトル2による起電力および電圧降下の影響や、コンデンサ4aおよび4bの容量による影響も受ける。リアクトル2やコンデンサ4aおよび4bの容量が十分大きい場合(リアクトル2は数mH、コンデンサ4aおよび4bは数百μF)は、直流電圧Vdcの変動が小さくなるため、直流電流Idcに脈動が重畳しても入力電流Isに奇数次高調波以外の成分が発生しづらくなる。そのため、奇数次高調波以外の電流の発生量を考慮しながら、従来の制御のような負荷トルクを脈動させる制御を用いてもよい。このようにすることで、制御対象の電動機が駆動する圧縮機の振動の低減と、高調波電流の削減との両立を図ることが可能となる。 In addition, the charging and discharging of the capacitors 4a and 4b are affected by the electromotive force and voltage drop due to the reactor 2 and the capacitance of the capacitors 4a and 4b. When the capacity of the reactor 2 and the capacitors 4a and 4b is sufficiently large (reactor 2 is several milliseconds, and the capacitors 4a and 4b are several hundreds of microfarads), fluctuations in the DC voltage Vdc become small, and pulsations are superimposed on the DC current Idc. Also, components other than odd-order harmonics are less likely to occur in the input current Is. Therefore, while considering the amount of current generated other than the odd-order harmonics, it is possible to use the conventional control of pulsating the load torque. By doing so, it is possible to achieve both a reduction in vibration of the compressor driven by the motor to be controlled and a reduction in harmonic current.
 なお、一般的なシングルロータリ圧縮機およびツインロータリ圧縮機といった、電動機に接続される負荷において、負荷トルクの脈動による速度変動に伴う振動の増加を抑制するために、電動機が出力するトルクを負荷トルクの脈動と略一致させることで速度変動を防止している。加えて、消費電力が大きくなりすぎないように、電動機の出力トルクを抑制するよう動作させている。 In general single-rotary compressors and twin-rotary compressors, which are connected to a load connected to an electric motor, in order to suppress the increase in vibration accompanying speed fluctuations due to pulsation of the load torque, the torque output by the electric motor is reduced to the load torque. The speed fluctuation is prevented by making it substantially coincide with the pulsation of the In addition, it is operated to suppress the output torque of the electric motor so that the power consumption does not become too large.
 このような動作の場合、負荷トルクに応じて負荷6に流れる直流電流Idcが変動し、前述の通り入力電流Isの高調波電流が悪化してしまう。電動機を駆動するインバータの場合には、負荷電力は電動機の機械角周波数ωとトルクτとの積で決まる。そのため、機械角周波数ωを変動させるか、トルクτを変動させることで直流電流Idcを一定に近づけるよう制御させることが可能である。 In such an operation, the DC current Idc flowing through the load 6 fluctuates according to the load torque, and the harmonic current of the input current Is deteriorates as described above. In the case of an inverter that drives a motor, the load power is determined by the product of the mechanical angular frequency ω and the torque τ of the motor. Therefore, by varying the mechanical angular frequency ω or varying the torque τ, it is possible to control the DC current Idc so as to approach a constant value.
 ただし、さらに電源高調波電流が増加しないよう、負荷6に流れる直流電流Idcの脈動を抑制するように動作させると、振動が増加してしまう懸念がある。一般的に電動機の場合、電力変動は負荷トルクに比例し、慣性モーメントに反比例する。負荷トルクによる負荷6に流れる直流電流Idcの変動が許容できない場合には、慣性モーメントを大きくするよう設計することで対応することが可能となる。このような対応を行うことで、振動の抑制と電源高調波電流の抑制を両立させることができる。 However, if the operation is performed so as to suppress the pulsation of the DC current Idc flowing through the load 6 so that the power supply harmonic current does not further increase, there is a concern that the vibration will increase. In general, for electric motors, the power fluctuation is proportional to the load torque and inversely proportional to the moment of inertia. If the fluctuation of the DC current Idc flowing through the load 6 due to the load torque is unacceptable, it can be dealt with by designing to increase the moment of inertia. By taking such measures, it is possible to achieve both suppression of vibration and suppression of power supply harmonic current.
 なお、従来の一般的なシングルロータリ圧縮機やツインロータリ圧縮機などの電動機の負荷において、負荷トルクの脈動による速度変動に伴う振動の増加を抑制するために、電動機が出力するトルクを負荷トルクの脈動と略一致させることで速度変動を防止しており、加えて消費電力が大きくなりすぎないよう電動機の出力トルクを抑制するよう動作させている。 In addition, in the load of an electric motor such as a conventional single rotary compressor or twin rotary compressor, in order to suppress the increase in vibration accompanying the speed fluctuation due to the pulsation of the load torque, the torque output by the electric motor is reduced to the load torque. Speed fluctuation is prevented by substantially matching the pulsation, and in addition, the output torque of the electric motor is controlled so as to prevent power consumption from becoming too large.
 このような動作の場合、負荷トルクに応じて負荷電流が変動し、前述の通り入力電流の高調波電流が悪化してしまう。電動機を駆動するインバータの場合には、負荷電力は機械角周波数ωとトルクτとの積で電力が決まる。そのため、機械角周波数ωを変動させるか、トルクτを変動させることで負荷電流である直流電流Idcを一定に近づけるよう制御させることが可能である。 In the case of such operation, the load current fluctuates according to the load torque, and the harmonic current of the input current deteriorates as described above. In the case of an inverter that drives an electric motor, the load power is determined by the product of the mechanical angular frequency ω and the torque τ. Therefore, by varying the mechanical angular frequency ω or varying the torque τ, it is possible to control the DC current Idc, which is the load current, to be nearly constant.
 ただし、さらに電源高調波電流が増加しないよう、負荷電流の脈動を抑制するように動作させると、電源電流の振動が増加してしまう懸念がある。一般的な電動機の場合、電力変動は負荷トルクに比例し、慣性モーメントに反比例する。負荷トルクの変動による負荷電流の変動量が許容できない場合には、慣性モーメントを大きくするよう設計することで対応することが可能となる。このような対応を行うことで、振動の抑制と電源高調波電流の抑制を両立させることができる。すなわち、電力変換装置100の制御部9は、電流検出器7で検出される直流電流Idcの変動量が許容可能な範囲となるよう、換言すれば、直流電流Idcの変動量が定められた値以下となるよう、インバータ5を介して負荷6を制御する。許容可能な範囲とは、電源電流の次数間高調波発生の影響を受ける偶数次高調波が規格の限度値以下の状態を維持可能な範囲であり、リアクトル2のインダクタンス、コンデンサ4a,4bの静電容量などを考慮して予め決定しておく。 However, there is a concern that the oscillation of the power supply current will increase if the load current pulsation is suppressed to prevent the power supply harmonic current from increasing further. In the case of a general electric motor, power fluctuation is proportional to load torque and inversely proportional to moment of inertia. If the amount of load current variation due to load torque variation is unacceptable, it can be dealt with by designing to increase the moment of inertia. By taking such measures, it is possible to achieve both suppression of vibration and suppression of power supply harmonic current. That is, the control unit 9 of the power conversion device 100 sets the amount of fluctuation of the DC current Idc detected by the current detector 7 to be within an allowable range, in other words, the amount of fluctuation of the DC current Idc is set to a value The load 6 is controlled via the inverter 5 so that: The permissible range is the range in which the even-order harmonics affected by the generation of inter-harmonics of the power supply current can be maintained below the standard limit value, and the inductance of the reactor 2 and the static of the capacitors 4a and 4b. It is determined in advance in consideration of the electric capacity and the like.
 なお、空調用の圧縮機駆動用インバータのスイッチング周波数は、電源高調波規制値である40次高調波の2kHz(電源主端数が50Hz時)または2.4kHz(電源周波数が60Hz時)よりも高い。インバータにおける負荷電流はスイッチング周波数に応じたパルス状となるが、このパルス状の電流は電源高調波に影響を与えにくい。そのため、負荷電流の脈動成分は電源高調波規制値である40次高調波の周波数以下を抑制するようにすればよい。 The switching frequency of the inverter for driving the compressor for air conditioning is higher than 2 kHz (when the power main frequency is 50 Hz) or 2.4 kHz (when the power frequency is 60 Hz) of the 40th harmonic, which is the power harmonic regulation value. . The load current in the inverter has a pulse shape corresponding to the switching frequency, but this pulse shape current does not easily affect the harmonics of the power supply. Therefore, the pulsating component of the load current should be suppressed below the frequency of the 40th harmonic, which is the power supply harmonic regulation value.
 つづいて、電力変換装置100が備える制御部9のハードウェア構成について説明する。図9は、実施の形態1にかかる電力変換装置100が備える制御部9を実現するハードウェア構成の一例を示す図である。電力変換装置100の制御部9は、例えば、図9に示すプロセッサ91およびメモリ92により実現される。 Next, the hardware configuration of the control unit 9 included in the power converter 100 will be described. FIG. 9 is a diagram illustrating an example of a hardware configuration that implements the control unit 9 included in the power converter 100 according to the first embodiment. The control unit 9 of the power conversion device 100 is realized by, for example, a processor 91 and a memory 92 shown in FIG. 9 .
 プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)である。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等である。なお、メモリ92には電力変換装置100の制御部9として動作するためのプログラムが格納され、このプログラムをプロセッサ91が読み出して実行することにより制御部9が実現される。メモリ92に格納される上記のプログラムは、例えば、CD(Compact Disc)-ROM、DVD(Digital Versatile Disc)-ROMなどの記憶媒体に書き込まれた状態でユーザ等に提供される形態であってもよいし、ネットワークを介して提供される形態であってもよい。 The processor 91 is a CPU (Central Processing Unit, also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)). The memory 92 is RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), or the like. Note that the memory 92 stores a program for operating as the control unit 9 of the power conversion device 100, and the control unit 9 is realized by the processor 91 reading and executing this program. The above program stored in the memory 92 may be provided to the user or the like while being written on a storage medium such as a CD (Compact Disc)-ROM, a DVD (Digital Versatile Disc)-ROM, etc. Alternatively, it may be provided via a network.
 なお、制御部9は、専用の処理回路、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた回路で実現することも可能である。 The control unit 9 can also be realized by a dedicated processing circuit, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit combining these. be.
 以上説明したように、本実施の形態にかかる電力変換装置100において、インバータ5を制御する制御部9は、キャリア信号の1周期の整数倍の時間を単位時間とし、単位時間を電圧ベクトルに基づき複数の電流検出区間に分割し、複数の電流検出区間のそれぞれについて、電流検出区間の時間幅と電流検出区間で電流検出器7が検出した直流電流Idcとの積を算出し、算出した積の単位時間あたりの合計値が単位時間ごとに一定となるようインバータ5を制御する。これにより、電流検出の分解能を高めることが難しいシャント抵抗等を電流検出器7として用いる場合でも、平滑部4とインバータ5との間に流れる直流電流を高精度に検出することができ、所定のタイミングで得られる電流の瞬時値に基づいて行う負荷6の制御を高精度化できる。 As described above, in the power conversion device 100 according to the present embodiment, the control unit 9 that controls the inverter 5 sets the unit time to an integral multiple of one period of the carrier signal, and sets the unit time based on the voltage vector. It is divided into a plurality of current detection intervals, and for each of the plurality of current detection intervals, the product of the time width of the current detection interval and the DC current Idc detected by the current detector 7 in the current detection interval is calculated. The inverter 5 is controlled so that the total value per unit time is constant for each unit time. As a result, even when a shunt resistor or the like, which is difficult to improve the resolution of current detection, is used as the current detector 7, the DC current flowing between the smoothing section 4 and the inverter 5 can be detected with high accuracy. It is possible to improve the accuracy of the control of the load 6 based on the instantaneous value of the current obtained at the timing.
実施の形態2.
 本実施の形態では、実施の形態1で説明した電力変換装置100を適用して実現可能な装置について説明する。一例として、実施の形態1で説明した電力変換装置100を使用するヒートポンプ装置について説明する。
Embodiment 2.
In this embodiment, a device that can be realized by applying the power conversion device 100 described in the first embodiment will be described. As an example, a heat pump device using the power conversion device 100 described in Embodiment 1 will be described.
 図10は、実施の形態2にかかるヒートポンプ装置200の構成例を示す図である。実施の形態2にかかるヒートポンプ装置200は、実施の形態1で説明した電力変換装置100を備える。 FIG. 10 is a diagram showing a configuration example of the heat pump device 200 according to the second embodiment. A heat pump device 200 according to the second embodiment includes the power conversion device 100 described in the first embodiment.
 また、ヒートポンプ装置200は、四方弁902と、図1に示した負荷6を構成する圧縮機903と、熱交換器906と、膨張弁908と、熱交換器910とが、冷媒配管912を介して取り付けられた構成の冷凍サイクルを備えている。 In addition, the heat pump device 200 includes a four-way valve 902, a compressor 903 that constitutes the load 6 shown in FIG. It has a refrigeration cycle in a mounted configuration.
 圧縮機903には、冷媒配管912内を循環する冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させる電動機905とが設けられている。電動機905は図1に示した負荷6を構成し、電力変換装置100から電力の供給を受けて駆動する。 The compressor 903 is provided with a compression mechanism 904 that compresses the refrigerant circulating in the refrigerant pipe 912 and an electric motor 905 that operates the compression mechanism 904 . The electric motor 905 constitutes the load 6 shown in FIG. 1 and is driven by being supplied with electric power from the power converter 100 .
 このような構成のヒートポンプ装置200は、例えば、空気調和機、ヒートポンプ給湯機、冷蔵庫、冷凍機等に利用することができる。 The heat pump device 200 having such a configuration can be used, for example, in air conditioners, heat pump water heaters, refrigerators, refrigerators, and the like.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 1 交流電源、2 リアクトル、3 整流器、4 平滑部、4a,4b コンデンサ、5 インバータ、6 負荷、7 電流検出器、8 電圧検出器、9 制御部、100 電力変換装置、200 ヒートポンプ装置、902 四方弁、903 圧縮機、904 圧縮機構、905 電動機、906,910 熱交換器、908 膨張弁、912 冷媒配管。 1 AC power supply, 2 reactor, 3 rectifier, 4 smoothing unit, 4a, 4b capacitor, 5 inverter, 6 load, 7 current detector, 8 voltage detector, 9 control unit, 100 power conversion device, 200 heat pump device, 902 square valve, 903 compressor, 904 compression mechanism, 905 electric motor, 906, 910 heat exchanger, 908 expansion valve, 912 refrigerant piping.

Claims (4)

  1.  交流電源から供給される交流電力を整流するコンバータと、
     前記コンバータの出力端に接続され、前記コンバータが出力する電力を平滑化する平滑部と、
     前記平滑部の両端に接続され、負荷に出力する交流電力を生成するインバータと、
     前記平滑部と前記インバータとの間に流れる電流を検出する電流検出器と、
     前記インバータを制御する制御部と、
     を備え、
     前記制御部は、予め定められた長さの期間である単位時間を、前記インバータを構成する各スイッチング素子の状態を表す電圧ベクトルに基づき複数の電流検出区間に分割し、複数の前記電流検出区間のそれぞれについて、電流検出区間の時間幅と電流検出区間で前記電流検出器が検出した電流値との積を算出し、算出した積の前記単位時間あたりの合計値が前記単位時間ごとに一定となるよう前記インバータを制御する、
     電力変換装置。
    a converter for rectifying AC power supplied from an AC power supply;
    a smoothing unit connected to the output end of the converter for smoothing power output from the converter;
    an inverter connected to both ends of the smoothing unit and generating AC power to be output to a load;
    a current detector that detects a current flowing between the smoothing unit and the inverter;
    a control unit that controls the inverter;
    with
    The control unit divides a unit time, which is a period of a predetermined length, into a plurality of current detection intervals based on voltage vectors representing states of respective switching elements forming the inverter. For each of the above, the product of the time width of the current detection section and the current value detected by the current detector in the current detection section is calculated, and the total value of the calculated products per unit time is constant for each unit time. controlling the inverter to
    Power converter.
  2.  前記インバータに出力する制御信号の生成に用いるキャリア信号の1周期の整数倍の時間を前記単位時間とする、
     請求項1に記載の電力変換装置。
    The unit time is an integral multiple of one cycle of a carrier signal used to generate a control signal to be output to the inverter;
    The power converter according to claim 1.
  3.  前記電流検出器をシャント抵抗で構成する、
     請求項1または2に記載の電力変換装置。
    configuring the current detector with a shunt resistor;
    The power converter according to claim 1 or 2.
  4.  請求項1から3のいずれか一つに記載の電力変換装置を備えるヒートポンプ装置。 A heat pump device comprising the power conversion device according to any one of claims 1 to 3.
PCT/JP2021/038620 2021-10-19 2021-10-19 Power conversion device and heat pump device WO2023067697A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023554128A JPWO2023067697A1 (en) 2021-10-19 2021-10-19
PCT/JP2021/038620 WO2023067697A1 (en) 2021-10-19 2021-10-19 Power conversion device and heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038620 WO2023067697A1 (en) 2021-10-19 2021-10-19 Power conversion device and heat pump device

Publications (1)

Publication Number Publication Date
WO2023067697A1 true WO2023067697A1 (en) 2023-04-27

Family

ID=86058958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038620 WO2023067697A1 (en) 2021-10-19 2021-10-19 Power conversion device and heat pump device

Country Status (2)

Country Link
JP (1) JPWO2023067697A1 (en)
WO (1) WO2023067697A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111781A (en) * 1993-10-08 1995-04-25 Sawafuji Electric Co Ltd Power supply for vibration-type compressor
JP2016127650A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Power conversion device
JP2016178814A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Motor control device and electric apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111781A (en) * 1993-10-08 1995-04-25 Sawafuji Electric Co Ltd Power supply for vibration-type compressor
JP2016127650A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Power conversion device
JP2016178814A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Motor control device and electric apparatus

Also Published As

Publication number Publication date
JPWO2023067697A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
Schweizer et al. Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems
Friedli et al. Milestones in matrix converter research
JP6067105B2 (en) Power conversion apparatus, motor drive apparatus including the same, blower including the same, compressor, air conditioner including them, refrigerator, and refrigerator
US9960703B2 (en) DC power-supply device and refrigeration-cycle application device including the same
Schweizer et al. High efficiency drive system with 3-level T-type inverter
JP4585774B2 (en) Power conversion device and power supply device
KR101077718B1 (en) Motor control device
JP5304937B2 (en) Power converter
JP5873716B2 (en) Motor control device
AU2011358036A1 (en) Backflow preventing means, power converting device, and refrigerating and air-conditioning apparatus
US10056826B2 (en) Direct-current power supply device for controlling at frequency being 3N times frequency of three-phase alternating current and refrigeration-cycle applied device including the same
WO2013105187A1 (en) Inverter control device
US11888422B2 (en) Carrier frequency setting method, motor driving system, and carrier frequency setting device
JP4706349B2 (en) DC power supply device and compressor drive device
JP2014131372A (en) Booster circuit, motor drive module, and refrigerator
CN109314484B (en) Motor system, motor drive device, refrigeration cycle device, and air conditioner
KR20140114737A (en) Inverter control device
KR20080068254A (en) Apparatus for detecting input current of inverter and method thereof
JP6543872B2 (en) Control device, control method and program
WO2023067697A1 (en) Power conversion device and heat pump device
JP5045622B2 (en) Power converter
WO2012108158A1 (en) Motor drive device
JP3362130B2 (en) Voltage compensation circuit and voltage compensation method for three-phase inverter with four switches
CN118077139A (en) Power conversion device and heat pump device
JP2012010507A (en) Dc power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554128

Country of ref document: JP