WO2023066833A1 - Dispositif compact pour une alimentation décarbonée et à empreinte carbone réduite et un fonctionnement à émissions réduites de convertisseurs et son procédé d'utilisation - Google Patents

Dispositif compact pour une alimentation décarbonée et à empreinte carbone réduite et un fonctionnement à émissions réduites de convertisseurs et son procédé d'utilisation Download PDF

Info

Publication number
WO2023066833A1
WO2023066833A1 PCT/EP2022/078766 EP2022078766W WO2023066833A1 WO 2023066833 A1 WO2023066833 A1 WO 2023066833A1 EP 2022078766 W EP2022078766 W EP 2022078766W WO 2023066833 A1 WO2023066833 A1 WO 2023066833A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
hydrogen
compounds
burner
carbon
Prior art date
Application number
PCT/EP2022/078766
Other languages
German (de)
English (en)
Inventor
Karl-Hermann Busse
Original Assignee
Busse Karl Hermann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Busse Karl Hermann filed Critical Busse Karl Hermann
Publication of WO2023066833A1 publication Critical patent/WO2023066833A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia

Definitions

  • the invention relates to a compact, multi-stage, efficient device for flexible carbon-free and carbon-reduced supply and the resulting reduced-emission operation of converters, in particular with the hydrogen produced hereby, preferably from ammonia and compounds produced in a climate-neutral manner.
  • the hydrogen produced hereby preferably from ammonia and compounds produced in a climate-neutral manner.
  • the inventive device consists of one or more burners for both thermal and catalytic decomposition of ammonia and compounds and for preheating the ammonia and compounds used.
  • the self-generated hydrogen is preferably stored temporarily in one or more tanks.
  • the required quantities of ammonia and its compounds, as well as ammonia and its compounds dissolved in easily ignitable, combustible solvents and possibly admixed, are stored together in one or more tanks.
  • liquid ammonia can store more hydrogen much more efficiently under moderate conditions (e.g. at 8.6 bar, 20°C, 2.73 MWh/m 3 ) than it can even in highly compressed (700 bar, 15°C, 1 .3 MWh/m 3 ) or deep-frozen, cryogenic state at -253°C (approx. 1 bar, 2.36 MWh/m 3 ) with pure hydrogen is possible.
  • moderate conditions e.g. at 8.6 bar, 20°C, 2.73 MWh/m 3
  • cryogenic state at -253°C (approx. 1 bar, 2.36 MWh/m 3 ) with pure hydrogen is possible.
  • around 30 - 40% of the stored energy is consumed in advance simply by the necessary deep-cooling of the hydrogen in order to achieve an acceptable volumetric energy density.
  • the device proposed here according to the invention can, on the one hand, very effectively recover the hydrogen bound in ammonia and compounds, and converters can be operated with reduced emissions technically without great effort.
  • Additives of methane and hydrogen, for example, are therefore suitable as ignition aids for flammable ammonia and compounds with air. Simultaneous preheating of the ammonia-air mixture to around 500°C also supports the ignition considerably.
  • a combustible mixture consisting of hydrogen, ammonia and compounds as well as pure hydrogen can also be produced directly in the device according to the invention and then subsequently burned with air in a converter (e.g. an internal combustion engine).
  • a converter e.g. an internal combustion engine
  • ammonia and compounds dissolved in suitable ignitable solvents can be burned with reduced carbon directly in the converters.
  • Solvents based on alcohols and ethers are particularly suitable for this purpose, as are also used as ignition aids.
  • an additional post-cleaning stage in the form of membrane filters and/or molecular sieves can be used in order to achieve the necessary purity of the hydrogen, cf. Tim Lipman, Nihar Shah: Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report, UC Berkeley, 2007, https://escholarship.org/uc/item /7z69v4wp.
  • catalytically active metals can also be used as coatings, based on nickel and ruthenium, among other things.
  • Nickel is a good choice because of the significantly lower costs.
  • the heating of the catalyst supports coated in this way on a metal and ceramic basis is currently usually carried out electrically by indirect heating. This leads to an increase in the number of heat transfer resistances and a low efficiency of the system technology.
  • the burner or burners used here are preferably operated in continuous operation with the hydrogen produced from ammonia and compounds itself as an ignition aid.
  • Flammable solvents for ammonia and compounds such as alcohols and ethers can also be used in mixtures with ammonia and compounds as initial or permanent ignition aids.
  • ammonia and ammonia compounds dissolved in methanol and ethanol are particularly suitable for this purpose, see, for example, DirkSchfer et al: Experimental Investigation of the Solubility of Ammonia in Methanol, J. Eng. Data 2007, 52, 1653 - 1659, https://pubs.acs.org/doi/abs/10.1021/ie700033v and L.-J. Huang, W.-L.Xue and Z.-X. Zengan: The Solubility of ammonia in ethanol between 277.35 K and 328.15 K, Fluid Phase Equilibria, Vol. 303, 80 - 84, 201 , https://doi:10.1016/j.fluid.2O11 .01 .006 an.
  • Ethanol behaves in a similar way to methanol, see a. L.-J. Huang, W.-L.Xue and Z.-X. Zengan: The Solubility of ammonia in ethanol between 277.35 K and 328.15 K, Fluid Phase Equilibria, Vol. 303, 80 - 84, 201, https://doi:10.1016/j.fluid.2011.01.006. However, the solubility for ammonia is about half that of methanol. Another advantage is the better environmental compatibility of ethanol.
  • alcohols and ethers as solvents for ammonia and compounds can also increase the hydrogen yield due to a more homogeneous thermal decomposition.
  • Ammonia and compounds in the dissolved state in particular in alcohols such as methanol, ethanol and based on ethers such as diethyl ether (DEE), methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) at standard conditions and moderate ambient temperatures of around 20 to 50°C without or with comparatively little pressurization (usually ⁇ 4 bar).
  • DEE diethyl ether
  • MTBE methyl tert-butyl ether
  • TAME tert-amyl methyl ether
  • Ammonia itself and the fine dust particles formed in the air endanger human health and damage plants and ecosystems.
  • FIG. 1 shows the two-stage device according to the invention.
  • the device (1) works together with one or more heat exchangers (2) for exhaust gas utilization, one or more converters (14) to preheat ammonia and compounds and one or more controllable liquid and/or gas burner(s) (3), preferably for flameless oxidation. These burner(s) are used for the thermal decomposition of the ammonia with a desired homogeneous temperature distribution in one or more combustion chamber(s) (8) (1st process stage). To this end, the reactants are premixed and/or added as a solution, preferably centrally to the flame.
  • the energy of the burners that is not used for the thermal decomposition (4) is used on the one hand via a further integrated heat exchanger (5) to preheat the ammonia and compounds and, if necessary, air (up to approx. 500°C in each case) and on the other hand heating of the additional catalytic reaction section (12) to around 500-750 °C (2nd process stage).
  • the energy provided by the burner or burners is used very effectively.
  • the thermal efficiency thus reaches well over 80%.
  • baffle plates (9) also prevents the direct action of the burner flame and local overheating of the catalysts.
  • catalyst supports (11) for example made of ceramics such as cordierite and temperature-resistant steels, are used as the coating substrate. Ceramics are recommended due to their high thermal resilience. On the other hand, the necessary operating temperature can be realized and adjusted much more quickly by means of metallic catalyst carriers (11). Even with very compact sizes, the purity of the hydrogen produced in two process steps can reach more than 99%. Subsequent post-purification through membrane filters and, for example, molecular sieves (not shown in FIG. 1) allows additional purification of the hydrogen for use in PEM fuel cells by removing nitrogen and ammonia to levels of ⁇ 100 ppb.
  • the stream of material produced passes through one or more further heat exchangers (13) with which the necessary preheating temperature for consumption by the converter or converters (14) is set, if necessary by additional admixing of ammonia.
  • Another part of the hydrogen is temporarily stored in one or more tanks (15, 16), in particular for the cold start of the burner(s) and to ensure rapid load changes in the converter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

L'invention concerne un dispositif compact pour alimenter des convertisseurs de manière décarbonée et avec une empreinte carbone réduite et les faire fonctionner avec des émissions réduites, ce dispositif (1) fonctionnant de manière polyétagée avec un ou plusieurs brûleurs (3) à liquide ou à gaz, comprenant une ou plusieurs chambres de combustion (8) séparées ayant une distribution de températures sensiblement homogène pour la décomposition thermique (4) et une ou plusieurs sections de réaction catalytiques (12) adjacentes pour la décomposition catalytique (10) d'ammoniac et de composés d'ammoniac, produits de préférence de manière climatiquement neutre, en hydrogène de pureté différente, en particulier pour l'alimentation directe et indirecte de convertisseurs (14).
PCT/EP2022/078766 2021-10-22 2022-10-17 Dispositif compact pour une alimentation décarbonée et à empreinte carbone réduite et un fonctionnement à émissions réduites de convertisseurs et son procédé d'utilisation WO2023066833A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021127515.6 2021-10-22
DE102021127515.6A DE102021127515A1 (de) 2021-10-22 2021-10-22 Kompakte Vorrichtung für emissionsfreie Antriebe

Publications (1)

Publication Number Publication Date
WO2023066833A1 true WO2023066833A1 (fr) 2023-04-27

Family

ID=84332191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/078766 WO2023066833A1 (fr) 2021-10-22 2022-10-17 Dispositif compact pour une alimentation décarbonée et à empreinte carbone réduite et un fonctionnement à émissions réduites de convertisseurs et son procédé d'utilisation

Country Status (2)

Country Link
DE (1) DE102021127515A1 (fr)
WO (1) WO2023066833A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505027A (en) * 1963-05-25 1970-04-07 Still Fa Carl Apparatus for decomposing ammonia
JPH05332152A (ja) * 1991-06-25 1993-12-14 Koji Korematsu アンモニア燃焼エンジン
US20120276463A1 (en) 2010-05-27 2012-11-01 Shawn Grannell Ammonia flame cracker system, method and apparatus
CN209618877U (zh) * 2019-02-01 2019-11-12 浙江华大树脂有限公司 一种环保型恒压控制氨分解装置
US20200123006A1 (en) 2017-08-24 2020-04-23 Haldor Topsøe A/S Autothermal ammonia cracking process
CN112742310A (zh) * 2020-12-31 2021-05-04 福州大学化肥催化剂国家工程研究中心 一种氨分解反应装置及氨分解方法
JP2021110463A (ja) * 2020-01-06 2021-08-02 株式会社Kri アンモニア燃焼装置及びアンモニア燃料電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505027A (en) * 1963-05-25 1970-04-07 Still Fa Carl Apparatus for decomposing ammonia
JPH05332152A (ja) * 1991-06-25 1993-12-14 Koji Korematsu アンモニア燃焼エンジン
US20120276463A1 (en) 2010-05-27 2012-11-01 Shawn Grannell Ammonia flame cracker system, method and apparatus
US20200123006A1 (en) 2017-08-24 2020-04-23 Haldor Topsøe A/S Autothermal ammonia cracking process
CN209618877U (zh) * 2019-02-01 2019-11-12 浙江华大树脂有限公司 一种环保型恒压控制氨分解装置
JP2021110463A (ja) * 2020-01-06 2021-08-02 株式会社Kri アンモニア燃焼装置及びアンモニア燃料電池システム
CN112742310A (zh) * 2020-12-31 2021-05-04 福州大学化肥催化剂国家工程研究中心 一种氨分解反应装置及氨分解方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
A. VALERA-MEDINA ET AL.: "Review on Ammonia as a Potential Fuel: From Synthesis to Econom ics", ENERGY&FUELS, 2021, Retrieved from the Internet <URL:https://dx.doi.org/10.1021/acs.energyfuels.0c03685gegeben>
A. VALERA-MEDINA ET AL.: "Review on Ammonia as a Potential Fuel: From Synthesis to Economics", ENERGY&FUELS, 2021
A. VALERA-MEDINA: "Review on Ammonia as a Potential Fuel: From Synthesis toEconomics", ENERGY FUELS, vol. 35, no. 9, 28 February 2021 (2021-02-28), pages 6964 - 7029, XP002808619, DOI: https://doi.org/10.1021/acs.energyfuels.0c03685 *
ALON GRINBERG DANA ET AL.: "Nitrogen-Based Fuels: A Power-to-Fuel-to-Power Analysi", ANGEW. CHEM., vol. 55, 2016, pages 8798 - 8805, Retrieved from the Internet <URL:https://doi.orq/10.1002/anie.201510618>
CHRISTINE MOUNAIM-ROUSSELLE: "Operating Limits for Ammoniak Fuel Spark-Ignition Engine", ENERGIES, vol. 14, 2021, pages 4141, Retrieved from the Internet <URL:https://doi.org/10.3390/en14144141>
DIRK SCHÄFER ET AL.: "Experimental Investigation of the Solubility of Ammonia in Methanol", J. ENG. DATA, vol. 52, 2007, pages 1653 - 1659, Retrieved from the Internet <URL:https://pubs.acs.org/doi/abs/10.1021/ie700033v>
HIDEAKI KOBAYASHI ET AL.: "Science and technology of ammonia combustion", PROCEEDINGS OF THE COMBUSTION INSTITUTE, vol. 37, 2019, pages 109 - 133, XP055827963, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S1540748918306345> DOI: 10.1016/j.proci.2018.09.029
L.-J. HUANGW.-L.XUEZ.-X. ZENGAN: "The Solubility of ammonia in ethanol between 277.35 K and 328.15 K", FLUID PHASE EQUILIBRIA, vol. 303, pages 80 - 84, XP028365746, Retrieved from the Internet <URL:https://doi:10.1016/i.fluid.2011.01.006> DOI: 10.1016/j.fluid.2011.01.006
MAKOTO KOIKE: "Ammonia as a Hydrogen Energy Carrier and Its Application to Internal Combustion Engines", JOURNAL OF THE COMBUSTION SOCIETY OF JAPAN, vol. 58, no. 184, 2016, pages 99 - 106
NAJLAA ALI HUSSEIN ALBOSHMINA: "PhD Thesis", 2019, CARDIFF UNIVERSITY, article "Alboshmina: Ammonia Cracking with Heat Transfer Improvement Technology"
RUDOLF TANNER: "Dissertation", ETH ZÜRICH, article "Ueber die Verwendung von Ammoniak als Treibstoff"
SHEHAN OMANTHA HAPUTHANTHRI ET AL.: "Ammonia and Gasoline Fuel Blends for Spark Ignited Internal Combustion Engines", JOURNAL OF ENERGY RESOURCES TECHNOLOGY, vol. 137, 2015, pages 062201 - 1,0622017, Retrieved from the Internet <URL:https://doi.orq/10.1115/1.4030443>
TIM LIPMAN, NIHAR SHAH: "Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projekts", FINAL REPORT, UC BERKELEY, 2007, Retrieved from the Internet <URL:https://escholarship.org/uc/item/7z69v4wp>

Also Published As

Publication number Publication date
DE102021127515A1 (de) 2023-04-27

Similar Documents

Publication Publication Date Title
US12006865B2 (en) Cracking and separation of ammonia fuel
DE69229839T2 (de) Methode zur Herstellung von Methanol unter Verwendung der Wärme eines Kernkraftwerkes
DE69918492T2 (de) Turbine à gaz à chauffage indirect integree à une unite de separation des gaz de l&#39;air
EP3377815B1 (fr) Procédé et dispositif de réglage de la caractéristique d&#39;allumage d&#39;un combustible, en particulier pour diminuer les émissions d&#39;échappement de dispositifs de combustion
DE69717161T2 (de) Verfahren zur energiegewinnung mit hilfe eines verbrennungsprozesses
RU2502883C2 (ru) Способ обработки компонентов nox и система выработки электроэнергии
DE69201563T2 (de) Verfahren und anlage für kohlenwasserstoffverbrennung mit niedrigen schadstoffemissionen.
CN1095805C (zh) 合成气体和动力的联合生产方法
DE2410644A1 (de) Anordnungen an brennkraftmaschinen und/oder feuerungsanlagen bei methanol-betrieb
DE19923431A1 (de) Verbrennungsmotor mit einem Katalysator
DE112012006249B4 (de) Verfahren zur Gestaltung eines Arbeitsflusses eines Kolbengasmotors mit Kerzenzündung
EP2360230A1 (fr) Procédé et dispositif d&#39;évaluation d&#39;émissions d&#39;une centrale
DE19822691A1 (de) Brennstoffzellensystem und Verfahren zum Erzeugen elektrischer Energie mittels eines Brennstoffzellensystems
EP2690158B1 (fr) Procédé à stades multiples de production de combustible gazeux hydrogéné et installation de génération de chaleur et de gaz
EP2284938B1 (fr) Post-brûleur pour appareils de chauffage à pile à combustible à base de gaz naturel
WO2023066833A1 (fr) Dispositif compact pour une alimentation décarbonée et à empreinte carbone réduite et un fonctionnement à émissions réduites de convertisseurs et son procédé d&#39;utilisation
EP2217365B1 (fr) Procédé et dispositif pour le reformage assisté par plasma de carburant destinés à être utilisés dans des moteurs
DE69205607T2 (de) Methode zur katalytischen Verbrennung von verbrennbaren Bestandteilen aus Abgasen.
EP2738268A1 (fr) Procédé de réduction d&#39;oxydes métalliques en un matériau métallisé dans un processus de réduction directe.
DE102016001334A1 (de) Verfahren und Ofen zur Umsetzung von Wasserstoff mit Luftsauerstoff sowie von HHO-Gas zu Wasser mit Wirkungsgraden der Wärmegewinnung &gt;95%
WO2019038045A1 (fr) Procédé de production d&#39;acide nitrique et dispositif servant à la production d&#39;acide nitrique
DE10104607A1 (de) Gaserzeugungssystem für ein Brennstoffzellensystem und Verfahren zum Betrieb eines Gaserzeugungssystems
DE102015215939B4 (de) Verfahren zum Erzeugen einer Brennstoffzusammensetzung und zum Betreiben einer Brennkraftmaschine
DE202017004842U1 (de) System zum Betreiben eines Verbrennungsmotors
EP2980371A1 (fr) Procédé de conversion d&#39;énergie avec régénération des ressources d&#39;énergie dans le processus cyclique d&#39;un moteur thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22802124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE